

Nova Southeastern University NSUWorks

Biology Faculty Proceedings, Presentations, Speeches, Lectures

Department of Biological Sciences

4-2021

Analysis of Student Learning Gains in a Biochemistry CURE course during the mandatory COVID-19 shift to online learning

Ambika Kapil

Santanu De

Arthur Sikora

Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facpres

Part of the Biochemistry Commons, Biology Commons, and the Molecular Biology Commons

learning

Ambika Kapil¹, Santanu De¹, Arthur K. Sikora² ¹ NSU Department of Biological Sciences, ; ² NSU Department of Chemistry and Physics

Abstract

Due to the ongoing COVID-19 pandemic, institutions across the world have had to make modifications to existing curricula, especially in the experimental science lab. There is a need to better understand student learning in this environment. Using the Participant Perception Indicator (PPI) survey, we measure the students' knowledge, experience, and confidence (KEC) growth over the course of a fully online biochemistry course. Using a combination of video explanations, experimental procedure documents and sample data students completed the Biochemistry Authentic Scientific Inquiry Lab (BASIL) Course-based Undergraduate Experience (CURE) in summer 2020. The results and analysis of the survey data gave light to three main findings. We found students learned more about bioinformatic experiments and concepts than about their wet-lab counterparts. Students did report greater gains in learning outcome KEC than in wet lab and computational techniques. Finally, students report experience and confidence gains lagged their knowledge of the techniques. Students are not as confident in their understanding of techniques when unable to perform them in the physical laboratory. Thus, even though they had great knowledge and understanding of the structure, protocols, and purpose of the experiments and techniques, their responses indicated that their experience and confidence was not on par with their knowledge.

Introduction

Winter 2020 semester data, published in Sikora et al JCE 2020, shows the effects that a midsemester shift to an online format had on student learning. This current study focuses on the Summer 2020 semester, where the instruction was completely online. After the development of the ALOs, a PPI survey was created based on the 7 most relevant and top- rated learning outcomes (Figure 1). After developing the PPI survey, it was distributed to students at both the beginning and the end of the semester, and analysis of the survey responses were done based on reviewing the gain scores and overall perceived student-indicated improvement. We are pursuing several research goals in this study:

- Convert Anticipated Learning Outcomes (ALOs) identified by Irby et al. CBE, 2018 to verified learning Outcomes (VLOs) through assessment methodology with new online courses
- Use a participant perception indicator (PPI) survey to evaluate student knowledge, experience, and confidence (KEC)
- Design targeted assessments to improve areas showing poor student understanding

Table 2. ALOs previously identified for the BASIL curriculum ^{6,11} and used to create the BASIL PPI survey (from which this table is replicated). ¹³				
ALO ₈	Description	BASIL CURE Components	BASIL CURE Protocol(s)	
ALO1	Explain how the colorimetric enzyme assay works to allow detection of protein function	Biochem (B)	Enzyme Activity	
ALO2	Identify an enzyme active site using appropriate computational programs	Comp (C)	Pfam, ProMOL, PyRx	
ALO3	Determine the appropriate factors to consider when optimizing or interpreting an enzyme assay	Biochem (B)	Enzyme Activity	
ALO4	Determine using computational software whether, and where, a ligand may be binding to a protein	Comp (C)	PyRx	
ALO5	Compare enzymatic results with those computationally predicted	Both (B/C)	Not limited to any single protocol	
ALO6	Design an enzyme assay to elucidate protein function	Biochem (B)	Enzyme Activity	
ALO7	Explain how the purification of tagged proteins work and ways the process can be optimized	Biochem (B)	Protein Purification	

Figure 1: (Sikora et al. JCE, 2020)

Methods

Figure 2: Schematic sequence of experiments conducted, and techniques employed during the Summer 2020 term. All procedures, both experimental and computational, were conducted in an online learning environment. Students were provided with educational videos to help explain wet-lab experiments and the instructor was present to lead them through computational techniques and explain any questions or concerns.

- Further testing on neurodiverse populations
- Adding new collaborators to the project
- Contact us to find out more!

Student Results

	PP	'I results	for Sum	mer 2020	compare	d to Wint	ter 2020
Metric	ALO 1	ALO 2	ALO 3	ALO 4	ALO 5	ALO 6	ALO 7
	$(\mathbf{B})^b$	$(C)^b$	$(B)^b$	$(C)^b$	$(B/C)^b$	$(\mathbf{B})^b$	$(\mathbf{B})^b$
			S	ummer 20	20 Data; 1	n = 26	
Pre-PPI Score ^a	1.36	1.42	1.46	1.33	1.64	1.35	1.82
Post-PPI Score ^a	2.88	4.32	3.71	4.32	3.81	3.32	3.64
Δ score	1.53	2.9	2.24	2.99	2.17	1.97	1.82
Gain Score	42%	81%	63%	81%	65%	54%	57%
Cohen's D	1.62	3.87	2.62	5.09	2.03	2.18	1.72
p-value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
			ŗ	Winter 20	20 Data; r	n = 9	
Pre-PPI Score ^a	1.37	1.44	1.37	1.19	1.7	1.7	1.67
Post-PPI Score ^a	3.67	4.07	3.59	3.74	3.96	3.3	3.89
Δ score	2.3	2.63	2.22	2.56	2.26	1.59	2.22
Gain Score	63%	74%	61%	67%	69%	48%	67%
Cohen's D	4.67	3.84	4.83	3.95	3.68	1.87	2.97
p-value	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.006	0.0012

Figure 3: The scores reflect participants' ratings of their knowledge, ex (KEC) regarding each item based on the following scale: 1-"None"; 2-"Much" and 5-"A Great Deal". B Indicates that an ALO pertains to tec biochemical wet lab (B), computational (C), or both (B/C).

- There were higher gains seen in Computational technique wet-lab techniques (Figure 3)
- Learning objectives served as a bridge between the instruand student learning
- When techniques are taught paired with their respective A increase in knowledge, experience, and confidence
- The gain in experience and confidence is less that the (Figure 4)

Classification	Avg. Gain Score (%)	Knowledge	Experien
Wet lab ALOs	53.98	58.88	50.79
Computational ALOs	81.24	84.27	81.63
Wet lab techniques	46.07	34.38	45.38
Computational techniques	77.92	81.24	77.71

Figure 4: The reported Knowledge, Experience and Confidence gains trends described above. Notably, all categories showed greater increas sections over the biochemical ones and in ALO understanding over tec of these categories, the knowledge gain score is highest, representing gained from lectures, lab assignments, and additional resources.

Future Works

Contact

Blog: basiliuse.blogspot.com Email <u>paul.craig@rit.edu</u> for information and collaboration opportunities.

results					
7 Averag ALO	ge Comp. Tech.	Biochem. Tech.			
1.48 3.71 2.23	1.19 4.16 2.97	1.66 3.2 1.54			
63% 3.62 1 < 0.000	78% 6.74 01 < 0.001	46% 1.99 < 0.001			
1.49 1.12 1.73 3.75 3.97 3.11 2.25 2.85 1.38 $64%$ $73%$ $42%$ 5.98 7.07 3.21 $2 < 0.001 < 0.001 < 0.001$ < 0.001 xperience, and confidence <t< th=""></t<>					
ALOs, there was an gain in knowledge					
ice	Confi	dence			
	52.79				
	78.01				
	47.71				
	74.94				
also varied based on the ses in computational chnique mastery. In each the information students					