LUND UNIVERSITY

Graceful Degradation of Reconfigurable Scan Networks

Larsson, Erik; Xiang, Zehang ; Murali, Prathamesh

Published in:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

DOI:
10.1109/TVLSI.2021.3076593

2021

Link to publication

Citation for published version (APA):

Larsson, E., Xiang, Z., & Murali, P. (2021). Graceful Degradation of Reconfigurable Scan Networks. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(7), 1475-1479.
https://doi.org/10.1109/TVLSI.2021.3076593

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/TVLSI.2021.3076593
https://portal.research.lu.se/en/publications/1f0db4ca-d866-41e2-8e15-fd1703efdd88
https://doi.org/10.1109/TVLSI.2021.3076593

Graceful Degradation of Reconfigurable Scan
Networks

Erik Larsson, Zehang Xiang and Prathamesh Murali
Lund University, Lund, Sweden
Email: erik.larsson@eit.Ith.se

Abstract—Modern integrated circuits (ICs) include thousands
of on-chip instruments to ensure that specifications are met and
maintained. Scalable and flexible access to these instruments is
offered by reconfigurable scan networks (RSNs), e.g. IEEE Std.
1687. As RSNs themselves can become faulty, there is a need to
exclude and bypass faulty parts so that remaining instruments
can be used. To avoid keeping track and updating description
languages for each individual IC, we propose an on-chip hardware
block that makes adjustments according to fault status of a
particular IC. We show how this block enables test for faulty scan-
chains, localization of faulty scan-chains, and repair by excluding
faulty scan-chains. We made implementations and experiments to
evaluate the overhead in terms of transported data and area.

Keywords—IEEE Std. P1687.1, IEEE Std. 1687, test, localization,
diagnosis, repair

I. INTRODUCTION!

The semiconductor development towards smaller, faster and
more transistors gives advantages like more functionality, better
performance, and lower power consumption. However, it is
increasingly challenging to avoid malfunctioning. Smaller and
faster transistors lead to tighter margins, which in combination
with more transistors increase the risk of malfunctioning. To
avoid malfunctioning, modern integrated circuits (ICs) are in-
creasingly equipped with embedded (on-chip) instruments for
testing, tuning, trimming, configuration and so on [1]. These
instruments, which can be in the range of thousands, are
accessed throughout the ICs’ life cycle: from prototype, debug,
test and validation to in-field monitoring and test [2].

Access to instruments requires an on-chip infrastructure
connecting the instruments and an interface (port) to the IC’s
boundary (pins). Reconfigurable scan networks (RSNs), like
IEEE Std. 1687 networks, offer flexible and scalable access to
instruments. The main interface for IEEE Std. 1687 is the IEEE
Std. 1149.1 test access port (TAP). Figure 1 illustrates a system
with three instruments connected using IEEE Std. 1687.

IEEE Std. 1687 includes two description languages, instru-
ment connectivity language (ICL) and procedural description
language (PDL) [3]. ICL describes how instruments are in-
terconnected. Figure 1 shows the schematic equivalent of the
network’s ICL. PDL describes how to operate on instruments.
Figure 1 shows PDL to concurrently write data to instrument
il and read data from instrument i3%. Access (test) patterns are
created by an Electronic Design Automation (EDA) tool or an
embedded controller with PDL and ICL as inputs. For the PDL
in Figure 1, smart access patterns include instruments i/ and i3,

IThis submission is an extension of our two-page European Test Sympo-
sium 2020 paper where we presented the basic idea but we did not include
implementation and experiments

2jGetReadData (iGet) reads information from an instrument

IEEE Std. 1687 PDL

IEEE Std. 1687 ICL

{siB1}

{s

\—151?11

(]
iWrite i1 0b1111111;

|
\

iGet i3;

o
ister 1 |
[TT1

[TTTITIT [
i1

iApply; - o

[Scan-register 1 | [Scan-register 1 | [Scan-re
[TITTT [
1

g
3]

] | i2
EDA-tool/test controller
Access via
/ functional port

TDI TDO TMS TCK Rx Tx

Access via
test port

Legend

[1[1 [1] [1 [1
IEEE Std. 1149.1 UART

Test, ¢ -

. Proposed in [5]
Iocallzatlpn <>|ESM SCR ICR ILM
and repair ¢

IEEE Std. 1149.1
TAP: Test Access Port
TMS: Test Mode Select
TDI: Test Data In
TDO: Test Data Out
TCK: Test Clock

|IEEE Std. 1687
ICL: Instrument
Connectivity Language
PDL: Procedural
Description Language
SIB: Segment Insertion Bit

UART: Universal
Asynchronous Receiver/

SIB 1 SIB 2 SIB 3 Transmitter
Rx: Receiver
Tx: Transmitter
Scan register 1 ‘ Scan register 2 Scan register 3 FSM: Finite State Machine
[TTTTTTT [TTTTTTT [TTTTTTT SCR: SIB Control Register
. . . ICR: Instrument Control
it 2 i3 Register
ILM: Instrument Length
IEEE Std. 1687 ICL Memory

Fig. 1. Today’s and future solution to access an IEEE Std. 1687 network

while instrument i2, is excluded from the active scan-path as the
PDL specifies operations on instruments i/ and i3, but not on
instrument i2. Dynamic reconfiguration of the active scan-path
to include or exclude instruments can be achieved by the use
of segment insertion bits (SIBs).

As some ICs do not have an IEEE Std. 1149.1 TAP, the IEEE
Std. P1687.1 [4] explores how to use functional ports, like serial
peripheral interface (SPI), inter-integrated circuit (I2C), and
universal serial bus (USB) to access IEEE Std. 1687 networks.
Different from IEEE Std. 1149.1, where the TAP is described
in detail, the working group of IEEE Std. P1687.1 is working
towards a standard without detailing a fixed hardware. A main
question becomes: what include in the hardware placed between
an IEEE Std. 1687 network and a functional port?

We have previously explored the impact on transporting
data when including key information from PDL and ICL in
a hardware component placed between a functional port and
IEEE Std. 1687 [5], see Figure 1. The basic assumption was
that there are no faults in the IEEE Std. 1687 networks, which
means description languages (PDL and ICL) corresponds to
the physical implementation (the IEEE Std. 1687 network). In
this work, we explore cases when description languages do not
correspond to the physical implementation due to faults in the
IEEE Std. 1687 network. The motivation of the work is as
follows. PDL and ICL can be stored in a central database shared

among several ICs or stored embedded (compressed) locally
near each individual IC. In both cases, PDL and ICL need to
be updated according to the unique status of individual ICs. For
example, assume a central database with PDL and ICL serving
many ICs. As long as all ICs are free from faults, the same
PDL and ICL can be used for all ICs. However, as soon as one
IC has faults, for example a faulty scan-register, description
languages for this IC must be modified. For example, assume
that scan-register 3 (Figure 1) is faulty, then the iApply group,
for this particular IC, must be updated such that iGet i3 is
removed, which makes instrument i3 to be excluded from the
active scan-path. In the worst case, there is a need to keep
individual versions of ICL and PDL for each individual IC,
which is infeasible in practise.

The objective of the paper is to enable graceful degradation
of IEEE Std. 1687 networks where faulty parts are excluded
without the need of updating description languages (PDL and
ICL). This means original PDL and ICL assuming no faults can
be used even in the case when their physical implementation, the
IEEE Std. 1687 network, do not match any longer due to faults.
We believe that this important aspect have not been addressed
prior to this work. The objective is met by developing an on-chip
hardware block that makes automatic adjustments according to
the fault status of a particular IC. This hardware block makes it
possible to test if scan-chains are faulty, localize (pinpointing)
faulty scan-chains, and repair networks by excluding faulty
scan-chains. We implemented IEEE Std. 1687 networks with
50, 100, and 150 instruments and proposed hardware block to
evaluate the overhead in terms of data to be transported and area.
We compare a theoretical computation of overhead for direct
operation on the IEEE Std. 1687 network against a software-
based scheme and proposed hardware-based scheme.

The paper is organized as follows. Related work is in Section
II and an introduction to the hardware component and protocol
to use a functional port to interface IEEE Std. 1687 is in Section
III. The schemes for test, localization, and repair are in Sections
IV, V, and VI, respectively. The experimental results with
implementation on a field-programmable gate array (FPGA) and
evaluation of area and the amount of data transported are in
Section VII. The paper is concluded in Section VIIIL.

II. RELATED WORK

While there are a number of works on analysis [6], design
[7], and fault management [8] [9] of IEEE Std. 1687, all these
works assume that the IEEE Std. 1687 network is without any
faults. Several works have addressed testing and localization
(diagnostic) for regular scan-chains [10], [11], [12] and for
IEEE Std. 1687 networks [13]. Kundu presented an early
work on testing and diagnosing faults in scan-chains [10]. The
basic principle is to shift a test sequence through the scan-
chain, like ”001100..11”, without performing capture. If there
is a mismatch between the shift-out sequence and the shift-
in sequence, there is one or more faults in the scan-chain.
For localization, the results from the automatic test pattern
generation (ATPG) test vectors are used to pin-point the faulty
scan flip-flops. Cantoro et al. developed a technique to test and
diagnose RSNs [13]. To the best of our knowledge, there is no
work addressing the repair of RSNs.

III. BACKGROUND

We previously explored the impact of including different
amount of information in an hardware component placed be-

Bit: b7 b5 bs b4 b3 b2 bl bo
Byte
7 1111111 1]

1 byte of data to be

®] written in il
Q
e 1
E Data command 6 ‘O 000000 ‘
g (16bits) 5 [Jooooooo
—
(]
= 00000011
o Control command 2 4 ‘ ‘
§ (16 bits): Read from i3 3 ‘0 |0‘0 0000 0‘
[1v]
© 0000000 1
& Control command 1 2 ‘ ‘
¥ (16 bits): Write to il 1 ‘0|1‘0 0000 0‘
RXx iTx
‘ UART ‘
Control commands
configure SCR and ICR

SCR: n - 5

SIB: 1 2 3 Finite State Machine
ICR: [1 nn to handle CSU-cycles
1 2 3

Instrument:

A
ILM fixed at design time

ILM: -

Instrument: 1 2 3

IEEE Std. 1687 network from Figure 1

Fig. 2. Hardware and protocol to form shift-in sequence for PDL in Figure 1

Shift-in (SI) sequence First bit to be shifted in

Write to il SIB 1, SIB 2 Read from i3 SIB 3
[1 121 1 1 1 1 1]1[of0o 0 0 0 0 0 0 0f1]
Data received Dummy data
over UART created by FSM

Fig. 3. Shift-in sequence from Figure 2

tween a functional port and an IEEE Std. 1687 network [5].
The most efficient solution, shown in Figure 2, is based on a
Finite State Machine (FSM) complemented with three parts;
SIB control register (SCR), instrument control register (ICR),
and instrument length memory (ILM). The SCR keeps desired
values of SIBs, the SCR keeps desired operation of an instru-
ment, and ILM the length of each instrument. The hardware
component is operated using two types of commands; control
and data. Control commands are used to set SCR and ICR
and data commands are used to transport data for instruments.
Hence, each iApply group is translated into one or more control
commands and one or more data commands.

To illustrate, the iApply group in Figure 1 is retargeted into
two control commands and one data command, in total 7 bytes
of information. The first control command, byte 1 and 2 in
Figure 2, makes SIB 1 active and sets instrument i/ in write
mode. The details are as follows. Bit b7 = 0 in the first byte
indicates that current byte and the following byte form a control
command. Bit bg = 1 in the first byte indicates that a write

operation should be performed. The following 14 bits, which
holds the value 1, indicates that SIB 1 should be active so that
instrument i/ is included in the active scan-path. The next two
bytes, byte 3 and 4 in Figure 2, are also forming a control
command, indicated by bit by = 0 in byte 3. This control
command has bg = 0, which informs that a read operation
should be performed. The following 14 bits, which holds the
value 3 (0Obll) informs that SIB 3 should be active so that
instrument i3 is included in the active scan-path. The following
3 bytes, byte 5, 6, and 7 in Figure 2, form a data command as
b7 = 1 in byte 5. The remaining 15 bits in byte 5 and 6 are
used to specify the number of bytes with data that follows. In
this example, the 15 bits specify the value 1, meaning that one
byte of data follows. The data in byte 7 is the data that should
be written to instrument i/.

Figure 3 illustrates generation of shift-in data. When a con-
trol command arrives, the hardware component automatically
resets SCR and ICR and then these registers are set according
to the control commands, see above. When data commands
arrive, the hardware translator begins operating the IEEE Std.
1687 network. First, the active scan path is set by traversing
SCR and shifting the content to the IEEE Std. 1687 network.
The bits shifted out are ignored (discarded) by the hardware
component as the bits do not contain any useful information.
Second, the shift sequence for the active scan path is created.
We describe the shift-in sequence. The FSM begins checking
the SCR at the highest value, in this example 3 (SCR(3)),
and includes that bit in the shift-in sequence. As SCR(3) =1
instrument i3 is included and 7C R(3) is checked to learn that a
read operation should be performed, which means data needs to
be shifted in such that the content of instrument i3 is shifted-
out. This additional (dummy) shift-in data is created by the
FSM. The number of bits to shift is given by LM (3). Then,
the FSM proceeds with SCR(2). As SCR(2) = 0, indicating
that instrument i2 is not in the active scan-path, the FSM adds
a 0 to the shift-in sequence and focuses on next bit in SCR,
which is SCR(1). SCR(1) = 1, which means instrument i/
should be included in the active scan-path and as ICR(1) =1
a write operation should be performed. The FSM gets the length
of instrument i/ from ILM (1) and takes data from the UART
buffer and adds it to the shift-in sequence. Figure 2 shows the
created shift-in sequence and how its information will set the
SIBs and the instruments. The hardware component can with
support of SCR, ICR, and ILM, create dummy bits when needed
and discard not needed data such that only useful information
is transported out from the IC. Applying the PDL in Figure
1 results in that the only the information in instrument i3 is
returned, as this is the only requested information.

IV. TEST

The objective of the test procedure is to determine if there
are any faults in any of the scan-chains. The section is organized
in three parts: IEEE Std. 1687-based, software-based, and
hardware-based test. For each part, we describe the effort needed
to perform test. The basic principle of the three parts is built
on traditional scan-chain test where a test sequence is shifted
through the scan-chain but no capture and update is used. For
test evaluation, the shifted output sequence is compared against
the applied test sequence. Different from traditional scan-chains,
RSN offers the possibility to configure the active scan-path. For
RSNs designed as in Figure 1, our test principle is to first set
the active scan-path such that all instruments are included. For

the example in Figure 1 this means that the active scan chain
includes instruments i/, i2, and i3.

A. IEEE Std. 1687-based

The scheme is straight-forward. First, the active scan-path
is set to include all instruments, which means three bits are
shifted in and concurrently three bits are shifted-out, in total
six bits of data. In general, IV bits are shifted-in and [V bits are
shifted-out for a flat RSN with NV SIBs. Second, a test sequence,
001100..11, equal to the active scan-path, which for the example
in Figure 1 is 27 (8+8+8+3) bits is shifted-in. During the shift-
in of this pattern of length 27 bits, 27 bits are shifted out. To
“push-through” the test sequence such that the test response is
observable, another 27 bits are shifted-in, and consequently the
27 bits of actual test response are shifted out. The total number
of bits becomes 27 x 4. In general, for a RSN with N SIBs,
one instrument per SIB, and the length of instrument ¢ is given
by 1(7), the total number of bits is given by:

N

6x N +4x > 1(i) €]

i=1
B. Software-based

The software-based test scheme assumes hardware compo-
nent and protocol [5], which we extended with a mechanism
to not perform capture and update when applying an iApply
group if desired. The idea of the test function is to include
all instruments in the active scan-path, apply a test sequence,
001100..11, to all instruments and receive the output from
the IEEE Std. 1687 network. For the system in Figure 1 the
sequence would be as follows:

iWrite il 0b00110011;

iWrite i2 0b00110011;

iWrite i3 0b00110011;

iApply (no capture and no update);
iGet il

iGet 12

iGet 13;

iApply (no capture and no update);

C. Hardware-based

In the hardware-based test scheme, the hardware component
includes the proposed block and a command to perform test of
scan-chains. The test command consists of 2 bytes, in a similar
way as the data and control commands, Section III. When the
hardware receives a test command, the block automatically sets
the active scan-path to include all instruments, generates and
shifts in a test sequence, and compares the output sequence with
expected test sequence.The output (return value) is a single bit
indicating if there was any faults or not (which becomes a byte,
the smallest unit to transport in UART).

V. LOCALIZATION

The objective of localization is to pin-point faulty scan-
chains. The principle is built on traditional scan-chain test and
diagnosis (localization). The IEEE Std. 1687 network is config-
ured so that only one scan-chain is active at a time. For each
individual segment of the scan-chain a test sequence is shifted
through the scan-chain and the output is compared against the
input sequence. The section is organized in three parts: IEEE

Std. 1687-based, software-based, hardware-based and for each
we describe the effort needed to perform localization.

A. IEEE Std. 1687 based

The localization procedure assumes that the IEEE Std. 1687
network is in a reset state, which for the example in Figure 1
means that the active scan-path includes only the three SIBs.
First, the active scan-path is set to include the first instrument,
which means three bits are shifted in and concurrently three bits
are shifted-out, in total six bits of data. Second, a test sequence,
001100..11, equal to the active scan-path, which includes instru-
ment 1. For the example in Figure 1 11 (8+3) bits are shifted-in.
During the shift-in, 11 bits are shifted out. To “push-through”
the test sequence such that it becomes observable, another 11
bits are shifted-in, and consequently 11 bits are shifted out, the
actual test response. In this example, the number of bits shifted-
in and shifted-out is 50 (3+3+11+11+11+11) for one instrument.
As there are three instruments in Figure 1, the total number of
bits becomes 150 (3 x50). In general, the number of bits shifted-
in and shifted-out during a localization procedure of a flat RSN
with N SIBs, one instrument per SIB, and where [(3) is the
length of instrument ¢ is given by:

N
6 x N2 +4 x> (i) 2
=1

B. Software-based Localization

The software-based localization scheme has several simi-
larities with the test function, see Section IV-B. We assume
the hardware component and protocol [5] and we have added
a mechanism to not perform capture and update of iApply
if desired. Different from testing (Section IV-B) localizations
includes one instrument at a time in the active scan-path, apply
the test sequence, 001100..11, and receive the output from
the IEEE Std. 1687 network. For the system in Figure 1, the
commands would be as below:

iWrite il 0b00110011;

iApply (no capture and no update);
iGet il;
iApply (no capture and no update);

iWrite i2 0b00110011;

iApply (no capture and no update);
iGet i2;

iApply (no capture and no update);
iWrite i3 0b00110011;

iApply (no capture and no update);
iGet 1i3;

iApply (no capture and no update);

C. Hardware-based Localization

The hardware-based localization resembles the hardware-
based test, with the difference that the proposed block, when
initiated, automatically traverses the instruments one at a time.
When the block receives a localization command, the block sets
up the active scan-path to include instruments one at a time,
shifts in a test sequence, and compares the output sequence
with the expected test sequence. We created a dedicated com-
mand to make the block initiate localization. The command is
constructed in the same way as the test command, 2 bytes of
data to initiate and 1 return bit to indicate if any faults were
detected (one byte as the smallest unit for UART is one byte).

VI. REPAIR

Repair is to make it possible to make use of a partially
faulty RSN by excluding instruments with faulty scan-chains.
Given is knowledge about which of the scan-chains in the IEEE
Std. 1687 network that are faulty. We explore two alternative
solutions to repair; software-based and hardware-based.

A. Software-based repair

In software-based repair, the PDL is modified according to
the faults in scan-chains. For the system in Figure 1, assume it
is known that the scan-chain related to instrument i3 is faulty.
This information is taken into account together with ICL and
PDL in the retargeting such that the PDL is changed from this:

iWrite il 0b1111111;
iGet 13;
iApply;

to this PDL where instrument i3 is excluded:

iWrite i1 0b1111111;
iApply;

With the above modification of the PDL, the partially faulty
RSN can be used.

B. Hardware-based repair

For hardware-based repair, the original PDL is applied and
the hardware block automatically excludes faulty scan-registers
from the active scan-path. For example, if the scan-chain related
to instrument i3 in Figure 1 is faulty, the test and localization
process has set the repair register to hold the value 110. This
indicates that instrument i3 will not be included in the scan-
path due to the O, while the other instruments, which are not
faulty, indicated by 1, see Figure 4. When the original PDL
in Figure 1 is applied, the SCR will contain 101 as the PDL
specifies that instruments i/ and i3 should be active, see Figure
4. Given the combination of the repair register and SCR, the
FSM performs a bitwise AND between the two registers to
receive the SCR to be used . We observe that the “used
SCR” does not include instrument i3, which is faulty, hence,
the FSM in our component automatically exclude instrument i3
while instrument i/ is included. The key advantage is that the
original PDL can be used and there is no need of additional
retargeting due to faults in the IEEE Std. 1687 network.

123

SIB control register (SCR):
123
& & & — [1]0[0
Used SCR
Repair register (RR): [1]1]0]

Fig. 4. Repair by excluding instrument i3

VII. EXPERIMENTAL RESULTS

The objective of the experiments is evaluate overhead in
terms of data, that is number of bits, transported to and from the
IC and the area utilization of the proposed scheme for test and
localization of RSNs. For repair there are no separate results as
the hardware solution automatically repairs the IEEE Std. 1687
network and with the software solution, the PDL is modified
according to the defects in the IEEE Std. 1687 network.

TABLE I

NUMBER OF BITS TRANSPORTED TO PERFORM TEST.

Instruments IEEE Std. 1687 Hardware-based Software-based
50 1900 24 2432
100 3800 24 4832
150 5700 24 7232

As experimental platform we used an Nexys 4 DDR with an

Artix-7 (XC7A100T-1CSG324C) FPGA. We implemented three
IEEE Std. 1687 designs with 50, 100, and 150 instruments,
respectively. The instruments are connected in a flat manner
with one SIB per instrument, as illustrated in Figure 1. The
length of each instrument is 8 bits and for communication with
the outside, the IEEE Std. 1687 network is connected using
UART. The overhead for the IEEE Std. 1687 network scheme
is computed with Eq. 1 and Eq. 2.

Table I shows the number of bits transported to and from
the IC for the test process. The hardware-based solution only
need 16 bits to initiate the command and 1 bit is to report if
there was any faults. As UART is used for the communication,
the least amount of data to be produced is packaged in one
byte. The total number of bits becomes 24. As expected, the
number of bits for the IEEE Std. 1687 and the software-based
alternatives increase with the number of instruments. Interesting
to note is the high number of bits needed for the software-based
alternative, higher than that of IEEE Std. 1687.

Table II shows the number of bits transported to and from
the IC for the localization process. The hardware-based solution
needs 16 bits to initiate the process and 1 bit to report if there
were any faults. As discussed above, UART need at least one
byte, which mean the overhead becomes 24 bits in total. In the
same way as for the test process, the number of bits increases
with the number of instruments for the IEEE Std. 1687 and the
software-based alternatives. Note, that the number of bits for
the software-based localization is significantly lower than that
for the IEEE Std. 1687 alternative.

The results on data overhead for test and localization show
that when the IEEE Std. 1687 solution is used, it makes sense
to first do a test to check if there are faults and if faults are
present, a localization action takes place. However, in the case
of a software-based solution, the difference between test and
localization is quite low, which means a localization function
can be used without using a test procedure before. For the
hardware-based solution, we have two separate functions, test
and localization. While they only require 24 bits each, it would
be possible to implement them as a single command performing
test-localization-repair. A single command of 16-bits would
initiate the process. The output could be a single bit to report if
the operation was performed correctly or not. Additional output
could include number and position of faults.

Table III shows the area for the hardware solution and for
the IEEE Std. 1687 network at 50, 100 , and 150 instruments.
The area is given as configurable logic blocks (CLBs), which
constitutes the basic FPGA cell. The ratio (%) is the area of the
hardware solution over the area of the IEEE Std. 1687 network
times 100. Interesting to note is that the ratio decreases as the
number of instruments in the IEEE Std. 1687 network increases,
which indicates that the relative impact of the hardware solution
decreases as the number of instruments increases.

VIII. CONCLUSIONS

We have showed that by including key information in an
on-chip hardware component it is possible to get graceful

TABLE II. NUMBER OF BITS TRANSPORTED TO PERFORM
LOCALIZATION.
Instruments IEEE Std. 1687 Hardware-based Software-based
50 16600 24 4000
100 63200 24 8000
150 139800 24 12000
TABLE III. AREA FOR HARDWARE-BASED SOLUTION, IEEE STD. 1687
NETWORKS, AND RATIO BETWEEN THE TWO.
Instruments IEEE Std. 1687 Hardware-based Ratio (%)
50 145 83 57
100 290 130 44
150 433 161 37

degradation of IEEE Std. 1687 networks. The main advantage
is in respect to maintaining description languages, PDL and
ICL, through the lifetime of ICs. As soon as an IEEE Std.
1687 network becomes faulty, PDL and ICL no longer match
the IEEE Std. 1687 hardware. Instead of keeping copies of PDL
and ICL for each individual IC, which is impractical due to large
volumes, we showed that a small hardware block can perform
automatic test, localization and repair, such that the original
PDL assuming a fault-free IEEE Std. 1687 network is applied
and the proposed block automatically, on-chip, adjust the PDL
to the fault situation of each particular IC. We demonstrated that
such a component gives a significant reduction in the amount
of data (information) that needs to be sent to and from an IEEE
Std. 1687 network via a functional port as proposed by IEEE
Std. P1687.1. This is highly important as it shows that access
with IEEE Std. P1687.1 can be performed without significant
impact on the normal (functional) operation, which is crucial,
for example during periodic test in automotive industry.

Future work may include handling of general IEEE Std.
1687 networks, advance combinations of instruments using
IEEE Std. 1687 in combination with IEEE Std. 1500 and IEEE
Std. 1838, and addressing other faults than scan-chain faults.

REFERENCES

[1] “Embedded Instrumentation: Its Importance and Adoption in the Test and
Measurement Marketplace, Frost and Sullivan, Whitepaper, 2010, 20 p.”

[2] K. Posse, “Component manufacturer perspective,” in 2015 International
Test Conference, 2015, pp. 1-10.

[3] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, 2014.

[4] IEEE P1687.1, “Standard for the Application of Interfaces and Con-
trollers to Access 1687 IITAG Networks Embedded Within Semicon-
ductor Devices,” Dec. 2016.

[5] E. Larsson, P. Murali, and G. Kumisbek, “IEEE Std. P1687.1: Translator
and Protocol,” in International Test Conference, 2019, pp. 1-10.

[6] F. G. Zadegan et al., “Access Time Analysis for IEEE P1687,” IEEE
Transactions on Computers, vol. 61, no. 10, pp. 1459-1472, Oct. 2012.

, “Design automation for IEEE P1687,” in Design, Automation &
Test in Europe Conference (DATE), 2011.

[8] ——, “A self-reconfiguring IEEE 1687 network for fault monitoring,” in
European Test Symposium (ETS), 2016.

[7]

[9]1 A. Jutman et al., “Invited paper: System-wide fault management based
on IEEE P1687 IJTAG,” in International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip, June 2011, pp. 1-4.

[10] S. Kundu, “IEEE Trans. Very Large Scale Integration (VLSI) Systems,”
vol. 2, no. 4, pp. 512-516, Dec. 1994.

[11] Y. Huang et al., “Survey of scan chain diagnosis,” IEEE Design and Test
of Computers, vol. 25, no. 3, pp. 240-248, May 2008.

[12] D. Adolfsson et al., “On scan chain diagnosis for intermittent faults,” in
2009 Asian Test Symposium, Nov 2009, pp. 47-54.

[13] R. Cantoro et al., “Test of reconfigurable modules in scan networks,”
IEEE Trans. on Computers, vol. 67, no. 12, pp. 1806-1817, Dec 2018.

