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Reef-forming scleractinian corals are foundation species
of coral reefs, as they build the three-dimensional struc-
ture of the reef, provide habitat to possibly millions of
marine species and represent the most important pri-
mary producers through their association with microbial
photosymbionts (Symbiodinium spp.) (Harrison and
Booth, 2007). In addition to being extremely rich reser-
voirs of biodiversity, coral reefs greatly contribute to
coastal protection, tourism and fisheries and their eco-
nomic value is estimated in the range of billions of US
dollars (Costanza et al., 1997; Burke et al., 2011). Coral
reefs have suffered major declines over the past four
decades, mainly due to anthropogenic disturbances act-
ing on both local (e.g. overharvesting, pollution) and glo-
bal (e.g. effects of climate change) scales (Bruno and
Selig, 2007; Hoegh-Guldberg, 2011; De’ath et al., 2012).
Elevated sea surface temperature (SST) is a major dri-
ver of coral bleaching and mortality because it disrupts
the critical relationship between corals and their
endosymbiotic Symbiodinium (Hoegh-Guldberg, 1999;
Lesser, 2011). The recent global mass bleaching event
that lasted from 2014 to 2016 and which caused
unprecedented coral bleaching and mortality (Normile,

2016; Hughes et al., 2017) is reported to be the longest
and most widespread on record (Cresset, 2016; NOAA
Coral Reef Watch 2017).
Combatting the impacts of climate change and con-

serving marine resources are among the United Nations’
sustainable development goals (United Nations 2017).
Despite increasing awareness of the threats of climate
change to biodiversity and the establishment of guideli-
nes to preserve marine ecosystems, environmental
degradation is occurring faster than the pace of coral
adaptation through natural selection on standing genetic
variation (i.e. genetic adaptation) (Hoegh-Guldberg,
2004; Hoegh-Guldberg et al., 2007). Active interventions
to help corals survive by augmenting their tolerance to
and ability to recover from stress are therefore urgently
required. Recently, the concept of assisted evolution has
been proposed as a possible strategy for accelerating
the rate of naturally occurring evolutionary processes
and to develop corals capable of coping with current cli-
mate change trajectories (van Oppen et al., 2015).
Assisted evolution includes selective breeding of coral,
preconditioning of coral to sublethal stress, laboratory
evolution of Symbiodinium followed by inoculation of the
coral with tolerant algal symbionts, and manipulation of
various members of the coral microbiome (van Oppen
et al., 2015, 2017). This commentary focuses on the
potential to mitigate coral reef degradation through the
manipulation of coral-associated prokaryotes.
Corals are colonized by a huge diversity of prokaryotes

(Rohwer et al., 2002; Blackall et al., 2015), with distinct
communities occupying various microhabitats within the
host, including coral tissues, the surface mucus layer, the
gastric cavity and the skeleton (Sweet et al., 2010;
Bourne et al., 2016). Bacteria scavenge limiting nutrients
(Knowlton and Rohwer, 2003; Zhang et al., 2015), deliver
essential products to their host following carbon and
nitrogen fixation (Lesser et al., 2007; Kimes et al., 2010)
and participate in sulfur and phosphorus cycling (Raina
et al., 2009; Zhang et al., 2015). Further, bacteria con-
tribute to coral immune defences by occupying entry
niches and by secreting antimicrobial peptides (Ritchie,
2006; Nissimov et al., 2009; Shnit-Orland and Kushmaro,
2009). The composition of the coral microbiome can
change with coral life stage, host health state, water tem-
perature and acidity, nutrient levels, pollution, the pres-
ence of macroalgae, light intensity, depth or seasonal
variation (Hernandez-Agreda et al., 2016a; Glasl et al.,
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2017; Sweet and Bulling, 2017). Maintaining a healthy
microbiome is thought to be essential for the well-being
of corals, as destabilization in the composition and func-
tion of their associated microbial communities has been
shown to take place in diseased states (Frias-Lopez
et al., 2002; Jones et al., 2004; Gil-Agudelo et al., 2006;
Sato et al., 2013) and under stressful environmental con-
ditions (Zaneveld et al., 2016). Elevated seawater tem-
peratures and coral bleaching are typically associated
with a shift towards opportunistic and/or pathogenic bac-
teria, with concomitant declines in coral health (Ritchie,
2006; Bourne et al., 2008; Littman et al., 2011; Lins-de-
Barros et al., 2013; Tout et al., 2015). Conversely, in
some instances coral-associated microbes remain stable
despite different host phenotypes (Hadaidi et al., 2017),
changing environmental conditions (Teplitski et al., 2016)
or in the presence of stressors (such as increased pCO2)
(Webster et al., 2016; Zhou et al., 2016).
While an optimal microbiome may help protect the

host from environmental pressures or compromised
health by preserving beneficial functions, its dynamic
nature may also confer an adaptive potential (Webster
and Reusch, 2017). Whether by alteration in the relative
abundance of certain species, acquisition of new species
or variants from the environment or by mutations in the
genomes of the existing community, modification of the
microbiome is hypothesized to provide physiological flex-
ibility to respond to environmental disturbances (Reshef
et al., 2006; Rosenberg et al., 2007). For instance, recip-
rocal transplantation of Acropora hyacinthus fragments
between thermally distinct environments on the same
reef resulted in an adjustment of the microbial communi-
ties to the new conditions (Ziegler et al., 2017). While
the microbiome of cross-transplanted corals was indistin-
guishable from the microbiome of native corals in the
same pool, it changed compared to the microbiome of
the back-transplanted counterparts (Fig. 1A). Moreover,
when subjected to short-term heat stress, corals that
had spent the preceding 17 months in the more variable
and warmer thermal regime were found to bleach less
and retained a more stable microbiome. These results
suggest that microbial community composition influences
the response to heat stress, although host genetic adap-
tation and acclimatization are known to play additional
roles (Barshis et al., 2013; Bay and Palumbi, 2014).
As the composition and function of microbial communi-

ties seem to impact the fitness of their host, manipulation
of resident prokaryotes could serve as a powerful tool to
increase coral tolerance to stress and assist their adap-
tation to a changing environment. Such approaches are
increasingly used in other biological systems. For
instance, in humans, faecal microbiome transplantation
is now accepted as an effective treatment for Clostridium
difficile infections and is also gaining momentum for the

treatment of other bowel conditions (Borody and Khoruts,
2012; Gupta et al., 2016). In agriculture, inoculation of
rice plants with microbes collected from other plant spe-
cies growing in extreme environments can enhance the
rice plants’ tolerance to drought, salinity and low temper-
atures (Redman et al., 2011). In contrast to an entire
microbiome transplant approach, bacterial species can
also be selected and administered to the host to pro-
mote health. Probiotics are, for example, widely used in
the aquaculture industry to stimulate growth, inhibit
pathogens, improve water quality or augment tolerance
to stress (Verschuere et al., 2000; Martinez Cruz et al.,
2012; Boutin et al., 2013). While these approaches have
not been readily applied in open marine systems, the
biological control of coral diseases using phage therapy
has already shown some promising outcomes in con-
fined areas and in the laboratory for preventing and
treating specific infections (Atad et al., 2012; Cohen
et al., 2013).
Preliminary studies indicate that coral-associated

prokaryotes can be manipulated through inoculations
with specific taxa. Bacteria collected from the coral Mus-
sismilia hartii were cultured on a selective medium to
isolate strains capable of degrading water-soluble oil
fractions (WSFs) (dos Santos et al., 2015). When sub-
jected to conditions simulating an oil spill, polyps of
M. hartii inoculated with a WSF-degrading bacterial con-
sortium (i.e. probiotic bacteria) were less negatively
affected compared to the non-inoculated polyps, as
assessed by higher photosynthetic efficiencies of photo-
system II of Symbiodinium (Fig. 1B). In this experiment,
exposure to a specific microbial mixture therefore con-
ferred health benefits to corals under environmental
stress. Our preliminary experiments further support that
the coral microbiome can be artificially influenced
through microbiome inoculation (Data S1, S2, S3). Lar-
vae of Acropora tenuis were exposed to the mucus col-
lected from either Acropora sarmentosa, Acropora
tenuis, Diploastrea heliopora or Galaxea astreata, and a
no-mucus treatment was included as a control (Fig. 1C).
Mucus was chosen as the inoculum as it contains a high
density of coral prokaryotes (Thompson et al., 2014) and
can be easily collected after briefly exposing coral colo-
nies to air (Brown and Bythell, 2005). Once settled,
A. tenuis recruits were reared in filter-sterilized and flow-
through sea water for 4 months, before being sampled
to assess prokaryote microbiome composition. PERMA-
NOVA of Bray–Curtis dissimilarities indicated that the
microbiomes differed significantly across treatments sug-
gesting that a single dosage drove the microbiome of
experimental corals to develop in distinct directions
(Fig. 1C).
Despite these recent encouraging outcomes from arti-

ficial microbial manipulations, important challenges for
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Fig. 1. Examples of studies involving coral microbiome manipulation.
A. Transplantation of A. hyacinthus fragments between regions of different thermal regimes induced a change in their microbiome (Ziegler et al.,
2017). After 17 months, corals that inhabited the highly variable, warmer environment (HV) harboured a microbiome that was distinct from cor-
als located in the cooler and more stable environment (MV). When exposed to short-term heat stress, fragments from the HV environment
bleached less, which could reflect a protective effect of their microbiome.
B. Bacteria isolated from M. hartii were selected for their ability to degrade oil WSFs (dos Santos et al., 2015). Replicate coral colonies were
inoculated with the selected bacterial consortium, while others were not exposed to these bacteria (controls). After subjecting the colonies to a
treatment simulating an oil spill, the presence of bacteria able to degrade oil WSFs helped to preserve better water quality in the oil treatment
and reduced negative effects on coral health.
C. A. tenuis larvae from a common pool were distributed across 20 experimental tanks. Filtered sea water or 5-lm filtered mucus collected from
four different coral species were then introduced into four replicate tanks per treatment. Water flow was turned off overnight, and recruits were
subsequently reared in flow-through filtered sea water. After four months, recruits were sampled for 16S rRNA gene amplicon sequencing. PER-
MANOVA of the Bray–Curtis dissimilarities at the OTU level based on 97% sequence identity detected significant differences in the prokaryotic
communities associated with recruits that were exposed to distinct inocula (pseudo F4,14 = 1.7015, P < 0.01).
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broadscale application in corals need to be addressed
and overcome. First, the functions of the vast majority of
coral-associated prokaryotes are yet to be deciphered.
We are still at a stage of correlating the presence of
specific microbes with coral features as exemplified by
Endozoicomonas (frequently reported to be present on
healthy corals) (Kvennefors et al., 2010; Morrow et al.,
2012; Meyer et al., 2014; Glasl et al., 2016; Neave
et al., 2017), Roseobacter (particularly common in juve-
nile corals) (Apprill et al., 2012; Ceh et al., 2012, 2013;
Sharp et al., 2012; Lema et al., 2014) and diazotrophs
(nitrogen provisioning to corals) (Lema et al., 2012,
2015; dos Santos et al., 2014). A deeper knowledge of
functions exerted by particular taxa will help designing
optimal microbial inocula. Recently, ~200 distinct bacte-
rial OTUs were able to be obtained in pure culture from
the coral model Exaiptasia pallida using conventional
methods (R€othig et al., 2016). These pure cultures rep-
resented E. pallida’s ‘key microbial associates’, and
given the functional redundancy among members of the
coral microbiome (Bell et al., 2005; Blackall et al., 2015;
Sunagawa, 2015), these cultures provide opportunities
for formulating a bacterial cocktail to evaluate their bene-
fit to the host.
Genetic engineering should also be considered as an

avenue to generate coral microbial inocula that possess
desired characteristics. Such technologies have been
applied to a wide range of organisms including bacteria,
plants and mammals to study gene function or enhance
phenotypic traits. In marine microbes, genetic engineer-
ing has been successfully employed to express high-
value bioactive compounds in the eukaryotic microalga,
Chlorella (Yang et al., 2016), and for aquatic bioremedia-
tion and source of fuel in cyanobacteria (Lau et al.,
2015). A framework has recently been proposed for cre-
ating transgenic Symbiodinium, which could ultimately
lead to more stress-tolerant variants (Levin et al., 2017).
Likewise, coral-associated bacteria could be transformed
with genes of interest to produce strains that enhance
the performance of the host under climate change. Gen-
omes could for instance be edited at specific sites with
the CRISPR-Cas9 system (Hsu et al., 2014) or with
mini-Tn7 transposons (Lambertsen et al., 2004). The lat-
ter approach has already been used to label Vibrio coral-
liilyticus in corals and visualize host–pathogen
interactions (Pollock et al., 2015). Developing genetically
engineered symbionts could thus allow seeding vulnera-
ble corals with organisms possessing proven beneficial
properties.
Another challenge is the potential difficulty of manip-

ulating microorganisms in open marine systems. While
targeted microbiome transplants are performed in rela-
tively closed systems by inoculating animal gut or soil,
respectively, such precise interventions may prove less

effective in the marine environment where the inocu-
lum would dilute in sea water. Aquarium rearing would
overcome this limitation by ensuring that a sufficiently
high density of microorganisms reach corals. Propaga-
tion techniques of coral fragments and sexually derived
propagules have considerably progressed over the last
two decades for the purpose of coral reef restoration
(Barton et al., 2015) and the ex situ rearing phase
could theoretically be combined with microbiome inocu-
lations.
A key uncertainty about the feasibility of manipulating

microbes to enhance coral tolerance is whether the taxa
in the inoculum will remain associated with the coral
over time. The inherent variability of the microbiome
(Escalante et al., 2015) may limit the utility of micro-
biome manipulation for sustainable development. Engi-
neered microbiomes that are acquired environmentally,
such as via the rhizosphere in the case of plants, are
likely to require continuous selection for retention of the
beneficial properties that are conferred to the host. How-
ever, members of the core microbiome may be more sta-
bly associated with their coral host, and this is a
knowledge gap that needs to be urgently addressed.
The coral core microbiome comprises bacterial taxa con-
sistently associated with given coral species at a global
scale despite contrasting environments (Ainsworth et al.,
2015; Chu and Vollmer, 2016; Hernandez-Agreda et al.,
2016b). Such ubiquitous interactions across spatiotem-
poral boundaries suggest that these bacteria might per-
form critical functions for the host (reviewed in
Hernandez-Agreda et al. (2016a,b)). It has been
reported that some members of the core microbiome are
endosymbionts, residing both within host tissue (Ains-
worth et al., 2006, 2015; Ainsworth and Hoegh-Guld-
berg, 2009) and Symbiodinium cells (Ainsworth et al.,
2015). We postulate that vertically inherited prokaryotes
are more stably associated with the coral host compared
to those that are horizontally acquired, as observed in
other species such as the honeybee gut microbiome
(Powell et al., 2014; Mueller and Sachs, 2015). The exis-
tence of conserved and intimate relationships between
corals and microbes could open new avenues of
research, where these stable communities would be tar-
geted for manipulation.
Despite the recognition that coral reefs are threatened

by human activities, measures to reduce negative
impacts are insufficient. The United Nations have put
forward targets that ought to be reached in the coming
decade to protect marine ecosystems and avoid further
adverse impacts (United Nations 2017). These goals
include the sustainable management of marine zones
by reducing pollution and destructive fishing, as well as
the transfer of scientific knowledge to improve ocean
health and support developing countries that rely on
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coral reefs. Intervention methods such as manipulation
of the microbiome and genetic engineering have been
successfully applied to terrestrial organisms to increase
their tolerance to stress. Numerous lines of evidence
suggest that a translation of these technologies to cor-
als and their symbionts might effectively enhance coral
resilience and contribute to the success of coral reef
restoration efforts.
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Fig. S1. Relative abundance of phyla present in water (left)
and coral (right) samples.
Fig. S2. PCoA plot of the Bray-Curtis dissimilarities calcu-
lated at the phylum level depicts a striking difference
between microbial communities present in coral and water
samples.
Fig. S3. Box plots indicating beta diversity values in coral
and water samples within each of the five inoculation treat-
ments.
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