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Abstract

Traumatic brain Injury (TBI) is a significant cause of death and long-term disability for which

there are currently no effective pharmacological treatment options. In this study then, we uti-

lized a mouse model of TBI to assess the therapeutic potential of the stable disaccharide tre-

halose, which is known to protect against oxidative stress, increase levels of chaperone

molecules and enhance autophagy. Furthermore, trehalose has demonstrated neuroprotec-

tive properties in numerous animal models and has been proposed as a potential treatment

for neurodegeneration. As TBI (and associated neurodegenerative disorders) is compli-

cated by a sudden and dramatic change in brain metal concentrations, including iron (Fe)

and zinc (Zn), the collective accumulation and translocation of which has been hypothesized

to contribute to the pathogenesis of TBI, then we also sought to determine whether treha-

lose modulated the metal dyshomeostasis associated with TBI. In this study three-month-

old C57Bl/6 wildtype mice received a controlled cortical impact TBI, and were subsequently

treated for one month with trehalose. During this time animals were assessed on multiple

behavioral tasks prior to tissue collection. Results showed an overall significant improve-

ment in the Morris water maze, Y-maze and open field behavioral tests in trehalose-treated

mice when compared to controls. These functional benefits occurred in the absence of any

change in lesion volume or any significant modulation of biometals, as assessed by laser

ablation inductively coupled plasma mass spectrometry. Western blot analysis, however,

revealed an upregulation of synaptophysin, doublecortin and brain derived neurotrophic fac-

tor protein in trehalose treated mice in the contralateral cortex. These results indicate that

trehalose may be efficacious in improving functional outcomes following TBI by a previously

undescribed mechanism of action that has relevance to multiple disorders of the central ner-

vous system.

Introduction

Traumatic Brain Injury (TBI) is a major global health problem [1] and represents the leading

cause of mortality and disability in high-income countries [2]. It is estimated that 1.7 million

TBI’s occur annually in the United States alone, and in 2006, 5.3 million people were living
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with long term disabilities as a consequence of brain injury [3]. The causes of TBI are etiologi-

cally diverse, but largely comprise of motor vehicle accidents, occupational hazards, physical

violence and falls [3], all of which contribute to a significant public health burden. Addition-

ally, brain trauma incurred through contact combat sports [4,5] and American football [6–8]

has been shown to culminate in subsequent behavioral disabilities [9] and pathological effects

in the form of chronic traumatic encephalopathy (CTE) [10–12]. Similarly, military blast-

induced TBI has also been shown to result in long-term cognitive deficits in affected individu-

als [13]; over 200,000 U.S. service members deployed to Central Asia and the Middle East have

been officially diagnosed with TBI since 2003 [14]. Regardless of the globally increasing inci-

dence of TBI, and despite much effort, there currently is no therapeutic option available to

ease or prevent some of the most debilitating symptoms that occur following TBI, such as cog-

nitive dysfunction.

The injured brain is characterized by a number of features, including perturbed metal

homeostasis [15–19] and associated oxidative stress [20,21]. Specifically, the biological transi-

tion metals iron (Fe) [17,18,22], copper (Cu) [18,23], and zinc (Zn) [16,24–28] have been

implicated as having critical roles in TBI. Moreover, these metals have also been proposed to

have integral roles in the pathogenesis of neurodegenerative disorders such as Alzheimer’s dis-

ease (AD) [29–31], Parkinson’s disease (PD) [32] and Amyotrophic Lateral Sclerosis (ALS)

[33], conditions which may all be predated by a history of TBI [34–36]. Given the disruptions

that occur in metal homeostasis following TBI, and the associated implications for neurode-

generation, we hypothesized that a compound that was effective at intervening in the neurode-

generative cascade would be of benefit in a TBI model and may also directly or indirectly

impact metal ion homeostasis to further improve functional outcomes post-injury. One such

candidate is trehalose, a naturally occurring alpha-linked dissacharide composed of two mole-

cules of glucose, that has been shown to protect against oxidative stress [37,38], upregulate

growth factor expression and secretion [39], prevent protein aggregation [40–43], and subse-

quently delay the progression of neurodegeneration in several transgenic mouse models [44–

48]. We therefore sought to determine the therapeutic efficacy of trehalose in a mouse TBI

model, and to also investigate whether it had any impact on the biometal aberrations observed

in TBI.

Methods

All procedures were carried out in accordance with protocols approved by the Howard Florey

Animal Ethics Committee and were conducted in accordance with the Australian Code of

Practice for the Care and Use of Animals for Scientific Purposes as described by the National

Health and Medical Research Council of Australia.

Trehalose

Trehalose (Sigma) has a generous safety profile in rodents and humans [49,50] and was posted

as “Generally Regarded as Safe” (GRAS) for human consumption by the U.S. Federal Drug

Administration (FDA) in October 2000. It is used as a food additive, and is also an excipient in

many pharmaceuticals, making trehalose a safe, natural and pharmaceutically accepted prod-

uct. In this study, it was supplied as a 2% solution in SSV (SSV; 0.9% NaCl, 0.5% Na-carboxy-

methylcellulose, 0.5% benzyl alcohol and 0.4% Tween 80) via oral gavage.

Animals and surgical procedures

The surgical procedures and controlled cortical impact (CCI) injury model have been previ-

ously described [17]. Briefly, 3-month-old male C57Bl/6 mice were anesthetized via
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intraperitoneal injection of 100mg/kg ketamine and 10mg/kg xylazine. A 10mm mid-line inci-

sion was made over the skull, and the skin and fascia were reflected to make a 4mm craniot-

omy on the central aspect of the right parietal bone using a motorized drill. Animals were then

positioned in a stereotaxic frame and a CCI injury subsequently delivered (3m/s velocity with

a 1.5mm penetration depth).

Three groups of animals were subjected to TBI in separate experiments. The first group of

animals were treated daily with either trehalose or standard suspension vehicle (SSV) via oral

gavage for a period of 31 days after both groups received a TBI. The dosing regimen com-

menced 24 hours post-TBI. The second group of animals underwent an identical dosing pro-

cedure but were treated with either SSV or maltose as a disaccharide control for trehalose,

after TBI. A sham animal group, which underwent identical procedures up to and excluding

the administration of a TBI, was also included in the second TBI group.

A third group of animals consisting of a trehalose treated and an SSV treated group that did

not undergo any behavioral assessment but underwent the same dosing regime, was used for

LA-ICPMS metal analysis. There was no maltose or sham group for the LA-ICPMS analysis.

Mice were obtained from the Animal Resource Centre (Murdoch, WA, Australia), and

were humanely culled via IP injection of Lethabarb (Virbac, Australia).

Behavioral assessment

The Morris Water Maze (MWM) was used to assess the effect of trehalose on spatial learning

and memory function following TBI. The pre-training acclimation day of the water maze was

performed on day 23 of dosing, followed by six days of place discrimination training of four 90

second trials per day, conducted on days 24–29 of dosing. The probe trial was performed 24

hours after training on dosing day 30 to assess retention of the task. Data was processed using

the Ethovision automated tracking system prior to statistical analysis.

The open field assessment was performed on day 19 of dosing. The mice were removed

from their home cage and placed individually into clear Perspex tracking arenas (Coulburn

TruScan, U.S.A.). The total amount of movements over a 60 minute period were recorded and

analyzed. The locomotor cells measured the total time in movement in the floor plane by the

interruption of a grid of beams.

Y-maze assessment was performed on day 21 of dosing. Three identical arms of the maze

were randomly designated start arm, novel arm, and other arm. The Y-maze tests consisted

of 2 trials separated by a 1 hour inter-trial interval. The first trial (training) was for 10 min-

utes, and the mice were allowed to explore only 2 arms (starting arm and other arm). For

the second trial (retention), mice were placed back in the maze in the same starting arm,

and allowed to explore for 5 minutes with free access to all three arms. By using a ceiling

mounted CCD camera, all trials were analyzed for the number of entries the mice made

into each arm. Data were expressed as the percentage of novel arm entries made during the

retention trial.

Laser ablation inductively coupled plasma mass spectrometry

A comprehensive description of the laser ablation-inductively coupled plasma mass spectrom-

etry (LA-ICPMS) procedure has been previously published [17]. Briefly, Trehalose treated and

vehicle-treated animals (n = 5 per group) were euthanized at 24 hr, 72 hr, 7 day, 14 day and 28

day-post TBI surgeries. Brain tissue was prepared as previously described and was subjected to

LA-ICPMS.

Trehalose and traumatic brain injury
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Western blot analysis

The cortex and hippocampus of both ipsilateral and contralateral hemispheres from animals

subject to behavioral analysis were homogenized in 15 volumes of ice-cold PBS containing

Complete Protease Inhibitor Cocktail tablets (Roche Applied Science, Indianapolis, IN, USA)

and subsequently centrifuged (100,000xg) for 30 minutes at 4˚C. The supernatant was

removed to yield the soluble fraction (S1), whilst the remaining pellet underwent further

extraction via 30 minutes of vigorous agitation in the above-mentioned homogenization buffer

containing 2% (vol/vol) Triton X100. Insoluble material was pelleted via centrifugation

(20,000xg) for 20 minutes, and the supernatant was retained as the membrane fraction (P1).

Protein concentrations were determined using Pierce BCA protein assay (Pierce Biotechnol-

ogy, Rockford, IL, USA) to ensure equal protein loading (10μg) on the gels. Samples were

prepared for PAGE by the addition of 4x protein sample loading buffer (LICOR, Lincoln,

Nebraska, USA) and 10x NuPAGE sample reducing agent (to a final 1x concentration). Sam-

ples were heated to 70˚C for 10 min, loaded onto Bolt 4–12% Bis-Tris Plus gels (Invitrogen-

Life Technologies, Grand Island, NY, USA) along with Odyssey One-Color protein molecular

weight markers (LICOR, Lincoln, Nebraska, USA, Cat LCR928-4000) and run at 125 V for 60

min in appropriately diluted Bolt MES SDS 20x running buffer (Invitrogen-Life Technologies,

Grand Island, NY, USA). Gels were transferred to Immobilon–P, PVDF membrane (Milli-

pore) using the Invitrogen Bolt wet-gel Transfer Device (Invitrogen-Life Technologies, Grand

Island, NY, USA) at 15 V for 60 min in appropriately diluted 20x Bolt transfer buffer (Invitro-

gen-Life Technologies, Grand Island, NY, USA). Membranes were blocked in tris-buffered

saline with tween 20 (TBST) containing 5% skim milk powder and then incubated with pri-

mary antibody overnight at 4˚C (Doublecortin (DCX) antibody diluted 1:1000, Cell Signaling

Technology, Danvers, MA, USA Cat # 4604; Synaptophysin antibody diluted 1:1000, Millipore,

MA, USA, Cat # AB9272; BDNF antibody diluted 1:5000, ABCAM Cambridge MA, USA, Cat

# 108319; Pro-BDNF antibody diluted 1:1000, Saphire Biosciences, Redfern NSW, Australia,

Cat # R-087-100; GAPDH diluted 1:10000 Millipore, MA, USA, Cat # MAB374). Blots were

rinsed in TBST and incubated with appropriate secondary antibody at room temperature for 1

hour (IRDye800 Goat anti-mouse Cat # LCR926-32210, IRdye800 Goat anti-Rabbit Cat #

LCR926-32211, IRDye680 Goat anti-mouse Cat # LCR926-68070, IRDye680 Goat anti-Rabbit

Cat # LCR926-68071. LI-COR Biosciences, Lincoln, Nebraska, USA), followed by further rins-

ing and imaged using a LI-COR Odyssey Imaging system (LI-COR Biosciences, Lincoln NE,

USA), and analysed with Image Studio Lite software (LI-COR Biosciences, Lincoln NE, USA).

Sample data were normalized to total protein loaded and to the GAPDH or β-actin loading

control.

Statistical analysis

For LA-ICPMS samples, statistical analysis was carried out in Prism 7 (Graph-Pad) soft-

ware. Where appropriate, analysis was carried out with a two-tailed t test with the level of

significance set at p = 0.05. For multiple comparisons, repeated measures two-way ANOVA

with post-hoc Bonferroni’s multiple comparison test was used to assess the Morris water

maze, and a two-way ANOVA with post hoc Bonferroni’s analysis was used to identify

significant differences between ipsilateral and contralateral regions of interest (ROI’s) “Fig

1”. For western blot analysis, images were produced using Image Studio Lite (version

4.0.21, LI-COR Biosciences) and subsequent statistical analysis was carried out in Prism 7

(Graph-Pad). All statistical analysis on behavioral data was performed using Prism 7

(Graph-Pad).

Trehalose and traumatic brain injury
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Results

Behavioural analyses

Trehalose restores water maze performance following TBI. Trehalose treated mice

(n = 5) demonstrated both an overall improved acquisition of the task (Two-way repeated

measures ANOVA p< 0.0048) and an improved recall of the task (probe trial, p = 0.0010) as

compared with SSV–treated controls (n = 8) “Fig 2a and 2b”. The TBI SSV treated group did

not appear to learn during the six-day learning phase of the watermaze, which may be reflec-

tive of the deficit in cognition without treatment. In the second TBI group there was no effect

of the maltose control (n = 7) on either the learning or the probe trial as compared to SSV-

treated controls (n = 13). Similarly, sham mice did not show significant improvement during

the learning phase of the trial, however they performed significantly better on the probe trial

(ANOVA ��p = 0.0019), when compared to maltose and SSV control groups (data not shown).

Trehalose increases spontaneous activity in the open field assessment. Open field

behavioral assessment indicated a significant increase in exploration activity for the trehalose-

treated group compared to controls, as exemplified by ambulatory time (P< 0.001) “Fig 3a”,

total ambulatory counts (P< 0.01) “Fig 3b” and vertical counts (P<0.01) “Fig 3c”. Impor-

tantly, there was no significant difference in ambulatory velocity between the two groups

Fig 1. Representative LA-ICPMS schematic for iron, copper and zinc. a) Schematic demonstrating

regions of interest selection for assessment of changes in metal levels radial to the site of impact overlaid the

copper distribution of an unlesioned, untreated brain. b-d) Representative 28 day LA-ICP-MS images of the

upper two quadrants of both hemsipheres for iron, copper and zinc. Selected ROIs were applied to each

measured metal and extracted for statistical comparisons. Whole-hemisphere metal concentrations and

equivalent ROIs on the contralateral side were also extracted. Images of sections were taken at

approximately bregma +2.7 mm from 24 hours to 28 days post-lesion. All images have a lateral spatial

resolution of 30 μm. Scale bar = 1 mm.

https://doi.org/10.1371/journal.pone.0183683.g001
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“Fig 3d”. The secondary control group consisting of maltose, SSV and sham mice were not

tested in the open field assessment.

Trehalose enhances Y-maze performance following TBI. In the y-maze, the trehalose-

treated mice showed an overall significant improvement in both the duration and frequency of

Fig 2. Trehalose improves performance in the Morris water maze. Mice treated post-injury with trehalose revealed an

overall significant performance improvement (two-way repeated measures ANOVA **p = 0.0048) in the learning (a) component

of the Morris water maze. A post hoc Bonferroni’s multiple comparison test confirmed analysis showing significant performance

of trehalose treated animals on day three (*p = 0.0200), day four (*p = 0.0197), day five (*p = 0.0038) and day 6 (*p = 0.0092).

Trehalose treated mice also performed significantly better than SSV treated litter mates on the recall (b) component of the Morris

water maze (*** p = 0.0010). Subsequent water maze with maltose treated and sham animals revealed no such significant

improvement in the learning component of the trial. However, the recall component revealed a significantly better performance

for the uninjured sham animals (ANOVA **p = 0.0019).

https://doi.org/10.1371/journal.pone.0183683.g002

Fig 3. Trehalose treated mice show significantly enhanced willingness to explore in the open field

activity test. Post-TBI treated mice showed a significant reduction in anxiety and an increased willingness to

explore when compared to SSV littermates. Post-treated mice showed a significant increase in ambulatory

time (****p< 0.00001) (a), ambulatory distance (*p< 0.01) (b), vertical counts (*p< 0.01) (c) without a

significant increase in velocity (d).

https://doi.org/10.1371/journal.pone.0183683.g003

Trehalose and traumatic brain injury

PLOS ONE | https://doi.org/10.1371/journal.pone.0183683 August 24, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0183683.g002
https://doi.org/10.1371/journal.pone.0183683.g003
https://doi.org/10.1371/journal.pone.0183683


visits into the novel arm, indicating a willingness to explore a new environment. One-minute

frequency was significantly enhanced over the SSV group (p< 0.001) “Fig 4a” as was the five-

minute frequency (p< 0.01) “Fig 4b”. Additionally, trehalose treated mice spent a significantly

increased amount of time in the novel arm at the one-minute time point (p< 0.001) “Fig 4c”.

There was no effect of the maltose control group on any of the parameters “Fig 4d–4f”.

Metal analyses

Trehalose does not alter zinc levels after TBI. LA-ICPMS revealed no significant overall

change in Zn concentration between trehalose and SSV treatment groups in any region exam-

ined in either the ipsilateral or contralateral cortex as assessed by two-way ANOVA and Bon-

ferroni post hoc analysis over the time course. Neither were there any significant intra-day

changes in Zinc between the trehalose and SSV treatment groups “Fig 5”.

Trehalose alters copper concentration after TBI. Whilst two-way ANOVA and Bonfer-

roni’s post hoc analysis revealed no overall change in Cu concentration in any region analyzed

Fig 4. Trehalose treatment improves y-maze performance in TBI mice. Trehalose treated mice showed a

significant overall frequency of visitation preference for the novel arm (red) over the start arm (black)

compared to SSV treated littermates at both one-minute (a) (**p< 0.001), and five-minute frequency (b) time

points (*p< 0.01). Additionally, trehalose treated mice spent a significantly greater duration of time in the novel

arm at the one-minute (c) (**p< 0.001) time point when compared to SSV controls. Subsequent y-maze

revealed that maltose treated mice had no significant preference for the novel arm at both the one-minute (d)

or five-minute (e) frequency measurements when compared to SSV treated littermates. Similarly, the one-

minute duration measurement for maltose also revealed no significant increase in the duration time of visits

when compared to SSV control littermates.

https://doi.org/10.1371/journal.pone.0183683.g004
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over the time course, trehalose treated mice revealed significant intra-day increases at day 7 in

the ipsilateral ROI 1 “Fig 6a”, ROI 2 “Fig 6c”, and at day 7 in the entire ipsilateral hemisphere

“Fig 6g” that was not observed in SSV treated mice. Similarly, at day 7 in the contralateral ROI

3 “Fig 6f” and the entire hemisphere “Fig 6h” there was a significant increase in Cu concentra-

tion. In every region for both ipsilateral and contralateral sides there was a steady increase in

Cu from day seven onwards for both Trehalose treated and SSV treated mice. Whilst not sig-

nificant at any single time point, Cu concentration at day 14 for every time point was higher

for trehalose-treated mice over their SSV-treated counterparts. However, within the ipsilateral

and contralateral ROI 1, ROI 2, ROI 3 and the entire hemispheres, the trehalose group appears

to decrease in Cu concentration at the 28-day time point when compared to SSV controls.

Fig 5. Zinc is unaltered across the timecourse. There were no observed significant increases in Zn in any

region analyzed or intraday comparison between trehalose treated and SSV controls.

https://doi.org/10.1371/journal.pone.0183683.g005
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Iron is modulated by trehalose after TBI. There are subtle changes in the Fe profile over

the time course post-injury. In every region analyzed on the ipsilateral side from day seven to

fourteen there is a decrease in Fe for the SSV treated group. Conversely there is an increased

trend in Fe for the trehalose treated group at the same time-points, with a significant increase

observed in the ipsilateral ROI 1 at day 14 between trehalose and SSV “Fig 7a”. Comparatively,

the contralateral side reflects an almost identical pattern except for ROI 2 where the SSV

treated day fourteen concentrations is not decreased from day seven. However, there is a

Fig 6. Copper is altered across the time course. Cu revealed ipsilateral significant increases at days 7 in

ROI 1 (*p<0.01), ROI 2 (*p<0.01), and the entire hemisphere (*p<0.01) for trehalose treated mice.

Contralateral assessment revealed significant increases at days 7 in ROI 3 (*p<0.01) and day 7 in the entire

hemisphere (*p<0.01).

https://doi.org/10.1371/journal.pone.0183683.g006
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significant increase in Fe at day fourteen in the entire contralateral hemisphere “Fig 7h”. Over-

all, the Fe concentrations in all ipsilateral regions are greater than the contralateral regions.

Biochemical analyses

Western blot analysis. Trehalose treated mice showed a significantly elevated expression

of the synaptic vesicle protein synaptophysin (a marker of synaptic activity) in the contralateral

cortex when compared to SSV and maltose controls “Fig 8a”. The elevation of synaptophysin

Fig 7. Iron is modulated across the time course. Fe was revealed to be significantly increased in the

ipsilateral cortex in ROI1 at 7 days for trehalose treated mice (a) (*p<0.01). The contralateral side revealed an

increase at day 14 for trehalose treated mice in ROI1 (b) (*p<0.01) and the entire hemisphere (h) (*p<0.01).

Ipsilateral Fe concentrations in every region surveyed were elevated regardless of treatment when compared

to equivalent contralateral regions.

https://doi.org/10.1371/journal.pone.0183683.g007
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was unique to the contralateral cortex with no significant elevation observed in the contralat-

eral hippocampus, or the ipsilateral cortex and hippocampus. However, the ipsilateral hippo-

campus did see a non-significant elevation of synaptophysin for the trehalose treated group

when compared to control groups. Analysis of doublecortin, a neuronal migration protein that

is a surrogate for neurogenesis, revealed an identical profile, whereby there was a significant

increase of DCX protein observed in the contralateral cortex for trehalose treated animals “Fig

8b” and an absence of elevated DCX in the contralateral hippocampus or ipsilateral cortex and

hippocampus when compared to control groups. Similarly, trehalose treated animals revealed

a significant increase in both BDNF “Fig 8c” and Pro-BDNF “Fig 8d”, proteins crucial for neu-

ronal health and synaptic remodeling, in the contralateral cortex when compared to SSV and

maltose treated littermates. Both BDNF and pro-BDNF were not significantly elevated in the

contralateral hippocampus or ipsilateral cortex and hippocampus.

Discussion

In this study we have demonstrated that oral trehalose administration greatly improves cogni-

tive outcomes, as evidenced by improved performance in the Morris water maze and Y-maze,

in mice subjected to a controlled cortical impact. Additionally, performance in the open field

test, which can be used to assess locomotor function and levels of anxiety/depression, was

Fig 8. Trehalose increases synaptophysin, DCX, BDNF & Pro-BDNF in the contralateral cortex.

Trehalose significantly increased synaptophysin protein in the contralateral cortex over SSV (*p<0.0221) and

maltose (*p<0.0193) controls (a). Trehalose significantly increases DCX in the contralateral cortex compared

to SSV (*p<0.0147) and maltose (*p<0.0123) controls (b). Trehalose also significantly increased BDNF

protein in the contralateral cortex over SSV (*p<0.0296) and maltose (*p<0.0255) controls (c). Trehalose

significantly increased Pro-BDNF protein in the contralateral cortex over SSV (*p<0.0210) and maltose

(*p<0.0287) controls (d).

https://doi.org/10.1371/journal.pone.0183683.g008
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significantly improved in the trehalose treated group following TBI. These behavioural data,

together with our tissue analyses, demonstrate that trehalose is significantly improving func-

tional outcomes that are impacted as a result of brain injury. The mechanisms underlying

these effects appear to most likely be driven by a previously undescribed effect of trehalose on

specific pathways involved in neuronal plasticity. Given that human epidemiological data

indicates that a mild single TBI is associated with an increased risk of progressive cognitive

impairment [51] (which can lead to dementia [52–54]) and other psychological manifestations

such as depression [55,56] and anxiety [57], our data make a compelling case for translational

studies to assess the clinical benefit of trehalose treatment in patients presenting with acquired

brain injury.

Based upon our previously published data in which we assessed the levels of Fe, Cu and Zn

in three-month-old mice after a CCI TBI [17], in which we observed significant increases in Fe

in the ipsilateral hemisphere, we hypothesized that trehalose may potentially be modulating

Fe. Fe deposition is a consistent and enduring pathological consequence of TBI [17–19,58],

and has also been shown to be positively related to cognitive impairment in mild traumatic

brain injury [59]. However, apart from some significant time point specific observations, tre-

halose failed to significantly modify the overall Fe profile in any manner inconsistent with the

observed Fe trends of both treatment groups. A two-way ANOVA comparison of Fe concen-

trations in the ipsilateral versus contralateral hemisphere of trehalose treated and SSV trea-

teded mice revealed a virtually identical Fe concentration profile where significantly increased

Fe concentrations were observed across the time course in ROI 1, ROI 2, and the entire hemi-

sphere (data not shown). Trehalose treatment therefore did not alter the observed elevation of

ipsilateral Fe concentration after TBI.

Consistent with our previously published data [17], Zn was unaltered across the time

course, an observation that was unchanged with trehalose treatment. The role of Zn in TBI has

been heavily scrutinized over the past several years [16,27,31,60,61], with studies indicating

both protective [25,26,62] and toxic [63] roles in TBI outcomes. Although trehalose revealed

no observable modulation of Zn, it should be noted that while LA-ICPMS imaging provides

informative quantitation of metals on the mesoscale, it is likely that a higher resolution of anal-

ysis than the one utilized may be required to visualize the cellular translocation of Zn, that is

an observed consequence of TBI [63,64].

Similarly, Cu has been proposed to play a role in TBI where its use as a serum biomarker

for increased intracranial pressure after TBI has been investigated [23] and the role of Cu defi-

ciency in the synthesis of myelin after TBI has also been proposed [15]. In this study, trehalose

did not reveal any significant Cu modulating effects. Although trehalose significantly increased

Cu at the seven-day assessment in the ipsilateral ROI 1, ROI 2, and ipsilateral hemisphere, as

well as the contralateral ROI 3 and contralateral hemisphere, it is difficult to correlate these

observations to the beneficial behavior modifications observed in the behavioral assessments

employed.

The discrepancy between behavioral outcomes and the lack of any parallel changes in metal

levels that might explain the functional improvement observed following trehalose treatment

led us to investigate other potential mechanisms. Autophagy enhancement, a known conse-

quence of trehalose treatment, was considered and assessed via LC3 western blot detection

(data not shown). However, a significant alteration in autophagy between trehalose, SSV and

maltose treated groups was expectedly not detectable, as numerous studies have shown autop-

hagy to be naturally elevated in TBI [65–67], with one study showing LC3 greatly elevated at

32 days post TBI [68].

We therefore hypothesized that trehalose may be indirectly increasing synaptic activity and

thus contributing to the behavioral performance of trehalose treated mice. Thus, we assessed
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the pre-synaptic vesicle protein synaptophysin and accordingly found that it was significantly

increased in the contralateral cortex of trehalose treated mice (Fig 7a). There was no significant

increase in the ipsilateral cortex or the ipsilateral or contralateral hippocampus. Simulta-

neously, we also probed for Doublecortin (DCX), a reliable and specific marker of neurogen-

esis [69], and revealed a significant increase in DCX protein expression in the contralateral

cortex of the trehalose treated mice (Fig 7b) that was not observed in SSV treated mice.

Numerous studies indicate that in human TBI [70] and rodent models of TBI [71–73] neu-

rogenesis can occur as part of an endogenous reparative response to traumatic injury. While

the majority of cellular proliferation studies post-TBI have focused on the sub ventricular zone

post-TBI [74,75], neurogenesis and increased synaptic activity in the contralateral cortex in

response to injury has also been a previously observed TBI phenomena [71,73]. Moreover,

studies of the role of the contralateral cortex on functional recovery in a rat model of hemiple-

gia [76], and a study of the plasticity of the contralateral motor cortex following focal traumatic

brain injury [77], indicated a functional contribution to recovery at 14 day and five weeks,

respectively.

Our data support the notion that trehalose may be inducing a neuroprotective biochemical

effect in the brain post-injury. To further explore this, we chose to assess the role of BDNF and

its precursor pro-BDNF. BDNF is a neurotrophic factor that promotes growth and develop-

ment of immature neurons and enhances the survival and functions of adult neurons in the

central nervous system [78,79]. Additionally, cortical BDNF secretion and associated dendritic

growth and modulation has been clearly demonstrated to require synaptic activity [80,81], so

we hypothesized that there may be a correlative increase in BDNF to coincide with the

observed significant increase in the synaptic protein synaptophysin. Moreover, BDNF has

been shown to be upregulated during declarative memory formation in primate cortex [82],

and endogenous BDNF is required for long-term memory formation in the rat parietal cortex

[83]. As hypothesized, a significant increase in BDNF and pro-BDNF expression in the contra-

lateral cortex of trehalose treated mice was revealed, associating with both the synaptophysin

and DCX protein expression results in the same region. These data indicate that trehalose has

a neuroprotective role in TBI, and may further play a role in synaptic remodeling post-injury.

Further studies are required to fully elucidate the biomolecular mechanisms by which treha-

lose exerts its effects. In particular, due to the known role of oxidative stress and neuroinflam-

mation in disorders of the CNS, and particularly in TBI [84,85] (where, amongst other things,

oxidative stress is known to impact synaptic proteins [86]), then these would be important bio-

markers to examine in order to further assess the impact of trehalose on the brain, and on the

brains response to injury. Furthermore, understanding how trehalose may interact with the

vitagene network [87,88], which represents a group of genes that are activated in response to

cellular stressors and which help maintain cellular homeostasis, would be important. Further-

more, one of the caveats of this study is that we have only examined a single dose of trehalose.

Whilst trehalose is generally regarded as safe, and has been shown to be both safe and effective

across a broad range of concentrations in different biological paradigms, a more thorough

investigation is warranted. Specifically, completing a dose response with trehalose in this TBI

paradigm, as well as pre-treatment studies, would be important to examine any potential hor-

metic or preconditioning effects of this compound [89]. This may be particularly relevant to

situations such as chronic traumatic encephalopathy, as the apparent benefit of trehalose in

the current acute TBI model may provoke considerations around the prophylactic use of tre-

halose for brain injuries of multiple etiologies. In such cases, therefore, it would be important

to have a more complete understanding of how trehalose affected the endogenous signaling

and repair pathways prior to further clinical translation. These caveats aside, it is clear that in
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this study trehalose yielded significantly improved behavioral outcomes post-TBI that warrant

further investigation.

Conclusion

Our results demonstrate that trehalose administration can improve cognitive outcomes in

mice following brain injury. Given that trehalose is FDA “GRAS”, has a generous safety profile,

and is currently used as an excipient in many pharmaceutical formulations for human use, we

believe that trehalose could be a viable candidate for further pharmacological investigation as a

potential therapeutic option for patients with TBI, either as a monotherapy or in conjunction

with other treatment alternatives.
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