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Wall-bounded turbulence, where it occurs in engineering or nature, is commonly sub-
jected to spatial variations in wall shear stress. A prime example is spatially varying
roughness. Here, we investigate the configuration where the wall shear stress varies only
in the lateral direction. The investigation is idealised in order to focus on one aspect,
namely, the similarity and structure of turbulent inertial motion over an imposed scale of
stress variation. To this end, we analyse data from direct numerical simulation (DNS) of
pressure-driven turbulent flow through a channel bounded by walls of laterally alternating
patches of high and low wall shear stress. The wall shear stress is imposed as a Neumann
boundary condition such that the wall shear stress ratio is fixed at 3 while the lateral
spacing s of the uniform-stress patches is varied from 0.39 to 6.28 of the half-channel
height δ. We find that global outer-layer similarity is maintained when s is less than
about 0.39δ while local outer-layer similarity is recovered when s is greater than about
6.28δ. However, the transition between the two regimes through s ≈ δ is not monotonic
owing to the presence of secondary roll motions that extend across the whole cross section
of the flow. Importantly, these secondary roll motions are associated with an amplified
skin-friction coefficient relative to both the small- and large-s/δ limits. It is found that
the relationship between the secondary roll motions and the mean isovels is reversed
through this transition from low longitudinal velocity over low stress at small s/δ to high
longitudinal velocity over low stress at large s/δ.
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1. Introduction

Wall-bounded turbulence rarely flows over spatially uniform roughness. Applications
abound where roughness, and hence the wall shear stress, varies spatially, with examples
including barnacle clusters on ship hulls, rivet rows on aircraft and wind-turbine arrays in
wind farms. Loosely speaking, spatially varying roughness is characterised by statistical
variations of roughness elements occurring over wall-parallel scales that are comparable
or exceed the large scales of wall turbulence. In contrast, spatially uniform roughness is
characterised by length scales that are all smaller than the large scales of wall turbulence.
Although there currently exist well-established scaling laws that underpin textbook
methods such as the Moody chart (Moody 1944) for predicting turbulent flows over
spatially uniform roughness, the same cannot be said of spatially varying roughness.
Predictions for the spatially varying regime can be obtained by extrapolating from the
spatially uniform regime but this comes at the cost of uncertainties that are currently
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not well quantified, with even the delineation between the two regimes currently not
well appreciated. The present investigation is an attempt to address these issues as well
as to shed light on the general changes to the similarity and structure of rough-wall
turbulence from the spatially uniform through to the spatially varying regime. This is
achieved by analysing direct numerical simulation (DNS) data of turbulent flow through
a channel bounded by walls idealised with laterally varying roughness whereby the scale
of roughness variation can be systematically varied while secondary or non-essential
parameters are respectively fixed, minimised or eliminated.

1.1. Idealisation of spatially varying roughness

Progress in understanding specific complex turbulent boundary layer flows is often
aided by reducing the problem into a set of canonical configurations and drawing general
conclusions about a broader class of turbulent flows. In distilling the wider problem of
spatially varying roughness, two issues need to be tackled: first is the representation
of the roughness and second is the choice of the spatial variation. In the following, we
discuss the rationale of our present treatment of these issues.
The first issue is the representation of roughness. As far as the turbulent inertial

motions in the log and outer layers are concerned, classical understanding of wall
turbulence dictates that the only relevant parameters are the wall shear stress τ0 and the
outer scale δ, which, for the present flow, is equal to the half-channel height. The turbulent
inertial motion disregards whether the wall is smooth or rough and, for a rough wall in
particular, the roughness height k does not play a direct role even though it sets τ0. This
is of course the outer-layer similarity hypothesis of Townsend (1976), which is based upon
dimensional considerations and backed by evidence overwhelmingly in its favour (Flack
& Schultz 2014). Further, in an idealised simulation in which k is entirely eliminated
by directly imposing a uniform τ0 as boundary condition, we previously showed that
turbulent inertial motions are essentially similar in the log and outer layers (Chung et al.

2014). In light of this classical understanding, if the purpose is to study the impact of
spatial variations of roughness on turbulent inertial motions, then extending the idealised
simulations of Chung et al. (2014) by imposing spatial variations directly on τ0 and
circumventing k appears to be a sensible approach. Imposing spatial variations directly on
τ0 comes at the cost of not knowing how k sets τ0 but this issue is perhaps better addressed
in research pertaining to spatially uniform roughness, where the preoccupation has been
and continues to be the mapping between the geometric parameter k to the dynamic
parameter ks that leads to τ0 for any given roughness (e.g. Raupach et al. 1991; Jiménez
2004; Flack & Schultz 2014). Imposing spatial variations directly on τ0 comes with the
benefit of low blockage by roughness, that is, small k/δ. Since the imposed stresses are
viscous, the roughness sublayer k is replaced by the viscous sublayer 10ν/uτ , where ν is
the kinematic viscosity and uτ ≡ (τ0/ρ)

1/2, the friction velocity. As such, the blockage is
small but finite, (10ν/uτ )/δ = 10/δ+. The requirement of low blockage, often numerically
quoted as k/δ . 1/40 (Jiménez 2004), is necessary in order to distinguish between flow
over roughness proper, in which a log layer remains intact and therefore generalisable
to other wall-bounded flows, versus flow over obstacles, in which a log layer is absent
and therefore specific to a particular outer-flow geometry. The low-blockage requirement
is often prohibitively expensive for simulations that resolve roughness elements but the
choice of idealisation here ensures that the simulations remain relevant to the roughness
regime as opposed to the obstacle regime while manageable with regards to computational
cost, thereby enabling us to perform our intended parametric investigation. The directly
imposed variation on τ0 also avoids issues related to changes to the dynamic origin, or
step, which typically accompanies a variation in the roughness height.
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Figure 1. Setup of idealised DNS to investigate the effect of lateral wall shear stress variations.
The width of each uniform-stress patch is s = sH = sL. The stress pattern at the top wall
(partially shown) is simply the reflection, across the channel centreline, of the bottom wall. The
streamwise wall shear stresses is low in dotted regions labelled τ0L and high in the hatched
regions labelled τ0H .

The second issue is the choice of the spatial variation of roughness (wall shear stress).
Spatial variations in roughness can and do occur in any number of ways. A useful
classification has been to restrict the variation to occur in only one direction at a time.
Within this classification are two configurations that have been the subject of previous
research: longitudinally (streamwise-) varying roughness and laterally (spanwise-) varying
roughness. We will here focus on laterally varying roughness, and specifically, square-
wave variations, that is, patches of laterally alternating otherwise-uniform high or low
wall shear stress, respectively τ0H and τ0L (figure 1). Apart from being simple, uniform-
stress patches are fairly common, arising from man-made or natural boundaries. Two
parameters need to be further specified, namely, the wall shear stress ratio τ0H/τ0L,
and the lateral size of high and low uniform-stress patches, sH and sL. Here we fix
τ0H/τ0L = 3, sH = sL = s and systematically increase s from 0.39δ to 6.28δ in multiples
of 2. This parametric sweep would cover the cases where the turbulent inertial motions,
which scale with δ, are larger and smaller than the imposed scale s.
The Reynolds number is selected to be as high as feasible, presently set at Reτ ≡

uτδ/ν = 590, where uτ , ≡ (τ0/ρ)
1/2, the friction velocity based on the wall shear stress

averaged across the whole channel τ0, which, in turn, can be related to τ0H and τ0L
for sH = sL via τ0 = (τ0H + τ0L)/2. That is, τ0H = (3/2)τ0 and τ0L = (1/2)τ0. For
reference, suppose for the moment that τ0L and τ0H were, respectively, the wall shear
stresses of smooth- and rough-wall turbulent channel flows with matched δ, ν and U(δ),
where U(δ) is the mean centreline velocity. Then τ0H/τ0L = 3 implies an equivalent
roughness Reynolds number k+s for the rough-wall flow that we now estimate as follows.
Recall that U(δ) can be expressed as

U(δ)

uτL
=

1

κ
log

(δuτL

ν

)

+A and
U(δ)

uτH
=

1

κ
log

(δuτH

ν

)

+A−∆U+ (1.1a,b)

for the smooth and rough walls, respectively. The outer wake contribution has
been neglected, which is a reasonable approximation for turbulent channel flows;
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uτL ≡ (τ0L/ρ)
1/2 and uτH ≡ (τ0H/ρ)1/2, respectively, the smooth- and rough-

wall friction velocities; κ ≈ 0.4, the von Kármán constant; A ≈ 5.1, the smooth-
wall intercept and ∆U+ is the Hama roughness function (cf. Jiménez 2004).
Subtracting the rough profile (1.1b) from the smooth profile (1.1a) gives ∆U+ =
[U(δ)/uτL][1 − (uτL/uτH)] − (1/κ) log(uτL/uτH). Then, substituting uτL/uτH =
(τ0L/τ0H)1/2 = (1/3)1/2 and U(δ)/uτL ≈ 20.2, obtained from the smooth-wall profile
(1.1a) with δuτL/ν = (uτL/uτ )(δuτ/ν) = (1/2)1/2(590) ≈ 417, gives ∆U+ ≈ 9.9.
Alternatively, using ∆U+ = (1/κ) log k+s + A − 8.5 (cf. Jiménez 2004), we obtain
k+s ≈ 205. That is, the hypothetical rough-wall flow is in the fully rough regime.

There are other ways to perform the study more realistically. However, we consider
the hyper-simplication a strength. We have idealised the boundary conditions to seek
generalisations for the outer-flow behaviour, independent of whether stress variations are
caused by roughness or topography or other effects.

1.2. Brief review of previous research on laterally varying roughness

Laterally varying roughness is generally associated with stress-induced secondary
roll motions (Hinze 1967, 1973; Townsend 1976; Bradshaw 1987; Nugroho et al. 2013;
Willingham et al. 2014; Barros & Christensen 2014; Jelly et al. 2014; Anderson et al. 2015;
Vanderwel & Ganapathisubramani 2015), which physically distinguishes and separates its
study from longitudinally varying roughness, the latter associated with growing internal
layers (Antonia & Luxton 1971, 1972; Bou-Zeid et al. 2004; Saito & Pullin 2014; Hanson
& Ganapathisubramani 2016). An enduring prediction in the area is for the direction of
secondary flow, due to Hinze (1967). By simplifying the turbulent kinetic energy equation,
Hinze (1967) predicted that upwelling secondary flow occurs where dissipation exceeds
production of turbulent kinetic energy, coinciding with low shear stress regions and,
conversely, downwelling secondary flow occurs where production exceeds dissipation of
turbulent kinetic energy, coinciding with high shear stress regions. The link between the
high dissipation relative to production for low shear stress and vice versa was made on
empirical grounds (Hinze 1973). The overall prediction of secondary flow received further
detailed corroboration by the large-eddy simulation (LES) study of Anderson et al.

(2015). However, a question that pertains to the relationship between (time-averaged)
isovels and secondary flow remains unresolved, namely, whether high or low longitudinal
velocities (relative to the spanwise average at a given wall-normal location), the so-called
high- or low-momentum pathways (Barros & Christensen 2014), occur over low shear
stress. (The same question can be posed for high shear stress.) Intuitively, one may expect
to find high longitudinal velocities over low shear stress given the lower resistance but the
LES data of Willingham et al. (2014) show that precisely the opposite situation occurs.
In fact, Hinze (1973) mentions in passing that both could occur, but did not elaborate
on the conditions that preferred one situation over the other. On the other hand, the
experiment of Vanderwel & Ganapathisubramani (2015) that systematically varies the
lateral spacing between roughness elements S from S/δ ≈ 0.30 to 1.76 reports that low
longitudinal velocities always occur over roughness elements, suggesting that only one
of the isovel–secondary-flow relationships is preferred. Further, the dynamic-origin effect
cannot be discounted as an important factor in the aforementioned experiment, as seen
in the isolated riblets of Goldstein & Tuan (1998). The present investigation lends further
insights into such questions pertaining to the structure of secondary flow with the help
of high-fidelity DNS data comprising small and large s/δ cases while fixing, minimising
or eliminating other parameters. The focus of the present paper is on the effect of lateral
variations of τ0, however these variations are generated.
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Figure 2. Cross section of channel, illustrating the flow structure of the (a) spatially uniform,
s ≪ δ, and (b) spatially varying, s ≫ δ, regimes. The longitudinal (x-direction) flow is out of
the page.

1.3. Delineation between spatially varying and spatially uniform roughness regimes

The degree of roughness uniformity must be measured against the inherent scales of
the turbulent motion that flows over it. That is, roughness uniformity, like the degree of
roughness height, is a dynamic property of the flow. How a particular roughness ‘feels’ to
the flow is quantitatively expressed through statistics of turbulent relative motion such
as velocity differences or fluctuations (which are invariant to Galilean transformations).
Consider, for instance, how the flow expresses itself through the global mean velocity
defect U(δ)−U(z) at a given wall distance z over roughness. The appropriate flow scales
are the outer-layer thickness δ, the distance from the wall z and the viscous wall unit
ν/uτ . For the roughness, the number of characteristic scales could be infinite, but for
our idealised laterally varying roughness (figure 1), the only scale to consider is s. The
intention is for the roughness idealisation to be a model that isolates the influence of
the largest lateral length scale of a given roughness, which could be the integral length
scale for unordered roughness or the wavelength of the largest repeating unit for ordered
roughness. For such a flow characterised by this list of flow and roughness scales, the
general form for the global mean velocity defect that pertains to the bulk of the flow can
thus be written as

U(δ)− U(z)

uτ
= Φ

(

z

δ
,

z

ν/uτ
,
z

s
,
τ0H
τ0L

)

. (1.2)

In order to obtain outer-layer similarity as hypothesised by Townsend (1976), then both
ν/uτ ≪ z and s ≪ z, whence a finite τ0H/τ0L is also irrelevant, so that

U(δ)− U(z)

uτ
= f

(z

δ

)

. (1.3)

This form is impervious to the details of the bounding wall and is universal for a given
outer-flow geometry. In other words, the wall shear stress uτ appears to be spatially
uniform to the turbulent inertial motion that, scaling with δ, dominate the dynamics
in the bulk of the flow. In this dynamical sense, the roughness is said to be spatially
uniform (figure 2a). This regime is characterised by the two inequalities leading to (1.3).
The first inequality requires the wall location z to be far above the influence of viscosity,
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classically taken to be 30ν/uτ < z (Tennekes & Lumley 1972), above the buffer layer. This
is essentially the high Reynolds number requirement and is well understood. The second
inequality requires the wall location z to be sufficiently far above the inhomogeneous
layer of the flow that is influenced by roughness, called the roughness sublayer or the
blending height, the latter used in the context of spatially varying roughness (e.g. Bou-
Zeid et al. 2007). That is, above the blending height, the local defect, U(y, δ)− U(y, z),
for all y locations are identical. The requirement in terms of s is less familiar but the
version in terms of k is often quoted as 2–3k < z (Jiménez 2004) and 5k < z (Flack et al.

2007), depending on the specific roughness geometry. The present idealisation in figure
1 highlights the point that a lateral scale of roughness can be important in its own right,
especially for low-aspect-ratio (k/s ≪ 1) roughness. Combining s ≪ z with the implicit
z < δ, the spatially uniform regime can be delineated as s ≪ δ, see figure 2(a). This
regime is realised, for example, in superhydrophic surfaces (Jelly et al. 2014).
When s ≈ δ or δ ≪ s, similarity of the global defect can no longer be expected.

However, similarity of the local defect with the local shear stress can arise under certain
conditions. To see this, consider now the local mean velocity defect U(y, δ)− U(y, z) at
wall distance z and lateral station y relative to a high-to-low stress jump located at y0.
Dimensional considerations lead to the following general form,

U(y, δ)− U(y, z)

uτ (y)
= φ

(

y − y0
δ

,
z

δ
,

z

ν/uτ (y)
,
s

δ
,
τ0H
τ0L

)

, (1.4)

where uτ (y) is uτH ≡ (τ0H/ρ)1/2 for y < y0 and uτL ≡ (τ0L/ρ)
1/2 for y > y0 . If s ≈ δ,

this full list of parameters must be retained. However, if δ ≪ s so that stations y exist
that are several outer-layer thicknesses δ away from a stress jump, i.e. δ ≪ |y − y0|, the
local mean velocity defect is expected to take on the same one-dimensional outer-layer
form f as (1.3),

UH(δ)− UH(z)

uτH
=

UL(δ)− UL(z)

uτL
= f

(z

δ

)

, (1.5)

where UH(δ) − UH(z) = [U(δ, y) − U(z, y)]δ≪|y−y0| for y < y0 (high shear stress) and
UL(δ) − UL(z) = [U(δ, y) − U(z, y)]δ≪|y−y0| for y > y0 (low shear stress). In this limit,
the turbulent inertial motion above the buffer layer (ν/uτ (y) ≪ z) deep within a uniform
stress patch (δ ≪ |y − y0| < s) ‘does not know’ about the flow in neighbouring patches
characterised by different values of wall shear stresses. This dynamical behaviour that
occurs when δ ≪ s invites the label, spatially varying roughness, see figure 2(b).
The orders of the constants for the inequalities that characterise the spatially uniform

and spatially varying regimes, s ≪ δ and δ ≪ s, could depend on τ0H/τ0L. Some insights
into this dependence will be obtained from the present DNS data. The adherence of flow
behaviour to either of these limiting regimes can be quantified by collapse in either the
global defect (1.3) or local defect (1.5).

2. DNS setup

The channel-flow setup is shown in figure 1. The wall-normal direction is z, with
walls located at z = 0 and z = 2δ. Periodic boundary conditions are imposed in the
streamwise (x) and spanwise (y) directions. Alternating high and low wall shear stresses,
τ0H and τ0L respectively, are imposed uniformly within each patch of width s at the
walls using the shear stress (Neumann) boundary condition, ν(∂u/∂z)z=0 = τ0H/ρ or
τ0L/ρ at the bottom wall and −ν(∂u/∂z)z=2δ = τ0H/ρ or τ0L/ρ at the top wall. The
no-slip boundary condition is not satisfied. As stated in §1, this boundary condition is
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Boundary condition s/δ τ0H/τ0L δ+H δ+L Nx Ny Nz Ly/δ ∆+

xH ∆+

yH ∆+

zcH Tuτ/δ

No slip · · · Uniform · · · 384 384 256 3.14 9.7 4.8 7.2 52
Shear stress · · · Uniform · · · 512 512 384 3.14 7.2 3.6 4.8 56

Shear stress 0.39 3 723 417 512 512 384 3.14 8.9 4.4 5.9 57
Shear stress 0.79 3 723 417 512 512 384 3.14 8.9 4.4 5.9 56
Shear stress 1.57 3 723 417 512 512 384 3.14 8.9 4.4 5.9 54
Shear stress 3.14 3 723 417 512 1024 384 6.28 8.9 4.4 5.9 54
Shear stress 6.28 3 723 417 512 2048 384 12.57 8.9 4.4 5.9 55

Table 1. Simulation parameters. Reτ ≡ uτδ/ν; uτ ≡ (τ0/ρ)
1/2; τ0 ≡ (τ0H + τ0L)/2, the

average wall shear stress; sH = sL = s, the patch width (figure 1); superscript ‘+’ indicates
viscous scaling with either uτH/ν for subscript ‘H’ or uτL/ν for subscript ‘L’, e.g. δ+H = δuτH/ν;
and T is the duration of statistics collection after initial transients are discarded. Reτ = 590
and Lx/δ ≈ 6.28 for all present simulations.

meant to represent an idealised roughness with low roughness blockage (k/δ small) and
without changes to the dynamic origin. This boundary condition imparts no additional
length scales on the flow other than the wall unit, ν/uτ , and its spatial variation.
The stress pattern is mirrored across the channel centreline and spanwise wall shear
stress is zero uniformly, ν(∂v/∂z)z=0,2δ = 0. Note that these idealised piecewise-uniform
boundary conditions do not account for variations in wall shear stress that typically
occur near stress jumps in real flows due to localised secondary flow. We confirmed, in a
simulation where (v)z=0,2δ = 0 for the case s/δ ≈ 1.57, that the outer relative motions
are virtually indistinguishable between the free-slip and no-slip v boundary conditions.
The impermeable boundary condition wz=0,2δ = 0 is enforced uniformly at both the
walls. The uniform shear-stress boundary condition was previously compared with the
usual no-slip boundary condition at matched Reτ , the main finding there being that the
flows above the buffer layers, z+ ≈ 30, are essentially similar (Chung et al. 2014). This
includes means, Reynolds stresses, spectrograms and higher-order moments. Whilst the
outer region obeys similarity, the inner region is impacted by the choice of boundary
conditions, as expected. In particular, Chung et al. (2014) showed, for the synthetic
uniform wall shear stress (Neumann) boundary condition, that the streamwise normal
Reynolds stress peaks at the wall rather than away from the wall (their figure 2a) and that
the viscous sublayer is neither linear nor logarithmic but a shifted log law still appears
above z+ ≈ 30 (their figure 1b). This number agrees with classical estimates (Tennekes &
Lumley 1972) and gives an indication to the lower bound below which the present flow is
sensitive and therefore specific to the way in which the wall shear stress is applied. Above
the buffer layer, the present flow is expected to behave similarly to other flows with the
same spatially varying wall shear stress. Data from the reference no-slip and uniform shear
stress cases (first two rows of table 1) will be included where relevant to aid in interpreting
the statistics at hand. The wall shear stress boundary condition, in combination with the
Navier–Stokes equations, are impervious to arbitrary Galilean transformations in the
wall-parallel plane. In practice, a frame of reference must be chosen; here, it is chosen
such that the bulk wall-parallel velocity is zero, which reduces numerical dispersion errors
(Bernardini et al. 2013). It is important to only refer to Galilean-invariant statistics such
as velocity differences or fluctuations, which are unambiguous and unaffected by the
arbitrary frame of reference of the present simulations.
A parametric sweep for s/δ ≈ 0.39–6.28 is performed at the matched friction Reynolds
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number, Reτ ≡ uτδ/ν = 590, where the friction velocity uτ is based on the average wall
shear stress τ0 ≡ (τ0H + τ0L)/2. The stress ratio is fixed τ0H/τ0L = 3 for the cases here
with stress variations. The simulations are well resolved, set by the wall unit of the high
shear stress patch where the finest scales are expected to be smaller, ∆x < 8.9ν/uτH ,
∆y < 4.4ν/uτH and ∆zc < 5.9ν/uτH , where ∆zc is the largest wall-normal cell spacing at
the channel centre (cf. Moser et al. 1999). The wall-normal cells are stretched with a cosine
mapping. The CFL number, defined here as ∆tmax{|u|/∆x, |v|/∆y, |w|/∆z} is fixed to
unity, where ∆t is the time step size. Statistics are collected over many eddy-turnover
times, T & 50δ/uτ . Unlike simulations that are statistically homogeneous in the wall-
parallel plane, the plane average that offers a quicker convergence cannot be used here
and so the longer averaging times are required in order to obtain x-averaged statistics at
each (y, z) location. The length of the channel domain for all simulations is 6.28δ, which
is just large enough (cf. Moser et al. 1999; Lozano-Durán & Jiménez 2014); the width
of the channel domain is 3.14δ for s . 1.57δ, but increased up to 12.57δ for s ≈ 6.28δ
in order to accommodate at least one period of high and low stress patch. This choice
constrains the flow to scales narrower than Ly/δ ≈ 3.14, 6.28 and 12.57, for the cases,
s/δ ≈ 1.57, 3.14 and 6.28, respectively, ruling out motions wider than Ly, which may
be important if large-scale phenomena, such as meandering, is of interest. Nonetheless,
we expect minimal influence to scales narrower than 3.14δ, which are captured in all the
present simulations, and the domain width is sufficient (Lozano-Durán & Jiménez 2014)
for mean statistics reported herein to be robust.
Here, DNS is performed using the fourth-order symmetry-preserving spatial discreti-

sation of Verstappen & Veldman (2003), along with the boundary conditions of Sanderse
et al. (2014). This spatial discretisation conserves mass, momentum and energy on a
staggered grid. The semi-implicit low-storage third-order Runge–Kutta–Wray scheme
(Spalart et al. 1991) marches the equations in time and the fractional-step method (e.g.
Perot 1993) projects the intermediate velocity onto a divergence-free space. The viscous
terms are treated implicitly only in the wall-normal direction (involving the inversion of
a heptadiagonal matrix). This present code is written by the first author and has been
used in a number of previous DNS studies of wall-bounded flows (e.g. Chung et al. 2014;
Kozul et al. 2016).

3. Results and discussion

3.1. Global mean longitudinal velocity defect

First, we look for indications of the spatially uniform regime by considering the
spanwise-averaged or ‘global’ longitudinal (streamwise) velocity defect, shown in figure
3. Recall that the roughness or wall shear stress can be considered spatially uniform
from a dynamical point of view if the global velocity defect collapses according to (1.3).
The profiles for the no-slip and uniform shear stress boundary condition cases are also
shown in figure 3, indicating collapse above the buffer layer, z+ & 30, as previously
demonstrated by Chung et al. (2014). This suggests that differences below this location
should be considered specific to the boundary-condition treatment. Above this location,
the uniform shear stress case serves as a reference such that departures away from it can
be interpreted as a flow modification that is attributed to laterally varying roughness.
Consider now the cases with imposed spatially varying wall shear stress. The global defect
of the s/δ ≈ 0.39 case is virtually indistinguishable from the uniform shear-stress case,
suggesting that this case is in the spatially uniform regime. Increasing s/δ to 0.79 breaks
outer-layer similarity such that the flow departs from the spatially uniform regime. This
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Figure 3. Global mean (spanwise-avaraged) velocity defect in (a) linear–linear and (b)
log–linear coordinates: , no slip; , uniform stress; ▽ , s/δ = 0.39; ◦ , s/δ = 0.79;
� , s/δ = 1.57; △ , s/δ = 3.14; ⋄ , s/δ = 6.28.

departure is an abrupt drop in the velocity defect through the bulk of the flow, with
an approximate vertical shift in the logarithmic region seen in figure 3(b). However, this
reduction in velocity defect is not monotonic. For s/δ ≈ 0.79–1.57, the global defect
reduces to a flatter profile before appearing to revert back towards the spatially uniform
regime for s/δ ≈ 3.14–6.28.

The reduction of the global defect to a flatter profile has been reported in a similar
context in the experiment of Vanderwel & Ganapathisubramani (2015) at Reτ ≈ 4200±
400. There the flow is a boundary layer over streamwise-aligned protrusions, where the
lateral spacing S between the protrusions of width W is varied from S/δ ≈ 0.30 to
1.76 at fixed W/δ ≈ 0.15. They identify two behaviours: ‘fine’ spacing for S/δ ≈ 0.30–
0.45, where the global defects collapse, and ‘coarse’ spacing for S/δ ≈ 0.88–1.76, where
the global defects appear to also collapse, but are flatter relative to the ‘fine’ spacing
cases, see their figure 3(a). The present DNS data is quantitatively consistent with
these experiments with s equivalent to S. The spatially uniform regime collapses the
present s/δ ≈ 0.39, no-slip and uniform shear stress cases, which can be identified with
the ‘fine’ spacing cases of Vanderwel & Ganapathisubramani (2015). Also, the present
s/δ ≈ 0.79, 1.57 cases have flatter profiles, which is similar to the ‘coarse’ spacing cases
of Vanderwel & Ganapathisubramani (2015) except that the present s/δ ≈ 0.79, 1.57
profiles do not collapse. Even so, the overwhelming similarities suggest, but does not
prove, the generalisation that the flow transitions away from the spatially uniform regime
somewhere between s/δ ≈ 0.39–0.79 regardless of whether the flow is through a channel or
a boundary layer, and independent of Reynolds number as the experiments are conducted
at friction Reynolds numbers that are an order of magnitude larger than the present
DNS. Further, the consistency in flow behaviour between a real experiment and the
modelled boundary conditions supports the utility of the present idealised simulations
for understanding flow over laterally varying roughness. Although the experiment of
Vanderwel & Ganapathisubramani (2015) did not consider spacings S greater than 1.76δ,
the present DNS data goes further to include two additional cases at s/δ ≈ 3.14, 6.28,
showing that the global defect appears to revert back towards the spatially uniform
regime. The reasons for this peculiar non-monotonic behaviour will be made clear in the
following sections.
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(a) s/δ = 0.39

zuτ/ν

Uδ − U

uτ

(b) s/δ = 0.39

Uδ − U

uτ

(c) s/δ = 0.79

Uδ − U

uτ

(d) s/δ = 0.79

Uδ − U

uτ

(e) s/δ = 1.57

Uδ − U

uτ

(f ) s/δ = 1.57

Uδ − U

uτ

(g) s/δ = 3.14

Uδ − U

uτ

(h) s/δ = 3.14

Uδ − U

uτ

(i)

z/δ

s/δ = 6.28

Uδ − U

uτ

(j )

z/δ

s/δ = 6.28

Uδ − U

uτ

y
z2δ

s y0

τ0H τ0L
δδ

s/16

Figure 4. Local defect Uδ−U ≡ U(y, δ)−U(y, z) at various lateral (y) stations: scaled with the
averaged friction velocity uτ , left panels, i.e. (a, c, e, g , i); scaled with the local friction velocity
uτ = uτH or uτL, right panels, i.e. (b, d , f , h, j ). Top to bottom, s/δ ≈ 0.39, 0.79, 1.57, 3.14,
6.28; , uniform shear stress; △ , centre of high shear stress region; ▽ , centre of low shear
stress region; ◦ , global defect; , y in high shear stress region, dashed if within δ of stress
jump; , y in low shear stress region, dashed if within δ of stress jump. See key at bottom.
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3.2. Local mean longitudinal velocity defect

We now consider the local mean longitudinal velocity defect. In figure 4, the local
defects at y stations located at the centres of the high shear stress regions, at the centres
of the low shear stress regions and at 16 evenly spaced locations between the two centres
are shown, see key at the bottom of figure 4. For reference, the uniform shear stress
defect and the globally averaged defect (left panels only) are also shown. The y stations
that are within δ of a stress jump y0, i.e. |y− y0| < δ, are indicated by thin dashed lines
without markers, while stations such that |y − y0| > δ are indicated by thin solid lines
without markers.

The left panels of figure 4 are scaled with the globally averaged friction velocity uτ ,
that is, they are scaled in the same way as figure 3, but access to the local defects at
various y stations provide more detail of the structural changes to the flow. The plots
in the left panels corroborate the dimensional intuition discussed in § 1.3 and illustrated
in figure 2(a), where collapse indicates spanwise homogeneity. The flow for s/δ ≈ 0.39
behaves as in the spatially uniform regime that shows a statistically homogeneous region,
where, above the blending height, all the local defects collapse onto the reference spatially
uniform shear stress defect. In this regime, the globally averaged defect trivially collapses
onto the uniform shear stress defect, and the flow dynamically does not ‘feel’ the small
spacings of the lateral stress variations. For intermediate spacings s/δ ≈ 0.79, 1.57 (figure
4c, e), outer-layer homogeneity is broken and the flow no longer behaves in the spatially
uniform regime. No clear similarity structure of the local defects can be concluded from
these plots but the local defects average to a flatter profile compared to the reference
uniform shear stress defect. For the large spacings, s/δ ≈ 3.14, 6.28 (figure 4g , i), the local
defects group into two depending on whether the y stations are in the high shear stress
or low shear stress regions. Despite the scatter of the local defects, the globally averaged
defect (figure 3) remarkably approaches the reference uniform shear stress defect; this
will be further explored in §3.3.

The grouping of local defects into two indicates a tendency towards the spatially
varying regime. As discussed in § 1.3 and illustrated in figure 2(b), the spatially varying
regime can be measured by the local defect’s collapse to the form according to (1.5). That
is, the local defects, scaled with the local friction velocity, uτH or uτL, collapse onto the
functional form f(z/δ) that is identical to the spatially uniform regime (1.3). The right
panels of figure 4 show the local defects scaled with the local friction velocity. As the
spacing is increased, the tendency towards collapse according to (1.5) is unequivocal. At
the largest spacing s/δ ≈ 6.28 (figure 4j ), almost all the local defects collapse, except for
a few y stations that are near a stress jump because the influence of the neighbouring
patch cannot be ignored, a behaviour anticipated in figure 2(b). These plots corroborate
the physical picture that the flow above a uniform shear stress patch in the spatially
varying regime is not aware of the dynamics in neighbouring patches of a different shear
stress provided the patch is wide enough.

3.3. Global mean velocity defect of the spatially varying regime

To understand why the global defect appears to approach the uniform shear stress
defect in the spatially varying regime (s ≫ δ), consider the limiting case where each
uniform stress patch is so large (sH , sL ≫ δ) that flow is dominated by local similarity
in the sense of (1.5). In this limit, the flow regions near stress jumps make negligible
contributions to the global average. Thus, we can relate the local defects to the global
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(a)

τ0H/τ0L

sH/sL

(b)

z/δ

zuτ/ν

{[U(δ)− U ]/uτ}

{[U(δ)− U ]/uτ}s≪δ

Figure 5. (a) Contours of gain factor, G = (uτ )s≫δ/(uτ )s≪δ, see (3.3b). The cross indicates
the conditions of the present simulations (τ0H/τ0L = 3, sH/sL = 1), where G ≈ 1.035. (b) Ratio
of defect relative to spatially uniform limit: , s ≫ δ limit, presently 1/G ≈ 0.966; , s ≪ δ
or uniform stress limit; ▽ , s/δ = 0.39; ◦ , s/δ = 0.79; � , s/δ = 1.57; △ , s/δ = 3.14; ⋄ ,
s/δ = 6.28.

defect via the wall-area-weighted average (cf. Mason 1988; Bou-Zeid et al. 2004),

U ∼
sL

sL + sH
UL +

sH
sL + sH

UH ,
τ0
ρ

∼
sL

sL + sH

τ0L
ρ

+
sH

sL + sH

τ0H
ρ

. (3.1a,b)

These are first rewritten, (3.1a) in defect form and (3.1b) in terms of friction velocities
recalling the definitions, uτ ≡ (τ0/ρ)

1/2, uτH ≡ (τ0H/ρ)1/2 and uτL ≡ (τ0L/ρ)
1/2:

U(δ)− U(z) ∼
sL

sL + sH
[UL(δ)− UL(z)] +

sH
sL + sH

[UH(δ)− UH(z)], (3.2a)

u2
τ ∼

sL
sL + sH

u2
τL +

sH
sL + sH

u2
τH . (3.2b)

We showed in figure 4 that outer-layer similarity is recovered locally when s ≫ δ,
including in the wake. This result is supported by dimensional considerations emulating
Townsend’s leading to (1.5), as the local relative flow only sees the local friction velocity,
the flow thickness and the outer-flow channel geometry, that is, the same conditions as
for homogeneous channel flow. Thus, substituting the local similarity forms (1.5) into
(3.2a), dividing by the square root of (3.2b) and rearranging, we obtain

U(δ)− U(z)

uτ/G
(

τ0H
τ0L

, sH
sL

) ∼ f
(z

δ

)

, where G =

(

1 + sH
sL

)1/2 (

1 + sH
sL

τ0H
τ0L

)1/2

1 + sH
sL

(

τ0H
τ0L

)1/2
. (3.3a,b)

G may be interpreted as a gain factor. That is, comparing (3.3) and (1.3), the global
defect of the spatially varying regime obeys the same functional form as the global defect
of the spatially uniform regime provided a gain G, the ratio of the friction velocity at
large spacings relative to that at small spacings, i.e. G = (uτ )s≫δ/(uτ )s≪δ, is applied
to the global-averaged friction velocity. Figure 5(a) plots the contours of G from (3.3b),
showing that, under the conditions of the present simulations, i.e. τ0H/τ0L = 3 and
sH/sL = 1, G ≈ 1.035. In other words, the global velocity defect profile for large s/δ,
after multiplying by 1.035, should approach the global velocity defect profile for small s/δ.
This behaviour appears to be the case for s/δ ≈ 6.28 (figure 4i), comparing the global
average (circled) line and the reference uniform shear stress (solid) line. This explains the
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peculiar behaviour of why the global average defect of the spatially varying regime seems
to approach the global defect of the spatially uniform regime. The present calculations
suggest that the two are only expected to collapse to within a gain factor G, but G is
near unity under the present conditions.

A more sensitive diagnostic is to consider the ratio of the normalised global defect
relative to the normalised spatially uniform limit (figure 5b). In this plot, it can be clearly
seen that the s/δ ≈ 0.39 defect behaves like the spatially uniform reference case and that
the approach to the spatially varying regime by s/δ ≈ 3.14, 6.28 is clear, although even
s/δ ≈ 6.28 is not large enough according to this diagnostic. Importantly, the defect of
the intermediate spacings, s/δ ≈ 0.79, 1.57 undershoot the spatially varying regime,
meaning that the changes from the spatially uniform to the spatially varying regime are
not a mere interpolation between the two limiting behaviours. The undershoots imply a
flatter profile in the bulk relative to the two limiting behaviours.

3.4. Change in global skin-friction coefficient

Before discussing the changes to the global skin-friction coefficient as observed in the
present simulations, consider first the limit for large spacings of the global mean velocity
profile relative to the wall U(z)−U(0). To obtain this, let us assume that the flow obeys
the law-of-the-wall similarity in a local sense when s/δ is large (figure 2b). Specifically,
a local composite profile comprising the log law and a wake holds over each patch:

UH(z)− UH(0)

uτH
=

1

κ
log

z

z0H
+

Π

κ
w(z/δ) (3.4a)

UL(z)− UL(0)

uτL
=

1

κ
log

z

z0L
+

Π

κ
w(z/δ) (3.4b)

where w(z/δ) is Coles’ wake function, and z0H and z0L are, respectively, the roughness
lengths of the high and low shear stress regions. The roughness length is used without loss
of generality. For a fully rough wall, the roughness length can be expressed in terms of the
equivalent sand-grain roughness via z0 = kse

−κ(8.5) ≈ 0.033ks, for a no-slip smooth wall,
the roughness length can be expressed in terms of the wall unit via z0 = (ν/uτ )e

−κA ≈
0.13(ν/uτ ), and for the present (viscous) uniform shear-stress boundary condition, the

roughness length can be expressed via z0 = (ν/uτ )e
−κ(A−∆U+) ≈ 0.50(ν/uτ ) as ∆U+ ≈

3.4 (Chung et al. 2014). Repeating the wall-area-weighted average similar to (3.1) for
U(z)− U(0), we obtain

U(z)− U(0)

uτ/G( τ0Hτ0L
, sH
sL

)
∼

1

κ
log

z

z0
+

Π

κ
w(z/δ), (3.5)

where G is as before in (3.3b) and the effective roughness length is a harmonic average
of the two,

z0 = z
sHuτH/(sHuτH+sLuτL)
0H z

sLuτL/(sHuτH+sLuτL)
0L . (3.6)

Presently, z0 ≈ 0.50ν/uτ , where z0H ≈ 0.50ν/uτH , z0L ≈ 0.50ν/uτL, τ0H/τ0L = 3 and
sH/sL = 1 have been used. That is, there is negligible shift in the mean profile relative to
the wall in the large-s/δ limit compared to the small-s/δ limit, although this may not be
the case for other combinations of wall type, τ0H/τ0L and sH/sL. There is also negligible
gain G ≈ 1.035 in the slope of the log law (3.5). The change between the large-s/δ profile
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(a)

zuτ/ν

z/δ

∆{[U − U(0)]/uτ}
(b)

s/δ

∆{[U(δ)− U(0)]/uτ}

Figure 6. Change, relative to the uniform shear stress flow, of (a) global mean profile and
(b) global skin-friction coefficient based on centreline velocity: , s ≫ δ limit; , s ≪ δ or
uniform stress limit; ▽ , s/δ = 0.39; ◦ , s/δ = 0.79; � , s/δ = 1.57; △ , s/δ = 3.14; ⋄ ,
s/δ = 6.28.

and the small-s/δ profile is

∆{[U − U(0)]/uτ} ≡ {[U − U(0)]/uτ}s≪δ − {[U − U(0)]/uτ}s≫δ

≈
(

1−
1

G

)( 1

κ
log

z

z0
+

Π

κ
w(z/δ)

)

≈
(

1−
1

G

)

{[U − U(0)]/uτ}s≪δ, (3.7)

where the approximation z0 ≈ z0, has been used.
Figure 6(a) shows this change in global (spanwise-averaged) mean profile relative to

the wall, along with the s ≪ δ and s ≫ δ limits, the former is zero by definition
and the latter is obtained from (3.7). The approach to the large-s/δ limit does not
appear to be monotonic, but a now familiar pattern emerges. For s/δ . 0.39 or the
spatially uniform regime, the mean profile remains mostly unchanged, and for s/δ & 3.14,
the spatially varying regime is gradually approached, with even s/δ ≈ 6.28 not quite
recovering the s/δ ≫ 1 limit. In between the two regimes 0.79 . s/δ . 1.57, there is an
overshoot of ∆{[U−U(0)]/uτ} in the range 0.4 < s/δ < 1, indicating that the normalised
global mean velocity profile reaches a minimum relative to the spatially uniform regime.
The value of ∆{[U − U(0)]/uτ} at z = δ is plotted in figure 6(b). Specifically, figure
6(b) shows {[U(δ) − U(0)]/uτ}s≪δ − {[U(δ) − U(0)]/uτ}. If we define Cf based on the
centreline velocity relative to the wall velocity, U(δ)−U(0), then this quantity is simply
√

2/Cf |s≪δ −
√

2/Cf . That is, a peak indicates an amplified skin-friction coefficient
relative to the homogeneous case. The absolute of Cf is not meant to be related to any
realistic values in this study, as it is highly sensitive to the near-wall treatment, i.e. the
method of imposing stress variations. Of interest here is modifications to the relative
motions in the outer layer. As such, a change, relative to the homogeneous case is the
appropriate quantity here. This quantity can be linked to the fractional change in the
skin-friction coefficient for a given s/δ relative to the skin-friction coefficient for s ≪ δ,

Cf − Cf |s≪δ

Cf |s≪δ
=

1
(

1− ∆{[U(δ)−U(0)]/uτ}
(2/Cf |s≪δ)1/2

)2
− 1

≈ (2Cf |s≪δ)
1/2∆{[U(δ)− U(0)]/uτ}, (3.8)
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where the approximation is simply a truncated Taylor series (cf. Spalart & McLean 2011).
Figure 6(b) shows that the fractional change in skin-friction coefficient peaks near s/δ ≈
1, higher than values in both the spatially uniform and spatially varying regimes. The
value of the fractional change in skin-friction coefficient depends on Cf |s≪δ; in the present
simulations where (2/Cf |s≪δ)

1/2 ≈ 18.0 (cf. Chung et al. 2014), Cf is 18.8% greater than
that of the spatially uniform regime, using the peak value of ∆{[U(δ)−U(0)]/uτ} ≈ 1.7.
This suggests a practical rule of thumb: lateral length scales on the order of the outer-
layer thickness δ should be avoided in situations where low drag is desired. Also, surfaces
with lateral length scales . 0.5δ have similar drag to uniformly rough surfaces. These
predictions are consistent with Medjnoun, Vanderwel & Ganapathisubramani (2018).

3.5. Secondary flow

The results and dimensional reasoning heretofore reveal that, for the spatially uniform
regime, a statistically homogeneous region occurs above the blending height, and for
the spatially varying regime, a statistically homogeneous region occurs away from the
stress jump. In these homogeneous regions, the identical outer-layer similarity form
f(z/δ) according to either (1.3) or (1.5) emerge with no mean secondary flow V (y, z) =
W (y, z) = 0. Away from the homogeneous regions, i.e. near the stress jump and below
the blending height, mean (xt-averaged) secondary flow must appear. Figures 7 and 8
show the structure of the secondary flow in the vicinity of a stress jump, superimposed
on contours of longitudinal isovels. Figure 7 retains the physical scaling with unity aspect
ratio, which is useful for observing the increasing scale of the induced flow patterns with
increasing s/δ; however, this scaling is not so useful for a global perspective because the
range of spacings s is large. For a complete perspective, figure 8 is provided where the
horizontal axes are scaled with s. The full extent of the mean cross-plane flow over a full
period of low and high shear stress region is here visible for all s/δ.
First focussing on the secondary flow, observe that it organises into a pair of counter-

rotating roll motions with an upwelling region that occurs over the low stress region,
independent of spacing s. This is consistent with the link discovered by Hinze (1967,
1973), who associate the region of low shear stress with a higher dissipation relative to
production, and, in turn, to an upwelling secondary flow. The strength and coverage of
the roll motion depends on the spacing of the lateral stress variation s. At the small
spacing, s/δ ≈ 0.39, identified as belonging to the spatially uniform regime, the roll
motion is confined near the wall below the blending height, leaving a bulk region that
is virtually homogeneous. At the intermediate spacings s/δ ≈ 0.79, 1.57, the roll motion
strengthens and occupies the whole cross section of the bulk flow (more noticeable for
s/δ = 1.57). The wall-normal velocity between the roll motions increases substantially in
both magnitude and spatial occupancy over this range of s/δ (compare vector lengths at
y = yL in figure 8 and figure 9a). The result of this induced wall-normal velocity is a more
efficient wall-normal mixing of longitudinal momentum, leading to a flatter longitudinal
velocity profile as seen in figure 3. This effect on the velocity profile is consistent with the
experimental observation made by Vanderwel & Ganapathisubramani (2015). At large
spacings, s/δ ≈ 3.14, 6.28, identified as approaching the spatially varying regime, it is
observed that the wall-normal velocity induced by the roll motions weakens, leading to
an eventual homogeneous region between the roll motions. The roll motions generally
move away from the stress jump towards the low shear stress region and remains up to
δ. This explains the behaviour seen earlier, in figure 4(j ) for example, where the velocity
defect over almost all of the high shear stress region collapses well for large s/δ, but the
same is not true for the low shear stress region. There is notably different behaviour of
the spanwise velocity compared with the wall-normal as the size of the spacing increases,
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(a) s/δ = 0.39 (y − y0)/δ

z/δ

(b) s/δ = 0.79

z/δ

(c) s/δ = 1.57

z/δ

(d) s/δ = 3.14

z/δ

(e) s/δ = 6.28

z/δ

τ0H τ0L

[U − U(0)]/uτ

Figure 7. Mean (xt-averaged) longitudinal velocity U contours (isovels) in the cross (yz-)

plane centred on high-to-low stress jump y0. The (in-plane) secondary flow [V −V (0),W ]/uτ is
indicated by vectors, the lengths of which are scaled equally among the plots.

i.e. the maximum spanwise velocity in the plane is increasing monotonically with s/δ.
This means there are two different roll motions depending on s/δ; in the classification
of Bradshaw (1987): the roll motion for s/δ . 1.57 is called ‘Type (b)’ or ‘identifiable
streamwise vortices’, where ∂V/∂z is of the order of ∂W/∂y, while the roll motion for
s/δ & 3.14 is called ‘Type (a)’ or ‘cross flow’, where ∂V/∂z is far greater than ∂W/∂y. It
is the proximity of the counter-rotating roll motion pair that causes the behaviours seen
in both W and V : when the roll motions are in close proximity (s/δ = 0.79, 1.57), the
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(a) s/δ = 0.39 (y − yL)/s

z/δ

(b) s/δ = 0.79

z/δ

(c) s/δ = 1.57

z/δ

(d) s/δ = 3.14

z/δ

(e) s/δ = 6.28

z/δ

τ0H τ0L τ0H

[U − U(0)]/uτ

Figure 8. Mean (xt-averaged) longitudinal velocity U contours (isovels) in the cross (yz-) plane
centred on low-shear-stress region yL. Although there is always upwelling flow above the low
shear stress region, the isovels show a sign reversal with increasing s/δ from low velocity over
low shear stress for small s/δ to high velocity over low shear stress for large s/δ. The (in-plane)

secondary flow [V −V (0),W ]/uτ is indicated by vectors, the lengths of which are scaled equally
among the plots.

wall-normal components add together, while the spanwise components counteract each
other; when the roll motions are far apart, the wall-normal components freely decay and
the spanwise components are enhanced by the wall without the influence of its pair.
Turning now to the longitudinal isovels, it can be observed in figure 8 that a reversal
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(a)

z/δ

W/uτ

y = yL (b)

z/δ

[U − U ]/uτ

y = yL

Figure 9. Wall-normal section profiles at the centre of the low-shear-stress region, y = yL, of:
(a) W/uτ ; (b) [U − U ]/uτ : ▽ , s/δ = 0.39; ◦ , s/δ = 0.79; � , s/δ = 1.57; △ , s/δ = 3.14;
⋄ , s/δ = 6.28.

occurs near to the surface as s/δ increases. For low s/δ we observe low longitudinal
velocity over the low shear stress region, but this switches for high s/δ with high
longitudinal velocity over the low shear stress region. This is more evident in figure
9(b), where profiles of the local mean relative to the spanwise-averaged longitudinal
velocity are shown at the centre of the low shear stress region. The possibility for either
of these two configurations was first pointed out by Hinze (1973), but the conditions
that favoured one over the other have not been addressed in the literature. Here, it is
seen that the spatially varying regime (s/δ & 6.28) prefers the latter, a situation that
is physically intuitive. If the flows over each region can be considered in isolation of
neighbouring regions, it is expected that a higher longitudinal flow would be found over
a low shear stress region owing to its lower resistance. However, for the small spacings
s/δ . 3.14, the flows over each region cannot ignore the presence of its neighbour and,
a flow arrangement develops such that a large wall-normal velocity is produced over the
low shear stress region (figure 9a). In any flow with shear in the wall-normal direction,
the addition of a mean wall-normal velocity will transport low momentum from the wall
and this is why a low longitudinal flow occurs over a low shear stress region as shown by
Mehta & Bradshaw (1988). Indeed, such an arrangement of vortices has been reported,
not only in laterally varying roughness studies (at spacings smaller than 3.14δ) such as
Willingham et al. (2014), but also in smooth-wall, high Reynolds number wall-bounded
flows, where conditional flow analyses have revealed natural high- and low-momentum
regions that vary on the lateral spacing of order 0.5δ (e.g. Hutchins et al. 2011). The
roll-motion structure is also reminiscent of that due to the linear non-normal growth
mechanism (e.g. del Álamo & Jiménez 2006; Hwang & Cossu 2010). These similarities
between the flow over laterally varying roughness at s . 3.14δ and smooth-wall studies
suggest that the roughness variations act as a physical ‘phase lock’ that holds these
linear-growth structures in space.

4. Conclusions

A numerical experiment to study the effects on wall turbulence of spanwise variations
in wall shear stress is performed. Roughness effects are well known to depend on many
parameters, which is the reason for limiting the varied parameters to the spanwise spacing
of the high and low shear stress patches, s, and idealising the roughness heights and
origins as prescribed uniform wall shear stresses. Although further studies could be
performed with variation of parameters such as the ratio of wall shear stresses (τH/τL) or
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the ratio of spacings (sH/sL), the current study provides sufficient insight to anticipate
the effects of those parameters except, perhaps, in extreme cases.

The predominant effect of a sharp jump from high stress to low stress (in the spanwise
direction) is the generation of streamwise roll motions. For small spacings, s . 0.39δ,
the roll motions produced are small and are confined so close to the wall that the flow
behaves similarly (in the bulk) to a homogeneous rough or smooth wall flow. At very
large spacings, i.e. s & 6.28δ, the roll motions and their induced velocities are confined
to the stress jump such that the bulk of the flow over the high or low shear stress regions
cares only about the local shear stress below it. Between these two limits, it is shown that
there are some curious, perhaps counter-intuitive, behaviours in the secondary flow. It is
between the spacings of 0.39 . s/δ . 6.28 that the roll motions become space filling and
strongly interact with each other. This results in induced wall-normal velocities between
the roll modes that first increase in magnitude with increasing s/δ, for s/δ . 1.57, beyond
which they decrease as s/δ further increases. It is this induced wall-normal velocity that
is responsible for the noted counter-intuitive flow behaviours: a breakdown of outer-layer
similarity, an increased drag over the expected mean and the previously unexplained
switching between low and high longitudinal velocities over the low shear stress region.
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Centre with funding from the Australian Government and the Government of Western
Australia and by the National Computing Infrastructure (NCI), which is supported by
the Australian Government. This research was partially supported under the Australian
Research Council’s Discovery Projects funding scheme (project DP160103619).

Appendix A. Reynolds stresses in the cross plane

Although this paper is focussed on the similarity of mean quantities, we present in
figure 10 four of the Reynolds stresses for the case s/δ ≈ 0.79. Similarity with the
S/δ ≈ 0.88 case shown in figure 6(a, b, c, d) of Vanderwel & Ganapathisubramani (2015)
is striking once upwelling regions are aligned. The upwelling regions correspond to low
shear stresses in the present study and to the location of the protrusions in the study of
Vanderwel & Ganapathisubramani (2015). The structure of these Reynolds stresses are
also consistent with the S/δ ≈ 3.14 study of Anderson et al. (2015) seen in their figure
4(a, c, k, g), aligning their upwelling low-roughness regions with the present upwelling low
shear stress regions. That τzx is more compact in the span than τxx is evident in all cases.
Comparing Vanderwel & Ganapathisubramani (2015) and the present study, the relative
magnitudes of Reynolds stresses are also similar, with maximum magnitudes indicated
by maximum contour levels chosen to have identical relative ratios, |τxx|max : |τzx|max :
|τxy|max : |τyz|max ≈ (10 : 2.5 : 2 : 1) × 10−3 = 2.8 : 0.7 : 0.56 : 0.28. The difference in
absolute magnitudes is due to choice of scaling, U2

∞ in Vanderwel & Ganapathisubramani
(2015) and τ0 presently. The ratio of maximum contour magnitudes in Anderson et al.

(2015) is 8 : 1.2 : 0.5 : 0.05, also similar, noting that their lower maximum contour
magnitude for τyz provide more contrast in their figure 4(g). Despite the differences
between the three flows, boundary layer over protrusions at Reτ ≈ 4200 (Vanderwel &
Ganapathisubramani 2015), open channel flow over wall-modelled roughness strips at
atmospheric Reynolds numbers (Anderson et al. 2015) and channel flow over imposed
stress variations at Reτ ≈ 590 presently, the overwhelming similarities suggest that the
present boundary conditions are effective at modelling the essence of secondary flows in
the outer region.
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(a)

z/δ

(y − y0)/δ
τxx/τ0

(b) (y − y0)/δ
τzx/τ0

(c)

z/δ

τxy/τ0 (d) τyz/τ0

τ0L τ0H τ0L τ0H τ0L τ0H τ0L τ0H

Figure 10. Reynolds stresses for the case s/δ ≈ 0.79 in the cross (yz-) plane: (a) τxx ≡ ρu′u′,
(b) τzx ≡ ρw′u′, (c) τxy ≡ ρu′v′ and (d) τyz ≡ ρv′w′, where u′, v′ and w′ are fluctuations.
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Lozano-Durán, A. & Jiménez, J. 2014 Effect of computational domain on direct simulations

of turbulent channels up to Reτ = 4200. Phys. Fluids 26, 011702.
Mason, P. J. 1988 The formation of areally-averaged roughness lengths. Q. J. R. Meteorol. Soc.

114, 399–420.
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2018 Characteristics of turbulent

boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838,
516–543.

Mehta, R. D. & Bradshaw, P. 1988 Longitudinal vortices imbedded in turbulent boundary
layers Part 2. Vortex pair with ‘common flow’ upwards. J. Fluid Mech. 188, 529–546.

Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671–684.
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent

channel flow up to Reτ = 590. Phys. Fluids 11, 943–945.
Nugroho, B., Hutchins, N. & Monty, J. P. 2013 Large-scale spanwise periodicity in a

turbulent boundary layer induced by highly ordered and directional surface roughness.
Int. J. Heat Fluid Flow 41, 90–102.

Perot, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 51–58.
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary

layers. Appl. Mech. Rev. 44, 1–25.
Saito, N. & Pullin, D. I. 2014 Large eddy simulation of smooth-rough-smooth transitions in

turbulent channel flows. Int. J. Heat Mass Trans. 78, 707–720.
Sanderse, B., Verstappen, R. W. C. P. & Koren, B. 2014 Boundary treatment for

fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations.
J. Comput. Phys. 257, 1472–1505.

Spalart, P. R. & McLean, J. D. 2011 Drag reduction: enticing turbulence, and then an
industry. Phil. Trans. R. Soc. A 369, 1556–1569.

Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes
equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324.

Tennekes, H. & Lumley, J. L. 1972 A first course in turbulence. M. I. T. Press.
Townsend, A. A. 1976 The structure of turbulent shear flow , 2nd edn. Cambridge University

Press.
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale

secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.
Verstappen, R. W. C. P. & Veldman, A. E. P. 2003 Symmetry-preserving discretization of

turbulent flow. J. Comput. Phys. 187, 343–368.
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. M. 2014 Turbulent

boundary layer flow over transverse aerodynamic roughness transitions: induced mixing
and flow characterization. Phys. Fluids 26, 025111.



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Chung, D; Monty, JP; Hutchins, N

 

Title: 

Similarity and structure of wall turbulence with lateral wall shear stress variations

 

Date: 

2018-07-25

 

Citation: 

Chung, D., Monty, J. P.  &  Hutchins, N. (2018). Similarity and structure of wall turbulence

with lateral wall shear stress variations. Journal of Fluid Mechanics, 847, pp.591-613.

https://doi.org/10.1017/jfm.2018.336.

 

Persistent Link: 

http://hdl.handle.net/11343/252853

 

File Description:

Accepted version


