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AbsTrACT
Objective to systematically identify and validate 
published colorectal cancer risk prediction models 
that do not require invasive testing in two large 
population-based prospective cohorts.
Design Models were identified through an update 
of a published systematic review and validated in the 
european Prospective investigation into cancer and 
nutrition (ePic) and the UK Biobank. the performance 
of the models to predict the occurrence of colorectal 
cancer within 5 or 10 years after study enrolment was 
assessed by discrimination (c-statistic) and calibration 
(plots of observed vs predicted probability).
results the systematic review and its update 
identified 16 models from 8 publications (8 colorectal, 
5 colon and 3 rectal). the number of participants 
included in each model validation ranged from 41 587 
to 396 515, and the number of cases ranged from 
115 to 1781. eligible and ineligible participants 
across the models were largely comparable. 
calibration of the models, where assessable, was 
very good and further improved by recalibration. 
the c-statistics of the models were largely similar 
between validation cohorts with the highest values 
achieved being 0.70 (95% ci 0.68 to 0.72) in the UK 
Biobank and 0.71 (95% ci 0.67 to 0.74) in ePic.
Conclusion Several of these non-invasive models 
exhibited good calibration and discrimination within 
both external validation populations and are therefore 
potentially suitable candidates for the facilitation 
of risk stratification in population-based colorectal 
screening programmes. Future work should both 
evaluate this potential, through modelling and impact 
studies, and ascertain if further enhancement in their 
performance can be obtained.

InTrODuCTIOn
Colorectal cancer accounts for 10% of all cancers 
in men and 9% in women worldwide, representing 
the third and second most common cancer types, 

significance of this study

What is already known on this subject?
 ► Whereas risk prediction models are commonly 
used in clinical practice, none are widely used 
for colorectal cancer. Accurately identifying 
people at increased risk of developing 
colorectal cancer would provide substantial 
public health benefits.

 ► There are a range of existing models, based 
on non-invasive variables, to predict the future 
occurrence of colorectal cancer. To our knowledge, 
they have not yet all been externally validated and 
evaluated in comparable populations.

 ► External validation is essential for the selection 
and optimisation of the best models, aiding their 
potential for future implementation in clinical 
practice.

What are the new findings?
 ► This comprehensive external validation and 
comparison of non-invasive colorectal cancer risk 
prediction models in two large population-based 
cohorts provides a basis for their future selection 
and development for clinical practice.

 ► The models were well calibrated in EPIC and 
the UK Biobank, with further improvements 
achieved after recalibration. The discrimination 
of the models was similar between the two 
cohorts, with C-statistics of up to 0.71.

http://www.bsg.org.uk/
http://gut.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2017-315730&domain=pdf&date_stamp=2019-03-04
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significance of this study

How might it impact on clinical practice in the foreseeable 
future?

 ► The good calibration and discrimination observed in the 
better performing models provides evidence that further 
work (including modelling and impact studies) should be 
undertaken to assess their potential clinical utility. 

respectively, with an estimated combined annual incidence of over 
1.3 million cases and 694 000 deaths.1 Population-based screening 
strategies, which many countries have implemented or are in the 
process of implementing,2 have the potential to reduce this substan-
tial burden.3

Risk prediction models that estimate the probability of 
developing colorectal cancer in an asymptomatic, communi-
ty-dwelling, population could substantially improve the effi-
ciency and implementation of these population-based screening 
strategies by facilitating risk-stratified approaches. Addition-
ally, as has been demonstrated in cardiovascular disease,4 these 
models can also be used to target prevention strategies and/or as 
a tool to aid risk communication.

Several models exist for predicting the risk of developing 
colorectal, colon or rectal cancer in asymptomatic populations.5 
However, little is known about the comparative ability of these 
models to identify future cases when validated head to head 
in the same population. This information is essential to guide 
which models should be considered for further optimisation or 
for assessment of their clinical utility and implementation.

Risk prediction models that incorporate information that is 
routinely available or easily ascertained without ‘invasive’ tests 
are particularly attractive as they are easier to implement in a 
general population or primary care screening setting. There-
fore, we performed, to our knowledge, the first systematic 
comparison and external validation of published ‘non-invasive’ 
colorectal cancer risk prediction models in two large indepen-
dent prospective cohort studies, which collectively represent just 
under 1 million individuals.

MeTHODs
systematic literature search and identification of published 
models
We extended a previously published systematic review of 
colorectal cancer models from March 2014 to July 2016, using 
the same search algorithm.5 Studies extracted from the previous 
systematic review and newly identified studies from our updated 
literature search were included if: the study presented at least one 
formal prediction model; it was developed to provide individu-
alised predictions; the endpoint was incident colorectal cancer 
or a subsite within it; the population was a general population or 
community-dwelling setting, not a specific symptomatic, clinical 
or high-risk patient population group; predictors in the model 
were measurements that could be taken non-invasively (through 
questionnaire, physical measurements and so on); and predictors 
only had to be measured at a single point in time rather than 
repeated longitudinal measurements. In addition, any updates 
or validations of identified models that continued to meet the 
selection criteria were retained. Only full articles (ie, not confer-
ence abstracts) and articles published in English were considered 
eligible.

Of those studies identified in the initial systematic review,5 TS 
reviewed their summaries and referred to individual abstracts 

and full texts where required. Those with the potential to be 
included were reviewed by a second author (DCM/IT). In the 
extension to the systematic review, the search results were 
collated in the reference management software Endnote X7. 
After the removal of duplicates, the resultant publications’ titles 
and abstracts were screened by TS, and those deemed to have the 
potential to contain eligible models were retained. These were 
then independently reviewed by two authors (TS and DCM/IT) 
to identify those papers containing eligible models, using the full 
text where available and required. Any discrepancies between 
reviewers were resolved by consensus. In addition, the reference 
list of any eligible study identified through the aforementioned 
processes was reviewed to check for unidentified models. As the 
intention of this systematic review was to identify models for 
subsequent external validation, a risk of bias assessment was not 
undertaken.

Data extraction
From each eligible risk prediction model we extracted the neces-
sary information to perform an external validation, following the 
applicable guidance from the checklist for critical appraisal and 
data extraction for systematic reviews of prediction modelling 
studies (CHARMS)6: first author’s name, year of publication, 
country, number of cases and population size, outcomes exam-
ined, age range of participants, duration of follow-up, statis-
tical model, number of predictors, definition of each predictor 
(including thresholds for categorical predictors), reported 
performance of the model, reported performance in internal 
or external validation (if done) and the parameter estimates, 
including predictors relative risks or coefficients. If a subse-
quently published validation of a model incorporated either an 
updated predictor definition or coefficient value then these were 
substituted for the original. Where models estimated absolute 
risks, then additional data to assess the calibration of the model 
was also recorded including age-specific cancer hazard rates,7 8 
age-specific mortality rates,7 8 attributable risks,7 survivor func-
tions,9 10 mean values for each risk factor in the cohort9 and the 
risk score estimated at the means of all predictors.10

Validation cohorts
We used two large, multicentre, population-based cohorts to 
validate the eligible colorectal cancer risk prediction models. 
The European Prospective Investigation into Cancer and Nutri-
tion (EPIC) is a multicentre prospective cohort study comprising 
521 324 participants aged 17 to 98 years at baseline (though 
predominantly 35–70 years) who were recruited between 1992 
and 2000 across 23 centres in 10 European countries.11 Partici-
pants were enrolled from a variety of sources and included blood 
donors, screening participants, health conscious individuals and 
the general population (more detailed information regarding the 
characteristics and eligibility criteria of the individual centres has 
been published elsewhere).11 Baseline data on each participant’s 
diet and lifestyle were generally collected through self-com-
pleted questionnaires with anthropometric measurements being 
recorded subsequently at a recruitment centre; however, there 
was variability between centres.11 After the exclusion of individ-
uals with prevalent cancer at recruitment (except for non-mel-
anoma skin cancers), there were 491 992 available participants 
in EPIC with censoring due to the end of follow-up ranging 
from 28 June 2008 (France) to 31 December 2013 (Sweden). 
Colorectal cancer diagnoses were identified by a number of 
methods including cancer registries, health insurance records, 
pathology registries and active follow-up.12
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The UK Biobank is a multicentre prospective cohort of 
over 500 000 participants aged 40–69 years at baseline who 
were identified through National Health Services registers and 
recruited between 2006 and 2010, across 22 assessment centres 
in Great Britain.13 14 Baseline data recorded at the assessment 
centres included information about diet and lifestyle along with 
anthropometric measures, obtained through a combination of 
a self-completed questionnaire, computer-assisted interview and 
physical measurement.14 From an initial total of 502 639 partic-
ipants, 475 629 were available for external validation after the 
exclusion of participants with cancers prevalent at recruitment 
(except non-melanoma skin cancers). We set the end of follow-up 
for cancer incidence as the 1st January 2015. Colorectal cancer 
diagnoses within the cohort’s participants was ascertained from 
national cancer registries.15

statistical analysis
Model predictors, outcomes and time horizon
We first attempted to match the predictors of the original models 
with the variables available in EPIC and the UK Biobank cohorts. 
When a direct match could not be achieved but a suitable surro-
gate(s) existed, we defined it as closely as possible to the model’s 
original predictor definition. Online supplementary table 1 
provides a description of the variables used in each of the predic-
tion models and details of the redefinition when it was required. 
In cases where variables or suitable surrogates were unavail-
able for a substantial majority or the entirety of the cohort, we 
assumed a single value chosen to be typical of the population and 
applied it to all participants. For instance, in the EPIC cohort, all 
individuals were set to be non-users of non-steroidal anti-inflam-
matory drugs when a model incorporated this variable.

In the presence of other missing predictor data, where it was 
less restrictive on the resultant size of the validation population, 
we conducted complete case analysis. As several of the models 
evaluated were time-to-event models, imputation was not under-
taken as it tends to produce biased estimates.16 The number of 
participants contributing to the evaluation of each model thus 
differed depending on the extent of missing data in its constit-
uent predictors.

Participants aged between 40 and 70 years at recruitment were 
included in the validation of all models, unless the model was 
developed in an older population, in which case we matched the 
minimum age of the original population.

The eligible and ineligible populations for each model 
were contrasted, by the cumulative incidence of the cancer(s) 
the model predicted, the age of the participants and the pres-
ence of five modifiable risk factors: body mass index (BMI),17 
smoking,18 alcohol intake,17 18 physical activity17 and processed 
meat consumption.17

The outcome predicted for all models tested was the incidence 
of a first primary colorectal cancer or cancer at an anatomical 
subsite within the colorectum (International Statistical Classifi-
cation of Diseases and Related Health Problems 10th Revision 
codes: C18 (except C18.1, Appendix), C19 and C20), within 
the time frame of the model prior to censoring by another cancer 
diagnosis, death or end of follow-up.

Based on the current length of follow-up in the two cohorts, 
the prediction horizon for the models was restricted to a 
maximum of 10 years in EPIC and 5 years in the UK Biobank.

Model performance
We assessed the discrimination and calibration of all eligible 
models in the two cohorts separately. The discrimination of each 

model was assessed using the concordance (C)-statistic and its 
95% CI. This was initially calculated as Somers’ D19 and then 
transformed into Harrell’s C-statistic20 ((Somers’ D+1)/2).21 
The values achieved by each model in EPIC and the UK Biobank 
were then compared.22 For the Colditz model neither the age 
and sex specific incidences nor the population prevalences were 
provided in full in the original paper. To obtain absolute risks 
we calculated these in the validation cohorts, as a result the esti-
mates of discrimination correspond to a recalibrated model.23 
Calibration of the original models and their subsequent recali-
bration was assessed graphically by plotting the mean observed 
probability against the mean predicted probability within tenths 
of the predicted probabilities. Where authors produced sex-spe-
cific models, these were first combined by amalgamating their 
individual absolute risk values. In order to derive the absolute 
risk estimate required for the assessment of calibration, we 
applied the full prediction rule of the original models, as they 
were published, to our two study cohorts. When this was not 
available, in models that were constructed to provide an abso-
lute risk, we contacted the authors to obtain this information. If 
this was unsuccessful, we only provide information on the reca-
libration of these models. Recalibration was undertaken for the 
logistic regression-based models by refitting the model intercept 
in the validation cohorts along with their published predicted 
log-odds as an offset. While in the survival model-based risk 
models, we estimated the baseline survival function in the vali-
dation cohorts and combined this with the predicted hazard 
ratios from the published model to obtain recalibrated predicted 
probabilities.

Resultantly, this meant we were able to provide calibration 
plots for five of the eight publications in EPIC and three of the 
eight publications in the UK Biobank. Three calibrations were 
not possible to assess in either cohort, either because the model 
was not constructed to provide an absolute risk24 or because the 
required data could not be obtained.23 25 A further two9 26 were 
not possible to assess in the UK Biobank as the baseline survival 
function provided was for a time horizon of 10 years, while in 
this cohort, due to the length of follow-up available, they were 
assessed over 5 years. In these cases, we present recalibrated esti-
mates only.

In the UK Biobank, common protocols and assessment proce-
dures were used for all study participants; therefore, it was treated 
as a single population in all analyses. However, as EPIC encom-
passes diverse geographical locations across multiple Europe 
countries, we calculated model discriminations in each country 
separately (n varied from 3 to 9) and then used meta-analysis to 
summarise the results after logit transformation.27 This approach 
also provided a measure of heterogeneity between countries (I2).

Stata V.13 software and user-written packages19 28–32 were used 
to construct and validate each model either in full or where code 
was available for alternative software in part (one publication7 had 
an associated macro33 for which we used SAS software (V.9.4)).

Patient involvement
Patients were not involved in the study design.

resulTs
Identification of models for inclusion in the systematic review
Online supplementary figure 1 shows the flow of the study selec-
tion process. From the systematic review,5 we selected seven 
publications that contained at least one eligible model and two 
publications that documented external validation of these models. 
Our updated literature search yielded 7914 publications, of which 

https://dx.doi.org/10.1136/gutjnl-2017-315730
https://dx.doi.org/10.1136/gutjnl-2017-315730
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116 publications were selected for full-text review, and one publi-
cation was deemed eligible. Collectively, these two search strate-
gies resulted in the identification of eight publications, containing 
16 eligible models, originating from a diverse range of derivation 
populations (online supplementary table 2).

Characteristics of the included models
Of the 16 eligible models (table 1), eight examined the risk of 
colorectal cancer, five the risk of colon cancer and three the risk 
of rectal cancer, specifically. Twelve were sex-specific risk models 
(of which six were paired male and female models, for the same 
anatomical site, from the same publication) and four incorporated 
both sexes. Age was included in all models, either as a covariate or 
through the use of age-specific rates, with other common covari-
ates being BMI (13 models), alcohol consumption (13 models) 
and smoking (9 models). The number of predictors ranged from 
28 to 14.23 All female-specific models incorporated some indica-
tion of oestrogen exposure,7 23 26 with the exception of the model 
published by Shin et al.25 In their original publications, the model’s 
performance, or illustrative examples, had been reported over time 
horizons ranging from 5 to 20 years (table 2). All models were vali-
dated over 5 years in the UK Biobank, given the limited follow-up 
time in the cohort. In EPIC they were validated over 10 years 
unless they had been developed as 5-year models,10 25 in which 
case this time horizon was used.

Characteristics of the validation populations
The number of individuals included in each validation varied 
across both the models and the cohorts due to the availability 
of their predictors (online supplementary table 1). Within EPIC, 
the percentage of eligible participants included ranged from 
17.1% (n=25 273)8 to 84.0% (n=124 293)25 for male partic-
ipants and 20.1% (n=69 154)26 to 60.4% (n=207 887)25 for 
female participants, while for the UK Biobank, these values 
were 42.7% (n=93 608)26 to 98.7% (n=216 440)24 and 45.8% 
(n=117 367)26 to 85.7% (n=219 484),8 respectively (online 
supplementary tables 3–6). As some models included both sexes, 
this meant that actual model population sizes ranged from 
41 58726 to 396 5158 and the number of cases per model ranged 
from 11525 to 1781.10 There was variability in how closely 
matched the eligible and ineligible populations were across 
cancer incidence rate, age and modifiable risk factors; however, 
overall, they were largely comparable.

external validation
Figure 1 shows the C-statistics of the models in the UK Biobank 
and EPIC as well as their previously reported derivation and 
validation values where they were available. On the whole 
the models showed similar levels of estimated discrimination 
between EPIC and the UK Biobank with the exception of the 
female Wells et al model,26 which had higher discrimination in 
EPIC (EPIC C-statistic 0.67 (95% CI 0.65 to 0.70), UK Biobank 
C-statistic 0.62 (95% CI 0.60 to 0.64)) (table 2). In the UK 
Biobank, the C-statistic varied between 0.58 (95% CI 0.56 to 
0.61) (Freedman et al’s female colorectal model7) to 0.70 (95% 
CI 0.68 to 0.72) (Ma et al’s colon model9). In EPIC, the C-sta-
tistic varied between 0.58 (95% CI 0.56 to 0.607 (Freedman et 
al’s female colorectal model7) to 0.71 (95% CI 0.67 to 0.74) 
(Shin et al’s male right colon model25).

The highest C-statistic achieved in the validation by a 
colorectal model was 0.70 (95% CI 0.67 to 0.73) (Wells et al 
male model26 in the EPIC cohort); this was also the highest value 
achieved by a colon cancer model that encompassed the entire 

colon (0.70, 95% CI 0.68 to 0.72, Ma et al9 in the UK Biobank). 
For rectal models, the highest C-statistic was 0.68 (95% CI 0.65 
to 0.70) (Ma et al9 for men in the UK Biobank). These models 
were all male specific.

Of the female-specific models, the Wells et al model26 achieved 
the highest colorectal cancer discrimination with a C-statistic 
of 0.67 (95% CI 0.65 to 0.70 in EPIC). There was only one 
female-specific colon cancer and one female-specific rectal cancer 
model to be validated; the highest values obtained between the 
two cohorts was 0.65 (95% CI 0.62 to 0.69) (Colditz et al23 in 
EPIC) and 0.63 (95% CI 0.59 to 0.67) (Shin et al25 in the UK 
Biobank), respectively.

Finally, when assessing models that incorporated both sexes 
or where the results of sex-specific models were merged, the 
model(s) with the highest colorectal discrimination were by 
Wells et al26 with a C-statistic of 0.69 (95% CI 0.67 to 0.71) in 
the EPIC cohort.

The I2 obtained for each model, from the meta-analysis of the 
available constituent countries in the EPIC cohort, ranged from 
0.0%7 8 25 26 to 77.6%.24 Six of the 16 models, representing four 
publications,9 10 23 24 had I2 that exceeded 50%.

For those models for which calibration could be assessed, there 
was good performance across both the UK Biobank and EPIC 
(online supplementary figures 2-7). Within the colorectal models, 
the slight exceptions were Freedman et al’s model7 in the UK 
Biobank and Ma et al’s model9 in EPIC, which show some overes-
timation at the upper deciles of observed cancer incidence (online 
supplementary figures 2 and 3). After recalibration of the models to 
the populations in which they were being validated in, the perfor-
mance of suboptimally calibrated models was improved. Across 
all models, close agreement between the predicted and observed 
risk was observed, with only on occasion the uppermost 10th 
of predicted risk overestimating the observed risk (figure 2–7). 
The only exception was Freedman et al’s model,7 which showed 
notable over prediction for those in the highest 20% of predicted 
risk in the UK Biobank (figure 2).

DIsCussIOn
We conducted an external validation of 16 colorectal, colon 
and rectal cancer risk prediction models with easy-to-measure 
predictors in two large European cohort studies and compared 
their predictive performances. Overall, the models exhibited 
good calibration, better for example than what was achieved 
across an external validation of type 2 diabetes models34 and 
performed well in discriminating between those individuals who 
were subsequently diagnosed with colorectal cancer and those 
that were not, with over 70% of the C-statistic estimates ranging 
between 0.65 and 0.71. The majority of this discriminative 
ability, among models that incorporated the whole colorectum, 
was achievable from using just age and family history as in the 
Taylor et al model8 (C-statistic of 0.67). Colorectal models that 
improved on this and incorporated both sexes (or where sex-spe-
cific models could be merged) required substantially more 
predictors, 7 for a C-statistic of 0.68 in Steffen et al10 (sex, age, 
BMI, diabetes, colorectal cancer screening, smoking and alcohol 
consumption) and 13 for C-statistics of 0.67 in the UK Biobank 
and 0.69 in EPIC in Wells et al26 (age, ethnicity, education, 
BMI, family history, diabetes, oestrogen exposure, non-steroidal 
anti-inflammatory use, physical activity, smoking, alcohol, red 
meat intake and multivitamin use).

Clinical application
Risk prediction models with good calibration could improve 
the efficiency and implementation of screening programmes by 

https://dx.doi.org/10.1136/gutjnl-2017-315730
https://dx.doi.org/10.1136/gutjnl-2017-315730
https://dx.doi.org/10.1136/gutjnl-2017-315730
https://dx.doi.org/10.1136/gutjnl-2017-315730
https://dx.doi.org/10.1136/gutjnl-2017-315730
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Figure 1 Discrimination of colorectal cancer risk prediction models by anatomical location.

Figure 2 Recalibration plots of colorectal cancer risk models within the UK Biobank. Time horizon was 5 years for all models.

targeting screening and screening intensity to those at greatest 
risk. Our findings provide support for the further evaluation of 
several of the models we identified, in this context, and would 
suggest in the first instance that this should incorporate both 
modelling and impact studies. Given the close performance 
between the Steffen et al10 and Wells et al26 models, there is 
little to choose between the two and both should be consid-
ered given the availability of their predictors. Furthermore, the 
similar performance of the Taylor et al8 model, along with its 
requirement for only two predictors (age and family history of 
colorectal cancer), provides a strong case for its inclusion despite 

its continued overestimation of risk in the uppermost decile of 
predicted risk after recalibration. Additionally, given the use of 
flexible sigmoidoscopy in screening settings,35 there is a poten-
tial for the use of a right colon model like Shin et al’s25 to iden-
tify those individuals who may be better served by a colonoscopy 
rather than a sigmoidoscopy.

An additional challenge faced by colorectal screening programmes 
is the population uptake of the screening test. In England in 
2015/2016, the percentage uptake for bowel cancer screening 
within 6 months of invitation for those aged 60–74 years was only 
56.4%.36 This low participation rate is a substantial public health 
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Figure 3 Recalibration plots of colorectal cancer risk models within the European Prospective Investigation into Cancer and Nutrition. Time horizon 
was 10 years for all models except Steffen et al which was 5 years.10

Figure 4 Recalibration plots of colon cancer risk models within the UK Biobank. Time horizon was 5 years for all models. 

challenge and needs to be addressed to maximise the benefits that 
can be achieved by population-based screening. Well-calibrated risk 
prediction models could play a role in this, particularly among the 
higher risk population, by facilitating an awareness of personalised 
risk estimates. The potential of this approach has been highlighted 
by an English-based study examining the association between an 
individual’s perceived risk of colorectal cancer with their interest 
in screening, finding that those who believed they had a higher 
than average chance of developing colorectal cancer had a greater 

interest in screening (98%) than those who believed they had an 
average (84%) or lower than average (74%) chance.37 Although it 
was not assessed if this translated into actual screening attendance, 
a recent meta-analysis has reported a z-score of 0.13 (95% CI 0.10 
to 0.16) for the association between colorectal cancer risk percep-
tion and reported screening behaviour,38 and given the substantial 
numbers currently not participating in colorectal screening, a small 
improvement may yet provide a substantial benefit to the popula-
tion. Finally, if chemopreventative agents are adopted for use in the 
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Figure 5 Recalibration plots of colon cancer risk models within the European Prospective Investigation into Cancer and Nutrition. Time horizon was 
10 years for all models except Shin et al and Steffen et al which was 5 years.10 25

Figure 6 Recalibration plots of rectal cancer risk models within the UK Biobank. Time horizon was 5 years for all models.10 25

general population, colorectal cancer prediction models could play 
a part in facilitating the identification of those for whom the benefits 
of treatment are more likely to outweigh possible harms.

strengths and limitations of the study
This is, to our knowledge, the first study to collate and exter-
nally validate non-invasive colorectal cancer risk prediction 
models in two large prospective cohorts. The systematic nature 
of the model identification, the large prospective sample sizes in 
which the models were validated and the opportunity to contrast 
the performance between cohorts are all substantial strengths. 
Although the time horizon for most models varied between the 
cohorts, this does  not appear to be a limiting factor, as high-
lighted by their concordance in performance, but it cannot be 
excluded. The main limitation was the incomplete nature of 
several of the variables in the cohorts that necessitated in some 
cases in having to drop individuals from the analysis while in 
others, where this represented a substantial proportion of the 
cohort (as was seen in EPIC), a need to generalise a representa-
tive value across the entire cohort. Because of this, the models 
were not validated in identical samples. This raises several 

methodological challenges. In the first instance, the omission of 
individuals without a complete set of variables has the potential 
to limit the comparability of the models, particularly in EPIC 
where data availability can vary geographically. However, on 
contrasting the characteristics between eligible and ineligible 
participants across models (online supplementary table 3), the 
main characteristics were observed to vary little between the 
subgroups, and the validation samples for each model were 
largely comparable. The second challenge, where a single value 
was applied for all participants in EPIC for a given variable, 
may lead to a reduction in discrimination. In most instances, 
the effect of this strategy in the present study will be small. For 
example, Colditz et al23 defined aspirin use as a binary variable 
with a threshold at daily use for 15 years or more. As a result, 
the number of participants who would have met this criterion 
(if known) is likely to be small and so at the population level 
this is unlikely to have provided much additional discrimination. 
Furthermore, both Colditz et al23 and Steffen et al10 incorpo-
rated a history of colorectal cancer screening into their models. 
However, as EPIC completed its recruitment in 2000, prior to the 
advent of colorectal cancer screening in most of its constituent 

https://dx.doi.org/10.1136/gutjnl-2017-315730
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Figure 7 Recalibration plots of rectal cancer risk models within the European Prospective Investigation into Cancer and Nutrition. Time horizon was 
10 years for Ma et al and 5 years for Shin et al and Steffen et al.9 10 25

countries,2 setting all participants to being unscreened is likely 
to be an accurate representation. Even where the variable defini-
tion or cohort time frame does not provide support for the appli-
cation of a single value for all participants, for example, family 
history of colorectal cancer, the similarity of the discriminative 
value to that achieved in the UK Biobank (figure 1) is suggestive 
that the assumptions are not likely to have strongly affected our 
estimates of discrimination.

The issue of missing data in the application of risk prediction 
models is not straightforward to resolve.39 While it is reason-
able to apply multiple imputation techniques when developing 
a model, it is not clear what one should do when attempting to 
apply a model to an individual patient who is missing data on 
one or more predictors and for which multiple imputation may 
be impractical or impossible. One promising approach is based 
on fitting, in the model development phase, Pattern Mixture 
Kernel Submodels for each pattern of missing data.40 Further 
research on this and other methods for dealing with missing 
predictors at the implementation stage is urgently required if 
risk prediction models are to be used optimally as part of routine 
care and medical decision making.

COnClusIOn
Our systematic approach has externally validated a range of 
non-invasive colorectal cancer risk prediction models across 
two large prospective cohorts and provided a valuable insight 
into their performance. We identified several models, including 
Steffen et al,10 Wells et al26 and Shin et al,25 with good discrimi-
nation and quantification of the actual risk of colorectal cancer, 
providing promise for their clinical utility in a prevention setting. 
This demonstrates that we are now at point where we should, 
through impact studies, assess the clinical utility of these better 
performing models as well as examine the value of incorporating 
additional predictors into them, as has already been called for 
in other areas of risk prediction.41 For example, incorporating 
risk prediction models into screening programmes could be 
useful for more refined, risk-based guidelines for eligibility or 
frequency of screening. Furthermore, risk models such as Shin et 
al,25 which separate risk by subsite, could be used to target colo-
noscopy rather than sigmoidoscopy in screening programmes 
that use this modality. Overall, our results show that several 
published risk models are good candidates for further evaluation 
in impact studies and have potential utility in the clinical and 
screening settings.
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