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Abstract. By means of the shooting method together with the maximum principle and
the Kneser–Hukahara continuum theorem, the authors present the existence, unique-
ness and qualitative properties of solutions to nonlinear second-order boundary value
problem on the semi-infinite interval of the following type:

{

y′′ = f (x, y, y′), x ∈ [0, ∞),

y′(0) = A, y(∞) = B

and
{

y′′ = f (x, y, y′), x ∈ [0, ∞),

y(0) = A, y(∞) = B,

where A, B ∈ R, f (x, y, z) is continuous on [0, ∞)× R
2. These results and the matching

method are then applied to the search of solutions to the nonlinear second-order non-
autonomous boundary value problem on the real line

{

y′′ = f (x, y, y′), x ∈ R,

y(−∞) = A, y(∞) = B,

where A 6= B, f (x, y, z) is continuous on R
3. Moreover, some examples are given to

illustrate the main results, in which a problem arising in the unsteady flow of power-
law fluids is included.

Keywords: semi-infinite interval, heteroclinic solution, shooting method, maximum
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1 Introduction

The study of heteroclinic solutions for second-order ordinary differential equations can be

applied to various biological, physical, and chemical models, for instance, phase-transition,
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physical processes in which the variable transits from an unstable equilibrium to a stable

one, or front-propagation in reaction-diffusion equations, and has been intensively studied by

many authors, see [6, 16, 28–31, 34, 38, 42, 44] and references therein. In particular, we mention

that in [29], by means of a suitable fixed point technique, Malaguti and Marcelli proved the

existence of a one-parameter family of solutions of the nonautonomous problem

{

u′′ = h(t, u, u′) on R,

u(−∞) = 0, u(∞) = 1,

where h : R
3 → R is continuous, and h(t, u, v)/v is monotone nondecreasing in v for each

(t, u) ∈ R × (0, 1).

In [34], Marcelli and Papalini considered the following problem

{

u′′ = f (t, u, u′), a.e. on R,

u(−∞) = 0, u(∞) = 1,

where f : R
3 → R is a Carathéodory function satisfying the condition f (t, 0, 0) = f (t, 1, 0) = 0

for a.e. t ∈ R. Under suitable assumptions on f , the authors proved some existence and non-

existence results for the problem which become operative criteria in the case that the function

f (t, u, u′) has a product structure.

In [31], deriving from the comparison-type theory, Malaguti et al. obtained the expressive

sufficient conditions for the solvability of the following problem














u′′ = f (t, u, u′) on R,

x(−∞) = 0, x(∞) = 1,

0 ≤ u(t) ≤ 1 for t ∈ R,

where f : R
3 → R is continuous, f (t, 0, 0) = f (t, 1, 0) = 0 for t ∈ R.

In recent years, due to the applications in various sciences, heteroclinic solutions of second-

order ordinary differential equations governed by nonlinear differential operators, such as the

classical p-Laplacian, Φ-Laplacian, singular Φ-Laplacian and some mixed differential opera-

tors, received more attractions see [8–11, 13, 14, 25, 32, 33, 35] and references therein. The main

tools used in these works are the upper and lower solution method together with diagonal-

ization process, and the fixed point theorem in cone.

Inspired by the above works and [19, 39], the main aim of the present paper is to estab-

lish the new results on the existence, uniqueness, and qualitative properties of heteroclinic

solutions to nonlinear second-order ordinary differential equations

y′′ = f (x, y, y′) on R (1.1)

by the matching method, where f (x, y, z) is continuous on R
3. To this end, we needs to

consider the following second-order semi-infinite interval problems

{

y′′ = f (x, y, y′) on [0, ∞),

y′(0) = A, y(∞) = B,
(1.2)

and
{

y′′ = f (x, y, y′) on [0, ∞),

y(0) = A, y(∞) = B,
(1.3)
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where A, B ∈ R, f (x, y, z) is continuous on [0, ∞)× R
2.

Second-order semi-infinite interval problems arise in the modeling of a great variety of

physical phenomena such as the unsteady flow of a gas through semi-infinite porous medium,

the heat transfer in radial flow between circular disks, plasma physics, the mass transfer on a

rotating disk in a non-Newtonian fluid, the travelling waves in reaction-diffusion equations,

et cetera [1, 36], and have been studied by many papers, for instance, see [2–5, 7, 9, 12, 15,

17, 18, 21–24, 26, 27, 37, 40, 43, 45, 46] and references therein. Among the above references, the

main research methods they used are the fixed point theorems in cones [15, 21, 24, 27, 46],

fixed point index theorems in cones [23, 37], upper and lower solutions method [2, 5, 22, 43],

diagonalization process [3, 4, 26], variational methods [17, 18], Banach contraction mapping

principle [40, 45], shooting method [7], etc.

The paper is organized as follows. In Section 2, we give some preparatory lemmas, in-

cluding maximum principle, Kneser–Hukahara continuum theorem, comparison principle,

continuum result and global existence of initial value problems for equation (1.1). In Section 3,

using shooting method together with maximum principle and Kneser–Hukahara continuum

theorem, we obtain the existence, uniqueness and qualitative properties of solutions to semi-

infinite interval problems (1.2) and (1.3). In Section 4, by matching techniques we establish

new results on existence, uniqueness and qualitative properties of solutions of full-infinite

interval problem
{

y′′ = f (x, y, y′) on R,

y(−∞) = A, y(∞) = B,
(1.4)

where A 6= B. In Section 5, we demonstrate the importance of our results through some

illustrative examples, which contain a problem that arises in the unsteady flow of power-law

fluids.

To the best of our knowledge, the results presented in this paper are new. Compared with

the recent results, we obtain not only the existence and uniqueness of the heteroclinic solu-

tions, but also the monotonicity, convex-concave property, and asymptotic properties of the

heteroclinic solutions, which are rarely considered in the literature. Moreover, the hypotheses

used in this paper are different from those in recent literature, for instance, our monotonicity

condition is different from those in [28, 29]. It is worth to note that one important feature of

our work is that the nonlinearity f (x, y, z) in Theorem 4.5 may be super-quadratic with respect

to z, which are not studied by [13,14,32,33,35]. In addition, our Theorem 3.4 for problem (1.2)

complements theorem 4.2 in [7].

2 Some preliminaries

In this section, as preliminaries we shall present some lemmas, which are useful in the proof

of our main results.

Throughout this paper we shall use the following conditions:

(H1) f (x, y, z) is continuous on I × R
2;

(H2) f (x, y, z) is nondecreasing in y for each fixed pair (x, z) ∈ I × R;

(H3) f (x, y, z) satisfies a uniform Lipschitz condition on each compact subset of I × R
2 with

respect to z, i.e., for each compact subset E ⊂ I ×R
2, there exists a constant LE > 0 such

that

| f (x, y, z1)− f (x, y, z2)| ≤ LE|z1 − z2|, ∀(x, y, z1), (x, y, z2) ∈ E;
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(H4) z f (x, y, z) ≤ 0 for (x, y, z) ∈ I × R
2,

where I = [0, b](b > 0) or [0, ∞).

Lemma 2.1 (Maximum principle [41]). Let u = u(x) be a nonconstant solution of the differential

inequality

u′′ + α(x)u′ + β(x)u ≥ 0 in J = (a, b),

where α(x) and β(x) are bounded function in J, and β(x) ≤ 0 in J. Then a nonnegative maximum of

u = u(x) can only occur on ∂J, and the outward derivative du
dn > 0 there.

Lemma 2.2 ([7]). Assume f satisfies assumptions (H1), (H2) and (H3) with I = [0, b]. Suppose

φ1(x), φ2(x) have continuous second derivatives on an interval [a1, b1) ⊂ I and satisfy

φ′′
1 (x) ≤ f (x, φ1(x), φ′

1(x)), a1 ≤ x < b1;

φ′′
2 (x) ≥ f (x, φ2(x), φ′

2(x)), a1 ≤ x < b1.

Suppose further that

φ1(a1) ≤ φ2(a1), φ′
1(a1) ≤ φ′

2(a1)

and

φ1(a1) + φ′
1(a1) < φ2(a1) + φ′

2(a1).

Then

φ′
1(x) ≤ φ′

2(x), φ1(x) ≤ φ2(x) for a1 ≤ x < b1.

Lemma 2.3 ([7]). Suppose f satisfies assumptions (H1), (H2), (H3) and (H4) with I = [0, b]. Then

every solution φ(x) of the initial value problem

{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = y0, y′(0) = y1

can be continued to the entire interval [0, b].

Lemma 2.4 (Kneser–Hukahara Continuum Theorem [20]). Consider the system y′ = f (x, y), y ∈

R
n. Suppose that the function f (x, y) is continuous and bounded on D = {(x, y) : a ≤ x ≤ b, y ∈

R
n}. Let C be a compact and connected subset of D and F(C) be the set of solutions which start in C.

Then F(C) is a compact and connected subset of C([a, b], R
n).

Consider the following initial value problems

{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = λ, y′(0) = A
IVP0(λ)

and
{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y′(0) = λ.
IVP1(λ)

Now, we introduce some notations:

F0 := {φ : φ(x) is a solution of IVP0(λ), λ ∈ R}

and

F1 := {φ : φ(x) is a solution of IVP1(λ), λ ∈ R}.
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Lemma 2.5. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Let λ1, λ2 ∈ R with

λ1 < λ2. Then

F0 = {φ ∈ F0 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].

Proof. Let y0 = y, y1 = y′0. Then IVP0(λ) is equivalent to the following initial value problem

of system






dY

dx
= G(x, y0, y1),

Y(0) = (λ, A),
(2.1)

where Y = (y0, y1), G(x, y0, y1) = (y1, f (x, y0, y1)). Consider a set of solutions of (2.1), denoted

by S as follows:

S := {(y0(x, λ), y1(x, λ)) : λ1 ≤ λ ≤ λ2}.

From Lemma 2.2 and 2.3, for λ1 ≤ λ ≤ λ2 and i = 0, 1, we have

yi(x, λ1 − 1) ≤ yi(x, λ) ≤ yi(x, λ2 + 1) on [0, b],

then there exists M > 0 such that

|yi(x, λ)| ≤ M, i = 0, 1, (x, λ) ∈ [0, b]× [λ1, λ2].

Let

H := {(x, y0, y1) : 0 ≤ x ≤ b, |yi| ≤ M + 1, i = 0, 1}.

Then G(x, y0, y1) is continuous and bounded on H, and can be extended to a bounded contin-

uous function G∗(x, y0, y1) on D = [0, b]× R
2 such that

G∗(x, y0, y1) ≡ G(x, y0, y1) for (x, y0, y1) ∈ H.

Now, we consider an initial value problem of system







dY

dx
= G∗(x, y0, y1),

Y(0) = (λ, A).
(2.2)

We note that

C := {(0, λ, A) : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of D, and then by Lemma 2.4 the set of solutions of initial

value problem of system (2.2)

F0(C) := {(y0(x, λ), y1(x, λ)) : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C([0, b], R
2). Since F0(C) = S, it follows that F0 is a

compact and connected subset of C1[0, b]. This completes the proof of the lemma.

The following lemma can be readily obtained by using Lemma 2.2 and 2.4.

Lemma 2.6. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Let λ1, λ2 ∈ R with

λ1 < λ2. Then

F1 = {φ ∈ F1 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].
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Lemma 2.7 ([7]). Suppose f satisfies assumptions (H1), (H2), (H3) and (H4) with I = [0, ∞).

Suppose also that

(H5) there exist constants γ, r, ρ, M1, K for which γ ≥ 0, 0 ≤ r < γ+ 1, ρ ≥ 1, γ > ρ− 2, M1 > 0,

K > 0, and

| f (x, y, z)| ≥
M1xγ|z|ρ

|y|r
for |y| ≥ K, (x, z) ∈ [0, ∞)× R.

Then every solution of the initial value problem

{

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = y0, y′(0) = y1

can be continued to the entire interval [0, ∞). Moreover, this global solution φ(x) is bounded and

monotone and hence limx→∞ φ(x) exists and is finite.

3 Semi-infinite interval problems

In this section, we begin with the study of the finite interval case for problem (1.2) and (1.3)

by shooting method.

Theorem 3.1. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Then the finite interval

problem
{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y′(0) = A, y(b) = B
(3.1)

has a unique solution.

Proof. Existence. Let φ(x, λ) be a solution of the initial value problem

{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = λ, y′(0) = A.

Then, by Lemma 2.3, φ(x, λ) can be extended to the entire interval [0, b]. From Lemma 2.2, it

follows that

φ′(x, λ) ≤ φ′(x, 0) for λ < 0

and

φ(b, λ)− φ(b, 0) = λ +
∫ b

0
(φ′(x, λ)− φ′(x, 0))dx ≤ λ.

Therefore

φ(b, λ) → −∞ as λ → −∞.

Hence, there exists λ1 < 0 such that φ(b, λ1) < B. Similarly, there exists λ2 > 0 such that

φ(b, λ2) > B.

From Lemma 2.5, the set

F0 = {φ(x, λ) ∈ F0 : λ1 ≤ λ ≤ λ2}

is a compact and connected subset of C1[0, b].
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Now, we define a mapping T : F0 → R as follows:

T(φ(x, λ)) = φ(b, λ)− B, ∀φ(x, λ) ∈ F0.

Then T is continuous on F0. Since T(φ(b, λ1)) < 0 and T(φ(b, λ2)) > 0, from Bolzano’s

theorem there exists φ(x, λ∗) ∈ F0 such that

T(φ(x, λ∗)) = φ(b, λ∗)− B = 0,

that is, φ(b, λ∗) = B. Obviously, φ(x, λ∗) is a solution of problem (3.1).

Uniqueness. Suppose φ1(x), φ2(x) are solutions of problem (3.1). We consider two cases.

Case 1. φ2(x) − φ1(x) is a constant on [0, b]. In this case, since φ2(b) = φ1(b), we have

φ2(x) ≡ φ1(x) on [0, b].

Case 2. φ2(x) − φ1(x) is not a constant on [0, b]. In this case, since φ2(b) = φ1(b), there

exists x1 ∈ [0, b) such that φ2(x1) 6= φ1(x1). Without loss of generality, we assume that

φ2(x1) > φ1(x1). Then there exists x2 ∈ [0, b) such that

φ2(x2)− φ1(x2) = max
x∈[0,b]

(φ2(x)− φ1(x)) > 0.

From the condition φ′
2(0) = φ′

1(0), it follows that

φ′
2(x2) = φ′

1(x2).

Also since φ2(b) = φ1(b), there exists x3 ∈ (x2, b] such that

φ2(x3)− φ1(x3) = 0, φ2(x)− φ1(x) > 0, x ∈ [x2, x3).

Now, let ψ(x) = φ2(x) − φ1(x). Then, it is easy to check that ψ(x) is a solution of the

differential inequality

u′′ + α(x)u′ + β(x)u ≥ 0 in J = (x2, x3),

where

α(x) =











−
f (x, φ2(x), φ′

2(x))− f (x, φ2(x), φ′
1(x))

φ′
2(x)− φ′

1(x)
, φ′

2(x) 6= φ′
1(x);

0, φ′
2(x) = φ′

1(x),

and

β(x) = −
f (x, φ2(x), φ′

1(x))− f (x, φ1(x), φ′
1(x))

φ2(x)− φ1(x)
.

Obviously, assumptions (H1), (H2) and (H3) guarantees that α(x), β(x) are bounded on

(x2, x3) and β(x) ≤ 0 on (x2, x3). Therefore, by Lemma 2.1 the positive maximum of ψ(x)

can only occur on ∂J = {x2, x3} and
dψ
dn > 0 there. Since ψ(x3) = 0, the maximum must

occur at x2 and
dψ
dn

∣

∣

x=x2
= −ψ′(x2) > 0, i.e., ψ′(x2) < 0, which is a contradiction to ψ′(x2) =

φ′
2(x2)− φ′

1(x2) = 0.

In summary, φ2(x) ≡ φ1(x) on [0, b]. This completes the proof of the theorem.

Theorem 3.2. Suppose that (H1), (H2), (H3) and (H4) with I = [0, b] hold. Suppose also that
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(H6) f satisfies the uniform Nagumo condition on [0, ∞) × R, i.e., for each compact subset E ⊂

[0, ∞)× R, there exists a continuous function hE : [0, ∞) → (0, ∞) with
∫

∞

0
s

hE(s)
ds = ∞ such

that

| f (x, y, z)| ≤ hE(|z|), ∀(x, y, z) ∈ E × R.

Then the finite interval problem
{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y(b) = B
(3.2)

has a unique solution.

Proof. If A = B, then from (H4), φ(x) ≡ A is a solution of problem (3.2). Without loss of

generality, we assume that A < B. Let φ(x, λ) be a solution of the initial value problem
{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y(0) = A, y′(0) = λ.

Then, by Lemma 2.3, φ(x, λ) can be extended to the entire interval [0, b]. Furthermore, by

Lemma 2.2, for each λ > 0, φ(x, λ) is monotone nondecreasing on [0, b]. Let

Σ = {φ(b, λ) : λ ∈ (0, ∞)}.

We assert that sup Σ > B. Indeed, suppose by contradiction, that sup Σ ≤ B. Then there exists

R > 0 such that for each λ ∈ (0, ∞),

φ′(x, λ) ≤ R, ∀x ∈ [0, b].

In fact, let η = B − A > 0 and take r > η/b such that
∫ r

η/b

s

hE(s)
ds ≥ B − A,

where E = [0, b]× [A, B]. If φ′(x, λ) > η/b on [0, b], we get the following contradiction:

η ≥ φ(b, λ)− φ(0, λ) =
∫ b

0
φ′(x, λ)dx > η.

Thus there exists x0 ∈ [0, b] such that φ′(x0, λ) ≤ η/b. If φ′(x, λ) ≤ η/b on [0, b], it is

enough to take R := η/b to finish the proof. Suppose that there exist some x ∈ [0, b] such

that φ′(x, λ) > η/b. Then by (H4), for λ > 0, φ′′(x, λ) ≤ 0 on [0, b]. Consider an interval

[x2, x1] such that φ′(x, λ) ≥ η/b on [x2, x1], φ′(x1, λ) = η/b and φ′(x, λ) > η/b > 0 for every

x ∈ [x2, x1). Applying a convenient change of variable, by the fact that φ(x, λ) is monotone

nondecreasing on [0, b], we have

∫ φ′(x2,λ)

φ′(x1,λ)

s

hE(s)
ds =

∫ x2

x1

φ′(x, λ)

hE(φ′(x, λ))
φ′′(x, λ)dx

=
∫ x2

x1

φ′(x, λ)

hE(φ′(x, λ))
f (x, φ(x, λ), φ′(x, λ))dx

≤
∫ x1

x2

φ′(x, λ)dx = φ(x1, λ)− φ(x2, λ)

≤ sup Σ − A ≤
∫ r

η/b

s

hE(s)
ds.
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Then φ′(x2, λ) ≤ r and, by the way as x1 and x2 were taken, we have

φ′(x, λ) ≤ r =: R, ∀x ∈ [0, b],

which contradicts φ′(0, λ) = λ → ∞ as λ → ∞.

In summary, sup Σ > B. Therefore there exists λ1 > 0 such that φ(b, λ1) > B. Notice that

A < B, it is clear from Lemma 2.2 that φ(b, λ2) < B for each λ2 < 0.

The remaining part is similar to the proof of Theorem 3.1, therefore it is omitted here. This

completes the proof of the theorem.

Remark 3.3. It is easy to see that if f (x, y, z) satisfies a uniform σ-Lipschitz condition on each

compact subset of I × R with respect to z, that is, for each compact subset E of [0, ∞) × R,

there exists LE > 0 which depends only on E, such that

| f (x, y, z1)− f (x, y, z2)| ≤ LE|z1 − z2|
σ, ∀(x, y, z1), (x, y, z2) ∈ E × R,

where 0 < σ ≤ 2, then f satisfies the condition (H6).

Now, using Theorem 3.1 and some lemmas in Section 2, we establish here our main results

for semi-infinite interval problem (1.2).

Theorem 3.4. Suppose that (H1), (H2), (H3), (H4) with I = [0, ∞) and (H5) hold. Then the

semi-infinite interval problem (1.2) has a unique solution y = φ(x) satisfying

(1) if A ≥ 0, then φ(x) is monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.

Furthermore, φ(x) is nonpositive on [0, ∞) when B ≤ 0;

(2) if A ≤ 0, then φ(x) is monotone nonincreasing, convex on [0, ∞) and limx→∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative on [0, ∞) when B ≥ 0.

Proof. Firstly, we show the existence of solutions of problem (1.2). Clearly, if A = 0, then

φ(x) ≡ B is the solution of problem (1.2). Without loss of generality, we assume that A > 0.

Then by Theorem 3.1, the finite interval problem

{

y′′ = f (x, y, y′), 0 ≤ x ≤ 1,

y′(0) = A, y(1) = B + 1
(3.3)

has a unique solution y = ψ(x) on [0, 1], and which by Lemma 2.7 can be continued to the

entire interval [0, ∞) as a monotone solution of (1.1). Since ψ′(0) = A > 0, it follows that

ψ(x) is monotone nondecreasing on [0, ∞). Thus from Lemma 2.7, we know that ψ(∞) :=

limx→∞ ψ(x) exists, and ψ(∞) > B.

Suppose by contradiction, that problem (1.2) has no solution. Let

G = {φ ∈ C2[0, ∞) : φ(x) is solution of (1.1) with φ′(0) = A, φ(∞) < B}.

Then G 6= ∅. In fact, let φ(x, λ) be a solution of initial value problem

{

y′′ = f (x, y, y′),

y(0) = λ, y′(0) = A.

Then, by Lemma 2.7, φ(x, λ) can be continued to the entire interval [0, ∞) and

φ(∞, λ) = lim
x→∞

φ(x, λ) < ∞.
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If φ(∞, 0) < B, then φ(x, 0) ∈ G, and thus G 6= ∅. If φ(∞, 0) > B, then it follows from

Lemma 2.2 that for λ < 0,

φ′(x, λ) ≤ φ′(x, 0), φ(x, λ) ≤ φ(x, 0), x ∈ [0, ∞).

Hence for each λ < 0 we have

φ(x, λ)− φ(x, 0) = λ +
∫ x

0
(φ′(t, λ)− φ′(t, 0))dt ≤ λ, x ∈ [0, ∞).

At the limit, as x → ∞, we obtain

φ(∞, λ)− φ(∞, 0) ≤ λ, λ < 0,

i.e.,

φ(∞, λ) ≤ φ(∞, 0) + λ, λ < 0.

Since φ(∞, 0) + λ → −∞ as λ → −∞, it follows that there exists λ̄ < 0 such that

φ(∞, λ̄) ≤ φ(∞, 0) + λ̄ < B.

Therefore φ(x, λ̄) ∈ G, and thus G 6= ∅.

Now, let

Θ = {λ = φ(0) : φ ∈ G}.

Notice that for each φ ∈ G,

φ(x) ≤ ψ(x), φ′(x) ≤ ψ′(x), x ∈ [0, ∞),

then Θ is upper bounded, and λ∗ := sup Θ < ∞. Hence there exists {λn} ⊂ Θ such that

λn < λn+1 < λ∗ and λn → λ∗ as n → ∞. From Lemma 2.2, for φ(x, λn) ∈ G, n = 1, 2, . . . ,

φ(i)(x, λn) ≤ φ(i)(x, λn+1) ≤ φ(i)(x, λ∗), i = 0, 1, x ∈ [0, ∞).

Let φ̂(x) = supn φ(x, λn). Since for each fixed positive number b, the sequence of functions

{φ(i)(x, λn)} (i = 0, 1) is equicontinuous on [0, b], then

φ(i)(x, λn) → φ̂(i)(x) (n → ∞) uniformly on [0, b], i = 0, 1.

It follows that φ̂(x) is a solution of (1.1) satisfying φ̂′(0) = A and φ̂(∞) ≤ B. From the

assumption that semi-infinite interval problem (1.2) has no solution, we have φ̂(∞) < B.

Next, we show that there exists φ̌ ∈ G such that

φ̂(∞) < φ̌(∞) < B, (3.4)

and thus obtain a contradiction. To do this, choose b ≥ 1 sufficiently large such that

ψ(∞)− ψ(b) <
1

2
(B − φ̂(∞)).

Then by Theorem 3.1, the finite interval problem

{

y′′ = f (x, y, y′), 0 ≤ x ≤ b,

y′(0) = A, y(b) = (B + φ̂(∞))/2
(3.5)
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has a unique solution φ̌(x), which by Lemma 2.7 can be continued to [0, ∞) as a monotone

nondecreasing solution of (1.1). Thus from (3.5) and (3.3) we obtain

φ̌(1) ≤ φ̌(b) < B < ψ(1).

It follows from Lemma 2.2 that

φ̌′(x) ≤ ψ′(x), ∀x ∈ [b, ∞) ⊂ [1, ∞).

Therefore

φ̌(∞) = φ̌(b) +
∫

∞

b
φ̌′(x)dx

≤ φ̌(b) +
∫

∞

b
ψ′(x)dx

=
1

2
(B + φ̂(∞)) + ψ(∞)− ψ(b)

<
1

2
(B + φ̂(∞)) +

1

2
(B − φ̂(∞)) = B.

Also from (3.5) and φ̂(∞) < B, it follows that φ̌(b) > φ̂(∞), then by the monotonicity of φ̌(x)

on [0, ∞), we have φ̌(∞) ≥ φ̌(b) > φ̂(∞), and so φ̌(x) satisfies (3.4).

Secondly, we show the uniqueness of solutions of problem (1.2). To do this, let φ1(x), φ2(x)

be solutions of problem (1.2). We consider two cases to prove.

Case 1. φ1(0) 6= φ2(0). Without loss of generality, we assume that φ1(0) < φ2(0). Then by

Lemma 2.2, φ′
1(x) ≤ φ′

2(x) on [0, ∞), and thus

φ2(∞)− φ1(∞) = φ2(0)− φ1(0) +
∫

∞

0
(φ′

2(x)− φ′
1(x))dx > 0,

which contradicts φ2(∞) = φ1(∞).

Case 2. φ1(0) = φ2(0). In this case, we have φ1(x) ≡ φ2(x) on [0, ∞). In fact, if not, there

exists x0 ∈ (0, ∞) such that φ1(x0) 6= φ2(x0). We can assume that φ1(x0) < φ2(x0). Then there

exists x1 ∈ [0, x0) such that φ1(x1) = φ2(x1) and φ1(x) < φ2(x) on (x1, x0], and so there exists

x2 ∈ (x1, x0] such that φ′
1(x2) < φ′

2(x2). It follows from Lemma 2.2 that φ′
1(x) ≤ φ′

2(x) on

[x2, ∞). Therefore

0 = φ2(∞)− φ1(∞) = φ2(x2)− φ1(x2) +
∫

∞

x2

(φ′
2(x)− φ′

1(x))dx > 0,

which is a contradiction. In summary, φ1(x) ≡ φ2(x) on [0, ∞).

Finally, the qualitative properties of the unique solution is obvious by Lemma 2.7. This

completes the proof of the theorem.

Theorem 3.5. Suppose that (H1), (H2), (H3), (H4) with I = [0, ∞), (H5) and (H6) hold. Then the

semi-infinite interval problem (1.3) has a unique solution y = φ(x) satisfying

(1) if A ≤ B, then φ(x) is monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative or nonpositive on [0, ∞) when A ≥ 0 or B ≤ 0, respectively;

(2) if A ≥ B, then φ(x) is monotone nonincreasing, convex on [0, ∞) and limx→∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative or nonpositive on [0, ∞) when B ≥ 0 or A ≤ 0, respectively.

Proof. The proof is the same as that for Theorem 3.4 except that Theorem 3.1 is used in place

of Theorem 3.2, and we omitted here. This completes the proof of the theorem.
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4 Heteroclinic solutions

In order to obtain the existence, uniqueness and qualitative properties of solutions for full-

infinite interval problem (1.4) via matching technique, we first discuss the existence, unique-

ness and qualitative properties of solutions to the following semi-infinite interval problems

{

y′′ = f (x, y, y′), −∞ < x ≤ 0,

y(−∞) = A, y′(0) = η
(4.1)

and
{

y′′ = f (x, y, y′), −∞ < x ≤ 0,

y(−∞) = A, y(0) = η,
(4.2)

where η ∈ R.

Let us list the following conditions for convenience.

(H1) f (x, y, z) is continuous on R
3;

(H2) f (x, y, z) is nondecreasing in y for each fixed (x, z) ∈ R
2;

(H3) f (x, y, z) satisfies a uniform Lipschitz condition on each compact subset of R
3 with

respect to z;

(H4) z f (x, y, z) ≥ 0 for (x, y, z) ∈ (−∞, 0]× R
2, and z f (x, y, z) ≤ 0 for (x, y, z) ∈ [0, ∞)× R

2;

(H5) there exist constants γ, r, ρ, M1, K for which γ ≥ 0, 0 ≤ r < γ + 1, ρ ≥ 1, γ > ρ − 2,

M1 > 0, K > 0, and

| f (x, y, z)| ≥
M1|x|

γ|z|ρ

|y|r
for |y| ≥ K, (x, z) ∈ R

2;

(H6) f satisfies the uniform Nagumo condition on R
2, i.e., for each compact subset E ⊂ R

2,

there exists a continuous function hE : [0, ∞) → (0, ∞) with
∫

∞

0
s

hE(s)
ds = ∞ such that

| f (x, y, z)| ≤ hE(|z|) for (x, y, z) ∈ E × R;

(H
′
6) for each b > 0, there exists M = M(b) > 0 so that

| f (x, y, z)| ≤ M|x|q|z|p for (x, y, z) ∈ [−b, b]× R
2,

where q ≥ 0, p ≥ 1, q ≥ p − 2.

Theorem 4.1. Suppose that (H1), (H2), (H3), (H4) and (H5) hold. Then problem (4.1) has a unique

solution y = φ(x) satisfying

(1) if η ≤ 0, then φ(x) is monotone nonincreasing, concave on (−∞, 0] and limx→−∞ φ′(x) = 0.

Furthermore, φ(x) is nonpositive on (−∞, 0] when A ≤ 0;

(2) if η ≥ 0, then φ(x) is monotone nondecreasing, convex on (−∞, 0] and limx→−∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative on (−∞, 0] when A ≥ 0.
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Proof. Let x = −t and y(x) = u(t). Then problem (4.1) is transformed into an equivalent

problem
{

u′′ = F(t, u, u′), 0 ≤ t < ∞,

u′(0) = −η, u(∞) = A,
(4.3)

where F(t, y, z) = f (−t, y,−z). It is easy to check that conditions (H1), (H2), (H3), (H4) and

(H5) imply conditions (H1), (H2), (H3), (H4) with I = [0, ∞) and (H5) hold for problem (4.3).

Hence by Theorem 3.4, problem (4.3) has a unique solution u = ψ(t), and thus φ(x) = ψ(−x)

is a unique solution of problem (4.1) and satisfies property (1) and (2). This completes the

proof of the theorem.

Applying Theorem 3.5, we can easily obtain the following.

Theorem 4.2. Suppose that (H1), (H2), (H3), (H4), (H5) and (H6) hold. Then problem (4.2) has a

unique solution y = φ(x) satisfying

(1) if η ≤ A, then φ(x) is monotone nonincreasing, concave on (−∞, 0] and limx→−∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative or nonpositive on (−∞, 0] when η ≥ 0 or A ≤ 0, respectively;

(2) if η ≥ A, then φ(x) is monotone nondecreasing, convex on (−∞, 0] and limx→−∞ φ′(x) = 0.

Furthermore, φ(x) is nonnegative or nonpositive on (−∞, 0] when A ≥ 0 or η ≤ 0, respectively.

Proof. The proof is similar to that of Theorem 4.1, and is omitted. This completes the proof of

the theorem.

Remark 4.3. Due to Theorem 4.3 of [7], it is easy to see that with the same hypothesis as in

Theorem 4.2, except now (H6) is replaced by (H
′
6), the conclusion of Theorem 4.2 is still true.

With the above theorems we may now establish our main result of this section on the exis-

tence, uniqueness and qualitative properties of solutions for the full-infinite interval problem

(1.4).

Theorem 4.4. Suppose that (H1), (H2), (H3), (H4), (H5) and (H6) hold. Then problem (1.4) has a

unique solution y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] concave on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0

(B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0], convex on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0

(A ≤ 0).

Proof. By Theorem 3.4, for any η ∈ R, the following semi-infinite interval problem

{

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y′(0) = η, y(∞) = B
(4.4)

has a unique solution φ1(x, η).

First it will be shown that φ1(0, η) is a continuous and strictly decreasing function of η and

its range is the set of all real numbers.
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Let η2 > η1, then φ1(0, η2) < φ1(0, η1). Indeed, if φ1(0, η2) ≥ φ1(0, η1), then since

φ′
1(0, η2) = η2 > η1 = φ′

1(0, η1), it follows from Lemma 2.2 that φ′
1(x, η2) ≥ φ′

1(x, η1) on

[0, ∞). Notice that φ′
1(0, η2) > φ′

1(0, η1) and φ1(0, η2) ≥ φ1(0, η1), there exists x∗ > 0 such that

φ1(x∗, η2) > φ1(x∗, η1), and thus

φ1(x, η2)− φ1(x, η1) ≥ φ1(x∗, η2)− φ1(x∗, η1) > 0 on [x∗, ∞),

which contradicts φ1(∞, η2) = B = φ1(∞, η1). Therefore φ1(0, η) is a strictly decreasing func-

tion of η.

Suppose φ1(0, η) has a jump discontinuity at η = η1 such that

φ1(0, η−
1 ) = α, φ1(0, η1) = β, φ1(0, η+

1 ) = γ,

where the monotonicity asserts that α ≥ β ≥ γ and α > γ. Let β̂ be a real number different

from β such that α ≥ β̂ ≥ γ. Then by Theorem 3.5, the following semi-infinite interval

problem
{

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = β̂, y(∞) = B

has a unique solution y = φ(x). Let φ′(0) = η̂. Then by Theorem 3.4, φ(x) = φ1(x, η̂) for all

x ∈ [0, ∞), and thus

φ1(0, η̂) = φ(0) = β̂,

which is a contradiction. Thus φ1(0, η) is a continuous function of η.

Suppose that for all real numbers η, φ1(0, η) is bounded from above, that is, there exists

M1 > 0 such that φ1(0, η) ≤ M1 < ∞ for all η ∈ R. By Theorem 3.5, the following semi-infinite

interval problem
{

y′′ = f (x, y, y′), 0 ≤ x < ∞,

y(0) = M1 + 1, y(∞) = B

has a unique solution y = ψ(x). Let ψ′(0) = η̌, then from Theorem 3.4 it follows that ψ(x) =

φ1(x, η̌) for all x ∈ [0, ∞), and thus

φ1(0, η̌) = ψ(0) = M1 + 1,

which is a contradiction. Thus φ1(0, η) is unbounded from above. Similarly, it can be shown

that φ1(0, η) is not bounded from below.

We now denote the unique solution of the semi-infinite interval problem (4.1) by φ2(x, η).

Using Theorem 4.1 and 4.2, it can be shown by the same arguments that φ2(0, η) is a contin-

uous and strictly increasing function of η and its range is the set of all real numbers. Conse-

quently, there exists a unique η∗ ∈ R such that φ1(0, η∗) = φ2(0, η∗), and thus φ
(i)
1 (0, η∗) =

φ
(i)
2 (0, η∗), i = 0, 1. Therefore φ(x) defined as

φ(x) :=

{

φ1(x, η∗), x ∈ [0, ∞);

φ2(x, η∗), x ∈ (−∞, 0]

is a solution of problem (1.4).

We now show the uniqueness. Suppose that φ̄(x) is another solution of problem (1.4). Let

the restrictions of φ̄(x) to the subinterval [0, ∞) and (−∞, 0] be labeled as φ̄1(x) and φ̄2(x)

respectively. Then from Theorem 3.4 and 4.1, it follows that

φ̄1(x) ≡ φ1(x, η̄) on [0, ∞)
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and

φ̄2(x) ≡ φ2(x, η̄) on (−∞, 0],

where η̄ = φ̄′(0). Now, we assert that η̄ = η∗. Indeed, if η̄ > η∗, then

φ̄1(0) = φ1(0, η̄) < φ1(0, η∗) = φ2(0, η∗) < φ2(0, η̄) = φ̄2(0),

which is a contradiction, and hence η̄ ≤ η∗. Similarly, η̄ ≥ η∗. Thus η̄ = η∗. Therefore

φ̄(x) ≡ φ(x) on R, which proves the uniqueness of solution to problem (1.4).

Finally, we show the qualitative properties of the unique solution. We shall consider only

the conclusion (1), since the other conclusion is somewhat tricky. Let φ(x) be the unique

solution to problem (1.4), and let A < B. It suffices to show that A ≤ φ(0) ≤ B. Suppose,

by contradiction, that φ(0) > B or φ(0) < A. To make sure, we can assume that φ(0) > B.

Then, by Theorem 3.5 and 4.2, φ(x) is monotone nonincreasing and monotone nondecreasing

on [0, ∞) and (−∞, 0], respectively, and thus φ′(0) = 0. By the uniqueness results of solutions

of Theorem 3.4, φ(x) ≡ B on [0, ∞), and hence φ(0) = B, which contradicts φ(0) > B. In

summary, A ≤ φ(0) ≤ B. Consequently, the conclusion (1) holds. This completes the proof of

the theorem.

Theorem 4.5. Suppose that (H1), (H2), (H3), (H4), (H5) and (H
′
6) hold. Then problem (1.4) has a

unique solution y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] concave on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0

(B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0], convex on [0, ∞)

and limx→±∞ φ′(x) = 0. Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0

(A ≤ 0).

Proof. The proof of this theorem is the same as that for Theorem 4.4 except that Theorem 4.3

of [7] and Remark 4.3 are used in place of Theorem 3.5 and Theorem 4.2, respectively. This

completes the proof of the theorem.

5 Some examples

In this section, as applications, we give five examples to demonstrate our main results.

Example 5.1. Consider nonlinear second-order semi-infinite interval problem

y′′ + e−yy′ = 0, 0 ≤ x < ∞, (5.1)

y′(0) = A, y(∞) = B, (5.2)

where A ≥ 0 and B ≤ 0.

We put

f (x, y, z) =

{

−g(0)z, if z < 0;

−g(y)z, if z ≥ 0,

where

g(y) =

{

e−y, if y ≤ 0;

1, if y > 0.
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It is easy to verify that f satisfies conditions (H1), (H2), (H3), (H4) with I = [0, ∞). Also we

have

| f (x, y, z)| ≥ |z| for (x, y, z) ∈ [0, ∞)× R
2.

Then the condition (H5) is satisfied. Hence from Theorem 3.4, the modified semi-infinite

interval problem consisting of

y′′ = f (x, y, y′), 0 ≤ x < ∞

and (5.2) has a unique solution φ with φ′(x) ≥ 0 on [0, ∞) and φ(x) ≤ 0 on [0, ∞). Hence by

the definitions of f and g, φ is the unique solution of problem (5.1), (5.2). Furthermore, φ is

nonpositive, monotone nondecreasing, concave on [0, ∞) and limx→∞ φ′(x) = 0.

Example 5.2. Consider nonlinear second-order semi-infinite interval problem

y′′ + xh(y)(y′)2−q = 0, 0 ≤ x < ∞, (5.3)

y(0) = A, y(∞) = B, (5.4)

where 0 ≤ q ≤ 1, 0 ≤ A < B, h(y) is nonincreasing, continuous and positive on R with

infR h(y) = m > 0.

We set

f (x, y, z) = −xh(y)|z|2−q sgn z for (x, y, z) ∈ [0, ∞)× R
2.

It is easy to see that f satisfies conditions (H1)–(H4) with I = [0, ∞) and (H6). Notice that

| f (x, y, z)| ≥ mx|z|2−q for (x, y, z) ∈ [0, ∞)× R
2,

which implies the condition (H5) is satisfied. Notice that A < B, hence from Theorem 3.5, the

modified semi-infinite interval problem consisting of

y′′ = f (x, y, y′), 0 ≤ x < ∞

and (5.4) has a unique solution φ with φ′(x) ≥ 0 on [0, ∞). Therefore by the definition of f , φ

is the unique solution of problem (5.3), (5.4). Morever, φ is positive, nondecreasing, concave

on (0, ∞) and limx→∞ φ′(x) = 0.

Note that problem (5.3), (5.4) with h(y) ≡ m > 0 and A = 0, B = 1 models phenomena in

the unsteady flow of power-law fluids (see [36]).

Example 5.3. Consider nonlinear second-order full-infinite interval problem

y′′ + mx(y′)2−q = 0, −∞ < x < ∞, (5.5)

y(−∞) = A, y(∞) = B, (5.6)

where 0 ≤ q ≤ 1, m > 0, 0 ≤ A < B.

We set

f (x, y, z) = −mx|z|2−q sgn z for (x, y, z) ∈ R
3.

It is easy to check that f (x, y, z) satisfies conditions (H1)–(H6). Hence from Theorem 4.4, the

modified full-infinite interval problem consisting of

y′′ = f (x, y, y′), −∞ < x < ∞

and (5.6) has a unique solution φ which satisfies φ′(x) ≥ 0 on R since A < B. Therefore by the

definition of f , y = φ(x) is the unique solution of problem (5.5), (5.6), which is monotone non-

decreasing on R, convex on (−∞, 0], concave on [0, ∞) and limx→±∞ φ′(x) = 0. Furthermore,

φ(x) is positive on R.
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Example 5.4. Consider nonlinear second-order full-infinite interval problem

y′′ + mx3(y′)4 = 0, −∞ < x < ∞, (5.7)

y(−∞) = A, y(∞) = B, (5.8)

where m > 0, 0 ≤ A < B.

We set

f (x, y, z) = −mx3|z|4 sgn z for (x, y, z) ∈ R
3.

It is easy to check that f (x, y, z) satisfies conditions (H1)–(H5) and (H
′
6). Similar to the dis-

cussion of Example 5.3, from Theorem 4.5, problem (5.7), (5.8) has a unique solution, which is

monotone nondecreasing on R, convex on (−∞, 0], concave on [0, ∞) and limx→±∞ φ′(x) = 0.

Furthermore, φ(x) is positive on R.

We note here that the results of [13,14,32,33,35] can not be applied to obtain the existence of

solutions to problem (5.7), (5.8), since the nonlinearity of the equation (5.7) is super-quadratic

with respect to z.

Example 5.5. Consider nonlinear second-order full-infinite interval problem

y′′ + xy′(π − arctan(xyy′)) = 0, −∞ < x < ∞, (5.9)

y(−∞) = A, y(∞) = B, (5.10)

where A, B ∈ R and A 6= B.

We set

f (x, y, z) = −xz(π − arctan(xyz)), (x, y, z) ∈ R
3.

It is easy to check that f (x, y, z) satisfies (H1), (H2), (H3) and (H4). Also it is easily verified

that

| f (x, y, z)| ≥
π

2
|x||z|, (x, y, z) ∈ R

3

and

| f (x, y, z)| ≤
3π

2
|x||z|, (x, y, z) ∈ R

3.

Then (H5) and (H6) hold. Hence from Theorem 4.4, problem (5.9), (5.10) has a unique solution

y = φ(x) satisfying

(1) if A < B, then φ(x) is monotone nondecreasing on R, convex on (−∞, 0] and concave

on [0, ∞). Furthermore, φ(x) is nonnegative (nonpositive) on R when A ≥ 0 (B ≤ 0);

(2) if A > B, then φ(x) is monotone nonincreasing on R, concave on (−∞, 0] and convex on

[0, ∞). Furthermore, φ(x) is nonnegative (nonpositive) on R when B ≥ 0 (A ≤ 0).
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1 Introduction

In this work, we study the steady-state solutions of the following competing systems with

cross-diffusion and self-diffusion:







































∂u

∂t
= ∆[(d1 + a11u + a12v)u] + u(a1 − b1u − c1v), x ∈ Ω, t > 0,

∂v

∂t
= ∆[(d2 + a21u + a22v)v] + v(a2 − b2u − c2v), x ∈ Ω, t > 0,

α1u + β1
∂u

∂ν
= α2v + β2

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ R
n(n ≥ 1) is a bounded domain with smooth boundary, u and v are the densities

of two competing species, αi, βi and aij (i, j = 1, 2) are nonnegative constants, ai, bi, ci and

di (i = 1, 2) are all positive constants, a11 and a22 stand for the self-diffusion pressures, while

a12 and a21 are the cross-diffusion pressures, a1, a2 represent the intrinsic growth rates of

the two species, b1, c2 describe the intra-specific competitions, while b2, c1 describe the inter-

specific competitions, and d1, d2 are their diffusion rates.

BEmail: zhunn5@mail2.sysu.edu.cn
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System (1.1) was first proposed by Shigesada, Kawasaki and Teramoto [10] in 1979 to

investigate the spatial segregation of interacting species. In the last several decades, a great

deal of mathematical effort has been devoted to the study of the model. For the smooth

solutions of the system (1.1) with homogeneous Neumann boundary conditions, [4] and [11]

obtained the global existence and boundedness in a bounded convex domain. We refer to

[2, 3, 5–7] for the study of the positive steady-state solutions. For instance, Lou and Ni [2]

established the sufficient conditions for the existence and nonexistence of nonconstant steady-

state solutions in the strong and weak competition case, respectively. When a21 = a22 = 0, Lou

et al. [5] provided the parameters ranges such that the system has no nonconstant positive

solutions for a11 = 0 and a11 6= 0, respectively.

For literatures about the system (1.1) under homogeneous Dirichlet boundary conditions,

see [1, 8, 12, 14] and references therein. In [9], by the decomposing operators and the theory

of fixed point, Ryn and Ahn discussed the existence of the positive coexisting steady-state of

system (1.1) for two competing species or predator-prey species.

Motivated by [5], we introduce the effect of self-diffusion and consider the model under

three boundary conditions. Our purpose is to establish the sufficient conditions such that the

following system has no coexisting solutions:


















∆[(d1 + αv)u] + u(a1 − b1u − c1v) = 0, x ∈ Ω,

∆[(d2 + βv)v] + v(a2 − b2u − c2v) = 0, x ∈ Ω,

α1u + β1
∂u

∂ν
= α2v + β2

∂v

∂ν
= 0, x ∈ ∂Ω,

(1.2)

where αi ≥ 0, βi ≥ 0 and αi + βi > 0 for i = 1, 2. In what follows, we always assume

that α ≥ 0, β ≥ 0, ai > 0, bi > 0, ci > 0 and di > 0 for i = 1, 2. To achieve that, the main

tools we use are the strong maximum principle, Hopf’s boundary lemma and the divergence

theorem. Since u and v represent species densities, we are interested in the nonnegative

classical solution (u, v) of (1.2), which means that (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, u, v ≥ 0 in Ω,

and satisfies (1.2) in the pointwise sense.

The remainder of this work is organized as follows. In Section 2, we show that the non-

negative classical solutions are strictly positive if they are not identically equal to zero, which

plays a key role in the proof of main theorems. Section 3 constructs an auxiliary function,

which can be used to produce contradictions, and thus parameter ranges for nonexistence of

coexisting steady-state solutions will be obtained under three boundary conditions.

2 Preliminaries

Let us first give the following proposition by applying the strong maximum principle, which

indicates that nonnegative classical solutions are strictly positive if they are nontrivial.

Proposition 2.1. Suppose that (u, v) is a nonnegative classical solution of (1.2). Then if u 6≡ 0, we

have u > 0 in Ω, and if v 6≡ 0, we have v > 0 in Ω.

Proof. We only prove u > 0 in Ω whenever u 6≡ 0, since the positivity of v in Ω can be proved

in a similar way. Let w = (d1 + αv)u. Due to d1 > 0, α ≥ 0 and v ≥ 0 in Ω, it suffices to prove

w > 0 in Ω. Otherwise, there is x0 ∈ Ω such that w(x0) = minx∈Ω
w(x) = 0.

It follows from the first equation of (1.2) that

∆w + u(a1 − b1u − c1v) = ∆w +
a1 − b1u − c1v

d1 + αv
· w = 0.
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Let

Lw = −∆w + cw with c =
b1u + c1v

d1 + αv
.

Then

c ≥ 0 and Lw =
a1w

d1 + αv
≥ 0 in Ω.

So, an application of the strong maximum principle shows that w is constant in Ω, and

thus w = 0, a contradiction to u 6≡ 0. This completes the proof.

Remark 2.2. When αi = 0 and βi > 0 for i = 1, 2, that is, in the case of Neumann boundary

conditions, we can get further that u, v > 0 in Ω by Hopf’s boundary lemma.

Next, we list two lemmas about the existence of positive solutions for single equation under

Dirichlet or Robin boundary conditions, which can reveal the existence of semi steady-state

solution of system (1.2). The following lemma comes from Theorem 2.1 in [8].

Lemma 2.3. Consider the following problem:

{

− ∆[(d + γw)w] = w(a − bw), x ∈ Ω,

w = 0, x ∈ ∂Ω,
(2.1)

where a, b, d are positive constants and γ is nonnegative constant. Let λd
1 > 0 denote the first eigen-

value of −∆ with the homogeneous Dirichlet boundary condition on ∂Ω. If

λd
1 <

a

d
,

then problem (2.1) has a unique positive solution.

From now on, if λd
1 <

a1
d1

and λd
1 <

a2
d2

, we denote u∗ and v∗ as the unique positive solution

of systems

{

− d1∆u + (b1u − a1)u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

and

{

− ∆[(d2 + βv)v] + (c2v − a2)v = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,

respectively.

For Robin boundary conditions, the corresponding result can be found in Theorem 2.10

of [9].

Lemma 2.4. Consider the following system:







− ∆[(d(x) + γw)w] = w(a(x)− bw), x ∈ Ω,

δw + η
∂w

∂ν
= 0, x ∈ ∂Ω,

(2.2)
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where γ is a nonnegative constant, b, δ, η are positive constants and d(x), a(x) ∈ C2(Ω) with d(x) >

0 for all x ∈ Ω. If ∂
∂ν (d(x)) ≤ 0 on ∂Ω and λ1(d(x), a(x), δ, η) > 0, then (2.2) has a unique positive

solution, where

λ1(d(x), a(x), δ, η) =

∫

Ω

(

− |∇[d(x)φ1]|
2 + d(x)a(x)φ2

1

)

−
∫

∂Ω
d(x)

[

δ
η d(x)− ∂d(x)

∂ν

]

φ2
1

‖
√

d(x)φ1‖2
L2(Ω)

denotes the principal eigenvalue with eigenfunction φ1 of the following eigenvalue problem:






∆[(d(x)φ] + a(x)φ = λφ, x ∈ Ω,

δφ + η
∂φ

∂ν
= 0, x ∈ ∂Ω.

Similarly, if λ1(d1, a1, α1, β1) > 0 and λ1(d2, a2, α2, β2) > 0, we write u∗∗ and v∗∗ as the

unique positive solution of systems






− d1∆u + (b1u − a1)u = 0, x ∈ Ω,

α1u + β1
∂u

∂ν
= 0, x ∈ ∂Ω,

and






− ∆[(d2 + βv)v] + (c2v − a2)v = 0, x ∈ Ω,

α2v + β2
∂v

∂ν
= 0, x ∈ ∂Ω,

respectively.

3 Steady-state solutions

Now we give the main theorems of this work. When the intra-competition and inter-competition

parameters of one species are greater than inter-competition and intra-competition of the

other, respectively, whereas the intrinsic growth rate is less than that of the other, we explore

two different sufficient criteria for nonexistence of coexisting solutions of system (1.2).

3.1 Dirichlet boundary conditions

Theorem 3.1. Let αi > 0, βi = 0 for i = 1, 2, α ≥ 0 and β ≥ 0. Assume that (u, v) is a nonnegative

classical solution of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2 and α ≥ β

or

(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2 and α ≤ β,

then we have either

(u, v) ≡ (0, 0),

or

(u, v) = (u∗, 0) if λd
1 <

a1

d1
,

or

(u, v) = (0, v∗) if λd
1 <

a2

d2
.
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Proof. (i) By way of contradiction, suppose that u 6≡ 0 and v 6≡ 0. Thus, u and v are positive

in Ω by Proposition 2.1. So, it is apparent from system (1.2) that:























∆[(d1 + αv)u]

u
= −a1 + b1u + c1v, x ∈ Ω,

∆[(d2 + βv)v]

v
= −a2 + b2u + c2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(3.1)

Let

w = (d1 + αv)u. (3.2)

Then, by (3.1) and conditions b1 > b2, c1 > c2 and a1 < a2, we have

∆w

w
>

∆[(d2 + βv)v]

(d1 + αv)v
in Ω. (3.3)

We now define a function

p(s) = s
d2−d1

d1 (d1 + αs)
2β−α−

d2
d1

α

α for s > 0. (3.4)

It is easy to verify that p(s) > 0 for any s > 0. Moreover, a direct calculation implies that

p′(s) = p(s)

(

d2 − d1

d1s
+

2β − α − d2
d1

α

d1 + αs

)

.

This, together with (3.3), yields that

div [(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]]

= (d1 + αv)vp(v)∆w +∇[(d1 + αv)vp(v)] · ∇w

− wp(v)∆[(d2 + βv)v]−∇[wp(v)] · ∇[(d2 + βv)v]

> ∇[(d1 + αv)vp(v)] · ∇w −∇[wp(v)] · ∇[(d2 + βv)v] in Ω.

Furthermore, we can see that

∇[(d1 + αv)vp(v)] · ∇w −∇[wp(v)] · ∇[(d2 + βv)v]

=
[

αvp(v)∇v + (d1 + αv)p(v)∇v + (d1 + αv)vp′(v)∇v
]

·
[

αu∇v + (d1 + αv)∇u
]

−
[

αup(v)∇v + (d1 + αv)p(v)∇u + (d1 + αv)up′(v)∇v
]

·
[

βv∇v + (d2 + βv)∇v
]

= |∇v|2
[

2α2uvp(v) + d1αup(v) + d1αuvp′(v) + α2uv2 p′(v)− 2αβuvp(v)

− 2d1βuvp′(v)− 2αβuv2 p′(v)− d2αup(v)− d1d2up′(v)− d2αuvp′(v)
]

+∇u · ∇v
[

3d1αvp(v) + d2
1 p(v) + d2

1vp′(v) + 2d1αv2 p′(v) + 2α2v2 p(v)

+ α2v3 p′(v)− 2d1βvp(v)− 2αβv2 p(v)− d1d2 p(v)− d2αvp(v)
]

, |∇v|2M(u, v) +∇u · ∇vN(u, v).
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Since

N(u, v) = p(v)
[

3d1αv + d2
1 + 2α2v2 − 2d1βv − 2αβv2 − d1d2 − d2αv

]

+ p′(v)v(d1 + αv)2

= p(v)
[

(d2
1 − d1d2) + (3d1α − 2d1β − d2α)v + (2α2 − 2αβ)v2

+
d2 − d1

d1
(d1 + αv)2 + v(d1 + αv)(2β − α −

d2

d1
α)
]

= 0,

and

M(u, v)

= αup(v)(d1 − d2 + 2αv − 2βv) + up′(v)
[

− d1d2 + (d1α − 2d1β − d2α)v + (α2 − 2αβ)v2
]

= αup(v)(d1 − d2 + 2αv − 2βv) + up′(v)(d1 + αv)(−d2 + αv − 2βv)

= αup(v)(d1 − d2 + 2αv − 2βv) + up(v)
(d2 − d1 − 2αv + 2βv)

v
(−d2 + αv − 2βv)

=up(v)(d1 − d2 + 2αv − 2βv)

(

d2

v
+ 2β

)

≥ 0,

we conclude that

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

> 0 in Ω. (3.5)

Now, let

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} for any small ε > 0.

Since (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, we know that
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

∈

C1(Ωε). Then it follows from divergence theorem that
∫

Ω

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

dx (3.6)

= lim
ε→0

∫

Ωε

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

dx

= lim
ε→0

∫

∂Ωε

[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

· νdS

= lim
ε→0

∫

∂Ωε

[

(d1 + αv)vp(v)
∂w

∂ν
− wp(v)

∂[(d2 + βv)v]

∂ν

]

dS

= lim
ε→0

∫

∂Ωε

[

∂w

∂ν
v

d2
d1 (d1 + αv)

2β−
d2
d1

α

α − βu
∂v

∂ν
v

d2
d1 (d1 + αv)

2β−
d2
d1

α

α

−
u

v
(d2 + βv)

∂v

∂ν
v

d2
d1 (d1 + αv)

2β−
d2
d1

α

α

]

dS

, lim
ε→0

(I1(ε) + I2(ε) + I3(ε)).

Obviously, I1(ε) and I2(ε) both tend to zero as ε → 0. To deal with the term I3(ε), we take

V =

{

ϕ(x) ∈ C1(Ω)
∣

∣

∣
ϕ|Ω > 0, ϕ|∂Ω = 0,

∂ϕ

∂ν

∣

∣

∣

∂Ω

< 0

}

.
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Then Hopf’s boundary lemma tells us that ∂u(x0)
∂ν < 0 and ∂v(x0)

∂ν < 0 for any x0 ∈ ∂Ω, and thus

u ∈ V and v ∈ V. Define

g(x) :=















u(x)

v(x)
, x ∈ Ω,

∂u(x)

∂ν

/∂v(x)

∂ν
, x ∈ ∂Ω.

Then by applying Lemma 2.4 in [13], we get g(x) ∈ C
(

Ω, (0,+∞)
)

. Therefore I3(ε) also

approaches to zero as ε → 0.

As a result,
∫

Ω
div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

dx = 0 because of Lebesgue

dominated convergence theorem and the boundary conditions in (1.2), which contradicts (3.5).

So either (u, v) = (0, 0), or only one of them is equal to zero. When v ≡ 0, we have







− ∆u +
1

d1
(b1u − a1)u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

By Lemma 2.3, we can see (u, v) = (u∗, 0) if λd
1 <

a1
d1

. Similarly, if u ≡ 0 and λd
1 <

a2
d2

, then

(u, v) = (0, v∗). This finishes the proof of the first part.

(ii) Now, we also assume that u 6≡ 0 and v 6≡ 0. Then an application of Proposition 2.1

provides that u and v are positive in Ω. Hence,

∆w

w
<

∆[(d2 + βv)v]

(d1 + αv)v
in Ω,

according to the hypotheses b1 < b2, c1 < c2 and a1 > a2, where w is defined by (3.2).

Given d1 ≤ d2 and α ≤ β, we know that

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

< 0 in Ω,

where p(v) is defined as in (i).

Furthermore, again by divergence theorem, we can prove that

∫

Ω

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

dx = 0,

a contradiction. By repeating the argument in (i), we complete the proof of Theorem 3.1.

3.2 Neumann boundary conditions

In (3.6), if we consider Neumann boundary conditions, we can directly check that (3.6) equals

to zero. Consequently, the following theorem is stated without proof.

Theorem 3.2. Suppose that αi = 0, βi > 0 for i = 1, 2 and (u, v) is a nonnegative classical solution

of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2 and α ≥ β

or

(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2 and α ≤ β,

then either (u, v) ≡ (0, 0), or (u, v) =
( a1

b1
, 0
)

, or (u, v) =
(

0, a2
c2

)

.
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3.3 Robin boundary conditions

In this subsection, we consider the case in which αi and βi (i = 1, 2) are both positive.

Theorem 3.3. Let αi > 0, βi > 0 for i = 1, 2 and (u, v) be a nonnegative classical solution of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2, α ≥ β and
α1

β1
≥

α2

β2

or

(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2, α ≤ β and
α1

β1
≤

α2

β2
,

then we have either

(u, v) ≡ (0, 0),

or

(u, v) = (u∗∗, 0) if λ1(d1, a1, α1, β1) > 0,

or

(u, v) = (0, v∗∗) if λ1(d2, a2, α2, β2) > 0.

Proof. We only prove (i), as (ii) can be proved in a same manner. According to the arguments of

the proof of Theorem 3.1, we can obtain from the hypothesis b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2

and α ≥ β that

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

> 0,

where the function p(v) is introduced in (3.4).

We mention that ∂u
∂ν = − α1

β1
u, ∂v

∂ν = − α2
β2

v on ∂Ω. The boundary integral becomes that

∫

Ω

div
[

(d1 + αv)vp(v)∇w − wp(v)∇[(d2 + βv)v]
]

dx

=
∫

∂Ω

v
d2
d1 (d1 + αv)

2β−
d2
d1

α

α

[

αu
∂v

∂ν
+ (d1 + αv)

∂u

∂ν
− 2βu

∂v

∂ν
− d2

u

v

∂v

∂ν

]

dS

=
∫

∂Ω

v
d2
d1 (d1 + αv)

2β−
d2
d1

α

α

[

uv

(

2β
α2

β2
− α

α1

β1
− α

α2

β2

)

+ u

(

d2
α2

β2
− d1

α1

β1

)]

dS

≤ 0,

due to d1 ≥ d2, α ≥ β and α1
β1

≥ α2
β2

, a contradiction. Thus, if v = 0, we have (u, v) = (u∗∗, 0)

when λ1(d1, a1, α1, β1) > 0. Similarly, (u, v) = (0, v∗∗) if u = 0 and λ1(d2, a2, α2, β2) > 0. This

completes the proof.
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1 Introduction

Let I = (0, ∞) and u be a continuous and nonnegative function. Suppose that v is a positive

function such that it is sufficiently times continuously differentiable on the interval I and for

any a > 0 the function v−1 is integrable on the interval (0, a).

Let T ≥ 0, IT = (T, ∞) and Wn
2,v ≡ Wn

2,v(IT) be the space of functions f : IT → R

having generalized derivatives up to nth order on the interval IT, for which ‖ f (n)‖2,v < ∞,

where ‖g‖2,v =
( ∫ ∞

T v(t)|g(t)|2dt
) 1

2 is the standard norm of the weighted space L2,v(I) ≡
L2,v. From the conditions on the function v it easily follows the existence of the finite limit

limt→T+ f (i)(t) ≡ f (i)(T), i = 0, 1, . . . , n − 1, for any f ∈ Wn
2,v. Therefore, the space Wn

2,v is a

normalized space with the norm

‖ f ‖Wn
2,v

= ‖ f (n)‖2,v +
n−1

∑
i=0

| f (i)(T)|. (1.1)

Let M̊2(IT) = { f ∈ Wn
2 (IT) : supp f ⊂ IT and supp f is compact}.

BCorresponding author. Email: o_ryskul@mail.ru
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By the assumptions on the function v we have that M̊2(IT) ⊂ Wn
2,v. Denote by W̊n

2,v =

W̊n
2,v(IT) the closure of the set M̊2 with respect to norm (1.1).

In the paper we investigate three related problems.

Problem 1. Establish criteria of strong oscillation and non-oscillation of the 2nth order differ-

ential equation

(−1)n(v(t)y(n)(t))(n) − λu(t)y(t) = 0, t ∈ I, (1.2)

where n > 1 and λ > 0.

A solution of equation (1.2) is a function y : I → R that is n times differentiable together

with the function v(t)y(n)(t) on the interval I, satisfying equation (1.2) for all t ∈ I.

Equation (1.2) is called [9, p. 6] oscillatory, if for any T > 0 there exists a (non-trivial)

solution of this equation, having more than one zero with multiplicity n to the right of T.

Otherwise equation (1.2) is called non-oscillatory. In the sequel, the expression “solution of

equation” will mean “non-trivial solution of equation” unless the opposite is specified.

Equation (1.2) is called strong non-oscillatory (oscillatory), if it is non-oscillatory (oscilla-

tory) for all values λ > 0.

In the mathematical literature, the most number of works is devoted to the oscillatory

properties of linear, semilinear and nonlinear second-order differential equations (see, e.g., [5]

and references given there). However, such studies for a higher order equation are relatively

rare due to the fact that not all methods of studying a second order equation are extended to

a higher order equation (see [6]). One of the more universal methods to study the oscillatory

properties of symmetric differential equations is the variational method. However, in the

variational method, the problem is reduced to solving Problem 3, which has not yet been

completely studied. Another method of studying an equation in the form (1.2) is to transfer

from equation (1.2) to the system of Hamilton’s equations, but even here it is difficult to

find the fundamental solutions of the Hamiltonian system, especially when the coefficients

of equation (1.2) are arbitrary functions. Therefore, in the works devoted to the problem of

oscillation or strong oscillation of higher order equations in the form (1.2), all or one of the

coefficients are power functions (see, [6–8] and references given there). In a more general case,

in terms of the coefficients of the equation, criteria for its strong oscillation and non-oscillation

are given in [20].

The oscillatory and non-oscillatory properties of higher order differential equations and

their relation to the spectral characteristics of the corresponding differential operators are well

presented in monograph [9].

Problem 2. Investigate the spectral properties of the self-adjoint differential operator L gener-

ated by the differential expression

l(y) = (−1)n 1

u(t)
(v(t)y(n))(n), (1.3)

in the Hilbert space L2,u ≡ L2,u(I) with inner product ( f , g)2,u =
∫ ∞

0 f (t)g(t)u(t)dt, where

u > 0.

The investigation of the spectral characteristics of the operator L is the subject of many

works (see, e.g., [2, 3], [9, Chapters 29 and 34] , [10, 14, 21] and references given there).
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Problem 3. Find necessary and sufficient conditions for the validity of the inequality

∫ ∞

T
u(t)| f (t)|2dt ≤ CT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ W̊n

2,v (1.4)

and the sharp estimate of the constant CT.

The inequality of the type (1.4) was considered in many works (see, e.g., [1, 11, 17, 18] and

references given there). The history of the problem and the main achievements are shortly

presented in monographs [12] and [13]. Let us note that in [13, Chapter 4] the corresponding

comments are given wider than in [12].

We study all these three problems depending on an integral behavior of the function v in

a neighborhood of infinity. Problems 1 and 2 have been already investigated in the strong

singular case ∫ ∞

T
v−1(t)dt = ∞. (1.5)

Here we assume that
∫ ∞

T
v−1(t)dt < ∞ and

∫ ∞

T
v−1(t)t2dt = ∞ (1.6)

for any T ≥ 0.

The work is organized as follows. In Section 2 we give necessary and sufficient conditions

for the validity of inequality (1.4). In Section 3 on the basis of the results on inequality (1.4)

we find necessary and sufficient conditions for the functions u and v, under which equation

(1.2) is strong oscillatory or non-oscillatory. In Section 4, some spectral characteristics of the

operator L are obtained.

The symbol A ≪ B means A ≤ CB with some constant C. If A ≪ B ≪ A, then we write

A ≈ B. Moreover, χM stands for the characteristic function of the set M.

2 Validity of inequality (1.4)

We investigate (1.4) under condition (1.6). First, we present the known results required for the

proof of the validity of inequality (1.4).

Let 0 ≤ a < b ≤ ∞. From the paper [13, p. 6 and 7], the following theorem follows.

Theorem A.

(i) The inequality

(∫ b

a
u(x)

(∫ x

a
f (t)dt

)2

dx

) 1
2

≤ C

(∫ b

a
v(t) f 2(t)dt

) 1
2

, f ≥ 0, (2.1)

holds if and only if

A+ = sup
a<z<b

(∫ b

z
u(x)dx

) 1
2
(∫ z

a
v−1(t)dt

) 1
2

< ∞.

Moreover, A+ ≤ C ≤ 2A+, where C is the best constant in (2.1).

(ii) The inequality

(∫ b

a
u(x)

(∫ b

x
f (t)dt

)2

dx

) 1
2

≤ C

(∫ b

a
v(t) f 2(t)dt

) 1
2

, f ≥ 0, (2.2)
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holds if and only if

A− = sup
a<z<b

(∫ z

a
u(x)dx

) 1
2
(∫ b

z
v−1(t)dt

) 1
2

< ∞.

Moreover, A− ≤ C ≤ 2A−, where C is the best constant in (2.2).

Let

A1 = sup
a<z<b

(∫ b

z
u(x)dx

) 1
2
(∫ z

a
(z − t)2(n−1)v−1(t)dt

) 1
2

,

A2 = sup
a<z<b

(∫ b

z
(x − z)2(n−1)u(x)dx

) 1
2
(∫ z

a
v−1(t)dt

) 1
2

.

The next statement follows from the results in the work [21].

Theorem B. The inequality

∫ b

a
u(z)

(∫ z

a
(z − t)n−1 f (t)dt

)2

dz ≤ C
∫ b

a
v(t) f 2(t)dt, f ≥ 0, (2.3)

holds if and only if max{A1, A2} < ∞. Moreover,

C ≈ max{A1, A2}, (2.4)

where C is the best constant in (2.3).

Assume that limt→∞ f (n−1)(t) ≡ f (n−1)(∞) and

LR(n−1)Wn
2,v =

{
f ∈ Wn

2,v : f (i)(T) = 0, i = 0, 1, . . . , n − 1; f (n−1)(∞) = 0
}

,

LWn
2,v =

{
f ∈ Wn

2,v : f (i)(T) = 0, i = 0, 1, . . . , n − 1
}

.

From Theorems 1 and 2 in [15] in view of the conditions on v−1 in a neighborhood of zero, it

follows the next statement.

Theorem C.

(i) If (1.5) holds, then

W̊n
2,v ≡ LWn

2,v; (2.5)

(ii) if (1.6) holds, then

W̊n
2,v ≡ LR(n−1)Wn

2,v and LWn
2,v(IT+1) ≡ LR(n−1)Wn

2,v(IT+1)⊕ P∞, (2.6)

where P∞ = {P(t) = cχIT+1
(t)tn−1 : c ∈ R}.

Assume that J( f )=
∫ ∞

T u(t)| f (t)|2dt∫ ∞

T v(t)| f (n)(t)|2dt
, CL = sup f∈LWn

2,v
J( f ) and CLR ≡CT = sup f∈LR(n−1)Wn

2,v
J( f ).

It is obvious that CLR ≤ CL. We investigate the estimate of the value CLR under the assumption

CL = ∞, that in view of (2.6) is equivalent to the condition

∫ ∞

α
u(x)x2(n−1)dx = ∞ (2.7)

for any α > T.
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Let τ be an arbitrary point of the interval IT. Assume

A1,1(T, τ) = sup
T<z<τ

∫ τ

z
u(x)dx

∫ z

T
(z − t)2(n−1)v−1(t)dt,

A1,2(T, τ) = sup
T<z<τ

∫ τ

z
u(x)(x − z)2(n−1)dx

∫ z

T
v−1(t)dt,

A1,3(T, τ) =
∫ ∞

τ
u(x)(x − τ)2(n−2)dx

∫ τ

T
(τ − t)2v−1(t)dt,

A1,4(T, τ) =
∫ ∞

τ
u(x)dx

∫ τ

T
(τ − t)2(n−1)v−1(t)dt,

A2,1(T, τ) = sup
z>τ

∫ ∞

z
u(x)(x − τ)2(n−2)dx

∫ z

τ
(t − τ)2v−1(t)dt,

A2,2(T, τ) = sup
z>τ

∫ z

τ
u(x)(x − τ)2(n−1)dx

∫ ∞

z
v−1(t)dt,

A(T, τ) = max
{

A1,1(T, τ), A1,2(T, τ), A1,3(T, τ), A1,4(T, τ), A2,1(T, τ), A2,2(T, τ)
}

.

Due to (2.6) inequality (1.4) can be written in the form
∫ ∞

T
u(t)| f (t)|2dt ≤ CT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ LR(n−1)Wn

2,v.

In work [18] it is obtained that A(T, τ) < ∞ is necessary and sufficient condition for the

validity of this inequality, where
∫ τ

T v−1(t)dt =
∫ ∞

τ
v−1(t)dt. Here we obtain a simpler criterion

that is usable for the application to Problem 1 and 2.

Theorem 2.1. Let T ≥ 0. Let (1.6) and (2.7) hold. Inequality (1.4) holds if and only if

lim
z→∞

∫ ∞

z
u(x)(x − τ)2(n−2)dx

∫ z

τ
(t − τ)2v−1(t)dt < ∞ (2.8)

and

lim
z→∞

∫ z

τ
u(x)(x − τ)2(n−1)dx

∫ ∞

z
v−1(t)dt < ∞. (2.9)

Moreover, there exists a point τT : T < τT < ∞ such that

CT ≈ A(T, τT) = max{A2,1(T, τT), A2,2(T, τT)}, (2.10)

where CT is the best constant in (1.4).

Proof. Sufficiency. Let (2.8) and (2.9) hold. Then, due to the conditions on the weight functions

u and v, we get that A(T, τ) < ∞ for any τ ∈ IT. Therefore, on the basis of the results in

[18], inequality (1.4) holds. Now, let us estimate the constant CT from above. From (2.6) it

follows that f (i)(T) = 0, i = 0, 1, . . . , n − 1, f (n−1)(∞) = 0 for any f ∈ W̊n
2,v. Hence, we

present f ∈ W̊n
2,v in the form f (x) = 1

(n−2)!

∫ x
T (x − s)n−2 f (n−1)(s)ds, x > T, where f (n−1)(s) =

∫ s
T f (n)(t)dt = −

∫ ∞

s f (n)(t)dt, s > T. Let τ ∈ IT. Next, for T < s < τ we assume that

f (n−1)(s) =
∫ s

T f (n)(t)dt, and for s > τ we assume that f (n−1)(s) = −
∫ ∞

s f (n)(t)dt. Then

f (x) = 1
(n−2)!

∫ x
T (x − s)n−2

∫ s
T f (n)(t)dtds for T < x < τ and

f (x) =
1

(n − 2)!

∫ x

T
(x − s)n−2 f (n−1)(s)ds

=
1

(n − 2)!

[∫ τ

T
(x − s)n−2 f (n−1)(s)ds +

∫ x

τ
(x − s)n−2 f (n−1)(s)ds

]

=
1

(n − 2)!

[∫ τ

T
(x − s)n−2

∫ s

T
f (n)(t)dtds −

∫ x

τ
(x − s)n−2

∫ ∞

s
f (n)(t)dtds

]
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for x > τ. Therefore, we have
∫ ∞

T
u(x)| f (x)|2dx =

∫ τ

T
u(x)| f (x)|2dx +

∫ ∞

τ
u(x)| f (x)|2dx

=
1

[(n − 2)!]2

∫ τ

T
u(x)

∣∣∣∣
∫ x

T
(x − s)n−2

∫ s

T
f (n)(t)dtds

∣∣∣∣
2

dx

+
1

[(n − 2)!]2

∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
(x − s)n−2

∫ s

T
f (n)(t)dtds −

∫ x

τ
(x − s)n−2

∫ ∞

s
f (n)(t)dtds

∣∣∣∣
2

dx

=
1

[(n − 2)!]2
[
F1( f (n)) + F2( f (n))

]
, (2.11)

where

F1( f (n)) =
∫ τ

T
u(x)

∣∣∣∣
∫ x

T
(x − s)n−2

∫ s

T
f (n)(t)dtds

∣∣∣∣
2

dx

=
1

(n − 1)2

∫ τ

T
u(x)

∣∣∣∣
∫ x

T
(x − t)n−1 f (n)(t)dt

∣∣∣∣
2

dx,

F2( f (n)) =
∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
(x − s)n−2

∫ s

T
f (n)(t)dtds −

∫ x

τ
(x − s)n−2

∫ ∞

s
f (n)(t)dtds

∣∣∣∣
2

dx

=
∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
(x − s)n−2

∫ s

T
f (n)(t)dtds −

∫ x

τ
(x − s)n−2

∫ x

s
f (n)(t)dtds

−
∫ x

τ
(x − s)n−2dx

∫ ∞

x
f (n)(t)dtds

∣∣∣∣
2

dx.

Assume that f (n) = g, then
∫ ∞

T g(t)dt = 0 and the condition f ∈ W̊n
2,v is equivalent to the

condition g ∈ L̃2(IT) ≡ {g ∈ L2(IT) :
∫ ∞

T g(t)dt = 0}. Therefore, from (2.11) it follows that

inequality (1.4) is equivalent to the inequality

1

[(n − 2)!]2
[
F1(g) + F2(g)

]
≤ CT

∫ ∞

T
v(t)|g(t)|2dt, g ∈ L̃2(IT). (2.12)

Moreover, the best constants in inequalities (1.4) and (2.12) coincide.

On the basis of Theorem B we have

F1(g) =
1

(n − 1)2

∫ τ

T
u(x)

∣∣∣∣
∫ x

T
(x − t)n−1g(t)dt

∣∣∣∣
2

dx

≪ max{A1,1(T, τ), A1,2(T, τ)}
∫ τ

T
v(t)|g(t)|2dt. (2.13)

Now, we estimate F2(g).

F2(g) ≤
∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
(x − s)n−2

∫ s

T
|g(t)|dtds +

∫ x

τ
(x − s)n−2

∫ x

s
|g(t)|dtds

+
∫ x

τ
(x − s)n−2ds

∫ ∞

x
|g(t)|dt

∣∣∣∣
2

dx

=
∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
|g(t)|

∫ τ

t
(x − s)n−2dsdt +

∫ x

τ
|g(t)|

∫ t

τ
(x − s)n−2dsdt

+
1

n − 1
(x − τ)n−1

∫ ∞

x
|g(t)|dt

∣∣∣∣
2

dx
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≤ 3

[∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
|g(t)|

∫ τ

t
(x − s)n−2dsdt

∣∣∣∣
2

dx

+
∫ ∞

τ
u(x)

∣∣∣∣
∫ x

τ
|g(t)|

∫ t

τ
(x − s)n−2dsdt

∣∣∣∣
2

dx

+
1

(n − 1)2

∫ ∞

τ
u(x)(x − τ)2(n−1)

(∫ ∞

x
|g(t)|dt

)2

dx

]

= 3

[
J0 + J1 +

J2

(n − 1)2

]
, (2.14)

where

J0 =
∫ ∞

τ
u(x)

∣∣∣∣
∫ τ

T
|g(t)|

∫ τ

t
(x − s)n−2dsdt

∣∣∣∣
2

dx,

J1 =
∫ ∞

τ
u(x)

∣∣∣∣
∫ x

τ
|g(t)|

∫ t

τ
(x − s)n−2dsdt

∣∣∣∣
2

dx,

J2 =
∫ ∞

τ
u(x)(x − τ)2(n−1)

(∫ ∞

x
|g(t)|dt

)2

dx.

Let us estimate J0, J1 and J2 separately. For the estimate of J0 using (x − s)n−2 =

(x − τ + τ − s)n−2 ≈ (x − τ)n−2 + (τ − s)n−2 and Hölder’s inequality, we get

J0 ≈
∫ ∞

τ
u(x)(x − τ)2(n−2)dx

(∫ τ

T
(τ − t)|g(t)|dt

)2

+
∫ ∞

τ
u(x)dx

(∫ τ

T
(τ − t)n−1|g(t)|dt

)2

≪ max{A1,3(T, τ), A1,4(T, τ)}
∫ τ

T
v(t)|g(t)|2dt. (2.15)

For the estimate of J1 using
∫ t

τ
(x − s)n−2ds= 1

n−1

(
(x − τ)n−1 − (x − t)n−1

)
≈ (x − τ)n−2(t − τ)

and Theorem A, we get

J1 ≈
∫ ∞

τ
u(x)(x − τ)2(n−2)

(∫ x

τ
(t − τ)|g(t)|dt

)2

dx ≪ A2,1(T, τ)
∫ ∞

τ
v(t)|g(t)|2dt. (2.16)

By Theorem A we have

J2 ≪ A2,2(T, τ)
∫ ∞

τ
v(t)|g(t)|2dt. (2.17)

From (2.11), (2.12), (2.13), (2.14), (2.15), (2.16) and (2.17) it follows that there exist positive

numbers α and β such that the estimate

∫ ∞

T
u(x)| f (x)|2dx ≤ βA0(T, τ)

∫ τ

T
v(t)| f (n)(t)|2dt + αA(T, τ)

∫ ∞

τ
v(t)| f (n)(t)|2dt (2.18)

holds, where A0(T, τ) = max{A1,1(T, τ), A1,2(T, τ), A1,3(T, τ), A1,4(T, τ)} and A(T, τ) =

max{A2,1(T, τ), A2,2(T, τ)}.

In view of (2.8) and (2.9), we have that the value A0(T, τ) satisfies the properties

limτ→T A0(T, τ) = 0 and limτ→∞ A0(T, τ) = ∞, and the value A(T, τ) is non-increasing in τ

and limτ→∞ A(T, τ) < ∞. Therefore, the following point

τT = sup{τ ∈ IT : βA0(T, τ) ≤ αA(T, τ)} (2.19)
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is defined. Then from (2.18) we have

∫ ∞

T
u(t)| f (t)|2dt ≪ A(T, τT)

∫ ∞

T
v(t)| f (n)(t)|2dt, (2.20)

i.e., inequality (1.4) holds with the estimate

CT ≪ A(T, τT) (2.21)

for the best constant CT in (1.4).

Necessity. Let us use the technique used in works [17] and [18]. Let inequality (1.4) hold with

the best constant CT > 0. By condition (1.6) we have that
∫ ∞

T v−1(t)dt < ∞. Suppose that

γτT
= γ(τT) > 0 and the function ρ : (T, τT) → (τT, ∞) is such that

∫ τT

T
v−1(t)dt = γτT

∫ ∞

τT

v−1(t)dt

and ∫ s

T
v−1(t)dt = γτT

∫ ∞

ρ(s)
v−1(t)dt, s ∈ (T, τT). (2.22)

It is obvious that the decreasing function ρ is locally absolutely continuous on the interval

(T, τT) and lim
s→T+

ρ(s) = ∞, lim
s→τT

ρ(s) = τT. The differentiation of the both sides of (2.22) gives

v−1(s) = −γτT
v−1(ρ(s))ρ′(s) = γτT

v−1(ρ(s))|ρ′(s)|

or
1

γτT

=
v−1(ρ(s))|ρ′(s)|

v−1(s)
(2.23)

for almost all s ∈ (T, τT). Let

K+(T, τT) =
{

g ∈ L1(T, τT) ∩ L2,v(T, τT) : g ≥ 0, g 6≡ 0
}

,

K−(τT, ∞) =
{

g ∈ L1(τT, ∞) ∩ L2,v(τT, ∞) : g ≤ 0, g 6≡ 0
}

.

Let us show that for every g2 ∈ K−(τT, ∞) there exists g1,2 ∈ K+(T, τT) such that for the

functions g(t) = g1,2(t), t ∈ (T, τT) and g(t) = g2(t), t ∈ (τT, ∞) we have that g ∈ L̃2,v(T, ∞).

For g2 ∈ K−(τT, ∞) we assume that g1,2(x) = −γτT
g2(ρ−1(x)) v−1(x)

v−1(ρ−1(x))
. Then g1,2 ≥ 0.

Changing the variables ρ−1(x) = t and using (2.23), we have

∫ τT

T
g1,2(x)dx = γτT

∫ τT

T

∣∣g2(ρ
−1(x))

∣∣ v−1(x)

v−1(ρ−1(x))
dx = −γτT

∫ ∞

τT

|g2(t)|
v−1(ρ(t))

v−1(t)
ρ′(t)dt

= γτT

∫ ∞

τT

|g2(t)|
v−1(ρ(t))

v−1(t)
|ρ′(t)|dt =

∫ ∞

τT

|g2(t)|dt < ∞. (2.24)

From (2.24) it follows that
∫ τT

T g1,2(x)dx < ∞ and

∫ τT

T
g1,2(x)dx +

∫ ∞

τT

g2(t)dt =
∫ ∞

T
g(t)dt = 0. (2.25)
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Again, changing the variables ρ−1(x) = t and using (2.23), we have

∫ τT

T
|g1,2(t)|2v(t)dt = γ2

τT

∫ τT

T

∣∣∣∣∣g2(ρ
−1(x))

v−1(x)

v−1(ρ−1(x))

∣∣∣∣∣

2

v(x)dx

= γ2
τT

∫ ∞

τT

|g2(t)|2v(t)
v−1(ρ(t))

v−1(t)
|ρ′(t)|dt

= γτT

∫ ∞

τT

|g2(t)|2v(t)dt < ∞.

Hence,

∫ ∞

T
|g(t)|2v(t)dt =

∫ τT

T
|g1,2(t)|2v(t)dt +

∫ ∞

τT

|g2(t)|2v(t)dt

= (1 + γτT
)
∫ ∞

τT

|g2(t)|2v(t)dt < ∞, (2.26)

i.e., g ∈ L2,v(IT). The last and (2.25) give that g ∈ L̃2,v(IT).

Let g2 ∈ K−(τT, ∞) and g1,2 ∈ K+(T, τT) be a function defined by g2. Then g ∈ L̃2,v(IT),

where g(t) = g1,2(t), t ∈ (T, τT) and g(t) = g2(t), t ∈ (τT, ∞). Since g ∈ L̃2(IT), then replacing

the function g in (2.12) for τ = τT and taking into account that g1,2 ≥ 0, g2 ≤ 0, we have

1

[(n − 2)!]2

[
F1(g1,2) +

∫ ∞

τT

u(x)

(∫ τT

T
(x − s)n−2

∫ s

T
g1,2(t)dtds

+
∫ x

τT

(x − s)n−2
∫ ∞

s
|g2(t)|dtds

)2

dx

]
≤ CT

∫ ∞

T
v(t)|g(t)|2dt,

that together with (2.26) gives

∫ ∞

τT

u(x)

(∫ x

τT

(x − s)n−2
∫ ∞

s
|g2(t)|dtds

)2

dx

≪ (1 + γτT
)CT

∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞). (2.27)

Since
∫ x

τT

(x− s)n−2
∫ ∞

s
|g2(t)|dtds ≥ (x− τT)

n−2
∫ x

τT

(t− τT)|g2(t)|dt+
1

n − 1
(x− τT)

n−1
∫ ∞

x
|g2(t)|dt,

then from (2.27) we have

∫ ∞

τT

u(x)(x − τT)
2(n−2)

(∫ x

τT

(t − τT)|g2(t)|dt

)2

dx

≤ (1 + γτT
)CT

∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞), (2.28)

∫ ∞

τT

u(x)(x − τT)
2(n−1)

(∫ ∞

x
|g2(t)|dt

)2

dx

≤ CT(1 + γτT
)
∫ ∞

τT

|g2(t)|2v(t)dt, g2 ∈ K−(τT, ∞). (2.29)
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For any τT < z < ∞ the functions g+2 (t) = −χ(τT ,z)(t)(t − τT)v
−1(t), g−2 (t) = −χ(z,∞)(t)v

−1(t)

belong to the set K−(τT, ∞). Replacing the functions g+2 and g−2 into (2.28) and (2.29), respec-

tively, we get

A(T, τT) ≪ CT. (2.30)

This relation together with (2.21) gives (2.10). From the finiteness of the value A(T, τT) =

max{A2,1(T, τT), A2,2(T, τT)} we have (2.8) and (2.9). The proof of Theorem 2.1 is complete.

3 Oscillatory properties of equation (1.2)

The main aim of this Section is the investigation of strong oscillation and non-oscillation of

differential equation (1.2) in a neighborhood of infinity. Oscillatory properties of (1.2) we

investigate under conditions (1.6) and (2.7). Case (1.5) has been investigated in paper [20].

We consider the inequality
∫ ∞

T
λu(t)| f (t)|2dt ≤ λCT

∫ ∞

T
v(t)| f (n)(t)|2dt, f ∈ W̊n

2,v, (3.1)

with a constant λCT, where CT is the best constant in (1.4).

We investigate the oscillatory properties of equation (1.2) by the variation method, i.e., on

the basis of the known variational statement.

Lemma A ([9, Theorem 28]). Equation (1.2) is non-oscillatory if and only if there exists T > 0 such

that ∫ ∞

T

[
v(t)| f (n)(t)|2 − λu(t)| f (t)|2

]
dt ≥ 0 (3.2)

for all f ∈ M̊2(IT).

Due to the compactness of the set supp f for f ∈ M̊2(IT), inequality (3.2) coincide with the

inequality ∫ ∞

T
λu(t)| f (t)|2dt ≤

∫ ∞

T
v(t)| f (n)(t)|2dt, ∀ f ∈ M̊2(IT). (3.3)

Lemma 3.1. Equation (1.2)

(i) is non-oscillatory if and only if there exists T > 0 such that inequality (3.1) holds with the best

constant λCT : 0 < λCT ≤ 1;

(ii) is oscillatory if and only if for any T > 0 the best constant is such that λCT > 1 in (3.1).

Proof. Let us prove the statement (i), the statement (ii) is the opposite of the statement (i).

If equation (1.2) is non-oscillatory, then for some T > 0 inequality (3.3) holds, which means

that inequality (3.1) holds with the best constant 0 < λCT ≤ 1. Inversely, if for some T > 0

inequality (3.1) holds with the best constant 0 < λCT ≤ 1, then inequality (3.3) holds and by

Lemma A equation (1.2) is non-oscillatory. The proof of Lemma 3.1 is complete.

On the basis of Lemma 3.1 and Theorem 2.1, we have the following statement.

Theorem 3.2. Let (1.6) and (2.7) hold. Then equation (1.2) is strong non-oscillatory if and only if

lim
z→∞

∫ ∞

z
u(x)(x − T)2(n−2)dx

∫ z

T
(t − T)2v−1(t)dt = 0 (3.4)

and

lim
z→∞

∫ z

T
u(x)(x − T)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0. (3.5)
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Proof. Let equation (1.2) be strong non-oscillatory. Then by Lemma 3.1 for each λ > 0 there

exists Tλ = T(λ) > 0 such that λCTλ
≤ 1 in (3.1). This gives that limλ→∞ CTλ

= 0, and from

(2.10) we have

lim
λ→∞

A(Tλ, τT(λ)) = 0. (3.6)

From λ2CT(λ2) ≤ 1 it follows that λ1CT(λ2) ≤ 1 for 0 < λ1 ≤ λ2. Therefore, T(λ2) ≥
T(λ1), τT(λ2) ≥ τT(λ1) and limλ→∞ T(λ) = limλ→∞ τT(λ) = ∞.

Since the value A(T, τ) does not increase in τ > 0, from (3.6) we have limτ→∞ A(T, τ) = 0,

i.e.,

lim
τ→∞

sup
z>τ

∫ ∞

z
u(x)(x − τ)2(n−2)dx

∫ z

τ
(t − τ)2v−1(t)dt = 0, (3.7)

lim
τ→∞

sup
z>τ

∫ z

τ
u(x)(x − τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0. (3.8)

By the definition of the limit (3.7) for any ε > 0 there exists Tε = T(ε) > T such that

∫ ∞

z
u(x)(x − Tε)

2(n−2)dx
∫ z

Tε

(t − Tε)
2v−1(t)dt ≤ ε

5 · 22n−3
(3.9)

for all z ≥ Tε. Then there exists T1(ε) ≥ Tε such that

∫ ∞

z
u(x)(x − Tε)

2(n−2)dx
∫ Tε

T
(Tε − T)2v−1(t)dt ≤ ε

5 · 22n−3
, z ≥ T1(ε). (3.10)

From (3.9) and (3.10) we get

∫ ∞

z
u(x)(x − Tε)

2(n−2)dx
∫ z

T
(t − T)2v−1(t)dt ≤ 4ε

5 · 22n−3
, z ≥ T1(ε). (3.11)

Further, there exists T2(ε) ≥ T1(ε) and

∫ ∞

z
(Tε − T)2(n−2)u(x)dx

∫ z

T
(t − T)2v−1(t)dt ≤ ε

5 · 22n−3
, z ≥ T2(ε). (3.12)

Then from (3.11) and (3.12) we have

∫ ∞

z
u(x)(x − T)2(n−2)dx

∫ z

T
(t − T)2v−1(t)dt ≤ ε

for all z ≥ T2(ε). It means that (3.4) holds. Similarly, we can prove that from (3.8) it follows

(3.5).

Sufficiency. Let (3.4) and (3.5) hold. From (3.5) we have

lim
z→∞

∫ z

τ
u(x)(x − τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = 0

for any τ ≥ T. Thus,

lim
τ→∞

sup
z>τ

∫ z

τ
u(x)(x − τ)2(n−1)dx

∫ ∞

z
v−1(t)dt = lim

τ→∞
A2,2(T, τ) = 0.

Similarly, from (3.4) we have that limτ→∞ A2,1(T, τ) = 0. Then limτ→∞ A(T, τ) = 0.

Since limT→∞ τT = ∞, then limT→∞ A(T, τT) = 0. Hence, from (2.10) we have limT→∞ CT =

0. Therefore, for any λ > 0 there exists Tλ ≥ T such that λCTλ
≤ 1 and by Lemma 3.1 equation

(1.2) is non-oscillatory for any λ > 0. The proof of Theorem 3.2 is complete.
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Theorem 3.3. Let (1.6) and (2.7) hold. Then equation (1.2) is strong oscillatory if and only if

lim
z→∞

∫ ∞

z
u(x)(x − T)2(n−2)dx

∫ z

T
(t − T)2v−1(t)dt = ∞ (3.13)

or

lim
z→∞

∫ z

T
u(x)(x − T)2(n−1)dx

∫ ∞

z
v−1(t)dt = ∞. (3.14)

Proof. Necessity. Let equation (1.2) be strong oscillatory. Then by Lemma 3.1 λCT > 1 for any

T ≥ 0 and λ > 0. It means that CT >
1
λ and for λ → 0+ it follows that CT = ∞ for any T > 0.

Then from (2.10) we have that A(T, τT) = ∞, i.e., A2,1(T, τT) = ∞ or A2,2(T, τT) = ∞ for all

T ≥ 0. Therefore, (3.13) or (3.14) holds, respectively.

Sufficiency. Let (3.13) or (3.14) hold. Then A2,1(T, τT) = ∞ or A2,2(T, τT) = ∞, respectively,

i.e., A(T, τT) = ∞ for any T ≥ 0. Then λA(T, τT) = ∞ for any λ > 0 and T ≥ 0. Hence, from

(2.10) we have λCT > 1 for any λ > 0 and T ≥ 0. It means that equation (1.2) is oscillatory for

any λ > 0. The proof of Theorem 3.3 is complete.

Next, we suppose that functions v and u are positive and n times continuously differen-

tiable on I. Then on the basis of the reciprocity principle [4] equation (1.2) and the reciprocal

equation

(−1)n
(
u−1(t)y(n)

)(n) − λv−1(t)y = 0 (3.15)

are simultaneously oscillatory or non-oscillatory.

Suppose that for equation (3.15) the following conditions

∫ ∞

T
u(t)dt < ∞,

∫ ∞

T
u(t)t2dt = ∞ and

∫ ∞

α
v−1(t)t2(n−1)dt = ∞ (3.16)

hold for any α ≥ T.

Applying the reciprocity principle, on the basis of Theorems 3.2 and 3.3 we get the follow-

ing theorems.

Theorem 3.4. Let T ≥ 0 and (3.16) hold. Then equation (1.2) is strong non-oscillatory if and only if

lim
z→∞

∫ ∞

z
v−1(x)(x − T)2(n−2)dx

∫ z

T
(t − T)2u(t)dt = 0, (3.17)

lim
z→∞

∫ z

T
v−1(x)(x − T)2(n−1)dx

∫ ∞

z
u(t)dt = 0. (3.18)

Theorem 3.5. Let T ≥ 0 and (3.16) hold. Then equation (1.2) is strong oscillatory if and only if

lim
z→∞

∫ ∞

z
v−1(x)(x − T)2(n−2)dx

∫ z

T
(t − T)2u(t)dt = ∞

or

lim
z→∞

∫ z

T
v−1(x)(x − T)2(n−1)dx

∫ ∞

z
u(t)dt = ∞.
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4 Spectral characteristics of L

Let the minimal differential operator Lmin be generated by differential expression (1.3) in the

space L2,u with inner product ( f , g)2,u =
∫ ∞

0 f (t)g(t)u(t)dt. It means that Lmin(y) = l(y) is an

operator with the domain

D(Lmin) =
{

y : I → R : y(i) ∈ ACloc(I), supp y(i) ⊂ I,

supp y(i) is compact, i = 0, 1, . . . , n − 1, l(y) ∈ L2,u

}
.

It is known that all self-adjoint extensions of the minimal differential operator L have the same

spectrums (see [9]).

Let us consider the problem of boundedness from below and discreteness of the operator

L in case (1.6). Case (1.5) was considered in [21].

The relation between the oscillatory properties of equation (1.2) and spectral properties of

the operator L is given in the following statement.

Lemma 4.1 ([9]). The operator L is bounded from below and has the discrete spectrum if and only if

equation (1.2) is strong non-oscillatory.

On the basis of Lemma 4.1, by Theorems 3.2 and 3.4 we have the following theorem.

Theorem 4.2.

(i) If conditions (1.6) and (2.7) hold, then the operator L is bounded from below and has the discrete

spectrum if and only if (3.4) and (3.5) hold;

(ii) If condition (3.16) holds, then the operator L is bounded from below and has the discrete spectrum

if and only if (3.17) and (3.18) hold.

The operator Lmin is non-negative. Therefore, it has the Friedrichs extension LF. By Theo-

rem 4.2 the operator LF has the discrete spectrum if and only if (i) (3.4) and (3.5) hold in case

(1.6) and (2.7); (ii) (3.17) and (3.18) hold in case (3.16).

From Theorem 2.1 we can state Theorem 4.3.

Theorem 4.3. Let (1.6) and (2.7) hold. Then the operator LF is positive defined if and only if

A(0, τ0) = max{A2,1(0, τ0), A2,2(0, τ0)} < ∞. Moreover, there exist constants α, β : 0 < α < β

such that the estimate αA(0, τ0) ≤ λ−1/2
1 ≤ βA(0, τ0) holds for the smallest eigenvalue λ1 of the

operator LF.

On the basis of Rellih’s Lemma [16, p. 183] and Theorem 2.1 it follows one more theorem.

Theorem 4.4. Let (1.6) and (2.7) hold. Then

(i) the embedding W̊n
2,v(I) →֒ L2,u(I) is compact if and only if (3.4) and (3.5) hold;

(ii) the operator L−1
F is completely continuous on L2,u if and only if (3.4) and (3.5) hold.

The next statement is presented in [3].

Lemma B. Let H = H(I) be a certain Hilbert function space and C[0, ∞)∩ H be dense in it. For any

point x0 ∈ I we introduce the operator Fx0 f = f (x0) defined on C[0, ∞)∩ H, which acts in the space of

complex numbers. Let us assume that Fx0 is a closure operator. Then the norm of this operator is equal

to the value
(

∑
∞
n=1 |ϕn(x0)|2

)1/2
(finite or infinite), where {ϕn(·)}∞

n=1 is any complete orthonormal

system of continuous functions in H.
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Lemma 4.5. Let (1.6) and (2.7) hold. Then for x ∈ I

supτ∈I D(x, τ)

(n − 1)!
≤ sup

f∈W̊n
2,v

| f (x)|
‖ f (n)‖2,v

≤
√

2
infτ∈I D(x, τ)

(n − 1)!
, (4.1)

where τ ∈ I and

D(x, τ) =

[
χ(0,τ)(x)

∫ x

0
(x − s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n − 1)2
∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(n − 1)2
∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(x − τ)2(n−1)
∫ ∞

x
v−1(s)ds

]1/2

.

Proof. Let f ∈ W̊n
2,v. Then due to (1.6) we have f ∈ LR(n−1)Wn

2,v. Let τ ∈ I. Similarly as in the

proof of sufficiency of Theorem 2.1, we get

f (x) =
1

(n − 1)!





∫ x
0 (x − s)n−1 f (n)(s)ds if 0 < x < τ;

(n − 1)
∫ τ

0 (x − t)n−2
∫ t

0 f (n)(s)dsdt

−(n − 1)
∫ x

τ
(x − t)n−2

∫ ∞

t f (n)(s)dsdt if x > τ

or

f (x) =
1

(n − 1)!





∫ x
0 (x − s)n−1 f (n)(s)ds if 0 < x < τ;

(n − 1)
∫ τ

0 f (n)(s)
∫ τ

s (x − t)n−2dtds

−(n − 1)
∫ x

τ
f (n)(s)

∫ s
τ
(x − t)n−2dtds

−(x − τ)n−1
∫ ∞

x f (n)(s)ds if x > τ,

for all τ ∈ I. The last expression can be rewritten in the form

f (x) =
1

(n − 1)!

[
χ(0,τ)(x)

∫ x

0
(x − s)n−1 f (n)(s)ds

+χ(τ,∞)(x)(n − 1)
∫ τ

0
f (n)(s)

∫ τ

s
(x − t)n−2dtds

]

− χ(τ,∞)(x)

[
(n − 1)

∫ x

τ
f (n)(s)

∫ s

τ
(x − t)n−2dtds + (x − τ)n−1

∫ ∞

x
f (n)(s)ds

]
. (4.2)

Using Hölder’s inequality, we have

| f (x)| ≤ 1

(n − 1)!

{[
χ(0,τ)(x)

(∫ x

0
(x − s)2(n−1)v−1(s)ds

)1/2

+χ(τ,∞)(x)(n − 1)

(∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

)1/2


(∫ τ

0
v(t)| f (n)(t)|2dt

)1/2

+ χ(τ,∞)(x)


(n − 1)

(∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

)1/2

+(x − τ)n−1

(∫ ∞

x
v−1(s)ds

)1/2
](∫ ∞

τ
v(t)| f (n)(t)|2dt

)1/2
}

. (4.3)
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One more time using Hölder’s inequality for sums in (4.3), we obtain

| f (x)| ≤ 1

(n − 1)!






χ(0,τ)(x)

(∫ x

0
(x − s)2(n−1)v−1(s)ds

)1/2

+χ(τ,∞)(x)(n − 1)

(∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

)1/2



2

+ χ(τ,∞)(x)


(n − 1)

(∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

)1/2

+(x − τ)n−1

(∫ ∞

x
v−1(s)ds

)1/2



2




1
2

×
(∫ τ

0
v(t)| f (n)(t)|2dt +

∫ ∞

τ
v(t)| f (n)(t)|2dt

) 1
2

≤ 1

(n − 1)!

[
χ(0,τ)(x)

∫ x

0
(x − s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n − 1)2
∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

+2χ(τ,∞)(x)(n − 1)2
∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

+2χ(τ,∞)(x)(x − τ)2(n−1)
∫ ∞

x
v−1(s)ds

] 1
2
(∫ ∞

0
v(t)| f (n)(t)|2dt

) 1
2

for any τ ∈ I. Therefore,

| f (x)| ≤
√

2

(n − 1)!
inf
τ∈I

D(x, τ)

(∫ ∞

0
v(t)| f (n)(t)|2dt

)1/2

.

Then

sup
f∈W̊n

2,v

| f (x)|
‖ f (n)‖2,v

≤
√

2

(n − 1)!
inf
τ∈I

D(x, τ). (4.4)

Now, we estimate the value sup f∈W̊n
2,v

| f (x)|
‖ f (n)‖2,v

from below. In (4.2) we fix x ∈ I, so that we

choose a function f (n), depending on x, as follows

f
(n)
x (s) =





χ(0,x)(s)(x − s)n−1v−1(s) if 0 < x < τ;

χ(0,τ)(s)(n − 1)
∫ τ

s (x − t)n−2dtv−1(s)

−χ(τ,x)(s)(n − 1)
∫ s

τ
(x − t)n−2dtv−1(s)

−χ(x,∞)(s)(x − τ)n−1v−1(s) if x > τ.
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Replacing this function in (4.2), we get the value of the function f ( f
(n)
x )(t) at the point t = x:

fx(x) =
1

(n − 1)!

(
χ(0,τ)(x)

∫ x

0
(x − s)n−1 f

(n)
x (s)ds

+χ(τ,∞)(x)(n − 1)
∫ τ

0
f
(n)
x (s)

∫ τ

s
(x − t)n−2dtds

− χ(τ,∞)(x)(n − 1)
∫ x

τ
f
(n)
x (s)

∫ s

τ
(x − t)n−2dtds

−χ(τ,∞)(x)(x − τ)n−1
∫ ∞

x
f
(n)
x (s)ds

)
.

If 0 < x < τ, then χ(τ,∞)(x) = 0. Hence, all terms of fx(x), except the first one, are equal to

zero. For the first term the variable s changes from 0 to x, i.e., χ(0,x)(s) 6= 0 and we replace

f
(n)
x (s) with (x − s)n−1v−1(s). If x > τ, then χ(0,τ)(x) = 0. It means that the first term is equal

to zero, so fx(x) is defined by the other three terms. In this case, we replace f
(n)
x (s) with its

values in the intervals (0, τ), (τ, x) and (x, ∞), respectively. Thus, we get

fx(x) =
1

(n − 1)!

(
χ(0,τ)(x)

∫ x

0
(x − s)2(n−1)v−1(s)ds

+χ(τ,∞)(x)(n − 1)2
∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(n − 1)2
∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

+χ(τ,∞)(x)(x − τ)2(n−1)
∫ ∞

x
v−1(s)ds

)
=

D2(x, τ)

(n − 1)!
(4.5)

for any τ ∈ I.

Let us calculate the norm L2,v of the function f
(n)
x . For 0 < x < τ we take f

(n)
x (s) =

χ(0,x)(s)(x − s)n−1v−1(s) and have

∫ ∞

0
v(s)| f

(n)
x (s)|2ds =

∫ x

0
v(s)

(
(x − s)n−1v−1(s)

)2
ds =

∫ x

0
(x − s)2(n−1)v−1(s)ds. (4.6)

For x > τ we take the values of f
(n)
x on the intervals (0, τ), (τ, x) and (x, ∞), respectively, and

get

∫ ∞

0
v(s)| f

(n)
x (s)|2ds =

∫ τ

0
v(s)| f

(n)
x (s)|2ds +

∫ x

τ
v(s)| f

(n)
x (s)|2ds +

∫ ∞

x
v(s)| f

(n)
x (s)|2ds

= (n − 1)2
∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

+ (n − 1)2
∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

+ (x − τ)2(n−1)
∫ ∞

x
v−1(s)ds. (4.7)
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Then using the functions χ(0,τ)(x) and χ(τ,∞)(x), we combine (4.6) and (4.7) and obtain

(∫ ∞

0
v(t)| f

(n)
x (t)|2dt

)1/2

=

[
χ(0,τ)(x)

∫ x

0
(x − s)2(n−1)v−1(s)ds

+ χ(τ,∞)(x)(n − 1)2
∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)ds

+ χ(τ,∞)(x)(n − 1)2
∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)ds

+ χ(τ,∞)(x)(x − τ)2(n−1)
∫ ∞

x
v−1(s)ds

]1/2

= D(x, τ) (4.8)

for any τ ∈ I.

From (4.5) and (4.8) we get

sup
f∈W̊n

2,v

| f (x)|
‖ f (n)‖2,v

≥ | fx(x)|
‖ f

(n)
x ‖2,v

=
supτ∈I D(x, τ)

(n − 1)!
.

This relation together with (4.4) gives (4.1). The proof of Lemma 4.5 is complete.

Let the operator L−1
F be completely continuous on L2,u. Let {λk}∞

k=1 be eigenvalues and

{ϕk}∞
k=1 be a corresponding complete orthonormal system of eigenfunctions of the operator

L−1
F .

Theorem 4.6. Let (1.6), (2.7), (3.4) and (3.5) hold. Then

(i)
supτ∈I D2(x, τ)

[(n − 1)!]2
≤

∞

∑
k=1

|ϕk(x)|2
λk

≤
√

2
infτ∈I D2(x, τ)

[(n − 1)!]2
; (4.9)

(ii) the operator L−1
F is nuclear if and only if infτ∈I

∫ ∞

0 u(x)D2(x, τ)dx < ∞. Moreover, there exists

τ = µ ∈ I and for the nuclear norm ‖L−1
F ‖σ1

of the operator L−1
F the relation

2

[(n − 1)!]2
D1(µ) ≤ ‖L−1

F ‖σ1
=

∞

∑
k=1

1

λk
≤ 2

√
2

[(n − 1)!]2
D1(µ) (4.10)

holds, where

D1(µ) = (n − 1)2
∫ ∞

µ
u(x)

∫ x

µ

(∫ s

µ
(x − t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

µ
u(x)(x − µ)2(n−1)

∫ ∞

x
v−1(s)dsdx.

Proof. By the condition of Theorem 4.4 we have that the operator L−1
F is completely continu-

ous on L2,u. In Lemma B we take W̊n
2,v(I) with the norm

( ∫ ∞

0 v(t)| f (n)(t)|2
)1/2

as the space

H(I). Since the system of functions {λ−1/2
k ϕk}∞

k=1 is complete orthonormal system in the space

W̊n
2,v(I), then by Lemma B we get

‖Fx‖2 =


 sup

f∈W̊n
2,v

| f (x)|
‖ f (n)‖2,v




2

=
∞

∑
k=1

|ϕk(x)|2
λk

,
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where Fx f = f (x). This and (4.1) give (4.9).

Since infs∈I D2(x, s) ≤ D2(x, τ) ≤ sups∈I D2(x, s) for any τ ∈ I, multiplying both sides of

(4.9) by u and integrating them with respect to x from zero to infinity, we get

1

[(n − 1)!]2

∫ ∞

0
u(x)D2(x, τ)dx ≤

∞

∑
k=1

1

λk
≤

√
2

[(n − 1)!]2

∫ ∞

0
u(x)D2(x, τ)dx (4.11)

for all τ ∈ I. Let us present the integral
∫ ∞

0 u(x)D2(x, τ)dx in the following way

∫ ∞

0
u(x)D2(x, τ)dx =

∫ τ

0
u(x)

∫ x

0
(x − s)2(n−1)v−1(s)dsdx

+ (n − 1)2
∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)dsdx

+ (n − 1)2
∫ ∞

τ
u(x)

∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

τ
u(x)(x − τ)2(n−1)

∫ ∞

x
v−1(s)dsdx = D0(τ) + D1(τ),

where

D0(τ) =
∫ τ

0
u(x)

∫ x

0
(x − s)2(n−1)v−1(s)dsdx

+ (n − 1)2
∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)dsdx,

D1(τ) = (n − 1)2
∫ ∞

τ
u(x)

∫ x

τ

(∫ s

τ
(x − t)n−2dt

)2

v−1(s)dsdx

+
∫ ∞

τ
u(x)(x − τ)2(n−1)

∫ ∞

x
v−1(s)dsdx.

The functions D0(τ), D1(τ) are continuous and the function D1(τ) is decreasing on the inter-

val I and limτ→∞ D1(τ) = 0. Since

∫ ∞

τ
u(x)

∫ τ

0

(∫ τ

s
(x − t)n−2dt

)2

v−1(s)dsdx

≈
∫ ∞

τ
u(x)(x − τ)2(n−2)dx

∫ τ

0
(τ − s)2v−1(s)ds

+
∫ ∞

τ
u(x)dx

∫ τ

0
(τ − s)2(n−1)v−1(s)ds,

then we get limτ→0+ D0(τ) = 0. Therefore, there exists a point τ = µ such that D0(µ) = D1(µ).

Hence, from (4.11) we have (4.10). The proof of Theorem 4.6 is complete.

Remark 4.7. In Theorems 4.3, 4.4 and 4.6 and in their proofs replacing v−1 by u, u by v−1

and conditions (3.4) and (3.5) by (3.17) and (3.18) in the required places, we get the similar

statements but under condition (3.16).
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equality on ÅC(I), Siberian Math. J. 55(2014), No. 3, 387–401. https://doi.org/10.1134/

S003744661403001X; MR3237367; Zbl 1297.26040

[2] C. D. Ahlbrandt, D. B. Hinton, R. Lewis, Necessary and sufficient conditions for

the discreteness of the spectrum of certain singular differential operators, Can. J. Math.

33(1981), No. 1, 229–246. MR0608867; Zbl 0462.47030

[3] O. D. Apyshev, M. Otelbaev, On the spectrum of a class of differential operators and

some imbedding theorems, Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), No. 4, 739–764.

MR548503, Zbl 0446.47039|0418.47022

[4] O. Došlý, Generalized reciprocity for self-adjoint linear differential equations, Arch. Math.

31(1995), 85–96. MR1357977; Zbl 0841.34032

[5] O. Došlý, P. Rehák, Half-linear differential equations, North Holland Mathematics Studies,

Vol. 202, Elsevier, Amsterdam, 2005. MR2158903; Zbl 1090.34001
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1 Introduction

In this paper, we consider the following Schrödinger–Bopp–Podolsky system

{
−∆u + V(x)u + K(x)φu = Q(x)|u|p−1u in R

3,

−∆φ + ∆2φ = K(x)u2 in R
3,

(1.1)

where p ∈ (3, 5), V(x), K(x) and Q(x) are positive functions such that

lim
|x|→∞

V(x) = V∞ > 0, lim
|x|→∞

Q(x) = Q∞ > 0, lim
|x|→∞

K(x) = 0.

This system appears when a Schrödinger field ψ = ψ(t, x) couple with its electromagnetic

field in the Bopp–Podolsky electromagnetic theory. The Bopp–Podolsky theory, developed

by Bopp [8], and independently by Podolsky [20], is a second order gauge theory for the

electromagnetic field. As the Mie theory [19] and its generalizations given by Born and Infeld

[7, 9], it was introduced to solve the so called infinity problem that appears in the classical

Maxwell theory. From the well known Gauss law (or Poisson equation), the electrostatic

potential φ for a given charge distribution whose density is ρ satisfies the equation

− ∆φ = ρ in R
3. (1.2)

BCorresponding author. Email: tengkaimin2013@163.com
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If ρ = 4πδx0 , with x0 ∈ R
3, the fundamental solution of (1.2) is E(x − x0), where E(x) = 1

|x| ,

and the electrostatic energy is ε(E) = 1
2

∫
R3 |∇E(x)|2dx = +∞. Thus, equation (1.2) was

replaced by

−div

(
∇φ√

1 − |∇φ|2

)
= ρ in R

3

in the Born–Infeld theory (see [2]) or replaced by

−∆φ + a2∆2φ = ρ in R
3

in the Bopp–Podolsky one, from the reason that, in both case if ρ = 4πδx0 , their energy is

finite. In particular, when we consider the operator −∆ + ∆2, by [3], we know that K(x − x0),

where K(x) := 1−e−|x|
|x| , is the fundamental solution of the equation

−∆φ + ∆2φ = 4πδx0 ,

it has no singularity in x0 since it satisfies limx→x0 K(x − x0) = 1, and its energy satisfies

εBP(K) =
1

2

∫

R3
|∇K|2 dx +

1

2

∫

R3
|∆K|2 dx < +∞.

In addition, the Bopp–Podolsky theory may be interpreted as an effective theory for short

distances and for large distances it is indistinguishable from the Maxwell one. For more

physical details we refer the reader to the recent paper[10, 11, 14] and their references therein.

Indeed the operator −∆ + ∆2 appears also in other different interesting mathematical and

physical situations [5, 15].

Recently, P. d’Avenia and G. Siciliano in [3] introduced the following Schrödinger–Bopp–

Podolsky system {
−∆u + ωu + q2φu = |u|p−2u in R

3,

−∆φ + a2∆2φ = 4πu2 in R
3,

(1.3)

where a, ω > 0, q 6= 0, they developed the variational framework for system (1.3) and proved

that when p ∈ (2, 6), there exists q∗ > 0, for every q ∈ (−q∗, q∗) \
{

0
}

, problem (1.3) admits

a nontrivial solution, when p ∈ (3, 6), for q 6= 0, problem (1.3) admits a nontrivial solution.

In [22], G. Siciliano and K. Silva proved that the multiplicity and nonexistence of solutions for

problem (1.3) by using the fibering method.

If a = 0 in problem (1.3), it reduces to the Schrödinger–Poisson system

{
−∆u + ωu + q2φu = |u|p−2u in R

3,

−∆φ = 4πu2 in R
3.

(1.4)

In the last decades, there are lots of results about the existence and multiplicity of solutions

for system (1.4), we do not review the huge documents, just list some of them for interesting

readers to see [1, 6, 12, 21] and the references therein.

The purpose of this paper is to describe some phenomena that can occur when the coef-

ficients V(x), K(x) and Q(x) are competing. In order to describe our main results, we first

rewrite problem (1.1) in a more appropriate way to our aim. Let

V(x) = V∞ + a(x), Q(x) = Q∞ − b(x),

where a(x) and b(x) satisfies the following assumptions:
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(H1) a(x) ∈ L
3
2 (R3), a(x) ≥ 0, a(x) 6≡ 0, and lim|x|→∞ a(x) = 0;

(H2) b(x) ∈ L∞(R3), 0 ≤ b(x) < Q∞, b(x) 6≡ 0, and lim|x|→∞ b(x) = 0;

(H3) K ∈ L2(R3) and there exists R0 > 0 such that K(x) ≤ Ce−2
√

V∞|x| for all |x| ≥ R0.

Clearly, (1.1) becomes the following form

{
−∆u + (V∞ + a(x))u + K(x)φu = (Q∞ − b(x))|u|p−1u in R

3,

−∆φ + ∆2φ = K(x)u2 in R
3.

(1.5)

From the variational framework described in Section 2, we find that the difference be-

tween problem (1.5) and system (1.4) is the nonlocal kernel K(x) = 1−e−|x|
|x| , comparing the

Poisson kernel P(x) = 1
|x| , K(x) is nonhomogeneous and not singular at x = 0 because

lim|x|→0 K(x) = 1, which implies that K ∈ L∞(R3). The non-homogeneity of K makes difficult

the use of rescaling of type t → u(tγ·) and the non-singularity maybe weak some conditions

in the estimates.

To the best of knowledge, the system (1.5) is a new one in the field of variational methods,

there are only few works about the existence and multiplicity of solutions, such as the ground

state. The purpose of this paper is to study the existence of bound state solution for system

(1.5). The approach is inspired by the ideas in [4, 12], we explore some calculations of sharp

energy estimates and apply a topological argument involving the barycenter function to show

that there exists a critical value of the energy functional, in a higher level of energy which

can yield a solution of the problem (1.5). The main difficulties of this work are that the

problem is given in the whole space, leading to the loss of compactness, and some sharp

energy estimates. For dealing with these obstacles, we borrows a global compactness lemma

to recover the compactness and use some careful computations to get the energy estimates.

Now we are ready to give the main results of the paper.

Theorem 1.1. Suppose that (H1)–(H3) hold and

(H4)
∫

R3 a
3
2 (x)|x|2e2

√
V∞|x| dx < +∞ and

∫
R3 b(x)|x|2e2

√
V∞|x| dx < +∞.

Then (1.5) admits a positive bound state solution.

The paper is organised as follows. In Section 2, we give general preliminaries in order to

attack our problem. In Section 3, we prove Theorem 1.1.

2 Preliminaries

In what follows, we will use the following notations:

• Let H1(R3) be the Sobolev space endowed with the inner product and norm

(u, v) :=
∫

R3
(∇u∇v + uv)dx, ‖u‖2 :=

∫

R3
(|∇u|2 + u2)dx.

• D is the completion of C∞
c (R3) with respect to the norm

‖u‖D =

(∫

R3
(|∇u|2 + |∆u|2)dx

) 1
2



4 K. Teng and Y. Yan

• Lq(O), 1 ≤ q ≤ ∞, O ⊆ R
3 a measurable set, denotes the Lebesgue space, the norm in Lq(O) is

denoted by | · |Lq(O) when O is a proper measurable subset of R
3 and by | · |q when O = R

3.

• BR(y) denotes the ball of radius R centered at y, if y = 0, we denote it by BR.

• c, ci, C, Ci, . . . denote a number of positive constants.

In what follows, without any loss of generality we assume V∞ = Q∞ = 1.

From [3], we know that for u ∈ H1(R3), there exists a unique φ ∈ D, denoted by φK
u , such that

−∆φ + ∆2φ = K(x)u2 and it possesses the explicit formula

φK
u (x) := φ(x) =

∫

R3

(1 − e−|x−z|)
4π|x − z| K(z)u2(z)dz, x ∈ R

3. (2.1)

Replacing φ by φK
u in the first equation in system (1.5), then this system reduces to a class of Schrödinger

equation

− ∆u + (V∞ + a(x))u + K(x)φK
u u = (Q∞ − b(x))|u|p−1u in R

3. (2.2)

The energy functional I : H1(R3) → R corresponding to equation (2.2) is defined as

I(u) =
1

2

∫

R3
|∇u|2 + (V∞ + a(x))u2 dx +

1

4

∫

R3
K(x)φK

u u2 dx − 1

p + 1

∫

R3
(Q∞ − b(x))|u|p+1 dx,

clearly, I ∈ C1(H1(R3), R) and its critical points are weak solutions of problem (2.2). Therefore, in
order to find the solutions of system (1.5), we only need to seek the critical points of functional I. In
other words, if u ∈ H1(R3) is a critical point of I, then (u, φu) is a weak solution for system (1.5).

Now, by Lemma 3.4 in [3] and applying a similar argument as in Proposition 2.2 of [12], we can
show some properties of φu.

Proposition 2.1. For each u ∈ H1(R3), the following statements hold:

(i) φK
u ∈ D →֒ L∞(R3);

(ii) φK
u ≥ 0;

(iii) For every s ∈ (3,+∞], φK
u ∈ Ls(R3) ∩ C0(R

3);

(iv) For every s ∈ ( 3
2 ,+∞], ∇φK

u ∈ Ls(R3) ∩ C0(R
3);

(v) φK
tu = t2φK

u ;

(vi) |φK
u |6 ≤ c‖u‖2;

(vii) For every y ∈ R
3, φK

u(·+y) = φ
K(·−y)
u (·+ y);

(viii) If un ⇀ u in H1(R3), then

φK
un

→ φK
u in D,

∫

R3
K(x)φK

un
u2

n dx →
∫

R3
K(x)φK

u u2 dx

and ∫

R3
K(x)φK

un
un ϕ dx →

∫

R3
K(x)φK

u uϕ dx ∀ ϕ ∈ H1(R3).

Proof. We only need to verify that (iii), (iv) and (viii) hold true.

Observe that Ku2 ∈ Lr(R3) for r ∈ [1, 3
2 ) owing to K ∈ L2(R3) and u ∈ H1(R3). By (ii) of Lemma

3.3 in [3], we know that φK
u ∈ Lq(R3) for q ∈ ( 3r

3−2r ,+∞]. From 3r
3−2r ∈ [3,+∞) and using Lemma 2.20

in [18], we see that φK
u ∈ Ls(R3) ∩ C0(R

3). Similarly, we can get (iv).
(viii) For all u ∈ H1(R3), consider the linear functional Lu : D → R

3 defined by

Lu(v) =
∫

R3
K(x)u2v dx,
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by the definition of φK
u , we have ‖φK

u ‖D = ‖Lu‖L(D,R). Therefore we intend to show that as n → ∞

‖Lun −Lu‖L(D,R) → 0.

Let ε > 0 be fixed, there exists a positive number Rε so large that |K|L2(R3\B(0,Rε))
< ε. Therefore

for v ∈ D(R3), we have

|Lun(v)−Lu(v)| =
∫

R3
K(u2

n − u2)v dx

≤
∫

R3\B(0,Rε)
K|u2

n − u2||v|dx +
∫

B(0,Rε)
K|u2

n − u2||v|dx

≤ |K|L2(R3\B(0,Rε))
|u2

n − u2|3|v|6 +
[∫

B(0,Rε)
K

6
5 |u2

n − u2| 6
5 dx

] 5
6

|v|6

≤
[

εc +

[∫

B(0,Rε)
K

6
5 |un + u| 6

5 |un − u| 6
5 dx

] 5
6

]
‖v‖D

Since un ⇀ u in H1(R3), we know that un → u in L
12
5

loc(R
3). Furthermore, set BM =

{
x ∈ B(0, Rε) :

K(x) > M
}

and remark being K ∈ L2(R3), |BM| → 0 as M → ∞. Therefore, for large M,
(∫

BM
K2
) 3

5
< ε. So we have

∫

B(0,Rε)
K

6
5 |un + u| 6

5 |un − u| 6
5 dx

=
∫

BM

K
6
5 |un + u| 6

5 |un − u| 6
5 dx +

∫

B(0,Rε)\BM

K
6
5 |un + u| 6

5 |un − u| 6
5 dx

≤
∫

BM

|K2| 3
5

(∫

R3
|un + u|6

) 1
5
(∫

R3
|un − u|6

) 1
5

dx

+ M
6
5

(∫

B(0,Rε)
|un + u| 12

5 dx

) 1
2
(∫

B(0,Rε)
|un − u| 12

5 dx

) 1
2

≤ cε + o(1).

Therefore φK
un

→ φK
u in D. And

∫

R3
(K(x)φK

un
u2

n − K(x)φK
u u2)dx =

∫

R3
K(x)(u2

n − u2))φK
un

dx +
∫

R3
K(x)u2(φK

un
− φK

u )dx.

Similar to the proof of the above, we can show that
∫

R3
K(x)(u2

n − u2))φK
un

= o(1).

Because when n → ∞, φK
un

→ φK
u , and by (H3) we know that

∫

R3
K(x)u2(φK

un
− φK

u )dx ≤ |K|2|u2|3|φK
un

− φK
u |6 = o(1).

Finally,
∫

R3
(K(x)φK

un
un ϕ − K(x)φK

u uϕ)dx =
∫

R3
(K(x)ϕun)(φ

K
un

− φK
u )dx +

∫

R3
(K(x)ϕφK

u )(un − u)dx.

This can be easily proved similar to the above.

It is not difficult to verify that the functional I is bounded neither from above nor from below in
H1(R3). Indeed, there exists t ∈ R

+ such that tu ∈ H1(R3) satisfies

I(tu) =
t2

2

∫

R3
|∇u|2 + (V∞ + a(x))u2 dx +

t4

4

∫

R3
K(x)φK

u u2 dx − tp+1

p + 1

∫

R3
(Q∞ − b(x))|u|p+1 dx.
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Since p > 3, limt→+∞ I(tu) = −∞. On the other hand, for some α, β ∈ R and for any t > 0, we have

I(tαu(tβx)) =
1

2

∫

R3
t2α+2β|∇u(tβx)|2 + (V∞ + a(x))t2α|u(tβx)|2 dx

+
t4α

4

∫

R3
K(x)φK

u u(tβx)2 dx − t(p+1)α

p + 1

∫

R3
(Q∞ − b(x))|u(tβx)|p+1 dx

=
1

2

∫

R3
t2α+2β−3β|∇u|2 +

(
V∞ + a

( x

tβ

))
t2α−3β|u|2 dx

+
t4α−3β

4

∫

R3
K
( x

tβ

)
φ

K( ·
tβ )

u u2 dx − t(p+1)α−3β

p + 1

∫

R3

(
Q∞ − b

( x

tβ

))
up+1 dx.

By (H1)–(H3), choosing α, β such that 2α − β > (p + 1)α − 3β, that is 2β > (p − 1)α. Particularly, we
chose that α = 1, β = p, then limt→+∞ I(tu) = +∞.

Naturally, we consider that the functional I restricted in the Nehari manifold N , that contains all
the critical points of I, is bounded from below, where

N :=
{

u ∈ H1(R3)\{0} : I′(u)[u] = 0
}

.

By using a standard argument, we can show the following lemma.

Lemma 2.2. Suppose that (H1)–(H3) hold, the following statements are true:

(i) There exists a positive constant c > 0 such that for all u ∈ N , there holds

|u|p+1 ≥ c > 0.

(ii) N is a C1 regular manifold diffeomorphic to the sphere of H1(R3).

(iii) I is bounded from below on N by a positive constant.

(iv) u is a free critical point of I if and only if u is a critical point of I constrained on N .

Proof. (i) Let u ∈ N , by (H1)–(H3) and Sobolev’s embedding theorem, we have that

c1|u|2p+1 ≤ ‖u‖2 ≤ ‖u‖2 +
∫

R3
a(x)u2 dx +

∫

R3
K(x)φK

u u2 dx

=
∫

R3
(Q∞ − b(x))|u|p+1 dx ≤ c2|u|p+1

p+1,
(2.3)

where c1, c2 > 0 independent of u, and owing to p > 3, this estimate implies that

|u|p+1 ≥ c > 0, ‖u‖ ≥ c > 0, ∀u ∈ N , (2.4)

where c > 0 independent of u.
(ii) It suffices to show that G′(u)[u] < 0 for u ∈ N , where G(u) = I′(u)[u]. Clearly, G ∈

C1(H1(R3), R). By (2.4), for any u ∈ N , we deduce that

G′(u)[u] = 2
∫

R3
|∇u|2 + (V∞ + a(x))u2 dx + 4

∫

R3
K(x)φK

u u2 dx

− (p + 1)
∫

R3
(Q∞ − b(x))|u|p+1 dx

= − (p − 1)
∫

R3
|∇u|2 + (V∞ + a(x))u2 dx − (p − 3)

∫

R3
K(x)φK

u u2 dx

≤ − (p − 3)C < 0,

(2.5)

where C > 0 is dependent of u. By applying the implicit function theorem, we see that N is of C1

manifold.
The remaining proofs of (ii), (iii) and (iv) are standard, we omit them.
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Now, the limit equation corresponding to problem (2.2) is defined as

− ∆u + V∞u = Q∞|u|p−1u in R
3. (2.6)

The energy functional I∞ : H1(R3) → R associated to problem (2.6) given by

I∞(u) =
1

2

∫

R3
|∇u|2 + V∞|u|2 dx − 1

p + 1

∫

R3
Q∞|u|p+1 dx

and it is easy to verify that I∞ ∈ C2(H1(R3), R). Denote the Nehari manifold of functional I∞ by

N∞ :=
{

u ∈ H1(R3)\(0) : I′∞(u)[u] = 0
}

.

Set
m∞ := inf

u∈N∞

I∞(u).

m∞ > 0 is achieved by a positive radially symmetric function ω, that is unique (up to translations)
positive solution of (2.6) (see [17]), decreasing when the radial coordinate increases and such that

lim
|x|→∞

|Djω(x)||x|e
√

V∞ |x| = dj > 0, j = 0, 1, dj ∈ R. (2.7)

Moreover, for any sign-changing critical point u of I∞, by standard argument, the following inequality
holds true

I∞(u) ≥ 2m∞. (2.8)

Now we are ready to consider the constrained minimization problem m := inf{I(u), u ∈ N}, we
find that the relation between least energy m and m∞ holds and it is not achieved, thus we can not look
for the ground state.

Proposition 2.3. Suppose that (H1)–(H3) hold. Then there holds

m = m∞ (2.9)

and the infimum is not achieved.

Proof. Let u ∈ N , then there exists tu > 0 such that tuu ∈ N∞. Thus, we deduce that

I(u) ≥ I(tuu) ≥ t2
u

2

∫

R3
(|∇u|2 + V∞u2)dx − t

p+1
u

p + 1

∫

R3
Q∞|u|p+1 dx = I∞(tuu) ≥ m∞

from which, we get m ≥ m∞.
Next, it suffices to find a sequence (un)n, un ∈ N , such that limn→∞ I(un) = m. For this purpose,

let us consider (yn)n, with yn ∈ R
3, |yn| → +∞ as n → ∞ and set un = tnωyn = tnω(x − yn), where

tn = t(ωyn) is such that un = tnωyn ∈ N . Since

I(un) =
t2
n

2

∫

R3
|∇ωyn |2 + (V∞ + a(x))ω2

yn
dx +

t4
n

4

∫

R3
K(x)φK

ωyn
ω2

yn
dx

− t
p+1
n

p + 1

∫

R3
(Q∞ − b(x))|ωyn |p+1 dx

=
t2
n

2

∫

R3
|∇ω|2 + (V∞ + a(x + yn))ω

2 dx +
t4
n

4

∫

R3
K(x + yn)φ

K(·+yn)
ω ω2 dx

− t
p+1
n

p + 1

∫

R3
(Q∞ − b(x + yn))|ω|p+1 dx,

and from (H1), (H2) and (H3), by Lebesgue dominated theorem, we can deduce that

lim
n→∞

∫

R3
a(x + yn)ω

2 = 0, lim
n→∞

∫

R3
b(x + yn))|ω|p+1 = 0,
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and

lim
n→∞

∫

R3
K(x + yn)φ

K(·+yn)
ω ω2 dx = 0.

Combining with tnωyn ∈ N , we have that 1 ≤ tn ≤ C, where C > 0 is a positive constant. Therefore,
from ω ∈ N∞ and p ∈ (3, 5), it follows that tn → 1 and thus I(un) → m∞.

To complete the proof, we argue by contradiction and we assume that v ∈ N exists such that
I(v) = m = m∞. Obviously, there exists tv > 0 such that tvv ∈ N∞, we have that

m∞ ≤ I∞(tvv) =

(
1

2
− 1

p + 1

)
‖tvv‖2

≤
(

1

2
− 1

p + 1

)
‖tvv‖2 +

(
1

4
− 1

p + 1

) ∫

R3
K(x)φK

tvv(tvv)2 dx

≤ I(tvv) ≤ I(v) = m = m∞

which implies that tv = 1 and
∫

R3
K(x)φK

v v2 dx = 0. (2.10)

Hence, v ∈ N∞ and I∞(v) = m∞. By the uniqueness of solution of problem (2.6), there exists y ∈ R
3

such that v(x) = ω(x − y) > 0, for every x ∈ R
3, which leads to

∫
R3 K(x)φK

v v2 dx > 0, contradicts with
(2.10).

In order to find a bound state in higher energy level in (m∞, 2m∞), the next results help us to recover
the compactness of the bounded (PS) sequence in (m∞, 2m∞). Following the proof of Lemma 4.5 in
[3], we can show the following splitting lemma.

Lemma 2.4 (Splitting lemma). Suppose that (H1)–(H3) hold. Let (un)n be a (PS) sequence of I constrained
on N , i.e. un ∈ N , and I(un) is bounded, ∇I|N (un) → 0 strongly in H1(R3). Then, up to a subsequence,
there exist a solution u of (2.2), a number k ∈ N ∪

{
0
}

, k functions u1, . . . , uk of H1(R3) and k sequences of

points (y
j
n)n, y

j
n ∈ R

3, 0 ≤ j ≤ k such that, as n → +∞,

(i) un − ∑
k
j=1 uj(· − y

j
n) → u in H1(R3);

(ii) I(un) → I(u) + ∑
k
j=1 I∞(uj);

(iii) |yj
n| → +∞, |yi

n − y
j
n| → +∞ if i 6= j;

(iv) uj are weak solution of (2.6).

Moreover, in the case k = 0, the above holds without uj.

In the end of this section, we recall a technical result for some estimates in the next section, its
proof is found in [4, 12].

Lemma 2.5. If g ∈ L∞(R3) and h ∈ L1(R3) are such that, for some α ≥ 0, b ≥ 0, γ ∈ R

lim
|x|→+∞

g(x)eα|x||x|b = γ and
∫

R3
|h(x)|eα|x||x|b dx < +∞,

then, for every z ∈ R
3 \ {0},

lim
ρ→+∞

(∫

R3
g(x + ρz)h(x)dx

)
eα|ρz||ρz|b = γ

∫

R3
h(x)e−α(x·z)/|z| dx.
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3 Proof of Theorem 1.1

Now, we turn to build tools and topological techniques to prove the existence of an higher energy
solution when (1.5) has no ground state solution. First we recall the definition of barycenter β :
H1(R3) \ {0} → R

3 of a function u ∈ H1(R3), u 6= 0, given in [13], set

µ(u)(x) =
1

|B1(0)|
∫

B1(x)
|u(y)|dy,

then µ(u) ∈ L∞(R3) and is continuous in H1(R3). Let

û(x) =

[
µ(u)(x)− 1

2
max µ(u)(x)

]+
,

it is easy to check that û ∈ C0(R
3) and then define β : H1(R3) \ {0} → R

3 as follows

β(u) =
1

|û|1

∫

R3
xû(x)dx ∈ R

3.

Since û has compact support, β is well defined and it is easy to verify the following properties:

(1) β is continuous in H1(R3) \ {0};

(2) if u is a radial function, β(u) = 0;

(3) for all t 6= 0 and for all u ∈ H1(R3) \ {0}, β(tu) = β(u);

(4) given z ∈ R
3 and setting uz(x) = u(x − z), β(uz) = β(u) + z.

By Proposition 2.3, we see that m can not be achieved, with the help of the barycenter mapping β,
we can add some refined constraint in the Nehari manifold N . For this purpose, define the following
minimization problem

B0 := inf
{

I(u) : u ∈ N , β(u) = 0
}

.

Clearly, we have m = m∞ ≤ B0. Furthermore, the strict inequality holds true.

Lemma 3.1. Suppose that (H1)–(H3) hold. Then

m = m∞ < B0

Proof. By contradiction, we assume that B0 = m∞, then there exists un ∈ N such that β(un) = 0,
I(un) → m∞ and ∇I|N (un) → 0. By the Ekeland’s variational principle (see Theorem 8.15 in [24]), a
sequence of (vn)n ∈ H1(R3) exists so that

vn ∈ N , I(vn) = m∞ + on(1) and |β(vn)− β(un)| = o(1). (3.1)

By Lemma 2.4, we have that

m∞ = I(un) + o(1) = I(u) + Σk
j=1 I∞(uj) + o(1).

Owing to I(u) ≥ m = m∞ and I∞(uj) ≥ m∞, we have that k = 0. Thus, vn → u. Since u is a nontrivial
solution of (1.5), we deduce that

I(u) = m∞, I′(u) = 0, β(u) = 0,

which means that m = m∞ is achieved, contradicts with Proposition 2.3. The proof is completed.

Lemma 3.2. The functional I constrained on N satisfies the Palais–Smale condition in (m∞, 2m∞).
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Proof. Let {un} be a Palais–Smale sequence of I|N such that I(un) → c ∈ (m∞, 2m∞). By Lemma 2.4,
we have that

c = I(un) + o(1) = I(u) + Σk
j=1 I∞(uj) + o(1).

The conclusion follows observing that any critical point ū of I is such that I(ū) ≥ m = m∞, any
solution of (2.6) verifies that I∞(u) ≥ m∞ and if it changes sign, I∞(u) ≥ 2m∞. Whatever any case, we
can obtain the sequence {un} strongly convergence in H1(R3). The compactness is proved.

Let ξ ∈ R
3 with |ξ| = 1 and Σ =

{
z ∈ R

3 : |z − ξ| = 2
}

. For ρ > 0 and (z, s) ∈ Σ × [0, 1], define

ψρ[z, s](x) := (1 − s)ωρz(x) + sωρξ(x) = (1 − s)ω(x − ρz) + sω(x − ρξ), x ∈ R
3,

where w is a unique radically symmetric positive solution of problem (2.6), then by virtue of standard
argument, there exist positive numbers tρ,z,s := tψρ [z,s] and τρ,z,s := τψρ [z,s] such that

ψρ[z, s] = tρ,z,sψρ[z, s] ∈ N , ψ∞,ρ[z, s] = τρ,z,sψρ[z, s] ∈ N∞. (3.2)

Remark 3.3. Note that ψρ[z, s] → ω(x − ρz) as s → 0 and ψρ[z, s] → ω(x − ρξ) as s → 1, moreover,

τρ,z,s → 1 as s → 0 or s → 1 due to ω(x − ρz) ∈ N∞ and ω(x − ρξ) ∈ N∞.

Lemma 3.4. For all ρ > 0, we have

B0 ≤ Tρ := max
Σ×[0,1]

I(ψρ[z, s]).

Proof. Observing that β(ψρ[z, 0]) = β(tρ,z,0ψρ[z, 0]) = β(tρ,z,0ωρz) = β(ωρz) = ρz and β(ψρ[z, 1]) = ρξ.
Let

G(z, s) = sρξ + (1 − s)ρz, (3.3)

then G(z, s) ∈ C(Σ × (0, 1]). Define a mapping by

h(t, z, s) = tG(z, s) + (1 − t)β(ψρ[z, s]), ∀t ∈ [0, 1], (3.4)

then h(t, z, s) ∈ C([0, 1]× Σ × (0, 1]) is continuous and

h(t, z, 0) = tρz + (1 − t)β(ψρ[z, 0]) = tρz + (1 − t)ρz = ρz 6= 0, ∀ z ∈ Σ

and
h(t, z, 1) = tρξ + (1 − t)β(ψρ[z, 1]) = tρξ + (1 − t)ρξ = ρξ 6= 0, ∀ z ∈ Σ

which implies that 0 6∈ h(t, ∂(Σ × (0, 1])), for every t ∈ [0, 1]. Therefore, by the homotopical invariance
of Brouwer degree, we get deg(h(t), Σ × (0, 1], 0) = constant. Thus

deg(h(0), Σ × (0, 1], 0) = deg(h(1), Σ × (0, 1], 0),

that is
deg(β(ψρ[z, s]), Σ × (0, 1], 0) = deg(G(s, z), Σ × (0, 1], 0).

Clearly, deg(G(z, s), Σ × (0, 1], 0) 6= 0. Thus, it follows from the solvable property of Brouwer degree
that there exists (z, s) ∈ Σ × (0, 1] such that β(ψρ[z, s]) = 0. Therefore, by the definition of B0, we have
that

B0 ≤ I(ψρ[z, s]) ≤ Tρ.

In order to show Tρ < 2m∞, we have to give some estimates from the decay of ω and coefficients
a(x), K(x) and b(x).

Lemma 3.5. Suppose that (H3) holds. There exists c > 0 such that for all ρ > 3R0, the following holds

∫

R3
K(x)φK

ωρζ
ω2

ρζ dx ≤ ce−
4
3

√
V∞ρ, for all ζ ∈ R

3 with |ζ| ≥ 1. (3.5)
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Proof. Let ρ > 3R0, then 1
3 ρ > R0 and if |y| ≤ 1

3 ρ and |ζ| ≥ 1, we have that |y − ρζ| ≥ ρ|ζ| − |y| ≥
ρ − 1

3 ρ = 2
3 ρ. Thus, by the exponential decay (2.7) of ω, 1−e−|x|

|x| ∈ Ls(R3) for all s ∈ (3,+∞] (see

Lemma 3.3 in [3]), Hölder’s inequality and (H3), we deduce that

φK
ωρζ

(x) =
1

4π

∫

R3

1 − e−|x−y|

|x − y| K(y)ω2(y − ρζ)dy

=
1

4π

(∫

|y|≤ 1
3 ρ

1 − e−|x−y|

|x − y| K(y)ω2(y − ρζ)dy +
∫

|y|> 1
3 ρ

1 − e−|x−y|

|x − y| K(y)ω2(y − ρζ)dy

)

≤ 1

4π



(∫

|y|≤ 1
3 ρ

K2(y)ω2(y − ρζ)dy

)1
2



∫

|y|≤ 1
3 ρ

(
1 − e−|x−y|

|x − y|

)4

dy




1
4(∫

|y|≤ 1
3 ρ

ω4(y − ρζ)dy

) 1
4

+
∫

|y|> 1
3 ρ

1 − e−|x−y|

|x − y| K(y)ω2(y − ρζ)dy




≤ c


e−

2
3

√
V∞ρ

(∫

|y|≤( 1
2−q)ρ

K2(y)dy

) 1
2



∫

R3

(
1 − e−|x−y|

|x − y|

)4

dy




1
4 (∫

R3
ω4(y − ρζ)dy

) 1
4

+ e−
2
3

√
V∞ρ

∫

|y|> 1
3 ρ

1 − e−|x−y|

|x − y| ω2
ρζ dy




≤ ce−
2
3

√
V∞ρ

(
C +

∫

|y|> 1
3 ρ

1 − e−|x−y|

|x − y| ω2
ρζ dy

)

≤ ce−
2
3

√
V∞ρ.

Thus, a similar computation gives

∫

R3
K(x)φK

ωρζ
(x)ω2

ρζ dx ≤ ce−
2
3

√
V∞ρ

∫

R3
K(x)ω2

ρζ dx

= ce−
2
3

√
V∞ρ

( ∫

|x|≤ 1
3 ρ

K(x)ω2
ρζ dx +

∫

|x|> 1
3 ρ

K(x)ω2
ρζ dx

)

≤ ce−
2
3

√
V∞ρ

[( ∫

|x|≤ 1
3 ρ

K2(x)ω2
ρζ dx

) 1
2
( ∫

|x|≤ 1
3 ρ

ω2
ρζ dx

) 1
2

+
∫

|x|> 1
3 ρ

K(x)ω2
ρζ dx

)

≤ ce−
2
3

√
V∞ρe−

2
3

√
V∞ρ = ce−

4
3

√
V∞ρ.

From (3.5), it is easy to very that

∫

R3
K(x)φK

ωρξ
ω2

ρξ dx = o(ρ−1e−
√

V∞ρ),
∫

R3
K(x)φK

ωρz
ω2

ρz dx = o(ρ−1e−
√

V∞ρ) (3.6)

and we denote ερ = ρ−1e−
√

V∞ρ for convenience. Moreover, we can obtain the following estimate:

Lemma 3.6. ∫

R3
K(x)φK

ψρ [z,s]ψ
2
ρ[z, s]dx = o(ερ), ∀ s ∈ [0, 1] and z ∈ Σ. (3.7)

Proof. Since

φK
ψρ [z,s] =

1

4π

∫

R3

1 − e−|x−y|

|x − y| K(y)ψ
2
ρ[z, s](y)dy ≤ 2φK

ωρz
+ 2φK

ωρξ



12 K. Teng and Y. Yan

and then
∫

R3
K(x)φK

ψρ [z,s]ψ
2
ρ[z, s]dx ≤ 2

∫

R3
K(x)φK

ψρ [z,s](ω
2
ρξ + ω2

ρz)dx

≤ 4
∫

R3
K(x)(φK

ωρz
+ φK

ωρξ
)(ω2

ρξ + ω2
ρz)dx

= 4
∫

R3
K(x)(φK

ωρz
ω2

ρz + φK
ωρξ

ω2
ρz + φK

ωρz
ω2

ρξ + φK
ωρξ

ω2
ρz)dx.

Now, similar to the proof of Lemma 3.5, we have that

∫

R3
K(x)φK

ωρz
ω2

ρξ(x)dx ≤ ce−
2
3

√
V∞ρ

∫

R3
K(x)ω2

ρξ(x)dx

= ce−
2
3

√
V∞ρ

( ∫

|x|≤ 1
3 ρ

K(x)ω2
ρξ(x)dx +

∫

|x|> 1
3 ρ

K(x)ω2
ρξ(x)dx

)

≤ ce−
2
3

√
V∞ρ

(( ∫

|x|≤ 1
3 ρ

K2(x)ω2
ρξ(x)dx

) 1
2
( ∫

|x|≤ 1
3 ρ

ω2
ρξ(x)dx

) 1
2

+
∫

|x|> 1
3 ρ

K(x)ω2
ρξ(x)dx

)

≤ ce−
2
3

√
V∞ρe−

2
3

√
V∞ρ = ce−

4
3

√
V∞ρ.

Thus, ∫

R3
K(x)φK

ωρz
ω2

ρξ(x)dx = o(ερ),

and the same argument leads to

∫

R3
K(x)φK

ωρξ
ω2

ρz(x)dx = o(ερ).

Therefore, from (3.6), the estimate (3.7) follows.

Next, we give some estimates which are used in the sequel.

Lemma 3.7. The following estimates hold:

∫

R3
ω

p
ρzωρξ dx = O(ε̃ρ) = o(ερ),

∫

R3
ω

p
ρξ ωρz dx = O(ε̃ρ) = o(ερ), (3.8)

∫

R3
a(x)ω2

ρz dx = o(ερ),
∫

R3
a(x)ω2

ρξ dx = o(ερ),
∫

R3
a(x)ψ

2
ρ[z, s]dx = o(ερ), (3.9)

∫

R3
b(x)|ψρ[z, s]|p+1 dx = o(ερ), (3.10)

where ε̃ρ = ρ−2e−2
√

V∞ρ.

Proof. (i) By (2.7), we can deduce that

∫

R3
ω

p
ρξ ωρz dx =

∫

R3
ωp(x − ρξ)ω(x − ρz)dx =

∫

R3
ωp(y)ω(y + ρ(ξ − z))dy

∼ c
∫

R3
|y + ρ(ξ − z)|−1e−

√
V∞ |y+ρ(ξ−z)|ωp(y) dy

In order to apply Lemma 2.5, let us set h(x) = ωp(x) ∈ L1(R3), g(x) = |x|−1e−
√

V∞ |x|, taking α =
√

V∞

and b = 1, clearly,

lim
|x|→+∞

g(x)|x|e
√

V∞ |x| = 1,

∫

R3
ωp(x)e

√
V∞ |x||x| dx ≤ c

∫

R3
e−(p−1)

√
V∞ |x||x|−(p−1) dx < +∞.
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By using Lemma 2.5 and z ∈ Σ (|ξ − z| = 2), we get that

lim
ρ→+∞

e
√

V∞ |ρ(ξ−z)||ρ(ξ − z)|
∫

R3
g(x + ρ(ξ − z))h(x)dx

= 2 lim
ρ→+∞

e2
√

V∞ρρ
∫

R3
g(x + ρ(ξ − z))h(x)dx

=
∫

R3
ωp(x)e

−√
V∞

x·(ξ−z)
|ξ−z| dx = c1,

which means that

lim
ρ→+∞

ρ2e2
√

V∞ρ
∫

R3
g(x + ρ(ξ − z))h(x)dx = c1. (3.11)

This means that ∫

R3
ω

p
ρξ ωρz dx = O(ε̃ρ) = o(ερ).

Similar argument as above we can show that

∫

R3
ω

p
ρzωρξ dx = O(ε̃ρ) = o(ερ).

(ii) By Hölder’s inequality, we have that

∫

R3
a(x)ω2

ρξ dx =
∫

R3
a(x)ω2(x − ρξ)dx ≤

(∫

R3
ω2(x − ρξ)dx

) 1
3
(∫

R3
a

3
2 ω2(x − ρξ)dx

) 2
3

≤ C

(∫

R3
a

3
2 ω2(x − ρξ)dx

) 2
3

∼
(∫

R3
a

3
2 |x − ρξ|−2e−2

√
V∞ |x−ρξ| dx

) 2
3

.

Taking α = 2
√

V∞, b = 2, h(x) = a
3
2 (x), g(x) = |x|−2e−2

√
V∞ |x| in Lemma 2.5, by (H4), it is easy to see

that ∫

R3
a

3
2 (x)|x|2e2

√
V∞ |x| dx < +∞ and lim

|x|→+∞
g(x)|x|2e2

√
V∞ |x| = 1.

Thus

lim
ρ→+∞

e2
√

V∞ |−ρξ|| − ρξ|2
∫

R3
a

3
2 (x)g(x − ρξ)dx = lim

ρ→+∞
ρ2e2

√
V∞ρ

∫

R3
a

3
2 (x)g(x − ρξ)dx

=
∫

R3
a

3
2 (x)e

−2
√

V∞
x·(−ξ)
|ξ| dx = c2,

which yields that

lim
ρ→+∞

(∫

R3
a

3
2 (x)g(x − ρξ)dx

) 2
3

= O(ρ−
4
3 e−

4
3

√
V∞ρ) = o(ρ−1e−

√
V∞ρ) = o(ερ).

Thus, we conclude that ∫

R3
a(x)ω2

ρξ dx = o(ερ).

Note that z ∈ Σ implies that 1 ≤ |z| ≤ 3, parallel to the above argument, we can get that

lim
ρ→+∞

ρ2|z|2e2
√

V∞ρ|z|
∫

R3
a

3
2 (x)g(x − ρz)dx =

∫

R3
a

3
2 (x)e

−2
√

V∞
x·(−z)
|z| dx = c3,

which leads to

lim
ρ→+∞

(∫

R3
a

3
2 (x)g(x − ρz)dx

) 2
3

= O(ρ−
4
3 e−

4
3

√
V∞ρ) = o(ρ−1e−

√
V∞ρ) = o(ερ).
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Thus, it follows that ∫

R3
a(x)ω2

ρz dx = o(ερ).

Since ∫

R3
a(x)ψ

2
ρ[z, s]dx =

∫

R3
a(x)[(1 − s)ωρz + sωρξ ]

2 dx ≤ 2
∫

R3
a(x)[ω2

ρz + ω2
ρξ ]dx,

according to the two estimates which have been proved, it is easily to get

∫

R3
a(x)ψ

2
ρ[z, s]dx = o(ερ).

(iii) By (H2), we can easily check that b(x)ω
p−1
ρξ ∈ L

3
2 (R3) and b(x)ω

p−1
ρz ∈ L

3
2 (R3). In view of

(H4), b(x) ∈ L∞(R3) and ω(x) ∈ L∞(R3), we have that

∫

R3
b

3
2 (x)ω

3(p−1)
2

ρz |x|2e2
√

V∞ |x| dx ≤ C
∫

R3
b(x)|x|2e2

√
V∞ |x| dx < +∞.

Similar argument as the proof of (ii), we can show that

∫

R3
b(x)ω

p+1
ρξ dx = o(ερ),

∫

R3
b(x)ω

p+1
ρz dx = o(ερ).

Owing to

∫

R3
b(x)|ψρ[z, s]|p+1 dx =

∫

R3
b(x)[(1 − s)ωρz + sωρξ ]

p+1 dx

≤ 2p
∫

R3
b(x)(ω

p+1
ρz + ω

p+1
ρξ )dx,

we conclude that (3.10) follows.

Lemma 3.8. Suppose that (H1)–(H4) hold. Let tρ,z,s and τρ,z,s be the number defined in (3.2). Then there exists
a constant C > 0 such that

0 < tρ,z,s ≤ C, ∀ρ > 0, ∀(z, s) ∈ Σ × [0, 1]. (3.12)

Moreover,

tρ,z,s = τρ,z,s + o(ερ). (3.13)

Proof. Observing that

0 <
1

2

(∫

B1(0)
|∇ω|2 + ω2

) 1
2

≤ ‖ψρ[z, s]‖ ≤ ‖ωρz‖+ ‖ωρξ‖ = 2‖ω‖ (3.14)

and

0 <
1

2

(∫

B1(0)
ωp+1

) 1
p+1

≤ |ψρ[z, s]|p+1 ≤ 2p(|ωρz|p+1 + |ωρξ |p+1) = 2p+1|ω|p+1. (3.15)

Since tρ,z,sψρ[z, s] ∈ N , we have that

t2
ρ,z,s

(
‖ψρ[z, s]‖2 +

∫

R3
a(x)ψ

2
ρ[z, s]dx

)
+ t4

ρ,z,s

∫

R3
K(x)φK

ψρ [z,s]ψ
2
ρ[z, s]dx

− t
p+1
ρ,z,s

∫

R3
(Q∞ − b(x))|ψρ[z, s]|p+1 dx = 0.

(3.16)

By (3.14), (3.15) and (3.16), it is easy to check that (3.12) holds. Thus, by (3.6), we have that

t2
ρ,z,s

∫

R3
K(x)φK

ψρ [z,s]ψ
2
ρ[z, s]dx = o(ερ). (3.17)
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By (3.16), we have that

t
p−1
ρ,z,s =

‖ψρ[z, s]‖2

∫
R3(Q∞ − b(x))|ψρ[z, s]|p+1 dx

+

∫
R3 a(x)ψ

2
ρ[z, s]dx + t2

ρ,z,s

∫
R3 K(x)φK

ψρ [z,s]
ψ

2
ρ[z, s]dx

∫
R3(Q∞ − b(x))|ψρ[z, s]|p+1 dx

.

Therefore, by (3.17), (3.9), (3.10) and τρ,z,sψρ[z, s] ∈ N∞, we deduce that

t
p−1
ρ,z,s =

‖ψρ[z, s]‖2

∫
R3 Q∞|ψρ[z, s]|p+1 dx

+ o(ερ) = τ
p−1
ρ,z,s + o(ερ)

which yields the conclusion. The proof is completed.

Lemma 3.9. Suppose that (H1)–(H4) hold. Then there exists ρ0 such that, for all ρ > ρ0,

Tρ = max
Σ×[0,1]

I(ψρ[z, s]) < 2m∞.

Proof. By (3.2), (3.9), (3.13), (3.14) and (3.17), for any (z, s) ∈ Σ × [0, 1], we deduce that

I(ψρ[z, s]) =

(
1

2
− 1

p + 1

)
‖tρ,z,sψρ[z, s]‖2 +

(
1

2
− 1

p + 1

)
t2
ρ,z,s

∫

R3
a(x)|ψρ[z, s]|2 dx

+

(
1

4
− 1

p + 1

)
t4
ρ,z,s

∫

R3
K(x)φK

ψρ [z,s]|ψρ[z, s]|2 dx

=

(
1

2
− 1

p + 1

)
‖tρ,z,sψρ[z, s]‖2 + o(ερ)

=

(
1

2
− 1

p + 1

)
‖τρ,z,sψρ[z, s]‖2 +

(
1

2
− 1

p + 1

)
(t2

ρ,z,s − τ2
ρ,z,s)‖ψρ[z, s]‖2 + o(ερ)

=

(
1

2
− 1

p + 1

)
‖τρ,z,sψρ[z, s]‖2 + o(ερ)

=

(
1

2
− 1

p + 1

)( ‖ψρ[z, s]‖2

|ψρ[z, s]|2p+1

) p+1
p−1

+ o(ερ)

= I∞(ψ∞,ρ[z, s]) + o(ερ)

(3.18)

By direction computation, we have that

‖ψρ[z, s]‖2 = (ψρ[z, s], ψρ[z, s])H1(R3) = [(1 − s)2 + s2]‖ω‖2 + 2s(1 − s)(ωρξ , ωρz)H1(R3). (3.19)

Since ωρξ is a positive solution of problem (2.6), it follows that

(ωρξ , ωρz)H1(R3) =
∫

R3
ω

p
ρξ ωρz dx := Aρ.

By (3.19), we see that

‖ψρ[z, s]‖2 = (ψρ[z, s], ψρ[z, s])H1(R3) = [(1 − s)2 + s2]‖ω‖2 + 2s(1 − s)Aρ. (3.20)

According to the following equality:

(a + b)p+1 ≥ ap+1 + bp+1 + (p + 1)(apb + abp), for all a, b ∈ R
+ and p ≥ 2,

we have that

|ψρ[z, s]|p+1
p+1 =

∫

R3
[(1 − s)ωρz + sωρξ ]

p+1

≥ [(1 − s)p+1 + sp+1]|ω|p+1
p+1 + (p + 1)[(1 − s)ps + (1 − s)sp]Aρ.

(3.21)
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When s or (1 − s) is small enough, ψ∞,ρ[z, s] tends to ωρz or ωρξ . Then

I∞(ψ∞,ρ[z, s]) → m∞.

Therefore there exists δ > 0 such that for min{s, 1 − s} ≤ δ,

I∞(ψ∞,ρ[z, s]) < 2m∞.

In what follows we assume that min{s, 1 − s} ≥ δ, by virtue of (3.20) and (3.21), we get that

‖ψρ[z, s]‖2

|ψρ[z, s]|2p+1

≤ [(1 − s)2 + s2]‖ω‖2 + 2s(1 − s)Aρ

([(1 − s)p+1 + sp+1]|ω|p+1
p+1 + (p + 1)[(1 − s)ps + (1 − s)sp]Aρ)

2
p+1

=
[(1 − s)2 + s2]

((1 − s)p+1 + sp+1)
2

p+1

‖ω‖2

|ω|2p+1

×
1 + 2s(1−s)

((1−s)2+s2)‖ω‖2 Aρ

(
1 + (p+1)((1−s)ps+(1−s)sp)

(1−s)p+1+sp+1

Aρ

|ω|p+1
p+1

) 2
p+1

≤ [(1 − s)2 + s2]

((1 − s)p+1 + sp+1)
2

p+1

‖ω‖2

|ω|2p+1

1 + 2s(1−s)
(1−s)2+s2

Aρ

‖ω‖2

1 + 2((1−s)ps+(1−s)sp)
(1−s)p+1+sp+1

Aρ

|ω|p+1
p+1

.

(3.22)

Notice that we have the following inequalities:

s(1 − s)

(1 − s)2 + s2
<

(1 − s)ps + (1 − s)sp

(1 − s)p+1 + sp+1
for 0 < s < 1,

[(1 − s)2 + s2]

((1 − s)p+1 + sp+1)
2

p+1

< 2
p−1
p+1 for 0 ≤ s < 1.

Then

I∞(ψ∞,ρ[z, s])

≤
(

1

2
− 1

p + 1

)(
[(1 − s)2 + s2]

((1 − s)p+1 + sp+1)
2

p+1

‖ω‖2

|ω|2p+1

) p+1
p−1




1 + 2s(1−s)
(1−s)2+s2

Aρ

‖ω‖2

1 + 2((1−s)ps+(1−s)sp)
(1−s)p+1+sp+1

Aρ

|ω|p+1
p+1




p+1
p−1

≤
(

1

2
− 1

p + 1

)(
[(1 − s)2 + s2]

((1 − s)p+1 + sp+1)
2

p+1

‖ω‖2

|ω|2p+1

) p+1
p−1

< 2

(
1

2
− 1

p + 1

)
|ω|p+1

p+1

= 2m∞.

Therefore we see that the conclusion follows.

Lemma 3.10. There exists ρ1 > 0 such that

Aρ := max
{

I(ψρ[z, 0]) : z ∈ Σ
}
< B0, ∀ρ > ρ1. (3.23)

Proof. Observing that ψρ[z, 0] = tρ,z,0ψρ[z, 0] and ψρ[z, 0] = ωρz. We claim that

lim
ρ→+∞

I(tρ,z,0ωρz) = m∞.
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Indeed, by (3.6), (3.9) and (3.10), we deduce that

I(tρ,z,0ωρz) =
t2
ρ,z,0

2

∫

R3
|∇ωρz|2 + (V∞ + a(x))ω2

ρz dx +
t4
ρ,z,0

4

∫

R3
K(x)φK

ωρz
ω2

ρz dx

−
t

p+1
ρ,z,0

p + 1

∫

R3
(Q∞ − b(x))|ωρz|p+1 dx

=
t2
ρ,z,0

2

∫

R3
|∇ωρz|2 + V∞ω2

ρz dx −
t

p+1
ρ,z,0

p + 1

∫

R3
Q∞|ωρz|p+1 dx + o(ερ)

=
τ2

ρ,z,0

2

∫

R3
|∇ωρz|2 + V∞ω2

ρz dx −
τ

p+1
ρ,z,0

p + 1

∫

R3
Q∞|ωρz|p+1 dx + o(ερ)

= I∞(τρ,z,0ωρz) + o(ερ).

Owing to τρ,z,0ωρz ∈ N∞, thus I∞(τρ,z,0ωρz) → m∞ as ρ → +∞. By Lemma 3.1, (3.23) follows.

Proof of Theorem 1.1. From Proposition 2.3, we see that m = m∞ and m is not achieved and the
problem cannot be solved by minimization. However we are now going to prove the existence of a
positive solution of (1.3) having energy greater than m∞, through using the deformation argument. For
this purpose, we denote Ic =

{
u ∈ N : I(u) ≤ c

}
, c ∈ R.

By Lemma 3.1, Lemma 3.4, Lemma 3.9 and Lemma 3.10, the following chain of inequality holds

m∞ < Aρ < B0 ≤ Tρ < 2m∞, for all ρ > max{3R0, ρ0, ρ1}.

We aim at showing that there exists a Palais–Smale sequence of the functional I constrained on N at
level c∗ ∈ [B0, Tρ]. If this is done, the existence of a nontrivial critical point u with I(u) < 2m∞ follows
from Lemma 3.2.

Assume by contradiction, that no Palais–Smale sequence exists in [B0, Tρ]. By using the usual

deformation arguments ([23]), there exist a number δ > 0 and a continuous function η : ITρ → IB0−δ

such that B0 − δ > Aρ and η(u) = u for all u ∈ IB0−δ. Let us define the map H : Σ × [0, 1] → R
3 by

H(z, s) = β ◦ η ◦ ψρ[z, s]. Lemma 3.10 tells us that ψρ[z, 0] ⊂ IAρ ⊂ IB0−δ, thus η(ψ[z, 0]) = ψ[z, 0] and
then β ◦ η ◦ ψρ[z, 0] = β(ψ[z, 0]) = ρz. Define h(t, z, s) = tG(z, s) + (1 − t)H(z, s) : [0, 1]× Σ × (0, 1] →
R

3„ where G is defined in Lemma 3.4. Clearly, h ∈ C([0, 1]× Σ × (0, 1]) and for all t ∈ [0, 1], z ∈ Σ, we
have that h(t, z, 0) = ρz 6= 0, that is 0 6∈ h(t, ∂(Σ × (0, 1])). Similar to the proof of Lemma 3.4, we get
that there exists (z̄, s̄) ∈ Σ × (0, 1] such that

β ◦ η ◦ ψρ[z̄, s̄] = 0. (3.24)

According to Lemma 3.4, we know that Ψρ[z, s] ∈ ITρ and then by the properties of η, we have that

η ◦ ψ[z, s] ∈ IB0−δ, ∀(z, s) ∈ Σ × [0, 1]. (3.25)

Clearly, η ◦ ψ[z, s] ∈ N , ∀(z, s) ∈ Σ × [0, 1], in particularly, η ◦ ψ[z̄, s̄] ∈ N , combining with (3.24) and
by the definition of B0, we see that I(η ◦ ψρ[z̄, s̄]) ≥ B0, contradicts with (3.25).

Let u ∈ ITρ be a critical point we have found. To show that u is a constant sign function, we assume
by contradiction that u = u+ + u− with u± 6= 0. Similar to the proof of Lemma 2.1, Lemma 2.2 and
Lemma 2.3 in [16], we conclude that there exists 0 < tu+ < 1 and 0 < tu− < 1 such that tu±u± ∈ N .
Thus, by Proposition 2.3, we obtain that

2m∞ = 2m ≤ I(tu+u+) + I(tu−u−) ≤ I(tu+u+ + tu−u−) < I(u+ + u−) = I(u).

which is contrary with I(u) < 2m∞.
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Abstract. In this paper, we prove existence and uniqueness of solutions of Volterra–
Stieltjes integral equations using the Henstock–Kurzweil integral. Also, we prove that
these equations encompass impulsive Volterra–Stieltjes integral equations and prove
the existence and uniqueness for these equations. Finally, we present some examples to
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1 Introduction

In this paper, we are interested in the study of integral equations that can be modeled in the
form

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ], (1.1)

where the integral on the right-hand side is in the sense of Henstock–Kurzweil–Stieltjes [22].
This class of equations plays an important role from the theoretical point of view as well as
for applications, since they subsumes many types of well known mathematical models. As a
matter of fact, they can be used to model different problems such as anomalous diffusion pro-
cesses, heat conduction with memory and diffusion of fluids in porous media, among others.
See [3, 5, 7, 20, 21] for instance. On the other hand, the subject of Volterra integral equations
has been attracting the attention by several researchers, since they represent a powerful tool
for applications. See, for instance, [1, 4, 6, 8, 9, 14, 17].

BCorresponding author. Email: carlos.lizama@usach.cl
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It is worth noticing that depending on the choice of the kernel a : [t0, t0 + σ]× [t0, t0 + σ] →

R, we can study in an unified way a very general class of problems. For instance, if a(t, s) = 1
for all (t, s) ∈ [t0, t0 + σ] × [t0, t0 + σ], then equation (1.1) reduces to the classical measure
differential equation, which is very well-developed in the literature (see [12]). On the other
hand, if a(t, s) = k(t − s) for all (t, s) ∈ [t0, t0 + σ]× [t0, t0 + σ], then the integral equation (1.1)
reduces to a Volterra integral equation which have many applications to the study of heat flow
in the materials of fading memory type (see [7, 20, 21]), among others.

In the present paper, our goal is to prove existence and uniqueness results for the integral
equation (1.1) under very weak conditions for the functions f , a and g. These results are more
general than the ones presented in the literature, since the required conditions allow that
either the function f in (1.1) be highly oscillating, or the functions a, f and g that appear in
(1.1) may have a countable number of discontinuities. Also, we present three examples to
illustrate our results.

Further, we prove that under certain assumptions the integral equation given by (1.1) can
be regarded as an impulsive Volterra–Stieltjes integral equation described by

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (1.2)

These last equations can also be regarded as an impulsive Volterra ∆-integral equation on time
scales given by

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)∆s + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)), (1.3)

when g(t) = inf{s ∈ T : s ≥ t}. We only illustrate the first correspondence in this paper,
since it brings more complexity due to the kernel from Volterra–Stieltjes integral equation. On
the other hand, we have omitted the second one to turn the paper simpler and shorter, but
following similar steps from [12], it is possible to prove such correspondence.

This paper is organized as follows. In the second section, we present the basic concepts
and properties concerning the Henstock–Kurzweil–Stieltjes integral which is the main tool to
prove our results. In the third section, we investigate the Volterra–Stieltjes integral equations
and we prove a result concerning the existence and uniqueness of solutions of these equations.
The last section is devoted to present a correspondence between Volterra–Stieltjes integral
equations and impulsive Volterra–Stieltjes equations and also, to prove a result concerning
existence and uniqueness of solutions for these last equations.

2 Henstock–Kurzweil–Stieltjes integral

In this section, we recall some properties concerning the Henstock–Kurzweil–Stieltjes integral.
See [22] for more details.

Let [a, b] be an interval of R, −∞ < a < b < +∞. A tagged division of [a, b] is a finite
collection of point-interval pairs D = (τi, [si−1, si]), where a = s0 6 s1 6 . . . 6 s|D| = b is a
division of [a, b] and τi ∈ [si−1, si], i = 1, 2, . . . , |D|, where the symbol |D| denotes the number
of subintervals in which [a, b] is divided.
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A gauge on a set B ⊂ [a, b] is any function δ : B → (0, ∞). Given a gauge δ on [a, b], we say
that a tagged division D = (τi, [si−1, si]) is δ-fine if for every i ∈ {1, 2, . . . , |D|}, we have

[si−1, si] ⊂ (τi − δ(τi), τi + δ(τi)).

A function f : [a, b] → R is called Henstock–Kurzweil–Stieltjes integrable on [a, b] with
respect to a function g : [a, b] → R, if there is an element I ∈ R such that for every ε > 0, there
is a gauge δ : [a, b] → (0, ∞) such that

∣
∣
∣
∣
∣

|D|

∑
i=1

f (τi) (g(si)− g(si−1))− I

∣
∣
∣
∣
∣
< ε,

for all δ–fine tagged partition of [a, b]. In this case, I is called Henstock–Kurzweil–Stieltjes in-
tegral of f with respect to g over [a, b] and it will be denoted by

∫ b
a f (s)dg(s), or simply

∫ b
a f dg.

The Henstock–Kurzweil–Stieltjes integral has the usual properties of linearity, additivity
with respect to adjacent intervals, integrability on subintervals (see [22]).

We recall the reader that a function f : [a, b] → R is called regulated if the lateral limits

f (t−) = lim
s→t−

f (s), t ∈ (a, b] and f (t+) = lim
s→t+

f (s), t ∈ [a, b)

exist. The space of all regulated functions f : [a, b] → R will be denoted by G([a, b], R), which
is a Banach space when endowed with the usual supremum norm

‖ f ‖∞ = sup
s∈[a,b]

| f (s)| .

Given a regulated function f : [a, b] → R, we will use the notations ∆+ f (t) and ∆− f (t)

throughout this paper to denote

∆+ f (t) := f (t+)− f (t) and ∆− f (t) := f (t)− f (t−),

respectively.
The next result ensures the existence of the Henstock–Kurzweil–Stieltjes integral. We ob-

serve that the inequalities follow from the definition of the Henstock–Kurzweil–Stieltjes inte-
gral. This result can be found in [22, Corollary 1.34].

Theorem 2.1. Let f : [a, b] → R be a regulated function on [a, b] and g : [a, b] → R be a nondecreas-

ing function. Then the following conditions hold.

(i) The integral
∫ b

a f (s)dg(s) exists;

(ii)
∣
∣
∣

∫ b
a f (s)dg(s)

∣
∣
∣ 6

∫ b
a | f (s)|dg(s) 6 ‖ f ‖∞ (g(b)− g(a)).

The following inequalities follow directly from the definition of the Henstock–Kurzweil–
Stieltjes integral. A similar version was proved in [2, Theorem 7.20] for the case of the
Riemann–Stieltjes integral. We omit its proof here, since it is similar to the proof of [2].

Theorem 2.2. Let f1, f2 : [a, b] → R be Henstock–Kurzweil–Stieltjes integrable functions on the

interval [a, b] with respect to a nondecreasing function g : [a, b] → R and such that f1(t) 6 f2(t), for

t ∈ [a, b]. Then
∫ b

a
f1(s)dg(s) 6

∫ b

a
f2(s)dg(s).
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The next result is an immediate consequence of Theorem 2.2.

Corollary 2.3. Let f : [a, b] → R be Henstock–Kurzweil–Stieltjes integrable function on the interval

[a, b] with respect to a nondecreasing function g : [a, b] → R and such that f (t) > 0, for t ∈ [a, b].
Then

(i)
∫ b

a f (s)dg(s) > 0.

(ii) The function [a, b] ∋ t 7→
∫ t

a f (s)dg(s) is nondecreasing.

In the sequel, we present a Gronwall–type inequality. See [22, Corollary, 1.43].

Lemma 2.4. Let g : [a, b] → [0, ∞) be a nondecreasing and left-continuous function, k > 0 and l > 0.
Assume that ψ : [a, b] → [0, ∞) is bounded and satisfies

ψ(ξ) 6 k + l
∫ ξ

a
ψ(s)dg(s), ξ ∈ [a, b].

Then ψ(ξ) 6 kel(g(ξ)−g(a)) for all ξ ∈ [a, b].

The following result, which describes some properties of the indefinite Henstock–Kurzweil–
Stieltjes integral, is a special case of [22, Theorem 1.16].

Theorem 2.5. Let f : [a, b] → R and g : [a, b] → R be a pair of functions such that g is regulated

and
∫ b

a f (s)dg(s) exists. Then the function

h(t) =
∫ t

a
f (s)dg(s), t ∈ [a, b]

is regulated on [a, b] and satisfy

h(t+) = h(t) + f (t)∆+g(t), t ∈ [a, b),

h(t−) = h(t)− f (t)∆−g(t), t ∈ (a, b].

The following assertion is a Substitution Theorem for the Henstock–Kurzweil–Stieltjes in-
tegral. It can be found in [19, Theorem 2.19].

Theorem 2.6. Assume the function h : [a, b] → R is bounded and that the integral
∫ b

a f (s)dg(s)

exists. If one of the integrals

∫ b

a
h(t)d

(∫ t

a
f (ξ)dg(ξ)

)

,
∫ b

a
h(t) f (t)dg(t),

exists, then the other one exists as well, in which case the equality below holds

∫ b

a
h(t)d

(∫ t

a
f (ξ)dg(ξ)

)

=
∫ b

a
h(t) f (t)dg(t).

Now we present a result which is a type of the Dominated Convergence Theorem for
Henstock–Kurzweil–Stieltjes integrals. See [22, Corollary 1.32].
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Theorem 2.7. Let g : [a, b] → R be a nondecreasing function on [a, b]. Assume that ϕn : [a, b] → R

are functions such that the integral
∫ b

a ϕn(s)dg(s) exists for all n ∈ N. Suppose that for all s ∈ [a, b],

we have limn→∞ ϕn(s) = ϕ(s) and that for n ∈ N, s ∈ [a, b] the inequalities κ(s) 6 ϕn(s) 6 ω(s)

hold, where ω, κ : [a, b] → R are functions such that the integrals
∫ b

a κ(s)dg(s) and
∫ b

a ω(s)dg(s)

exist. Then the integral
∫ b

a ϕ(s)dg(s) exists and

lim
n→∞

∫ b

a
ϕn(s)dg(s) =

∫ b

a
ϕ(s)dg(s).

The following lemma is a direct consequence of G([a, b], R
n) being a Banach space.

Lemma 2.8. If a sequence {xk}
∞
k=1 of regulated functions (from [a, b] to R) converges uniformly on

the interval [a, b] to a function x : [a, b] → R, then this function is also regulated on [a, b].

We recall the reader that a set A ⊂ G([a, b], R) is called equiregulated, if it has the following
property: for every ε > 0 and t0 ∈ [a, b], there is a δ > 0 such that

(1) if x ∈ A, s ∈ [a, b] and t0 − δ < s < t0, then |x(t0−)− x(s)| < ε,

(2) if x ∈ A, s ∈ [a, b] and t0 < s < t0 + δ, then |x(t0+)− x(s)| < ε.

The next result describes a necessary and sufficient condition for a subset of G([a, b], R) to
be relatively compact, which is an immediate consequence of [15, Theorem 2.18]. We remark
that even though the result in [15] requires v to be an increasing function, it is enough to
assume that v is nondecreasing and let ϑ(t) := v(t) + t, t ∈ [a, b], to see that the original
assumption is satisfied.

Theorem 2.9. The following conditions are equivalent.

(i) A ⊂ G([a, b], R) is relatively compact.

(ii) The set {x(a) : x ∈ A} is bounded and there is a nondecreasing function v : [a, b] → R such

that

|x(τ2)− x(τ1)| 6 v(τ2)− v(τ1),

for all x ∈ A and all a 6 τ1 6 τ2 6 b.

The following lemma will be crucial to prove that an impulsive Volterra integral equation
can always be transformed to a Volterra integral equation without impulses. This result can
be found in [12, Lemma 2.4].

Lemma 2.10. Let m ∈ N, a 6 t1 < t2 < · · · < tm 6 b. Consider a pair of functions f : [a, b] → R

and g : [a, b] → R, where g is regulated, left-continuous on [a, b], and continuous at t1, . . . , tm. Let

f̃ : [a, b] → R and g̃ : [a, b] → R be such that f̃ (t) = f (t) for every t ∈ [a, b]\{t1, . . . , tm} and g̃ − g

is constant on each of the intervals [a, t1], (t1, t2], . . . , (tm−1, tm], (tm, b]. Then the integral
∫ b

a f̃ dg̃

exists if and only if the integral
∫ b

a f dg exists; in that case, we have

∫ b

a
f̃ (s)dg̃(s) =

∫ b

a
f (s)dg(s) + ∑

k∈{1,...,m},
tk<b

f̃ (tk)∆
+ g̃(tk).

The next result will be essential to prove the existence of solution of Volterra–Stieltjes
integral equations. It is a classical result of fixed point.

Theorem 2.11 (Schauder Fixed-Point Theorem). Let (E, ‖ · ‖) be a normed vector space, S a

nonempty convex and closed subset of E and T : S → S is a continuous function such that T(S)

is relatively compact. Then T has a fixed point in S.
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3 Volterra–Stieltjes integral equations

In this section, our goal is to study the following type of equation

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ], t0 ∈ R,

where the Henstock–Kurzweil–Stieltjes integral on the right–hand side is taken with respect
to a nondecreasing function g : [t0, t0 + σ] → R, f : R × [t0, t0 + σ] → R, σ > 0, x0 ∈ R, and
a : [t0, t0 + σ]2 → R, where [t0, t0 + σ]2 = [t0, t0 + σ]× [t0, t0 + σ].

Throughout this paper, we will use the symbol G2([t0, t0 + σ]2, R) to denote the set of all
functions b : [t0, t0 + σ]2 → R such that b is regulated with respect to the second variable, that
is, for any fixed t ∈ [t0, t0 + σ], the function

b(t, ·) : s ∈ [t0, t0 + σ] 7−→ b(t, s) ∈ R

is regulated.
In what follows, we say that c : [t0, t0 + σ]2 → R is nondecreasing with respect to the first

variable if for any fixed s ∈ [t0, t0 + σ], the function

c(·, s) : t ∈ [t0, t0 + σ] 7−→ c(t, s) ∈ R

is nondecreasing.
We assume the following conditions are satisfied.

(A1) The function g : [t0, t0 + σ] → R is nondecreasing and left-continuous on (t0, t0 + σ].

(A2) The function a ∈ G2([t0, t0 + σ]2, R) is nondecreasing with respect to the first variable.

(A3) The Henstock–Kurzweil–Stieltjes integral

∫ t0+σ

t0

a(t, s) f (x(s), s)dg(s)

exists, for all x ∈ G([t0, t0 + σ], R) and all t ∈ [t0, t0 + σ].

(A4) There exists a Henstock–Kurzweil–Stieltjes integrable function M : [t0, t0 + σ] → R
+

with respect to g such that
∣
∣
∣
∣

∫ τ2

τ1

(c2a(τ2, s) + c1a(τ1, s)) f (x(s), s)dg(s)

∣
∣
∣
∣
≤

∫ τ2

τ1

|c2a(τ2, s) + c1a(τ1, s)| M(s)dg(s),

for all x ∈ G([t0, t0 + σ], R), c1, c2 ∈ R and all [τ1, τ2] ⊂ [t0, t0 + σ]. In particular, we have
that ∣

∣
∣
∣

∫ τ2

τ1

a(τ, s) f (x(s), s)dg(s)

∣
∣
∣
∣
≤

∫ τ2

τ1

|a(τ, s)|M(s)dg(s),

and
∣
∣
∣
∣

∫ τ2

τ1

(a(τ2, s)− a(τ1, s)) f (x(s), s)dg(s)

∣
∣
∣
∣
≤

∫ τ2

τ1

|a(τ2, s)− a(τ1, s)|M(s)dg(s)

for all x ∈ G([t0, t0 + σ], R), and all τ, τ1, τ2 ∈ [t0, t0 + σ].
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(A5) There exists a regulated function L : [t0, t0 + σ] → R
+ such that

∣
∣
∣
∣

∫ τ2

τ1

a(τ2, s)[ f (x(s), s)− f (z(s), s)]dg(s)

∣
∣
∣
∣
6

∫ τ2

τ1

|a(τ2, s)| L(s)|x(s)− z(s)|dg(s),

for all x, z ∈ G([t0, t0 + σ], R) and all [τ1, τ2] ⊂ [t0, t0 + σ].

Remark 3.1. Note that
∫ t0+σ

t0
|c2a(τ2, s) + c1a(τ1, s)| M(s)dg(s) and

∫ t0+σ

t0
|a(t, s)| L(s)|x(s) −

z(s)|dg(s) exist. Indeed, by Corollary 2.3, [t0, t0 + σ] ∋ t 7→
∫ t

t0
M(s)dg(s) is a nondecreasing

function. On the other hand, the function [t0, t0 + σ] ∋ s 7→ c2a(τ2, s) + c1a(τ1, s) is regulated.

Then, by Theorem 2.1, the integral
∫ t0+σ

t0
|c2a(τ2, s) + c1a(τ1, s)|d

(∫ s
t0

M(ξ)dg(ξ)
)

exists. Us-

ing this fact, the boundedness of c2a(τ2, ·) + c1a(τ1, ·) and Theorem 2.6, we have that the
integral

∫ t0+σ

t0
|c2a(τ2, s) + c1a(τ1, s)| M(s)dg(s) exists. For the second integral, note that the

function s 7→ |a(t, s)| L(s)|x(s)− z(s)| is regulated.

Remark 3.2. Note that when s 7→ a(τ, s) f (x(s), s) is a regulated function on [t0, t0 + σ] for
t0 ≤ τ ≤ t0 + σ and g is nondecreasing, then (A4) holds by Theorem 2.1.

Remark 3.3. Suppose that g is a nondecreasing function. Then, the condition (A4) is true
whenever the function f is bounded in x. Moreover, we observe that condition (A5) holds
whenever the following Lipschitz type condition is satisfied:

| f (x(s), s)− f (z(s), s)| 6 L(s)|x(s)− z(s)|, t0 6 s 6 t0 + σ,

where L : [t0, t0 + σ] → R
+ is a regulated function.

Remark 3.4. Suppose that a satisfies condition (A2). Since a(t0, y) 6 a(x, y) 6 a(t0 + σ, y) for
all x, y ∈ [t0, t0 + σ] and the functions a(t0, y), a(t0 + σ, y) are regulated in y, we have that a is
bounded in [t0, t0 + σ]2.

Next, we present the main result of this section. It ensures the existence and uniqueness of
solution of Volterra–Stieltjes integral equations. In order to prove it, we employ the Schauder
Fixed Point Theorem and Gronwall’s inequality for Stieltjes integral.

Theorem 3.5. Assume f : R × [t0, t0 + σ] → R satisfies the conditions (A3), (A4) and (A5), a :
[t0, t0 + σ]2 → R satisfies condition (A2) and g : [t0, t0 + σ] → R satisfies condition (A1). Then there

exists a unique solution x : [t0, t0 + σ] → R of

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ]. (3.1)

Proof. Let us define the following constants:

c := sup
(t,s)∈[t0,t0+σ]2

|a(t, s)|, (3.2)

β :=
∫ t0+σ

t0

cM(s)dg(s). (3.3)

Notice that all these constants are finite and well-defined in view of conditions (A2), (A4) and
Remark 3.4.

Existence. Consider the set

H := {ϕ ∈ G([t0, t0 + σ], R) : ϕ(t0) = x0 and |ϕ(t)− x0| 6 β, t ∈ [t0, t0 + σ]}.
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The set H is nonempty, since

ϕ : [t0, t0 + σ] → R

s 7→ ϕ(s) := x0,

belongs to H. Define T : H → H given by

(Tx)(t) := x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), x ∈ H. (3.4)

Taking into account the condition (A3), we infer that the integral on the right-hand side of
(3.4) is well-defined. Now, given x ∈ H and t0 6 τ1 6 τ2 6 t0 + σ, by conditions (A2), (A3),
(A4), Theorem 2.2 and Corollary 2.3, we have

|(Tx)(τ2)− (Tx)(τ1)|

=

∣
∣
∣
∣

∫ τ2

t0

a(τ2, s) f (x(s), s)dg(s)−
∫ τ1

t0

a(τ1, s) f (x(s), s)dg(s)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ τ1

t0

a(τ2, s) f (x(s), s)dg(s)+
∫ τ2

τ1

a(τ2, s) f (x(s), s)dg(s)−
∫ τ1

t0

a(τ1, s) f (x(s), s)dg(s)

∣
∣
∣
∣

6

∣
∣
∣
∣

∫ τ2

τ1

a(τ2, s) f (x(s), s)dg(s)

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ τ1

t0

(a(τ2, s)− a(τ1, s)) f (x(s), s)dg(s)

∣
∣
∣
∣

6

∫ τ2

τ1

|a(τ2, s)| M(s)dg(s) +
∫ τ1

t0

|a(τ2, s)− a(τ1, s)| M(s)dg(s)

Thm 2.2, (A2), (A4) and (3.2)
↓
6

∫ τ2

τ1

cM(s)dg(s) +
∫ τ1

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s)

6

∫ τ2

τ1

cM(s)dg(s) +
∫ t0+σ

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s),

that is,

|(Tx)(τ2)− (Tx)(τ1)| 6
∫ τ2

τ1

cM(s)dg(s) +
∫ t0+σ

t0

(a(τ2, s)− a(τ1, s))M(s)dg(s). (3.5)

Define v : [t0, t0 + σ] → R by

v(t) :=
∫ t

t0

cM(s)dg(s) +
∫ t0+σ

t0

a(t, s)M(s)dg(s), (3.6)

for every t ∈ [t0, t0 + σ]. Since M is a Henstock–Kurzweil–Stieltjes integrable function,
∫ t

t0
cM(s)dg(s) exists for all t ∈ [t0, t0 + σ]. On the other hand, using the same arguments

as in the Remark 3.1, we ensure the existence of
∫ t0+σ

t0
a(t, s)M(s)dg(s) for all t ∈ [t0, t0 + σ].

Then v is well-defined. Also, it is easy to check that v is a nondecreasing function. Using (3.5)
and (3.6), we have

|(Tx)(τ2)− (Tx)(τ1)| 6 v(τ2)− v(τ1), (3.7)

for all t0 6 τ1 6 τ2 6 t0 + σ. Note that the limits (Tx)(t+) for t ∈ [t0, t0 + σ) and (Tx)(t−)

for t ∈ (t0, t0 + σ] exist. Indeed, since v is a nondecreasing function, then the limits v(t+)

for t ∈ [t0, t0 + σ) and v(t−) for t ∈ (t0, t0 + σ] exist and, therefore, (3.7) ensures the Cauchy
condition is satisfied, which implies the existence of the corresponding limits (Tx)(t+) and
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(Tx)(t−). From this, we get that Tx ∈ G([t0, t0 + σ], R). Also, for t0 6 t 6 t0 + σ, by condition
(A4), Theorem 2.2 and Corollary 2.3, we obtain

|(Tx)(t)− x0| =

∣
∣
∣
∣

∫ t

t0

a(t, s) f (x(s), s)dg(s)

∣
∣
∣
∣

6

∫ t

t0

|a(t, s)|M(s)dg(s)

6

∫ t

t0

cM(s)dg(s)

6

∫ t0+σ

t0

cM(s)dg(s)

(3.3)
↓
= β.

Clearly, (Tx)(t0) = x0. It implies that Tx ∈ H for all x ∈ H. Hence, T is well-defined.

Assertion 1. H is convex and closed.

Let ϕ, φ ∈ H. Then for all θ ∈ [0, 1], we have (1 − θ)φ + θϕ ∈ G([t0, t0 + σ]) and

|(1 − θ)φ(t) + θϕ(t)− x0| = |(1 − θ)φ(t) + θϕ(t)− ((1 − θ)x0 + θx0)|

6 (1 − θ)|φ(t)− x0|+ θ|ϕ(t)− x0|

6 (1 − θ)β + θβ = β.

This proves that H is convex.

On the other hand, let {ϕk}k∈N ⊂ H be such that ϕk
‖ · ‖∞
−→ ϕ (on [t0, t0 + σ]) as k → ∞. Since

each ϕk is regulated and ϕk converges uniformly to ϕ on [t0, t0 + σ], Lemma 2.8 guarantees
that ϕ is regulated on [t0, t0 + σ] and, therefore, ϕ ∈ G([t0, t0 + σ], R). Also, given ε > 0, there
exists N = N(ε) ∈ N such that

|ϕ(t)− x0| 6 |ϕk(t)− ϕ(t)|+ |ϕk(t)− x0| 6 ε + β,

for all t ∈ [t0, t0 + σ] and k > N. Since ε > 0 is arbitrary, we get |ϕ(t) − x0| 6 β for all
t ∈ [t0, t0 + σ]. It implies that H is closed.

Assertion 2. A := T(H) = {Tx : x ∈ H} is relatively compact.

Note that the set {y(t0) : y ∈ A} = {(Tx)(t0)
︸ ︷︷ ︸

x0

: x ∈ H} is bounded. On the other hand, for an

arbitrary y = Tx, x ∈ H and t0 6 τ1 6 τ2 6 t0 + σ, by (3.7), we have

|y(τ2)− y(τ1)| = |(Tx)(τ2)− (Tx)(τ1)| 6 v(τ2)− v(τ1). (3.8)

Hence, by Theorem 2.9, A = T(H) is relatively compact.
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Assertion 3. T is continuous.
By condition (A5), Theorem 2.2 and Corollary 2.3, we have that for x, z ∈ H and for
t0 6 t 6 t0 + σ,

|(Tx)(t)− (Tz)(t)| =

∣
∣
∣
∣

∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ t

t0

a(t, s) f (z(s), s)dg(s)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t

t0

a(t, s)( f (x(s), s)− f (z(s), s))dg(s)

∣
∣
∣
∣

6

∫ t

t0

|a(t, s)|L(s)|x(s)− z(s)|dg(s)

6

∫ t

t0

|x(s)− z(s)|cL(s)dg(s)

6

∫ t0+σ

t0

|x(s)− z(s)|cL(s)dg(s)

6 ‖x − z‖∞

(∫ t0+σ

t0

cL(s)dg(s)

)

.

From the above estimate, we conclude that T is continuous.
Therefore, all the hypotheses of the Schauder Fixed-Point Theorem (Theorem 2.11) are

satisfied, which implies that T has a fixed point in H. Thus, we conclude that the equation
(3.1) possesses a solution x : [t0, t0 + σ] → R.

It remains to prove the uniqueness of the solution of (3.1).

Uniqueness: Assume that x, z : [t0, t0 + σ] → R are two solutions of Volterra–Stieltjes integral
equation (3.1). Fix arbitrarily t ∈ [t0, t0 + σ]. Then, keeping in mind condition (A5) and
Theorem 2.2, we infer the following estimates

|x(t)− z(t)| =

∣
∣
∣
∣

∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ t

t0

a(t, s) f (z(s), s)dg(s)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t

t0

a(t, s)( f (x(s), s)− f (z(s), s))dg(s)

∣
∣
∣
∣

6

∫ t

t0

|a(t, s)|L(s)|x(s)− z(s)|dg(s)

6 c ‖L‖∞

∫ t

t0

|x(s)− z(s)|dg(s)

< ε + c ‖L‖∞

∫ t

t0

|x(s)− z(s)|dg(s),

for every ε > 0. Hence, in view of Lemma 2.4, we have

|x(t)− z(t)| 6 εec‖L‖∞(g(t)−g(t0)).

Since ε > 0 is arbitrary, it follows that x(t) = z(t) for all t ∈ [t0, t0 + σ], that is, x = z.

Remark 3.6. If a(t, s) = a1(t)b1(s) where a1 is nondecreasing on [t0, t0 + σ] and b1 is regulated
and positive on [t0, t0 + σ], then it is clear that a satisfies condition (A2).

Example 3.7. Consider the Volterra–Stieltjes integral equation given by

x(t) = x0 +
∫ t

t0

k(t − s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ] ,
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where t0, x0 ∈ R, σ > 0, k : [−σ, σ] → R is a nondecreasing function, g : [t0, t0 + σ] →

R satisfies condition (A1) and f : R × [t0, t0 + σ] → R satisfies conditions (A3)–(A5) from
Theorem 3.5.

Define a : [t0, t0 + σ]2 → R given by

a(t, s) := k(t − s), (t, s) ∈ [t0, t0 + σ]2.

In the sequel, we show that a satisfies condition (A2) from Theorem 3.5. Indeed, notice that
given t, s ∈ [t0, t0 + σ], we have t − s ∈ [−σ, σ] = Dom(k) and, therefore, a is well-defined over
[t0, t0 + σ]2.

Obviously, a(·, s) is nondecreasing for any s ∈ [t0, t0 + σ] and a(t, ·) is nonincreasing for
any t ∈ [t0, t0 + σ], getting (A2).

We will present an example of a Volterra–Stieltjes integral equation of the form (3.1) which
satisfies all the hypotheses of the previous theorem.

Example 3.8. Consider the Volterra–Stieltjes integral equation given by

x(t) = x0 +
∫ t

0
a(t, s) f (x(s), s)dg(s), t ∈ [0, 3/δ],

where x0 ∈ R, δ > 0, g : [0, 3
δ ] → R is a nondecreasing function, a : [0, 3

δ ]
2 → R and

f : R × [0, 3
δ ] → R are given, respectively, by

a(t, s) = st3e−δt, (t, s) ∈ [0, 3/δ]2

and

f (x, t) =
{t + 2} cos(2x)

4t + [t]
, (x, t) ∈ R × [0, 3/δ],

where the symbol [t] denotes the integer part of t, and the symbol {t} := t − [t] denotes
the fractional part of t. We will verify the conditions (A1)–(A5). Indeed, clearly g satisfies
condition (A1).

Note that for any fixed t ∈ [0, 3
δ ], the function [0, 3

δ ] ∋ s 7→ a(t, s) is regulated on [0, 3
δ ].

Since a(t, s) = st3e−δt, we have

d
dt

a(t, s) = st2e−δt(3 − δt) > 0,

for all t ∈ [0, 3
δ ]. Thus, a is a nondecreasing function with respect to the first variable, proving

condition (A2).
Let x ∈ G([0, 3

δ ], R) and t ∈ [0, 3
δ ] be given. Notice that [0, 3

δ ] ∋ s 7→ a(t, s) f (x(s), s) is a

regulated function on [0, 3
δ ]. Thus by Theorem 2.1 (item (i)),

∫ 3
δ

0 a(t, s) f (x(s), s)dg(s) exists,
obtaining condition (A3).

Define M : [0, 3
δ ] → R

+ by M(s) = {s + 2} , for s ∈ [0, 3
δ ]. Evidently, M is a Henstock–

Kurzweil–Stieltjes integrable function with respect to g and for x ∈ G([0, 3
δ ], R), c1, c2 ∈ R,
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[τ1, τ2] ⊂ [0, 3
δ ] and bτ2,τ1(s) := c1a(τ2, s) + c1a(τ1, s), we have

∣
∣
∣
∣

∫ τ2

τ1

bτ2,τ1(s) f (x(s), s)dg(s)

∣
∣
∣
∣

Thm 2.1
↓
6

∫ τ2

τ1

|bτ2,τ1(s)| | f (x(s), s)|dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)|

∣
∣
∣
∣

{s + 2} cos(2x(s))

4s + [s]

∣
∣
∣
∣

dg(s)

6

∫ τ2

τ1

|bτ2,τ1(s)| {s + 2}dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)| M(s)dg(s),

proving the condition (A4).
On the other hand, define L : [0, 3

δ ] → R
+ by L(t) = 2, for t ∈ [0, 3

δ ]. Note that L is a
regulated function and for x, y ∈ G([0, 3

δ ], R) and τ1, τ2 ∈ [0, 3
δ ], τ1 6 τ2, we get

∣
∣
∣
∣

∫ τ2

τ1

a(τ2, s) [ f (x(s), s)− f (y(s), s)]dg(s)

∣
∣
∣
∣

Thm 2.1
↓
6

∫ τ2

τ1

|a(τ2, s)| | f (x(s), s)− f (y(s), s)|dg(s)

6

∫ τ2

τ1

|a(τ2, s)|
∣
∣
∣ cos(2x(s))− cos(2y(s))

∣
∣
∣dg(s)

6

∫ τ2

τ1

|a(τ2, s)| |2x(s)− 2y(s)|dg(s)

= 2
∫ τ2

τ1

|a(τ2, s)| |x(s)− y(s)|dg(s),

getting the condition (A5). Hence f , a and g fulfill all the hypotheses of Theorem 3.5.

The next example is an adaptation of [18, Example 7.8]. It is a modified version of a model
of a single artificial effective neuron with dissipation. See [10, 16].

Example 3.9. Consider the equation

x(t) = x0 +
∫ t

0
k(s) tanh(x(s)) ds, t ∈ [0, 1]

where k is a nondecreasing function on [0, 1]. Define a(t, s) := k(s) for all (t, s) ∈ [0, 1]2,
f : R × [0, 1] → R by f (x, t) := tanh(x) for all (x, t) ∈ R × [0, 1], and g(s) = s for all s ∈ [0, 1].

Observe that, by definition, the function g is left-continuous on (0, 1] and increasing on
[0, 1].

Notice that the function a is constant with relation to the first variable. Thus, a is a nonde-
creasing function with respect to the first variable. Also, since k is a nondecreasing function,
we have that for any fixed t ∈ [0, 1], the function [0, 1] ∋ s 7→ a(t, s) = k(s) is regulated on
[0, 1], obtaining the condition (A2). Moreover, a(t, s) f (x(s), s) is a regulated function on [0, 1],
for all x ∈ G([0, 1], R), and all t ∈ [0, 1]. Hence, the integral

∫ 1
0 a(t, s) f (x(s), s)dg(s) exists,

getting (A3).
On the other hand, define M : [0, 1] → R

+ by M(t) = 1, for t ∈ [0, 1]. By Theorem 2.1, we
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have
∣
∣
∣
∣

∫ τ2

τ1

bτ2,τ1(s) f (x(s), s)dg(s)

∣
∣
∣
∣
6

∫ τ2

τ1

|bτ2,τ1(s)| | f (x(s), s)|dg(s)

=
∫ τ2

τ1

|bτ2,τ1(s)| |tanh(x(s))|dg(s)

6

∫ τ2

τ1

|bτ2,τ1(s)| M(s)dg(s),

for x ∈ G([0, 1], R), c1, c2 ∈ R, 0 6 τ1 6 τ2 6 1 and bτ2,τ1(s) := c1a(τ2, s) + c2a(τ1, s), where the
third inequality follows of the fact that −1 < tanh(x) < 1 for all x ∈ R.

Finally, define L : [0, 1] → R
+ by L(t) = 1, for t ∈ [0, 1]. Evidently, L is a regulated function

and
∣
∣
∣
∣

∫ τ2

τ1

a(τ2, s) [ f (x(s), s)− f (y(s), s)]dg(s)

∣
∣
∣
∣
6

∫ τ2

τ1

|a(τ2, s)| | f (x(s), s)− f (y(s), s)|dg(s)

6

∫ τ2

τ1

|a(τ2, s)| |x(s)− y(s)|dg(s),

for x, y ∈ G([0, 1], R) and all 0 6 τ1 6 τ2 6 1, obtaining the condition (A5). Notice that
|tanh(v)− tanh(u)| 6 |v − u| for all v, u ∈ R. Hence f , a and g fulfill all the hypotheses of
Theorem 3.5.

4 Impulsive Volterra–Stieltjes integral equations

In this section, we are interested in the study of impulsive Volterra–Stieltjes integral equations.
Consider a Volterra–Stieltjes integral equation given by:

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s), t ∈ [t0, t0 + σ],

where the Henstock–Kurzweil–Stieltjes integral on the right-hand side is taken with respect
to a nondecreasing function g : [t0, t0 + σ] → R.

Let the set D = {t1, . . . , tm} ⊂ [t0, t0 + σ] be such that t0 6 t1 < · · · < tm < t0 + σ

and let the functions Ik : R → R be given for k ∈ {1, . . . , m} . Assume that a(·, s) and g

are continuous at each τ ∈ D and consider the problem to determine a function x satisfying
the given Volterra–Stieltjes integral equation and impulse conditions ∆+x(tk) = Ik(x(tk)) for
k ∈ {1, . . . , m} . Using this, we achieve the following formulation of the problem:

x(v)− x(u) =
∫ v

t0

a(v, s) f (x(s), s)dg(s)

−
∫ u

t0

a(u, s) f (x(s), s)dg(s) for u, v ∈ Jk, k ∈ {0, . . . , m},

∆+x(tk) = Ik(x(tk)), k ∈ {1, . . . , m},

x(t0) = x0,

where J0 = [t0, t1], Jk = (tk, tk+1] for k ∈ {1, . . . , m − 1}, and Jm = (tm, t0 + σ].
The value of the following integrals

∫ v

t0

a(v, s) f (x(s), s)dg(s) and
∫ u

t0

a(u, s) f (x(s), s)dg(s),
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where u, v ∈ Jk, are the same if we replace g by a function g̃ such that g − g̃ is a constant
function on Jk. This follows from the properties of Henstock–Kurzweil–Stieltjes integral. Also,
let us assume g is a left-continuous function which is continuous at tk, for each k = 1, . . . , m.
Therefore, it implies that ∆+g(tk) = 0 for every k ∈ {1, . . . , m}. Moreover, we assume a

is continuous with respect to first variable at t1, . . . , tm and also, a satisfies condition (A2)
presented in Section 3. Further suppose that f and g satisfy conditions (A1), (A3) and (A4)
presented in Section 3. Under these assumptions, our problem can be rewritten as

x(t) = x(t0) +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (4.1)

It is not difficult to see that by the assumptions above, the function

t 7→
∫ t

t0

a(t, s) f (x(s), s)dg(s)

is continuous at t1, . . . , tm (see Remark 4.1 below) and, therefore, ∆+x(tk) = Ik(x(tk)) for every
k ∈ {1, . . . , m}.

Remark 4.1. We assume that f , g and a satisfy the assumptions above. Using the same argu-
ments as in the proof of Theorem 3.5, we can prove the following inequality

∣
∣
∣
∣

∫ t

t0

a(t, s) f (x(s), s)dg(s)−
∫ τ

t0

a(τ, s) f (x(s), s)dg(s)

∣
∣
∣
∣
6 |v(t)− v(τ)| , (4.2)

for all t, τ ∈ [t0, t0 + σ], where v is given by

v(t) :=
∫ t

t0

cM(s)dg(s) +
∫ t0+σ

t0

a(t, s)M(s)dg(s), t ∈ [t0, t0 + σ]. (4.3)

Here c := sup(t,s)∈[t0,t0+σ]2 |a(t, s)|. Notice that every point in [t0, t0 + σ] at which the func-

tion v is continuous, is a continuity point of the function t 7→
∫ t

t0
a(t, s) f (x(s), s)dg(s). Next,

let us prove that v given by (4.3) is a continuous function at t1, . . . , tm. Clearly, v1(t) =
∫ t

t0
cM(s)dg(s), t ∈ [t0, t0 + σ], is continuous at t1, . . . , tm.

Assertion 1. v2(t) =
∫ t0+σ

t0
a(t, s)M(s)dg(s), t ∈ [t0, t0 + σ], is continuous at t1, . . . , tm.

Let i ∈ {1, . . . , m} and (τn)n∈N ⊂ [t0, t0 + σ] such that τn
n→∞
→ ti.

Define the sequence of functions

ϕn(s) := a(τn, s)M(s), s ∈ [t0, t0 + σ], (4.4)

and ϕ : [t0, t0 + σ] → R by ϕ(s) := a(ti, s)M(s), s ∈ [t0, t0 + σ]. As a(·, s) is continuous at ti and
(τn)n∈N ⊂ [t0, t0 + σ] is such that τn

n→∞
→ ti, we have limn→∞ a(τn, s) = a(ti, s), and therefore,

lim
n→∞

ϕn(s) = lim
n→∞

a(τn, s)M(s) = a(ti, s)M(s) = ϕ(s).

According to condition (A3),
∫ t0+σ

t0
a(τn, s)M(s)dg(s) exists for all n ∈ N. Using this fact

together with (4.4), we get
∫ t0+σ

t0
ϕn(s)dg(s) exists for all n ∈ N.

On the other hand, for all t ∈ [t0, t0 + σ], n ∈ N, we have

|ϕn(t)| = |a(τn, t)M(t)| 6 c |M(t)| = cM(t).
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This implies that
κ(t) 6 ϕn(t) 6 ω(t), t ∈ [t0, t0 + σ],

where ω(t) := cM(t) and κ(t) = −cM(t). Also, observe that the integrals
∫ t0+σ

t0
κ(s)dg(s) and

∫ t0+σ

t0
ω(s)dg(s) exist, since M is a Henstock–Kurzweil–Stieltjes integrable function. Since all

the hypotheses of Theorem 2.7 are satisfied, we obtain

lim
n→∞

∫ t0+σ

t0

ϕn(s)dg(s) =
∫ t0+σ

t0

ϕ(s)dg(s).

Hence, the function v2 is continuous at ti, for each i = 1, . . . , m, proving Assertion 1.
From these facts and by the equality v(t) = v1(t) + v2(t), it follow that v is continuous at

t1, . . . , tm.

In the next result, we describe how we can translate the conditions on impulsive Volterra–
Stieltjes integral equation to the conditions on Volterra–Stieltjes integral equations. It will
be very important in order to prove results for impulsive Volterra–Stieltjes integral equations
using known results for Volterra–Stieltjes integral equations.

Lemma 4.2. Let m ∈ N, t0 6 t1 < . . . < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for

k ∈ {1, . . . , m} and let a : [t0, t0 + σ]2 → R, f : R × [t0, t0 + σ] → R and g : [t0, t0 + σ] → R

satisfy conditions (A1)–(A5). Define

ã(t, s) =

{

a(t, s), t ∈ [t0, t0 + σ] and s ∈ [t0, t0 + σ]\D,

1, t ∈ [t0, t0 + σ] and s ∈ D,
(4.5)

f̃ (x, s) =

{

f (x, s), for x ∈ R and s ∈ [t0, t0 + σ]\D,

Ik(x), for x ∈ R and s ∈ D,
(4.6)

g̃(s) =







g(τ), for s ∈ [t0, t1],

g(s) + k, for s ∈ (tk, tk+1] and k ∈ {1, . . . , m − 1},

g(s) + m, for s ∈ (tm, t0 + σ].

(4.7)

Also, suppose that I1, . . . , Im : R → R satisfy the following condition:

(I) There exists constants M2, L2 > 0 such that

|Ik(x)| 6 M2

for every k ∈ {1, . . . , m} and x ∈ R, and

|Ik(x)− Ik(y)| 6 L2 |x − y|

for every k ∈ {1, . . . , m} and x, y ∈ R.

Then the functions ã : [t0, t0 + σ]2 → R, f̃ : R × [t0, t0 + σ] → R and g̃ : [t0, t0 + σ] → R also

satisfy conditions (A1)–(A5) with ã, f̃ , g̃ respectively in the place of a, f , g.

Proof. Since g is nondecreasing and left-continuous, g̃ has the same properties by the defi-
nition, proving condition (A1). The condition (A2) is an immediate consequence from the
definition of ã.

Notice that (A3) follows by combining the condition (A1) and the hypotheses from f̃ and
ã together with Lemma 2.10.
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To prove the condition (A4), let x ∈ G([t0, t0 + σ], R), c1, c2 ∈ R, [u1, u2] ⊂ [t0, t0 + σ] and
bu2,u1(s) := c1a(u2, s) + c2a(u1, s). From Lemma 2.10, we obtain
∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s) =
∫ u2

u1

bu2,u1(s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},
u16tk<u2

bu2,u1(tk) f̃ (x(tk), tk)∆
+ g̃(tk)

=
∫ u2

u1

bu2,u1(s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},
u16tk<u2

bu2,u1(tk)Ik(x(tk))∆
+ g̃(tk)

and, therefore,

∣
∣
∣
∣

∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s)

∣
∣
∣
∣
6

u2∫

u1

M1(s) |bu2,u1(s)|dg(s)+ ∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) (4.8)

On the other hand, notice that g̃(v)− g̃(u) > g(v)− g(u) whenever t0 6 u 6 v 6 t0 + σ. It im-
plies together with the definition of the Henstock–Kurzweil–Stieltjes integral and Theorem 2.2
the following

u2∫

u1

M1(s) |bu2,u1(s)|dg(s) 6

u2∫

u1

M1(s) |bu2,u1(s)|dg̃(s) 6

u2∫

u1

M̃(s) |bu2,u1(s)|dg̃(s), (4.9)

where M̃(s) := 1 + M2 + M1(s) for all s ∈ [t0, t0 + σ]. On the other hand, the function

h(t) :=
∫ t

t0

M̃(s) |bu2,u1(s)|dg̃(s), t ∈ [t0, t0 + σ],

is nondecreasing and ∆+h(tk) = M̃(tk) |bu2,u1(tk)|∆+ g̃(tk) for k ∈ {1, . . . , m} by Theorem 2.5.
Hence

∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) 6 ∑
k∈{1,...,m},
u16tk<u2

M̃(tk) |bu2,u1(tk)|∆+ g̃(tk) 6 h(u2)− h(u1).

Hence,

∑
k∈{1,...,m},
u16tk<u2

M2 |bu2,u1(tk)|∆+ g̃(tk) 6
∫ u2

u1

M̃(s) |bu2,u1(s)| dg̃(s) (4.10)

Now, by (4.8), (4.9) and (4.10), we get
∣
∣
∣
∣

∫ u2

u1

bu2,u1(s) f̃ (x(s), s)dg̃(s)

∣
∣
∣
∣
6 2

∫ u2

u1

M̃(s) |bu2,u1(s)| dg̃(s). (4.11)

Now, defining M(t) = 2M̃(t) for all t ∈ [t0, t0 + σ], we get the statement (A4).
To prove the condition (A5), consider x, z ∈ G([t0, t0 + σ], R) and [u1, u2] ⊂ [t0, t0 + σ].

Using Lemma 2.10 again, we obtain
∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)

=
∫ u2

u1

a(u2, s) ( f (x(s), s)− f (z(s), s))dg(s) + ∑
k∈{1,...,m},
u16tk<u2

a(u2, tk)(Ik(x(tk))− Ik(z(tk)))∆
+ g̃(tk).
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Consequently,
∣
∣
∣
∣

∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)

∣
∣
∣
∣

6

u2∫

u1

L1(s) |a(u2, s)| |x(s)− z(s)|dg(s) + ∑
k∈{1,...,m},
u16tk<u2

L2 |a(u2, tk)| |x(tk)− z(tk)|∆
+ g̃(tk).

Therefore,
u2∫

u1

L1(s) |a(u2, s)| |x(s)− z(s)|dg(s) 6

u2∫

u1

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(s),

where L̃(s) = 1 + L2 + L1(s) for all s ∈ [t0, t0 + σ]. Next, we observe that the function

γ(t) =
∫ t

t0

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(s), t ∈ [t0, t0 + σ],

is nondecreasing and

∆+γ(tk) = L̃(tk) |a(u2, tk)| |x(tk)− z(tk)|∆
+ g̃(tk),

for k ∈ {1, . . . , m}. Hence,

∑
k∈{1,...,m},
u16tk<u2

L2 |a(u2, tk)| |x(tk)− z(tk)|∆
+ g̃(tk) 6 ∑

k∈{1,...,m},
u16tk<u2

L̃(tk) |a(u2, tk)| |x(tk)− z(tk)|∆
+ g̃(tk)

6 γ(u2)− γ(u1).

It follows that
∣
∣
∣
∣

∫ u2

u1

a(u2, s)
(

f̃ (x(s), s)− f̃ (z(s), s)
)

dg̃(s)

∣
∣
∣
∣
6 2

∫ u2

u1

L̃(s) |a(u2, s)| |x(s)− z(s)|dg̃(t).

Now, defining L(t) = 2L̃(t) for all t ∈ [t0, t0 + σ], we get the desired result.

The following theorem describes a strong relation between the solutions of impulsive
Volterra–Stieltjes integral equations and the solutions of Volterra–Stieltjes integral equations
without impulses. We can omit its proof as it follows by arguments analogous to those used
in [12] to prove Theorem 3.1.

Theorem 4.3. Let m ∈ N, t0 6 t1 < · · · < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for

k ∈ {1, . . . , m} and f : R × [t0, t0 + σ] → R. Assume that g : [t0, t0 + σ] → R satisfies the

condition (A1) and a : [t0, t0 + σ]2 → R satisfies condition (A2). Furthermore, assume that g and

a(·, s), s ∈ [t0, t0 + σ], are continuous at each τ ∈ D. Consider the functions ã : [t0, t0 + σ]2 → R,
f̃ : R × [t0, t0 + σ] → R and g̃ : [t0, t0 + σ] → R defined in Lemma 4.2, given by (4.5), (4.6) and

(4.7) respectively.

Then x : [t0, t0 + σ] → R is a solution of

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)), (4.12)

if and only if x : [t0, t0 + σ] → R is a solution of

x(t) = x0 +
∫ t

t0

ã(t, s) f̃ (x(s), s)dg̃(s). (4.13)
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As an immediate consequence, we obtain a result about existence and uniqueness of so-
lutions of impulsive Volterra–Stieltjes integral equation. We omit its proof, since it follows
directly from the correspondence and the analogue result for Volterra–Stieltjes integral equa-
tion.

Theorem 4.4. Let m ∈ N, t0 6 t1 < · · · < tm < t0 + σ, D = {t0, . . . , tm} , Ik : R → R for

k ∈ {1, . . . , m} and let a : [t0, t0 + σ]2 → R, f : R × [t0, t0 + σ] → R and g : [t0, t0 + σ] → R

satisfy conditions (A1)–(A5). Furthermore, assume that g and a(·, s), s ∈ [t0, t0 + σ], are continuous

at each τ ∈ D. Also, suppose that I1, . . . , Im : R → R satisfies condition (I) from Lemma 4.2.

Then there exists a unique solution x : [t0, t0 + σ] → R of the impulsive Volterra–Stieltjes integral

equation

x(t) = x0 +
∫ t

t0

a(t, s) f (x(s), s)dg(s) + ∑
k∈{1,...,m},

tk<t

Ik(x(tk)). (4.14)
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[3] J. F. Banaś, D. O’Regan, On existence and local attractivity of solutions of a quadratic
Volterra integral equation of fractional orders, J. Math. Anal. Appl. 345(2008), No. 1, 573–
582. https://doi.org/10.1016/j.jmaa.2008.04.050; MR2422674

[4] J. Caballero, J. Rocha, K. Sadarangani, On monotonic solutions of an integral
equation of Volterra–Stieltjes type, Math. Nachr. 279(2006), No. 1–2, 130–141. https:

//doi.org/10.1016/j.cam.2004.04.003; MR2193612

[5] F. Chen, J. J. Nieto, Y. Zhou, Global attractivity for nonlinear fractional differential equa-
tions, Nonlinear Anal. 13(2012), 287–298. https://doi.org/10.1016/j.nonrwa.2011.07.
034

[6] P. Clement, E. Mitidieri, Qualitative properties of solutions of Volterra equations in Ba-
nach spaces, Israel J. Math. 64(1988), No. 1, 1–24. https://doi.org/10.1007/BF02767365;
MR0981744

[7] B. D. Coleman, M. E. Gurtin, Equipresence and constitutive equation for rigid head con-
ductors, Z. Angew. Math. Phys. 18(1967), 199–208. https://doi.org/10.1007/BF01596912



Volterra–Stieltjes integral equations 19

[8] J. Diblík, M. Galewski, M. Koniorczyk, E. Schmeidel, An application of a diffeomor-
phism theorem to Volterra integral operator, Differential Integral Equations 31(2018), No. 7–
8, 621–642. MR3801827; Zbl 06890407

[9] H. Engler, On nonlinear scalar Volterra integral equations I, Trans. Amer. Math. Soc.

291(1985), No. 1, 319–336. https://doi.org/10.2307/1999912; MR0797063

[10] M. Fan, D. Ye, Convergence dynamics and pseudo almost periodicity of a class of
nonautonomous RFDEs with applications, J. Math. Anal. Appl. 309(2005), 598–625. https:
//doi.org/10.1016/j.jmaa.2004.10.050; MR2154139

[11] M. Federson, R. Grau, J. G. Mesquita, Prolongation of solutions of measure differential
equations and dynamic equations on time scales, Math. Nachr. 292(2019), No. 1, 22–55.
https://doi.org/10.1002/mana.201700420; MR3909220

[12] M. Federson, J. G. Mesquita, A. Slavík, Basic results for functional differential and
dynamic equations involving impulses. Math. Nachr. 286(2013), No. 2–3, 181–204. https:
//doi.org/10.1002/mana.201200006; MR3021475

[13] M. Federson, Š. Schwabik, Generalized ODEs approach to impulsive retarded differ-
ential equations, Differential Integral Equations 19(2006), No. 11, 1201–1234. MR2278005;
Zbl 1212.34251

[14] D. Franco, D. O’Regan, Solutions of Volterra integral equations with infinite de-
lay, Math. Nachr. 281(2008), No. 3, 325–336. https://doi.org/10.1002/mana.200510605;
MR2392116
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Abstract. Let QSH be the family of non-degenerate planar quadratic differential sys-
tems possessing an invariant hyperbola. We study this class from the viewpoint of
integrability. This is a rich family with a variety of integrable systems with either poly-
nomial, rational, Darboux or more general Liouvillian first integrals as well as non-
integrable systems. We are interested in studying the integrable systems in this family
from the topological, dynamical and algebraic geometric viewpoints. In this work we
perform this study for three of the normal forms of QSH, construct their topological
bifurcation diagrams as well as the bifurcation diagrams of their configurations of in-
variant hyperbolas and lines and point out the relationship between them. We show
that all systems in one of the three families have a rational first integral. For another
one of the three families, we give a global answer to the problem of Poincaré by produc-
ing a geometric necessary and sufficient condition for a system in this family to have
a rational first integral. Our analysis led us to raise some questions in the last section,
relating the geometry of the invariant algebraic curves (lines and hyperbolas) in the
systems and the expression of the corresponding integrating factors.

Keywords: quadratic differential systems, invariant algebraic curves, invariant hyper-
bola, Darboux integrability, Liouvillian integrability.
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1 Introduction

Let R[x, y] be the set of all real polynomials in the variables x and y. Consider the planar

system

ẋ = P(x, y),

ẏ = Q(x, y),
(1.1)

BCorresponding author. Email: regilene@icmc.usp.br
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where ẋ = dx/dt, ẏ = dy/dt and P, Q ∈ R[x, y]. We call the degree of system (1.1) the integer

max{deg P, deg Q}. In the case when the polynomial P and Q are relatively prime i. e. they

do not have a non-constant common factor, we say that (1.1) is non-degenerate.

Consider

χ = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(1.2)

the polynomial vector field associated to (1.1).

A real quadratic differential system is a polynomial differential system of degree 2, i.e.

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),

ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ q(ã, x, y)
(1.3)

where
p0 = a, p1(ã, x, y) = cx + dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex + f y, q2(ã, x, y) = lx2 + 2mxy + ny2.

Here we denote by ã = (a, c, d, g, h, k, b, e, f , l, m, n) the 12-tuple of the coefficients of system

(1.3). Thus a quadratic system can be identified with a point ã in R12.

We denote the class of all real quadratic differential systems with QS.

In this work we are interested in polynomial differential equations (1.1) which are endowed

with an algebraic geometric structure, i.e. which posses invariant algebraic curves under the

flow. We are interested both in their geometry and also in the impact this geometry has on

the integrability of the systems.

Definition 1.1 ([11]). An algebraic curve C(x, y) = 0 with C(x, y) ∈ C[x, y] is called an invariant
algebraic curve of system (1.1) if it satisfies the following identity:

CxP + CyQ = KC, (1.4)

for some K ∈ C[x, y] where Cx and Cy are the derivative of C with respect to x and y. K is

called the cofactor of the curve C = 0.

For simplicity we write the curve C instead of the curve C = 0 in C2. Note that if system

(1.1) has degree m then the cofactor of an invariant algebraic curve C of the system has degree

m − 1.

Definition 1.2. Let U be an open subset of R2. A real function H: U → R is a first inte-
gral of system (1.1) if it is constant on all solution curves (x(t), y(t)) of system (1.1), i.e.,

H(x(t), y(t)) = k, where k is a real constant, for all values of t for which the solution

(x(t), y(t)) is defined on U.

If H is differentiable in U then H is a first integral on U if and only if

HxP + HyQ = 0. (1.5)

Definition 1.3. If a system (1.1) has a first integral of the form

H(x, y) = C1
λ1 · · ·Cp

λp (1.6)

where Ci are invariant algebraic curves of system (1.1) and λi ∈ C then we say that system

(1.1) is Darboux integrable and we call the function H a Darboux function.
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Theorem 1.4 ([11]). Suppose that a polynomial system (1.1) has m invariant algebraic curves
Ci(x, y) = 0, i ≤ m, with Ci ∈ C[x, y] and with m > n(n + 1)/2 where n is the degree of the
system. Then there exist complex numbers λ1, . . . , λm such that Cλ1

1 . . . Cλm
m is a first integral of the

system.

If a system (1.1) admits a rational first integral we say that (1.1) is algebraically integrable.

Poincaré was enthustiastic about the work of Darboux [11] which he called “oeuvre magis-

trale” in [22] and stated the problem of algebraic integrability which asks to recognize when a

polynomial vector field has a rational first integral. Jouanolou gave a sufficient condition for

recognizing that a polynomials system has a rational first integral.

Theorem 1.5 ([15]). Consider a polynomial system (1.1) of degree n and suppose that it admits m
invariant algebraic curves Ci(x, y) = 0 where 1 ≤ i ≤ m, then if m ≥ 2+ n(n+1)

2 , there exists integers
N1, N2, . . . , Nm such that I(x, y) = ∏

m
i=1 CNi

i is a first integral of (1.1).

In connection to this problem Poincaré stated a number of definitions among them the

following definitions below.

Let H = f /g be a rational first integral of the polynomial vector field (1.2). We say that

H has degree n if n is the maximum of the degrees of f and g. We say that the degree of H
is minimal among all the degrees of the rational first integrals of χ if any other rational first

integral of χ has a degree greater than or equal to n. Let H = f /g be a rational first integral

of χ. According to Poincaré [22] we say that c ∈ C ∪ {∞} is a remarkable value of H if f + cg
is a reducible polynomial in C[x, y]. Here, if c = ∞, then f + cg denotes g. Note that for all

c ∈ C the algebraic curve f + cg = 0 is invariant. The curves in the factorization of f + cg,

when c is a remarkable value, are called remarkable curves.

Now suppose that c is a remarkable value of a rational first integral H and that uα1
1 · · · uα

r
is the factorization of the polynomial f + cg into reducible factors in C[x, y]. If at least one of

the αi is larger than 1 then we say, following again Poincaré (see for instance [14]), that c is a

critical remarkable value of H, and that ui = 0 having αi > 1 is a critical remarkable curve of the

vector field (1.2) with exponent αi.

Since we can think of c ∈ C∪{∞} as the projective line P1(R) we can also use the following

definition.

Definition 1.6. Consider F(c1,c2) : c1 f − c2g = 0 where f /g is a rational first integral of (1.2).

We say that [c1 : c2] is a remarkable value of the curve F(c1,c2) if F(c1,c2) is reducible over C.

It is proved in [4] that there are finitely many remarkable values for a given rational first

integral H and if (1.2) has a rational first integral and has no polynomial first integrals, then

it has a polynomial inverse integrating factor if and only if the first integral has at most two

critical remarkable values.

Given H = f /g a rational first integral, consider F(c1,c2) = c1 f − c2g where deg F(c1,c2) = n.

If F(c1,c2) = f1 f2 where deg fi = ni < n then necessarily the points on the intersection of f1 = 0

and f2 = 0 must be singular points of the curve F(c1,c2). So to find the irreducible factors

of F(c1,c2) we start by finding the singularities of F(c1,c2), i.e., the points on the curve which

annihilate both first derivatives in x and y.

The following notion was defined by Christopher in [5] where he called it “degenerate

invariant algebraic curve”.
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Definition 1.7. Let F(x, y) = exp
( G(x,y)

H(x,y)

)

with G, H ∈ C[x, y] coprime. We say that F is an

exponential factor of system (1.1) if it satisfies the equality

FxP + FyQ = LF, (1.7)

for some L ∈ C[x, y]. The polynomial L is called the cofactor of the exponential factor F.

Definition 1.8. If system (1.1) has a first integral of the form

H(x, y) = C1
λ1 · · ·Cp

λp F1
µ1 · · · Fq

µq (1.8)

where Ci and Fj are the invariant algebraic curves and exponential factors of system (1.1)

respectively and λi, µj ∈ C, then we say that the system is generalized Darboux integrable. We

call the function H a generalized Darboux function.

Remark 1.9. In [11] Darboux considered functions of the type (1.6), not of type (1.8). In recent

works functions of type (1.8) were called Darboux functions. Since in this work we need to pay

attention to the distinctions among the various kinds of first integral we call (1.6) a Darboux

and (1.8) a generalized Darboux first integral.

Definition 1.10. Let U be an open subset of R2 and let R : U → R be an analytic function

which is not identically zero on U. The function R is an integrating factor of a polynomial

system (1.1) on U if one of the following two equivalent conditions holds:

div(RP, RQ) = 0, RxP + RyQ = −R div(P, Q), (1.9)

on U.

A first integral H of

ẋ = RP, ẏ = RQ

associated to the integrating factor R is given by

H(x, y) =
∫

R(x, y)P(x, y)dy + h(x),

where H(x, y) is a function satisfying Hx = −RQ. Then,

ẋ = Hy, ẏ = −Hx.

In order that this function H be well defined the open set U must be simply connected.

Liouvillian functions are functions that are built up from rational functions using expo-

nentiation, integration, and algebraic functions. For more details on Liouvillian functions,

see [7].

Theorem 1.11 ([4, 21]). If a planar polynomial vector field (1.2) has a generalized Darboux first
integral, then it has a rational integrating factor.

As for a converse, we have the following result which easily follows from [23].

Theorem 1.12 ([8]). If a planar polynomial vector field (1.2) has a rational integrating factor, then it
has a generalized Darboux first integral.

An important consequence of Singer’s theorem (see [27]) is the following.
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Theorem 1.13 ([5, 27]). A planar polynomial differential system (1.1) has a Liouvillian first integral
if and only if it has a generalized Darboux integrating factor.

For a proof see [28, p. 134].

We have the following table summing up these results.

First integral Integrating factor

Generalized Darboux ⇔ Rational

Liouvillian ⇔ Generalized Darboux

Definition 1.14 ([11]). Consider a planar polynomial system (1.1). An algebraic solution f = 0

of (1.1) is an algebraic invariant curve which is irreducible over C.

Theorem 1.15 ([6]). Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such
that

(a) all curves Ci = 0 are non-singular and have no repeated factor in their highest order terms,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves have a common factor in their highest order terms,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 · · ·Ck).

This result of Christopher–Kooij (C–K) is interesting because it relates the geometry of the

configuration of invariant algebraic curves of the systems with the expression of the integrat-

ing factors involving the polynomials defining the curves. In fact this theorem has a geometric

content which is however not completely explicit in the algebraic way their theorem is stated.

We restate the above result in geometric terms as follows:

Theorem 1.16. Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such that

(a) all curves Ci = 0 are non-singular and they intersects transversally the line at infinity Z = 0,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves intersect at a point on the line at infinity Z = 0,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 · · ·Ck).

In the hypotheses of this theorem the way the curves are placed with respect to one another

in the totality of the curves, in other words the “geometry of the configuration of invariant

algebraic curves” has an impact of the kind of integrating factor we could have. One of our

goals is to collect data so as to extend this theorem beyond these limiting geometric conditions.
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There are some important invariant polynomials in the study of polynomial vector fields.

Considering C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of x and y we calcu-

late

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. It is known that the singular points at infinity of quadratic systems

are given by the solutions in x and y of C2(ã, x, y) = 0. If η < 0 then this means we have one

real singular point at infinity and two complex.

Remark 1.17. We note that since a system in QSH always has an invariant hyperbola then

clearly we always have at least 2 real singular points at infinity. So we must have η ≥ 0.

The family QSH can be split as follows: QSH(η=0) of systems which possess either exactly

two distinct real singularities at infinity or the line at infinity filled up with singularities and

QSH(η>0) of systems which possess three distinct real singularities at infinity in P2(C).

In [18] the authors proved that there are 162 distinct configurations and provided necessary

and sufficient conditions for a non-degenerate quadratic differential system to have at least

one invariant hyperbola and for the realization of each one of the configurations. These

conditions are expressed in terms of the coefficients of the systems. They obtained the normal

forms for family QSH and in this paper we study the following 3 normal forms:











ẋ = a − x2

3 − 2xy
3

ẏ = 4a − 3v2 − 4xy
3

+
y2

3
, where a 6= 0.

(1.10)















ẋ = − x2

2
− xy

2

ẏ = b − 3xy
2

+
y2

2
, where b 6= 0.

(1.11)

{

ẋ = 2a + gx2 + xy,

ẏ = a(2g − 1) + (g − 1)xy + y2, where a(g − 1) 6= 0.
(1.12)

Our first goal in this paper is to do a complete study of these three families of quadratic

systems which possess an invariant hyperbola. Our interest is in the geometry of these sys-

tems, as expressed in terms of their invariant algebraic curves, in the impact of this geometry

on the integrability of these systems, on their phase portraits and in the dynamics of the

systems expressed in the bifurcation diagrams of the families we study. Our third goal is to

confront our results with the existing results in the literature and bring to light some missing

cases in theses other studies which we point out here. Our geometric analysis is done in detail

as this is part of a program of collecting data in order to obtain more global results on the

family QSH and its Darboux theory.

Our paper is organized as follows: in Section 2 we give a number of definitions and

propositions useful for the other sections. In Sections 3, 4, 5 we present a complete study of

families (1.10), (1.11) and (1.12). The choice of the first two families is motivated by the fact

that they do not satisfy all the conditions in the hypothesis of the Christopher–Kooij theorem,

here stated in theorem 1.15, but the conclusion of the theorem still holds, while the last family

does not always posses a first integral and it will provide a counterpoint. In Section 6 we

raise some questions, consider the problem of Poincaré for the family QSH, and make some

concluding comments.
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2 Preliminaries

The notion of configuration of invariant curves of a polynomial differential system appears in

several works, see for instance [26].

Definition 2.1. Consider a real planar polynomial system (1.1) with a finite number of singular

points. By a configuration of algebraic solutions of the system we mean a set of algebraic solutions

over C of the system, each one of these curves endowed with its own multiplicity and together

with all the real singular points of this system located on these curves, each one of these

singularities endowed with its own multiplicity.

Definition 2.2. Suppose we have two systems (S1), (S2) in QSH with a finite number of

singularities, finite or infinite, a finite set of invariant hyperbolas H1
i : h1

i (x, y) = 0, i = 1, . . . , k
of (S1) (respectively H2

i : h2
i (x, y) = 0, i = 1, . . . , k of (S2)) and a finite set (which could

also be empty) of invariant straight lines L
1
j : g1

j (x, y) = 0, j = 1, . . . , k′ of (S1) (respectively

L
2
j : g2

j (x, y) = 0, j = 1, . . . , k′ of (S2)). We say that the two configurations C1, C2 of hyperbolas

and lines of these systems are equivalent if there is a one-to-one correspondence Φh between

the hyperbolas of C1 and C2 and a one-to-one correspondence Φl between the lines of C1 and

C2 such that:

(i) the correspondences conserve the multiplicities of the hyperbolas and lines (in case there

are any) and also send a real invariant curve to a real invariant curve and a complex

invariant curve to a complex invariant curve;

(ii) for each hyperbola H : h(x, y) = 0 of C1 (respectively each line L : g(x, y) = 0) we have a

one-to-one correspondence between the real singular points on H (respectively on L) and

the real singular points on Φh(H) (respectively Φl(L)) conserving their multiplicities,

their location on branches of hyperbolas and their order on these branches (respectively

on the lines);

(iii) Furthermore, consider the total curves F 1 : ∏ H1
i (X, Y, Z)∏ G1

j (X, Y, Z)Z = 0 (respec-

tively F 2 : ∏ H2
i (X, Y, Z)∏ G2

j (X, Y, Z)Z = 0) where H1
i (X, Y, Z) = 0, G1

j (X, Y, Z) = 0

(respectively H2
i (X, Y, Z) = 0, G2

j (X, Y, Z) = 0) are the projective completions of H1
i , L

1
j

(respectively H2
i , L

2
j ). Then, there is a one-to-one correspondence ψ between the sin-

gularities of the curves F 1 and F 2 conserving their multiplicities as singular points of

these (total) curves.

It is important to assume that systems (1.3) are non-degenerate because otherwise doing a

time rescaling, they can be reduced to linear or constant systems. Under this assumption all

the systems in QSH have a finite number of finite singular points.

In the family QSH we also have cases where we have an infinite number of hyperbolas.

In these cases, by a Jouanolou result (see Theorem 1.5 on page 3), we have a rational first

integral.

In [18] the authors classified the family QSH, according to their geometric properties en-

coded in the configurations of invariant hyperbolas and invariant straight lines which these

systems possess. If a quadratic system has an infinite number of hyperbolas then the system

has a finite number of invariant affine straight lines (see [1]). Therefore, we can talk about

equivalence of configurations of the invariant affine lines associated to the system. Given two such
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configurations C1l and C2l associated to systems (S1) and (S2) of (1.1), we say they are equiva-
lent if and only if there is a one-to-one correspondence Φ between the lines of C1l and C2l such

that:

(i) the correspondence preserve the multiplicities of the lines and also sends a real (respec-

tively complex) invariant line to a real (respectively complex) invariant line;

(ii) for each line L : g(x, y) = 0 we have a one-to-one correspondence between the real

singularities on L and the real singularities on Φ preserving their multiplicities and their

order on the lines.

Definition 2.3 ([18]). Consider two systems (S1) and (S2) in QSH each one with an infinite

number of invariant hyperbolas. Consider the configurations C1l and C2l of invariant affine

straight lines L
1
j : g1

j (x, y) = 0 where j = 1, 2, . . . , k of system (S1) and respectively L
2
j :

g2
j (x, y) = 0 where j = 1, 2, . . . , k of system (S2). We say that the two configurations C1l and

C2l are equivalent with respect to the hyperbolas of the systems if and only if:

(i) they are equivalent as configurations of invariant lines, and

(ii) taking any hyperbola H1 : h1(x, y) = 0 of (S1) and any hyperbola H2 : h2(x, y) = 0

of (S2), then we must have a one-to-one correspondence between the real singularities

of system (S1) located on H1 and of real singularities of system (S2) located on H2,

preserving their multiplicities, their location and order on branches.

Furthermore, consider the curves F1 : ∏ h1(x, y)∏ g1
j = 0 and F2 : ∏ h2(x, y)∏ g2

j = 0.

Then, we have a one-to-one correspondence between the singularities of the curve F1 with

those in the curve F2 preserving their multiplicities as singularities of these curves.

The definition above is independent of the choice of the two hyperbolas H1 : h1(x, y) = 0

of (S1) and H2 : h2(x, y) = 0 of (S2).

Suppose that a polynomial differential system has an algebraic solution f (x, y) = 0 where

f (x, y) ∈ C[x, y] is of degree n given by

f (x, y) = c0 + c10x + c01y + c20x2 + c11xy + c02y2 + · · ·+ cn0xn + cn−1,1xn−1y + · · ·+ c0nyn,

with ĉ = (c0, c10, . . . , c0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation

λ f (x, y) = 0, λ ∈ C∗ = C − {0}
yields the same locus of complex points in the plane as the locus induced by f (x, y) = 0.

Therefore, a curve of degree n is defined by ĉ where

[ĉ] = [c0 : c10 : · · · : c0n] ∈ PN−1(C).

We say that a sequence of curves fi(x, y) = 0, each one of degree n, converges to a curve

f (x, y) = 0 if and only if the sequence of points [ci] = [ci0 : ci10 : · · · : ci0n] converges to

[ĉ] = [c0 : c10 : · · · : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the

systems (1.1) (phase curves) does not change. So for our purposes we can identify a system

(1.1) of degree n with a point

[a0 : a10 : · · · : a0n : b0 : b10 : · · · : b0n] ∈ SN−1(R)

where N = (n + 1)(n + 2).
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Definition 2.4.

(1) We say that an invariant curve

L : f (x, y) = 0, f ∈ C[x, y]

for a polynomial system (S) of degree n has geometric multiplicity m if there exists a

sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology

of SN−1(R) where N = (n+ 1)(n+ 2) such that each (Sk) has m distinct invariant curves

L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0

over C, deg( f ) = deg( fi,k) = r, converging to L as k → ∞, in the topology of PR−1(C),

with R = (r + 1)(r + 2)/2 and this does not occur for m + 1.

(2) We say that the line at infinity

L∞ : Z = 0

of a polynomial system (S) of degree n has geometric multiplicity m if there exists a

sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology

of SN−1(R) where N = (n + 1)(n + 2) such that each (Sk) has m − 1 distinct invariant

lines

L1,k : f1,k(x, y) = 0, . . . ,Lm−1,k : fm−1,k(x, y) = 0

over C, converging to the line at infinity L∞ as k → ∞, in the topology of P2(C) and this

does not occur for m.

Definition 2.5 ([9]). Let Cm[x, y] be the C-vector space of polynomials in C[x, y] of degree at

most m and of dimension R = (2+m
2 ). Let {v1, v2, . . . , vR} be a base of Cm[x, y]. We denote by

MR(m) the R × R matrix

MR(m) =











v1 v2 . . . vR

χ(v1) χ(v2) . . . χ(vR)
...

...
. . .

...

χR−1(v1) χR−1(v2) . . . χR−1(vR)











, (2.1)

where χk+1(vi) = χ(χk(vi)). The mth extactic curve of χ, Em(χ), is given by the equation

det MR(m) = 0. We also call Em(χ) the mth extactic polynomial.

From the properties of the determinant we note that the extactic curve is independent of

the choice of the base of Cm[x, y].

Theorem 2.6 ([20]). Consider a planar vector field (1.2). We have Em(χ) = 0 and Em−1(χ) 6= 0 if
and only if χ admits a rational first integral of exact degree m.

Observe that if f = 0 is an invariant algebraic curve of degree m of χ , then f divides

Em(χ). This is due to the fact that if f is a member of a base of Cm[x, y], then f divides the

whole column in which f is located.

Definition 2.7 ([9]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has

algebraic multiplicity k if det MR(m) 6= 0 and k is the maximum positive integer such that f k

divides det MR(m); and it has no defined algebraic multiplicity if det MR(m) ≡ 0.
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Definition 2.8 ([9]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has

integrable multiplicity k with respect to χ if k is the largest integer for which the following is

true: there are k − 1 exponential factors exp(gj/ f j), j = 1, . . . , k − 1, with deg gj ≤ jm, such

that each gj is not a multiple of f .

In the next result we see that the algebraic and integrable multiplicity coincide if f = 0 is

an irreducible invariant algebraic curve.

Theorem 2.9 ([16]). Consider an irreducible invariant algebraic curve f = 0 of degree m ≥ 1 of χ.
Then f has algebraic multiplicity k if and only if the vector field (1.2) has k − 1 exponential factors
exp(gj/ f j), where (gj, f ) = 1 and gj is a polynomial of degree at most jm, for j = 1, . . . , k − 1.

In [9] the authors showed that the definitions of geometric, algebraic and integrable mul-

tiplicity are equivalent when f = 0 is an irreducible invariant algebraic curve of vector field

(1.2).

In order to use the infinity of R2 as an additional invariant curve for studying the integra-

bility of the vector field χ, we need the Poincaré compactification of the vector field χ. For

Z 6= 0 consider the change of variables

x =
1

Z
, y =

Y
Z

the vector field χ is transformed to

χ = −Z P(Z, Y)
∂

∂Z
+
(

Q(Z, Y)− Y P(Z, Y)
) ∂

∂Y

where P(Z, Y) = Z2P
(

1
Z , Y

Z

)

and Q(Z, Y) = Z2Q
(

1
Z , Y

Z

)

.

We note that Z = 0 is an invariant line of the vector field χ and that the infinity of R2

corresponds to Z = 0 of the vector field χ. So we can define the algebraic multiplicity of

Z = 0 for the vector field χ.

Definition 2.10. We say that the infinity of χ has algebraic multiplicity k if Z = 0 has algebraic

multiplicity k for the vector field χ; and that it has no defined algebraic multiplicity if Z = 0

has no defined algebraic multiplicity for χ.

Let’s recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic

variety of dimension n.

Definition 2.11. Let V be an irreducible algebraic variety of dimension n over a field K. A

cycle of dimension r or r-cycle on V is a formal sum

∑
W

nWW

where W is a subvariety of V of dimension r which is not contained in the singular locus of

V, nW ∈ Z, and only a finite number of nW ’s are non-zero. We call degree of an r-cycle the

sum

∑
W

nW .

An (n − 1)-cycle is called a divisor.
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Definition 2.12. For a non-degenerate polynomial differential systems (S) possessing a finite

number of algebraic solutions

F = { fi}m
i=1, fi(x, y) = 0, fi(x, y) ∈ C,

each with multiplicity ni and a finite number of singularities at infinity, we define the algebraic

solutions divisor (also called the invariant curves divisor) on the projective plane,

ICDF = ∑
ni

niCi + n∞L∞

where Ci : Fi(X, Y, Z) = 0 are the projective completions of fi(x, y) = 0, ni is the multiplicity

of the curve Ci = 0 and n∞ is the multiplicity of the line at infinity L∞ : Z = 0.

It is well known (see [1]) that the maximum number of invariant straight lines, including

the line at infinity, for polynomial systems of degree n ≥ 2 is 3n.

Proposition 2.13 ([1]). Every quadratic differential system has at most six invariant straight lines,
including the line at infinity.

In the case we consider here, we have a particular instance of the divisor ICD because the

invariant curves will be invariant hyperbolas and invariant lines of a quadratic differential

system, in case these are in finite number. In case we have an infinite number of hyperbolas

we can construct the divisor of the invariant straight lines which are always in finite number.

Another ingredient of the configuration of algebraic solutions are the real singularities

situated on these curves. We also need to use here the notion of multiplicity divisor of real

singularities of a system, located on the algebraic solutions of the system.

Definition 2.14.

1. Suppose a real quadratic system (1.3) has a non-zero finite number of invariant hyper-

bolas

Hi : hi(x, y) = 0, i = 1, 2, . . . , k

and a finite number of affine invariant lines

Lj : f j(x, y) = 0, j = 1, 2, . . . , l.

We denote the line at infinity L∞ : Z = 0. Let us assume that on the line at infinity we

have a finite number of singularities. The divisor of invariant hyperbolas and invariant

lines on the complex projective plane of the system is the following

ICD = n1H1 + · · ·+ nkHk + m1L1 + · · ·+ mlLl + m∞L∞

where ni (respectively mj) is the multiplicity of the hyperbola Hi (respectively mj of the

line Lj), and m∞ is the multiplicity of L∞. We also mark the complex (non-real) invariant

hyperbolas (respectively lines) denoting them by HC
i (respectively LC

i ). We define the

total multiplicity TM of the divisor as the sum ∑i ni + ∑j mj + m∞.

2. The zero-cycle on the real projective plane, of singularities of a quadratic system (1.3)

located on the configuration of invariant lines and invariant hyperbolas, is given by

M0CS = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n
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where Pi (respectively P∞
j ) are all the finite (respectively infinite) such singularities of

the system and ri (respectively vj) are their corresponding multiplicities. We mark the

complex singular points denoting them by PC
i . We define the total multiplicity TM of

zero-cycles as the sum ∑i ri + ∑j vj.

In the family QSH we have configurations which have an infinite number of hyperbolas.

These are of two kinds: those with a finite number of singular points at infinity, and those

with the line at infinity filled up with singularities. To distinguish these two cases we define

|Sing∞| to be the cardinality of the set of singular points at infinity of the systems. In the first

case we have |Sing∞| = 2 or 3, and in the second case |Sing∞| is the continuum and we simply

write |Sing∞| = ∞. Since in both cases the systems admit a finite number of affine invariant

straight lines we can use them to distinguish the configurations.

Definition 2.15.

(1) In case we have an infinite number of hyperbolas and just two or three singular points

at infinity but we have a finite number of invariant straight lines we define

ILD = m1L1 + · · ·+ mlLl + m∞L∞.

(2) In case we have an infinite number of hyperbolas, the line at infinity is filled up with

singularities and we have a finite number of affine lines, we define

ILD = m1L1 + · · ·+ mlLl .

Suppose we have a finite number of invariant hyperbolas and invariant straight lines of a

system (S) and that they are given by equations

fi(x, y) = 0, i ∈ {1, 2, . . . , k}, fi ∈ C[x, y].

Let us denote by Fi(X, Y, Z) = 0 the projection completion of the invariant curves fi = 0 in

P2(C).

Definition 2.16. The total invariant curve of the system (S) in QSH, on P2(R), is the curve

T(S) = ∏
i

Fi(X, Y, Z)Z = 0.

In case one of the curves is multiple then it will appear with its multiplicity.

For example, if a system (S) admits an invariant hyperbola h(x, y) with multiplicity two

and the line at infinity Z = 0 has multiplicity one, then the total invariant curve of this

system is

T(S) = H(X, Y, Z)2Z = 0

where H(X, Y, Z) = 0 is the projection completion of h = 0. The degree of T(S) is 5.

The singular points of the system (S) situated on T(S) are of two kinds: those which are

simple (or smooth) points of T(S) and those which are multiple points of T(S).

Remark 2.17. To each singular point of the system we have its associated multiplicity as a

singular point of the system. In addition, when these singular points are situated on the total

curve, we also have the multiplicity of these points as points on the total curve T(S). Through
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a singular point of the systems there may pass several of the curves Fi = 0 and Z = 0. Also we

may have the case when this point is a singular point of one or even of several of the curves

in case we work with invariant curves with singularities. This leads to the multiplicity of the

point as point of the curve T(S). The simple points of the curve T(S) are those of multiplicity

one. They are also the smooth points of this curve.

Definition 2.18. The zero-cycle of the total curve T(S) of system (S) is given by

M0CT = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) singularities situated on T(S)

and ri (respectively vj) are their corresponding multiplicities as points on the total curve T(S).
We define the total multiplicity TM of zero-cycles of the total invariant curve as the sum

∑i ri + ∑j vj.

Remark 2.19. If two curves intersects transversally, this point will be a simple point of inter-

section. If they are tangent, we would have an intersection multiplicity higher than or equal

to two.

Definition 2.20 ([24]). Two polynomial differential systems S1 and S2 are topologically equiv-

alent if and only if there exists a homeomorphism of the plane carrying the oriented phase

curves of S1 to the oriented phase curves of S2 and preserving the orientation.

To cut the number of non equivalent phase portraits in half we use here another equiva-

lence relation.

Definition 2.21. Two polynomial differential systems S1 and S2 are topologically equivalent if

and only if there exists a homeomorphism of the plane carrying the oriented phase curves of

S1 to the oriented phase curves of S2, preserving or reversing the orientation.

We use the notation for singularities as introduced in [2] and [3]. We say that a singular

point is elemental if it possess two eigenvalues not zero; semi-elemental if it possess exactly one

eigenvalue equal to zero and nilpotent if it posses two eigenvalues zero. We call intricate a

singular point with its Jacobian matrix identically zero.

We will place first the finite singular points which will be denoted with lower case letters

and secondly we will place the infinite singular points which will be denoted by capital letters,

separating them by a semicolon ’;’.

In our study we will have real and complex finite singular points and from the topological

viewpoint only the real ones are interesting. When we have a simple (respectively double)

complex finite singular point we use the notation © (respectively ©(2)).

For the elemental singular points we use the notation ’s’, ’S’ for saddles, ’n’, ’N’ for nodes,

’ f ’ for foci and ’c’ for centers.

Non-elemental singular points are multiple points. Here we introduce a special notation

for the infinity non-elemental singular point. We denote by (a
b) the maximum number a (re-

spectively b) of finite (respectively infinite) singularities which can be obtained by perturbation

of the multiple point. For example, when we have a non-elemental point at infinity obtained

by the coalescence from a node at infinite with a saddle at infinite we will denoted it by (0
2)SN.

The semi-elemental singular points can either be nodes, saddles or saddle-nodes (finite

or infinite). If they are finite singular points we will denote them by ’n(2)’, ’s(2)’ and ’sn(2)’,
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respectively and if they are infinite singular points by ’(a
b)N’, ’(a

b)S’ and ’(a
b)SN’, where (a

b) in-

dicates their multiplicity. We note that semi-elemental nodes and saddles are respectively

topologically equivalent with elemental nodes and saddles.

The nilpotent singular points can either be saddles, nodes, saddle-nodes, elliptic-saddles,

cusps, foci or centers. The only finite nilpotent points for which we need to introduce notation

are the elliptic-saddles and cusps which we denote respectively by ’es’ and ’cp’.

The intricate singular points are degenerate singular points. It is known that the neigh-

bourhood of any singular point of a polynomial vector field (except for foci and centers) is

formed by a finite number of sectors which could only be of three types: parabolic (p), hyper-

bolic (h) and elliptic (e) (see [12]). In this work we have the following finite intricate singular

points of multiplicity four described according their sectoral decomposition:

• hpphpp(4)

• phph(4)

• epep(4)

The degenerate systems are systems with a common factor in the polynomials defining

the system. We will denote this case with the symbol ⊖. The degeneracy can be produced

by a common factor of degree one which defines a straight line or a common quadratic factor

which defines a conic. In this paper we have just the first case happening. Following [2] we

use the symbol ⊖[|] for a real straight line.

Moreover, we also want to determine whether after removing the common factor of the

polynomials, singular points remain on the curve defined by this common factor. If some

singular points remain on this curve we will use the corresponding notation of their various

kinds. In this situation, the geometrical properties of the singularity that remain after the

removal of the degeneracy, may produce topologically different phenomena, even if they are

topologically equivalent singularities. So, we will need to keep the geometrical information

associated to that singularity.

In this study we use the notation (⊖[|]; nd) which denotes the presence of a real straight

line filled up with singular points in the system such that the reduced system has a node nd

on this line where nd is a one-direction node, that is, a node with two identical eigenvalues

whose Jacobian matrix cannot be diagonal.

The existence of a common factor of the polynomials defining the differential system also

affects the infinite singular points.

We point out that the projective completion of a real affine line filled up with singular

points has a point on the line at infinity which will then be also a non-isolated singularity.

There is a detailed description of this notation in [2]. In case that after the removal of the finite

degeneracy, a singular point at infinity remains at the same place, we must denote it with all

its geometrical properties since they may influence the local topological phase portrait. In this

study we use the notation (0
2)SN, (⊖[|]; ∅) that means that the system has at infinity a saddle-

node, and one non-isolated singular point which is part of a real straight line filled up with

singularities (other that the line at infinity), and that the reduced linear system has no infinite

singular point in that position. See [2] and [3] for more details.

In order to distinguish topologically the phase portraits of the systems we obtained, we

also use some invariants introduced in [25]. Let SC be the total number of separatrix connec-

tions, i.e. of phase curves connecting two singularities which are local separatrices of the two

singular points. We denote by
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• SC f
f the total number of SC connecting two finite singularities,

• SC∞
f the total number of SC connecting a finite with an infinite singularity,

• SC∞
∞ the total number of SC connecting two infinite.

A graphic as defined in [13] is formed by a finite sequence of singular points r1, r2, . . . , rn

(with possible repetitions) and non-trivial connecting orbits γi for i = 1, . . . , n such that γi has

ri as α-limit set and ri+1 as ω-limit set for i < n and γn has rn as α-limit set and r1 as ω-limit

set. Also normal orientations nj of the non-trivial orbits must be coherent in the sense that if

γj−1 has left-hand orientation then so does γj. A polycycle is a graphic which has a Poincaré

return map.

A degenerate graphic is a graphic where it is also allowed that one or several (even all)

connecting orbits γi can be formed by an infinite number of singular points. For more details,

see [13].

3 Geometric analysis of family (1.10)

Consider the family

(1.10)















ẋ = a − x2

3
− 2xy

3

ẏ = 4a − 3v2 − 4xy
3

+
y2

3
, where a 6= 0.

This is a two parameter family depending on (a, v) ∈ (R\{0}) × R. We display below

the full geometric analysis of the systems in this family, which is endowed with at least three

invariant algebraic curves. In the generic situation

av(a − v2)(a − 3v2/4)(a + 3v2)(a − 8v2/9) 6= 0 (3.1)

the systems have only two invariant lines J1 and J2 and only two invariant hyperbolas J3 and

J4 with respective cofactors αi, 1 ≤ i ≤ 4 where

J1 = −3
√

−a + v2 − x + y, α1 =
√

−a + v2 − x
3 + y

3 ,

J2 = 3
√

−a + v2 − x + y, α2 = −
√

−a + v2 − x
3 + y

3 ,

J3 = −3a + 3vx − x2 + xy, α3 = −v − 2x
3 − y

3 ,

J4 = −3a − 3vx − x2 + xy, α4 = v − 2x
3 − y

3 .

We see that since the number of invariant curve is four, these systems are Darboux inte-

grable. We note that if v = 0 then the two hyperbolas coincide and we get a double hyperbola.

Also if a = v2 the two lines coincide and we get a double line. So to have four distinct curves

we need to put v(a − v2) 6= 0. We inquire when we could have an additional line. Calcula-

tions yield that this happens when a − 3v2/4 = 0. We also inquire when we could have an

additional hyperbola. Calculations yield that this happens when (a + 3v2)(a − 8v2/9) = 0.

Straightforward calculations lead us to the tables listed below. The multiplicities of each

invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant al-

gebraic curves were calculated by using for lines the 1st and for hyperbola the 2nd extactic

polynomial, respectively.

(i) av(a − v2)(a − 3v2/4)(a + 3v2)(a − 8v2/9) 6= 0.
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Invariant curves and cofactors Singularities Intersection points

J1 = −3
√
−a + v2 − x + y

J2 = 3
√
−a + v2 − x + y

J3 = −3a + 3vx − x2 + xy
J4 = −3a − 3vx − x2 + xy

α1 =
√
−a + v2 − x

3 + y
3

α2 =
√
−a + v2 − x

3 + y
3

α3 = −v − 2x
3 − y

3

α4 = v − 2x
3 − y

3

P1=(−v−
√

v2−a,−v+2
√

v2−a)

P2=(v−
√

v2−a,v+2
√

v2−a)

P3=(−v+
√

v2−a,−v−2
√

v2−a)

P4=(v+
√

v2−a,v−2
√

v2−a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For v2
> a we have

n, s, s, n; N, N, S if v > 0

s, n, n, s; N, N, S if v < 0

For v2
< a we have

©, ©, ©, ©; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P∞
2 simple

P2 simple

J1 ∩ J4 =

{

P∞
2 simple

P1 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 simple

P4 simple

J2 ∩ J4 =

{

P∞
2 simple

P3 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ J4 =

{

P∞
1 triple

P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD =

{

J1 + J2 + J3 + J4 + L∞ if v2
> a

JC
1 + JC

2 + J3 + J4 + L∞ if v2
< a

M0CS =

{

P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3 if v2

> a
PC

1 + PC
2 + PC

3 + PC
4 + P∞

1 + P∞
2 + P∞

3 if v2
< a

T = ZJ1 J2 J3 J4 = 0

M0CT =

{

2P1 + 2P2 + 2P3 + 2P4 + 3P∞
1 + 5P∞

2 + P∞
3 if v2

> a
3P∞

1 + 5P∞
2 + P∞

3 if v2
< a

5

5

7

7

7

17

9

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double and

2) five distinct tangents at P∞
2 .

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J
λ1

√
v2−a

v
3 J

− λ1

√
v2−a

v
4 R = Jλ1

1 J−λ1−2
2 J

(λ1+1)
√

v2−a
v −1

3 J
− (λ1+1)

√
v2−a

v −1

4

Simple

example
I = J1

J2

(

J3
J4

)

√
v2−a
v R = 1

J1 J2 J3 J4
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(ii) av(a − v2)(a − 3v2/4)(a + 3v2)(a − 8v2/9) = 0.

(ii.1) v = 0 and a 6= 0.

Here the two hyperbolas coalesce yielding a double hyperbola so we compute the

exponential factor E4.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = −3i
√

a + x − y
J2 = 3i

√
a + x − y

J3 = −3a + x(y − x)

E4 = e
g1x

−3a+x(y−x)

α1 = −i
√

a − x
3 + y

3

α2 = i
√

a − x
3 + y

3

α3 = − 2x
3 − y

3

α4 = − g1

3

P1 = (−i
√

a, 2i
√

a)
P2 = (i

√
a,−2i

√
a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For a < 0 we have

sn(2), sn(2); N, N, S

For a > 0 we have

©(2), ©(2); N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P∞
2 simple

P2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD =

{

J1 + J2 + 2J3 + L∞ if a < 0

JC
1 + JC

2 + 2J3 + L∞ if a > 0

M0CS =

{

2P1 + 2P2 + P∞
1 + P∞

2 + P∞
3 if a < 0

2PC
1 + 2PC

2 + P∞
1 + P∞

2 + P∞
3 if a > 0

T = ZJ1 J2 J
2
3 = 0.

M0CT =

{

3P1 + 3P2 + 3P∞
1 + 5P∞

2 + P∞
3 if a < 0

3P∞
1 + 5P∞

2 + P∞
3 if a > 0

5

5

7

7

7

15

9

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only four distinct tangents at P∞
2 , but one of them is double.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E

− 6i
√

aλ1
g1

4 R = Jλ1
1 J−2−λ1

2 J−2
3 E

− 6i
√

a(1+λ1)
g1

4

Simple

example
I = J1

J2E4
6i
√

a R = 1
J1 J2 J2

3
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(ii.2) a = v2.

Here the two lines coalesce yielding a double line so we compute the exponential

factor E4.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = x − y
J2 = −3v2 + 3vx − x2 + xy
J3 = −3v2 − 3vx − x2 + xy

E4 = e
g0+g1(x−y)

x−y

α1 = − x
3 + y

3

α2 = −v − 2x
3 − y

3

α3 = v − 2x
3 − y

3

α4 = g0

3

P1 = (−v,−v)
P2 = (v, v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

sn(2), sn(2); N, N, S

J1 ∩ J2 =

{

P∞
2 simple

P2 simple

J1 ∩ J3 =

{

P∞
2 simple

P1 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 triple

P1 simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD = 2J1 + J2 + J3 + L∞

M0CS = 2P1 + 2P2 + P∞
1 + P∞

2 + P∞
3

T = ZJ
2
1 J2 J3 = 0

M0CT = 3P1 + 3P2 + 3P∞
1 + 5P∞

2 + P∞
3

5

7

7

15

where the total curve T has

1) only two distinct tangents at P1 and at P2, but one of them is double;

2) only two distinct tangents at P∞
1 , but one of them is double and

3) only four distinct tangents at P∞
2 , but one of them is double.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J−λ2
3 E

6vλ2
g0

4 R = J−2
1 Jλ2

2 J−2−λ2
3 E

6v(1+λ2)
g0

4

Simple

example
I = J2E4

6v

J3
R = 1

J2
1 J2 J3

(ii.3) a = 3v2/4.

Here we have, apart from two lines and two hyperbolas, a third invariant line.

Then, we have five invariant algebraic curves and hence according to Jouanolou’s

theorem the corresponding system has a rational first integral.
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Invariant curves and cofactors Singularities Intersection points

J1 = − 3v
2 + x − y

J2 = 3v
2 + x − y

J3 = y
J4 = − x2

3v +
xy
3v − 3v

4 + x
J5 = x2

3v −
xy
3v + 3v

4 + x

α1 = 1
6 (−3v − 2x + 2y)

α2 = 1
6 (3v − 2x + 2y)

α3 = y
3 − 4x

3

α4 = −v − 2x
3 − y

3

α5 = v − 2x
3 − y

3

P1 =
(

− 3v
2 , 0

)

P2 = (− v
2 ,−2v)

P3 = ( v
2 , 2v)

P4 =
(

3v
2 , 0

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n, s, s, n; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 simple

J1 ∩ J4 =

{

P∞
2 simple

P4 simple

J1 ∩ J5 =

{

P∞
2 simple

P2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 = P1 simple

J2 ∩ J4 =

{

P∞
2 simple

P3 simple

J2 ∩ J5 =

{

P∞
2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ J4 = P4 double

J3 ∩ J5 = P1 double

J3 ∩ L∞ = P∞
3 simple

J4 ∩ J5 =

{

P∞
1 triple

P∞
2 simple

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J5 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CS = P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3

T = ZJ1 J2 J3 J4 J5 = 0

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 3P∞
1 + 5P∞

2 + 2P∞
3

6

7

8

20

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is double and

3) five distinct tangents at P∞
2 .

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
−λ1

2 −λ2
2

3 J
λ2
2

4 J
λ1
2

5 R = Jλ1
1 Jλ2

2 J
−1−λ1

2 −λ2
2

3 J
− 1

2+
λ2
2

4 J
− 1

2+
λ1
2

5

Simple

example
I1 =

J2
1 J5

J3
, I2 =

J2
2 J4

J3
R = 1

J1 J2 J4 J5

Remark 3.1. Consider F 1
(c1,c2)

= c1 J2
1 J5 − c2 J3 = 0, degF 1

(c1,c2)
= 4. The remarkable
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values of F 1
(c1,c2)

are [1 : 9v2/2] and [1 : 0] for which we have

F 1
(1,9v2/2) = −J2

2 J4, F 1
(1,0) = J2

1 J5.

Therefore, J1, J2, J4, J5 are remarkable curves of I1, [1 : 9v2/2] and [1 : 0] are the only

two critical remarkable values of I1 and J1, J2 are critical remarkable curves of I1.

The singular points are P1, P3 for F 1
(1,9v2/2)

and P2, P4 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1 J2
2 J4 − c2 J3 we

have the same remarkable values [1 : 9v2/2] and [1 : 0] and the same remarkable

curves J1, J2, J4, J5. However, the singular point are P1, P3 for F 2
(1,0) and P2, P4 for

F 2
(1,9v2/2)

.

(ii.4) a = −3v2.

Here we have, apart from two lines and two hyperbolas, a third invariant hyperbola.

Then, we have five invariant algebraic curves and hence according to Jouanolou’s

theorem the corresponding system has a rational first integral.

Invariant curves and cofactors Singularities Intersection points

J1 = −6v + x − y
J2 = 6v + x − y
J3 = 9v2 + xy
J4 = 9v2 + 3vx − x2 + xy
J5 = 9v2 − 3vx − x2 + xy

α1 = −2v − x
3 + y

3

α2 = 2v − x
3 + y

3

α3 = − 5x
3 − y

3

α4 = −v − 2x
3 − y

3

α5 = v − 2x
3 − y

3

P1 = (−3v, 3v)
P2 = (−v, 5v)
P3 = (v,−5v)
P4 = (3v,−3v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n, s, s, n; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 double

J1 ∩ J4 =

{

P∞
2 simple

P4 simple

J1 ∩ J5 =

{

P∞
2 simple

P3 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 = P1 double

J2 ∩ J4 =

{

P∞
2 simple

P2 simple

J2 ∩ J5 =

{

P∞
2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ J4 =

{

P∞
1 triple

P4 simple

J3 ∩ J5 =

{

P∞
1 triple

P1 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
3 simple

J4 ∩ J5 =

{

P∞
1 double

P∞
2 double

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J5 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple
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Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CS = P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3

T = ZJ1 J2 J3 J4 J5 = 0

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 4P∞
1 + 5P∞

2 + 2P∞
3

6

7

9

21

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is triple,

3) only four tangents at P∞
2 , but one of them is double.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−λ2
3 J2λ2

4 J2λ1
5 R = Jλ1

1 Jλ2
2 J−2−λ1−λ2

3 J1+2λ2
4 J1+2λ1

5

Simple

example
I1 =

J1 J2
5

J3
, I2 =

J2 J2
4

J3
R = 1

J1 J2 J4 J5

Remark 3.2. Consider F 1
(c1,c2)

= c1 J1 J2
5 − c2 J3 = 0, degF 1

(c1,c2)
= 5. The remarkable

values of F 1
(c1,c2)

are [1 : −108v3] and [1 : 0] for which we have

F 1
(1,−108v3) = J2 J2

4 , F 1
(1,0) = J1 J2

5 .

Therefore, J1, J2, J4, J5 are remarkable curves of I1, [1 : −108v3] and [1 : 0] are the

only two critical remarkable values of I1 and J4, J5 are critical remarkable curves of

I1. The singular points are P2, P4 for F 1
(1,−108v3)

and P1, P3 for F 1
(1,0).

Considering the first integral I2 with its associated curve F 2
(c1,c2)

= c1 J2 J2
4 − c2 J3 we

have the remarkable values [1 : 108v3] and [1 : 0] and the same remarkable curves

J1, J2, J4, J5. The singular point are P1, P3 for F 2
(1,108v3)

and P2, P4 for F 2
(1,0).

(ii.5) a = 8v2/9.

Here we have, apart from two lines and two hyperbolas, a third invariant hyperbola.

Then, we have five invariant algebraic curves and hence according to Jouanolou’s

theorem the corresponding system has a rational first integral.
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Invariant curves and cofactors Singularities Intersection points

J1 = −v + x − y
J2 = v + x − y
J3 = y(x − y)− v2

3

J4 = − 8v2

3 + 3vx + x(y − x)
J5 = − 8v2

3 − 3vx + x(y − x)

α1 = 1
3 (−v − x + y)

α2 = 1
3 (v − x + y)

α3 = 2y
3 − 5x

3

α4 = −v − 2x
3 − y

3

α5 = v − 2x
3 − y

3

P1 =
(

− 4v
3 ,− v

3

)

P2 =
(

− 2v
3 ,− 5v

3

)

P3 =
(

2v
3 , 5v

3

)

P4 =
(

4v
3 , v

3

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

n, s, s, n; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P∞
2 simple

P4 simple

J1 ∩ J4 =

{

P∞
2 simple

P4 simple

J1 ∩ J5 =

{

P∞
2 simple

P2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P∞
2 simple

P1 simple

J2 ∩ J4 =

{

P∞
2 simple

P3 simple

J2 ∩ J5 =

{

P∞
2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ J4 =

{

P∞
2 simple

P4 triple

J3 ∩ J5 =

{

P∞
2 simple

P1 triple

J3 ∩ L∞ =

{

P∞
2 simple

P∞
3 simple

J4 ∩ J5 =

{

P∞
1 triple

P∞
2 simple

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J5 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CS = P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3

T = ZJ1 J2 J3 J4 J5 = 0

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 3P∞
1 + 6P∞

2 + 2P∞
3

6

7

9

21

where the total curve T has

1) only two distinct tangents at P1 (and at P4), but one of them is double,

2) only two distinct tangents at P∞
1 , but one of them is double and

3) six distinct tangents at P∞
2 .
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First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J
− λ1

3 − λ2
3

3 J
λ2
3

4 J
λ1
3

5 R = Jλ1
1 Jλ2

2 J
− λ1

3 − λ2
3 − 2

3
3 J

λ2
3 − 2

3
4 J

λ1
3 − 2

3
5

Simple

example
I1 =

J3
1 J5

J3
, I2 =

J3
2 J4

J3
R = 1

J1 J2 J4 J5

Remark 3.3. Consider F 1
(c1,c2)

= c1 J3
1 J5 − c2 J3 = 0, degF 1

(c1,c2)
= 5. The remarkable

values of F 1
(c1,c2)

are [1 : −16v3] and [1 : 0] for which we have

F 1
(1,−16v3) = J3

2 J4, F 1
(1,0) = J3

1 J5.

Therefore, J1, J2, J4, J5 are remarkable curves of I1, [1 : −16v3] and [1 : 0] are the

only two critical remarkable values of I1 and J1, J2 are critical remarkable curves of

I1. The singular points are P1, P3 for F 1
(1,−16v3)

and P2, P4 for F 1
(1,0).

Considering the first integral I2 with its associated curves F 2
(c1,c2)

= c1 J3
2 J4 − c2 J3 we

have the remarkable values [1 : 16v3] and [1 : 0] and the same remarkable curves

J1, J2, J4, J5. The singular point are P1, P3 for F 2
(1,0) and P2, P4 for F 2

(1,16v3)
.

(ii.6) a = 0 and v 6= 0.

Under this condition, systems (1.10) do not belong to QSH, but we study them

seeking a complete understanding of the bifurcation diagram of the systems in

the full family (1.10). All the invariant lines are x = 0 and ±3v − x + y = 0

that are simple. Perturbing this system in the family (1.10) we can obtain two

distinct configurations of lines and hyperbolas. By perturbing the reducible conics

x(−3v − x + y) = 0 and x(3v − x + y) = 0 we can produce two distinct hyperbolas

−3a − 3vx − x2 + xy = 0 and −3a + 3vx − x2 + xy = 0, respectively. Furthermore,

the cubic x(3v − x + y)(−3v − x + y) = 0 has integrable multiplicity two.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = −3v − x + y
J2 = 3v − x + y
J3 = x

E4 = e−
6g0(6v2+x(y−x))+g1x((x−y)2−9v2)

2x(−3v+x−y)(3v+x−y)

α1 = v − x
3 + y

3

α2 = −v − x
3 + y

3

α3 = − x
3 − 2y

3

α4 = g0

P1 = (0,−3v)
P2 = (2v,−v)
P3 = (−2v, v)
P4 = (0, 3v)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For v 6= 0 we have

s, n, n, s; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 = P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ = P∞
1 simple
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Divisor and zero-cycles Degree

ICD = J1 + J2 + J3 + L∞ if v 6= 0

M0CS = P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3 if v 6= 0

T = ZJ1 J2 J3 = 0.

M0CT = 2P1 + P2 + P3 + 2P4 + 2P∞
1 + 3P∞

2 + P∞
3 if v 6= 0

4

7

4

12

where the total curve T has three distinct tangents at P∞
2 .

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J0
3 E

− 2λ1v
g0

4 R = Jλ1
1 J−4−λ1

2 J−2
3 E

− 2v(λ1+2)
g0

4

Simple

example
I = J1

J2E2v
4

R = 1
J2
1 J2

2 J2
3

(ii.7) a = v = 0.

Under this condition, systems (1.10) do not belong to QSH, but we study them

seeking a complete understanding of the bifurcation diagram of the systems in the

full family (1.10). Here we have a single system which has a rational first integral

that foliates the plane into quartic curves. All the invariant affine lines are x = 0,

y = 0 that are simple and x− y = 0 that is double. The lines x = 0 and x− y = 0 are

remarkable curves. Perturbing this system in the full family (1.10) we can obtain up

to ten distinct configurations of lines and hyperbolas. By perturbing the reducible

conic x(x − y) = 0 we can produce 2 distinct hyperbolas −3a + 3vx − x2 + xy = 0

and −3a − 3vx − x2 + xy = 0. Perturbing the reducible conic y(x − y) = 0 we

can produce a third hyperbola y(x − y)− v2

3 = 0 and by perturbing xy = 0 we can

produce the hyperbola 9v2 + xy = 0. We get a double hyperbola −3a+ x(y− x) = 0

by perturbing the double reducible conic x2(x − y)2 = 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = y
J2 = x
J3 = x − y

E4 = e
g0+g1(x−y)

x−y

α1 = y
3 − 4x

3

α2 = − x
3 − 2y

3

α3 = y
3 − x

3

α4 = g0

3

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4); N, N, S

J1 ∩ J2 = P1 simple

J1 ∩ J3 = P1 simple

J1 ∩ L∞ = P∞
3 simple

J2 ∩ J3 = P1 simple

J2 ∩ L∞ = P∞
1 simple

J3 ∩ L∞ = P∞
2 simple
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Divisor and zero-cycles Degree

ICD = J1 + J2 + 2J3 + L∞

M0CS = 4P1 + P∞
1 + P∞

2 + P∞
3

T = ZJ1 J2 J
2
3 = 0.

M0CT = 4P1 + 2P∞
1 + 3P∞

2 + 2P∞
3

5

7

5

10

where the total curve T has

1) only three distinct tangents at P1, but one of them is double;

2) only two distinct tangentes at P∞
2 , but one of them is double.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−3λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−4−3λ1
3 E0

4

Simple

example
I1 = J1

J2 J3
3

R = 1
J1 J2 J3

Remark 3.4. Consider F 1
(c1,c2)

= c1 J1 − c2 J2 J3
3 = 0, degF 1

(c1,c2)
= 4. The remarkable

value of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) = −J2 J3

3 .

Therefore, J2, J3 are remarkable curves of I1, [0 : 1] is the only critical remarkable

values of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for

F 1
(0,1).

We sum up the topological, dynamical and algebraic geometric features of family (1.10)

and we also confront our results with previous results in the literature in the following propo-

sition. We show that there exists two more configurations of invariant hyperbolas and lines

than in [18], there are four more phase portraits than the ones appearing in [17] and there is

one more phase portrait than the ones appearing in [10].

Proposition 3.5.

(a) For the family (1.10) we have nine distinct configurations C(1.10)
1 −C(1.10)

9 of invariant hyperbolas
and lines (see Figure 3.1 for the complete bifurcation diagram of configurations of such family).
The bifurcation set of configurations in the full parameter space is av(a − v2)(a + 3v2)(a −
3v2/4)(a − 8v2/9) = 0. On v(a − v2) = 0 one of the algebraic solutions is double. On
(a + 3v2)(a − 3v2/4)(a − 8v2/8) = 0 we have an additional line or an additional hyperbola.
The configurations C(1.10)

8 and C(1.10)
9 are not equivalent with anyone of the configurations for

systems (3.97) (here family (1.10)) in [18].

(b) All systems in family (1.10) have an inverse integrating factor which is polynomial. All systems
in family (1.10) satisfying the genericity condition (3.1) have a Darboux first integral. If a =

v2 then the systems have a double invariant line. If v = 0 then the systems have a double
invariant hyperbola. In both cases, the systems have a generalized Darboux first integral. In
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all the following three cases, we have a rational first integral. If a = 3v2/4 then the systems
have an additional invariant line and the plane is foliated into quartic algebraic curves. If a =

−3v2 the plane is foliated by quintic algebraic curves. If a = 8v2/9 then the systems have
an additional invariant hyperbola and the plane is foliated in quintic algebraic curves. The
remarkable curves are J1, J2, J4, J5 for these three algebraically integrable cases of family (1.10) for
each case correspondingly.

(c) For the family (1.10) we have five topologically distinct phase portraits P(1.10)
1 − P(1.10)

5 . The
topological bifurcation diagram of family (1.10) is done in Figure 3.2. The bifurcation set of
singularities is the half line v = 0 and a < 0, the parabola a = v2 and the line a = 0. The
phase portraits P(1.10)

1 , P(1.10)
3 , P(1.10)

4 and P(1.10)
5 are not topologically equivalent with anyone of

the phase portraits in [17]. The phase portrait P(1.10)
1 is not topologically equivalent with anyone

of the phase portraits in [10].

Proof. (a) We have the following types of divisors and zero-cycles of the total invariant

curve T for the configurations of family (1.10) :

Configurations Divisors and zero-cycles of the total inv. curve T

C(1.10)
1

ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 2P2 + 2P3 + 2P4 + 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
2

ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 2P2 + 2P3 + 2P4 + 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
3

ICD = JC
1 + JC

2 + J3 + J4 + L∞

M0CT = 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
4

ICD = J1 + J2 + 2J3 + L∞

M0CT = 3P1 + 3P2 + 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
5

ICD = JC
1 + JC

2 + 2J3 + L∞

M0CT = 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
6

ICD = 2J1 + J2 + J3 + L∞

M0CT = 3P1 + 3P2 + 3P∞
1 + 5P∞

2 + P∞
3

C(1.10)
7

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 3P∞
1 + 5P∞

2 + 2P∞
3

C(1.10)
8

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 4P∞
1 + 5P∞

2 + 2P∞
3

C(1.10)
9

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CT = 3P1 + 2P2 + 2P3 + 3P4 + 3P∞
1 + 6P∞

2 + 2P∞
3

Although C(1.10)
1 and C(1.10)

2 admit the same type of divisors and zero-cycles we can see

they are different because in C(1.10)
1 each branch of the hyperbolas intersects one line

while C(1.10)
2 have two branches intersecting both lines and two branches intersecting no

line. Therefore, the configurations C(1.10)
1 up to C(1.10)

9 are all distinct. For the limit cases

of family (1.10) we have the following configurations:
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Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + P3 + 2P4 + 2P∞
1 + 3P∞

2 + P∞
3

c2
ICD = J1 + J2 + 2J3 + L∞

M0CT = 4P1 + 2P∞
1 + 3P∞

2 + 2P∞
3

The other statements in (a) follows from the study done previously.

(b) This is shown in the previously exhibited tables. The computations for the remarkable

curves were done in Remarks 3.1, 3.2 and 3.3 .

(c) We have that:

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(1.10)
1 (N, N, S) (n, s, s, n) 2SC f

f 8SC∞
f 0SC∞

∞

P(1.10)
2 (N, N, S) (n, s, s, n) 4SC f

f 6SC∞
f 0SC∞

∞

P(1.10)
3 (N, N, S)

(©, ©, ©, ©)

(©(2), ©(2))
0SC f

f 0SC∞
f 2SC∞

∞

P(1.10)
4 (N, N, S) (sn(2), sn(2)) 1SC f

f 6SC∞
f 0SC∞

∞

P(1.10)
5 (N, N, S) (sn(2), sn(2)) 0SC f

f 8SC∞
f 0SC∞

∞

Therefore, we have five distinct phase portraits for systems (1.10). For the limit cases of

family (1.10) we have the following phase portraits:

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

p1 (N, N, S) (n, s, s, n) 3SC f
f 6SC∞

f 0SC∞
∞

p2 (N, N, S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

On the table below we list the phase portraits of Llibre–Yu in [17] that satisfy the fol-

lowing conditions: the phase portraits admit 3 singular points at infinity with the type

(N, N, S), and it has either 0, 1, 2 or 4 real singular points in the finite region.

Phase Portraits Sing. at ∞ Real finite sing. Separatrix connections

R01, Ω6 (N, S, N) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

L11, L12 (N, S, N) cp 0SC f
f 2SC∞

f 1SC∞
∞

P2 (N, S, N) pphpph 0SC f
f 6SC∞

f 0SC∞
∞

L31, L32 (N, S, N) (s, es) 2SC f
f 6SC∞

f 2SC∞
∞

L33 (N, S, N) (c, es) 1SC f
f 4SC∞

f 1SC∞
∞

R1, R2 (N, S, N) (s, c) 1SC f
f 2SC∞

f 1SC∞
∞

R3, Ω5 (N, S, N) (c, c) 2SC f
f 0SC∞

f 3SC∞
∞

R5 (N, S, N) (s, n, n, s) 4SC f
f 6SC∞

f 0SC∞
∞

R8, Ω1 (N, S, N) (s, n, n, s) 4SC f
f 6SC∞

f 0SC∞
∞
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Therefore, we can see from the two above tables that the phase portraits P(1.10)
1 , P(1.10)

3 ,

P(1.10)
4 and P(1.10)

5 are not topologically equivalent with anyone of the phase portraits in

[17]. They are however phase portraits of systems possessing and invariant hyperbola

and an invariant line.

On the table below we list the phase portraits of Coll–Ferragut–Llibre in [17] that admit

3 singular points at infinity with the type (N, N, S), and it has either 0, 1, 2 or 4 real

singular points in the finite region:

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

(20) (N, N, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

(42) (N, N, S) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

(59) (N, N, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

(21) (N, N, S) cp 0SC f
f 2SC∞

f 2SC∞
∞

(43) (N, S, N) cp 0SC f
f 2SC∞

f 1SC∞
∞

(57) (N, N, S) pphpph 0SC f
f 6SC∞

f 0SC∞
∞

(22) (N, N, S) (s, c) 1SC f
f 2SC∞

f 2SC∞
∞

(23) (N, N, S) (s, c) 0SC f
f 4SC∞

f 1SC∞
∞

(28) (N, N, S) (s, c) 0SC f
f 4SC∞

f 0SC∞
∞

(44) (N, N, S) (s, c) 1SC f
f 2SC∞

f 1SC∞
∞

(45) (N, N, S) (es, s) 2SC f
f 4SC∞

f 0SC∞
∞

(58) (N, N, S) (sn, sn) 1SC f
f 6SC∞

f 0SC∞
∞

(77) (N, N, S) (sn, sn) 0SC f
f 8SC∞

f 0SC∞
∞

(102) (N, N, S) (s, es) 2SC f
f 6SC∞

f 0SC∞
∞

(35) (N, N, S) (n, s, s, n) 4SC f
f 6SC∞

f 0SC∞
∞

(115) (N, N, S) (n, s, s, n) 3SC f
f 6SC∞

f 0SC∞
∞

Therefore, the phase portrait P(1.10)
1 is not topologically equivalent with anyone of the

phase portraits in [10]. It is however a phase portrait of a systems possessing a polyno-

mial inverse integrating factor.

3.1 The solution of the Poincaré problem for the family (1.10)

We can recognize when a system in this family has a rational first integral. The following is

the answer to Poincaré’s problem for the family (1.10):

Theorem 3.6.

i) A necessary and sufficient condition for a system in family (1.10) to have a rational first integral is
that v2 − a > 0 and that (a, v) be situated on a parabola of the form a = (1 − r2)v2 with r ∈ Q.

ii) The set of all points (a, v)’s satisfying these two conditions is dense in the set v2 − a > 0 with
v 6= 0.
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v = 0

a = 0

a − v2 = 0

a − 8v2/9 = 0

a − 3v2/4 = 0

(1)
(1)

(1)
(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

2
(2)

(2)

(1)

(1)

(1)

(2)

(2)

2

(4)

(1)

2 (1)

(1)

(1)

(1)

(1)
(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)
(1)

(1)
(1)

(1)

(1)

(1)

(1)

(1)

(1)

2

(1)

(1)

(1)
(1)

(1)

(1)

(1)

c1

c2

c1

C(1.10)
1

C(1.10)
1C(1.10)

8

C(1.10)
4C(1.10)

1

C(1.10)
1

C(1.10)
2 C(1.10)

2

C(1.10)
6

C(1.10)
3

C(1.10)
7

C(1.10)
3C(1.10)

5

C(1.10)
2

C(1.10)
2 C(1.10)

9
C(1.10)

2

(1)

a + 3v2 = 0

C(1.10)
2

Figure 3.1: Bifurcation diagram of configurations for family (1.10): In this figure

on the dashed line a = 0 both hyperbolas become reducible into two lines one

of them x = 0. On the bifurcation curves we either have an additional line or

additional hyperbola or coalescing lines or coalescing hyperbolas or real lines

becoming complex. The dashed lines represent complex lines.

Proof. i) We first prove that the condition is necessary. So assume that we have a system of

parameters (a, v) that has a rational first integral. Assume now that (a, v) is in the generic

situations v(a − v2)(a + 3v2)(a − 8v2/9)(a − 3v2/4) 6= 0. Any first integral of the system is

then of the following general form:

I = Jλ1
1 J−λ1

2 J
λ1

√
v2−a

v
3 J

− λ1

√
v2−a

v
4 .

This is a rational first integral if and only if λ1 ∈ Z and λ1

√
v2−a
v ∈ Z in which case we

must have that r =
√

v2 − a/v must be a rational number. In view of our generic hypothesis

r 6= 0. Since r =
√

v2 − a/v is rational we have v2 − a ≥ 0 and by hypothesis v2 − a 6= 0.

Therefore v2 − a > 0. We also have a = (1 − r2)v2 and therefore the condition is necessary in

this case. Consider now the case when v(a − v2)(a + 3v2)(a − 8v2/9)(a − 3v2/4) = 0. Since

on v(a − v2) = 0 we cannot have a rational first integral because as we see in the tables for
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a = 0

a − v2 = 0

v = 0

p1

p2

p1

P(1.10)
1

P(1.10)
5

P(1.10)
2

P(1.10)
4

P(1.10)
1 P(1.10)

2

P(1.10)
3

Figure 3.2: Topological bifurcation diagram for family (1.10).

these two cases, we have exponential factors in the first integrals and hence we must have

v(a − v2) 6= 0. Therefore our previous assumption is reduced to (a + 3v2)(a − 8v2/9)(a −
3v2/4) = 0. Suppose first that the point (a, v) is located on the parabola a = −3v2. Then this

parabola can be written as a = (1 − r2)v2 where r = 2. We then have v2 − a = r2v2 = 4v2
> 0.

If the point (a, v) is on the parabola a − 8y2/9 = 0 then this parabola can be written as

a = (1 − r2)v2 for r = 1/3. Here again we have that v2 − a = r2v2 = v2/9 > 0. So the system

situated on the parabola a − 8y2/9 = 0 satisfies v2 − a > 0 and for r = 1/3 the point is located

on the parabola a = (1 − r2)v2. So also in this case these conditions are necessary. There

remains only the case when (a, v) is on the parabola a − 3v2/4 = 0. In this case we can write

this parabola as a = (1 − r2)v2 by taking r = 1/2. Also here v2 − a = r2v2 = v2/4 > 0, i.e.

v2 − a > 0. So the necessity of the conditions is proved in this case too.

We now prove the sufficiency of the conditions. Let us assume that v2 − a > 0, v 6= 0

and (a, v) is located on a parabola a = (1 − r2)v2 with r ∈ Q. Then clearly r 6= 0, otherwise

v2 − a = r2v2 = 0 contrary to our assumption. In case r = 2, 1/3, 1/2 we are on one of the

three parabolas obtained from the condition (a+ 3v2)(a− 8v2/9)(a− 3v2/4) = 0 and for these

parabolas the tables give us rational first integrals. If the generic condition is satisfied, i.e.

v(a − v2)(a + 3v2)(a − 8v2/9)(a − 3v2/4) 6= 0, then we know that we have the corresponding

first integral indicated in the Tables for this case where the exponents for the curves Ji are

λ1 and λ1

√
v2 − a/v. But we know by our assumption that (a, v) is located on a parabola

a = (1 − r2)v2 for some rational number r. From this equation we have that r2 = (a − v2)/v2.
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Hence r =
√

v2 − a/v is rational. We may suppose r = m/n with m, n ∈ Z and m, n coprime.

Then by taking in the general expression of the first integral λ1 = n and r =
√

v2 − a/v we

obtained a rational first integral in this case.

ii) Let us denote by Pr the parabola corresponding to a rational number r, i.e.

Pr := {(a, v) ∈ R2 : (1 − r2)v2 = a}.

Thus a system in the family (1.10) has a rational first integral if and only if it corresponds to

a point (a, v) such that v2 − a > 0 with v 6= 0 and the point is situated on a parabola Pr for

some rational number r. In the parameter plane R2 let the a-axis be the horizontal line and

the v-axis be the vertical one. The parabolas a = (1 − r2)v2 are symmetric with respect to the

a-axis. Because of this it would suffice to prove the density of points (a, v) on parabolas Pr

and inside v2 − a > 0 and v > 0.

Claim: The set of all points in A =: ∪r∈QPr with v > 0 is dense in the set S+ = {(a, v) :

v2 − a > 0, v > 0}.

Take an arbitrary point point p0 = (a0, v0) ∈ S+. So we have v2
0 − a0 > 0 and v0 > 0.

We only need to consider p0 inside the first or second quadrant. Indeed the line a = 0 is

outside the parameter space of our family. So a0 6= 0. In view of our assumption we have that

(v2
0 − a0)/v2

0 > 0. So let r0 =
√

(v2
0 − a0)/v2

0 > 0. Hence we have a0 = (1 − r2
0)v

2
0. Here r0

is not necessarily a rational number. But it can be approximated with rational numbers. So

take a sequence of rational numbers rn such that rn → r0. At this point let us assume that

the point (a0, v0) is in the second quadrant, i.e. a0 < 0. In this case r0 > 1 and since rn → r0

there exists a number N such that for n > N rn > 1 and hence r2
n > 1 for all n > N. So

√

a0/(1 − r2
n) > 0. Denote by vn =

√

a0/(1 − r2
n). Then vn → v0 and hence (a0, vn) → (a0, v0).

But each point (a0, vn) is located on the corresponding parabola a0 = (1 − r2
n)v

2
n and hence

p0 is an accumulation point of points situated on such parabolas with rn rational. Assume

now that the point p0 is in the first quadrant. Then a0 > 0 and since (v2
0 − a0)/v2

0 > 0

we have that 0 < r0 =
√

1 − a0/v2
0 < 1 which means that there exists a natural number N

such that for n > N we have 0 < rn < 1 and hence r2
n < 1 and hence we can take again

vn =
√

a0/(1 − r2
n). Then clearly vn → v0 and we obtain a sequence of points (a0, vn) sitting

on parabolas a0 = (1 − r2
n)v

2
n with rn rational. And v2

0 − a0 = r2
n > 0. Since v0 > 0 then there

is a natural number M such that for all n > M vn > 0.

Considering r = m1/m2 where m1, m2 ∈ Z we can say that

I =
(

J1

J2

)m2
(

J3

J4

)m1

is a rational first integral of (1.10) when a = (1 − (m1/m2)2)v2. Consider

F(c1,c2) = c1 Jm2
1 Jm1

3 − c2 Jm2
2 Jm1

4 = 0.

We have that [1 : 0] and [0 : 1] are remarkable values for I , since

F(1,0) = Jm2
1 Jm1

3 , F(0,1) = −Jm2
2 Jm1

4 .

The case m1 = m2 = 1 is when a = 0 and this case was done previously. Suppose m1 6= 1

or m2 6= 1. If m1 > 1 then [1 : 0] and [0 : 1] are the only two critical remarkable values for

I and J3, J4 are critical remarkable curves. If we also have m2 > 1 then J1, J2 also are critical

remarkable curves.

There are some additional remarkable curves when a = (1 − (m1/m2)2)v2 for especial

values of m1 and m2, see examples in the Appendix. We could find among these examples

curves of degree 5, 6, 7, 8, 10, 12 etc.
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4 Geometric analysis of family (1.11)

Consider the family

(1.11)















ẋ = − x2

2
− xy

2

ẏ = b − 3xy
2

+
y2

2
, where b 6= 0.

This is a one parameter family depending on b ∈ R\{0}. Every system in the family (1.11)

is endowed with five invariant algebraic curves: three lines J1, J2, J3 and two hyperbolas J4, J5

with respective cofactors αi, 1 ≤ i ≤ 5 where

J1 = −i
√

2
√

b − x + y, α1 = i
√

b√
2
− x

2 + y
2 ,

J2 = i
√

2
√

b − x + y, α2 = − i
√

b√
2
− x

2 + y
2 ,

J3 = x, α3 = − x
2 − y

2 ,

J4 = x(y − x)− b, α4 = −x,

J5 = xy − b
2 , α5 = −2x.

Straightforward calculations lead us to the tables listed below. The multiplicities of each

invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant al-

gebraic curves were calculated by using for lines the 1st and for hyperbola the 2nd extactic

polynomial, respectively.

(i) b 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = −i
√

2
√

b − x + y
J2 = i

√
2
√

b − x + y
J3 = x
J4 = x(y − x)− b
J5 = xy − b

2

α1 = i
√

b√
2
− x

2 + y
2

α2 = − i
√

b√
2
− x

2 + y
2

α3 = − x
2 − y

2

α4 = −x
α5 = −2x

P1 =
(

i
√

b√
2

,− i
√

b√
2

)

P2 =
(

− i
√

b√
2

, i
√

b√
2

)

P3 =
(

0,−i
√

2
√

b
)

P4 =
(

0, i
√

2
√

b
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

For b < 0 we have

n, n, s, s; N, N, S

For b > 0 we have

©, ©, ©, ©; N, N, S

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 simple

J1 ∩ J4 =

{

P∞
2 simple

P2 simple

J1 ∩ J5 = P2 double

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 = P3 simple

J2 ∩ J4 =

{

P∞
2 simple

P2 simple

J2 ∩ J5 = P1 double

J2 ∩ L∞ = P∞
2 simple

J3 ∩ J4 = P∞
1 double

J3 ∩ J5 = P∞
1 double

J3 ∩ L∞ = P∞
1 simple

J4 ∩ J5 =

{

P1, P2 simple

P∞
1 double

J4 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

J5 ∩ L∞ =

{

P∞
1 simple

P∞
3 simple



Geometry and integrability of QS with invariant hyperbolas 33

Divisor and zero-cycles Degree

ICD =

{

J1 + J2 + J3 + J4 + J5 + L∞ if b < 0

JC
1 + JC

2 + J3 + J4 + J5 + L∞ if b > 0

M0CS =

{

P1 + P2 + P3 + P4 + P∞
1 + P∞

2 + P∞
3 if b < 0

PC
1 + PC

2 + PC
3 + PC

4 + P∞
1 + P∞

2 + P∞
3 if b > 0

T = ZJ1 J2 J3 J4 J5 = 0

M0CT =

{

3P1 + 3P2 + 2P3 + 2P4 + 4P∞
1 + 4P∞

2 + 2P∞
3 if b < 0

4P∞
1 + 4P∞

2 + 2P∞
3 if b < 0

6

6

7

7

8

20

10

where the total curve T has

1) only two distinct tangents at P1 (and at P2), but one of them is double,

2) only three distinct tangents at P∞
1 , but one of them is double and

3) four distinct tangents at P∞
2 .

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 J2λ1
3 Jλ4

4 J
−λ1−

λ4
2

5 R = Jλ1
1 Jλ1

2 J1+2λ1
3 Jλ4

4 J
−λ1− λ4

2 − 3
2

5

Simple

example
I1 =

J2
4

J5
, I2 =

J1 J2 J2
3

J5
R = 1

J1 J2 J3 J4

Remark 4.1.

• Consider F 1
(c1,c2)

= c1 J2
4 − c2 J5 = 0, degF 1

(c1,c2)
= 4. The remarkable values of F 1

(c1,c2)

are [1 : −2b] and [1 : 0] for which we have

F 1
(1,−2b) = J1 J2 J2

3 , F 1
(1,0) = J2

4 .

Therefore, J1, J2, J3, J4 are remarkable curves of I1, [1 : −2b] and [1 : 0] are the only

two critical remarkable values of I1 and J3, J4 are critical remarkable curves of I1.

The singular points are P3, P4 for F 1
(1,−2b) and P1, P2 for F 1

(1,0).

• Consider F 2
(c1,c2)

= c1 J1 J2 J2
3 − c2 J5 = 0, degF 2

(c1,c2)
= 4. The remarkable values of

F 2
(c1,c2)

are [1 : 2b] and [1 : 0] for which we have

F 2
(1,2b) = J2

4 , F 2
(1,0) = J1 J2 J2

3 .

Therefore, J1, J2, J3, J4 are remarkable curves of I2, [1 : 2b] and [1 : 0] are the only

two critical remarkable values of I2 and J3, J4 are critical remarkable curves of I2.

The singular points are P1, P2 for F 2
(1,2b) and P3, P4 for F 2

(1,0).

(ii) b = 0.

Under this condition, the system (1.11) does not belong to QSH, but we study it seeking

a complete understanding of the bifurcation diagram of the system in the full family
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(1.11). Here we have a single system which has a rational first integral that foliates the

plane into cubic curves. All the affine invariant lines are x = 0, y = 0 that are simple

and x − y = 0 that is double. The lines x = 0 and x − y = 0 are remarkable curves.

Perturbing this system in the family (1.11) we can obtain two distinct configurations of

lines and hyperbolas. By perturbing the reducible conics x(x − y) = 0 and xy = 0 we

obtain the hyperbolas x(y − x)− b = 0 and xy − b
2 = 0, respectively.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = y
J2 = x
J3 = x − y

E4 = e
g0+g1(x−y)

x−y

α1 = y
2 − 3x

2

α2 = − x
2 − y

2

α3 = y
2 − x

2

α4 = g0

2

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 1 : 0]

P∞
3 = [1 : 0 : 0]

hpphpp(4); N, N, S

J1 ∩ J2 = P1 simple

J1 ∩ J3 = P1 simple

J1 ∩ L∞ = P∞
3 simple

J2 ∩ J3 = P1 simple

J2 ∩ L∞ = P∞
1 simple

J3 ∩ L∞ = P∞
2 simple

Divisor and zero-cycles Degree

ICD = J1 + J2 + 2J3 + L∞

M0CS = 4P1 + P∞
1 + P∞

2 + P∞
3

T = ZJ1 J2 J
2
3 = 0.

M0CT = 4P1 + 2P∞
1 + 3P∞

2 + 2P∞
3

5

7

5

11

where the total curve T has

1) only three distinct tangents at P1, but one of them is double;

2) only two distinct tangents at P∞
2 , but one of them is double.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2 J−2λ1
3 E0

4 R = Jλ1
1 J−2−λ1

2 J−3−2λ1
3 E0

4

Simple

example
I1 = J1

J2 J2
3
, I2 =

J2 J2
3

J1
R = 1

J1 J2 J3

Remark 4.2. Consider F 1
(c1,c2)

= c1 J1 − c2 J2 J2
3 = 0, degF 1

(c1,c2)
= 3. The remarkable value

of F 1
(c1,c2)

is [0 : 1] for which we have

F 1
(0,1) = −J2 J2

3 .

Therefore, J2, J3 are remarkable curves of I1, [1 : 0] is the only critical remarkable values

of I1 and J3 is critical remarkable curve of I1. The singular point is P1 for F 1
(0,1). Consid-

ering the first integral I2 with its associated curves F 2
(c1,c2)

= c1 J2 J2
3 − c2 J1 we have the
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remarkable value [1 : 0] and the same remarkable curves J2, J3. The singular point is P1

for F 2
(1,0).

We sum up the topological, dynamical and algebraic geometric features of family (1.11)

and we also confront our results with previous results in the literature in the following propo-

sition. We show that there are two more phase portraits than the ones appearing in [17] and

there is one more phase portrait than the ones appearing in [10].

Proposition 4.3.

(a) For the family (1.11) we have two distinct configurations C(1.11)
1 and C(1.11)

2 of invariant hyper-
bolas and lines (see Figure 4.1 for the complete bifurcation diagram of configurations of such
family). The bifurcation set in the full parameter space contains only the point b = 0.

(b) All systems in family (1.11) have an inverse integrating factor which is polynomial. All systems
in family (1.11) have a rational first integral and the plane is foliated into quartic algebraic curves.
The remarkable curves are J1, J2, J3, J4 for family (1.11).

(c) For the family (1.11) we have two topologically distinct phase portraits P(1.11)
1 and P(1.11)

2 . The
topological bifurcation diagram in the full parameter space is done in Figure 4.2. The bifurcation
set of singularities is the point b = 0. The phase portraits P(1.11)

1 and P(1.11)
2 are not topologically

equivalent with anyone of the phase portraits in [17].

Proof.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for

the configurations of family (1.11):

Configurations Divisors and zero-cycles of the total inv. curve T

C(1.11)
1

ICD = J1 + J2 + J3 + J4 + J5 + L∞

M0CT = 3P1 + 3P2 + 2P3 + 2P4 + 4P∞
1 + 4P∞

2 + 2P∞
3

C(1.11)
2

ICD = JC
1 + JC

2 + J3 + J4 + J5 + L∞

M0CT = 4P∞
1 + 4P∞

2 + 2P∞
3

Therefore, the configurations C(1.11)
1 and C(1.11)

2 are distinct. For the limit case of family

(1.11) we have the following configuration:

Configuration Divisors and zero-cycles of the total inv. curve T

c2
ICD = J1 + J2 + 2J3 + L∞

M0CT = 4P1 + 2P∞
1 + 3P∞

2 + 2P∞
3

(b) It follows directly from Jouanolou’s theorem that we always have a rational first integral

for family (1.11) since we have five invariant algebraic curves. The computations for the

remarkable curves were done in Remark 4.1.
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(c) We have that:

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(1.11)
1 (N, N, S) (n, s, s, n) 3SC f

f 6SC∞
f 0SC∞

∞

P(1.11)
2 (N, N, S) (©, ©, ©, ©) 0SC f

f 0SC∞
f 2SC∞

∞

Therefore, we have two distinct phase portraits for systems (1.11). For the limit case of

family (1.11) we have the following phase portrait:

Phase Portrait Sing. at ∞ Finite sing. Separatrix connections

p2 (N, N, S) hpphpp(4) 0SC f
f 6SC∞

f 0SC∞
∞

Note that P(1.11)
1

∼=top p1 and P(1.11)
2

∼=top P(1.10)
3 . We saw in the study of the previous

family that P(1.10)
3 is not topologically equivalent with anyone if the phase portraits in

[17].

On the table below we list the phase portraits of Llibre–Yu in [17] that admit 3 singular

points at infinity with the type (N, N, S) and with 4 real singular points in the finite

region.

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

R5 (N, S, N) (s, n, n, s) 4SC f
f 6SC∞

f 0SC∞
∞

R8, Ω1 (N, S, N) (s, n, n, s) 4SC f
f 6SC∞

f 0SC∞
∞

Therefore, the phase portraits P(1.11)
1 is not topologically equivalent with anyone of the

phase portraits in [17]. It is however a phase portrait of systems possessing an invariant

line and an invariant hyperbola.

b

(1)

(1)

(1)

(1)
(1)

(1)

(1) (1)

(1)

(1)

0

(4)

2

(1)

(1)

(1)

c2

C(1.11)
1 C(1.11)

2

Figure 4.1: Bifurcation diagram of configurations for family (1.11). At b = 0 the

two hyperbolas become reducible into the lines x = 0, x − y = 0 and x = 0,

y = 0.
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p2

b
0

P(1.11)
1

P(1.11)
2

Figure 4.2: Topological bifurcation diagram for family (1.11). The only bifurca-

tion point is at b = 0 where all 4 singularities (real on the left or complex on the

right) coalesce with (0, 0).

5 Geometric analysis of family (1.12)

Consider the family

(1.12)

{

ẋ = 2a + gx2 + xy

ẏ = a(2g − 1) + (g − 1)xy + y2, where a(g − 1) 6= 0.

This is a two parameter family depending on (a, g) ∈ R2\{(0, 1)}. Every system in the

family (1.12) is endowed with at least one invariant hyperbola J1 with cofactor α1 given by

J1 = a + xy, α1 = (−1 + 2g)x + 2y.

Except for a denumerable set of lines in the parameter space, i.e. except for

Lk : 2g − k = 0, k ∈ N = {0, 1, 2, . . . } and L : 4g − 1 = 0,

systems in (1.12) are not Liouvillian integrable (see [19]). It thus remains to be shown what

happens on these lines and we consider here the case L1 and L.

Straightforward calculations lead us to the tables listed below. The multiplicities of each

invariant straight line and invariant hyperbola appearing in the divisor ICD of invariant al-

gebraic curves were calculated by using for lines the 1st and for hyperbola the 2nd extactic

polynomial, respectively.

(i) ag(g − 1)(2g − 1)(4g − 1) 6= 0.

In [19] it is proved that except for the denumerable set of lines ∪k∈NLk ∪ L,

Lk = {(a, g) ∈ R2\{(0, 1)} : 2g − k = 0}, k ∈ N,

L = {(a, g) ∈ R2\{(0, 1)} : 4g − 1 = 0}
systems (1.12) are neither Darboux nor Liouvillian integrable. We prove below that

when (a, g) ∈ L1 systems (1.12) are generalized Darboux integrable and when (a, g) ∈ L
systems (1.12) are Liouvillian integrable. The cases where (a, g) ∈ ∪k∈NLk − L1 are still

open. For these cases we were not able to prove the non-integrability and we also could

not find other invariant algebraic curves, which we managed to search up to degree four.

Although we are unable to guarantee the existence of a first integral in ∪k∈NLk − L1, it

is still possible to obtain the complete topological bifurcation diagram of this family.
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Inv. curves and cofactors Singularities Intersection points

J1 = a + xy

α1 = (−1 + 2g)x + 2y

P1 =
(

−2i
√

a, i
(

2
√

ag −√
a
))

P2 =
(

2i
√

a,−i
(

2
√

ag −√
a
))

P3 =
(

− i
√

a√
g ,−i

√
a
√

g
)

P4 =
(

i
√

a√
g , i

√
a
√

g
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For a < 0 we have

f , f , ©, ©; (0
2)SN, S if g < 0

f , f , s, s; (0
2)SN, N if 0 < g <

7
32

n, n, s, s; (0
2)SN, N if 7

32 ≤ g <
1
4

s, s, n, n; (0
2)SN, N if g >

1
4

For a > 0 we have

©, ©, n, n; (0
2)SN, S if g < 0

©, ©, ©, ©; (0
2)SN, N if g > 0

J1 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD = J1 + L∞

M0CS =















P1 + P2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a < 0 and g < 0

P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2 if a < 0 and g > 0

PC
1 + PC

2 + P3 + P4 + 2P∞
1 + P∞

2 if a > 0 and g < 0

PC
1 + PC

2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a > 0 and g > 0

T = ZJ1 = 0

M0CT =

{

2P∞
1 + 2P∞

2 if ag > 0

P3 + P4 + 2P∞
1 + 2P∞

2 if ag < 0

2

7

7

7

7

3

4

6

(ii) ag(g − 1)(2g − 1)(4g − 1) = 0.

(ii.1) g = 0 and a 6= 0.

Under this condition, (a, g) ∈ L0 which corresponds to an open case regarding the

integrability.
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Invariant curves and cofactors Singularities Intersection points

J1 = a + xy

α1 = −x + 2y

P1 =
(

2i
√

a,−i
√

a
)

P2 =
(

2i
√

a, i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

f , f ; (0
2)SN, (1

2)S if a < 0

©, ©; (0
2)SN, (1

2)N if a > 0

J1 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple

Divisor and zero-cycles Degree

ICD = J1 + L∞

M0CS =

{

P1 + P2 + 2P∞
1 + 3P∞

2 if a < 0

PC
1 + PC

2 + 2P∞
1 + 3P∞

2 if a > 0

T = ZJ1 = 0

M0CT =

{

P1 + P2 + 2P∞
1 + 2P∞

2 if a < 0

2P∞
1 + 2P∞

2 if a > 0

2

7

7

3

6

4

(ii.2) g = 1
2 and a 6= 0.

Here we have an additional invariant line which is simple and the invariant hyperbola

becomes double so we compute the exponential factor E3.

Inv.cur./exp.fac. and cofactors Singularities Intersection points

J1 = y
J2 = a + xy

E3 = e−
a(g1−g0)+g1xy−2g0y2

2(a+xy)

α1 = x
2 + y

α2 = 2y
α3 = −g0y

P1 =
(

−2i
√

a, 0
)

P2 =
(

2i
√

a, 0
)

P3 =
(

−i
√

2
√

a,− i
√

a√
2

)

P4 =
(

i
√

2
√

a, i
√

a√
2

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, s, n, n; (0
2)SN, N if a < 0

©, ©, ©, ©; (0
2)SN, N if a > 0

J1 ∩ J2 = P∞
2 double

J1 ∩ L∞ = simple

J2 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple
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Divisor and zero-cycles Degree

ICD = J1 + 2J2 + L∞

M0CS =

{

P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2 if a < 0

PC
1 + PC

2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a > 0

T = ZJ1 J
2
2 = 0

M0CT =

{

P1 + P2 + 2P3 + 2P4 + 3P∞
1 + 4P∞

2 if a < 0

3P∞
1 + 4P∞

2 if a > 0

4

7

7

6

13

7

where the total curve T has

1) only two distinct tangents at P∞
1 , but one of them is double,

2) only two distinct tangents at P∞
2 , but one of them is triple.

First integral Integrating Factor

General I = J0
1 Jλ2

2 E
2λ2
g0

3 R = J1
1 Jλ2

2 E
2(2+λ2)

g0
3

Simple

example
I = J2E2

3 R = J1

J2
2

(ii.3) g = 1
4 and a 6= 0.

Here the hyperbola becomes double so we compute the exponential factor E2.

Inv. cur./exp. fac. and cofac. Singularities Intersection points

J1 = a + xy

E2 = e
ag0+g0xy+g1y2

(a+xy)

α1 = − x
2 + 2y

α2 = −g1y

P1 =
(

2i
√

a,− i
√

a
2

)

P2 =
(

2i
√

a, i
√

a
2

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

sn(2), sn(2); (
0
2)SN, N if a < 0

©(2), ©(2); (
0
2)SN, N if a > 0

J1 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple
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Divisor and zero-cycles Degree

ICD = 2J1 + L∞

M0CS =

{

2P1 + 2P2 + 2P∞
1 + P∞

2 if a < 0

2PC
1 + 2PC

2 + 2P∞
1 + P∞

2 if a > 0

T = ZJ
2
1 = 0

M0CT =

{

2P1 + 2P2 + 3P∞
1 + 3P∞

2 if a < 0

3P∞
1 + 3P∞

2 if a > 0

3

7

7

5

10

6

where the total curve T has only two distinct tangents at P∞
1 (and P∞

2 ), but one of them

is double.

First integral Integrating Factor

General I = 1
2

(

2
√

2aDawsonF
(

√
2y√

a+xy

)

+x
√

a+xy
)

(

e
ag0+g0xy+g1y2

a+xy

)

2
g1

R = J
− 1

2
1 E

2
g1
2

Simple

example
I = 1

2

(

2
√

2aDawsonF
(

√
2y√

a+xy

)

+x
√

a+xy
)

(

e
y2

a+xy

)2

R = J
− 1

2
1 E2

2

(ii.4) g = 1 and a 6= 0.

Here we have, apart from a simple hyperbola, two additional invariant lines (real or

complex, depending on the sign of the parameter a).

Invariant curves and cofactors Singularities Intersection points

J1 = 1 − iy√
a

J2 = 1 + iy√
a

J3 = a + xy

α1 = y − i
√

a
α2 = y + i

√
a

α3 = x + 2y

P1 =
(

−i
√

a,−i
√

a
)

P2 =
(

i
√

a, i
√

a
)

P3 =
(

−2i
√

a, i
√

a
)

P4 =
(

2i
√

a,−i
√

a
)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

n, n, s, s; (0
2)SN, N if a < 0

©, ©, ©, ©; (0
2)SN, N if a > 0

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{

P1 simple

P∞
2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{

P2 simple

P∞
2 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ =

{

P∞
1 simple

P∞
2 simple
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Divisor and zero-cycles Degree

ICD =

{

J1 + J2 + J3 + L∞ if a < 0

JC
1 + JC

2 + J3 + L∞ if a > 0

M0CS =

{

P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2 if a < 0

PC
1 + PC

2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a > 0

T = ZJ1 J2 J3 = 0

M0CT =

{

2P1 + 2P2 + P3 + P4 + 2P∞
1 + 4P∞

2 if a < 0

2P∞
1 + 4P∞

2 if a > 0

4

4

7

7

5

12

6

where the total curve T has four distinct tangents at P∞
2 .

First integral Integrating Factor

General I =
(

√

a + y2 + y
)−

√

a+y2
a√

a+y2 e

√

a+y2
a (x−y)
a+xy R = J

1
2
1 J

1
2
2 J−2

3

Simple

example
I =

(

√

a + y2 + y
)−

√

a+y2
a√

a+y2 e

√

a+y2
a (x−y)
a+xy R = J

1
2
1 J

1
2
2 J−2

3

(ii.5) a = 0 and g 6= 0, 1.

Under this condition, systems (1.12) do not belong to QSH, but we study them seeking

a complete understanding of the bifurcation diagram of the systems in the full family

(1.12). All the affine invariant lines are y = 0 that is simple and x = 0 that is double

so we compute the exponential factor E3. By perturbing the reducible conic xy = 0 we

produce the hyperbola a + xy = 0.

Inv. cur./exp. fac. and cofactors Singularities Intersection points

J1 = y
J2 = x

E3 = e
g0x+g1y

x

α1 = (−1 + g)x + y
α2 = gx + y
α3 = −g1y

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

epep(4); (0
2)SN, S if g < 0

phph(4); (0
2)SN, N if g > 0

J1 ∩ J2 = P1 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ L∞ = P∞
1 simple
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Divisor and zero-cycles Degree

ICD = J1 + 2J2 + L∞ if g 6= 1

M0CS = 4P1 + 2P∞
1 + P∞

2 if g 6= 0

T = ZJ1 J
2
2 = 0 if g 6= 1

M0CT = 3P1 + 3P∞
1 + 2P∞

2 if g 6= 0

4

7

3

8

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

First integral Integrating Factor

General I = Jλ1
1 J

− (g−1)λ1
g

2 E
λ1
g1g

3 R = Jλ1
1 J

− (g−1)λ1
g − 3g−1

g

2 E
1+λ1
g1g

3

Simple

example
I = Jg

1 J(1−g)
2 E3 R = 1

J1 J2
2

(ii.6) a = 0 and g = 1.

Under this condition, systems (1.12) do not belong to QSH, but we study them seeking

a complete understanding of the bifurcation diagram of the systems in the full family

(1.12). All the affine invariant lines are y = 0 and x = 0 that are double so we compute

the exponential factor E3 and E4. By perturbing the reducible conic xy = 0 we produce

the hyperbola a + xy = 0.

Inv.cur./exp.fac. and cofactors Singularities Intersection points

J1 = y
J2 = x

E3 = e
g0x+g1y

x

E4 = e
h0+h1y

y

α1 = y
α2 = x + y
α3 = −g1y
α4 = −h0

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

phph(4); (0
2)SN, N

J1 ∩ J2 = P1 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ L∞ = P∞
1 simple

Divisor and zero-cycles Degree

ICD = 2J1 + 2J2 + L∞

M0CS = 4P1 + 2P∞
1 + P∞

2

T = ZJ
2
1 J

2
2 = 0

M0CT = 4P1 + 3P∞
1 + 3P∞

2

4

7

5

10
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where the total curve T has only two distinct tangents at P∞
1 (and P∞

2 ), but one of them

is double.

First integral Integrating Factor

General I = Jλ1
1 J0

2 E
λ1
g1
3 E0

4 R = Jλ1
1 J−2

2 E
1+λ1

g1
3 E0

4

Simple

example
I = J1E3 R = 1

J1 J2
2

(ii.7) a = g = 0.

Under this condition, systems (1.12) do not belong to QSH, but we study them seeking

a complete understanding of the bifurcation diagram of the systems in the full family

(1.12). The line y = 0 is filled up with singularities, therefore this is a degenerate system.

The following study is done with the reduced system. For this system the line x = 0 is

double so we compute the exponential factor E2.

Inv.cur./exp.fac. and cofactors Singularities Intersection points

J1 = x

E2 = e
g0x+g1y

x

α1 = 1

α2 = −g1

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

(⊖[|]; nd); (0
2)SN, (⊖[|]; ∅)

J1 ∩ L∞ = P∞
1 simple

Divisor and zero-cycles Degree

ICD = 2J1 + L∞

M0CS = P1 + 2P∞
1

T = ZJ
2
1 = 0

M0CT = 2P1 + 3P∞
1

3

3

3

5

where the total curve T has only two distinct tangents at P∞
1 , but one of them is double.

First integral Integrating Factor

General I = Jg1λ2

1 Eλ2
2 R = J−2+g1λ2

1 Eλ2
2

Simple

example
I = J1E2 R = 1

J2
1

We sum up the topological, dynamical and algebraic geometric features of family (1.12)

and also confront our results with previous results in literature in the following propo-

sition. We show that there are two more phase portraits than the ones appearing in

[17].
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Proposition 5.1.

(a) For the family (1.12) we obtained seven distinct configurations C(1.12)
1 −C(1.12)

7 of invariant hyper-
bolas and lines (see Figure 5.1 for the complete bifurcation diagram of configurations of this fam-
ily). The bifurcation set of configurations in the full parameter space is ag(g − 1)(g − 1/2)(g −
1/4) = 0. On (g − 1/2)(g − 1/4) = 0 the invariant hyperbola is double. On g = 1/2 we have
an additional invariant line and on g = 1 we have two additional invariant lines. On g = 0 we
just have a simple invariant hyperbola. On a = 0 the hyperbola becomes reducible into two lines
and when a = g = 0 one of the lines is filled up with singularities.

(b) The family (1.12) is generalized Darboux integrable when g = 1/2 and it is Liouvillian integrable
when g = 1/4.

(c) For the family (1.12) we have seven topologically distinct phase portraits P(1.12)
1 − P(1.12)

7 . The
topological bifurcation diagram of family (1.12) is done in Figure 5.2. The bifurcation set are the
half lines g = 1/4 and g = 1/2 with a < 0 and the lines g = 0 and a = 0. The half line
g = 1/4 with a < 0 and the lines g = 0, a = 0 are bifurcation sets of singularities and the
half line g = 1/2 with a < 0 is a bifurcation of saddle to saddle connection. The phase portraits
P(1.12)

4 and P(1.12)
6 are not topologically equivalent with anyone of the phase portraits in [17].

Proof.

(a) We have the following type of divisors and zero-cycles of the total invariant curve T for

the configurations of family (1.12):

Configurations Divisors and zero-cycles of the total inv. curve T

C(1.12)
1

ICD = J1 + L∞

M0CT = P3 + P4 + 2P∞
1 + P∞

2

C(1.12)
2

ICD = J1 + L∞

M0CT = 2P∞
1 + P∞

2

C(1.12)
3

ICD = J1 + L∞

M0CT = 2P∞
1 + P∞

2

C(1.12)
4

ICD = J1 + 2J2 + L∞

M0CT = P1 + P2 + 2P3 + 2P4 + 3P∞
1 + 4P∞

2

C(1.12)
5

ICD = J1 + 2J2 + L∞

M0CT = 3P∞
1 + 4P∞

2

C(1.12)
6

ICD = 2J1 + L∞

M0CT = 2P1 + 2P2 + 3P∞
1 + 3P∞

2

C(1.12)
7

ICD = 2J1 + L∞

M0CT = 3P∞
1 + 3P∞

2

Therefore, the configurations C(1.12)
1 up to C(1.12)

7 are all distinct. For the limit cases of

family (1.12) we have the following configurations:
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Configurations Divisors and zero-cycles of the total inv. curve T

c3
ICD = J1 + 2J2 + L∞

M0CT = 3P1 + 3P∞
1 + 2P∞

2

c4
ICD = 2J1 + 2J2 + L∞

M0CT = 4P1 + 3P∞
1 + 3P∞

2

c5
ICD = 2J1 + L∞

M0CT = 2P1 + 3P∞
1

c6
ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + 2P2 + P3 + P4 + 2P∞
1 + 4P∞

2

c7
ICD = JC

1 + JC
2 + J3 + L∞

M0CT = 2P∞
1 + 4P∞

2

(b) This is shown in the previously exhibited tables.

(c) We have that:

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(1.12)
1 ((0

2)SN, N) (n, n, s, s) 2SC f
f 6SC∞

f 0SC∞
∞

P(1.12)
2 ((0

2)SN, N) (s, s, n, n) 4SC f
f 6SC∞

f 0SC∞
∞

P(1.12)
3

((0
2)SN, S)

((0
2)SN, (1

2)S)
( f , f , ©, ©)

( f , f )
0SC f

f 2SC∞
f 2SC∞

∞

P(1.12)
4

((0
2)SN, N)

((0
2)SN, N)

((0
2)SN, (1

2)N)

(©, ©, ©, ©)

(©(2), ©(2))

(©, ©)

0SC f
f 0SC∞

f 2SC∞
∞

P(1.12)
5 ((0

2)SN, S) (©, ©, n, n) 0SC f
f 2SC∞

f 0SC∞
∞

P(1.12)
6 ((0

2)SN, N) (s, s, n, n) 3SC f
f 6SC∞

f 0SC∞
∞

P(1.12)
7 ((0

2)SN, N) (sn(2), sn(2)) 0SC f
f 6SC∞

f 0SC∞
∞

Therefore, we have seven distinct phase portraits for systems (1.12). For the limit cases

of family (1.12) we have the following phase portraits:

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

p3 ((0
2)SN, N) phph(4) 0SC f

f 4SC∞
f 0SC∞

∞

p4 (0
2)SN, (⊖[|]; ∅) (⊖[|]; nd) 0SC f

f 2SC∞
f 0SC∞

∞

p5 ((0
2)SN, S) epep(4) 0SC f

f 4SC∞
f 0SC∞

∞

On the table below we list all the phase portraits of Llibre-Yu in [17] that admit 2 singular

points at infinity with the type (SN, N):
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Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L01 (SN, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

L03 (SN, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

ω1 (SN, N) (s, n) 1SC f
f 6SC∞

f 0SC∞
∞

The phase portraits P(1.12)
4 and P(1.12)

6 are not topologically equivalent with anyone of

the phase portraits in [17]. They are however phase portraits of systems possessing an

invariant line and an invariant hyperbola (when g = 1/2).

Remark 5.2. The family (1.12) does not have any case where the inverse integrating factor is

polynomial. We just have a polynomial inverse integrating factor on the limit case a = 0 of

family (1.12).

a = 0

g = 1/4

g = 1/2

g = 1

(2)

(1)

(1)

(1)

(2)

(1)
(4)

(2)

(2)

(1)
(4)

c3

c4

c5

c6 c7

c3

c3

c3

c3

c3

(2)

(2,1)

(2)

(1)

(1)

(2)

(1)

(1)

(1)

(1)
2

2

2

2

2

(2)

2
(2)

(2)

(1)

(2)

(1)
(1)

(1)

(1)

(2)

(1)

(2)

2

(1)

2

(2)

g = 0

c3

(1)

(2)

(1)

(2)

(1)(1)

(1)(1)

C(1.12)
1

C(1.12)
1

C(1.12)
1

C(1.12)
1

C(1.12)
3

C(1.12)
2

C(1.12)
2

C(1.12)
3

C(1.12)
3

C(1.12)
3

C(1.12)
3

C(1.12)
1

C(1.12)
4 C(1.12)

5

C(1.12)
6 C(1.12)

7

(2,1)

(2)

Figure 5.1: Bifurcation diagram of configurations for family (1.12): In this figure

on the dashed line a = 0 the hyperbola becomes reducible into two lines x = 0

and y = 0. When a = g = 0 the line y = 0 is filled up with singularities. For the

bifurcation curves we either have an additional line or coalescing hyperbolas or

a change in the multiplicity of a infinity singularity. On the dashed line g = 1

we have two additional lines. The dashed lines represent complex lines.
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a = 0

g = 1/4

g = 1/2

p3

p3

p3

p4

p4p5

p4p3

p4p3
P(1.12)

2

P(1.12)
2

g = 0
P(1.12)

1

P(1.12)
3

P(1.12)
3

P(1.12)
4

P(1.12)
4

P(1.12)
5

P(1.12)
6

P(1.12)
7

Figure 5.2: Topological bifurcation diagram for family (1.12). Note that the

phase portraits p4, p5 and P(1.12)
3 possess graphics in their first and third quad-

rant.

We have the following number of distinct configurations and phase portraits in the normals

forms (1.10), (1.11) and (1.12), denoted here by NF studied, as well as their limit points:

Config. in the NF studied All config. Phase port. in the NF studied All Phase port.

18 25 12 17

6 Questions, the problem of Poincaré and concluding comments

We are interested both in the algebraic-geometric properties of the systems in the family

QSH, as expressed in their global geometric configurations of algebraic solutions, and on

their impact on the integrability of the systems. We are also interested in the topological

phase portraits of systems in QSH. This family is 3-dimensional modulo the action of the

affine group of transformations and time rescaling (see [18]). As we have seen in the three

families we discussed in this work, the class QSH forms a rich testing ground for exploring

integrability in terms of the global algebraic geometric features of the systems occurring in

these normal forms. The geometric analysis of the systems we studied bring out a number of

questions. We expect to find answers to these questions, once the full study of all the normal

forms of QSH will be completed.
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6.1 The problem of Poincaré

For two out of the three families discussed in this work we have an answer to Poincaré’s

problem of algebraic integrability for each one of the systems in these families. The answer is

given entirely in geometric terms (see Theorem 3.6 in Subsection 3.1) and all systems in the

family (1.11) are algebraically integrable. This raises the following question: For how many

of the remaining normal forms could we solve the problem of Poincaré for all the systems

in the families defined by their respective normal forms? Could this problem be solved in

geometrical terms as it was possible for the normal form (A)?

6.2 The problem of generalizing the Christopher–Kooij Theorem 1.15

We saw that under the “generic” conditions of Christopher and Kooij (C–K), formulated al-

gebraically on the algebraic invariant curves f1(x, y), . . . , fk(x, y) of a polynomial differential

system, we are assured to have a polynomial inverse integrating factor of the special form

f1(x, y) . . . fk(x, y).

In this article we see cases where these “generic conditions” of (C–K) are not satisfied and

yet we still have an integrating factor which is polynomial. Furthermore, in some cases, this

polynomial inverse integrating factor is of the same form as the one in the (C–K) theorem.

Here are some examples occurring in the families we considered.

(I) For the family (1.10).

(1) All the systems in family (1.10) have an inverse integrating factor which is polynomial, they

are Darboux integrable and have in the generic case only two invariant lines J1, J2 and two

invariant hyperbolas J3, J4. An inverse polynomial factor is J1 J2 J3 J4 just like in C–K theorem.

The condition (a) of the C–K theorem 1.15 is satisfied since our curves are lines and hyperbolas

and they are, of course, non-singular and irreducible. The condition (b) is also satisfied since

the coefficients in M0ST are all equal to 2. The condition (c) is not satisfied because both of

the hyperbolas J3 and J4 intersect the line at infinity at P∞
1 and they are tangent at this point.

The condition (d) is not satisfied because the sum of the degrees of the curves is 6 and not 3.

However, the conclusion is the same as in theorem 1.15.

(2) In the non-generic cases (a − 3v2/4)(a + 3v2)(a − 8v2/9) = 0 we have a similar situation

and an inverse polynomial integrating factor. We have, as in the generic case, the two invariant

lines J1, J2 and we have, apart from the two invariant hyperbolas J4, J5 and additional invariant

curve J3. We again have (a) and (b) satisfied but not (c) and (d) of (C–K) theorem 1.15.

However, if we restrict our attention only to the remarkable curves J1, J2, J4, J5 then we still

have an inverse integrating factor of the form J1 J2 J4 J5 as in the (C–K) theorem.

(II) Consider now the family (1.11).

(1) The systems in the family (1.11) have in the generic case three invariant lines J1, J2, J3 and

two invariant hyperbolas J4, J5. Let us now consider for our discussion only the remarkable

curves, the three lines J1, J2, J3 and the hyperbola J4. These of course satisfy the conditions (a)

and (b). However they do not satisfy (c) because for example J1, J2, J4 intersect at P2. They also

do not satisfy (d). If we limit our attention to the four curves J1, J2, J3, J4 we see that we have

as an inverse integrating factor the polynomial J1 J2 J3 J4 which we get by taking in the general

expression of the integrating factor λ1 = λ2 = λ4 = −1.
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So we can ask the following questions:

Question 1: How should the geometry of the configuration of algebraic solutions J1, . . . , Jk of

a polynomial system be so as to have an inverse integrating factor which is polynomial? In

particular, how should this geometry be in order to have an inverse integrating factor J1 · · · Jk?

How could we relax, generalize, the hypotheses in the (C–K) theorem such that the same

conclusion holds?

Question 2: If a system has a rational first integral do we always have an inverse integrating

factor involving only remarkable curves?

Consider now the non-generic case v(a − v2) = 0 of the family (1.10). We have that one

of the invariant curves becomes double. In the case v = 0 we have two simple invariant lines

J1, J2 and one double invariant hyperbola J3. A polynomial inverse integrating factor in this

case is J1 J2 J2
3 . In the case a − v2 = 0 we have a double line J1 and two simple hyperbolas J2, J3.

We have a polynomial integrating factor J2
1 J2 J3. In this case we still have a polynomial inverse

integrating factor.

Question 3: Can we generalize the (C–K) Theorem 1.15 so as to include multiplicity? In what

cases there is a relation between the multiplicity s of an algebraic solution Ji and the exponent

of Ji appearing in the polynomial inverse integrating factor?

6.3 On the bifurcation diagrams

We have two kinds of bifurcation diagrams: topological and geometrical, i.e., of geometric

configurations of algebraic solutions (lines and hyperbolas).

Question 1: What is the relation between these two kinds of bifurcation diagrams?

In all three families the topological bifurcation set of the phase portraits is a subset of the

bifurcation set of configurations of algebraic solutions. This inclusion is strict for the first and

last families.

The bifurcation set BifA for topological phase portraits in the family (A) is formed by the

half-line of v = 0, a < 0 ((BifA)
(1)); the non-zero points on the parabola a = v2 ((BifA)

(2)).

On (BifA)
(1) and on (BifA)

(2) 4 real finite singular points coalesce into 2 real finite double

points. In the first case, after crossing the half-line they split again into 4 real singular points,

while in the second case they split into 4 complex finite singular points which are finite

points of intersection of the complexifications of each one of two real hyperbolas with the two

complex invariant lines, respectively.

It is interesting to observe that these topological bifurcation points have an impact on

the bifurcation set of geometrical configurations. Indeed, first we mention that above and

below the half-line v = 0 and a < 0 we have two couples of real singularities, the points in

each couple are located on distinct branches of one hyperbola. When two singular points on

different hyperbolas coalesce this yields the coalescence of the respective branches and also of

the two hyperbolas, producing a double hyperbola.

On the non-zero points of the parabola a = v2 the coalescence of the 4 real finite singular

points into two couples of double real singular points yields the coalescence of the two lines

into a double real line which afterwards splits into two complex lines. In this case again we

see that the topological bifurcation points produce also bifurcations in the configurations.

We note that we have a saddle to saddle connection on the parabola a = v2 for (a, v) 6=
(0, 0).
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On the bifurcation points situated on the remaining three parabolas we either have the

occurrence of an additional hyperbola (on a − 8v2/9 = 0 or on a + 3v2 = 0) or the appearance

of an additional invariant line (on a − 3v2/4 = 0). The presence of these additional invariant

curves does not affect in any way the bifurcation diagram of the systems.

In conclusion we have:

(i) Impact of the topological bifurcations on the bifurcations of configurations: The bifurcation

points of singularities of the systems located on the algebraic solutions, when real singular

points become multiple, become also bifurcation points for the multiplicity of the algebraic

solutions, inducing coalescence of the respective curves and hence of their geometric configu-

ration.

(ii) The bifurcation points of configurations due to the appearance of additional invariant

curves (three hyperbolas instead of two or three lines instead of two lines) have no conse-

quence for the topological bifurcation diagram of this family.

(iii) Inside the parabola a = v2 i.e. for points (a, v) such that v2 − a < 0 where we have complex

singularities, we have no bifurcation points of phase portraits but we have, on the half-line

v = 0, a > 0 bifurcation points of configurations, the two hyperbolas coalescing into a double

hyperbola. Here we need to stress the fact that on this half-line we have two double complex
singularities and while this fact has no impact on the topological bifurcation it is important for

the bifurcations of the configurations. Indeed, when the four complex singularities become

two double complex singularities on this half-line, the two hyperbolas on which they are lying

coalesce becoming a double hyperbola.

Limit points of the bifurcation diagram for (A) Let us discuss the bifurcation phenomena

which occur at the limiting points of our parameter space for systems in the family (A), i.e.

the points on a = 0. The topological bifurcation on this line is easy to understand. Indeed,

except for the the point (0, 0) where all four singularities collide, all the other points on a = 0

are bifurcation points of saddle to saddle connections. All the points on the line a = 0 are

also points of bifurcation of configurations of algebraic solutions. However this bifurcation

is a bit harder to understand. Indeed, at these points say on v > 0 we have a configuration

with three simple affine invariant lines, the vertical line intersecting the two parallel lines at

two points and forming a saddle-to saddle connection. It is clear that this configuration splits

into the configuration C(1.10)
1 on the left which has two hyperbolas and two invariant lines. So

in some sense the configuration on a = 0 should be considered as a multiple configuration since

it yields new algebraic solutions. Analyzing the bifurcation phenomenon we see that each

one of the two hyperbolas splits into two lines on a = 0 and v > 0. Indeed, the hyperbola

J4 splits into the line x = 0 and the line J1 and the hyperbola J3 splits into J2 and x = 0. So

that although for a = 0 each one of the lines is simple, each line contributes to the multiplicity

of the configuration. Considering the composite cubic curve xJ1 J2 = 0 we may say that this

configuration has (geometric) multiplicity two in this family as it splits into two cubic curves

J1 J4 and J2 J3. On the other hand we see that we have on a = 0 an exponential factor involving

in its exponent at the denominator of the rational function, the polynomial xJ1 J2 which turns

out to be of integrable multiplicity two. The notions of integrable multiplicity and geometric

multiplicity in [9] are not restricted to algebraic solutions. But the authors say there clearly

that the equivalence between integrable and geometric multiplicities occurs only for integrable

solutions. In the above family these two multiplicities coincide. So we have the following

Question: Under what condition on (finite) configurations of algebraic solutions do the two

multiplicities, integrable and geometric coincide?
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Finally we note that the point (0, 0) produces in perturbations all nine configurations

which we encounter in the extension of the family (A), apart from the fact that we are in-

terested in producing all the phase portraits of family QSH as well as fully understanding the

integrability of this family, the questions raised above are additional motivation for complet-

ing the study of this family.

7 Appendix

Considering r = m1/m2 where m1, m2 ∈ Z we can say that

I =
(

J1

J2

)m2
(

J3

J4

)m1

is a rational first integral of (1.10) when a = (1 − (m1/m2)2)v2. Consider

F(c1,c2) = c1 Jm2
1 Jm1

3 − c2 Jm2
2 Jm1

4 = 0.

We have the following:

• Taking m1 = 2 and m2 = 4 (i.e. a = 3v2/4) we have that

F(1,1) = − 27
16 v3y

(

81v4 + 36v2
(

−2x2 + xy + y2
)

+ 16x(x − y)3
)

.

Therefore, we have a line and a quartic as remarkable curves.

• Taking m1 = 2 and m2 = 6 (i.e. a = 8v2/9) we have that

F(1,1) =
32
9 v3

(

v2 + 3y(y − x)
)

(

3v4(5x − 8y)− 2v2(x − y)2(5x + 4y) + 3x(x − y)4
)

.

Therefore, we have a hyperbola and a quintic as remarkable curves.

• Taking m1 = 2 and m2 = 8 (i.e. a = 15v2/16) we have that

F(1,1) =
27

262144 v3(36v2x − 45v2y − 80x2y + 160xy2 − 80y3)

(3645v6 + 19440v4x2 − 58320v4xy + 38880v4y2 − 11520v2x4 + 23040v2x3y

− 23040v2xy3 + 11520v2y4 + 4096x6 − 20480x5y + 40960x4y2 − 40960x3y3

+ 20480x2y4 − 4096xy5).

Therefore, we have a cubic and a polynomial of degree 6 as remarkable curves.

• Taking m1 = 3 and m2 = 6 (i.e. a = 3v2/4) we have that

F(1,1) =
81

512 v3y(6561v8 − 1944v6
(

6x2 − 3xy − 5y2
)

+ 1296v4(x − y)2
(

6x2 + 2xy + y2
)

− 1152v2x(x − y)4(2x + y) + 256x2(x − y)6).

Therefore, we have a line and a polynomial of degree 8 as remarkable curves.
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• Taking m1 = 3 and m2 = 9 (i.e. a = 8v2/9) we have that

F(1,1) =
16
27 v3

(

v2 − 3xy + 3y2
)

(64v10 + 675v8x2 − 2544v8xy + 2112v8y2

− 900v6x4 + 2520v6x3y − 612v6x2y2 − 2736v6xy3 + 1728v6y4

+ 570v4x6 − 2232v4x5y + 3420v4x4y2 − 2760v4x3y3 + 1530v4x2y4

− 720v4xy5 + 192v4y6 − 180v2x8 + 936v2x7y − 1836v2x6y2 + 1440v2x5y3

+ 180v2x4y4 − 1080v2x3y5 + 684v2x2y6 − 144v2xy7 + 27x10 − 216x9y

+ 756x8y2 − 1512x7y3 + 1890x6y4 − 1512x5y5 + 756x4y6 − 216x3y7 + 27x2y8).

Therefore, we have a hyperbola and a polynomial of degree 10 as remarkable curves.

• Taking m1 = 4 and m2 = 2 (i.e. a = −3v2) we have that

F(1,1) = 216v3(9v2 + xy)(405v4x − 81v4y − 45v2x3 + 63v2x2y − 18v2xy2

+ x5 − 3x4y + 3x3y2 − x2y3).

Therefore, we have a hyperbola and a quintic as remarkable curves.

• Taking m1 = 4 and m2 = 6 (i.e. a = 5v2/9) we have that

F(1,1) = − 8
81 v3(100v4 − 21v2x2 + 270v2xy + 75v2y2 − 45x3y + 90x2y2 − 45xy3)

(420v6x + 300v6y − 385v4x3 + 255v4x2y + 105v4xy2 + 25v4y3 + 105v2x5

+ 90x4y3 − 45x3y4 + 9x2y5).

Therefore, we have a quartic and a polynomial of degree 7 as remarkable curves.

• Taking m1 = 4 and m2 = 8 (i.e. a = 3v2/4) we have that

F(1,1) = − 27
2048 v3y(81v4 − 72v2x2 + 36v2xy + 36v2y2 + 16x4 − 48x3y

+ 48x2y2 − 16xy3)(6561v8 − 11664v6x2 + 5832v6xy + 17496v6y2

+ 7776v4x4 − 12960v4x3y + 3888v4x2y2 + 1296v4y4 − 2304v2x6

+ 8064v2x5y − 9216v2x4y2 + 2304v2x3y3 + 2304v2x2y4 − 1152v2xy5

+ 256x8 − 1536x7y + 3840x6y2 − 5120x5y3 + 3840x4y4 − 1536x3y5 + 256x2y6).

Therefore, we have a line, a quartic and a polynomial of degree 8 as remarkable curves.

• Taking m1 = 4 and m2 = 12 (i.e. a = 8v2/9) we have that

F(1,1) =
64
81 v3(v2 − 3xy + 3y2)(15v4x − 24v4y − 10v2x3 + 12v2x2y + 6v2xy2

− 8v2y3 + 3x5 − 12x4y + 18x3y2 − 12x2y3 + 3xy4)(64v10 + 225v8x2

− 1104v8xy + 960v8y2 − 300v6x4 + 840v6x3y + 180v6x2y2 − 1680v6xy3

+ 960v6y4 + 190v4x6 − 744v4x5y + 1140v4x4y2 − 920v4x3y3 + 510v4x2y4

− 240v4xy5 + 64v4y6 − 60v2x8 + 312v2x7y − 612v2x6y2 + 480v2x5y3

+ 60v2x4y4 − 360v2x3y5 + 228v2x2y6 − 48v2xy7 + 9x10 − 72x9y + 252x8y2

− 504x7y3 + 630x6y4 − 504x5y5 + 252x4y6 − 72x3y7 + 9x2y8).

Therefore, we have a hyperbola, a quintic and a polynomial of degree 10 as remarkable

curves.
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• Taking m1 = 4 and m2 = 16 (i.e. a = 15v2/16) we have that

F(1,1) =
27

2199023255552 v3(36v2x − 45v2y − 80x2y + 160xy2 − 80y3)

(3645v6 + 19440v4x2 − 58320v4xy + 38880v4y2 − 11520v2x4 + 23040v2x3y

− 23040v2xy3 + 11520v2y4 + 4096x6 − 20480x5y + 40960x4y2 − 40960x3y3

+ 20480x2y4 − 4096xy5)(13286025v12 + 383582304v10x2 − 1029814560v10xy

+ 661348800v10y2 + 293932800v8x4 − 3174474240v8x3y + 8406478080v8x2y2

− 8465264640v8xy3 + 2939328000v8y4 − 418037760v6x6 + 2090188800v6x5y

− 2090188800v6x4y2 − 4180377600v6x3y3 + 10450944000v6x2y4

− 7942717440v6xy5 + 2090188800v6y6 + 291962880v4x8 − 1804861440v4x7y

+ 4830658560v4x6y2 − 7431782400v4x5y3 + 7431782400v4x4y4

− 5202247680v4x3y5 + 2601123840v4x2y6 − 849346560v4xy7 + 132710400v4y8

− 94371840v2x10 + 660602880v2x9y − 1887436800v2x8y2 + 2642411520v2x7y3

− 1321205760v2x6y4 − 1321205760v2x5y5 + 2642411520v2x4y6

− 1887436800v2x3y7 + 660602880v2x2y8 − 94371840v2xy9 + 16777216x12

− 167772160x11y + 754974720x10y2 − 2013265920x9y3 + 3523215360x8y4

− 4227858432x7y5 + 3523215360x6y6 − 2013265920x5y7 + 754974720x4y8

− 167772160x3y9 + 16777216x2y10).

Therefore, we have a cubic, a polynomial of degree 6 and a polynomial of degree 12 as

remarkable curves.

These computations suggest that the remarkable curves of algebraically integrable sys-

tems in the family (A) have an unbounded degree.
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Abstract. We consider a system of stochastic Allen–Cahn equations on a finite network
represented by a finite graph. On each edge in the graph a multiplicative Gaussian
noise driven stochastic Allen–Cahn equation is given with possibly different potential
barrier heights supplemented by a continuity condition and a Kirchhoff-type law in the
vertices. Using the semigroup approach for stochastic evolution equations in Banach
spaces we obtain existence and uniqueness of solutions with sample paths in the space
of continuous functions on the graph. We also prove more precise space-time regularity
of the solution.
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1 Introduction

We consider a finite connected network, represented by a finite graph G with m edges e1, . . . , em

and n vertices v1, . . . , vn. We normalize and parametrize the edges on the interval [0, 1]. We

denote by Γ(vi) the set of all the indices of the edges having an endpoint at vi, i.e.,

Γ(vi) :=
{

j ∈ {1, . . . , m} : ej(0) = vi or ej(1) = vi

}

.

Denoting by Φ := (φij)n×m the so-called incidence matrix of the graph G, see Subsection 2.1

for more details, we aim to analyse the existence, uniqueness and regularity of solutions of

BCorresponding author. Email: mihaly@chalmers.se
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the problem































































u̇j(t, x) = (cju
′
j)
′(t, x)− pj(x)uj(x, t)

+ β2
j u(x, t)− u(x, t)3

+ gj(t, x, uj(t, x))
∂wj

∂t
(t, x), t ∈ (0, T], x ∈ (0, 1), j = 1, . . . , m,

uj(t, vi) = uℓ(t, vi) =: qi(t), t ∈ (0, T], ∀j, ℓ ∈ Γ(vi), i = 1, . . . , n,

[Mq(t)]i = −
m

∑
j=1

φijµjcj(vi)u
′
j(t, vi), t ∈ (0, T], i = 1, . . . , n,

uj(0, x) = uj(x), x ∈ [0, 1], j = 1, . . . , m,

(1.1)

where
∂wj

∂t are independent space-time white noises. The reaction terms in (1.1) are classical

Allen–Cahn nonlinearities hj(η) = −η3 + β2
j η with β j > 0, j = 1, . . . , m. Note that hj =

−H′
j where Hj(η) = 1

4 (η
2 − β2

j )
2 is a double well potential for each j with potential barrier

height β4
j /4. The diffusion coefficients gj are assumed to be locally Lipschitz continuous

and of linear growth. The coefficients of the linear operator satisfy standard smoothness

assumptions, see Subsection 2.1, the matrix M satisfies Assumptions 2.7 and µj, j = 1, . . . , m,

are positive constants. The classical Allen–Cahn equation belongs to the class of phase field

models and is a classical tool to model processes involving thin interface layers between almost

homogeneous regions, see [3]. It is a particular case of a reaction-diffusion equation of bistable

type and it can be used to study front propagations as in [7] . Effects due to, for example,

thermal fluctuations of the system can be accounted for by adding a Wiener type noise in the

equation, see [20].

While deterministic evolution equations on networks are well studied, see, [1,2,5,6,8–11,17,

18, 25, 29–31, 34–38] which is, admittedly, a rather incomplete list, the study of their stochastic

counterparts is surprisingly scarce despite their strong link to applications, see e.g. [12,13,44]

and the references therein. In [12] additive Lévy noise is considered that is square integrable

with drift being a cubic polynomial. In [14] multiplicative square integrable Lévy noise is

considered but with globally Lipschitz drifts f j and diffusion coefficients and with a small

time dependent perturbation of the linear operator. Paper [13] treats the case when the noise

is an additive fractional Brownian motion and the drift is zero. In [22] multiplicative Wiener

perturbation is considered both on the edges and vertices with globally Lipschitz diffusion

coefficient and zero drift and time-delayed boundary condition. Finally, in [21], the case of

multiplicative Wiener noise is treated with bounded and globally Lipschitz continuous drift

and diffusion coefficients and noise both on the edges and vertices.

In all these papers the semigroup approach is utilized in a Hilbert space setting and the

only work that treats non-globally Lipschitz continuous drifts on the edges, similar to the

ones considered here, is [12] but the noise is there additive and square-integrable. In this

case, energy arguments are possible using the additive nature of the equation which does not

carry over to the multiplicative case. Therefore, we use an entirely different tool set based on

the semigroup approach for stochastic evolution equations in Banach spaces [39], or for the

classical stochastic reaction-diffusion setting [32, 33], see also, [15, 16, 19, 41]. We are able to

rewrite (1.1) in a form that fits into this framework. After establishing various embedding and

isomorphy results of function spaces and interpolation spaces, we may use [33, Theorem 4.9]

to prove our main existence and uniqueness result, Theorem 3.15, which guarantees existence

and uniqueness of solutions with sample paths in the space of continuous functions on the
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graph, denoted by B in the paper (see Definition 3.4); that is, in the space of continuous

functions that are continuous on the edges and also across the vertices. When the initial

data is sufficiently regular, then Theorem 3.15 also yields certain space-time regularity of the

solution.

The paper is organized as follows. In Section 2 we collect partially known semigroup re-

sults for the linear deterministic version of (1.1). In Subsection 3.1 we first recall an abstract

result from [32, 33] regarding abstract stochastic Cauchy problems in Banach spaces. In or-

der to utilize the abstract framework in our setting we prove various preparatory results in

Subsection 3.2: embedding and isometry results are contained in Lemma 3.5, Lemma 3.6 and

Corollary 3.7, and a semigroup result in Proposition 3.8. Subsection 3.3 contains our main

results where we first consider the abstract stochastic Itô equation corresponding to a slightly

more general version of (1.1). An existence and uniqueness result for the abstract stochastic Itô

problem is contained in Theorem 3.13 followed by a space-time regularity result in Theorem

3.14. These are then applied to the Itô equation corresponding (1.1) to yield the main result

of the paper, Theorem 3.15, concerning the existence, uniqueness and space-time regularity of

the solution of (1.1).

2 Heat equation on a network

2.1 The system of equations

We consider a finite connected network, represented by a finite graph G with m edges e1, . . . , em

and n vertices v1, . . . , vn. We normalize and parametrize the edges on the interval [0, 1].

The structure of the network is given by the n × m matrices Φ+ := (φ+
ij ) and Φ− := (φ−

ij )

defined by

φ+
ij :=

{

1, if ej(0) = vi,

0, otherwise,
and φ−

ij :=

{

1, if ej(1) = vi,

0, otherwise,

for i = 1, . . . , n and j = 1, . . . m. We denote by ej(0) and ej(1) the 0 and the 1 endpoint of the

edge ej, respectively. We refer to [30] for terminology. The n × m matrix Φ := (φij) defined by

Φ := Φ+ − Φ−

is known in graph theory as incidence matrix of the graph G. Further, let Γ(vi) be the set of all

the indices of the edges having an endpoint at vi, i.e.,

Γ(vi) :=
{

j ∈ {1, . . . , m} : ej(0) = vi or ej(1) = vi

}

.

For the sake of simplicity, we will denote the values of a continuous function defined on the

(parameterized) edges of the graph, that is of

f = ( f1, . . . , fm)
⊤ ∈ (C[0, 1])m ∼= C ([0, 1], R

m)

at 0 or 1 by f j(vi) if ej(0) = vi or ej(1) = vi, respectively, and f j(vi) := 0 otherwise, for

j = 1, . . . , m.

We start with the problem






















u̇j(t, x) = (cju
′
j)
′(t, x)− pj(x)uj(t, x), t > 0, x ∈ (0, 1), j = 1, . . . , m, (a)

uj(t, vi) = uℓ(t, vi) =: qi(t), t > 0, ∀j, ℓ ∈ Γ(vi), i = 1, . . . , n, (b)

[Mq(t)]i = −∑
m
j=1 φijµjcj(vi)u

′
j(t, vi), t > 0, i = 1, . . . , n, (c)

uj(0, x) = uj(x), x ∈ [0, 1], j = 1, . . . , m (d)

(2.1)
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on the network. Note that cj(·), pj(·) and uj(t, ·) are functions on the edge ej of the network,

so that the right-hand side of (2.1a) reads in fact as

(cju
′
j)
′(t, ·) = ∂

∂x

(

cj
∂

∂x
uj

)

(t, ·)− pj(·)uj(t, ·), t ≥ 0, j = 1, . . . , m.

The functions c1, . . . , cm are (variable) diffusion coefficients or conductances, and we as-

sume that

0 < cj ∈ C1[0, 1], j = 1, . . . , m.

The functions p1, . . . , pm are nonnegative, continuous functions, hence

0 ≤ pj ∈ C[0, 1], j = 1, . . . , m.

Equation (2.1b) represents the continuity of the values attained by the system at the ver-

tices in each time instant, and we denote by qi(t) the common functions values in the vertice

i, for i = 1, . . . , n and t > 0.

In (2.1c), M :=
(

bij

)

n×n
is a matrix satisfying the following

Assumption 2.1. The matrix M =
(

bij

)

n×n
is real, symmetric and negative semidefinite, M 6≡ 0.

On the left-hand-side, [Mq(t)]i denotes the ith coordinate of the vector Mq(t). On the

right-hand-side, the coefficients

0 < µj, j = 1, . . . , m

are strictly positive constants that influence the distribution of impulse happening in the ram-

ification nodes according to the Kirchhoff-type law (2.1c).

We now introduce the n × m weighted incidence matrices

Φ+
w := (ω+

ij ) and Φ−
w := (ω−

ij )

with entries

ω+
ij :=

{

µjcj(vi), if ej(0) = vi,

0, otherwise,
and ω−

ij :=

{

µjcj(vi), if ej(1) = vi,

0, otherwise.

With these notations, the Kirchhoff law (2.1c) becomes

Mq(t) = −Φ+
w u′(t, 0) + Φ−

w u′(t, 1), t ≥ 0. (2.2)

In equation (2.1d) we pose the initial conditions on the edges.

2.2 Spaces and operators

We are now in the position to rewrite our system in form of an abstract Cauchy problem,

following the concept of [31]. First we consider the (real) Hilbert space

E2 :=
m

∏
j=1

L2(0, 1; µjdx) (2.3)

as the state space of the edges, endowed with the natural inner product

〈u, v〉E2
:=

m

∑
j=1

∫ 1

0
uj(x)vj(x)µjdx, u =

(

u1

...
um

)

, v =

(

v1

...
vm

)

∈ E2.
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Observe that E2 is isomorphic to
(

L2(0, 1)
)m

with equivalence of norms.

We further need the boundary space R
n of the vertices. According to (2.1b) we will consider

such functions on the edges of the graph those values coincide in each vertex. Therefore we

introduce the boundary value operator

L : (C[0, 1])m ⊂ E2 → R
n

with

D(L) =
{

u ∈ (C[0, 1])m : uj(vi) = uℓ(vi), ∀j, ℓ ∈ Γ(vi), i = 1, . . . , n
}

;

Lu := (q1, . . . , qn)
⊤ ∈ R

n, qi = uj(vi) for some j ∈ Γ(vi), i = 1, . . . , n. (2.4)

The condition u(t, ·) ∈ D(L) for each t > 0 means that (2.1b) is for the function u(·, ·) satisfied.

On E2 we define the operator

Amax :=











d
dx

(

c1
d

dx

)

− p1 0

. . .

0 d
dx

(

cm
d

dx

)

− pm











(2.5)

with domain

D(Amax) :=
(

H2(0, 1)
)m ∩ D(L). (2.6)

This operator can be regarded as maximal since no other boundary condition except conti-

nuity is supposed for the functions in its domain.

We further define the so called feedback operator acting on D(Amax) and having values in

the boundary space R
n as

D(C) = D(Amax);

Cu := −Φ+
w u′(0) + Φ−

w u′(1),

compare with (2.2).

With these notations, we can finally rewrite (2.1) in form of an abstract Cauchy problem.

Define

A := Amax (2.7)

D(A) := {u ∈ E2 : u ∈ D(Amax) and MLu = Cu},

see the definitions above. Using this, (2.1) becomes

{

u̇(t) = Au(t), t > 0,

u(0) = u,
(2.8)

with u = (u1, . . . , um)⊤.

2.3 Well-posedness of the abstract Cauchy problem

To prove well-posedness of (2.8) we define a bilinear form on the Hilbert space E2 with domain

D (a) = V :=
(

H1(0, 1)
)m

∩ D(L). (2.9)
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as

a(u, v) :=
m

∑
j=1

∫ 1

0
µjcj(x)u′

j(x)v′j(x)dx +
m

∑
j=1

∫ 1

0
µj pj(x)uj(x)vj(x)dx − 〈Mq, r〉Rn , (2.10)

where Lu = q and Lv = r.

The next definition can be found e.g. in [40, Section 1.2.3].

Definition 2.2. From the form a – using the Riesz representation theorem – we can obtain a

unique operator (B, D(B)) in the following way:

D(B) := {u ∈ V : ∃v ∈ E2 s.t. a(u, ϕ) = 〈v, ϕ〉E2
∀ϕ ∈ V} ,

Bu := −v.

We say that the operator (B, D(B)) is associated with the form a.

In the following, we will claim that the operator associated with the form a is (A, D(A)).

Furthermore, we will state results regarding how the properties of a and the matrix M carry

on the properties of the operator A, obtaining the well-posedness of the abstract Cauchy-

problem (2.8) on E2 and even on Lp-spaces of the edges. The proofs of these statements

combine techniques of [36] (where no pj’s on the right-hand-side of (2.1b) are considered)

and techniques of [38] (where pj’s are considered for the heat equation but the matrix M is

diagonal).

Proposition 2.3. The operator associated to the form a (2.9)–(2.10) is (A, D(A)) in (2.7).

Proof. We can proceed similarly as in the proofs of [36, Lemma 3.4] and [38, Lemma 3.3].

Proposition 2.4. The form a is densely defined, continuous, closed and accretive, hence (A, D(A)) is

densely defined, dissipative and sectorial. Furthermore, a is symmetric, hence the operator (A, D(A))

is self-adjoint.

Proof. The first three properties of a (densely defined, continuous and closed) follow analo-

gous to the proof of [38, Lemma 3.2]. Since M is dissipative (that is, negative semidefinite),

and pj ≥ 0, j = 1, . . . , m, the form a is accretive, see the proofs of [36, Proposition 3.2] and

[38, Lemma 3.2]. The symmetricity of a follows from the fact that M is real and symmetric,

see the proof of [36, Corollary 3.3]. The properties of A follow now by [40, Proposition 1.24,

1.51, Theorem 1.52].

As a corollary we obtain well-posedness of (2.8).

Proposition 2.5. Assuming Assumption 2.1 on the matrix M, the operator (A, D(A)) defined in

(2.7) generates a C0 analytic, compact semigroup of contractions (T2(t))t≥0 on E2. Hence, the abstract

Cauchy problem (2.8) is well-posed on E2.

Proof. The claim follows from Proposition 2.4 and the fact that (A, D(A)) is resolvent compact.

This is true since V is densely and compactly embedded in E2 by the Rellich–Khondrakov

Theorem, and we can use [24, Theorem 1.2.1].

In the following we will extend the semigroup (T2(t))t≥0 on Lp-spaces. To this end we

define
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Ep :=
m

∏
j=1

Lp(0, 1; µjdx), p ∈ [1, ∞]

and

‖u‖p
Ep

:=
m

∑
j=1

‖uj‖p

Lp(0,1;µjdx)
, u ∈ Ep, p ∈ [1, ∞),

‖u‖E∞
:= max

j=1,...,m
‖uj‖L∞(0,1), u ∈ E∞.

We can characterize features of the semigroup (T2(t))t≥0 by those of (etM)t≥0, the semi-

group generated by the matrix M – hence, by properties of M. In particular, the following

holds.

Proposition 2.6. The semigroup (T2(t))t≥0 on E2 associated with a enjoys the following properties:

• (T2(t))t≥0 is positive if and only if the matrix M has positive off-diagonal – that is, if it generates

a positive matrix semigroup (etM)t≥0;

• Since M is negative semidefinite, the semigroup (T2(t))t≥0 is contractive on E∞ if and only if

bii + ∑
k 6=i

|bik| ≤ 0, i = 1, . . . , n,

that is (etM)t≥0 is ℓ∞-contractive.

Proof. It follows using analogous techniques as in the proof of [36, Theorem 3.5] and [38,

Lemma 4.1, Proposition 5.3]

To obtain the desired extension of the semigroup on Lp-spaces, we assume the following

on the matrix M.

Assumption 2.7. For the matrix M =
(

bij

)

n×n
we assume the following properties:

1. M satisfies Assumption 2.1;

2. For i 6= k, bik ≥ 0, that is, M has positive off-diagonal;

3. ∑
k 6=i

bik ≤ −bii, i = 1, . . . , n,

that is, the matrix is diagonally dominant.

Proposition 2.8. If M satisfies Assumptions 2.7 then the semigroup (T2(t))t≥0 extends to a family

of compact, contractive, positive one-parameter semigroups (Tp(t))t≥0 on Ep, 1 ≤ p ≤ ∞. Such

semigroups are strongly continuous if p ∈ [1, ∞), and analytic of angle π
2 − arctan

|p−2|
2
√

p−1
for p ∈

(1, ∞).

Moreover, the spectrum of Ap is independent of p, where Ap denotes the generator of (Tp(t))t≥0,

1 ≤ p ≤ ∞.

Proof. It follows by [4, Section 7.2] as in [36, Theorem 4.1] and [38, Corollary 5.6].

We also can prove that the generators of the semigroups in the spaces Ep, 1 ≤ p ≤ ∞ have

in fact the same form as in E2, with appropriate domain.
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Lemma 2.9. For all p ∈ [1, ∞] the generator Ap of the semigroup (Tp(t))t≥0 is given by the operator

defined in (2.5) with domain

D(Ap) =

{

u ∈
m

∏
j=1

W2,p(0, 1; µjdx) ∩ D(L) : MLu = Cu

}

. (2.11)

In particular, Ap has compact resolvent for p ∈ [1, ∞].

Proof. See [36, Proposition 4.6] and [38, Lemma 5.7].

As a summary we obtain the following theorem.

Theorem 2.10. The first order problem (2.1) is well-posed on Ep, p ∈ [1, ∞), i.e., for all initial data

u ∈ Ep the problem (2.1) admits a unique mild solution that continuously depends on the initial data.

3 The stochastic Allen–Cahn equation on networks

3.1 An abstract stochastic Cauchy problem

Let (Ω, F , P) is a complete probability space endowed with a right continuous filtration F =

(Ft)t∈[0,T]. Let (WH(t))t∈[0,T] be a cylindrical Wiener process, defined on (Ω, F , P), in some

Hilbert space H with respect to the filtration F; that is, (WH(t))t∈[0,T] is (Ft)t∈[0,T]-adapted

and for all t > s, WH(t)− WH(s) is independent of Fs. To be able to handle the stochastic

Allen–Cahn equation on networks, first we cite a result of M. Kunze and J. van Neerven,

regarding the following abstract equation

{

dX(t) = [AX(t) + F(t, X(t))]dt + G(t, X(t))dWH(t)

X(0) = ξ,
(SCP)

see [32, Section 3]. If we assume that (A, D(A)) generates a strongly continuous, analytic

semigroup S on the Banach space E with ‖S(t)‖ ≤ Keωt, t ≥ 0 for some K ≥ 1 and ω ∈ R,

then for ω′ > ω the fractional powers (ω′− A)α are well-defined for all α ∈ (0, 1). In particular,

the fractional domain spaces

Eα := D((ω′ − A)α), ‖v‖α := ‖(ω′ − A)αv‖, v ∈ D((ω′ − A)α) (3.1)

are Banach spaces. It is well-known (see e.g. [26, §II.4–5.]), that up to equivalent norms, these

spaces are independent of the choice of ω′.
For α ∈ (0, 1) we define the extrapolation spaces E−α as the completion of E under the

norms ‖v‖−α := ‖(ω′ − A)−αv‖, v ∈ E. These spaces are independent of ω′ > ω up to an

equivalent norm.

We fix E0 := E.

Remark 3.1. If A is injective and ω = 0 (hence, the semigroup S is bounded), then by [28,

Chapter 6.2, Introduction] we can choose ω′ = 0. That is,

Eα ∼= D((−A)α), α ∈ [0, 1).
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To obtain the desired result for the solution of (SCP), one has to impose the following

assumptions for the mappings in (SCP). These are – in the first and third cases slightly simpli-

fied versions of – Assumptions (A1), (A5), (A4), (F’), (F”) and (G”) in [32]. Let B be a Banach

space, ‖ · ‖ will denote ‖ · ‖B. For u ∈ B we define the subdifferential of the norm at u as the set

∂‖u‖ := {u∗ ∈ B∗ : ‖u∗‖ = 1 and 〈u, u∗〉 = 1} (3.2)

which is not empty by the Hahn–Banach theorem. Furthermore, let E be a UMD Banach space

of type 2.

Assumptions 3.2.

1. (A, D(A)) is densely defined, closed and sectorial on E.

2. For some 0 ≤ θ <
1
2 we have continuous, dense embeddings

Eθ →֒ B →֒ E.

3. Let S be the strongly continuous analytic semigroup generated by (A, D(A)). Then S restricts

to a strongly continuous contraction semigroup SB on B, in particular, A|B is dissipative.

4. The map F : [0, T]× Ω × B → B is locally Lipschitz continuous in the sense that for all r > 0,

there exists a constant L
(r)
F such that

‖F(t, ω, u)− F(t, ω, v)‖ ≤ L
(r)
F ‖u − v‖

for all ‖u‖, ‖v‖ ≤ r and (t, ω) ∈ [0, T]× Ω and there exists a constant CF,0 ≥ 0 such that

‖F(t, ω, 0)‖ ≤ CF,0, t ∈ [0, T], ω ∈ Ω.

Moreover, for all u ∈ B the map (t, ω) 7→ F(t, ω, u) is strongly measurable and adapted.

Finally, for suitable constants a, b ≥ 0 and N ≥ 1 we have

〈Au + F(t, u + v), u∗〉 ≤ a(1 + ‖v‖)N + b‖u‖

for all u ∈ D(A|B), v ∈ B and u∗ ∈ ∂‖u‖, see (3.2).

5. There exist constants a′′, b′′, m′ > 0 such that the function F : [0, T]× Ω × B → B satisfies

〈F(t, ω, u + v)− F(t, ω, v), u∗〉 ≤ a′′(1 + ‖v‖)m′ − b′′‖u‖m′

for all t ∈ [0, T], ω ∈ Ω, u, v ∈ B and u∗ ∈ ∂‖u‖, and

‖F(t, v)‖ ≤ a′′(1 + ‖v‖)m′

for all v ∈ B.

6. Let γ(H, E−κG) denote the space of γ-radonifying operators from H to E−κG for some 0 ≤ κG <
1
2 , see e.g. [32, Section 3.1]. Then the map G : [0, T]× Ω × B → γ(H, E−κG) is locally Lipschitz

continuous in the sense that for all r > 0, there exists a constant L
(r)
G such that

‖G(t, ω, u)− G(t, ω, v)‖γ(H,E−κG ) ≤ L
(r)
G ‖u − v‖
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for all ‖u‖, ‖v‖ ≤ r and (t, ω) ∈ [0, T] × Ω. Moreover, for all u ∈ B and h ∈ H the map

(t, ω) 7→ G(t, ω, u)h is strongly measurable and adapted.

Finally, G is of linear growth, that is, for suitable constant c′,

‖G(t, ω, u)‖γ(H,E−κG ) ≤ c′ (1 + ‖u‖)

for all (t, ω, u) ∈ [0, T]× Ω × B.

Recall that a mild solution of (SCP) is a solution of the following implicit equation

X(t) = S(t)ξ +
∫ t

0
S(t − s)F(s, X(s)) ds +

∫ t

0
S(t − s)G(s, X(s)) dWH(s)

=: S(t)ξ + S ∗ F(·, X(·))(t) + S ⋄ G(·, X(·))(t) (3.3)

where

S ∗ f (t) =
∫ t

0
S(t − s) f (s) ds

denotes the “usual” convolution, and

S ⋄ g(t) =
∫ t

0
S(t − s)g(s) dWH(s)

denotes the stochastic convolution with respect to WH.

The result of Kunze and van Neerven that will be useful for our setting is the following.

We note that this was first proved in [32, Theorem 4.9] but with a typo in the statement which

was later corrected in the recent arXiv preprint [33, Theorem 4.9].

Theorem 3.3 ([33, Theorem 4.9]). Suppose that Assumptions 3.2 hold and let 2 < q < ∞, 0 ≤ θ <
1
2 , 0 ≤ κG <

1
2 satisfy

θ + κG <
1

2
− 1

q
.

Then for all ξ ∈ Lq(Ω, F0, P; B) there exists a unique global mild solution

X ∈ Lq (Ω, C([0, T]; B))

of (SCP). Moreover, for some constant C > 0 we have

E‖X‖q

C([0,T];B)
≤ C · (1 + E‖ξ‖q) .

3.2 Preparatory results

In order to apply the abstract result of Theorem 3.3 to the stochastic Allen–Cahn equation on

a network we need to prove some preparatory results using the setting of Section 2.

On the edges of the graph G we will consider continuous functions that satisfy the conti-

nuity condition in the vertices, see Subsection 2.1. We will refer to such functions as continuous

functions on the graph G and denote them by C(G).

Definition 3.4. We define

C(G) := D(L),
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see (2.4), which can be looked at as the Banach space of all continuous functions on the graph

G, hence the norm on C(G) can be defined as

‖u‖C(G) = max
j=1,...,m

sup
[0,1]

|uj|, u ∈ C(G).

This space will play the role of the space B in our setting, hence we set

B := C(G) and ‖ · ‖C(G) := ‖ · ‖B. (3.4)

We will show that for θ big enough the continuous, dense embeddings

Eθ
p →֒ B →֒ Ep

hold, where

Eθ
p is defined for the operator Ap on the Banach space Ep as in (3.1). (3.5)

To do so, we first need a technical lemma, and define the maximal operator on Ep as

Ap,max :=











d
dx

(

c1
d

dx

)

− pm 0

. . .

0 d
dx

(

cm
d

dx

)

− pm











(3.6)

with domain

D(Ap,max) :=

(

m

∏
j=1

W2,p(0, 1; µjdx)

)

∩ D(L), (3.7)

see (2.5) (2.6) in E2. Hence, the domain of Ap,max only contains the continuity condition in the

nodes.

Furthermore, define

W0(G) :=
m

∏
j=1

W
2,p
0 (0, 1; µjdx), (3.8)

where

W
2,p
0 (0, 1; µjdx) = W2,p(0, 1; µjdx) ∩ W

1,p
0 (0, 1; µjdx), j = 1, . . . , m.

That is, W0(G) contains such vectors of functions that are twice weakly differentiable on each

edge and continuous on the graph with Dirichlet boundary conditions.

Lemma 3.5.

D(Ap,max) ∼= W0(G)× R
n,

where the isomorphism is taken for D(Ap,max) equipped with the operator graph norm.

Proof. We will use the setting of [27] for A = Ap,max, X = Ep and the boundary operator

L : D(L) ⊂ Ep → R
n =: Y. Denote

A0 := Ap,max|ker L
,

which is the operator (3.6) with Dirichlet boundary conditions. Hence, it is a generator on Ep.

Clearly

D(A0) = W0(G) (3.9)



12 E. Sikolya and M. Kovács

holds.

We now choose λ ∈ ρ(A0). Using [27, Lemma 1.2] we have that

D(Ap,max) = D(A0)⊕ ker(λ − Ap,max).

Furthermore, the map

L : ker(λ − Ap,max) → R
n (3.10)

is an onto isomorphism, having the inverse

Dλ := (L|ker(λ−Ap,max))
−1 : R

n → ker(λ − Ap,max)

called Dirichlet-operator, see [27, (1.14)]. By [27, (1.15)],

DλL : D(Ap,max) → ker(λ − Ap,max)

is the projection in D(Ap,max) onto ker(λ − Ap,max) along D(A0). Since DλL is continuous, by

the properties of the direct sum, see e.g. [42, Theorem 2.5], we obtain that

D(Ap,max) ∼= D(A0)× ker(λ − Ap,max)

holds. Now using (3.9) and that (3.10) is an isomorphism, the claim follows.

Lemma 3.6. For the space B defined in (3.4)

B ∼= (C0[0, 1])m × R
n

holds.

Proof. Let u ∈ B arbitrary and r := Lu ∈ R
n. We can define the unique vu ∈ B such that vu

j is

a first order polynomial for each j = 1, . . . , m taking values

vu
j (vi) = ri, for ej ∈ Γ(vi) j = 1, . . . , m, i = 1, . . . , n.

Then Lvu = r and

u − vu ∈ (C0[0, 1])m .

Denote

B1 := {vu : u ∈ B} ⊂ B

a closed subspace. Clearly,

(C0[0, 1])m ∩ B1 = {0B}
and if u ∈ B then u = (u − vu) + vu with u − vu ∈ (C0[0, 1])m and vu ∈ B1. Hence

B = (C0[0, 1])m ⊕ B1.

By the construction of vu follows that since L : B → R
n is onto,

L|B1
: B1 → R

n

is a bijection. The operator L|B1
is also bounded for the norm of B induced on B1. Hence, by

the open mapping theorem, it is an isomorphism. Denoting its inverse by

L1 := (L|B1
)−1 : R

n → B1,

we obtain that

L1L : B → B1

is the continuous projection from B onto B1 along (C0[0, 1])m . Hence, we can use [42, Theorem

2.5] and obtain

B ∼= (C0[0, 1])m × R
n.
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Corollary 3.7. Let Eθ
p defined in (3.5). If θ >

1
2p then the following continuous, dense embeddings are

satisfied:

Eθ
p →֒ B →֒ Ep. (3.11)

Proof. We know that (Ap, D(Ap)) is sectorial and maximal dissipative, hence it is injective and

generates a contractive semigroup. By Remark 3.1 we have that

Eθ
p
∼= D((−Ap)

θ)

for θ ∈ [0, 1). It follows from [4, Theorem in §5.3.5] and [4, Theorem in §4.4.10] that for the

complex interpolation spaces

D((−Ap)
θ) ∼= [D(−Ap), Ep]θ ,

hence

Eθ
p
∼= [D(−Ap), Ep]θ

holds with equivalence of norms. Defining (Ap,max, D(Ap,max)) as in (3.6), (3.7) we have that

D(Ap) →֒ D(Ap,max)

holds. Hence

Eθ
p →֒

[

D(−Ap,max), Ep

]

θ
. (3.12)

By Lemma 3.5,

D(−Ap,max) ∼= W0(G)× R
n (3.13)

holds, where W0(G) is defined in (3.8). Since Ep
∼= Ep × {0Rn}, using general interpolation

theory, see e.g. [43, Section 4.3.3], we have that for θ >
1

2p

[

W0(G)× R
n, Ep × {0Rn}

]

θ
→֒
(

m

∏
j=1

W
2θ,p
0 (0, 1; µjdx)

)

× R
n.

Thus, by (3.12) and (3.13)

Eθ
p →֒

(

m

∏
j=1

W
2θ,p
0 (0, 1; µjdx)

)

× R
n (3.14)

holds. Hence,

Eθ
p →֒ (C0[0, 1])m × R

n (3.15)

is true. Applying Lemma 3.6 we obtain that for θ >
1

2p

Eθ
p →֒ B (3.16)

is satisfied. Using Lemma 3.6 again, we have B →֒ Ep, and the claim follows.

In the following we will prove that the part of the operator (Ap, D(Ap)) in B is the gen-

erator of a strongly continuous semigroup on B. First notice that by the form (2.11) of D(Ap)

and by (3.11)

D(Ap) ⊂ B →֒ Ep (3.17)

holds.
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Proposition 3.8. The part of (Ap, D(Ap)) in B generates a positive strongly continuous semigroup

of contractions on B.

Proof. 1. We first prove that the semigroup (Tp(t))t≥0 leaves B invariant. We take u ∈ B and

use that (Tp(t))t≥0 is analytic on Ep (see Proposition 2.8). Hence, Tp(t)u ∈ D(Ap). By (3.17)

also

Tp(t)u ∈ B

holds.

2. In the next step we prove that (Tp(t)|B)t≥0 is a strongly continuous semigroup. By

[26, Proposition I.5.3], it is enough to prove that there exist K > 0 and δ > 0 and a dense

subspace D ⊂ B such that

(a) ‖Tp(t)‖B ≤ K for all t ∈ [0, δ], and

(b) limt↓0 Tp(t)u = u for all u ∈ D.

To verify (a), we obtain by Proposition 2.8 that for u ∈ B

‖Tp(t)u‖B = ‖Tp(t)u‖E∞
= ‖T∞(t)u‖E∞

≤ ‖u‖E∞
= ‖u‖B,

hence

‖Tp(t)‖B ≤ 1 =: K, t ≥ 0.

To prove (b) take 1
2p < θ <

1
2 arbitrary. By (3.11) we have that

D := Eθ
p →֒ B

with dense, continuous embedding. Hence, there exists C > 0 such that for u ∈ D,

‖Tp(t)u − u‖B ≤ C · ‖Tp(t)u − u‖Eθ
p

= C · ‖Tp(t)(−Ap)
θu − (−Ap)

θu‖Ep → 0, t ↓ 0.

Summarizing 1. and 2., and using (3.17), we can apply [26, Proposition in Section II.2.3] for

(Ap, D(Ap)) and Y = B, and obtain that the part of (Ap, D(Ap)) in B generates a positive

strongly continuous semigroup of contractions on B.

Corollary 3.9. The first order problem (2.1) is well-posed on B, i.e., for all initial data u ∈ B the

problem (2.1) admits a unique mild solution that continuously depends on the initial data.

3.3 Main results

In this subsection we first apply the above results to the following stochastic evolution equa-

tion, based on (2.1). This corresponds to a slightly more general version of (1.1), see (3.33)

later.

Let (Ω, F , P) be a complete probability space endowed with a right-continuous filtration

F = (Ft)t∈[0,T] for some T > 0 given. We consider the problem


















































u̇j(t, x) = (cju
′
j)
′(t, x)− pj(x)uj(t, x)

+ f j(t, x, uj(t, x))

+ gj(t, x, uj(t, x))
∂wj

∂t
(t, x), t ∈ (0, T], x ∈ (0, 1), j = 1, . . . , m, (a)

uj(t, vi) = uℓ(t, vi) =: qi(t), t ∈ (0, T], ∀j, ℓ ∈ Γ(vi), i = 1, . . . , n, (b)

[Mq(t)]i = − ∑
m
j=1 φijµjcj(vi)u

′
j(t, vi), t ∈ (0, T], i = 1, . . . , n, (c)

uj(0, x) = uj(x), x ∈ [0, 1], j = 1, . . . , m, (d)

(3.18)
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where
∂wj

∂t , j = 1, . . . , m, are independent space-time white noises on [0, 1]; written as formal

derivatives of independent cylindrical Wiener-processes (wj(t))t∈[0,T], defined on (Ω, F , P),

in the Hilbert space L2(0, 1; µjdx) with respect to the filtration F.

The functions f j : [0, T]× Ω × [0, 1]× R → R are polynomials of the form

f j(t, ω, x, η) = −aj,2k+1(t, ω, x)η2k+1 +
2k

∑
l=0

aj,l(t, ω, x)ηl , η ∈ R, j = 1, . . . , m (3.19)

for some fixed integer k. For the coefficients we assume that there are constants 0 < c ≤ C < ∞

such that

c ≤ aj,2k+1(t, ω, x) ≤ C,
∣

∣aj,l(t, ω, x)
∣

∣ ≤ C, for all j = 1, . . . , m, l = 0, 2, . . . , 2k,

for all x ∈ [0, 1], t ∈ [0, T] and almost all ω ∈ Ω, see [32, Example 4.2]. The coefficients

aj,l : [0, T]× Ω × [0, 1] → R are jointly measurable and adapted in the sense that for each j and

l and for each t ∈ [0, T], the function aj,l(t, ·) is Ft ⊗ B[0,1]-measurable, where B[0,1] denotes

the sigma-algebra of the Borel sets on [0, 1].

We further assume a technical assumption regarding the graph structure that will play and

important role in our setting.

Assumption 3.10. For the coefficients in (3.19) we assume that

(a1,l(t, ω, ·), . . . , am,l(t, ω, ·))⊤ ∈ B for all l = 1, . . . , 2k + 1,

t ∈ [0, T] and almost all ω ∈ Ω.

Remark 3.11. If the coefficients in (3.19) do not depend on j – that is, they are the same on

different edges –, and satisfy

al(t, ω, ·) = aj,l(t, ω, ·) ∈ C[0, 1], t ∈ [0, T], ω ∈ Ω, j = 1, . . . m, l = 1, . . . , 2k + 1

and

al(t, ω, 0) = al(t, ω, 1), for all l = 1, . . . 2k + 1,

then Assumption 3.10 is fulfilled. This is the case e.g. if a′ls are constant (not depending on x).

For the functions gj we assume

gj : [0, T]× Ω × [0, 1]× R → R, j = 1, . . . , m are locally Lipschitz continuous

and of linear growth in the fourth variable,

uniformly with respect to the first three variables. (3.20)

We further assume that the functions are jointly measurable and adapted in the sense that for

each j and t ∈ [0, T], gj(t, ·) is Ft ⊗ B[0,1] ⊗ BR-measurable, where B[0,1] and BR denote the

sigma-algebras of the Borel sets on [0, 1] and R, respectively.

The above assumptions on the coefficients on the edges, except for Assumption 3.10 which

is specific for the graph setting, are analogous to those in [32, Section 5] and [33, Section 5].

To handle system (3.18), we rewrite it in the form of the abstract stochastic Cauchy-problem

(SCP). To do so, we specify the functions appearing in (SCP) corresponding to (3.18).
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The operator (A, D(A)) = (Ap, D(Ap)) will be the generator of the strongly continuous

analytic semigroup S := (Tp(t))t≥0 on the Banach space E := Ep for some large p ≥ 2, see

Proposition 2.8 and Lemma 2.9. Hence, E is a UMD space of type 2.

For the function F : [0, T]× Ω × B → B we have

F(t, ω, u)(s) := ( f1(t, ω, s, u1(s)), . . . , fm(t, ω, s, um(s)))
⊤ , s ∈ [0, 1]. (3.21)

Since B is an algebra, Assumption 3.10 assures that F maps [0, T]× Ω × B into B.

To define the operator G we argue in analogy with [33, Section 5]. First define

H := E2

the product L2-space, see (2.3), which is a Hilbert space. We further define the multiplication

operator Γ : [0, T]× B → L(H) as

[Γ(t, u)h] (s) :=







g1(t, s, u1(s)) . . . 0
...

. . .
...

0 . . . gm(t, s, um(s))






·







h1(s)
...

hm(s)






, s ∈ (0, 1), (3.22)

for u ∈ B, h ∈ H. Because of the assumptions (3.20) on the functions gj, Γ clearly maps into

L(H).

Let (A2, D(A2)) be the generator on H = E2, see Proposition 2.5, and pick κG ∈ ( 1
4 , 1

2 ). By

(3.14) in the proof of Corollary 3.7 we have that there exists a continuous embedding

ı : EκG
2 →

(

m

∏
j=1

H2κG
0 (0, 1; µjdx)

)

× R
n =: H,

where H is a Hilbert space. Applying the steps (3.15) and (3.16) of Corollary 3.7 we obtain

that H →֒ B holds, and by (3.11), there exists a continuous embedding

 : H → Ep

for p ≥ 2 arbitrary.

Define now G by

(−Ap)
−κG G(t, u)h :=  ı (−A2)

−κG Γ(t, u)h, u ∈ B, h ∈ H. (3.23)

Proposition 3.12. Let p ≥ 2 and κG ∈ ( 1
4 , 1

2 ) be arbitrary. Then the operator G defined in (3.23)

maps [0, T]× B into γ(H, E−κG
p ).

Proof. We can argue as in [39, Section 10.2]. Using [39, Lemma 2.1(4)], we obtain in a similar

way as in [39, Corollary 2.2]) that  ∈ γ(H, Ep), since 2κG >
1
2 holds. Hence, by the defini-

tion of G and the ideal property of γ-radonifying operators, the mapping G takes values in

γ(H, E−κG
p ).

The driving noise process WH is defined by

WH(t) =







w1(t)
...

wm(t)






, t ∈ [0, T], (3.24)

and thus (WH(t))t∈[0,T] is a cylindrical Wiener process, defined on (Ω, F , P), in the Hilbert

space H with respect to the filtration F.

We will state now the result regarding system (SCP) corresponding to (3.18).
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Theorem 3.13. Let F, G and W defined in (3.21), (3.23) and (3.24), respectively. Let q > 4 be

arbitrary. Then for every ξ ∈ Lq(Ω, F0, P; B) a unique mild solution X of equation (SCP) exists

globally and belongs to Lq(Ω; C([0, T]; B)).

Proof. The condition q > 4 allows us to choose 2 ≤ p < ∞, θ ∈ [0, 1
2 ) and κG ∈ ( 1

4 , 1
2 ) such that

θ >
1

2p
(3.25)

and

0 ≤ θ + κG <
1

2
− 1

q
.

We will apply Theorem 3.3 with θ and κG having the properties above. To this end we

have to check Assumptions 3.2 for the mappings in (SCP), taking A = Ap and E = Ep for

the p chosen above. Assumption (1) is satisfied because of the generator property of Ap, see

Proposition 2.8. Assumption (2) is satisfied since (3.25) holds and we can use Corollary 3.7.

Assumption (3) is satisfied by the statement of Proposition 3.8. Using that the functions f j are

polynomials of the 4th variable of the same degree 2k + 1 (see (3.19)), a similar computation

as in [32, Example 4.2] and [32, Example 4.5], using techniques from [23, Section 4.3], shows

that Assumptions (4) and (5) are satisfied for F with N = m′ = 2k + 1. By Proposition 3.12, G

takes values in γ(H, E−κG
p ) with H = E2 and κG chosen above. Using the assumptions (3.20)

on the functions gj and the proof of [39, Theorem 10.2], we obtain that G is locally Lipschitz

continuous and of linear growth as a map [0, T] × B → γ(H, E−κG
p ), hence Assumption (6)

holds.

In the following theorem we will state a result regarding Hölder regularity of the mild

solution of (SCP) corresponding to (3.18), see (3.3).

Theorem 3.14. Let q > 4 be arbitrary, λ, η > 0 and p ≥ 2 such that λ + η >
1

2p . We assume that

ξ ∈ L(2k+1)q(Ω; E
λ+η
p ), where k is the constant appearing in (3.19). If the inequality

λ + η <
1

4
− 1

q
(3.26)

is fulfilled, then the mild solution X of (SCP) from Theorem 3.13 satisfies

X ∈ Lq(Ω; Cλ([0, T], E
η
p)).

Proof. Using the continuous embedding (3.11), we have that

ξ ∈ L(2k+1)q(Ω; B)

holds. Since (2k + 1)q > 4, by Theorem 3.13 there exists a global mild solution

X ∈ L(2k+1)q(Ω; C([0, T], B)).

This solution satisfies the following implicit equation (see (3.3)):

X(t) = S(t)ξ + S ∗ F(·, X(·))(t) + S ⋄ G(·, X(·))(t), (3.27)

where S denotes the semigroup generated by Ap on Ep, ∗ denotes the usual convolution, ⋄
denotes the stochastic convolution with respect to W . In the following we have to estimate the

Lq(Ω; Cλ([0, T], E
η
p))-norm of X, and we will do this using the triangle-inequality in (3.27).
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For the qth power of first term we have

E‖S(·)ξ‖q

Cλ([0,T],E
η
p)
= E

(

sup
t,s∈[0,T]

‖S(t)ξ − S(s)ξ‖E
η
p

|t − s|λ

)q

≤ E

(

sup
h∈[0,T]

‖S(h)ξ − ξ‖E
η
p

|h|λ

)q

= E

(

sup
h∈[0,T]

‖S(h)(−Ap)ηξ − (−Ap)ηξ‖Ep

|h|λ

)q

. (3.28)

By assumption, (−Ap)ηξ ∈ D((−Ap)λ) holds. Applying [26, Proposition II.5.33] we obtain

that (−Ap)ηξ lies in the Hölder space of order λ on Ep, denoted by Cλ
p . Hence,

sup
h∈[0,T]

‖S(h)(−Ap)ηξ − (−Ap)ηξ‖Ep

|h|λ = ‖(−Ap)
ηξ‖Fp,λ

< ∞,

where ‖ · ‖Fp.λ
denotes the Favard norm of order λ on Ep, see [26, Definition II.5.10]. Fur-

thermore, because of the continuous inclusion D((−Ap)λ) →֒ Cλ
p , we have that there exists

c = c(λ) such that

‖(−Ap)
ηξ‖Fp,λ

≤ c · ‖(−Ap)
ηξ‖Eλ

p
= c · ‖(−Ap)

λ+ηξ‖Ep .

Hence,

E‖S(·)ξ‖q

Cλ([0,T],E
η
p)
≤ c · E‖(−Ap)

λ+ηξ‖q
Ep

< ∞

by assumption.

To estimate the qth power of the second term

E‖S ∗ F(·, X(·))‖q

Cλ([0,T],E
η
p)

we choose θ >
1

2p such that

λ + η + θ < 1 − 1

q
.

We will use [39, Lemma 3.6] with this θ, α = 1, and q instead of p, and obtain that there exist

constants C ≥ 0 and ε > 0 such that

‖S ∗ F(·, X(·))‖Cλ([0,T],E
η
p)
≤ CTε‖F(·, X(·))‖Lq(0,T;E−θ

p ). (3.29)

We have to estimate the expectation of the qth power on the right-hand-side of (3.29). By

Corollary 3.7 we obtain

B →֒ Ep →֒ E−θ
p ,

since θ >
1

2p holds and (ω′ − Ap)−θ is an isomorphism between E−θ
p and Ep. Using this and

Assumptions 3.2(5) with m′ = 2k + 1 (which holds by the proof of Theorem 3.13), we have

E‖F(·, X(·))‖q

Lq(0,T;E−θ
p )

= E

∫ T

0
‖F(s, X(s))‖q

E−θ
p

ds

. E

∫ T

0
‖F(s, X(s))‖q

B ds

. E

∫ T

0

(

1 + ‖X(s)‖(2k+1)q
B

)

ds

. 1 + E sup
t∈[0,T]

‖X(t)‖(2k+1)q
B ,
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where . denotes that the expression on the left-hand-side is less or equal to a constant times

the expression on the right-hand-side. This implies that for each T > 0 there exists CT > 0

such that

(

E‖S ∗ F(·, X(·))‖q

Cλ([0,T],E
η
p)

) 1
q

≤ CT ·
(

1 + ‖X(t)‖2k+1
L(2k+1)q(Ω;C([0,T],B))

)

, (3.30)

and the right-hand-side is finite.

To estimate the stochastic convolution term in (3.27) we first fix 0 < α <
1
2 such that

λ + η +
1

4
< α − 1

q

holds. We now choose κG ∈ ( 1
4 , 1

2 ) such that

λ + η + κG < α − 1

q

is satisfied. Applying [39, Proposition 4.2] with θ = κG and q instead of p, we have that there

exist ε > 0 and C ≥ 0 such that

E ‖S ⋄ G(·, X(·))‖q

Cλ([0,T],E
η
p)
≤ CqTεq

∫ T

0
E
∥

∥s 7→ (t − s)−αG(s, X(s))
∥

∥

q

γ(L2(0,t;H),E
−κG
p )

dt.

In the following we proceed similarly as done in the proof of [32, Theorem 4.3], with N = 1

and q instead of p. Since E−κG
p is a Banach space of type 2 (because Ep is of that type), the

continuous embedding

L2(0, t; γ(H, E−κG
p )) →֒ γ(L2(0, t; H), E−κG

p )

holds. Using this, Young’s inequality and the properties of G, respectively, we obtain the

following estimates

E ‖S ⋄ G(·, X(·))‖q

Cλ([0,T],E
η
p)
. Tεq

∫ T

0
E
∥

∥s 7→ (t − s)−αG(s, X(s))
∥

∥

q

L2(0,t;γ(H,E
−κG
p ))

dt

= Tεq
E

∫ T

0

(

∫ t

0
(t − s)−2α ‖G(s, X(s))‖2

γ(H,E
−κG
p )

ds

)

q
2

dt

≤ Tεq

(

∫ T

0
t−2α dt

)

q
2

E

∫ T

0
‖G(t, X(t))‖q

γ(H,E
−κG
p )

dt

≤ T( 1
2−α+ε)q(c′)q · E

∫ T

0
(1 + ‖X(t)‖B)

q dt

. T( 1
2−α+ε)q+1(c′)q ·

(

1 + E‖X(t)‖q

C([0,T],B)

)

.

Hence, for each T > 0 there exists constant C′
T > 0 such that

(

E ‖S ⋄ G(·, X(·))‖q

Cλ([0,T],E
η
p)

) 1
q

≤ C′
T ·
(

1 + ‖X(t)‖L(2k+1)q(Ω;C([0,T],B))

)2k+1
. (3.31)

In summary, by (3.28), (3.30) and (3.31), we obtain that X ∈ Lq(Ω; Cλ([0, T], E
η
p)) holds, hence

the proof is completed.
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We are now in the position to finally consider (1.1). Let

β := max
1≤j≤m

β j.

We also introduce

f j(η) := f (η) = −η3 + β2η. (3.32)

and

̺j := β2 − β2
j ≥ 0.

With these notations, we can rewrite (1.1) in an equivalent form as



















































u̇j(t, x) = (cju
′
j)
′(t, x)− p̃j(x)uj(t, x)

+ f j(uj(t, x))

+ gj(t, x, uj(t, x))
∂wj

∂t
(t, x), t ∈ (0, T], x ∈ (0, 1), j = 1, . . . , m,

uj(t, vi) = uℓ(t, vi) =: qi(t), t ∈ (0, T], ∀j, ℓ ∈ Γ(vi), i = 1, . . . , n,

[Mq(t)]i = − ∑
m
j=1 φijµjcj(vi)u

′
j(t, vi), t ∈ (0, T], i = 1, . . . , n,

uj(0, x) = uj(x), x ∈ [0, 1], j = 1, . . . , m,

(3.33)

with p̃j(x) := pj(x) + ̺j, j = 1, . . . m.

We define the operator Ap on Ep as in (2.5) with p̃j’s instead of pj’s and with domain (2.11).

Theorem 3.15. Let F, G and W defined in (3.21), (3.23) and (3.24), respectively, for the system (3.33).

Let q > 4 be arbitrary. Then for every ξ ∈ Lq(Ω, F0, P; B) a unique mild solution X of equation (SCP)

corresponding to (3.33), which is equivalent to (1.1), exists globally and belongs to Lq(Ω; C([0, T]; B)).

Let λ, η > 0, p ≥ 2 be arbitrary constants such that λ + η >
1

2p . If ξ ∈ L3q(Ω; E
λ+η
p ) and the

inequality

λ + η <
1

4
− 1

q

is fulfilled, then X ∈ Lq(Ω; Cλ([0, T], E
η
p)).

Proof. First note that the coefficients p̃j stay nonnegative as the constants ̺j are nonnegative.

Furthermore, the nonlinear terms f j = f in (3.32) are of the form (3.19) with k = 1 and constant

coefficients. Hence, Assumption 3.10 is fulfilled by Remark 3.11. The statement then follows

from Theorems 3.13 and 3.14.

3.4 Concluding remarks

In equation (3.18a) we could have prescribed coloured noise instead of white noise on the

edges of the graph. That is, we could set

u̇j(t, x) = (cju
′
j)
′(t, x)− pj(x)uj(t, x)

+ f j(t, x, uj(t, x))

+ gj(t, x, uj(t, x))Rj

∂wj

∂t
(t, x), t ∈ (0, T], x ∈ (0, 1), j = 1, . . . , m,

(3.34)



On the stochastic Allen–Cahn equation on networks 21

with Rj ∈ γ(L2(0, 1; µjdx), Lp(0, 1; µjdx)). Then we define

R :=







R1 . . . 0
...

. . .
...

0 . . . Rm






∈ γ(H, Ep)

with H = E2 and p ≥ 2 arbitrary. Using this, we can define the operator G : [0, T] × B →
γ(H, Ep) as

G(t, u)h := Γ(t, u)Rh, h ∈ H,

where the operator Γ : [0, T]× B → L(H) is defined in (3.22). It is easy to see that G satisfies

Assumptions 3.2(6) with κG = 0. For example, if u, v ∈ B with ‖u‖, ‖v‖ ≤ r, then

‖G(t, u)− G(t, v)‖γ(H,Ep) ≤ ‖Γ(t, u)− Γ(t, v)‖L(Ep) · ‖R‖γ(H,Ep)

≤ L(r) · ‖u − v‖B · ‖R‖γ(H,Ep)

where L(r) is the maximum of the Lipschitz-constants of the functions gj on the ball of radius r.

If setting (3.34) instead of (3.18a), Theorem 3.13 remains true as stated; that is, for q > 4,

but one may use a simpler Hilbert space machinery; that is, one may set p = 2 in the proof.

However, in the coloured noise case, Theorem 3.13 is true also for q > 2. But this can only be

shown by choosing p > 2 large enough in the proof and hence, in this case, the Banach space

arguments are crucial.

In Theorem 3.14, if one takes p = 2 (Hilbert space) and q > 4, then the statement is true

for λ + η >
1
4 with

λ + η <
1

2
− 1

q
(3.35)

instead of (3.26). In this case R will be a Hilbert–Schmidt operator whence the covariance

operator of the driving process is trace-class. However, the statement of the theorem remains

true for q > 2 as well assuming (3.35) instead of (3.26), but only for the Banach space Ep for p

large enough so that λ + η >
1

2p .

The statements of Theorem 3.15 could also be changed accordingly.
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1 Introduction

In this paper, we are interested in investigating the blow-up phenomena of the following

porous media equation with nonlinear sink and nonlinear boundary condition:















ut = ∆um − up, (x, t) ∈ Ω × (0, t∗),
∂u
∂ν = kuq, (x, t) ∈ ∂Ω × (0, t∗),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where m > 1 and p > 1, q ≥ 1, k is a positive constant, Ω ⊂ R
3 is a star-shaped domain with

smooth boundary. ν is the unit outward normal vector on ∂Ω, u0(x) > 0 is the initial value. t∗

is the blow-up time if the solutions blow up. It is well known that the data m, p, q may greatly

affect the behavior of u(x, t) as time evolves.

The mathematical investigation of the phenomenon of blow-up of solutions to parabolic

equations and systems has received much attention in the recent literature. We refer to the

readers the books of Straughan [14] and Quittner and Souplet [13], as well as papers of

Weissler [15, 16], and so on. The determination of sufficient conditions for blow-up and the

existence or nonexistence of global solution to problem, as well as bounds for the blow-up

time have been the focus of some of these studies [1, 5–7, 18].

BCorresponding author. Email: tianya@cqupt.edu.cn
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For the initial-boundary value problem of porous media equation

ut = ∆um + f (u) (1.2)

where f (u) ≥ 0, Wu and Gao [17] established the blow-up criterion of equation (1.2) by using

the method of energy. Besides, there are many references for the blow-up behavior of its

solutions [4, 8]. The methods used in the study of blow-up often lead to upper bound for the

blow-up time when blow-up occur. However, in applied problems, because of the explosive

nature of the solution, a lower bound on blow-up time is more important. Then, there are

many papers giving the estimate of the lower bound of blow-up time [2, 3, 9, 10, 12]. In [9],

the authors gave the estimations of the lower bound for blow-up time for problem (1.2) under

Robin boundary conditions, by using various inequalities. When m = 1, Payne and Philippin

etc. [10] studied blow-up phenomena of the classical solution of the following initial-boundary

problem

ut = ∆u − f (u) (1.3)

under the help of energy method and Sobolev type inequality, they gave the lower bound of

blow-up time when condition for blow-up holds.

However, to our best knowledge, there is no paper where the blow-up phenomenon is

studied with m > 1 and nonlinear sink as a reaction term. So, it is natural to consider problem

(1.1). Methods used in this paper are motivated by the aforementioned papers. Because of

the difference between the diffusion term and the reaction term, we will study the blow-up

phenomena of (1.1) by modifying their techniques.

In Sections 2 and 3, by using energy method and various inequality techniques, we deter-

mine a criterion which implies blow-up, and drive upper and lower bounds for t∗; in Section 4,

a criterion for boundedness of the solution in all time t > 0 is determined; In the last section,

a relevant example will be listed to illustrate applications of our results.

2 Blow-up and upper bound estimation of t
∗

In this section we establish a blow-up criterion for problem (1.1) and derive an upper bound

for blow-up time, by using the auxiliary function method.

Theorem 2.1. Let u(x, t) be a nonnegative classical solution of problem (1.1) and assume m+ q− 1 ≥

p. Then u(x, t) will blow-up in finite time t∗, and

t∗ ≤
2mϕ−a

0

(m + 1)2a(1 + a)M
,

where a, M and ϕ−a
0 are some constants which will be given in the later proof.

Proof. Denote

ϕ(t) =
∫

Ω
um+1dx. (2.1)
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Taking the derivative of (2.1), we have

ϕ′(t) = (m + 1)
∫

Ω
umutdx

= (m + 1)
∫

Ω
um(∆um − up)dx

= (m + 1)
∫

Ω
um∆umdx − (m + 1)

∫

Ω
um+pdx

= (m + 1)mk
∫

∂Ω
u2m+q−1ds − (m + 1)

∫

Ω
|∇um|2dx − (m + 1)

∫

Ω
um+pdx.

(2.2)

Moreover, by using the notation

ψ(t) =
2m2k

2m + q − 1

∫

∂Ω
u2m+q−1ds −

∫

Ω
|∇um|2dx −

2m

m + p

∫

Ω
um+pdx, (2.3)

since m + q − 1 ≥ p, we have

ϕ′(t) ≥
(m + 1)(2m + q − 1)

2m
ψ(t). (2.4)

From (2.3) one obtains

ψ′(t) = 2m2k
∫

∂Ω
u2m+q−2utds −

∫

Ω
|∇um|2t dx − 2m

∫

Ω
um+p−1utdx, (2.5)

because

∇(um
t ∇um) = um

t ∆um +
1

2
|∇um|2t . (2.6)

Integrate both sides of (2.6), then we obtain

∫

Ω
|∇um|2t dx = 2

∫

∂Ω
um

t

∂um

∂ν
ds − 2

∫

Ω
um

t ∆umdx

= 2m2k
∫

∂Ω
u2m+q−2utds − 2m

∫

Ω
um−1∆umutdx.

(2.7)

Substituting (2.7) into (2.5), we have

ψ′(t) = 2m
∫

Ω
um−1∆umutdx − 2m

∫

Ω
um+p−1utdx

= 2m
∫

Ω
um−1u2

t dx > 0.
(2.8)

Using Hölder’s inequality, we obtain

(ϕ′(t))2 =

[

(m + 1)
∫

Ω
umutdx

]2

≤ (m + 1)2
∫

Ω
um+1dx

∫

Ω
um−1u2

t dx

=
(m + 1)2

2m
ϕ(t)ψ′(t).

(2.9)

Thus (2.4) implies

(ϕ′(t))2 ≥
(m + 1)(2m + q − 1)

2m
ϕ′(t)ψ(t). (2.10)
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We get from (2.9) and (2.10)

ϕ(t)ψ′(t) ≥
(2m + q − 1)

m + 1
ϕ′(t)ψ(t),

by using the notation
2m+q−1

m+1 = 1 + a, we find

ϕ(t)ψ′(t) ≥ (1 + a)ϕ′(t)ψ(t).

From the above inequality, we obtain

(ϕ−(1+a)ψ)′ ≥ 0,

hence

ϕ−(1+a)ψ ≥ ϕ
−(1+a)
0 ψ0 = M,

where ϕ0 = ϕ(0) and ψ0 = ψ(0). Combining the above formula with (2.10), we find

ϕ′(t) ≥
(m + 1)(2m + q − 1)

2m
ψ(t) ≥

(m + 1)2

2m
(1 + a)Mϕ1+a, (2.11)

then we have

ϕ−a(t) ≤ ϕ−a
0 −

(m + 1)2

2m
a(1 + a)Mt. (2.12)

Therefore

t∗ ≤
2mϕ−a

0

(m + 1)2a(1 + a)M
. (2.13)

3 Lower bound for the blow-up time

In this section, we estimate the lower bound of the blow-up time by constructing some auxil-

iary functions and using different inequality techniques, such as Sobolev type inequality and

Hölder inequality etc. Our theorem is given as follows.

Theorem 3.1. Assume that u(x, t) is a nonnegative classical solution of problem (1.1), further it blows

up at finite time t∗. Then

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

,

where n = 2(m + 2q − 3) and φ(0), k1, k2, k3, k4 are constants, defined in the proof later.

Proof. We define

φ(t) =
∫

Ω
u2(m+2q−3)dx =

∫

Ω
undx. (3.1)

The derivative of (3.1) w.r.t. t can be written as follows

φ′(t) = n
∫

Ω
un−1utdx

= n
∫

Ω
un−1(∆um − up)dx

= n
∫

Ω
un−1∆umdx − n

∫

Ω
un+p−1dx

= nmk
∫

∂Ω
un+m+q−2ds − n(n − 1)m

∫

Ω
un+m−3|∇u|2dx − n

∫

Ω
un+p−1dx.

(3.2)
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To estimate
∫

∂Ω
un+m+q−2ds, we can refer to the Lemma A.1 in [11], and obtain

∫

∂Ω
un+m+q−2ds ≤

N

ρ0

∫

Ω
un+m+q−2dx +

(n + m + q − 2)d

ρ0

∫

Ω
un+m+q−3|∇u|dx, (3.3)

where

ρ0 = min
∂Ω

(x · ν), d = max
∂Ω

|x|.

Note that ρ0 is positive since Ω is star-shaped by assumption.

Applying the Hölder inequality, we have

∫

Ω
un+m+q−2dx ≤

(

∫

Ω
undx

)

q−1
m+2q−3

(

∫

Ω
un+m+2q−3dx

)

m+q−2
m+2q−3

=

(

∫

Ω
undx

)

2(q−1)
n

(

∫

Ω
u

3n
2 dx

)

2(m+q−2)
n

≤
2(q − 1)

n

∫

Ω
undx +

2(m + q − 2)

n

∫

Ω
u

3n
2 dx.

(3.4)

Using Cauchy’s inequality with ǫ and inverse Hölder inequality, we get

∫

Ω
un+m+q−3|∇u|dx ≤

1

4ǫ

∫

Ω
un+m+2q−3dx + ǫ

∫

Ω
un+m−3|∇u|2dx, (3.5)

and

∫

Ω
un+p−1dx ≥ |Ω|

1−p
n

(

∫

Ω
undx

)

n+p−1
n

. (3.6)

First taking (3.4) and (3.5) into (3.3), then taking (3.3) and (3.6) into (3.2), (3.2) becomes

φ′(t) ≤

[

kmdǫ(n + m + q − 2)

ρ0
− m(n − 1)

]

n
∫

Ω
un+m−3|∇u|2dx

+

[

kmnd(n + m + q − 2)

4ǫρ0
+

2kmN(m + q − 2)

ρ0

]

∫

Ω
u

3n
2 dx

+
2mkN(q − 1)

ρ0

∫

Ω
undx − n|Ω|

1−p
n

(

∫

Ω
undx

)

n+p−1
n

.

(3.7)

Now we estimate
∫

Ω
u

3n
2 dx, using Sobolev type inequality (see (A.5) in [11]) which holds if

N = 3 and obtain for arbitrary µ > 0

∫

Ω
u

3n
2 dx ≤

1

3
3
4

[

3

2ρ0

∫

Ω
undx +

n

2

(

1 +
d

ρ0

)

∫

Ω
un−1|∇u|dx

]
3
2

≤
2

1
2

3
3
4

{

(

3

2ρ0

)
3
2
(

∫

Ω
undx

)
3
2

+

[

n

2
(1 +

d

ρ0
)

]
3
2 1

4µ3
|Ω|

3(m−1)
n

(

∫

Ω
undx

)

3(n−m+1)
n

+

[

n

2

(

1 +
d

ρ0

)]
3
2 3µ

4

∫

Ω
un+m−3|∇u|2dx

}

.

(3.8)
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By substituting (3.8) into (3.7), we obtain

φ′(t) ≤

{[

kmndǫ(n + m + q − 2)

ρ0
− mn(n − 1)

]

+

[

kmnd(n + m + q − 2)

4ǫρ0
+

2kmN(m + q − 2)

ρ0

]

×

[

n

2
(1 +

d

ρ0
)

]
3
2 3µ

4

2
1
2

3
3
4

}

∫

Ω
un+m−3|∇u|2dx

+ k1φ
3
2 + k2φ

3(n−m+1)
n + k3φ − k4φ

n+p−1
n .

(3.9)

For ǫ > 0 small enough, choosing an appropriate µ > 0 such that k0 ≤ 0, this leads to

φ′(t) ≤ k1φ
3
2 + k2φ

3(n−m+1)
n + k3φ − k4φ

n+p−1
n , (3.10)

where

k0 =

{[

kmndǫ(n + m + q − 2)

ρ0
− mn(n − 1)

]

+

[

kmnd(n + m + q − 2)

4ǫρ0
+

2kmN(m + q − 2)

ρ0

]

×

[

n

2

(

1 +
d

ρ0

)]
3
2 3µ

4

2
1
2

3
3
4

}

,

k1 =

[

kmnd(n + m + q − 2)

4ǫρ0
+

2kmN(m + q − 2)

ρ0

]

2
1
2

3
3
4

(

3

2ρ0

)
3
2

,

k2 =

[

kmnd(n + m + q − 2)

4ǫρ0
+

2kmN(m + q − 2)

ρ0

]

2
1
2

3
3
4

[

n

2

(

1 +
d

ρ0

)]
3
2 1

4µ3
|Ω|

3(m−1)
n ,

k3 =
2kmN(q − 1)

ρ0
,

k4 = n|Ω|
1−p

n .

Integrating (3.10) from 0 to t∗, we obtain

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

. (3.11)

4 Non-existence of blow-up

In this section we show that if the classical solution exists then it may not blow-up when the

exponents satisfy p > m + 2(q − 1). We define

ϕ(t) =
∫

Ω
um+1dx. (4.1)

We establish the following theorem.

Theorem 4.1. Let p > m + 2(q − 1), if u(x, t) is a classical solution of (1.1) for t < t∗ ≤ ∞ then

ϕ(t) is bounded for all t < t∗.
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Proof. Assume that u(x, t) is a classical solution of (1.1) for t < t∗ ≤ ∞. Taking the derivative

of (4.1), by (2.2) we have

ϕ′(t) = (m + 1)mk
∫

∂Ω
u2m+q−1ds − (m + 1)

∫

Ω
|∇um|2dx − (m + 1)

∫

Ω
um+pdx. (4.2)

To estimate
∫

∂Ω
u2m+q−1ds, we obtain

∫

∂Ω
u2m+q−1ds ≤

N

ρ0

∫

Ω
u2m+q−1dx +

(2m + q − 1)d

ρ0

∫

Ω
u2m+q−2|∇u|dx

=
N

ρ0

∫

Ω
u2m+q−1dx +

(2m + q − 1)d

ρ0m

∫

Ω
um+q−1|∇um|dx.

(4.3)

Applying Cauchy’s inequality with β, we have

∫

Ω
um+q−1|∇um|dx ≤ β

∫

Ω
u2(m+q−1)dx +

1

4β

∫

Ω
|∇um|2dx. (4.4)

Choosing β = (2m+q−1)kd
4ρ0

, and inserting (4.4) into (4.3), then inserting (4.3) into (4.2), we get

ϕ′(t) ≤ (m + 1)

[

kmN

ρ0

∫

Ω
u2m+q−1dx +

kdβ(2m + q − 1)

ρ0

∫

Ω
u2(m+q−1)dx −

∫

Ω
um+pdx

]

. (4.5)

Using Hölder’s inequality and Young’s inequality with ε, we obtain

∫

Ω
u2(m+q−1)dx ≤

(

∫

Ω
um+pdx

)α (∫

Ω
u2m+q−1dx

)1−α

≤ αε
1
α

∫

Ω
um+pdx + (1 − α)ε

1
α−1

∫

Ω
u2m+q−1dx,

(4.6)

where α = q−1
p−(m+q−1)

and 0 < α < 1 by the assumption of the theorem.

Combining (4.6) with (4.5), we find

ϕ′(t) ≤ (m + 1)

[

H
∫

Ω
u2m+q−1dx − W

∫

Ω
um+pdx

]

, (4.7)

where

H =

[

(1 − α)ε
1

α−1
kdβ(2m + q − 1)

ρ0
+

kmN

ρ0

]

,

W =

[

1 − αε
1
α

kdβ(2m + q − 1)

ρ0

]

,

we may choose ε so small that W > 0 holds.

Using Hölder’s inequality again

∫

Ω
u2m+q−1dx ≤ |Ω|

p−(m+q−1)
m+p

(

∫

Ω
um+pdx

)

2m+q−1
m+p

, (4.8)
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thus

∫

Ω
um+pdx ≥ |Ω|

−p+(m+q−1)
2m+q−1

(

∫

Ω
u2m+q−1dx

)

m+p
2m+q−1

, (4.9)

where |Ω| denotes the measure of Ω. Inserting (4.9) into (4.7), we have

ϕ′(t) ≤ (m + 1)
∫

Ω
u2m+q−1dx



H − W|Ω|
−p+(m+q−1)

2m+q−1

(

∫

Ω
u2m+q−1dx

)

p−(m+q−1)
2m+q−1



 . (4.10)

Application of Hölder’s inequality leads to

ϕ(t) =
∫

Ω
um+1dx ≤

(

∫

Ω
u2m+q−1dx

)
m+1

2m+q−1

|Ω|
m+q−2

2m+q−1 . (4.11)

From the above equation, we obtain

(

|Ω|
−(m+q−2)

2m+q−1

∫

Ω
um+1dx

)

2m+q−1
m+1

≤
∫

Ω
u2m+q−1dx.

Thus from (4.10) we derive

ϕ′(t) ≤ (m + 1)
∫

Ω
u2m+q−1dx

[

H − W|Ω|
m+q−1−p

m+1 ϕ(t)
p−(m+q−1)

m+1

]

. (4.12)

Since p > m + 2(q − 1) ≥ m + q − 1, from (4.12) one can conclude that ϕ(t) is bounded for

t < t∗ ≤ +∞. In fact, if for some t0 < t∗, ϕ(t0) is so large that
[

H −W|Ω|
m+q−1−p

m+1 ϕ(t0)
p−(m+q−1)

m+1
]

is negative, then ϕ′(t) < 0 for all t0 < t < t∗ with the property ϕ(t) > ϕ(t0) since the

exponent of ϕ(t) is positive. Consequently, the continuously differentiable function ϕ(t) is

(strictly) monotone decreasing in [t0, t∗), thus ϕ(t) ≤ ϕ(t0) if t0 < t < t∗.

Remark 4.2. For q = 1, we can see, p = m is the blow-up exponent. But for q > 1 and

m + q − 1 < p < m + 2(q − 1), we do not assert whether the solutions blow-up in finite time

with nonlinear boundary condition. Due to technical reasons up to now, we can not give a

positive or negative answer.

5 Example and applications

In this part, we give an example to illustrate applications of Theorem 2.1 and Theorem 3.1.

Example 5.1. Let u(x, t) is a solution of the following problem















ut = ∆u3 − u3, (x, t) ∈ Ω × (0, t∗),
∂u
∂ν = u2, (x, t) ∈ ∂Ω × (0, t∗),

u(x, 0) = u0(x) = 0.5 − |x|2 > 0, x ∈ Ω,

where Ω = {x ∈ R
3 | |x|2 = ∑

3
i=1 x2

i < 0.0001} is a ball in R
3. Now m = 3, q = 2, p = 3, k = 1,

u0 = 0.5 − |x|2, N = 3, ρ0 = 0.01, d = 0.01, |Ω| = 4.1888 × 10−6.
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First, we get the upper bound of blow-up time through the following calculations

ϕ(0) =
∫

Ω
um+1

0 dx

=
∫ 2π

0
dθ

∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5 − |r|2)4r2dr

= 4π
∫ 0.01

0
(0.5 − |r|2)4r2dr = 2.6167 × 10−7,

ψ(0) =
2m2k

2m + q − 1

∫

∂Ω
u

2m+q−1
0 ds −

∫

Ω
|∇um

0 |
2dx −

2m

m + p

∫

Ω
u

m+p
0 dx

=
18

7

∫ 2π

0
dθ

∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5 − |r|2)7r2dr

− 9
∫ 2π

0
dθ

∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5 − |r|2)4|∇(0.5 − |r|2)|2r2dr

−
∫ 2π

0
dθ

∫ π

0
sin ϕdϕ

∫ 0.01

0
(0.5 − |r|2)6r2dr

=
72

7
π
∫ 0.01

0
(0.5 − |r|2)7r2dr − 144π

∫ 0.01

0
(0.5 − |r|2)4r4dr

− 4π
∫ 0.01

0
(0.5 − |r|2)6r2dr = 1.8111 × 10−8.

Taking M and a into (2.13), then

t∗ ≤
2mϕ0

(m + 1)2a(1 + a)ψ(0)
= 4.1280. (5.1)

Next, we obtain the lower bound of blow-up time by the following calculations

φ(0) =
∫

Ω
u

2(m+2q−3)
0 dx

=
∫ 2π

0
dθ

∫ π

0
sinϕdϕ

∫ 0.01

0
(0.5 − |r|2)8r2dr

= 4π
∫ 0.01

0
(0.5 − |r|2)8r2dr = 1.6347 × 10−8.

We choose ǫ = 0.1, µ = 0.0022, and calculate that

k1 = 6.9069 × 106, k2 = 1.8015 × 108, k3 = 1800, k4 = 176.8348.

Then

t∗ ≥
∫ ∞

φ(0)

dη

k1η
3
2 + k2η

3(n−m+1)
n + k3η − k4η

n+p−1
n

= 0.0012. (5.2)

Therefore, combining (5.1) with (5.2), we get

0.0012 ≤ t∗ ≤ 4.1280.
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1 Introduction

In a recent paper [9], the permanence for a family of multidimensional nonautonomous and

noncooperative delay differential equations (DDEs), which includes a large spectrum of struc-

tured models used in population dynamics and other fields, was investigated. Once the

permanence is established, several question about the global behaviour of solutions arise. To

further analyse the stability and other features of such models, it is, however, clear that the

conditions to be imposed depend heavily on the shape and properties of the nonlinear terms.

Nicholson-type systems constitute a specific case included in such family. Here, we

consider a nonautonomous generalised Nicholson system with bounded distributed delays

given by

x′i(t) =− di(t)xi(t) +
n

∑
j=1

aij(t)xj(t)

+
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)xi(s)e

−cik(s)xi(s) ds, t ≥ t0, i = 1, . . . , n,

(1.1)

where all the coefficients and delays are continuous, nonnegative and satisfy some additional

conditions described in the next section.
BEmail: teresa.faria@fc.ul.pt
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Since the introduction of the classic Nicholson’s blowflies equation

x′(t) = −dx(t) + px(t − τ)e−ax(t−τ) (a, d, p, τ > 0), (1.2)

by Gurney et al. [12], as a model based on the experimental data of Nicholson [18] and con-

structed to study the Australian sheep blowfly pest, the original equation (1.2) as well as

a large number of modified and generalised scalar models have been extensively used in

population dynamics and other mathematical biology contexts – yet, many open problems

concerning the asymptotic behaviour of solutions to scalar Nicholson equations remain un-

solved [1]. In recent years, Nicholson-type systems have received much attention in view

of their applications as models for populations structured in several patches or classes (see

e.g. [2] for some concrete applications). Significant progress has been made, addressing top-

ics such as the extinction, permanence, existence of positive equilibria or periodic solutions,

stability of solutions, global attractivity of equilibria or periodic solutions. Systems with au-

tonomous coefficients (and either autonomous or time-dependent delays) were investigated

in [2,3,6,7,11,14,25], whereas the works [4,8–10,15,16,21,22,24] were concerned with nonau-

tonomous versions of such systems.

The purpose of this paper is to complement the studies in [8, 9], with more results on

the large time behaviour of solutions to (1.1), by providing criteria for their global exponen-

tial stability, as well as explicit uniform lower and upper bounds for all positive solutions.

The results on stability are obtained by refining the assumptions for permanence established

previously in [9]. In [8], the existence of a positive periodic solution for periodic Nicholson’s

blowflies systems was analysed, and, in the case of systems with all discrete delays multiples

of the period, criteria for the global attractivity of such a positive periodic solution established.

Here, we provide sufficient conditions for the exponential stability of any positive solution of

(1.1), without any constraint on the type of delays.

We emphasize that, in spite of the recent interest in nonautonomous Nicholson systems,

only a few authors have exhibited criteria for their stability, usually for periodic or almost

periodic Nicholson equations or systems with discrete time-delays; see [5,8,13,15–17,21,23,24]

and references therein. Typically, conditions have been imposed in such a way that convenient

lower and upper bounds for all solutions hold. Here, as we shall see, the permanence is still

a key ingredient to prove the stability, however, only an explicit upper bound for solutions of

such systems will be required. The criteria enhance and extend some recent achievements in

the literature in several ways: not only are the imposed assumptions less restrictive than the

ones found in recent papers, but (1.1) is much more general: namely, it incorporates distributed

delays, not all coefficients are required to be bounded and the global exponential stability is

studied for a model that is not necessarily periodic or almost periodic.

This paper is organized as follows: Section 2 is devoted to the study of uniform lower and

upper bounds for the positive solutions of (1.1). Section 3 addresses the global stability of

(1.1). Examples and a comparison with recent results in the literature [13, 16, 21, 23] are also

given, in particular for periodic systems. A brief section of conclusions ends the paper.

2 Permanence: uniform bounds for the solutions

For simplicity of exposition, and without loss of generality, take t0 = 0 in (1.1) and let

τ = sup{τik(t) : t ≥ 0, i = 1, . . . , n, k = 1, . . . , mi} > 0. Take C := C([−τ, 0]; R
n) with the

supremum norm ‖φ‖ = maxθ∈[−τ,0] |φ(θ)| as the phase space. In abstract form, system (1.1) is
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written as the DDE

x′i(t) = −di(t)xi(t) +
n

∑
j=1

aij(t)xj(t) + fi(t, xi,t), t ≥ 0, i = 1, . . . , n, (2.1)

where the nonlinearities take the form

fi(t, xi,t) =
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)xi(s)e

−cik(s)xi(s) ds, i = 1, . . . , n. (2.2)

For (1.1), define the n × n matrices

D(t) = diag (d1(t), . . . , dn(t)), A(t) =
[

aij(t)
]

B(t) = diag (β1(t), . . . , βn(t)), t ≥ 0,
(2.3)

where we may suppose that aii(t) ≡ 0 (since aii(t) may be incorporated in di(t)) and βi(t)

denotes

βi(t) :=
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s) ds, t ≥ 0, i = 1, . . . , n;

The following assumptions will be considered:

(h1) di(t), aij(t), bik(t), τik(t), λik(t), cik(t) are continuous and nonnegative with di(t) > 0,

cik(t) ≥ ci > 0, βi(t) > 0, τik(t) ∈ [0, τ], cik(t) are bounded, for i, j = 1, . . . , n, k = 1, . . . , mi

and t ≥ 0;

(h2) there is a positive vector u such that lim inft→∞

[

D(t)− A(t)
]

u > 0;

(h3) there are a positive vector v and T > 0, α > 1 such that B(t)v ≥ α[D(t) − A(t)]v for

t ≥ T.

The particular case of (1.1) with cik(t) ≡ 1 for 1 ≤ i ≤ n, 1 ≤ k ≤ mi, is expressed by

x′i(t) = −di(t)xi(t) +
n

∑
j=1

aij(t)xj(t) +
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)h(xi(s)) ds, 1 ≤ i ≤ n, (2.4)

for h(x) = xe−x, x ≥ 0. Note that the nonlinearity h is unimodal, e−1 = h(1) = maxx≥0 h(x),

h(∞) = 0 and x = 2 is its unique inflexion point.

We now set the usual orders in R
n and C. R

n may be seen as the subset of constant

functions in C. We suppose that R
n is equipped with the maximum norm | · |. Let R

+ = [0, ∞).

A vector v ∈ R
n is nonnegative, with notation v ≥ 0 (respectively, positive, denoted by

v > 0), if v ∈ (R+)n (respectively v ∈ (0, ∞)n). We denote ~1 = (1, . . . , 1). Consider the cone

C+ = C([−τ, 0]; (R+)n) of nonnegative functions in C and the partial order in C yielded by

C+: φ ≤ ψ if and only if ψ − φ ∈ C+. Thus, φ ≥ 0 if and only if φ ∈ C+. We write φ > 0 if

φ(θ) > 0 for −τ ≤ θ ≤ 0. The relations ≤ and < are defined in the obvious way. For u, v ∈ R
n

with u ≤ v, [u, v] ⊂ C denotes the ordered interval [u, v] = {φ ∈ C : u ≤ φ ≤ v}.

Due to the real-world interpretation of our models, we take

C+
0 = {φ ∈ C+ : φ(0) > 0}

as the set of admissible initial conditions, and only consider solutions x(t) = x(t, t0, φ) of (1.1)

with initial conditions xt0 = φ, φ ∈ C+
0 . It is clear that such solutions are defined and positive

on R
+.

The definitions of permanence and global stability are recalled below.
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Definition 2.1. Consider a DDE x′(t) = f (t, xt) in C for which all solutions x(t) = x(t, 0, φ)

with φ ∈ C+
0 are defined on R

+. The DDE is said to be permanent if there exist positive

constants m, M such that all solutions x(t) = x(t, 0, φ) with φ ∈ C+
0 satisfy

m ≤ lim inf
t→∞

xi(t), lim sup
t→∞

xi(t) ≤ M for i = 1, . . . , n.

For short, we say that x′(t) = f (t, xt) is globally attractive (in C+
0 ) if all positive solutions are

globally attractive: for any φ, ψ ∈ C+
0 ,

x(t, 0, φ)− x(t, 0, ψ) → 0 as t → ∞;

and the DDE x′(t) = f (t, xt) is said to be (eventually) globally exponentially stable if there

exist δ > 0, M > 0 such that, for any φ ∈ C+
0 , there is T ≥ 0 such that

|x(t, t0, φ)− x(t, t0, ψ)| ≤ Me−δ(t−t0)‖φ − ψ‖, for t ≥ t0 ≥ T, ψ ∈ C+
0 .

Note that δ, M do not depend on t0, φ, though a priori T depends on φ.

Although the nonlinear terms in (1.1) are nonmonotone, results for cooperative systems

from [19] will be used.

Definition 2.2. A DDE x′(t) = f (t, xt) is cooperative if f = ( f1, . . . , fn) satisfies the quasi-

monotone condition (Q) in [19], as follows:

if φ, ψ ∈ C+ and φ ≥ ψ, then fi(t, φ) ≥ fi(t, ψ) for t ≥ 0, whenever φi(0) = ψi(0) for

some i.

In [9], the permanence of generalised Nicholson systems was established.

Theorem 2.3 ([9, Corollary 3]). Assume (h1)–(h3) and that βi(t) are bounded on R
+. Then (1.1) is

permanent.

Remark 2.4. When lim inft→∞ di(t) > 0, for all i, Theorem 2.3 is still valid if one replaces

(h2) by the assumptions D(t)u ≥ αA(t)u, t ≫ 1, for some vector u > 0 and constant α > 1.

Similarly, (h3) can be replaced by the condition lim inft→∞

[

B(t) − D(t) + A(t)
]

v > 0, for

some vector v > 0, when βi(t) are all bounded. In fact, if βi(t) are bounded below and above

by positive constants, for all i, conditions lim inft→∞

[

B(t)− D(t) + A(t)
]

v > 0 and (h3) are

equivalent. See [9] for details.

Remark 2.5. In fact, instead of (2.1), more general Nicholson systems with possible delays in

the linear terms were considered in [9]:

x′i(t) = −di(t)xi(t) +
n

∑
j=1

Lij(t)xj,t + fi(t, xi,t), t ≥ 0, i = 1, . . . , n, (2.5)

where fi are as in (2.2) and Lij(t) are linear bounded functionals, nonnegative (i.e. Lij(t)(ψ) ≥ 0

for ψ ∈ C([−τ, 0]; R
+)) and continuous in t. With ‖Lij(t)‖ = aij(t), the permanence of such

systems was also established in [9], if in addition to (h1)–(h3) aij(t) are bounded and βi(t)

bounded below and above by positive constants.
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When (h2) and (h3) are satisfied simultaneously by a same vector v = (v1, . . . , vn) > 0,

there are δ, α such that

lim inf
t→∞

(

di(t)vi − ∑
j

aij(t)vj

)

≥ δ > 0, lim inf
t→∞

βi(t)vi

di(t)vi − ∑j aij(t)vj
≥ α > 1, i = 1, . . . , n.

This motivates the following definition: for t ≥ 0 and v = (v1, . . . , vn) > 0 such that

[D(t)− A(t)]v 6= 0, set

γi(t, v) =
βi(t)vi

di(t)vi − ∑j aij(t)vj
, i = 1, . . . , n. (2.6)

For the particular case v =~1 := (1, . . . , 1), we obtain

γi(t) := γi(t,~1) =
βi(t)

di(t)− ∑j aij(t)
, i = 1, . . . , n. (2.7)

Next result gives sufficient conditions, expressed in terms of γi(t, v), for the positive in-

variance of some specific intervals under (1.1), and also provides explicit uniform lower and

upper bounds for all solutions.

Theorem 2.6. For (1.1), assume (h1), and that cik(t) are bounded below and above on R
+ by positive

constants, and denote ci, ci such that

0 < ci ≤ cik(t) ≤ ci for t ∈ R
+, 1 ≤ i ≤ n, 1 ≤ k ≤ mi.

Suppose that there are constants a, b with 0 < a ≤ b, t0 ≥ 0 and a vector v = (v1, . . . , vn) > 0 such

that

ea ≤ γi(t, v) ≤ eb, 1 ≤ i ≤ n, t ≥ t0, (2.8)

and define

C = C(v) := min
1≤i≤n

(civi), C = C(v) := max
1≤i≤n

(civi). (2.9)

Then:

(a) The ordered interval [mC
−1

v, C−1eb−1v] = {φ = (φ1, . . . , φn) ∈ C : mC
−1

vi ≤ φi ≤ C−1eb−1vi,

i = 1, . . . , n} ⊂ C, where mC−1C ∈ (0, 1) is such that

m ≤ a and h(mciviC
−1) ≤ h(civiC

−1eb−1), i = 1, . . . , n, (2.10)

is positively invariant for (1.1) and t ≥ t0.

(b) If βi(t) are also bounded below and above by positive constants, any positive solution x(t) =

(x1(t), . . . , xn(t)) of (1.1) satisfies

mC
−1

vi ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ eb−1C−1vi, i = 1, . . . , n. (2.11)

Proof. (a) Write (1.1) as x′(t) = F(t, xt), with the components Fi of F given by

Fi(t, φ) =−di(t)φi(0)+∑
j

aij(t)φj(0)+
mi

∑
k=1

bik(t)
∫ 0

−τik(t)
λik(t+ s)hik(t+ s, φi(s)) ds, i = 1, . . . , n,
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where hik(s, x) := xe−cik(s)x. Let ci, ci be such 0 < ci ≤ cik(s) ≤ ci for s ∈ R
+ and all i, k,

and take the functions h−i (x) = xe−cix, h+i (x) = xe−cix. For h(x) = xe−x as before, we have

h−i (x) = (ci)
−1h(cix), h+i (x) = (ci)

−1h(cix). Clearly, h−i (x) ≤ hik(s, x) ≤ h+i (x) ≤ (cie)
−1, for

s, x ≥ 0.

We know already that the set (0, ∞)n is forward invariant. We now compare the solutions

of (1.1) from above with the solutions of the cooperative system x′(t) = Fu(t, xt), where the

components of Fu are given by Fu
i (t, φ) = −di(t)φi(0) + ∑j aij(t)φj(0) + βi(t)(cie)

−1. Clearly

Fi(t, φ) ≤ Fu
i (t, φ) for all φ ∈ C+. From [19], this implies that x(t, t0, φ, F) ≤ x(t, t0, φ, Fu),

where x(t, t0, φ, F) and x(t, t0, φ, Fu) are the solutions of x′(t) = F(t, xt) and x′(t) = Fu(t, xt)

with initial condition xt0 = φ ∈ C+
0 , respectively. If φ ∈ [0, C−1eb−1v] and φi(0) = C−1eb−1vi

for some i, the use of (2.8) implies

Fu
i (t, φ) ≤ C−1eb−1

[

− di(t)vi + ∑
j

aij(t)vj

]

+ βi(t)(cie)
−1

≤
[

di(t)vi − ∑
j

aij(t)vj

][

− C−1eb−1 + γi(t, v)(civie)
−1

]

≤ eb−1
[

di(t)vi − ∑
j

aij(t)vj

]

(−C−1 + (civi)
−1) ≤ 0.

From [19, p. 82], the set (0, C−1eb−1v] ⊂ C is positively invariant for (1.1).

Next, we start by observing that, for any a, b > 0 with a ≤ b, we have a < ea−1 ≤ eb−1 for

all a 6= 1. By considering the cases a < eb−1 ≤ 1, a < 1 ≤ eb−1 or 1 ≤ a < eb−1, it is possible to

choose m ∈ (0, CC
−1
) such that conditions (2.10) are fulfilled. We get

h−i (C
−1eb−1vi) = (ci)

−1h(C−1eb−1civi) ≥ (ci)
−1h(mC−1civi) = h−i (mC−1vi).

As 1 > mciviC
−1 and h is increasing on (0, 1), for φi such that mC

−1
vi ≤ φi(s) ≤ C−1eb−1vi we

therefore obtain

h−i (φi(s)) ≥ h−i (mC−1vi)

and Fi(t, φ) ≥ Fl
i (t, φ) := −di(t)φi(0) + ∑j aij(t)φj(0) + βi(t)h

−
i (mC−1vi) for i = 1, . . . , n.

Consider the interval Î = [mC
−1

v, C−1eb−1v] ⊂ C. For φ ∈ Î with φi(0) = mC
−1

vi for

some i, the lower bound in (2.8) leads to

Fl
i (t, φ) ≥

[

di(t)vi − ∑
j

aij(t)vj

] [

−mC
−1

+ γi(t, v)v−1
i h−i (mC

−1
vi)

]

≥
[

di(t)vi − ∑
j

aij(t)vj

]

[

−mC
−1

+ γi(t, v)(vici)
−1h(mC

−1
civi)

]

= mC
−1[

di(t)vi − ∑
j

aij(t)vj

]

[

−1 + γi(t, v)e−mC
−1

civi

]

≥ mC
−1[

di(t)vi − ∑
j

aij(t)vj

] [

−1 + eae−m
]

≥ 0.

Hence, from [19] it follows that Î is positively invariant for (1.1).

(b) Next, assume also that 0 < β ≤ βi(t) ≤ β for t ≥ 0. From (2.8),

di(t)vi − ∑
j

aij(t)vj ≥ e−bβvi, βi(t)vi ≥ ea[di(t)vi − ∑
j

aij(t)vj],
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hence (h2)–(h3) are satisfied. From Theorem 2.3, (2.4) is permanent.

Fix any positive solution x(t) of (2.4), define

x̄i = lim sup
t→∞

xi(t), i = 1, . . . , n,

and let maxj(v
−1
j x̄j) = v−1

i x̄i for some i. By the fluctuation lemma, there exists a sequence

tk → ∞ such that xi(tk) → x̄i and x′i(tk) → 0. Without loss of generality, we can also suppose

that v−1
i xi(tk) = max1≤j≤n v−1

j xj(tk) for k large – otherwise, we choose tk → ∞ such that, for

some subsequence, v−1
i xi(tk) = max1≤j≤n maxt∈[kτ,(k+1)τ] v−1

j xj(t). Thus, reasoning as in (a),

x′i(tk) ≤ −di(tk)xi(tk) +
n

∑
j=1

aij(tk)v
−1
i vjxi(tk) + βi(tk)(cie)

−1

≤ v−1
i

(

di(tk)vi −
n

∑
j=1

aij(tk)vj

)[

− xi(tk) + γi(t, v)(cie)
−1

]

≤ v−1
i

(

di(tk)vi −
n

∑
j=1

aij(tk)vj

)[

− xi(tk) + eb−1(civi)
−1vi

]

≤ v−1
i

(

di(tk)vi −
n

∑
j=1

aij(tk)vj

)[

− xi(tk) + eb−1C−1vi

]

.

(2.12)

Consider a subsequence of (tk), still denoted by (tk), for which di(tk)− ∑
n
j=1 aij(tk) → ℓ > 0.

By letting k → ∞, we obtain 0 ≤ −x̄i + eb−1C−1vi, thus x̄i ≤ eb−1C−1vi. For j 6= i, it follows

that x̄j ≤ vjv
−1
i x̄i ≤ eb−1C−1vj.

Proceeding as in (a), in a similar way one can now show that lim inft→∞ x(t) ≥ mC
−1

v for

all positive solutions. This proves (b).

Remark 2.7. For the simpler case (2.4), where the nonlinearities are all given in terms of

h(x) = xe−x, under (h1) and

ea ≤ γi(t) ≤ eb, 1 ≤ i ≤ n, t ≥ t0 (2.13)

(i.e., v = ~1 in γi(t, v)), we have C = C = 1; thus, the interval [m, eb−1]n is forward invariant,

where m > 0 is chosen so that m < 1, m ≤ a and h(m) ≤ h(eb−1).

We also derive the following auxiliary result.

Lemma 2.8. For (1.1), assume (h1) and that 0 < ci ≤ cik(t) ≤ ci for t ∈ R
+, 1 ≤ i ≤ n, 1 ≤ k ≤ mi.

Suppose also that there are a vector v = (v1, . . . , vn) > 0, t ≥ t0 and a constant γ such that

0 < γi(t, v) ≤ γ, 1 ≤ i ≤ n, t ≥ t0. (2.14)

For C, C as in (2.9), the interval (0, γ(Ce)−1v] ⊂ C is positively invariant for (1.1) (t ≥ t0). In

particular, if (2.14) holds with

γ < 2eC C
−1

,

there exist solutions of (1.1) such that 0 < xi(t) < 2(ci)
−1, t ≥ t0, i = 1, . . . , n.

Proof. The invariance of the interval I := (0, γ(Ce)−1v] for (1.1) was shown in the above proof.

If in addition γ < 2e CC
−1

, then I ⊂ (0, 2C
−1

v), and in particular the solutions with initial

conditions φ ∈ I satisfy 0 < cixi(t) < 2 for t ≥ 0, 1 ≤ i ≤ n.
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Remark 2.9. Consider e.g. the Nicholson system (2.4). If 0 < γi(t, v) ≤ ebvi for all i, for some

b > 0 and a vector v = (v1, . . . , vn) > 0, from the proof of Theorem 2.6 the interval (0, eb−1v]

is positively invariant. With v = ~1 and 0 < γi(t) ≤ γ < e and the boundedness conditions

in Theorem 2.6 (b), lim supt→∞ xi(t) ≤ γe−1 < 1 for all positive solution; this means that

(1.1) has a cooperative behaviour, because the nonlinearity h(x) is monotone on [0, 1]. Note,

however, that (2.8) with e.g. v = ~1 and e < γ = eb does not imply that the interval [1, b]n is

positively invariant. In fact, for simplicity take n = 1 and consider the Nicholson equation

x′(t) = −d(t)x(t) + ebd(t)x(t − τ)e−x(t−τ), for some b > 1. For an initial condition 1 ≤ φ ≤ b

such that φ(0) = b and φ(−τ) = 1, then x′(0) = d(0)[−b + eb−1] = d(0)eb[−h(b) + h(1)] > 0,

thus x(t) > b for t > 0 sufficiently small. Nevertheless, we conjecture that if (2.13) is satis-

fied with γ < e2 and all coefficients are bounded, then all positive solutions of (2.4) satisfy

lim supt→∞ xi(t) < 2 for all i. See also Remark 3.9.

3 Stability

In this section, sufficient conditions for the global exponential stability of Nicholson systems

(1.1) are established.

In the sequel, the following auxiliary lemma will play an important role.

Lemma 3.1 ([8]). Fix m ∈ (0, 1) and define Gm : (0, 2)× [0, ∞) → R by

Gm(x, y) =

{

h(y)−h(x)
y−x , y 6= x

(1 − x)e−x, y = x

where h(x) = xe−x, x ≥ 0. Then, Gm(x, y) is continuous and, for any x ∈ (0, 2), there is Mm(x) :=

maxy≥m |Gm(x, y)| < e−x.

As a consequence, for a function hc(x) := xe−cx = c−1h(cx) for some c > 0, it follows that

for any fixed x ∈ (0, 2c−1) and m ∈ (0, c−1), we have

|hc(y)− hc(x)| ≤ Mm(cx)|y − x| for all y ≥ m, (3.1)

where Mm(x) is the function defined in the lemma above. Moreover, Mm : (0, 2) → (0, e−2) is

continuous.

We first establish a criterion for the global attractivity of (1.1).

Theorem 3.2. Consider (1.1) under (h1)–(h3) and suppose that the coefficients βi(t), cik(t) are all

bounded below and above by positive constants on R
+, for all i, k. Assume in addition that there exists

a positive solution x∗(t) such that

lim sup
t→∞

cik(t)x∗i (t) < 2, i = 1, . . . , n, k = 1, . . . , mi. (3.2)

Then, any two positive solutions x(t), y(t) of (1.1) satisfy

lim
t→∞

(x(t)− y(t)) = 0.

Proof. From Theorem 2.3, system (1.1) is permanent. Let hik(t, x) = xe−cik(t)x for t, x ≥ 0 and

all i, k.
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Write 0 < β ≤ βi(t) ≤ β, 0 < c ≤ ci ≤ cik(t) ≤ ci ≤ c for t ∈ R
+ and all i, k. From the

permanence of (1.1), there are m, M with 0 < m < 1 ≤ M, such that any solution x(t) =

x(t, 0, φ) with φ ∈ C+
0 satisfies m ≤ xi(t) ≤ M for i = 1, . . . , n and t ≥ T, for some T =

T(φ) > 0. Fix a positive solution x∗(t) as in (3.2), let m0 := cm and ε > 0 small, so that

m0 ≤ cik(t)x∗i (t) ≤ 2 − ε for all i = 1, . . . , n, k = 1, . . . , mi and t ≫ 1. In Lemma 3.1, take the

function M := Mm0 .

Effecting the changes of variables zi(t) =
xi(t)
x∗i (t)

− 1 (1 ≤ i ≤ n), system (1.1) becomes

z′i(t) =
1

x∗i (t)

{

x′i(t)− (1 + zi(t))(x∗i )
′(t)

}

=
1

x∗i (t)

{

− d∗i (t)zi(t) + ∑
j

aij(t)x∗j (t)zj(t)

+
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)

[

hik

(

s, x∗i (s)(1 + zi(s))
)

− hik

(

s, x∗i (s)
)

]

ds
}

,

(3.3)

for i = 1, . . . , n, t ≥ 0, where

d∗i (t) = ∑
j

aij(t)x∗j (t) +
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)hik

(

s, x∗i (s)
)

ds.

Let z(t) = (z1(t), . . . , zn(t)) be any solution of (3.3) with initial condition z0 ≥ −1, z(0) >

−1. Define −vi = lim inft→∞ z(t), ui = lim supt→∞ z(t). From the permanence of (1.1), in

particular −1 < −vi ≤ ui < ∞ and, as observed, x∗i (t) ≥ m and x∗i (t)(1 + zi(t)) ≥ m for

t > 0 large. Consider u = maxi ui, v = maxi vi. A priori, −v, u can be both nonnegative, both

nonpositive, or have different signs, nevertheless it is sufficient to show that max(u, v) = 0.

Let max(u, v) = u. In this case, u ≥ 0. Assume for the sake of contradiction that u > 0.

Choose i such that u = ui and take a sequence tk → ∞ with zi(tk) → u, z′i(tk) → 0.

From (3.1), we have

∣

∣

∣
hip

(

s, x∗i (s)(1 + zi(s))
)

− hip

(

s, x∗i (s)
)

∣

∣

∣
≤ M(cip(s)x∗i (s)

)

x∗i (s)|zi(s)|,

for 1 ≤ i ≤ n, 1 ≤ p ≤ mi and s ≥ 0 sufficiently large. As previously, for k large we may

suppose that zj(tk) ≤ zi(tk) for all j, and from (3.3) we get

z′i(tk) ≤
1

x∗i (tk)

[

− d∗i (tk) + ∑
j

aij(tk)x∗j (tk)
]

zi(tk)

+
mi

∑
p=1

bip(tk)
∫ tk

tk−τip(tk)
λip(s)M

(

cip(s)x∗i (s)
)

x∗i (s)|zi(s)| ds

=
1

x∗i (tk)

{

− zi(tk)
mi

∑
p=1

bip(tk)
∫ tk

tk−τip(tk)
λip(s)hip

(

s, x∗i (s)
)

ds (3.4)

+
mi

∑
p=1

bip(tk)
∫ tk

tk−τip(tk)
λip(s)M

(

cip(s)x∗i (s)
)

x∗i (s)|zi(s)| ds

}

=
1

x∗i (tk)

mi

∑
p=1

bip(tk)
∫ tk

tk−τip(tk)
λip(s)x∗i (s)

[

− zi(tk)e
−cip(s)x∗i (s) +M

(

cip(s)x∗i (s)
)

|zi(s)|

]

ds.
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By the mean value theorem for integrals, we obtain

z′i(tk) ≤
1

x∗i (tk)

mi

∑
p=1

x∗i (sk,p)Bkpbip(tk)
∫ tk

tk−τip(tk)
λip(s) ds, (3.5)

where

Bkp = −zi(tk)e
−cip(sk,p)x∗i (sk,p) +M

(

cip(sk,p)x∗i (sk,p)
)

|zi(sk,p)|,

for some sk,p ∈ [tk − τip(tk), tk].

For some subsequence of (sk,p)k∈N (1 ≤ p ≤ mi), still denoted by (sk,p), there exist the

limits limk cip(sk,p)x∗i (sk,p) = ξp ∈ [m0, 2 − ε] and limk zi(sk,p) = wp ∈ [−v, u]. Since M(x) is

continuous, this leads to

lim
k

Bkp = −ue−ξp +M
(

ξp

)

|wp| ≤
(

− e−ξp +M
(

ξp

))

u < 0,

since Lemma 3.1 asserts that M(ξ) < e−ξ for any ξ ∈ (0, 2). In particular, Bkp < 0 for k large,

p = 1, . . . , mi, and from (3.5) we derive that

z′i(tk) ≤
m

M
βi(tk) max

1≤p≤mi

Bkp ≤
m

M
βi max

1≤p≤mi

Bkp.

By letting k → ∞, this estimate yields

0 ≤ max
1≤p≤mi

(

− e−ξp +M
(

ξp

))

u < 0,

which is not possible. Thus, u = 0.

Similarly, consider the situation when max(u, v) = v (which implies v ≥ 0), and suppose

that v > 0. By choosing i such that v = vi and a sequence tk → ∞ with zi(tk) → −v, z′i(tk) → 0,

for any ε > 0 small and k sufficiently large, reasoning as above we obtain

z′i(tk) ≥ −
1

x∗i (tk)

mi

∑
p=1

bip(tk)
∫ tk

tk−τip(tk)
λip(s)x∗i (s)

[

zi(tk)e
−cip(s)x∗i (s) +M

(

cip(s)x∗i (s)
)

|zi(s)|

]

ds

≥ −
m

M
βi(tk) max

1≤p≤mi

Ckp,

where now

Ckp = zi(tk)e
−cip(sk,p)x∗i (sk,p) +M

(

cip(sk,p)x∗i (sk,p)
)

|zi(sk,p)|

for some subsequences sk,p ∈ [tk − τip(tk), tk]. In an analogous way, by taking convergent

subsequences of the sequences cip(sk,p)x∗i (sk,p) and zi(sk,p), we obtain a contradiction from

Lemma 3.1. Consequently, v = 0. This completes the proof.

Note that hypotheses (h2), (h3) in the statement of Theorem 3.2 were imposed only to

derive the permanence of (1.1). In fact, the above proof applies if, instead of the permanence,

all solutions are bounded and persistent; in other words, if for any φ ∈ C+
0 there are constants

m(φ), M(φ), such that 0 < m(φ) ≤ lim inft→∞ x(t, 0, φ) ≤ lim supt→∞ x(t, 0, φ) ≤ M(φ).

We are ready to state our main result, on the global exponential stability of (1.1).

Theorem 3.3. Suppose that the hypotheses of Theorem 3.2 are satisfied. Then, (1.1) is (eventually)

globally exponentially stable: there exist δ > 0, L > 0 such that, for any φ∗ ∈ C+
0 , there is T = T(φ∗)

such that

|x(t, t0, φ)− x(t, t0, φ∗)| ≤ Le−δ(t−t0)‖xt0(0, φ)− xt0(0, φ∗)‖, t ≥ t0 ≥ T, φ ∈ C+
0 . (3.6)
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Proof. As in the proof of Theorem 3.2, take m, M so that any positive solution x(t) of (1.1)

satisfies

m < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) < M, i = 1, . . . , n,

and consider the previous notation for β, m0 := cm and M := Mm0 . Since M(ξ) < e−ξ on

(0, 2), from the continuity of M it follows that, for any ε > 0 small, there is δ = δ(ε) > 0 such

that

δ +
m

M
β
[

M(ξ)eδτ − e−ξ
]

< 0 for all ξ ∈ [m0, 2 − ε]. (3.7)

From Theorem 3.2, if x∗(t) is a solution as in (3.2), any positive solution of (1.1) also satisfies

(3.2).

Fix any positive solution x∗(t) = x(t, 0, φ∗) of (1.1) with φ∗ ∈ C+
0 , and take T = T(φ∗) ≥ τ

and ε > 0 in such a way that m ≤ x∗i (t) ≤ M, m0 ≤ cik(t)x∗i (t) ≤ 2 − ε for all t ≥ T − τ, i =

1, . . . , n, k = 1, . . . , mi. Consider any other positive solution x(t) = x(t, 0, φ) with φ ∈ C+
0 , and

any t0 ≥ T; in particular note that x∗(t) > 0 for t ≥ t0.

Next, effect the changes of variables zi(t) = eδt
( xi(t)

x∗i (t)
− 1

)

(1 ≤ i ≤ n), where δ > 0 satisfies

(3.7). Keeping the notations in Theorem 3.2, the transformed system is

z′i(t) = δzi(t) +
1

x∗i (t)

{

− d∗i (t)zi(t) + ∑
j

aij(t)x∗j (t)zj(t)

+ eδt
mi

∑
k=1

bik(t)
∫ t

t−τik(t)
λik(s)

[

hik

(

s, x∗i (s)(1 + e−δszi(s))
)

− hik

(

s, x∗i (s)
)

]

ds

}

,

(3.8)

We now claim that the solution of (3.8) with initial condition zt0 = ψ satisfies

|z(t, t0, ψ)| ≤ ‖ψ‖, t ≥ t0. (3.9)

Otherwise, suppose that there exist t1 > t0 and i ∈ {1, . . . , n} such that

|z(t1)| = |zi(t1)| > ‖ψ‖, |zj(t)| < |zi(t1)|, for t ∈ [t0 − τ, t), 1 ≤ j ≤ n.

Consider the case zi(t1) > 0 (the case zi(t1) < 0 is analogous). From the definition of t1, we

have z′i(t1) ≥ 0. On the other hand, from (3.7), (3.8) and reasoning as in (3.4), we obtain

z′i(t1) ≤
1

x∗i (t1)

{

[

δx∗i (t1)−
(

d∗i (t1)− ∑
j

aij(t1)x∗j (t1)
)]

zi(t1)

+ eδt1

mi

∑
k=1

bik(t1)
∫ t1

t1−τik(t1)
λik(s)M

(

cik(s)x∗i (s)
)

e−δsx∗i (s)|zi(s)|ds

}

,

≤
1

x∗i (t1)

{

[

δx∗i (t1)−
mi

∑
k=1

bik(t1)
∫ t1

t1−τik(t1)
λik(s)hik

(

s, x∗i (s)
)

ds
]

zi(t1)

+ eδτ
mi

∑
k=1

bik(t1)
∫ t1

t1−τik(t1)
λik(s)M

(

cik(s)x∗i (s)
)

x∗i (s)|zi(s)| ds

}

≤
zi(t1)

x∗i (t1)

{

δx∗i (t1) +
mi

∑
k=1

bik(t1)
∫ t1

t1−τik(t1)
λik(s)x∗i (s)

[

− e−cik(s)x∗i (s) + eδτ
M

(

cik(s)x∗i (s)
)

]

ds

}

<
zi(t1)

x∗i (t1)

{

δx∗i (t1)−
δM

mβ

mi

∑
k=1

bik(t1)
∫ t1

t1−τik(t1)
λik(s)x∗i (s) ds

}

≤ δM
zi(t1)

x∗i (t1)

(

1 −
βi(t1)

β

)

≤ 0,
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which is a contradiction. Thus (3.9) holds.

Going back to the solution x(t), for t ≥ t0 and i = 1, . . . , n we have

eδt|xi(t)− x∗i (t)| = x∗i (t)|zi(t)| ≤ ‖zt0‖ = sup
θ∈[−τ,0]

{

eδ(t0+θ)

(

xt0(0, φ)

xt0(0, φ∗)
− 1

)}

≤ eδt0
M

m
‖xt0(0, φ)− xt0(0, φ∗)‖.

The proof of (3.6) is complete.

From the above results, a pratical criterion to deduce the global exponential stability of

(1.1) is given below.

Theorem 3.4. For (1.1), assume (h1), suppose that βi(t), cik(t) are all bounded below and above by

positive constants. Assume also that there are a vector v = (v1, . . . , vn) > 0 and constants α, γ such

that

1 < α ≤ γi(t, v) ≤ γ < 2e C C
−1

, 1 ≤ i ≤ n, t ≫ 1, (3.10)

where 0 < ci ≤ cik(t) ≤ ci for t ∈ R
+ and all i, k and C = C(v)C = C(v) are as in (2.9). Then, (1.1)

is (eventually) globally exponentially stable.

Proof. Clearly, βi(t) ≥ βi > 0 on R
+ and 1 < α ≤ γi(t, v) ≤ γ (1 ≤ i ≤ n) imply that (h2), (h3)

hold. The result follows immediately from Theorem 3.3 and Lemma 2.8.

Remark 3.5. If all the coefficients are bounded, one can easily check that Theorems 2.6, 3.3

and 3.4 are still valid for systems of the form (2.5).

For Nicholson systems (2.4), the above results are written in a simpler form.

Corollary 3.6. For (2.4), assume (h1) and suppose that there are a vector v = (v1, . . . , vn) > 0 and a

constant γ < 2e|v|−1 min
1≤i≤n

vi such that

0 < γi(t, v) ≤ γ, 1 ≤ i ≤ n, t ≫ 1, (3.11)

where |v| = max1≤i≤n vi. Then, there are positive solutions of (1.1) satisfying xi(t) < 2 for all

t ≥ 0, i = 1, . . . , n. If in addition, βi(t) are bounded below and above by positive constants and

γi(t, v) ≥ α > 1, 1 ≤ i ≤ n, t ≫ 1,

for some α, then (2.4) is is (eventually) globally exponentially stable. In particular, this is the case if

1 < α ≤ γi(t) ≤ γ < 2e, 1 ≤ i ≤ n, t ≫ 1. (3.12)

Example 3.7. Consider the planar system

x′1(t) = −tηx1(t) + (tη − 1)x2(t) +
β

σ1(t)

∫ t

t−σ1(t)
x1(s)e

−x1(s) ds,

x′2(t) = −tηx2(t) + (tη − 1)x1(t) +
β

σ2(t)

∫ t

t−σ2(t)
x2(s)e

−x2(s) ds,

t ≥ 1, (3.13)

where η > 0, β > 1, the delays σi(t) are positive, continuous and bounded, i = 1, 2. With

the previous notations, di(t) = tη , aii(t) = 0, βi(t) ≡ β > 1, i = 1, 2 and a12(t) = a21(t) =

tη − 1, thus γ1(t) = γ2(t) = β. For this concrete example, if β ∈ (1, e2), there exists a

positive equilibrium x∗ = (log β, log β) < (2, 2). From Theorem 3.3, we deduce that all positive

solutions x(t) converge exponentially to x∗ as t → ∞.



Stability for nonautonomous Nicholson systems 13

In the case of periodic Nicholson systems, we also obtain the following result.

Corollary 3.8. Consider a periodic Nicholson system (1.1), with di(t), aij(t), bik(t), τik(t), λik(t),

cik(t) continuous, nonnegative and ω-periodic functions (for some ω > 0), with di(t), βi(t), cik(t)

positive, for all i, j, k. If there exist a vector v > 0 such that











min
t∈[0,ω]

γi(t, v) > 1,

max
t∈[0,ω]

γi(t, v) < 2e C C
−1

, 1 ≤ i ≤ n,
(3.14)

then there exists a positive ω-periodic solution of (1.1), which is globally exponentially stable.

Proof. By [8], it turns out that the sufficient conditions for permanence also imply the existence

of a positive periodic solution. The result is an immediate consequence of Theorem 3.4.

Remark 3.9. For the periodic Nicholson system with discrete delays multiple of period

given by

x′i(t) = −di(t)xi(t) +
n

∑
j=1

aij(t)xj(t) + βi(t)xi(t − miω)e−ci(t)xi(t−miω), 1 ≤ i ≤ n. (3.15)

with mi ∈ N, ω > 0 and di(t) > 0, aij(t) ≥ 0, βi(t), ci(t) > 0 continuous ω-periodic functions,

the existence and global attractivity of a positive periodic solution was proven in [8] under the

condition










min
t∈[0,ω]

γi(t, v) > 1,

max
t∈[0,ω]

γi(t, v) < exp(2 C C
−1
), 1 ≤ i ≤ n,

(3.16)

for some vector v > 0 and C, C defined as in (2.9). Clearly, ex ≤ ex for x ≥ 0. We conclude that

Corollay 3.8 extends the result in [8] to more general systems (1.1) – with global exponential

stability, rather than global attractivity –, however, under the more restrictive assumption of

γi := maxt∈[0,ω] γi(t, v) < 2e C C
−1

, instead of γi < e2C C
−1

. The key point to establish the result

in [8] under the latter assumption was the following: as the delays are multiple of the period,

an ω-periodic solution x∗(t) for (3.15) is also an ω-periodic solution for the corresponding

ODE

x′i(t) = −di(t)xi(t) +
n

∑
j=1

aij(t)xj(t) + βi(t)xi(t)e
−ci(t)xi(t), 1 ≤ i ≤ n. (3.17)

From this fact, one easily deduces that maxt≥0

(

ci(t)x∗i (t)
)

< 2 for all i, provided that (3.16)

holds. Whether Theorem 3.4 is still valid for a general system (1.1) with (3.10) replaced by

1 < α ≤ γi(t, v) ≤ γ < e2C C
−1

, 1 ≤ i ≤ n, t ≫ 1,

(conf. Remark 2.9) is an interesting open problem. We conjecture that the answer is affirmative,

at least if some further constraints on α are prescribed.

We now apply our results to Nicholson equations and systems with discrete delays, and

compare the above criteria with some more results in the literature. The corollary below

addresses the scalar case, a similar one can be written for systems with n > 1.
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Corollary 3.10. Consider the scalar Nicholson equation

x′(t) = −d(t)x(t) +
m

∑
k=1

βk(t)x(t − τk(t))e
−ck(t)x(t−τk(t)), (3.18)

where d, βk, τk, ck : R
+ → R

+ are continuous functions and d(t) > 0 on R
+, τk(t) ∈ [0, τ] (for some

τ > 0) and ck(t), β(t) := ∑
m
k=1 βk(t) are bounded above and below by positive constants. If

1 < α ≤
∑

m
k=1 βk(t)

d(t)
≤ γ < 2e

min1≤k≤m ck

max1≤k≤m ck
, t ≥ 0, (3.19)

where ck = inft≥0 ck(t), ck = supt≥0 ck(t), then (3.18) is globally exponentially stable.

If all the coefficients and delays d, βk, τk, ck are ω-periodic, Corollary 3.8 implies the ex-

istence of a globally exponentially stable ω-periodic positive solution to (3.18). We stress

that the periodic equation (3.18) was studied in [16] and its stability established. Denote

κ ∈ (0, 1), κ̃ ∈ (1, ∞) the constants which satisfy

h′(κ) = −h′(2), h(κ) = h(κ̃). (3.20)

The approximate values of κ, κ̃ were evaluated in [23]: κ ≈ 0.7215, κ̃ ≈ 1.3423. Assuming that

∑
m
k=1 βk(t)

d(t)
< e2, t ∈ [0, ω], (3.21)

and that there is M > κ such that

1 ≤ min
1≤k≤m

ck ≤ max
1≤k≤m

ck ≤
κ̃

M
(3.22)

and
1

eM

m

∑
k=1

βk(t)

ck(t)
< d(t) < e−κ

m

∑
k=1

βk(t)

ck(t)
, t ∈ [0, ω], (3.23)

Liu [16] used a Lyapunov functional to show that there exists an ω-periodic positive solution

of (3.18) which is globally exponentially stable. A similar approach was used by Liu in [17],

for an almost periodic version of (3.18) with a nonlinear density-dependent mortality term

−d1(t) + d2(t)e−x(t), instead of −d(t)x(t).

In fact, in order to prove the above exponential stability under the conditions (3.21)–(3.23),

Liu [16] started by establishing that the ordered interval [κ, M] in C = ([−τ, 0]; R) is positively

invariant. For the periodic case, by itself, the constraint (3.21) is weaker than the second

inequality in (3.19). However, not only is the requirement (3.22) a strong restriction to the

application of Liu’s criterion, but, if (3.22) holds, our assumption (3.19) simply reads as

1

eM

κ̃

2

m

∑
k=1

βk(t) < d(t) <
m

∑
k=1

βk(t), t ∈ [0, ω].

In this situation, we always have ∑
m
k=1 βk(t) > e−κ ∑

m
k=1

βk(t)
ck(t)

; if one can choose M in (3.22) such

that κ̃2 < 2M, i.e., if max1≤k≤m ck < 2/κ̃ ≈ 1.490, then 1
eM

κ̃
2 ∑

m
k=1 βk(t) <

1
eM ∑

m
k=1

βk(t)
ck(t)

, and

our result strongly improves the criterion in [16]. For instance, with ck(t) ≡ 1, our hypothesis

(3.19) reads as

1 <
∑

m
k=1 βk(t)

d(t)
< 2e for t ∈ [0, ω];
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on the other hand, we may take M = κ̃ in (3.22), and conditions (3.21), (3.23) are equivalent to

eκ ≤
∑

m
k=1 βk(t)

d(t)
≤ eκ̃ for t ∈ [0, ω],

which is much more restrictive than (3.19).

More recently, Wang et al. [23] generalised the scalar version (3.18) by considering the

following multi-dimentional model with patch structure:

x′i(t) = −di(t)xi(t) +
n

∑
j=1,j 6=i

aij(t)xj(t) +
m

∑
p=1

βip(t)xi(t − τip(t))e
−cip(t)xi(t−τip(t)), i = 1, . . . , n,

(3.24)

where di, aij, βip, τip, cip : R → R
+ are continuous, pseudo almost periodic functions, di(t) > 0

and satisfies some further properties, and inft≥t0 βi(t) > 0 where βi(t) := ∑
m
p=1 βip(t), for

all i, j, p. With κ, κ̃ defined as in (3.20), in [23] the authors assumed the following set of

assumptions, for 1 ≤ i ≤ n, 1 ≤ p ≤ m:

1 ≤ inf
t∈R

cip(t) ≤ sup
t∈R

cip(t) ≤ M−1κ̃, for some M > κ,

sup
t∈R

{

− di(t) +
n

∑
j=1,j 6=i

aij(t) +
1

eM

m

∑
p=1

βip(t)

cip(t)

}

< 0,

inf
t∈R

{

− di(t) +
n

∑
j=1,j 6=i

aij(t) + e−κ
m

∑
p=1

βip(t)

cip(t)

}

> 0,

(3.25)

and showed that:

(i) all solutions x(t) = x(t, t0, φ) of (3.24) with initial conditions φ ∈ C+
0 satisfy

κ ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ M, i = 1, . . . , n; (3.26)

(ii) there exists a positive pseudo almost periodic solution x∗(t) of (3.24), which satisfies

κ ≤ x∗i (t) ≤ M for all t ∈ R and i = 1, . . . , n;

(iii) x∗(t) is globally exponentially stable.

See also [5, 24] for similar criteria. Recently, some of the constraints in [23] were slightly

loosened in [13].

With our methodology, under the condition inft∈R cip(t) ≥ 1 and taking e.g. v =~1 in (3.10),

from Theorem 3.4 we obtain that system (3.24) is globally exponentially stable provided that

inf
t∈R

∑
m
p=1 βip(t)

di(t)− ∑
n
j=1,j 6=i aij(t)

> 1,

sup
t∈R

∑
m
p=1 βip(t)

di(t)− ∑
n
j=1,j 6=i aij(t)

<
2e

max
i,p

sup
t∈R

cip(t)
,

1 ≤ i ≤ n, t ≫ 1. (3.27)

As in the previous scalar case, one easily verifies that for most situations conditions (3.27) are

less restrictive than (3.25).

We finish this section with a couple of simple examples.

Example 3.11. Consider the following ω-periodic Nicholson-type system with discrete delays:

x′1(t) = −d1(t)x1(t) + b1(t)x2(t − σ1(t)) + c1(t)x1(t − τ1(t))e
−x1(t−τ1(t))

x′2(t) = −d2(t)x2(t) + b2(t)x2(t − σ2(t)) + c2(t)x2(t − τ2(t))e
−x2(t−τ2(t)),

(3.28)
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where di(t), bi(t), ci(t), σi(t), τi(t) (i = 1, 2) are positive, continuous and ω-periodic functions.

Applying Corollary 3.8 with v = (1, v2) (conf. also Remark 3.5)), we derive that (3.28) has a

globally exponentially stable positive ω-periodic solution if there exists a positive constant v2

such that

1 <
c1(t)

d1(t)− b1(t)v2
< 2e

min{1, v2}

max{1, v2}
, 1 <

c2(t)v2

d2(t)v2 − b2(t)
< 2e

min{1, v2}

max{1, v2}
, t ∈ [0, ω].

In particular, this assertion is valid if

1 <
ci(t)

di(t)− bi(t)
< 2e, t ∈ [0, ω], i = 1, 2. (3.29)

In the case of (3.28) with σi(t) ≡ 0 and a unique constant delay in the nonlinear part,

i.e., τi(t) ≡ τ > 0, by using the continuation theorem of coincidence degree and a Lyapunov

functional, Troib [21] established sufficient conditions for the existence and global attractivity

of a positive ω-periodic solution. As analysed in [8] with more detail, we can assert that the

results in [21] not only do not apply to the framework of nonconstant delays τi(t), nor to other

simple situations, but also the assumed constraints are more restrictive than (3.29).

Example 3.12. As a particular case of (3.28), consider the π-periodic system

x′1(t) = −(1 + cos2 t)x1(t) + c1(1 + sin2 t)x2(t) + β1(1 + cos2 t)x1(t − τ1(t))e
−x1(t−τ1(t))

x′2(t) = −(1 + sin2 t)x2(t) + c2(1 + cos2 t)x1(t) + β2(1 + sin2 t)x2(t − τ2(t))e
−x2(t−τ2(t))

(3.30)

where ci, βi > 0 and the delays τi(t) are π-periodic, continuous and nonnegative, i = 1, 2.

With the previous notation, for v = (1, v2) > 0 we have

γ1(t, v) :=
β1(1 + cos2 t)

1 + cos2 t − v2c1(1 + sin2 t)

γ2(t, v) :=
β2v2(1 + sin2 t)

v2(1 + sin2 t)− c2(1 + cos2 t)
.

(3.31)

If 4c1c2 < 1, choosing v2 such that 2c2 < v2 < (2c1)
−1, we obtain

0 < αi ≤ γi(t, v) ≤ γi, for t ∈ [0, π], i = 1, 2,

where

α1 =
β1

1 − 1
2 v2c1

, γ1 =
β1

1 − 2v2c1
, α2 =

β2

1 − 1
2 v−1

2 c2

, γ2 =
β2

1 − 2v−1
2 c2

.

In particular, with ci <
1
2 , i = 1, 2, one can take v2 = 1; if in addition ci < 2(2e − 1)(8e −

1)−1 ≈ 0.4277 and βi is chosen so that 1 − 1
2 ci < βi < 2e(1 − 2ci) for i = 1, 2, we obtain

1 < αi < γi < 2e, i = 1, 2, therefore there exists a positive π-periodic solution x∗(t) which is

globally exponentially attractive.

4 Conclusions

This paper concerns the global asymptotic behaviour of positive solutions for a very broad

family of Nicholson systems (1.1). Uniform lower and upper bounds for all solutions, as
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well as their global exponential stability are established, which generalise most of the results

in recent literature. We observe that systems (1.1) incorporate distributed delays, whereas

most authors only consider systems (3.24) with discrete delays. Moreover, as mentioned in

Remarks 2.5 and 3.5, if aij(t) are bounded, all the results apply to systems (2.5) with delays

in the linear terms. The assumptions and proofs presented here rely heavily on the special

properties of the Ricker nonlinearity h(x) = xe−x, x ≥ 0.

Some authors [7, 15, 24], have considered autonomous or nonautonomous Nicholson sys-

tems with discrete delays under restrictions on the coefficients implying that the systems have

a monotone behaviour. In recent papers [5, 13, 16, 21, 23], conditions have been imposed for

systems (3.24) in such a way that the estimates (3.26) should hold, where 1 ≤ inft∈R cip(t) ≤

supt∈R
cip(t) ≤ M−1κ̃ for some M > κ, for κ, κ̃ defined in (3.20), – and thus all positive

solutions must satisfy

κ ≤ lim inf
t→∞

cip(t)xi(t) ≤ lim sup
t→∞

cip(t)xi(t) ≤ κ̃,

for all i, p. These estimates have been used in order to derive that, since h(x) ≥ h(κ) and

|h′(x)| ≤ e−2 for x ∈ [κ, κ̃], any two solutions x(t), y(t) must satisfy

|hip(t, xi(s))− hip(t, yi(s))| ≤ e−2|xi(s)− yi(s)|, i = 1, . . . , n,

for all t and s ∈ [t − τ, t], where hip(t, x(s)) = x(s)e−cip(t)x(s). Our approach is essentially new:

assuming the permanence, the exponential stability of (1.1) is proven using solely an explicit

upper bound for solutions of such systems. Basically, we only need to assert the existence of (at

least) one positive solution satisfying lim supt→∞ cip(t)xi(t) < 2 for all i, p. In Theorem 3.4 we

have imposed condition (3.10), which guarantees that such a solution exists. As mentioned in

Remark 3.9, an interesting open problem is whether such a condition can be replaced by the

less restrictive assumption 1 < α ≤ γi(t, v) ≤ γ < e2C C
−1

.

Clearly, the method developed here can be further exploited, to study the global attrac-

tivity and exponential stability of other systems with patch structure – such as Mackey–Glass

type systems –, or modified Nicholson systems with either nonlinear density-dependent mor-

tality terms or harvesting terms, as in [5, 20, 22, 25]. In other words, under the conditions for

permanence established in [9] and with suitable changes, the approach herein carries over to

more general settings, and can be used to treat n-dimensional systems

x′i(t) = −di(t, xi(t)) +
n

∑
j=1

Lij(t)xj,t + fi(t, xi,t), t ≥ 0, i = 1, . . . , n,

where di(t, x) ≥ 0, di(t, x) = O(x) at zero, the linear functionals Lij(t) are nonnegative and the

nonlinearities fi incorporate one or several monotone, or unimodal terms.
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1 Introduction

It is a well-known fact that many models of chemical, biological and ecological problems

involve reaction-diffusion systems. For example, Fisher’s equation:

wt − D
∂2w

∂x2
= aw(1 − w).

A general reaction-diffusion system has the form

ut −D∆u = f(u) (RD)

where u is a vector representing chemical concentrations and D is a matrix of diffusion co-

efficients, assumed constant, and the second term represents chemical reactions. The form

of f depends on the system being studied (it is typically nonlinear). Large diffusion phe-

nomena many times appears in these systems. A shadow system, as a limiting system of

reaction-diffusion model for algal bloom in which the diffusion rate tends to infinity, has

been proposed in [27] to study whether or not stable nonconstant equilibrium solutions of the

BCorresponding author. Email: jacson@unifei.edu.br
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system exist. Large diffusion phenomena also appear in applications of chemical fluid flows

[30].

When the diffusion does not follow a linear or a uniform structure the problem (RD)

becomes

ut −D div(|∇u|p(x)−2∇u) = f(u).

Partial differential problems with variable exponents have application in electrorheological

fluids (see [19, 31, 32]) and image processing (see [13, 22]). Another important application is

modelling of flow in porous media [1, 2]. Some other applications of equations with variable

exponent growth conditions are magnetostatics [12] and capillarity phenomena [5].

Sometimes it is necessary to consider a multivalued right-hand side when uncertainties

or discontinuities appear in the reaction term, while coupled systems occur when different

phenomena interact. In these cases we have to work with differential inclusions instead of

differential equations (see, for example, [3,9,14,15,20,23,28,29,42] and the references therein).

Such inclusions have been used for modelling processes of combustion in porous media [20]

and the surface temperature on Earth [9, 15]. Moreover, differential inclusions appear in nu-

merous applications such as the control of forest fires [7], conduction of electrical impulses

in nerve axons [40, 41]. In climatology, the energy balance models may lead to evolution dif-

ferential inclusions which involve the p-Laplacian [16, 17]. A degenerate parabolic-hyperbolic

problem with a differential inclusion appears in a glaciology model [18].

We will consider the following nonautonomous coupled inclusion system





∂u

∂t
− D div(|∇u|p(x)−2∇u) + C1(t)|u|

p(x)−2u ∈ F(u, v), t > τ,

∂v

∂t
− D div(|∇v|q(x)−2∇v) + C2(t)|v|

q(x)−2v ∈ G(u, v), t > τ,

(u(τ), v(τ)) in L2(Ω)× L2(Ω),

(S)

on a bounded smooth domain Ω ⊂ Rn, n ≥ 1, with homogeneous Neumann boundary

conditions. Here D ∈ [1, ∞), F and G are bounded upper semicontinuous and positively

sublinear multivalued maps, and the exponents p(·), q(·) ∈ C(Ω) satisfy

p+ := max
x∈Ω

p(x) > p− := min
x∈Ω

p(x) > 2, q+ > q− > 2.

In addition, the absorption coefficients C1, C2 : [τ, T]× Ω → R are functions in L∞([τ, T]× Ω)

satisfying

(C1) there is a positive constant, γ such that 0 < γ ≤ Ci(t, x) for almost all (t, x) ∈ [τ, T]×

Ω, i = 1, 2.

(C2) Ci(t, x) ≥ Ci(s, x) for a.a. x ∈ Ω and t ≤ s in [τ, T], i = 1, 2.

The authors of [21] considered this problem for only one equation with the external func-

tion globally Lipschitz, while those of [35] considered the autonomous version of this problem

with Ci(t, x) ≡ 1. Nonautonomous equations of p-Laplacian type were previously considered

in [24, 38].

We will prove existence of strong global solutions for problem (S) and that these multival-

ued problems define exact generalized processes. The main tool used is a compactness result

established in [36], which is a generalization of Baras’ Theorem for the case that the main

operator is time-dependent. In addition, we prove the existence of a pullback attractor and,
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when considering large diffusion and letting the exponents go to constants, we explore the

robustness of the family of pullback attractors with respect to its limit problem which governs

the whole asymptotic dynamics of the system.

The paper is organized as follows. In Section 2 we present some preliminaries. Section 3

is devoted to prove existence of global solutions for the system and in Section 4 we prove that

problem (S) defines an exact generalized process which possess a pullback attractor. Finally,

in Section 5 we consider the case when D → +∞ and the exponents converge to constants and

investigate the dynamics of the limiting two dimensional ordinary nonautonomous coupled

inclusion.

2 Preliminaries

Definition 2.1 ([43]). A subset K in L1 (a, b; X) is uniformly integrable if, given ε > 0, there

exists δ = δ(ε) > 0 such that
∫

E ‖ f (t)‖Xdt ≤ ε uniformly for f ∈ K for each measurable subset

E in [a, b] with Lebesgue measure less than δ(ε).

Remark 2.2 ([8]). Since [a, b] is compact, each uniformly integrable subset in L1 (a, b; X) is

bounded with respect to the norm of L1 (a, b; X).

Consider the following IVP:




dun

dt
(t) + A(t)un(t) ∋ fn(t), t > τ,

un(τ) = u0n ,
(Pt,n)

where for each t > τ, A(t) is maximal monotone in a Hilbert space H, fn ∈ K ⊂ L1 (τ, T; H)
and u0n ∈ H. In addition, suppose D(A(t)) = D(A(τ)), ∀ t, τ ∈ R, and D(A(t)) = H, for all

t ∈ R.

Definition 2.3. A function un : [τ, T] → H is called a strong solution of (Pt,n) on [τ, T] if

(i) un ∈ C([τ, T]; H);

(ii) un is absolutely continuous on any compact subset of (τ, T);

(iii) un(t) is in D(A(t)) for a.e. t ∈ [τ, T], un(τ) = u0n , and satisfies the inclusion in (Pt,n) for

a.e. t ∈ [τ, T].

We now present abstract conditions on the family of the operators {A(t)}t>0 and fn such

that problem (Pt,n) has, for each n ∈ N, a unique strong solution un on [τ, T]. We are interested

in the case where A(t) = ∂φt, i.e., the evolution problem of the form

du

dt
(t) + ∂φt(u(t)) ∋ f (t), τ ≤ t ≤ T, (E)

in a real Hilbert space H, where, for almost every t ∈ [0, T], A(t) := ∂φt is the subdifferential

of a lower semicontinuous, proper and convex function φt from H into (−∞, ∞]. In this case,

A(t) is a maximal monotone operator.

Condition A: Let T > τ be fixed.

(I) There is a set Z ⊂ ]τ, T] of zero measure such that φt is a lower semicontinuous proper

convex function from H into (−∞, ∞] with a non-empty effective domain for each t ∈

[τ, T]− Z.
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(II) For any positive integer r there exist a constant Kr > 0, an absolutely continuous function

gr : [τ, T] → R with g′r ∈ Lβ(τ, T) and a function of bounded variation hr : [τ, T] → R

such that if t ∈ [τ, T]− Z, w ∈ D(φt) with |w| ≤ r and s ∈ [t, T]− Z, then there exists an

element w̃ ∈ D(φs) satisfying

|w̃ − w| ≤ |gr(s)− gr(t)|(φ
t(w) + Kr)

α,

φs(w̃) ≤ φt(w) + |hr(s)− hr(t)|(φ
t(w) + Kr),

where α is some fixed constant with 0 ≤ α ≤ 1 and

β :=





2 if 0 ≤ α ≤ 1
2 ,

1

1 − α
if 1

2 ≤ α ≤ 1.

Proposition 2.4 ([44]). Suppose that Condition A is satisfied. Then for each f ∈ L2(τ, T; H) and u0

∈ D(φτ), the equation (E) has a unique strong solution u on [τ, T] with u(τ) = u0.

Moreover, u has the following properties:

(i) For all t ∈ (τ, T] − Z u(t) is in D(φt) and satisfies tφt(u(t)) ∈ L∞(τ, T) and φt(u(t)) ∈

L1(τ, T). Furthermore, for any τ < δ < T, φt(u(t)) is of bounded variation on [δ, T]− Z.

(ii) For any τ < δ < T, u is strongly absolutely continuous on [δ, T], and t1/2 du
dt ∈ L2(τ, T; H).

In particular, if u0 ∈ D(φτ), then u satisfies

(i)’ For all t ∈ [τ, T]− Z, u(t) is in D(φt) and φt(u(t)) is of bounded variation on [τ, T]− Z.

(ii)’ u is strongly absolutely continuous on [τ, T] and satisfies du
dt ∈ L2(τ, T; H).

For our specific problem, we consider H := L2(Ω) with a bounded smooth domain Ω ⊂

Rn, n ≥ 1, p(·) ∈ C(Ω̄, R), p+ := maxx∈Ω̄ p(x) ≥ p− := minx∈Ω̄ p(x) > 2, where C : [τ, T]×Ω

→ R is a function in L∞([τ, T]× Ω) satisfying conditions (C1) and (C2).

Consider the Lebesgue space with variable exponents

Lp(·)(Ω) :=

{
u : Ω → R : u is measurable,

∫

Ω

|u(x)|p(x)dx < ∞

}
.

Define ρ(u) :=
∫

Ω
|u(x)|p(x)dx and

‖u‖p(·) := inf
{

λ > 0 : ρ
(u

λ

)
≤ 1

}

for u ∈ Lp(·)(Ω). The generalized Sobolev space is defined as

W1,p(·)(Ω) =

{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
.

It is well-known that Yp := W1,p(·)(Ω) is a Banach space with the norm

‖u‖Yp
:= ‖u‖p(·) + ‖∇u‖p(·).

Consider the operator A(t) defined in Yp such that for each u ∈ Yp associate the following

element of its dual space Yp
∗, A(t)u : Yp → R given by

〈A(t)u, v〉Yp
∗,Yp

:= D
∫

Ω

|∇u(x)|p(x)−2∇u(x) · ∇v(x) dx +
∫

Ω

C(t, x)|u(x)|p(x)−2u(x)v(x) dx.

It was shown in [21] that the operator A(t) : Yp → Yp
∗ is monotone, hemicontinuous and

coercive. Moreover, we have the following estimates on the operator.
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Lemma 2.5 ([21]). Let u ∈ Yp := W1,p(·)(Ω). For each t ≥ 0 we have

〈A(t)u, u〉Yp
∗,Yp

≥
min{1, γ}

2p+




‖u‖

p+

Yp
, if ‖u‖Yp

< 1,

‖u‖
p−

Yp
, if ‖u‖Yp

≥ 1.
(2.1)

It is easy to see that the operator A(t) : H → H defined by

A(t)u := −Ddiv(|∇u|p(x)−2∇u) + C(t)|u|p(x)−2u,

satisfies Condition A and, consequently, by applying Proposition 2.4 we have that problem

(E) has a unique strong solution.

We will also consider the following IVP:





du

dt
+ A(t)u ∋ 0, t > τ,

u(τ) = u0,
(Pt)

where for each t > τ, A(t) is maximal monotone in a Hilbert space H.

Definition 2.6. Define {V(t, τ); V(t, τ) : H −→ H, t ≥ τ} by V(t, τ)(u0) = u(t, u(τ)) =

u(t, u0), where u(t, u0) is the unique strong solution of problem (Pt), and call {V(t, τ); V(t, τ) :

H −→ H, t ≥ τ} the evolution process generated by A := {A(t)}t>τ in H. We say that the

evolution process is compact if V(t, τ) is a compact operator for each t > τ.

Let us review the concept of an evolution process in the next

Definition 2.7. An evolution process in a metric space X is a family {U(t, τ) : X → X, t ≥ τ ∈R}

satisfying:

i) U(τ, τ) = I;

ii) U(t, τ) = U(t, s)U(s, τ), τ ≤ s ≤ t.

Varying fn and u0n in (Pt,n) we obtain a family of problems and consequently a family of

solutions. Consider the following solution sets

M(K) := {un; un is the unique strong solution of (Pt,n), with fn ∈ K and u0n ∈ H} .

Theorems in [36] establish conditions which ensure that the set M(K) possesses some property

of compactness.

We now review some concepts and results from the literature which will be useful in the

sequel to understand the conditions on the multivalued functions F and G. We refer the reader

to [3, 4, 43] for more details about multivalued analysis theory. Let X be a real Banach space

and M a Lebesgue measurable subset in Rq, q ≥ 1.

Definition 2.8. The map G : M → P(X) is called measurable if for each closed subset C in X

the set G−1(C) = {y ∈ M; G(y) ∩ C 6= ∅} is Lebesgue measurable.

If G is a univalued map, the above definition is equivalent to the usual definition of a

measurable function.
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Definition 2.9. By a selection of E : M → P(X) we mean a function f : M → X such that

f (y) ∈ E(y) a.e. y ∈ M, and we denote by Sel E the set Sel E := { f , f : M → X is a measurable

selection of E}.

In what follows U denotes a topological space.

Definition 2.10. A mapping G : U → P(X) is called upper semicontinuous [weakly upper

semicontinuous] at u ∈ U, if

(i) G(u) is nonempty, bounded, closed and convex.

(ii) For each open subset [open set in the weak topology] D in X satisfying G(u) ⊂ D, there

exists a neighborhood V of u such that G(v) ⊂ D, for each v ∈ V.

If G is upper semicontinuous [weakly upper semicontinuous] at each u ∈ U, then it is called

upper semicontinuous [weakly upper semicontinuous] on U.

Definition 2.11. F, G : H × H → P(H) are said to be bounded if, whenever B1, B2 are

bounded, then F(B1, B2) =
⋃

(u,v)∈B1×B2
F(u, v) and G(B1, B2) =

⋃
(u,v)∈B1×B2

G(u, v) are bound-

ed in H.

In order to obtain global solutions we impose suitable conditions on the external forces F

and G.

Definition 2.12. The pair (F, G) of mappings F, G : H × H → P(H), which maps bounded

subsets of H × H into bounded subsets of H, is called positively sublinear if there exist a > 0,

b > 0, c > 0 and m0 > 0 such that for each (u, v) ∈ H × H with ‖u‖ > m0 or ‖v‖ > m0 for

which either there exists f0 ∈ F(u, v) satisfying 〈u, f0〉 > 0 or there exists g0 ∈ G(u, v) with

〈v, g0〉 > 0, we have both

‖ f ‖ ≤ a‖u‖+ b‖v‖+ c and ‖g‖ ≤ a‖u‖+ b‖v‖+ c

for each f ∈ F(u, v) and each g ∈ G(u, v).

3 Existence of solution

Now we will establish the existence of a global solution for the system (S). The idea is to show

that an appropriately defined multivalued map has at least one fix point whose existence is

equivalent to the existence of at least one solution of (S).

We can rewrite the system in an abstract form as





ut + A(t)u ∈ F(u, v), t > τ,

vt + B(t)v ∈ G(u, v), t > τ,

(u(τ), v(τ)) = (uτ, vτ) ∈ H × H,

(S̃)

where, for each t > τ, A(t) and B(t) are univalued maximal monotone operators in a real

separable Hilbert space H of subdifferential type, i.e., A(t) = ∂ϕt, B(t) = ∂ψt with ϕt, ψt

non-negative maps satisfying Condition A with ∂ϕt(0) = ∂ψt(0) = 0, ∀ t ∈ R and F and G

are bounded, upper semicontinuous and positively sublinear multivalued maps.
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Definition 3.1. A strong solution of (S̃) is a pair (u, v) satisfying: u, v ∈ C([τ, T]; H) for which

there exist f , g ∈ L1(τ, T; H), f (t) ∈ F(u(t), v(t)), g(t) ∈ G(u(t), v(t)) a.e. in (τ, T), and such

that (u, v) is a strong solution (see Definition 2.3) over (τ, T) to the system (P1) below:





ut + A(t)u = f ,

vt + B(t)v = g,

u(τ) = u0, v(τ) = v0.

(P1)

We obtain the global existence for our system (S̃) by applying the following

Theorem 3.2 ([36]). Let A = {A(t)}t>τ and B = {B(t)}t>τ be families of univalued operators

A(t) = ∂ϕt, B(t) = ∂ψt with ϕt, ψt non negative maps satisfying Condition A with ∂ϕt(0) =

∂ψt(0) = 0. Also suppose each one A and B generates a compact evolution process, and let F, G :

H × H → P(H) be upper semicontinuous and bounded multivalued maps. Then given a bounded

subset B0 ⊂ H × H, there exists T0 > τ such that for each (u0, v0) ∈ B0 there exists at least one

strong solution (u, v) of (S̃) defined on [τ, T0]. If, in addition, the pair (F, G) is positively sublinear,

given T > τ, the same conclusion is true with T0 = T.

4 Exact generalized process and pullback attractor

We will prove that the system (S̃) generates an exact generalized process. Let us review this

concept in the following

Definition 4.1 ([37]). Let (X, ρ) be a complete metric space. A generalized process G={G(τ)}τ∈R

on X is a family of function sets G(τ) consisting of maps ϕ : [τ, ∞) → X, satisfying the

properties:

[P1] For each τ ∈ R and z ∈ X there exists at least one ϕ ∈ G(τ) with ϕ(τ) = z;

[P2] If ϕ ∈ G(τ) and s ≥ 0, then ϕ+s ∈ G(τ + s), where ϕ+s := ϕ|[τ+s,∞);

[P3] If
{

ϕj

}
⊂ G(τ) and ϕj(τ) → z, then there exists a subsequence

{
ϕµ

}
of

{
ϕj

}
and

ϕ ∈ G(τ) with ϕ(τ) = z such that ϕµ(t) → ϕ(t) for each t ≥ τ.

Definition 4.2 ([37]). A generalized process G = {G(τ)}τ∈R which satisfies the concatenation

property:

[P4] If ϕ, ψ ∈ G with ϕ ∈ G(τ), ψ ∈ G(r) and ϕ(s) = ψ(s) for some s ≥ r ≥ τ, then θ ∈ G(τ),

where

θ(t) :=

{
ϕ(t), t ∈ [τ, s],

ψ(t), t ∈ (s, ∞),
(4.1)

is called an exact (or strict) generalized process.

Property [P1] follows from the existence of a solution for the system (S̃), which was guar-

anteed in the previous section.

Let D(u(τ), v(τ)) be the set of solutions of (S̃) with initial data (uτ, vτ). Moreover, let us

consider G(τ) :=
⋃

(uτ ,vτ)∈H×H D(u(τ), v(τ)) and G := {G(τ)}τ∈R.

Theorem 4.3 ([36]). Under the conditions of Theorem 3.2, G is an exact generalized process.
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The authors of [36] provided a result that gives sufficient conditions on A = {A(t)}t>τ to

ensure that the evolution process {V(t, τ)}t≥τ generated by A (see Definition 2.6) is compact.

Suppose that the following conditions are true for A:

(i) D(A(t)) = V for all t ∈ [τ, T] with V compactly embedded into H and V = H, where V

is a reflexive Banach space and H a Hilbert space;

(ii) for each t ∈ [τ, T], A(t) = ∂ϕt, with ϕt(·) := ϕ(t, ·) : H → R ∪ {∞} a convex, proper and

lower semicontinuous map;

(iii) there exist constants α, α1, α2 > 0 such that for each t ∈ [τ, T], α‖w‖α1
V ≤ ϕt(w) if ‖w‖V <

1 and α‖w‖α2
V ≤ ϕt(w) if ‖w‖V ≥ 1;

(iv) for each t ∈ [τ, T], ϕt(x) ≥ 0 for all x ∈ H and ϕt(0) = 0;

(v) for each x ∈ V, there exists
∂ϕ
∂s (s, x) and

∂ϕ
∂s (s, x) ≤ 0 for a.a. s ∈ [τ, T].

We will use the following result.

Theorem 4.4 ([36]). If A satisfies hypotheses (i)–(v), then the generated process {V(t, τ)}t≥τ by

A = {A(t)}t>τ is compact.

Returning to our specific problem, i.e., if we consider A(t) : H → H given by A(t)u =

−D div(|∇u|p(x)−2∇u) + C(t)|u|p(x)−2u, where H = L2(Ω) with Ω ⊂ Rn (n ≥ 1) a bounded

smooth domain, p(·) ∈ C(Ω̄, R), p+ := maxx∈Ω̄ p(x) ≥ p− := minx∈Ω̄ p(x) > 2 . and C :

[τ, T]× Ω → R is a function in L∞([τ, T]× Ω) such that 0 < γ ≤ C(t, x) for almost all (t, x)

∈ [τ, T]× Ω, for some positive constant γ, and C(t, x) ≥ C(s, x) for a.a. x ∈ Ω and t ≤ s in

[τ, T]. In particular, we have D(A(t)) = V := W1,p(·)(Ω) ⊂⊂ H for all t ∈ [τ, T], V̄ = H and

A(t) = ∂ϕt where ϕt : L2(Ω) → R ∪ {+∞} is given by

ϕt(u) :=





[∫

Ω

D

p(x)
|∇u|p(x)dx +

∫

Ω

C(t, x)

p(x)
|u|p(x)dx

]
, if u ∈ W1,p(x)(Ω)

+∞, otherwise

(4.2)

is a convex, proper and lower semicontinuous map. It is easy to see that A = {A(t)}t>τ satis-

fies all the abstract hypotheses (i)–(v) above. Moreover, we had already seen that Condition A

is also satisfied.

Hence, considering D(u(τ), v(τ)) the set of the solutions of (S) with initial data (uτ, vτ)

and defining G(τ) :=
⋃

(uτ ,vτ)∈H×H D(u(τ), v(τ)) and G := {G(τ)}τ∈R, we have

Theorem 4.5. G is an exact generalized process.

A multivalued process {UG(t, τ)}t≥τ defined by a generalized process G is a family of

multivalued operators UG(t, τ) : P(X) → P(X) with −∞ < τ ≤ t < +∞, such that for each τ

∈ R

UG(t, τ)E = {ϕ(t); ϕ ∈ G(τ), with ϕ(τ) ∈ E} , t ≥ τ.

Theorem 4.6 ([37]). Let G be an exact generalized process. Suppose that {UG(t, τ)}t≥τ is a multival-

ued process defined by G, then we have that {UG(t, τ)}t≥τ is an exact multivalued process on P(X),

i.e.,

1. UG(t, t) = IdP(X),

2. UG(t, τ) = UG(t, s)UG(s, τ) for all −∞ < τ ≤ s ≤ t < +∞.
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A family of sets K = {K(t) ⊂ X : t ∈ R} will be called a nonautonomous set. The family

K is closed (compact, bounded) if K(t) is closed (compact, bounded) for all t ∈ R. The ω-limit

set ω(t, E) consists of the pullback limits of all converging sequences {ξn}n∈N
where ξn ∈

UG(t, sn)E, sn→ −∞. Let A = {A(t)}t∈R
be a family of subsets of X. We have the following

concepts of invariance:

• A is positively invariant if UG(t, τ)A(τ) ⊂ A(t) for all −∞ < τ ≤ t < ∞;

• A is negatively invariant if A(t) ⊂ UG(t, τ)A(τ) for all −∞ < τ ≤ t < ∞;

• A is invariant if UG(t, τ)A(τ) = A(t) for all −∞ < τ ≤ t < ∞.

Definition 4.7. Let t ∈ R.

1. A set A(t) ⊂ X pullback attracts a set B ∈ X at time t if

dist(UG(t, s)B,A(t)) → 0 as s → −∞.

2. A family A = {A(t)}t∈R
pullback attracts bounded sets of X if A(τ) ⊂ X pullback

attracts all bounded subsets at τ, for each τ ∈ R. In this case, we say that the nonau-

tonomous set A is pullback attracting.

3. A set A(t) ⊂ X pullback absorbs bounded subsets of X at time t if, for each bounded

set B in X, there exists T = T(t, B) ≤ t such that UG(t, τ)B ⊂ A(t) for all τ ≤ T.

4. A family {A(t)}t∈R
pullback absorbs bounded subsets of X if for each t ∈ R A(t)

pullback absorbs bounded sets at time t.

Following the ideas of [25] we obtain

Lemma 4.8. Let (u1, u2) be a solution of problem (S). Then there exist a positive number r0 and a

constant T0, which do not depend on the initial data, such that

‖(u1(t), u2(t))‖H×H ≤ r0, ∀ t ≥ T0 + τ.

Considering Yq := W1,q(·)(Ω), we have

Lemma 4.9. Let (u1, u2) be a solution of problem (S). Then there exist positive constants r1 and T1 >

T0, which do not depend on the initial data, such that

‖(u1(t), u2(t))‖Yp×Yq
≤ r1, ∀ t ≥ T1 + τ.

Let UG be the multivalued process defined by the generalized process G. We know from

[33] that for all t ≥ s in R the map x 7→ UG(t, s)x ∈ P(H × H) is closed, so we obtain from

Theorem 18 in [10] the following result

Theorem 4.10. If for any t ∈ R there exists a nonempty compact set D(t) which pullback attracts all

bounded sets of H × H at time t, then the set A = {A(t)}t∈R with A(t) =
⋃

B∈B(H×H) ωpb(t, B), is

the unique compact, negatively invariant pullback attracting set which is minimal in the class of closed

pullback attracting nonautonomous sets. Moreover, the sets A(t) are compact.

Here ωpb(t, B) is the pullback omega limit set starting in the set B and ending at time t.

Theorem 4.11. The multivalued evolution process UG associated with system (S) has a compact,

negatively invariant pullback attracting set A = {A(t)}t∈R which is minimal in the class of closed

pullback attracting nonautonomous sets. Moreover, the sets A(t) are compact.

Proof. By Lemma 4.9 we have that the family D(t) := BYp×Yq
(0, r1)

H×H
of compact sets of

H × H is attracting. The result thus follows from Theorem 4.10.
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5 Limit problems and convergence properties

In the remainder of the paper we restrict attention to the case that the coefficient functions

C1(t) and C2(t) depend only on the time variable t and not on the spatial variable x ∈ Ω.

Our main objective is to consider what happens when Ds increases to infinity and ps(·) →

p > 2, qs(·) → q > 2 in L∞(Ω) as s → ∞ in the system





∂us
∂t − div(Ds|∇us|ps(x)−2∇us) + C1(t)|us|ps(x)−2us ∈ F(us, vs), t > τ,

∂vs
∂t − div(Ds|∇vs|qs(x)−2∇vs) + C2(t)|vs|qs(x)−2vs ∈ G(us, vs), t > τ,
∂us

∂n
(t, x) =

∂vs

∂n
(t, x) = 0, t ≥ τ, x ∈ ∂Ω,

us(τ, x) = uτs(x), vs(τ, x) = vτs(x), x ∈ Ω,

(5.1)

where uτs, vτs ∈ H := L2(Ω), and to prove that the limit problem is described by an ordinary

differential system.

Firstly, we observe that the gradients of the solutions of problem (5.1) converge in norm to

zero as s → ∞, which allows us to guess the limit problem





u̇ + φt
p(u) ∈ F̃(u, v),

v̇ + φt
q(v) ∈ G̃(u, v),

u(τ) = uτ, v(τ) = vτ,

(5.2)

where φt
p(w) := C1(t)|w|p−2w, φt

q(w) := C2(t)|w|q−2w, F̃ := F|R×R, G̃ := G|R×R : R × R →

P(R) if we identify R with the constant functions which are in H, since Ω is a bounded set.

The next theorem confirms that the system (5.2) is a good candidate for the limit problem.

The proof of the next result follows the ideas of [35] and will not present the proof here since

the nonautonomous terms C1,2(t) do not present difficulties for the proof (see also [21] for the

problem with only one equation).

Theorem 5.1. If (us, vs) is a solution of (5.1), then for each t > T1 + τ, the sequences of real numbers

{‖∇us(t)‖H}s∈N and {‖∇vs(t)‖H}s∈N both possess subsequences {‖∇usj
(t)‖H} and {‖∇vsj

(t)‖H}

that converge to zero as j → +∞, where T1 is the positive constant in Lemma 4.9.

In order to prove the existence of a global solution for the limit problem we consider the

following abstract result of Barbu’s book [6] for a Banach space X : Let τ ∈ R and T > τ and

consider a family of nonlinear operators H(t) : X → X∗, t ∈ [τ, T] satisfying:

(i) H(t) is monotone and hemicontinuous from X to X∗ for almost every t ∈ ]τ, T).

(ii) Function H(·)u(·) : [τ, T] → X∗ is measurable for every u ∈ Lp(τ, T; X).

(iii) There is a constant C such that

‖H(t)u‖X∗ ≤ C(‖u‖
p−1
X + 1) for u ∈ X and t ∈ ]τ, T).

(iv) There are constants α, ω (ω > 0) such that

〈H(t)u, u〉 ≥ ω‖u‖
p
X + α for u ∈ X and t ∈ ]τ, T).
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Proposition 5.2 ([6, Theorem 4.2]). Consider a Gelfand triple given by (X, H, X∗) and suppose that

(i)–(iv) hold. If uτ ∈ H and f ∈ Lq(τ, T; X∗) ( 1
p +

1
q = 1), then there exists a unique function u(t)

which is X∗-valued absolutely continuous on [τ, T] and satisfies

u ∈ Lp(τ, T; X) ∩ C([τ, T]; H),
du

dt
∈ Lq(τ, T, X∗),

du

dt
(t) +H(t)u(t) = f (t), a.e. on (τ, T), u(τ) = uτ.

Lemma 5.3. The problem (5.2) has a global solution.

Proof. Considering H(t) : R → R, defined by H(t)u := C(t)|u|p−2u, it is trivial to check (i)–

(iv) above for H(t) with X = H = X∗ = R. Thus, for a given f ∈ L2(τ, T; R), we have from

Proposition 5.2 that there exists a unique function u ∈ C([τ, T]; R) which is a strong solution

to the problem
du

dt
(t) +H(t)u(t) = f (t), u(τ) = uτ ∈ R.

Hence, with the same argument as in the proof of Theorem 41 in [36] we conclude that the

limit problem (5.2) has a global strong solution.

Remark 5.4. In the proof of the previous theorem we only need that C(·) is measurable and

γ ≤ C(t). The constant γ is taken uniform in τ and T in order to yield global solutions.

The next result guarantees that (5.2) is in fact the limit problem for (5.1), as s → ∞. The

proof is analogous to what was done in [35] for the autonomous case, so will not be give here

since the nonautonomous terms C1,2(t) do not present any difficulties.

Theorem 5.5. Let (us, vs) be a solution of the problem (5.1). Suppose that (us(τ), vs(τ)) = (uτs, vτs)

→ (uτ, vτ) ∈ R × R in the topology of H × H as s → +∞. Then there exists a solution (u, v) of

the problem (5.2) satisfying (u(τ), v(τ)) = (uτ, vτ) and a subsequence {(usj
, vsj

)}j of {(us, vs)}s such

that, for each T > τ, usj
→ u, vsj

→ v in C([τ, T]; H) as j → +∞.

Remark 5.6. Theorem 5.5 remains valid without the hypothesis (uτ, vτ) ∈ R × R, whenever

(uτs, vτs) ∈ As(τ), ∀ s ∈ N, because in this case we prove, analogously to Lemma 6.2 in [21],

that uτ and vτ are independent of x.

5.1 Upper semicontinuity of the family of pullback attractors

We start this section proving the existence of the pullback attractor for the limit problem.

Theorem 5.7. The limit problem (5.2) defines a generalized process G∞ which has a pullback attractor

U∞ = {A∞(t); t ∈ R × R}.

Proof. That limit problem (5.2) defines a generalized process G∞ follows in the same way as

before for the system (S).

Let us focus on the existence of the pullback attractor. Multiplying the equation u̇ +

C1(t)|u|
p−2u = f (t) by u and using the assumption that (F, G) is positively sublinear and

Young’s Inequality to estimate f (t).u(t), we obtain

1

2

d

dt
|u(t)|2 ≤ −

γ

2
|u(t)|p + c, t ≥ τ
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where c > 0 is a constant. Therefore, the map y(t) := |u(t)|2 satisfies the inequality

d

dt
y(t) ≤ −γ(y(t))p/2 + 2c, t ≥ τ.

So, by Lemma 5.1 in [39],

|u(t)|2 ≤

(
2c

γ

)2/p

+
(

γ
( p

2
− 1

)
(t − τ)

)− 2
p−2

, ∀ t ≥ τ. (5.3)

Let ξ1 > 0 such that
(
γ
( p

2 − 1
)
ξ1

)− 2
p−2 ≤ 1, then

|u(t)| ≤

[(
2c

γ

)2/p

+ 1

]1/2

=: κ1, ∀ t ≥ ξ1 + τ.

Analogously, we can prove that

|v(t)| ≤

[(
2c

γ

)2/q

+ 1

]1/2

=: κ2, ∀ t ≥ ξ2 + τ.

Thus, considering κ := max{κ1, κ2}, we have that the family K(t) := BR×R[0, κ] of compact

sets of R × R pullback attracts bounded sets of R × R at time t. Consequently, we have by

Theorem 4.10 that the evolution process {S∞(t, s)}t≥s defined by G∞ has a pullback attractor

U∞ = {A∞(t); t ∈ R}.

Theorem 5.8. The family of pullback attractors {Us; s ∈ N} associated with system (5.1) is upper

semicontinuous on s at infinity, in the topology of H, i.e., for each τ ∈ R,

lim
s→+∞

dist(As(τ),A∞(τ)) = 0.

Proof. The proof follows the same ideas used in the autonomous version considered in [35],

but instead of constructing a bounded complete orbit for a generalized process here we have

to construct a complete bounded trajectory for a generalized process using Theorem 5.5 and

working in an analogous way as in the proof of Theorem 6.1 in [34].

Remark 5.9. Note that if ps(·) ≡ p and qs(·) ≡ q the family of attractors is also lower semicon-

tinuous since each solution of (5.2) is also a solution of (5.1) when we consider the constants

C1 and C2 depend only on time in (5.1). For the general case of a variable exponent, lower

semicontinuity is an open problem.

Remark 5.10. The assumption on the nonincreasing nature of Ci(t) implies that the point-

wise limit C∗
i as t → ∞ exists and satisfies 0 < γ ≤ C∗

i . Then the limit problem with C∗
i is

autonomous and has an autonomous attractor A∞ as a particular case of the results in this pa-

per. This means that the original problem is asymptotic autonomous. It would be interesting

to compare the asymptotic behaviour as t → ∞ of its pullback attractor with this autonomous

attractor. Applying Theorem 5.3 in [25] we obtain limt→+∞ dist(A∞(t),A∞) = 0.
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5.2 Forward attraction and omega limit sets

Pullback attractors describe the behaviour of a system from the past and, in general, have

little to say about the future behaviour of the system. There is a corresponding concept of

forward attractor involving the usual forward attraction instead of pullback attraction, but

such forward attractors rarely exist and, when they do, need not be unique. See Kloeden

& Yang [26], where an alternative characterization of forward attraction is developed using

omega limit sets.

By (5.3) the closed and bounded (hence compact) absorbing set BR×R[0, κ] is forward ab-

sorbing for the generalized process G∞ on R2 generated by the limit problem (5.2). Moreover,

the set B := ∪0≤t≤Tκ G∞(t, BR×R[0, κ]), where Tκ is the time for the set BR×R[0, κ] to absorb

itself under G∞, is also positive invariant under G∞. In addition, its absorbing property here

is uniform in the sense that for any bounded subset D of R2 and every τ there exists a TD ≥

0 such that

G
∞(t, τ, x0) ⊂ B ∀t ≥ τ + TD, x0 ∈ D,

since the estimate (5.3) depends just on the elapsed time and not the actual times.

ω-limit sets were defined and investigated in [26, Chapter 12] for single valued processes,

but analogous definitions hold for a generalized process G∞. Specifically, the ω-limit set is

defined by

ωB,τ :=
⋂

t≥τ

⋃

s≥t

G∞ (s, τ, B).

It is a nonempty compact set of B for each τ. Note that

lim
t→∞

distR2 (G∞ (t, τ, B) , ωB,τ) = 0 (5.4)

for each τ and that ωB,τ ⊂ ωB,τ′ ⊂ B for τ ≤ τ′. Hence, the set

ωB :=
⋃

τ∈R

ωB,τ ⊂ B

is nonempty and compact. It contains all of the future limit points of the generalized process

G∞ starting in the set B at some time τ ≥ T∗. In particular, it contains the omega limit points

of the pullback attractor, i.e.,

⋂

t≥τ

⋃

s≥t

A∞(s) =
⋂

t≥τ

⋃

s≥t

G∞ (s, τ,A∞(τ)) ⊂ ωB,τ ⊂ ωB

for each τ ∈ R.

The set ωB characterises the forward asymptotic behaviour of the nonautonomous system

G∞. It was called the forward attracting set of the nonautonomous system in [26] and is closely

related to the Haraux–Vishik uniform attractor, but it may be smaller and does not require the

generating system to be defined for all time or the attraction to be uniform in the initial time.

The forward attracting set ωB need not be invariant for the generalized process G∞, but in

view of the above uniform absorbing property it is asymptotically positive invariant [26, Chapter

12], i.e., if for every ε > 0 here exists a T(ε) such that

G
∞ (t, τ, ωB) ⊂ Bε (ωB) , t ≥ τ,

for each τ ≥ T(ε).
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Abstract. For a nonautonomous differential equation, we consider the almost re-
ducibility property that corresponds to the reduction of the original equation to an
autonomous equation via a coordinate change preserving the Lyapunov exponents. In
particular, we characterize the class of equations to which a given equation is almost
reducible. The proof is based on a characterization of the almost reducibility to an au-
tonomous equation with a diagonal coefficient matrix. We also characterize the notion
of almost reducibility for an equation x′ = A(t, θ)x depending continuously on a real
parameter θ. In particular, we show that the almost reducibility set is always an Fσδ-set
and for any Fσδ-set containing zero we construct a differential equation with that set as
its almost reducibility set.
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1 Introduction

We first describe the reducibility property and the type of problems considered in the paper.
Let A(t) and B(t) be q × q matrices varying continuously with t ≥ 0 and consider the linear
equations

x′ = A(t)x and y′ = B(t)y. (1.1)

Let T(t, s) and S(t, s) be the corresponding evolution families such that

T(t, s)x(s) = x(t) and S(t, s)y(s) = y(t)

for any solutions x and y of the equations in (1.1) and for any t, s ≥ 0. We say that the
equations are equivalent via a coordinate change U(t) given by invertible q × q matrices if

U(t)−1T(t, s)U(s) = S(t, s) for all t, s ≥ 0. (1.2)

BCorresponding author. Email: barreira@math.tecnico.ulisboa.pt



2 L. Barreira and C. Valls

More generally, one can also consider piecewise continuous functions A(t) and B(t) (see
Section 2), in which case the evolution families T(t, s) and S(t, s) are still continuous in (t, s).

In this paper we consider the class of equations that are equivalent to an autonomous
equation. Namely, we say that the equation x′ = A(t)x is reducible via a coordinate change U(t)

if it is equivalent to some autonomous equation y′ = By. Moreover, we say that the equation
x′ = A(t)x is almost reducible if it is equivalent to some autonomous equation via a Lyapunov
coordinate change U(t), that is, a coordinate change satisfying

lim
t→∞

1
t

log‖U(t)‖ = lim
t→∞

1
t

log‖U(t)−1‖ = 0. (1.3)

The Lyapunov coordinate changes are the only coordinate changes that preserve simulta-
neously the Lyapunov exponents of all sequences of invertible matrices with a finite Lyapunov
exponent. More precisely, for each v ∈ R

q let

λA(v) = lim
t→∞

1
t

log‖T(t, 0)v‖

be the Lyapunov exponent associated with the equation x′ = A(t)x, with the convention that
log 0 = −∞. The Lyapunov exponent λB(v) for the equation y′ = B(t)y is defined similarly.
The former statement on the preservation of the Lyapunov exponents means that a coordinate
change U(t) is a Lyapunov coordinate change if and only if the evolution families of any two
equivalent equations as in (1.1) that satisfy (1.2) also satisfy

λA(U(0)v) = λB(v) for all v ∈ R
q.

This causes that the almost reducibility property occurs naturally whenever we want to reduce
the original dynamics to a simpler one without changing the asymptotic behavior given by
the Lyapunov exponents.

A first notion of reducibility is due to Lyapunov [5] (see [7] for an English translation).
He considered instead bounded coordinate changes with bounded inverses, that is, transfor-
mations satisfying

sup
t≥0

‖U(t)‖ < +∞ and sup
t≥0

‖U(t)−1‖ < +∞. (1.4)

We refer the reader to [4, 6, 8, 9] and the references therein for some early results as well as to
the book [3] for a global panorama of the area in 1980. While the coordinate changes satis-
fying (1.4) are appropriate to study uniform Lyapunov stability (because bounded coordinate
changes preserve this type of stability), in order to study nonuniform Lyapunov stability it is
crucial to consider Lyapunov coordinate changes as in (1.3).

We first give a characterization of the almost reducibility of an equation to an autonomous
equation with a diagonal coefficient matrix (see Theorem 2.1).

Theorem 1.1. For an equation x′ = A(t)x on R
q such that the Lyapunov exponent λA is finite on

R
q \ {0}, we have

lim
t→∞

1
t

∫ t

0
tr A(s) ds = inf

q

∑
j=1

λA(vj)

with the infimum taken over all bases v1, . . . , vq for R
q if and only if the equation is almost reducible

to an equation y′ = By with B diagonal.

We shall use this result to characterize the autonomous equations to which a given equa-
tion is almost reducible (see Theorem 2.2).
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Theorem 1.2. x′ = A(t)x is almost reducible to y′ = By and y′ = Cy if and only if the eigenvalues

of B and C, counted with multiplicities and eventually up to a permutation, have the same real parts.

We also characterize completely the notion of almost reducibility for continuous 1-para-
meter families of linear differential equations. Namely, we consider equations x′ = A(t, θ)x

depending continuously on a real parameter θ. The almost reducibility set of this equation is
the set of all θ ∈ R for which the equation is almost reducible. We have the following result
(see Theorem 3.1).

Theorem 1.3. The almost reducibility set of x′ = A(t, θ)x is an Fσδ-set.

Finally, we establish a partial converse of Theorem 1.3. Namely, we construct a differential
equation with given Fσδ-set containing zero as its almost reducibility set (see Theorem 4.1).

Theorem 1.4. Given an integer q ≥ 2 and an Fσδ-set M containing zero, there exists an equation x′ =
A(t, θ)x whose almost reducibility set is equal to M. Moreover, given an unbounded nondecreasing

function ρ(t) ≥ 0, we may require that

‖A(t, θ)‖ ≤ ρ(t)(1 + |θ|) for all t ≥ 0 and θ ∈ R.

The proof of Theorem 1.4 is partly inspired by arguments in [1].

2 The notion of almost reducibility

We introduce the notion of almost reducibility for the class of nonautonomous linear equations
and we establish some of its basic properties. In particular, we characterize completely the
class of autonomous equations to which a given nonautonomous equation is almost reducible.

Let Mq be the set of all q × q matrices with real entries and let GLq ⊂ Mq be the subset of
all invertible matrices. Consider a piecewise continuous function A : R

+
0 → Mq. We say that

the equation
x′ = A(t)x (2.1)

is almost reducible to an equation x′ = Bx for some matrix B ∈ Mq if there exist matrices
U(t) ∈ GLq for t ≥ 0 satisfying

lim
t→∞

1
t

log‖U(t)‖ = lim
t→∞

1
t

log‖U(t)−1‖ = 0 (2.2)

such that
U(t)−1T(t, s)U(s) = eB(t−s) for t, s ≥ 0, (2.3)

where T(t, s) is the evolution family associated with equation (2.1). This means that we have
T(t, s)x(s) = x(t) for any solution x = x(t) of the equation x′ = A(t)x and all t, s ≥ 0. Then
we also say that equation (2.1) is almost reducible. The family (U(t))t≥0 is called a Lyapunov

coordinate change.
We start by describing when a nonautonomous equation is almost reducible to an au-

tonomous equation with a diagonal coefficient matrix. The Lyapunov exponent λ : R
q →

[−∞,+∞] associated with equation (2.1) is defined by

λ(v) = lim
t→∞

1
t

log‖T(t, 0)v‖,
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with the convention that log 0 = −∞. We shall always assume that λ takes only finite values
on R

q \ {0}. It follows from the theory of Lyapunov exponents that these finite values are say
λ1 < · · · < λp for some positive integer p ≤ q and that the sets

Ei =
{

v ∈ R
q : λ(v) ≤ λi

}

are linear subspaces for i = 1, . . . , p. A basis v1, . . . , vq for R
q is said to be normal (with respect

to equation (2.1)) if for each i = 1, . . . , p some elements of {v1, . . . , vq} form a basis for Ei.

Theorem 2.1. Let x′ = A(t)x be an equation on R
q whose Lyapunov λ takes only finite values on

R
q \ {0}. Then

lim
t→∞

1
t

∫ t

0
tr A(s) ds =

q

∑
j=1

λ(vj) (2.4)

for some normal basis v1, . . . , vq for R
q if and only if the equation x′ = A(t)x is almost reducible

to an autonomous equation with a diagonal coefficient matrix, whose entries on the diagonal are then

necessarily λ(v1), . . . , λ(vq), up to a permutation.

Proof. Assume first that (2.4) holds for some normal basis v1, . . . , vq for R
q. Let U(0) be the

matrix with columns v1, . . . , vq and for each t > 0, let

U(t) = T(t, 0)U(0)diag
(

e−λ(v1)t, . . . , e−λ(vq)t
)

.

Then
U(t)−1T(t, s)U(s) = diag

(

eλ(v1)(t−s), . . . , eλ(vq)(t−s)
)

,

that is, property (2.3) holds taking

B = diag
(

λ(v1), . . . , λ(vq)
)

.

In order to show that (U(t))t≥0 is a Lyapunov coordinate change, notice that the columns
of U(t) are the vectors

T(t, 0)v1e−λ(v1)t, . . . , T(t, 0)vqe−λ(vq)t.

Since

lim
t→∞

1
t

log
(

‖T(t, 0)vi‖e−λ(vi)t
)

= 0, (2.5)

we obtain

lim
t→∞

1
t

log ‖U(t)‖ ≤ 0.

Now we consider the matrices

U(t)−1 = diag
(

eλ(v1)t, . . . , eλ(vq)t
)

(T(t, 0)U(0))−1.

We have
(T(t, 0)U(0))−1 = C(t)/ det(T(t, 0)U(0))

for some matrices C(t) with (i, j) entry given by (−1)i+j∆ji(t), where ∆ji(t) is the determinant
of the matrix obtained from T(t, 0)U(0) erasing its jth line and ith column. Then

U(t)−1 = D(t)
exp ∑

q
j=1 λ(vj)t

det(T(t, 0)U(0))
, (2.6)
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where
D(t) = diag

(

e−∑j 6=1 λ(vj)t, . . . , e−∑j 6=q λ(vj)(m−1))C(t).

By Liouville’s theorem we have

det T(t, 0) = exp
∫ t

0
tr A(s) ds (2.7)

and so it follows from (2.4) that

lim
t→∞

1
t

log det T(t, 0) =
q

∑
j=1

λ(vj).

Therefore,

lim
t→∞

1
t

log
exp ∑

q
j=1 λ(vj)t

|det(T(t, 0)U(0))| = 0. (2.8)

The (i, j) entry of D(t) is given by (−1)i+j∆̄ji(t), where ∆̄ji(t) is the determinant of the matrix
obtained from T(t, 0)U(0) dividing each kth column by eλ(vk)t and then erasing the jth line
and the ith column. It follows from (2.5) that

lim
t→∞

1
t

log |∆̄ji(t)| ≤ 0 and so lim
t→∞

1
t

log ‖D(t)‖ ≤ 0.

Therefore, by (2.6) and (2.8), we obtain

lim
t→∞

1
t

log
(

‖U(t)−1‖−1) = − lim
t→∞

1
t

log ‖U(t)−1‖ ≥ 0,

which shows that (U(t))t≥0 is a Lyapunov coordinate change.
Now assume that the equation x′ = A(t)x is almost reducible to an autonomous equation

with a diagonal coefficient matrix, that is,

U(t)−1T(t, s)U(s) = diag
(

ea1(t−s), . . . , eaq(t−s)
)

(2.9)

for some matrices U(t) ∈ GLq, for t ≥ 0, satisfying (2.2) and some numbers a1, . . . , aq ∈ R. Let
v1, . . . , vq be the columns of U(0). Then

‖U(t)−1T(t, 0)vi‖ = eait.

By (2.2), this implies that the basis v1, . . . , vq is normal with λ(vi) = ai for i = 1, . . . , q. More-
over, again by (2.9), we have

det(U(t)−1)det T(t, 0)det U(0) = e∑
q
j=1 λ(vi)t. (2.10)

Since det U(t) is a sum of products of the entries of U(t), by (2.2) we have

lim
t→∞

1
t

log|det U(t)| = 0

and so it follows from (2.7) and (2.10), that identity (2.4) holds.

We use Theorem 2.1 to characterize the class of autonomous equations to which an equa-
tion x′ = A(t)x is almost reducible.
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Theorem 2.2. Let x′ = A(t)x be an equation on R
q that is almost reducible to an equation x′ = Bx.

Then the equation x′ = A(t)x is almost reducible to an equation x′ = Cx if and only if the eigenvalues

λi(B) and λi(C), respectively, of B and C counted with multiplicities, satisfy

Re λi(B) = Re λi(C) for i = 1, . . . , q,

eventually up to a permutation.

Proof. First assume that the equation x′ = A(t)x is almost reducible to both x′ = Bx and
x′ = Cx. Consider Lyapunov coordinate changes (U(t))t≥0 and (V(t))t≥0 such that

U(t)−1T(t, s)U(s) = eB(t−s) and V(t)−1T(t, s)V(s) = eC(t−s)

for t, s ≥ 0. Then
W(t)−1eB(t−s)W(s) = eC(t−s)

for t, s ≥ 0, where the matrices W(t) = U(t)−1V(t) form again a Lyapunov coordinate change.
It follows readily from the identity

W(t)−1eBtW(0) = eCt

that the Lyapunov exponents λB and λC associated, respectively, with the equations x′ = Bx

and x′ = Cx satisfy
λB(W(0)v) = λC(v) for all v ∈ R

q. (2.11)

The values of λB and λC are, respectively, Re λi(B) and Re λi(C) for i = 1, . . . , q, counted with
their multiplicities and so it follows readily from (2.11) that

Re λi(B) = Re λi(C) for i = 1, . . . , q, (2.12)

eventually up to a permutation.
Now assume that property (2.12) holds, eventually up to a permutation. Again, the values

of the Lyapunov exponents λB and λC are, respectively, Re λi(B) and Re λi(C) for i = 1, . . . , q,
counted with their multiplicities. Therefore, condition (2.4) holds for the differential equations
x′ = Bx and x′ = Cx. By Theorem 2.1, there exist Lyapunov coordinate changes (Ū(t))t≥0 and
(V̄(t))t≥0 such that

Ū(t)−1eB(t−s)Ū(s) = diag
(

Re λ1(B), . . . , Re λq(B)
)t−s

and
V̄(t)−1eC(t−s)V̄(s) = diag

(

Re λ1(C), . . . , Re λq(C)
)t−s

for t ≥ 0. By (2.12), we obtain

Ū(t)−1eB(t−s)Ū(s) = V̄(t)−1eC(t−s)V̄(s)

for t ≥ 0 and so
W(t)−1T(t, s)W(s) = eC(t−s)

for t, s ≥ 0, where
W(t) = U(t)Ū(t)V̄(t)−1

for each t ≥ 0. Since (W(t))t≥0 is a Lyapunov coordinate change, we conclude that x′ = A(t)x

is almost reducible to the equation x′ = Cx.



Nonautonomous equations and almost reducibility sets 7

3 Characterization of almost reducibility sets

In this section we give a characterization of the almost reducibility sets of a differential equa-
tion x′ = A(t, θ)x depending on a real parameter θ. Namely, we show that any such set is an
Fσδ-set. More precisely, let M be the set of all equations x′ = A(t, θ)x such that the map

R
+
0 × R ∋ (t, θ) 7→ A(t, θ) ∈ Mq

is piecewise continuous in t and continuous in θ. We denote by Tθ(t, s) the corresponding
evolution family. The almost reducibility set of an equation x′ = A(t, θ)x is the set of all θ ∈ R

for which the equation is almost reducible.

Theorem 3.1. The almost reducibility set of any equation x′ = A(t, θ)x in M is an Fσδ-set.

Proof. Let M be the almost reducibility set of the equation. For each n ∈ N and ε > 0, we
define a function gn,ε : Mq × GLq × R → [0, n] by

gn,ε(B, C, θ) = sup
t≥0

min{n, ht(B, C, θ)},

where
ft(B, C, θ) = max

{

‖eBtCTθ(0, t)‖e−εt, ‖Tθ(t, 0)C−1e−Bt‖e−εt
}

.

The function gn,ε is lower semicontinuous in (B, C, θ) since the functions

‖eBtCTθ(0, t)‖e−εt and ‖Tθ(t, 0)C−1e−Bt‖e−εt

are continuous (in view of the continuous dependence of a solution on a parameter) and the
supremum of any number of continuous functions is lower semicontinuous. Therefore, the set

Dn,ε = g−1
n,ε (−∞, n/2]

is closed for each n ∈ N and ε > 0.

Lemma 3.2. The equation x′ = A(t, θ)x is almost reducible to the equation x′ = Bx if and only if

there exists C ∈ GLq such that for each ε > 0 we have

gn,ε(B, C, θ) ≤ n/2 for some n ∈ N. (3.1)

Proof of the lemma. First assume that the equation x′ = A(t)x is almost reducible to the equa-
tion x′ = Bx. Then there exists a Lyapunov coordinate change (U(t))t≥0 satisfying (2.3).
By property (2.2), for each ε > 0 we have

−ε < −1
t

log‖U(t)−1‖ ≤ 1
t

log‖U(t)‖ < ε

for any sufficiently large t and so there exists c = c(ε) > 0 such that

c−1e−εt
< ‖U(t)−1‖−1 ≤ ‖U(t)‖ < ceεt (3.2)

for all t ≥ 0. Now take C = U(0)−1. By (2.3) with s = 0 we have

U(t) = Tθ(t, 0)C−1e−Bt and U(t)−1 = eBtCTθ(0, t).
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Hence, it follows readily from (3.2) that

sup
t≥0

(

‖eBtCTθ(0, t)‖e−εt + ‖Tθ(t, 0)C−1e−Bt‖e−εt
)

< ∞

and so property (3.1) holds.
Now assume that there exists C ∈ GLq satisfying (3.1) for each ε > 0. Then there exists

n ∈ N such that

max
{

‖eBtCTθ(0, t)‖e−εt, ‖Tθ(t, 0)C−1e−Bt‖e−εt
}

≤ n/2

for all t ≥ 0 and so

lim
t→∞

1
t

log‖eBtCTθ(0, t)‖ ≤ 0 (3.3)

and

lim
t→∞

1
t

log‖Tθ(t, 0)C−1e−Bt‖ ≤ 0. (3.4)

Finally, let
U(t) = Tθ(t, 0)C−1e−Bt for t ≥ 0.

Note that U(0) = C−1. Therefore,

eB(t−s) = eBte−Bs

= U(t)−1Tθ(t, 0)U(0)
(

U(0)−1Tθ(0, s)U(s)
)

= U(t)−1Tθ(t, s)U(s).

Moreover, since
U(t)−1 = eBtCTθ(0, t),

it follows readily from (3.3) and (3.4) that

0 ≤ lim
t→∞

1
t

log(‖U(t)−1‖−1) ≤ lim
t→∞

1
t

log‖U(t)‖ ≤ 0

and so condition (2.2) also holds.

By Lemma 3.2, the equation x′ = A(t, θ)x is almost reducible if and only if there exist
B ∈ Mq and C ∈ GLq such that

(B, C, θ) ∈ Dε :=
⋃

n∈N

Dn,ε

for each ε > 0. Therefore, the almost reducibility set is

M =
⋂

ε>0

π(Dε),

where π : Mq × GLq × R → R is the projection onto the third component. For k ∈ N let

Ek =
{

(B, C, θ) ∈ Mq × GLq × R : ‖B‖ ≤ k, k−1 ≤ |det C| ≤ k, |θ| ≤ k
}

.

Then each set Dn,ε ∩ Ek is compact and

Dε =
⋃

n∈N

Dn,ε =
⋃

n,k∈N

(Dn,ε ∩ Ek).

Therefore,
M =

⋂

ε>0

π(Dε) =
⋂

p∈N

⋃

n,k∈N

π(Dn,1/p ∩ Ek)

and since the map π is continuous, each set π(Dn,1/p ∩ Ek) is compact. This shows that the
almost reducibility set M is an Fσδ-set.
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4 Construction of families of equations

We also construct (as explicitly as possible) a differential equation in M with a given Fσδ-set
containing zero as its almost reducibility set.

Theorem 4.1. Given an integer q ≥ 2 and an Fσδ-set M containing zero, there exists an equation

x′ = A(t, θ)x in M whose almost reducibility set is equal to M. Moreover, given an unbounded

nondecreasing function ρ(t) ≥ 0, we may require that

‖A(t, θ)‖ ≤ ρ(t)(1 + |θ|) for all t ≥ 0 and θ ∈ R.

Proof. We start by describing some auxiliary notions that will be used in the proof. Given
a, b, c, θ ∈ R, we consider the 2 × 2 matrices

B(u, θ) =

(

aθ c(1 − θ) + bθ

−c(1 − θ)− bθ −aθ

)

, (4.1)

where u = (a, b, c) and

ν = ν(u, θ) =
√

(a2 − (b − c)2)θ2 − 2c(b − c)θ − c2. (4.2)

Then B(u, θ) has eigenvalues ±ν. Given r, s ∈ R with rs > 0 and d ∈ R
+, we define

a = d(s − r), b = d(2rs − r − s), c = 2drs. (4.3)

Then
a2 − (b − c)2 = −4d2rs < 0

and one can show that θ ∈ [r, s] if and only if

P(u, θ) := (a2 − (b − c)2)θ2 − 2c(b − c)θ − c2 ≥ 0. (4.4)

Since M is an Fσδ-set containing zero, one can write

R \ M =
⋃

w∈N

Hw, where Hw =
⋂

i∈N

Uw
i

for some nonempty open sets Uw
i ⊂ R \ {0} satisfying Uw

i+1 ⊂ Uw
i for each w, i ∈ N. Moreover,

Uw
i =

⋃

m∈N Iw
im for some nonempty open finite intervals Iw

im ⊂ R \ {0} with the property that
each θ ∈ Uw

i belongs to at most two intervals Iw
im (for each w, i ∈ N).

We still need an additional decomposition. For each interval Iw
im = (α, β), we consider the

sequence (cl)l∈Z defined recursively as follows. Take c0 = (α + β)/2. For each l ∈ N, let

c2l =
c2l−2 + β

2
, c−2l =

c−2l+2 + α

2

and
c2l−1 =

c2l−2 + c2l

2
, c−2l+1 =

c−2l+2 + c−2l

2
.

We define Jw
iml = [cl , cl+2] for l ∈ Z and so

Iw
im =

⋃

l∈Z

Jw
iml .
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Note that each point θ ∈ Uw
i belongs to at most three intervals Jw

iml (for each w, i, m ∈ N).
Moreover, given θ ∈ Iw

im, there exists l = l(θ) ∈ Z with θ ∈ Jw
iml such that θ is at least at a

distance |Jw
iml |/6 from each endpoint of Jw

iml (where |I| denotes the length of the interval I).
Now let ι : N → N

3 × Z be a bijection. Writing Jw
iml = [r, s] and η = ι−1(w, i, m, l), we

consider the unique d = d(η) ∈ R
+ such that

max
θ∈R

P(u(η), θ) = d2rs(r − s)2 =
1
w

, (4.5)

with u(η) = (a, b, c) given by (4.3). Then

P(u(η), θ) ≥ 5
9

d2rs(r − s)2 =
5

9w
for θ ∈

[

r +
s − r

6
, s − s − r

6

]

. (4.6)

Consider the function σ(t) = min{ρ(t), t} for t ≥ 0. Moreover, consider a strictly increas-
ing sequence of positive integers (ℓj)j∈N such that ℓ1 = 1,

ℓ3j−2

ℓ3j−1

j−1

∑
i=1

σ(ℓ3i−1) <
1
j
,

ℓ3j−1

ℓ3j
<

1
j
, ℓ3j+1 = 2ℓ3j − ℓ3j−1 (4.7)

and
σ(ℓ3j−1) ≥ 2κ‖u(j)‖ (4.8)

for all j ∈ N, where κ > 0 is fixed constant such that
∥

∥

(

a b
c d

)∥

∥ ≤ κ‖(a, b, c, d)‖ for any a, b, c, d ∈ R.

Finally, let ∆j = [ℓj, ℓj+1) for each j ∈ N and define

A(t, θ) =















B(u(j), θ) if t ∈ ∆3j for some j ∈ N,

−B(u(j), θ) if t ∈ ∆3j−1 for some j ∈ N,

Id if t ∈ ∆3j−2 for some j ∈ N.

By (4.1) together with (4.8), we obtain

‖A(t, θ)‖ ≤ ‖B(u(j), θ)‖ ≤ κ‖u(j)‖
≤ σ(ℓ3j−1)(1 + |θ|)
≤ σ(t)(1 + |θ|) ≤ ρ(t)(1 + |θ|).

Lemma 4.2. x′ = A(t, θ)x is not almost irreducible for θ ∈ R \ M.

Proof of the lemma. Take w ∈ N such that θ ∈ Uw
i for all i ∈ N. For each i ∈ N there exists

m ∈ N such that θ ∈ Iw
im. Moreover, let l = l(θ) ∈ Z be the integer introduced before (4.5)

and write ι−1(w, i, m, l) = ri. For each j ∈ ∆3ri−1 ∪ ∆3ri
the matrices ±B(u(3ri), θ) have real

eigenvalues. Denoting their (common) top eigenvalue by νi, it follows readily from (4.2)
and (4.4) together with (4.5) and (4.6) that

1
2
√

w
≤ νi ≤

1√
w

.

Denoting by Tθ(t, s) the evolution family associated with the equation x′ = A(t, θ)x, we have
Tθ(ℓ3ri−1, 0) = Id and so

Tθ(ℓ3ri
, 0) = Tθ(ℓ3ri

, ℓ3ri−1).
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Therefore,

‖Tθ(ℓ3ri
, 0)‖ = ‖Tθ(ℓ3ri

, ℓ3ri−1)‖
=
∥

∥e(ℓ3ri
−ℓ3ri−1)B(u(3ri),θ)

∥

∥

≥ eνi(ℓ3ri
−ℓ3ri−1)

≥ exp
(

ℓ3ri
− ℓ3ri−1

2
√

w

)

which in view of (4.7) gives

lim
i→∞

1
ℓ3ri

log‖Tθ(ℓ3ri
, 0)‖ ≥ lim

i→∞

1
2
√

w

(

1 − ℓ3ri−1

ℓ3ri

)

=
1

2
√

w
> 0. (4.9)

Now we assume that the equation x′ = A(t, θ)x is almost reducible to an equation x′ = Bx.
Then there exist matrices U(t) satisfying (2.2) and (2.3). Since Tθ(ℓ3ri−1, 0) = Id, we have

eBℓ3ri−1 = U(ℓ3ri−1)
−1U(0)

and
e−Bℓ3ri−1 = U(0)−1U(ℓ3ri−1)

for all i ∈ N. Therefore, for each ε > 0 there exists c0 = c0(ε) > 0 such that

max
{

‖eBℓ3ri−1‖, ‖e−Bℓ3ri−1‖
}

≤ c0eεℓ3ri−1

for all i ∈ N. Since ℓ3ri−1 → ∞ when i → ∞ and ε is arbitrary, all eigenvalues of B have real
part equal to 0 and so

‖eBt‖ ≤ c1(1 + |t|) for some c1 > 0 and any t ≥ 0.

On the other hand, by (2.3) we have

Tθ(t, 0) = U(t)eBtU(0)−1

and so

‖Tθ(ℓ3ri
, 0)‖ ≤ ‖U(0)−1‖ · ‖U(ℓ3ri

)‖ · ‖eBℓ3ri ‖
≤ c1(1 + |ℓ3ri

|)‖U(0)−1‖ · ‖U(ℓ3ri
)‖.

Finally, taking into account that U(t) satisfies (2.2) we obtain

lim
i→∞

1
ℓ3ri

log‖Tθ(ℓ3ri
, 0)‖ ≤ 0,

which contradicts (4.9). This shows that the equation x′ = A(t, θ)x is not almost reducible.

Lemma 4.3. x′ = A(t, θ)x is almost reducible for θ ∈ M.

Proof of the lemma. Since θ 6∈ Hw for every w ∈ N, θ belongs to at most finitely many sets Uw
i ,

i ∈ N (because Uw
i+1 ⊂ Uw

i for each w, i ∈ N) and since each element of Uw
i belongs to at

most two intervals Iw
im with m ∈ N and to at most three closed intervals Jw

iml with l ∈ Z, we
conclude that θ belongs to finitely many closed intervals Jw

iml with i, m ∈ N and l ∈ Z for each
w ∈ N. This implies that for each w ∈ N there exists N = Nw ∈ N such that for η ≥ N
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with ι(η) = (wη , iη , mη , lη) we have θ 6∈ J
wη

iηmη lη
and so also P(u(η), θ) < 0 whenever wη ≤ w.

In particular, for η ≥ N with wη ≤ w we have ν = iν̄ with ν̄ ∈ R and so

‖eB(u(η),θ)t‖ ≤ 1 + 2‖B(u(η), θ)‖ · |t|

(see for example [2, p. 65]). For the values of η ≥ N with wη > w, in view of (4.5) we have

P(u(η), θ) ≤ 1
wη

≤ 1
w + 1

.

Take w ∈ N. If η ≥ N, then

‖Tθ(t, ℓ3η−1)‖ ≤
∥

∥eB(u(η),θ)(t−ℓ3η−1)
∥

∥

≤
(

1 + 2σ(ℓ3η−1)(1 + |θ|)(t − ℓ3η−1)
)

exp
(

t − ℓ3η−1√
w + 1

)

≤
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

exp
(

t − ℓ3η−1√
w + 1

)

(4.10)

for t ∈ ∆3η−1 ∪ ∆3η . Now take

t ∈ ∆3η−1 ∪ ∆3η ∪ ∆3η+1 with η ∈ N.

Since A(t, θ) = Id for t ∈ ∆3η−2 and

Tθ(t, ℓ3N−1) = Tθ(t, ℓ3η−1)
η−1

∏
i=N

Tθ(ℓ3i+1, ℓ3i−1),

using (4.10) we obtain

‖Tθ(t, ℓ3N−1)‖ ≤ ‖Tθ(t, ℓ3η−1)‖
η−1

∏
i=N

‖Tθ(ℓ3i+1, ℓ3i−1)‖

≤
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

η−1

∏
i=N

(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

× exp

(

1√
w + 1

(

(t − ℓ3η−1) +
η−1

∑
i=N

(ℓ3i+1 − ℓ3i−1)

))

≤
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

η−1

∏
i=1

(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

× exp
(

t − ℓ3η−1 + ℓ3η−2 − ℓ3N−1√
w + 1

)

≤
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

η−1

∏
i=1

(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

exp
t√

w + 1
.

Then

lim
t→∞

1
t

log‖Tθ(t, ℓ3N−1)‖ ≤ 1√
w + 1

+ lim
t→∞

1
t

log
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

+ lim
t→∞

1
t

η−1

∑
i=1

log
(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

.
(4.11)
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Since
σ(ℓ3η−1) = min{ρ(ℓ3η−1), ℓ3η−1} ≤ ℓ3η−1 ≤ t,

we obtain

lim
t→∞

1
t

log
(

1 + 2σ(ℓ3η−1)(1 + |θ|)t
)

= 0. (4.12)

Moreover, since log(1 + x) ≤ x for all x ≥ 0, it follows from (4.7) that

1
t

η−1

∑
i=1

log
(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

≤ 2
ℓ3η−1

η−1

∑
i=1

(

σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

≤ 2(1 + |θ|)ℓ3η−2

ℓ3η−1

η−1

∑
i=1

σ(ℓ3i−1)

≤ 2(1 + |θ|)
η

.

Therefore,

lim
t→∞

1
t

η−1

∑
i=1

log
(

1 + 2σ(ℓ3i−1)(1 + |θ|)ℓ3i+1
)

= 0 (4.13)

since η → ∞ when t → ∞. By (4.12) and (4.13), it follows from (4.11) that

lim
t→∞

1
t

log‖Tθ(t, ℓ3N−1)‖ ≤ 1√
w + 1

for any w ∈ N and so

lim
t→∞

1
n

log‖Tθ(t, 0)‖ ≤ 0.

One can also show that

lim
t→∞

1
n

log‖Tθ(0, t)‖ ≤ 0

interchanging B(u, θ) with −B(u, θ) in the definition of A(t, θ). This implies that

lim
t→∞

1
t

log‖Tθ(t, 0)‖ ≥ lim
t→∞

1
t

log
(

‖Tθ(0, t)‖−1)

= − lim
t→∞

1
t

log‖Tθ(0, t)‖ ≥ 0

and so

lim
t→∞

1
t

log‖T(t, 0)±1‖ = 0.

For Uθ(t) = Tθ(t, 0) we have

Uθ(t)
−1Tθ(t, 0)Uθ(t) = Tθ(0, t)Tθ(t, 0) = Id.

So, identity (2.3) holds with B = 0. This shows that the differential equation x′ = A(t, θ)x is
almost reducible.

In order to construct an equation x′ = Ã(t, θ)x on R
q with almost reducibility set M for

q > 2, it suffices to take
Ã(t, θ) = diag(A(t, θ), 0).

This concludes the proof of the theorem.
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Abstract. We show practical solvability of the following two-dimensional systems of
difference equations

xn+1 =
un−2vn−3 + a

un−2 + vn−3
, yn+1 =

wn−2sn−3 + a

wn−2 + sn−3
, n ∈ N0,

where un, vn, wn and sn are xn or yn, by presenting closed-form formulas for their
solutions in terms of parameter a, initial values, and some sequences for which there
are closed-form formulas in terms of index n. This shows that a recently introduced
class of systems of difference equations, contains a subclass such that one of the delays
in the systems is equal to four, and that they all are practically solvable, which is a bit
unexpected fact.

Keywords: system of difference equations, solvable systems, practical solvability.

2020 Mathematics Subject Classification: 39A45.

1 Introduction

Solvability of difference equations is one of the basic topics studied in the area. Presenta-
tions of some results in the topic can be found in any book on the equations, for instance,
in: [4, 5, 9, 10, 12, 13]. The equations frequently appear in various applications (see, e.g.,
[4, 5, 7, 8, 11, 12, 23, 25, 41]). There has been also some recent interest in solvability (see, e.g.,
[2, 22, 28–32, 35, 37–40]). If it is not easy to find solutions to the equations, researchers try to
find their invariants, as it was the case in [15–17, 21, 26, 27, 33, 34]. In some cases they can be
used also for solving the equations and systems, as it was the case in [33, 34].

Each difference equation can be used for forming systems of difference equations pos-
sessing some types of symmetry. A way for forming such systems can be found in [28].

BEmail: sstevic@ptt.rs
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Papaschinopoulos, Schinas and some of their colleagues proposed studying some systems of
this and other types (see, e.g., [6, 14–21, 26, 27]). We have devoted a part of our research to
solvable systems of difference equations, unifying the two topics (see, e.g., [2,28–32,35,38–40]).

During the last several years, we have studied, among other things, practical solvability of
product-type systems of difference equations. For some of our previous results in the topic
see, for instance, [29,30], as well as the related references therein. The systems are theoretically
solvable, but only several subclasses are practically solvable, which has been one of the main
reasons for our study of the systems.

Quite recently, we have started studying solvability of the, so called, hyperbolic-cotangent-
type systems of difference equations. They are given by

xn+1 =
un−kvn−l + a

un−k + vn−l
, yn+1 =

wn−ksn−l + a

wn−k + sn−l
, n ∈ N0, (1.1)

where delays k and l are nonnegative integers, parameter a and initial values are complex
numbers, whereas each of the four sequences un, vn, wn and sn is one of the sequences xn or
yn for all possible values of index n.

Note that this is a class of nonlinear systems of difference equations which is formed by
using the method for forming symmetric types of systems of difference equations described
in [28]. For the case of one-dimensional difference equation corresponding to the systems in
(1.1) see [24] and [37].

What is interesting is that the systems in (1.1) are connected to product-type ones. As we
have mentioned the product-type systems are theoretically solvable, but only few of them are
practically solvable. The reason for this lies in impossibility to solve all polynomial equations,
as well as the fact that with each product-type system of difference equations is associated a
polynomial. The mentioned connection between the systems in (1.1) and product-type ones
implies that also only several subclasses of the systems in (1.1) are practically solvable. More-
over, the connection shows that for guaranteeing practical solvability of all the systems in (1.1)
values of k and l seems should be small. Note that we may assume k ≤ l. The case k = 0
and l = 1 was studied in [39] and [40], whereas in [32] was presented another solution to
the problem. The case k = 1 and l = 2 was studied in [31], whereas the case k = 0 and
l = 2 was studied in [35], which finished the study of practical solvability in the case when
max{k, l} ≤ 2 and k 6= l. The case k = l ∈ N0 was solved in [36].

Thus, it is of some interest to see if all the systems in (1.1) are solvable when l = 3 and k is
such that 0 ≤ k ≤ 2.

One of the cases is obvious. Namely, if k = 1, then the systems in (1.1) are with interlacing
indices (the notion and some examples can be found in [38]), since each of the systems in (1.1)
in this case, reduces to two systems of the exactly same form with k = 0 and l = 1. Thus, it is
of some interest to study the other cases.

Here, we show that the systems of difference equations

xn+1 =
un−2vn−3 + a

un−2 + vn−3
, yn+1 =

wn−2sn−3 + a

wn−2 + sn−3
, n ∈ N0, (1.2)

are practically solvable, that is, we show the solvability of all sixteen systems in (1.1), in
the case k = 2 and l = 3, which is a bit surprising result. Namely, as we have said, to
each system in (1.2) is associated a polynomial, several of which have degree bigger than
four (some of them have degree eight). By a well-known theorem of Abel [1], polynomials
of degree bigger than four need not be solvable by radicals. However, it turns out that all
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the associate polynomials to the systems in (1.2) are solvable by radicals, implying practical
solvability of the corresponding systems. Using the fact that there is no universal method for
showing practical solvability of such systems, as well as the fact that the situation in the case
max{k, l} ≥ 5 is different, shows the importance of studying solvability of the systems in (1.2).

The case a = 0 was considered in [32] where it was shown its theoretical solvability.
Namely, by using the changes of variables

xn =
1
x̂n

, yn =
1
ŷn

,

system (1.2) becomes linear, from which together with a known theorem from the theory of
homogeneous linear difference equations with constant coefficients the theoretical solvability
of the system follows. Hence, from now on we will consider only the case a 6= 0.

2 Connection of (1.2) to product-type systems and a lemma

First, we present above mentioned connection of the systems in (1.2) to some product-type
systems.

Some simple calculations yield

xn+1 ±
√

a =
(un−2 ±

√
a)(vn−3 ±

√
a)

un−2 + vn−3
and yn+1 ±

√
a =

(wn−2 ±
√

a)(sn−3 ±
√

a)

wn−2 + sn−3
,

for n ∈ N0, implying

xn+1 +
√

a

xn+1 −
√

a
=

un−2 +
√

a

un−2 −
√

a
· vn−3 +

√
a

vn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

wn−2 +
√

a

wn−2 −
√

a
· sn−3 +

√
a

sn−3 −
√

a
, (2.1)

for n ∈ N0.
System (2.1) written in a compact form, can be written as follows

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.2)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.3)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.4)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.5)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.6)
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xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.7)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.8)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.9)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.10)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.11)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.12)

xn+1 +
√

a

xn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.13)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.14)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· xn−3 +

√
a

xn−3 −
√

a
, (2.15)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

xn−2 +
√

a

xn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.16)

xn+1 +
√

a

xn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
,

yn+1 +
√

a

yn+1 −
√

a
=

yn−2 +
√

a

yn−2 −
√

a
· yn−3 +

√
a

yn−3 −
√

a
, (2.17)

for n ∈ N0.
Let

ζn =
xn +

√
a

xn −
√

a
and ηn =

yn +
√

a

yn −
√

a
,

then

xn =
√

a
ζn + 1
ζn − 1

and yn =
√

a
ηn + 1
ηn − 1

, (2.18)
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so (2.2)–(2.17) become

ζn+1 = ζn−2ζn−3, ηn+1 = ζn−2ζn−3, (2.19)

ζn+1 = ζn−2ζn−3, ηn+1 = ηn−2ζn−3, (2.20)

ζn+1 = ζn−2ζn−3, ηn+1 = ζn−2ηn−3, (2.21)

ζn+1 = ζn−2ζn−3, ηn+1 = ηn−2ηn−3, (2.22)

ζn+1 = ηn−2ζn−3, ηn+1 = ζn−2ζn−3, (2.23)

ζn+1 = ηn−2ζn−3, ηn+1 = ηn−2ζn−3, (2.24)

ζn+1 = ηn−2ζn−3, ηn+1 = ζn−2ηn−3, (2.25)

ζn+1 = ηn−2ζn−3, ηn+1 = ηn−2ηn−3, (2.26)

ζn+1 = ζn−2ηn−3, ηn+1 = ζn−2ζn−3, (2.27)

ζn+1 = ζn−2ηn−3, ηn+1 = ηn−2ζn−3, (2.28)

ζn+1 = ζn−2ηn−3, ηn+1 = ζn−2ηn−3, (2.29)

ζn+1 = ζn−2ηn−3, ηn+1 = ηn−2ηn−3, (2.30)

ζn+1 = ηn−2ηn−3, ηn+1 = ζn−2ζn−3, (2.31)

ζn+1 = ηn−2ηn−3, ηn+1 = ηn−2ζn−3, (2.32)

ζn+1 = ηn−2ηn−3, ηn+1 = ζn−2ηn−3, (2.33)

ζn+1 = ηn−2ηn−3, ηn+1 = ηn−2ηn−3, (2.34)

for n ∈ N0.
So, if systems (2.19)–(2.34) are practically solvable, then by using (2.18) the systems (2.2)–

(2.17) will be also such. Hence, it should be first proved practical solvability of systems
(2.19)–(2.34).

The following auxiliary result is used for several times in the rest of the article. The proof
is omitted since it can be found, for example, in [31].

Lemma 2.1. Assume Rk(s) = sk − bk−1sk−1 − bk−2sk−2 − · · · − b0, b0 6= 0, is a real polynomial with

simple roots si, i = 1, k, and an, n ≥ l − k, is defined by

an = bk−1an−1 + bk−2an−2 + · · ·+ b0an−k, n ≥ l,

with aj−k = 0, j = l, l + k − 2, al−1 = 1, and l ∈ Z. Then

an =
k

∑
i=1

sn+k−l
i

R′
k(si)

, n ≥ l − k.

3 Main results

Here we show that each of the product-type systems of difference equations in (2.19)–(2.34) is
practically solvable, and following the analysis of each of the systems, by using the relations
in (2.18), we present closed-form formulas for general solutions to systems (2.2)–(2.17).

3.1 System (2.19)

The equations in (2.19) immediately imply the following relation

ζn = ηn, n ∈ N. (3.1)
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The first equation in (2.19) can be written as follows

ζn = ζn−3ζn−4 = ζc1
n−3ζd1

n−4ζe1
n−5ζ

f1
n−6, (3.2)

for n ∈ N, where, of course, the exponents are defined as follows

c1 = d1 = 1, e1 = f1 = 0. (3.3)

An application of the first equality in (3.2) into the second one yields

ζn = (ζn−6ζn−7)
c1 ζd1

n−4ζe1
n−5ζ

f1
n−6 = ζd1

n−4ζe1
n−5ζ

c1+ f1
n−6 ζc1

n−7 = ζc2
n−4ζd2

n−5ζe2
n−6ζ

f2
n−7,

for n ≥ 4, where c2 := d1, d2 := e1, e2 := c1 + f1 and f2 := c1.
It is natural to assume that the following relations hold

ζn = ζ
ck

n−k−2ζ
dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5, (3.4)

ck = dk−1, dk = ek−1, ek = ck−1 + fk−1, fk = ck−1 (3.5)

for a k ≥ 2 and n ≥ k + 2.
Relations (3.2), (3.4) and (3.5) yield

ζn = (ζn−k−5ζn−k−6)
ck ζ

dk

n−k−3ζ
ek

n−k−4ζ
fk

n−k−5,

= ζ
dk

n−k−3ζ
ek

n−k−4ζ
ck+ fk

n−k−5ζ
ck

n−k−6

= ζ
ck+1
n−k−3ζ

dk+1
n−k−4ζ

ek+1
n−k−5ζ

fk+1
n−k−6,

where
ck+1 := dk, dk+1 := ek, ek+1 := ck + fk. fk+1 := ck.

The inductive argument proves that (3.4) and (3.5) really hold for 2 ≤ k ≤ n − 2.
It is easy to see that from (3.3) and (3.5), we get

cn = cn−3 + cn−4, (3.6)

for n ≥ 5 (in fact, for n ∈ Z), and

c0 = c−1 = 0, c−2 = 1, c−3 = c−4 = c−5 = 0, c−6 = 1, c−7 = −1. (3.7)

Choose k = n − 2 in relation (3.4). Then (3.5) and (3.6) yield

ζn = ζ
cn−2
0 ζ

dn−2
−1 ζ

en−2
−2 ζ

fn−2
−3 = ζ

cn−2
0 ζ

cn−1
−1 ζcn

−2ζ
cn−3
−3 , (3.8)

for n ∈ N. A simple verification shows that (3.8) holds also for n ≥ −3.
Thus, (3.1) and (3.8) imply

ηn = ζ
cn−2
0 ζ

cn−1
−1 ζcn

−2ζ
cn−3
−3 , n ∈ N. (3.9)

Let

P4(λ) = λ4 − λ − 1 = 0. (3.10)
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It is the characteristic polynomial associated with (3.6). Its roots λj, j = 1, 4, are simple and
can be found by radicals [3].

Lemma 2.1 shows that the solution to (3.6) satisfying the initial conditions c−5 = c−4 =

c−3 = 0, c−2 = 1, is given by

cn =
4

∑
j=1

λn+5
j

P′
4(λj)

, n ∈ Z. (3.11)

The following theorem follows from (2.18), (3.8) and (3.9).

Theorem 3.1. If a 6= 0, then the general solution to (2.2) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3 − 1
, n ≥ −3,

yn =
√

a

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3 − 1
, n ∈ N,

where cn is given by (3.11).

3.2 System (2.20)

Since the first equation in (2.20) is the same as in (2.19), formula (3.8) must hold. Further, we
have ηn = ηn−3ζn−4, n ∈ N, or equivalently

η3n+i = η3(n−1)+iζ3(n−1)+i−1, n ∈ N, (3.12)

for i = −2,−1, 0, and n ∈ N.
Relations (3.8) and (3.12), for i = −2, yield

η3n−2 = η−2

n

∏
j=1

ζ3j−6

= η−2

n

∏
j=1

ζ
c3j−8
0 ζ

c3j−7

−1 ζ
c3j−6
−2 ζ

c3j−9
−3

= η−2ζ
∑

n
j=1 c3j−8

0 ζ
∑

n
j=1 c3j−7

−1 ζ
∑

n
j=1 c3j−6

−2 ζ
∑

n
j=1 c3j−9

−3 , (3.13)

for n ∈ N0.
From (3.8) and (3.12), for i = −1, we obtain

η3n−1 = η−1

n

∏
j=1

ζ3j−5

= η−1

n

∏
j=1

ζ
c3j−7
0 ζ

c3j−6

−1 ζ
c3j−5
−2 ζ

c3j−8
−3

= η−1ζ
∑

n
j=1 c3j−7

0 ζ
∑

n
j=1 c3j−6

−1 ζ
∑

n
j=1 c3j−5

−2 ζ
∑

n
j=1 c3j−8

−3 , (3.14)

for n ∈ N0.
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From (3.8) and (3.12), for i = 0, it follows that

η3n = η0

n

∏
j=1

ζ3j−4

= η0

n

∏
j=1

ζ
c3j−6
0 ζ

c3j−5

−1 ζ
c3j−4
−2 ζ

c3j−7
−3

= η0ζ
∑

n
j=1 c3j−6

0 ζ
∑

n
j=1 c3j−5

−1 ζ
∑

n
j=1 c3j−4

−2 ζ
∑

n
j=1 c3j−7

−3 , (3.15)

for n ∈ N0.
From (3.6) and (3.7), we have

n

∑
j=1

c3j−9 =
n

∑
j=1

(c3j−5 − c3j−8) = c3n−5, (3.16)

n

∑
j=1

c3j−8 =
n

∑
j=1

(c3j−4 − c3j−7) = c3n−4, (3.17)

n

∑
j=1

c3j−7 =
n

∑
j=1

(c3j−3 − c3j−6) = c3n−3 (3.18)

n

∑
j=1

c3j−6 =
n

∑
j=1

(c3j−2 − c3j−5) = c3n−2 − 1, (3.19)

n

∑
j=1

c3j−5 =
n

∑
j=1

(c3j−1 − c3j−4) = c3n−1, (3.20)

n

∑
j=1

c3j−4 =
n

∑
j=1

(c3j − c3j−3) = c3n, (3.21)

for n ∈ N0.
From (3.13)–(3.21), we have

η3n−2 = η−2ζ
c3n−4
0 ζ

c3n−3
−1 ζ

c3n−2−1
−2 ζ

c3n−5
−3 , (3.22)

η3n−1 = η−1ζ
c3n−3
0 ζ

c3n−2−1
−1 ζ

c3n−1
−2 ζ

c3n−4
−3 , (3.23)

η3n = η0ζ
c3n−2−1
0 ζ

c3n−1
−1 ζc3n

−2ζ
c3n−3
−3 , (3.24)

for n ∈ N0.
The following theorem follows from (2.18), (3.8), (3.22), (3.23) and (3.24).

Theorem 3.2. If a 6= 0, then the general solution to (2.3) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3 − 1
, n ≥ −3,

y3n−2 =
√

a

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−4
(

x−1+
√

a
x−1−

√
a

)c3n−3
(

x−2+
√

a
x−2−

√
a

)c3n−2−1 (
x−3+

√
a

x−3−
√

a

)c3n−5
+ 1

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−4
(

x−1+
√

a
x−1−

√
a

)c3n−3
(

x−2+
√

a
x−2−

√
a

)c3n−2−1 (
x−3+

√
a

x−3−
√

a

)c3n−5 − 1

y3n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−3
(

x−1+
√

a
x−1−

√
a

)c3n−2−1 (
x−2+

√
a

x−2−
√

a

)c3n−1
(

x−3+
√

a
x−3−

√
a

)c3n−4
+ 1

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−3
(

x−1+
√

a
x−1−

√
a

)c3n−2−1 (
x−2+

√
a

x−2−
√

a

)c3n−1
(

x−3+
√

a
x−3−

√
a

)c3n−4 − 1
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y3n =
√

a

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−2−1 (
x−1+

√
a

x−1−
√

a

)c3n−1
(

x−2+
√

a
x−2−

√
a

)c3n
(

x−3+
√

a
x−3−

√
a

)c3n−3
+ 1

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)c3n−2−1 (
x−1+

√
a

x−1−
√

a

)c3n−1
(

x−2+
√

a
x−2−

√
a

)c3n
(

x−3+
√

a
x−3−

√
a

)c3n−3 − 1
,

for n ∈ N0, where cn is given by (3.11).

3.3 System (2.21)

Since the first equation in (2.21) is the same as in (2.19), formula (3.8) must hold. Further, we
have ηn = ζn−3ηn−4, for n ∈ N, or equivalently

η4n+i = ζ4n−3+iη4(n−1)+i, (3.25)

for n ∈ N, i = −3,−2,−1, 0.
From (3.8) and (3.25), we have

η4n−3 = η−3

n

∏
j=1

ζ4j−6

= η−3

n

∏
j=1

ζ
c4j−8
0 ζ

c4j−7

−1 ζ
c4j−6
−2 ζ

c4j−9
−3

= η−3ζ
∑

n
j=1 c4j−8

0 ζ
∑

n
j=1 c4j−7

−1 ζ
∑

n
j=1 c4j−6

−2 ζ
∑

n
j=1 c4j−9

−3 , (3.26)

for n ∈ N0,

η4n−2 = η−2

n

∏
j=1

ζ4j−5

= η−2

n

∏
j=1

ζ
c4j−7
0 ζ

c4j−6

−1 ζ
c4j−5
−2 ζ

c4j−8
−3

= η−2ζ
∑

n
j=1 c4j−7

0 ζ
∑

n
j=1 c4j−6

−1 ζ
∑

n
j=1 c4j−5

−2 ζ
∑

n
j=1 c4j−8

−3 , (3.27)

for n ∈ N0, and

η4n−1 = η−1

n

∏
j=1

ζ4j−4

= η−1

n

∏
j=1

ζ
c4j−6
0 ζ

c4j−5

−1 ζ
c4j−4
−2 ζ

c4j−7
−3

= η−1ζ
∑

n
j=1 c4j−6

0 ζ
∑

n
j=1 c4j−5

−1 ζ
∑

n
j=1 c4j−4

−2 ζ
∑

n
j=1 c4j−7

−3 , (3.28)

for n ∈ N0,

η4n = η0

n

∏
j=1

ζ4j−3

= η0

n

∏
j=1

ζ
c4j−5
0 ζ

c4j−4

−1 ζ
c4j−3
−2 ζ

c4j−6
−3

= η0ζ
∑

n
j=1 c4j−5

0 ζ
∑

n
j=1 c4j−4

−1 ζ
∑

n
j=1 c4j−3

−2 ζ
∑

n
j=1 c4j−6

−3 , (3.29)

for n ∈ N0.
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Relations (3.6) and (3.7) yield

n

∑
j=1

c4j−9 =
n

∑
j=1

(c4j−6 − c4j−10) = c4n−6 − 1, (3.30)

n

∑
j=1

c4j−8 =
n

∑
j=1

(c4j−5 − c4j−9) = c4n−5, (3.31)

n

∑
j=1

c4j−7 =
n

∑
j=1

(c4j−4 − c4j−8) = c4n−4, (3.32)

n

∑
j=1

c4j−6 =
n

∑
j=1

(c4j−3 − c4j−7) = c4n−3, (3.33)

n

∑
j=1

c4j−5 =
n

∑
j=1

(c4j−2 − c4j−6) = c4n−2 − 1, (3.34)

n

∑
j=1

c4j−4 =
n

∑
j=1

(c4j−1 − c4j−5) = c4n−1, (3.35)

n

∑
j=1

c4j−3 =
n

∑
j=1

(c4j − c4j−4) = c4n, (3.36)

for n ∈ N.
From (3.26)–(3.36), we have

η4n−3 = η−3ζ
c4n−5
0 ζ

c4n−4
−1 ζ

c4n−3
−2 ζ

c4n−6−1
−3 , (3.37)

η4n−2 = η−2ζ
c4n−4
0 ζ

c4n−3
−1 ζ

c4n−2−1
−2 ζ

c4n−5
−3 , (3.38)

η4n−1 = η−1ζ
c4n−3
0 ζ

c4n−2−1
−1 ζ

c4n−1
−2 ζ

c4n−4
−3 , (3.39)

η4n = η0ζ
c4n−2−1
0 ζ

c4n−1
−1 ζc4n

−2ζ
c4n−3
−3 , (3.40)

for n ∈ N0.
The following theorem follows from (2.18), (3.8), (3.37)–(3.40).

Theorem 3.3. If a 6= 0, then the general solution to (2.4) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3 − 1
, n ≥ −3,

y4n−3 =
√

a

(
y−3+

√
a

y−3−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−5
(

x−1+
√

a
x−1−

√
a

)c4n−4
(

x−2+
√

a
x−2−

√
a

)c4n−3
(

x−3+
√

a
x−3−

√
a

)c4n−6−1
+ 1

(
y−3+

√
a

y−3−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−5
(

x−1+
√

a
x−1−

√
a

)c4n−4
(

x−2+
√

a
x−2−

√
a

)c4n−3
(

x−3+
√

a
x−3−

√
a

)c4n−6−1
− 1

,

y4n−2 =
√

a

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−4
(

x−1+
√

a
x−1−

√
a

)c4n−3
(

x−2+
√

a
x−2−

√
a

)c4n−2−1 (
x−3+

√
a

x−3−
√

a

)c4n−5
+ 1

(
y−2+

√
a

y−2−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−4
(

x−1+
√

a
x−1−

√
a

)c4n−3
(

x−2+
√

a
x−2−

√
a

)c4n−2−1 (
x−3+

√
a

x−3−
√

a

)c4n−5 − 1
,

y4n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−3
(

x−1+
√

a
x−1−

√
a

)c4n−2−1 (
x−2+

√
a

x−2−
√

a

)c4n−1
(

x−3+
√

a
x−3−

√
a

)c4n−4
+ 1

(
y−1+

√
a

y−1−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−3
(

x−1+
√

a
x−1−

√
a

)c4n−2−1 (
x−2+

√
a

x−2−
√

a

)c4n−1
(

x−3+
√

a
x−3−

√
a

)c4n−4 − 1
,
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y4n =
√

a

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−2−1 (
x−1+

√
a

x−1−
√

a

)c4n−1
(

x−2+
√

a
x−2−

√
a

)c4n
(

x−3+
√

a
x−3−

√
a

)c4n−3
+ 1

(
y0+

√
a

y0−
√

a

) (
x0+

√
a

x0−
√

a

)c4n−2−1 (
x−1+

√
a

x−1−
√

a

)c4n−1
(

x−2+
√

a
x−2−

√
a

)c4n
(

x−3+
√

a
x−3−

√
a

)c4n−3 − 1
,

for n ∈ N0, where sequence cn is given by (3.11).

3.4 System (2.22)

Since the first equation in (2.22) is the same as in (2.19), formula (3.8) must hold, as well as
the following one

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.41)

The following theorem follows from (2.18), (3.8) and (3.41).

Theorem 3.4. If a 6= 0, then the general solution to (2.5) is

xn =
√

a

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3
+ 1

(
x0+

√
a

x0−
√

a

)cn−2
(

x−1+
√

a
x−1−

√
a

)cn−1
(

x−2+
√

a
x−2−

√
a

)cn
(

x−3+
√

a
x−3−

√
a

)cn−3 − 1
,

yn =
√

a

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3
+ 1

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3 − 1
,

for n ≥ −3, where cn is given by (3.11).

3.5 System (2.23)

The equations in (2.23) yield the relation

ζn = ζn−4ζn−6ζn−7, n ≥ 4. (3.42)

We can write (3.42) as follows

ζn = ζa1
n−4ζb1

n−5ζc1
n−6ζd1

n−7ζe1
n−8ζ

f1
n−9ζ

g1
n−10, n ≥ 4, (3.43)

where, of course, the exponents are defined as follows

a1 = 1, b1 = 0, c1 = d1 = 1, e1 = f1 = g1 = 0. (3.44)

From (3.42) and (3.43), we have

ζn = (ζn−8ζn−10ζn−11)
a1 ζb1

n−5ζc1
n−6ζd1

n−7ζe1
n−8ζ

f1
n−9ζ

g1
n−10

= ζb1
n−5ζc1

n−6ζd1
n−7ζa1+e1

n−8 ζ
f1
n−9ζ

a1+g1
n−10 ζa1

n−11

= ζa2
n−5ζb2

n−6ζc2
n−7ζd2

n−8ζe2
n−9ζ

f2
n−10ζ

g2
n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := d1, d2 := a1 + e1, e2 := f1, f2 := a1 + g1 and g2 := a1.
It is natural to suppose that the following relations hold

ζn = ζ
ak

n−k−3ζ
bk

n−k−4ζ
ck

n−k−5ζ
dk

n−k−6ζ
ek

n−k−7ζ
fk

n−k−8ζ
gk

n−k−9, (3.45)
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ak = bk−1, bk = ck−1, ck = dk−1, dk = ak−1 + ek−1,

ek = fk−1, fk = ak−1 + gk−1, gk = ak−1,
(3.46)

for a k ≥ 2 and n ≥ k + 6.
From (3.42) and (3.45), we have

ζn = ζ
ak

n−k−3ζ
bk

n−k−4ζ
ck

n−k−5ζ
dk

n−k−6ζ
ek

n−k−7ζ
fk

n−k−8ζ
gk

n−k−9

= (ζn−k−7ζn−k−9ζn−k−10)
ak ζ

bk

n−k−4ζ
ck

n−k−5ζ
dk

n−k−6ζ
ek

n−k−7ζ
fk

n−k−8ζ
gk

n−k−9

= ζ
bk

n−k−4ζ
ck

n−k−5ζ
dk

n−k−6ζ
ak+ek

n−k−7ζ
fk

n−k−8ζ
ak+gk

n−k−9ζ
ak

n−k−10

= ζ
ak+1
n−k−4ζ

bk+1
n−k−5ζ

ck+1
n−k−6ζ

dk+1
n−k−7ζ

ek+1
n−k−8ζ

fk+1
n−k−9ζ

gk+1
n−k−10,

where

ak+1 := bk, bk+1 := ck, ck+1 := dk, dk+1 := ak + ek,

ek+1 := fk, fk+1 := ak + gk, gk+1 := ak,

for a k ≥ 2 and n ≥ k + 7. Thus, (3.45) and (3.46) are true for 2 ≤ k ≤ n − 6.
Relations (3.44) and (3.46) yield

an = an−4 + an−6 + an−7, (3.47)

for n ≥ 8 (in fact, for n ∈ Z), and

a0 = a−1 = a−2 = 0, a−3 = 1, a−j = 0, j = 4, 9, a−10 = 1, a−11 = −1.

By choosing k = n − 6 in (3.45), we get

ζn = ζ
an−6
3 ζ

bn−6
2 ζ

cn−6
1 ζ

dn−6
0 ζ

en−6
−1 ζ

fn−e

−2 ζ
gn−6
−3

= (η0ζ−1)
an−6(η−1ζ−2)

bn−6(η−2ζ−3)
cn−6 ζ

dn−6
0 ζ

en−6
−1 ζ

fn−e

−2 ζ
gn−6
−3

= ζ
dn−6
0 ζ

an−6+en−6
−1 ζ

bn−6+ fn−6
−2 ζ

cn−6+gn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2

= ζ
an−3
0 ζ

an−2
−1 ζ

an−1
−2 ζ

an−4+an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 , (3.48)

for n ≥ −3.
Relations (2.23) and (3.48) yield

ηn = ζn−3ζn−4

= ζ
an−6+an−7
0 ζ

an−5+an−6
−1 ζ

an−4+an−5
−2 ζ

an−4+an−7
−3 η

an−9+an−10
0 η

an−8+an−9
−1 η

an−7+an−8
−2 , (3.49)

for n ∈ N. A direct check shows that (3.49) also holds for n = 0.
Let

P7(λ) = λ7 − λ3 − λ − 1 = (λ3 + 1)(λ4 − λ − 1).

Clearly it is the characteristic polynomial of (3.47). Four roots of P7 are those of (3.10), while

λ4+j = ei
π(2j+1)

3 , j = 0, 2. The roots are distinct. Lemma 2.1 shows that

an =
7

∑
j=1

λn+9
j

P′
7(λj)

, n ∈ Z, (3.50)

is the solution to (3.47) satisfying the initial conditions a−j = 0, j = 4, 9 = 0, a−3 = 1.
The following theorem follows from (2.18), (3.48) and (3.49).
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Theorem 3.5. If a 6= 0, then the general solution to (2.6) is

xn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−3 ( x−3+
√

a
x−3−

√
a

)an−4+an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−3 ( x−3+
√

a
x−3−

√
a

)an−4+an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6
− 1

,

for n ≥ −3, and

yn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−6 ( x−3+
√

a
x−3−

√
a

)an−4+an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−9
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−6 ( x−3+
√

a
x−3−

√
a

)an−4+an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−9
− 1

,

for n ∈ N0, where an is given by (3.50) and bn = an + an−1.

3.6 System (2.24)

From the equations in (2.24) we have ζn = ηn, n ∈ N. This together with (2.24), implies

ζn+1 = ζn−2ζn−3, n ≥ 3.

If we use (3.8), we get

ζn = ζ
cn−6
4 ζ

cn−5
3 ζ

cn−4
2 ζ

cn−7
1

= (η−2ζ0ζ−3)
cn−6(η0ζ−1)

cn−5(η−1ζ−2)
cn−4(η−2ζ−3)

cn−7

= ζ
cn−6
0 ζ

cn−5
−1 ζ

cn−4
−2 ζ

cn−3
−3 η

cn−5
0 η

cn−4
−1 η

cn−3
−2 , (3.51)

for n ∈ N0, where cn is given by (3.11).
Therefore

ηn = ζ
cn−6
0 ζ

cn−5
−1 ζ

cn−4
−2 ζ

cn−3
−3 η

cn−5
0 η

cn−4
−1 η

cn−3
−2 , n ∈ N. (3.52)

The following theorem follows from (2.18), (3.51) and (3.52).

Theorem 3.6. If a 6= 0, then the general solution to (2.7) is

xn =
√

a
∏

3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
+ 1

∏
3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
− 1

,

for n ∈ N0, and

yn =
√

a
∏

3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
+ 1

∏
3
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−6

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−5
− 1

,

for n ∈ N, where cn is given by (3.11).
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3.7 System (2.25)

It is not difficult to see that in the case of the system the following relation holds

ζn = ζ2
n−4ζn−6ζ−1

n−8, n ≥ 5. (3.53)

Let
ζ
(i)
n = ζ2n+i, n ≥ −1,

for i = −1, 0, then we have

ζ
(i)
n = (ζ

(i)
n−2)

2ζ
(i)
n−3(ζ

(i)
n−4)

−1, n ≥ 3. (3.54)

Let further

b1 = 2, c1 = 1, d1 = −1, e1 = 0. (3.55)

Then, we have

ζ
(i)
n = (ζ

(i)
n−2)

b1(ζ
(i)
n−3)

c1(ζ
(i)
n−4)

d1(ζ
(i)
n−5)

e1

= ((ζ
(i)
n−4)

2ζ
(i)
n−5(ζ

(i)
n−6)

−1)b1(ζ
(i)
n−3)

c1(ζ
(i)
n−4)

d1(ζ
(i)
n−5)

e1

= (ζ
(i)
n−3)

c1(ζ
(i)
n−4)

2b1+d1(ζ
(i)
n−5)

b1+e1(ζ
(i)
n−6)

−b1

= (ζ
(i)
n−3)

b2(ζ
(i)
n−4)

c2(ζ
(i)
n−5)

d2(ζ
(i)
n−6)

e2 ,

for n ≥ 5, where b2 := c1, c2 := 2b1 + d1, d2 := b1 + e1 and e2 := −b1.
It is natural to assume that

ζ
(i)
n = (ζ

(i)
n−k−1)

bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek , (3.56)

for a k ≥ 2 and n ≥ k + 3, and

bk = ck−1, ck = 2bk−1 + dk−1, dk = bk−1 + ek−1, ek = −bk−1. (3.57)

From (3.54) and (3.56), we have

ζ
(i)
n = (ζ

(i)
n−k−1)

bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek

= ((ζ
(i)
n−k−3)

2ζ
(i)
n−k−4(ζ

(i)
n−k−5)

−1)bk(ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

dk(ζ
(i)
n−k−4)

ek

= (ζ
(i)
n−k−2)

ck(ζ
(i)
n−k−3)

2bk+dk(ζ
(i)
n−k−4)

bk+ek(ζ
(i)
n−k−5)

−bk

= (ζ
(i)
n−k−2)

bk+1(ζ
(i)
n−k−3)

ck+1(ζ
(i)
n−k−4)

dk+1(ζ
(i)
n−k−5)

ek+1 ,

for n ≥ k + 4, where

bk+1 := ck, ck+1 := 2bk + dk, dk+1 := bk + ek, ek+1 := −bk.

So, the method of induction shows that (3.56) and (3.57) hold for 2 ≤ k ≤ n − 3.
From (3.55) and (3.57) we get

bn = 2bn−2 + bn−3 − bn−4, (3.58)

for n ≥ 5 (in fact, for n ∈ Z), and

b0 = 0, b−1 = 1, b−j = 0, j = 2, 4, b−5 = −1.
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If we choose k = n − 3 in (3.56), we get

ζ
(i)
n = (ζ

(i)
2 )bn−3(ζ

(i)
1 )cn−3(ζ

(i)
0 )dn−3(ζ

(i)
−1)

en−3

= (ζ
(i)
2 )bn−3(ζ

(i)
1 )bn−2(ζ

(i)
0 )bn−1−2bn−3(ζ

(i)
−1)

−bn−4 ,

for n ≥ −1, and i = −1, 0.
If i = 0, we obtain

ζ2n = ζ
bn−3
4 ζ

bn−2
2 ζ

bn−1−2bn−3
0 ζ

−bn−4
−2

= (ζ0ζ−2η−3)
bn−3(η−1ζ−2)

bn−2 ζ
bn−1−2bn−3
0 ζ

−bn−4
−2

= ζ
bn−1−bn−3
0 ζ

bn−bn−2
−2 η

bn−2
−1 η

bn−3
−3 , (3.59)

whereas for i = −1, we get

ζ2n−1 = ζ
bn−3
3 ζ

bn−2
1 ζ

bn−1−2bn−3
−1 ζ

−bn−4
−3

= (η0ζ−1)
bn−3(η−2ζ−3)

bn−2 ζ
bn−1−2bn−3
−1 ζ

−bn−4
−3

= ζ
bn−1−bn−3
−1 ζ

bn−2−bn−4
−3 η

bn−3
0 η

bn−2
−2 , (3.60)

for n ≥ −1.
Since (2.25) is symmetric, we get

η2n = η
bn−1−bn−3
0 η

bn−bn−2
−2 ζ

bn−2
−1 ζ

bn−3
−3 , (3.61)

η2n−1 = η
bn−1−bn−3
−1 η

bn−2−bn−4
−3 ζ

bn−3
0 ζ

bn−2
−2 , (3.62)

for n ≥ −1.
Let

P̂4(λ) = λ4 − 2λ2 − λ + 1,

It is the characteristic polynomial of (3.58). Its zeros λ̂j, j = 1, 4, are distinct.
Therefore

bn =
4

∑
j=1

λ̂n+4
j

P̂′
4(λ̂j)

, n ∈ Z, (3.63)

is the solution to (3.58) satisfying the initial conditions b−j = 0, k = 2, 4, b−1 = 1.
The following theorem follows from (2.18), (3.59)–(3.62).

Theorem 3.7. If a 6= 0, then the general solution to (2.8) is

x2n =
√

a

(
x0+

√
a

x0−
√

a

)bn−1−bn−3
(

x−2+
√

a
x−2−

√
a

)bn−bn−2
(

y−1+
√

a

y−1−
√

a

)bn−2
(

y−3+
√

a

y−3−
√

a

)bn−3
+ 1

(
x0+

√
a

x0−
√

a

)bn−1−bn−3
(

x−2+
√

a
x−2−

√
a

)bn−bn−2
(

y−1+
√

a

y−1−
√

a

)bn−2
(

y−3+
√

a

y−3−
√

a

)bn−3 − 1
,

x2n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

)bn−1−bn−3
(

x−3+
√

a
x−3−

√
a

)bn−bn−2
(

y0+
√

a

y0−
√

a

)bn−3
(

y−2+
√

a

y−2−
√

a

)bn−2
+ 1

(
x−1+

√
a

x−1−
√

a

)bn−1−bn−3
(

x−3+
√

a
x−3−

√
a

)bn−bn−2
(

y0+
√

a

y0−
√

a

)bn−3
(

y−2+
√

a

y−2−
√

a

)bn−2−1 ,

y2n =
√

a

(
y0+

√
a

y0−
√

a

)bn−1−bn−3
(

y−2+
√

a

y−2−
√

a

)bn−bn−2
(

x−1+
√

a
x−1−

√
a

)bn−2
(

x−3+
√

a
x−3−

√
a

)bn−3
+ 1

(
y0+

√
a

y0−
√

a

)bn−1−bn−3
(

y−2+
√

a

y−2−
√

a

)bn−bn−2
(

x−1+
√

a
x−1−

√
a

)bn−2
(

x−3+
√

a
x−3−

√
a

)bn−3 − 1
,
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y2n−1 =
√

a

(
y−1+

√
a

y−1−
√

a

)bn−1−bn−3
(

y−3+
√

a

y−3−
√

a

)bn−bn−2
(

x0+
√

a
x0−

√
a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2
+ 1

(
y−1+

√
a

y−1−
√

a

)bn−1−bn−3
(

y−3+
√

a

y−3−
√

a

)bn−bn−2
(

x0+
√

a
x0−

√
a

)bn−3
(

x−2+
√

a
x−2−

√
a

)bn−2−1 ,

for n ≥ −1, where the sequence bn is given by (3.63).

3.8 System (2.26)

By interchanging letters ζ and η, system (2.26) is obtained from (2.21). Hence

ζ4n−3 = ζ−3η
c4n−5
0 η

c4n−4
−1 η

c4n−3
−2 η

c4n−6−1
−3 , (3.64)

ζ4n−2 = ζ−2η
c4n−4
0 η

c4n−3
−1 η

c4n−2−1
−2 η

c4n−5
−3 , (3.65)

ζ4n−1 = ζ−1η
c4n−3
0 η

c4n−2−1
−1 η

c4n−1
−2 η

c4n−4
−3 , (3.66)

ζ4n = ζ0η
c4n−2−1
0 η

c4n−1
−1 ηc4n

−2η
c4n−3
−3 , (3.67)

for n ∈ N0,

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.68)

The following theorem follows from (2.18), (3.64)–(3.68).

Theorem 3.8. If a 6= 0, then the general solution to (2.9) is

yn =
√

a

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3
+ 1

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3 − 1
, n ≥ −3,

x4n−3 =
√

a

(
x−3+

√
a

x−3−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−5
(

y−1+
√

a

y−1−
√

a

)c4n−4
(

y−2+
√

a

y−2−
√

a

)c4n−3
(

y−3+
√

a

y−3−
√

a

)c4n−6−1
+ 1

(
x−3+

√
a

x−3−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−5
(

y−1+
√

a

y−1−
√

a

)c4n−4
(

y−2+
√

a

y−2−
√

a

)c4n−3
(

y−3+
√

a

y−3−
√

a

)c4n−6−1
− 1

,

x4n−2 =
√

a

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−4
(

y−1+
√

a

y−1−
√

a

)c4n−3
(

y−2+
√

a

y−2−
√

a

)c4n−2−1 ( y−3+
√

a

y−3−
√

a

)c4n−5
+ 1

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−4
(

y−1+
√

a

y−1−
√

a

)c4n−3
(

y−2+
√

a

y−2−
√

a

)c4n−2−1 ( y−3+
√

a

y−3−
√

a

)c4n−5 − 1
,

x4n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−3
(

y−1+
√

a

y−1−
√

a

)c4n−2−1 ( y−2+
√

a

y−2−
√

a

)c4n−1
(

y−3+
√

a

y−3−
√

a

)c4n−4
+ 1

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−3
(

y−1+
√

a

y−1−
√

a

)c4n−2−1 ( y−2+
√

a

y−2−
√

a

)c4n−1
(

y−3+
√

a

y−3−
√

a

)c4n−4 − 1
,

x4n =
√

a

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−2−1 ( y−1+
√

a

y−1−
√

a

)c4n−1
(

y−2+
√

a

y−2−
√

a

)c4n
(

y−3+
√

a

y−3−
√

a

)c4n−3
+ 1

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)c4n−2−1 ( y−1+
√

a

y−1−
√

a

)c4n−1
(

y−2+
√

a

y−2−
√

a

)c4n
(

y−3+
√

a

y−3−
√

a

)c4n−3 − 1
,

for n ∈ N0, where sequence cn is given by (3.11).

3.9 System (2.27)

It is easy to see that the following relation holds

ζn = ζn−3ζn−7ζn−8, n ≥ 5. (3.69)
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We can write (3.69) as follows

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10, n ≥ 5, (3.70)

where, of course, the exponents are defined as follows

a1 = 1, b1 = c1 = d1 = 0, e1 = f1 = 1, g1 = h1 = 0. (3.71)

Employing (3.69) in (3.70), we have

ζn = (ζn−6ζn−10ζn−11)
a1 ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= ζb1
n−4ζc1

n−5ζa1+d1
n−6 ζe1

n−7ζ
f1
n−8ζ

g1
n−9ζa1+h1

n−10 ζa1
n−11

= ζa2
n−4ζb2

n−5ζc2
n−6ζd2

n−7ζe2
n−8ζ

f2
n−9ζ

g2
n−10ζh2

n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := a1 + d1, d2 := e1, e2 := f1, f2 := g1, g2 := a1 + h1 and
h2 := a1.

As in the case of equation (3.53) is obtained

ζn = ζ
ak

n−k−2ζ
bk

n−k−3ζ
ck

n−k−4ζ
dk

n−k−5ζ
ek

n−k−6ζ
fk

n−k−7ζ
gk

n−k−8ζ
hk

n−k−9, (3.72)

for a k ≥ 2 and n ≥ k + 6, and

ak = bk−1, bk = ck−1, ck = ak−1 + dk−1, dk = ek−1

ek = fk−1, fk = gk−1, gk = ak−1 + hk−1, hk = ak−1.
(3.73)

Relations (3.71) and (3.73) imply

an = an−3 + an−7 + an−8, (3.74)

for n ≥ 9 (in fact, for n ∈ Z), and

a0 = a−1 = 0, a−2 = 1, a−j = 0, j = 3, 9, a−10 = 1, a−11 = −1.

By choosing k = n − 6 in (3.72), it follows that

ζn = ζ
an−6
4 ζ

bn−6
3 ζ

cn−6
2 ζ

dn−6
1 ζ

en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= (ζ−2η0η−3)
an−6(ζ0η−1)

bn−6(ζ−1η−2)
cn−6(ζ−2η−3)

dn−6 ζ
en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= ζ
bn−6+en−6
0 ζ

cn−6+ fn−6
−1 ζ

an−6+dn−6+gn−6
−2 ζ

hn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2 η

an−6+dn−6
−3

= ζ
an−2
0 ζ

an−1
−1 ζan

−2ζ
an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 η

an−3
−3 , (3.75)

for n ≥ −3.
Relations (3.75) and (2.27) yield

ηn = ζn−3ζn−4 = ζ
an−5+an−6
0 ζ

an−4+an−5
−1 ζ

an−3+an−4
−2 ζ

an−10+an−11
−3

×η
an−9+an−10
0 η

an−8+an−9
−1 η

an−7+an−8
−2 η

an−6+an−7
−3 , (3.76)

for n ≥ −3.
Let

P̃8(t) = t8 − t5 − t − 1 = (t4 − t − 1)(t4 + 1).
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It is the characteristic polynomial associated to (3.74). Its roots are those of (3.10) and tj+4 =

ei
π(2j+1)

4 , j = 0, 3. It is not difficult to see that they are distinct.
Lemma 2.1 shows that

an =
8

∑
j=1

tn+9
j

P̃′
8(tj)

, n ∈ Z, (3.77)

is the solution to (3.74) satisfying the initial conditions a−j = 0, j = 3, 9, a−2 = 1.
The following theorem follows from (2.18), (3.75) and (3.76).

Theorem 3.9. If a 6= 0, then the general solution to (2.10) is

xn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−2 ( x−3+
√

a
x−3−

√
a

)an−7

∏
3
l=0

(
y−l+

√
a

y−l−
√

a

)an+l−6
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−2 ( x−3+
√

a
x−3−

√
a

)an−7

∏
3
l=0

(
y−l+

√
a

y−l−
√

a

)an+l−6 − 1
,

yn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−5 ( x−3+
√

a
x−3−

√
a

)bn−10
∏

3
l=0

(
y−l+

√
a

y−l−
√

a

)bn+l−9
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−5 ( x−3+
√

a
x−3−

√
a

)bn−10
∏

3
l=0

(
y−l+

√
a

y−l−
√

a

)bn+l−9 − 1
,

for n ≥ −3, where the sequence an is given by (3.77) and bn = an + an−1.

3.10 System (2.28)

It is easy to see that the following relation holds

ζn = ζ2
n−3ζ−1

n−6ζn−8, n ≥ 5, (3.78)

which can be written as

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10, (3.79)

for n ≥ 5, where, of course, the exponents are given by

a1 = 2, b1 = c1 = 0, d1 = −1, e1 = 0, f1 = 1, g1 = h1 = 0. (3.80)

Relations (3.78) and (3.79) yield

ζn = ζa1
n−3ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= (ζ2
n−6ζ−1

n−9ζn−11)
a1 ζb1

n−4ζc1
n−5ζd1

n−6ζe1
n−7ζ

f1
n−8ζ

g1
n−9ζh1

n−10

= ζb1
n−4ζc1

n−5ζ2a1+d1
n−6 ζe1

n−7ζ
f1
n−8ζ

−a1+g1
n−9 ζh1

n−10ζa1
n−11

= ζa2
n−4ζb2

n−5ζc2
n−6ζd2

n−7ζe2
n−8ζ

f2
n−9ζ

g2
n−10ζh2

n−11,

for n ≥ 8, where a2 := b1, b2 := c1, c2 := 2a1 + d1, d2 := e1, e2 := f1, f2 := −a1 + g1, g2 := h1

and h2 := a1.
As in (3.53) we obtain

ζn = ζ
ak

n−k−2ζ
bk

n−k−3ζ
ck

n−k−4ζ
dk

n−k−5ζ
ek

n−k−6ζ
fk

n−k−7ζ
gk

n−k−8ζ
hk

n−k−9, (3.81)
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and

ak = bk−1, bk = ck−1, ck = 2ak−1 + dk−1, dk = ek−1,

ek = fk−1, fk = −ak−1 + gk−1, gk = hk−1, hk = ak−1, (3.82)

for 2 ≤ k ≤ n − 6.
Relations (3.80) and (3.82) yield

an = 2an−3 − an−6 + an−8, (3.83)

for n ≥ 9 (in fact, for n ∈ Z), and

a0 = a−1 = 0, a−2 = 1, a−j = 0, j = 3, 9, a−10 = 1, a−11 = 0.

By choosing k = n − 6 in (3.81), we obtain

ζn = ζ
an−6
4 ζ

bn−6
3 ζ

cn−6
2 ζ

dn−6
1 ζ

en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= (ζ−2η0η−3)
an−6(ζ0η−1)

bn−6(ζ−1η−2)
cn−6(ζ−2η−3)

dn−6 ζ
en−6
0 ζ

fn−6
−1 ζ

gn−6
−2 ζ

hn−6
−3

= ζ
bn−6+en−6
0 ζ

cn−6+ fn−6
−1 ζ

an−6+dn−6+gn−6
−2 ζ

hn−6
−3 η

an−6
0 η

bn−6
−1 η

cn−6
−2 η

an−6+dn−6
−3

= ζ
an−2−an−5
0 ζ

an−1−an−4
−1 ζ

an−an−3
−2 ζ

an−7
−3 η

an−6
0 η

an−5
−1 η

an−4
−2 η

an−3−an−6
−3 , (3.84)

for n ≥ −3. System (2.28) is symmetric implying that

ηn = η
an−2−an−5
0 η

an−1−an−4
−1 η

an−an−3
−2 η

an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 ζ

an−3−an−6
−3 , (3.85)

for n ≥ −3.
Let

P̂8(t) = t8 − 2t5 + t2 − 1 = (t4 − t − 1)(t4 − t + 1).

It is the characteristic polynomial of (3.83). Let t̃j, j = 1, 8, be the roots of P̂8. They are simple.
So, the solution to (3.83) such that a−j = 0, j = 3, 9, and a−2 = 1, is

an =
8

∑
j=1

t̃n+9
j

P̂′
8(t̃j)

, n ∈ Z. (3.86)

The following theorem follows from (2.18), (3.84) and (3.85).

Theorem 3.10. If a 6= 0, then the general solution to (2.11) is

xn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−2 ( x−3+
√

a
x−3−

√
a

)an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6 ( y−3+
√

a

y−3−
√

a

)bn−3
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−2 ( x−3+
√

a
x−3−

√
a

)an−7

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−6 ( y−3+
√

a

y−3−
√

a

)bn−3 − 1
,

yn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−2 ( y−3+
√

a

y−3−
√

a

)an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6 ( x−3+
√

a
x−3−

√
a

)bn−3
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−2 ( y−3+
√

a

y−3−
√

a

)an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6 ( x−3+
√

a
x−3−

√
a

)bn−3 − 1
,

for n ≥ −3, where the sequence an is given by (3.86) and bn = an − an−3.
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3.11 System (2.29)

We have ζn = ηn, n ∈ N, and consequently

ζn = ζn−3ζn−4,

for n ≥ 5.
From (3.8), we obtain

ζn = ζ
cn−6
4 ζ

cn−5
3 ζ

cn−4
2 ζ

cn−7
1

= (ζ−2η0η−3)
cn−6(ζ0η−1)

cn−5(ζ−1η−2)
cn−4(ζ−2η−3)

cn−7

= ζ
cn−5
0 ζ

cn−4
−1 ζ

cn−3
−2 η

cn−6
0 η

cn−5
−1 η

cn−4
−2 η

cn−3
−3 , (3.87)

for n ∈ N, where cn is given by (3.11). Thus

ηn = ζ
cn−5
0 ζ

cn−4
−1 ζ

cn−3
−2 η

cn−6
0 η

cn−5
−1 η

cn−4
−2 η

cn−3
−3 , (3.88)

for n ∈ N0.
The following theorem follows from (2.18), (3.87) and (3.88).

Theorem 3.11. If a 6= 0, then the general solution to (2.12) is

xn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏
3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏
3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
− 1

,

for n ∈ N, and

yn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏
3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)cn+j−5

∏
3
j=0

(
y−j+

√
a

y−j−
√

a

)cn+j−6
− 1

,

for n ∈ N0, where cn is given by (3.11).

3.12 System (2.30)

By interchanging letters ζ and η, system (2.30) is got from (2.20). Hence

ζ3n−2 = ζ−2η
c3n−4
0 η

c3n−3
−1 η

c3n−2−1
−2 η

c3n−5
−3 , (3.89)

ζ3n−1 = ζ−1η
c3n−3
0 η

c3n−2−1
−1 η

c3n−1
−2 η

c3n−4
−3 , (3.90)

ζ3n = ζ0η
c3n−2−1
0 η

c3n−1
−1 ηc3n

−2η
c3n−3
−3 , (3.91)

for n ∈ N0, and

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , (3.92)

for n ≥ −3.
The following theorem follows (2.18), (3.89)–(3.92).
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Theorem 3.12. If a 6= 0, then the general solution to (2.13) is

yn =
√

a

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3
+ 1

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3 − 1
, n ≥ −3,

x3n−2 =
√

a

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−4
(

y−1+
√

a

y−1−
√

a

)c3n−3
(

y−2+
√

a

y−2−
√

a

)c3n−2−1 ( y−3+
√

a

y−3−
√

a

)c3n−5
+ 1

(
x−2+

√
a

x−2−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−4
(

y−1+
√

a

y−1−
√

a

)c3n−3
(

y−2+
√

a

y−2−
√

a

)c3n−2−1 ( y−3+
√

a

y−3−
√

a

)c3n−5 − 1

x3n−1 =
√

a

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−3
(

y−1+
√

a

y−1−
√

a

)c3n−2−1 ( y−2+
√

a

y−2−
√

a

)c3n−1
(

y−3+
√

a

y−3−
√

a

)c3n−4
+ 1

(
x−1+

√
a

x−1−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−3
(

y−1+
√

a

y−1−
√

a

)c3n−2−1 ( y−2+
√

a

y−2−
√

a

)c3n−1
(

y−3+
√

a

y−3−
√

a

)c3n−4 − 1

x3n =
√

a

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−2−1 ( y−1+
√

a

y−1−
√

a

)c3n−1
(

y−2+
√

a

y−2−
√

a

)c3n
(

y−3+
√

a

y−3−
√

a

)c3n−3
+ 1

(
x0+

√
a

x0−
√

a

) (
y0+

√
a

y0−
√

a

)c3n−2−1 ( y−1+
√

a

y−1−
√

a

)c3n−1
(

y−2+
√

a

y−2−
√

a

)c3n
(

y−3+
√

a

y−3−
√

a

)c3n−3 − 1
,

for n ∈ N, where cn is given by (3.11).

3.13 System (2.31)

It is easy to see that the following relation holds

ζn = ζn−6ζ2
n−7ζn−8, n ≥ 5, (3.93)

which can be written as follows

ζn = ζa1
n−6ζb1

n−7ζc1
n−8ζd1

n−9ζe1
n−10ζ

f1
n−11ζ

g1
n−12ζh1

n−13, (3.94)

for n ≥ 5, where, of course, the exponents are given by

a1 = 1, b1 = 2, c1 = 1, d1 = e1 = f1 = g1 = h1 = 0. (3.95)

Relations (3.93) in (3.94) yield

ζn = ζa1
n−6ζb1

n−7ζc1
n−8ζd1

n−9ζe1
n−10ζ

f1
n−11ζ

g1
n−12ζh1

n−13

= (ζn−12ζ2
n−13ζn−14)

a1 ζb1
n−7ζc1

n−8ζd1
n−9ζe1

n−10ζ
f1
n−11ζ

g1
n−12ζh1

n−13

= ζb1
n−7ζc1

n−8ζd1
n−9ζe1

n−10ζ
f1
n−11ζ

a1+g1
n−12 ζ2a1+h1

n−13 ζa1
n−14

= ζa2
n−7ζb2

n−8ζc2
n−9ζd2

n−10ζe2
n−11ζ

f2
n−12ζ

g2
n−13ζh2

n−14,

for n ≥ 11, where a2 := b1, b2 := c1, c2 := d1, d2 := e1, e2 := f1, f2 := a1 + g1, g2 := 2a1 + h1

and h2 := a1.
As in (3.2) are obtained the folowing relations

ζn = ζ
ak

n−k−5ζ
bk

n−k−6ζ
ck

n−k−7ζ
dk

n−k−8ζ
ek

n−k−9ζ
fk

n−k−10ζ
gk

n−k−11ζ
hk

n−k−12, (3.96)

ak = bk−1, bk = ck−1, ck = dk−1, dk = ek−1,

ek = fk−1, fk = ak−1 + gk−1, gk = 2ak−1 + hk−1, hk = ak−1.
(3.97)

for a k ≥ 2 and n ≥ k + 9.



22 S. Stević

Relations (3.95) and (3.97) yield

ak = ak−6 + 2ak−7 + ak−8, (3.98)

and
a−l = 0, l = 0, 4, a−5 = 1, a−j = 0, j = 6, 12.

By choosing k = n − 9 in (3.96), we get

ζn = ζ
an−9
4 ζ

bn−9
3 ζ

cn−9
2 ζ

dn−9
1 ζ

en−9
0 ζ

fn−9
−1 ζ

gn−9
−2 ζ

hn−9
−3

= (ζ−2ζ−3η0)
an−9(η0η−1)

bn−9(η−1η−2)
cn−9(η−2η−3)

dn−9 ζ
en−9
0 ζ

fn−9
−1 ζ

gn−9
−2 ζ

hn−9
−3

= ζ
en−9
0 ζ

fn−9
−1 ζ

an−9+gn−9
−2 ζ

an−9+hn−9
−3 η

an−9+bn−9
0 η

bn−9+cn−9
−1 η

cn−9+dn−9
−2 η

dn−9
−3

= ζ
an−5
0 ζ

an−4
−1 ζ

an−3
−2 ζ

an−9+an−10
−3 η

an−8+an−9
0 η

an−7+an−8
−1 η

an−6+an−7
−2 η

an−6
−3 , (3.99)

for n ≥ −3.
System (2.31) is symmetric implying that

ηn = η
an−5
0 η

an−4
−1 η

an−3
−2 η

an−9+an−10
−3 ζ

an−8+an−9
0 ζ

an−7+an−8
−1 ζ

an−6+an−7
−2 ζ

an−6
−3 (3.100)

for n ≥ −3.
Let

P̂8(t) = t8 − t2 − 2t − 1 = (t4 − t − 1)(t4 + t + 1).

It is the characteristic polynomial associated to (3.98). Let tj, j = 1, 8, be its roots. It is not
difficult to see that they are simple. Then, the solution to (3.98) such that a−j = 0, j = 6, 12,
and a−5 = 1, is given by

an =
8

∑
j=1

tn+12
j

P̂′
8(tj)

, n ∈ Z. (3.101)

The following theorem follows from (2.18), (3.99) and (3.100).

Theorem 3.13. If a 6= 0, then the general solution to (2.14) is

xn =
√

a
∏

2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−5 ( x−3+
√

a
x−3−

√
a

)bn−9

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−8 ( y−3+
√

a

y−3−
√

a

)an−6
+ 1

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−5 ( x−3+
√

a
x−3−

√
a

)bn−9

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−8 ( y−3+
√

a

y−3−
√

a

)an−6 − 1
,

yn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−5 ( y−3+
√

a

y−3−
√

a

)bn−9

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−8 ( x−3+
√

a
x−3−

√
a

)an−6
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−5 ( y−3+
√

a

y−3−
√

a

)bn−9

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−8 ( x−3+
√

a
x−3−

√
a

)an−6 − 1
,

for n ≥ −3, where the sequence an is given by (3.101) and bn = an + an−1.

3.14 System (2.32)

By interchanging letters ζ and η, (2.32) is got from (2.27). Hence

ζn = η
an−5+an−6
0 η

an−4+an−5
−1 η

an−3+an−4
−2 η

an−10+an−11
−3 ζ

an−9+an−10
0 ζ

an−8+an−9
−1 ζ

an−7+an−8
−2 ζ

an−6+an−7
−3 , (3.102)

ηn = η
an−2
0 η

an−1
−1 ηan

−2η
an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 ζ

an−3
−3 , (3.103)

for n ≥ −3.
The following theorem follows from (2.18), (3.102) and (3.103).
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Theorem 3.14. If a 6= 0, then the general solution to (2.15) is

xn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−5 ( y−3+
√

a

y−3−
√

a

)bn−10
∏

3
l=0

(
x−l+

√
a

x−l−
√

a

)bn+l−9
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−5 ( y−3+
√

a

y−3−
√

a

)bn−10
∏

3
l=0

(
x−l+

√
a

x−l−
√

a

)bn+l−9 − 1
,

yn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−2 ( y−3+
√

a

y−3−
√

a

)an−7

∏
3
l=0

(
x−l+

√
a

x−l−
√

a

)an+l−6
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−2 ( y−3+
√

a

y−3−
√

a

)an−7

∏
3
l=0

(
x−l+

√
a

x−l−
√

a

)an+l−6 − 1
,

for n ≥ −3, where the sequence an is given by (3.77) and bn = an + an−1.

3.15 System (2.33)

By interchanging letters ζ and η, (2.33) is got from (2.23). Hence

ζn = η
an−6+an−7
0 η

an−5+an−6
−1 η

an−4+an−5
−2 η

an−4+an−7
−3 ζ

an−9+an−10
0 ζ

an−8+an−9
−1 ζ

an−7+an−8
−2 , (3.104)

ηn = η
an−3
0 η

an−2
−1 η

an−1
−2 η

an−4+an−7
−3 ζ

an−6
0 ζ

an−5
−1 ζ

an−4
−2 , (3.105)

for n ∈ N.
The following theorem follows from (2.18), (3.104) and (3.105).

Theorem 3.15. If a 6= 0, then the general solution to (2.16) is

xn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−6 ( y−3+
√

a

y−3−
√

a

)an−4+an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−9
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)bn+j−6 ( y−3+
√

a

y−3−
√

a

)an−4+an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)bn+j−9
− 1

,

for n ∈ N0,

yn =
√

a
∏

2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−3 ( y−3+
√

a

y−3−
√

a

)an−4+an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6
+ 1

∏
2
j=0

(
y−j+

√
a

y−j−
√

a

)an+j−3 ( y−3+
√

a

y−3−
√

a

)an−4+an−7

∏
2
j=0

(
x−j+

√
a

x−j−
√

a

)an+j−6
− 1

,

for n ≥ −3, and where an is given by (3.50) and bn = an + an−1.

3.16 System (2.34)

By interchanging letters ζ and η, (2.34) is got from (2.19). Hence

ζn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ∈ N, (3.106)

and

ηn = η
cn−2
0 η

cn−1
−1 ηcn

−2η
cn−3
−3 , n ≥ −3. (3.107)

The following theorem follows from (2.18), (3.106) and (3.107).
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Theorem 3.16. If a 6= 0, then the general solution to (2.17) is

xn =
√

a

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3
+ 1

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3 − 1
, n ∈ N,

yn =
√

a

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3
+ 1

(
y0+

√
a

y0−
√

a

)cn−2
(

y−1+
√

a

y−1−
√

a

)cn−1
(

y−2+
√

a

y−2−
√

a

)cn
(

y−3+
√

a

y−3−
√

a

)cn−3 − 1
, n ≥ −3,

where cn is given by (3.11).

Remark 3.17. From (2.18) we see that a solution to a system in (1.2) is well defined if and only
if ζn 6= 1 and ηn 6= 1 for every n belonging to the domain of the system. Using this fact, as
well as above presented expressions for the sequences ζn and ηn, can be described the sets of
not well defined solutions for each of the systems. We leave it to the reader.
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[13] N. E. Nörlund, Vorlesungen über Differenzenrechnung (in German), Berlin, Springer, 1924.
Zbl 50.0315.02

[14] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations,
J. Math. Anal. Appl. 219(1998), No. 2, 415–426. https://doi.org/10.1006/jmaa.1997.
5829; MR1606350

[15] G. Papaschinopoulos, C. J. Schinas, On the behavior of the solutions of a system of
two nonlinear difference equations, Comm. Appl. Nonlinear Anal. 5(1998), No. 2, 47–59.
MR1621223

[16] G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference
equations. Differential Equations Dynam. Systems 7(1999), 181–196. MR1860787

[17] G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two
nonlinear difference equations. Nonlinear Anal. Theory Methods Appl. 46(2001), 967–978.
https://doi.org/10.1016/S0362-546X(00)00146-2; MR1866733

[18] G. Papaschinopoulos, C. J. Schinas, Oscillation and asymptotic stability of two systems
of difference equations of rational form, J. Difference Equ. Appl. 7(2001), 601–617. https:
//doi.org/10.1080/10236190108808290; MR1922592

[19] G. Papaschinopoulos, C. J. Schinas, On the system of two difference equations xn+1 =

∑
k
i=0 Ai/y

pi

n−i, yn+1 = ∑
k
i=0 Bi/x

qi

n−i, J. Math. Anal. Appl. 273(2002), No. 2, 294–309. https:
//doi.org/10.1016/S0022-247X(02)00223-8; MR1932490

[20] G. Papaschinopoulos, C. J. Schinas, On the dynamics of two exponential type systems
of difference equations, Comput. Math. Appl. 64(2012), No. 7, 2326–2334. https://doi.
org/10.1016/j.camwa.2012.04.002; MR2966868

[21] G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a k-order system of Lyness-
type difference equations, Adv. Difference Equ. 2007, Article ID 31272, 13 pp. https:
//doi.org/10.1155/2007/31272; MR2322487

[22] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class
of rational difference equations, Int. J. Difference Equ. 5(2010), No. 2, 233–249. MR2771327

[23] I. V. Proskuryakov, Problems in linear algebra (in Russian), Nauka, Moscow, 1984.
Zbl 0544.15001

[24] M. H. Rhouma, The Fibonacci sequence modulo π, chaos and some rational recursive
equations, J. Math. Anal. Appl. 310(2005), No. 2, 506–517. https://doi.org/10.1016/j.
jmaa.2005.02.038

[25] J. Riordan, Combinatorial identities, John Wiley & Sons Inc., New York–London–Sydney,
1968. MR0231725

[26] C. Schinas, Invariants for difference equations and systems of difference equations of
rational form, J. Math. Anal. Appl. 216(1997), 164–179. https://doi.org/10.1006/jmaa.
1997.5667; MR1487258



26 S. Stević
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[37] S. Stević, B. Iričanin, W. Kosmala, More on a hyperbolic-cotangent class of difference
equations, Math. Methods Appl. Sci. 42(2019), 2974–2992. https://doi.org/10.1002/mma.
5541; MR3949546
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Abstract. This paper deals with the blow-up of the solution for a system of evolution p-
Laplacian equations uit = div(|∇ui|p−2∇ui) (i = 1, 2, . . . , k) with nonlinear boundary
flux. Under certain conditions on the nonlinearities and data, it is shown that blow-up
will occur at some finite time. Moreover, when blow-up does occur, we obtain the upper
and lower bounds for the blow-up time. This paper generalizes the previous results.
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1 Introduction

In this paper, we investigate the following parabolic equations

uit = div(|∇ui|p−2∇ui), (i = 1, 2, . . . , k), (x, t) ∈ Ω × (0, t∗), (1.1)

coupled via nonlinear boundary flux

|∇ui|p−2 ∂ui

∂ν
= fi(u1, u2, . . . , uk), (i = 1, 2, . . . , k), (x, t) ∈ ∂Ω × (0, t∗), (1.2)

with initial data

ui (x, 0) = ui0 (x) ≥ 0, (i = 1, 2, . . . , k), x ∈ Ω, (1.3)

where p ≥ 2, ∂u
∂ν is the outward normal derivative of u on the boundary ∂Ω assumed suf-

ficiently smooth, Ω is a bounded star-shaped region in R
N (N ≥ 2) and t∗ is the blow-up

time if blow-up occurs, or else t∗ = ∞. Moreover the non-negative initial functions ui0(x), i =

1, 2, . . . , k satisfy the compatibility conditions and fi(u1, u2, . . . , uk) : R
k → R, i = 1, 2, . . . , k are

given functions to be specified later. It is well known that the functions fi(u1, u2, . . . , uk), i =

1, 2, . . . , k may greatly affect the behavior of the solution (u1, u2, . . . , uk) with the development

of time.

BCorresponding author. Email: zhengpan52@sina.com
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The blow-up phenomena in nonlinear parabolic equations have been extensively investi-

gated by many authors in the last decades (see [1–5, 8, 16, 24, 26] and the references therein).

Nowadays, many methods are known and used in the study of various questions regarding

the blow-up phenomena (such as blow-up criterion, blow-up rate and blow-up set, etc.) in

nonlinear parabolic problems. In applications, due to the explosive nature of the solutions,

it is more important to determine the lower bounds for the blow-up time. Therefore, there

exist many interesting results about blow-up time in various problems, such as [11, 12, 14, 17]

in parabolic problems, [13, 15, 22, 27] in chemotaxis systems, [23] even in fourth order wave

equations, and so on.

In [20], Payne et al. considered the following semilinear heat equation with nonlinear

boundary condition 



ut = ∆u − f (u), (x, t) ∈ Ω × (0, t∗),
∂u
∂ν = g(u), (x, t) ∈ ∂Ω × (0, t∗),

u (x, 0) = u0 (x) , x ∈ Ω,

(1.4)

and established sufficient conditions on the nonlinearities to guarantee that the solution u(x, t)

exists for all time t > 0 or blows up in finite time t∗. Moreover, an upper bound for t∗ was

derived. Under more restrictive conditions, a lower bound for t∗ was also obtained.

Moreover, Payne et al. [21] also studied the following initial-boundary problem




ut = ∇(|∇u|2p∇u), (x, t) ∈ Ω × (0, t∗),

|∇u|2p ∂u
∂ν = f (u), (x, t) ∈ ∂Ω × (0, t∗),

u (x, 0) = u0 (x) , x ∈ Ω,

(1.5)

and obtained upper and lower bounds for the blow-up time under some conditions when

blow-up does occur at some finite time.

Recently, for the special case k = 2 in (1.1), Liang [7] investigated the following system

with nonlinear boundary flux




ut = ∇(|∇u|p−2∇u), vt = ∇(|∇v|p−2∇v), (x, t) ∈ Ω × (0, t∗),

|∇u|p−2 ∂u
∂ν = f1(u, v), |∇v|p−2 ∂v

∂ν = f2(u, v), (x, t) ∈ ∂Ω × (0, t∗),

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω,

(1.6)

and showed that under certain conditions on the nonlinearities and the data, blow-up will

occur at some finite time and when blow-up does occur, upper and lower bounds for the

blow-up time are obtained.

On the other hand, many authors have studied upper and lower bounds for the blow-up

time to nonlinear parabolic equations with local or nonlocal sources (see [6,9,10,18,19,25] and

the references therein).

Motivated by the above works, we investigate the blow-up condition of the solution and

derive upper and lower bounds for the blow-up time t∗. Throughout this paper, we take the

functions fi(u1, u2, . . . , uk), i = 1, 2, . . . , k satisfying

fi(u1, u2, . . . , uk) = a

∣∣∣∣∣
k

∑
j=1

ui

∣∣∣∣∣

r−1(
k

∑
j=1

ui

)
+ b|ui|

r+1
k −2ui|u1u2 · · · ui−1ui+1 · · · uk|

r+1
k , (1.7)

where a, b are positive constants and r satisfies
{

r > 1, if N = 1, 2,

1 < r ≤ N+2
N−2 , if N ≥ 3.

(1.8)
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Moreover it is easy to see that

k

∑
i=1

ui fi(u1, u2, . . . , uk) = (r + 1)F(u1, u2, . . . , uk) (1.9)

and
∂F(u1, u2, . . . , uk)

∂ui
= fi(u1, u2, . . . , uk), i = 1, 2, . . . , k, (1.10)

where

F(u1, u2, . . . , uk) =
1

r + 1

[
a|

k

∑
i=1

ui|r+1 + kb|
k

∏
i=1

ui|
r+1

k

]
. (1.11)

Our main results of this paper are stated as follows.

Theorem 1.1. Let p ≤ r + 1. Assume that (u1, u2, . . . , uk) is the nonnegative solution of problem

(1.1)–(1.3). Moreover, suppose that Ψ(0) > 0 with

Ψ(t) = p
∫

∂Ω
F(u1, u2, . . . , uk)ds −

k

∑
i=1

∫

Ω
|∇ui|pdx, (1.12)

where the function F(u1, u2, . . . , uk) is defined by (1.11). Then for p > 2, the solution (u1, u2, . . . , uk)

of problem (1.1)–(1.3) blows up in finite time t∗ < T with

T =
Φ(0)

(p − 2)Ψ(0)
, (1.13)

where

Φ(t) =
k

∑
i=1

∫

Ω
u2

i dx. (1.14)

When p = 2, we have T = ∞.

Theorem 1.2. Assume that (u1, u2, . . . , uk) is the nonnegative solution of problem (1.1)–(1.3) in a

bounded star-shaped domain Ω ⊂ R
3 assumed to be convex in two orthogonal directions. If the

solution (u1, u2, . . . , uk) does blow up in finite time t∗, then the blow-up time t∗ is bounded from below

by

t∗ ≥
∫ ∞

Θ(0)

1
4

∑
i=1

liξαi

dξ, (1.15)

where

Θ(t) =
k

∑
i=1

∫

Ω
u

m(r−1)
i dx with m ≥ max

{
4,

2

r − 1

}
, (1.16)

and li, αi (i = 1, 2, 3, 4) are computable positive constants.

This paper is organized as follows. In Section 2, we obtain the blow-up condition of the

solution and derive an upper bound estimate for the blow-up time t∗. Moreover, we also

give the lower bound for the blow-up time t∗ under appropriate assumptions on the data of

problem (1.1)–(1.3), and prove Theorem 1.2 in Section 3.
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2 Proof of Theorem 1.1

In this section, we obtain the blow-up condition of the solution and derive an upper bound

estimate for the blow-up time t∗, and prove Theorem 1.1.

Proof of Theorem 1.1. Using the Green formula and the hypotheses stated in Theorem 1.1, we

have

Φ′(t) = 2
k

∑
i=1

∫

Ω
uiuitdx

= 2
k

∑
i=1

∫

Ω
uidiv(|∇ui|p−2∇ui)dx

= 2
k

∑
i=1

∫

∂Ω
ui|∇ui|p−2 ∂ui

∂ν
ds − 2

k

∑
i=1

∫

Ω
|∇ui|pdx

= 2
k

∑
i=1

∫

∂Ω
ui fi(u1, u2, . . . , uk)ds − 2

k

∑
i=1

∫

Ω
|∇ui|pdx

= 2(r + 1)
∫

∂Ω
F(u1, u2, . . . , uk)ds − 2

k

∑
i=1

∫

Ω
|∇ui|pdx

≥ 2

[
p
∫

∂Ω
F(u1, u2, . . . , uk)ds −

k

∑
i=1

∫

Ω
|∇ui|pdx

]

= 2Ψ(t)

(2.1)

and

Ψ′(t) = p
k

∑
i=1

∫

∂Ω
fi(u1, u2, . . . , uk)uitds − p

k

∑
i=1

∫

Ω
|∇ui|p−2∇ui∇uitdx

= p
k

∑
i=1

∫

∂Ω
fi(u1, u2, . . . , uk)uitds − p

k

∑
i=1

∫

∂Ω
|∇ui|p−2 ∂ui

∂ν
uitds

+ p
k

∑
i=1

∫

Ω
div(|∇ui|p−2∇ui)uitdx

= p
k

∑
i=1

∫

Ω
(uit)

2dx ≥ 0.

(2.2)

It follows from Ψ(0) > 0 and (2.2) that Ψ(t) is positive for all t > 0. By using Hölder’s

inequality and Cauchy’s inequality, we deduce from (2.2) that
(

k

∑
i=1

∫

Ω
uiuitdx

)2

≤
(

k

∑
i=1

(∫

Ω
u2

i dx

) 1
2
(∫

Ω
u2

itdx

) 1
2

)2

≤
(

k

∑
i=1

∫

Ω
u2

i dx

)(
k

∑
i=1

∫

Ω
u2

itdx

)

=
1

p
Φ(t)Ψ′(t).

(2.3)

Therefore, it follows from (2.1)–(2.3) that

Φ′(t)Ψ(t) ≤ 1

2
(Φ′(t))2 = 2

(
k

∑
i=1

∫

Ω
uiuitdx

)2

≤ 2

p
Φ(t)Ψ′(t), (2.4)



Blow-up analysis in a quasilinear parabolic system 5

that is, (
Ψ(t)Φ− p

2 (t)
)′

≥ 0. (2.5)

Integrating (2.5) over (0, t), we obtain

Ψ(t)Φ− p
2 (t) ≥ Ψ(0)Φ− p

2 (0) =: M. (2.6)

Combining (2.1) with (2.6), we derive

Φ′(t)Φ− p
2 (t) ≥ 2M. (2.7)

If p > 2, then (2.7) can be written as

(Φ1− p
2 )′(t) ≤ 2M

(
1 − p

2

)
. (2.8)

Integrating (2.8) over (0, t) again, we have

Φ(t) ≥
[
Φ1− p

2 (0)− M(p − 2)t
]− 2

p−2
, (2.9)

which implies Φ(t) → +∞ as t → T = Φ
1− p

2 (0)
M(p−2)

= Φ(0)
(p−2)Ψ(0)

. Therefore, for p > 2, we derive

t∗ ≤ T =
Φ(0)

(p − 2)Ψ(0)
. (2.10)

If p = 2, then we infer from (2.7) that

Φ(t) ≥ Φ(0)e2Mt, (2.11)

which implies t∗ = ∞. The proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

In this section, under the assumption that Ω ⊂ R
3 is a convex bounded star-shaped domain

in two orthogonal directions, we establish a lower bound for the blow-up time t∗. To do this,

we need the following lemmas.

Lemma 3.1 (see [21, Lemma A.1]). Let Ω be a bounded star-shaped domain in R
N , N ≥ 2. Then

for any non-negative C1-function u and γ > 0, we have

∫

∂Ω
uγds ≤ N

ρ0

∫

Ω
uγdx +

γd

ρ0

∫

Ω
uγ−1|∇u|dx, (3.1)

where

ρ0 = min
x∈∂Ω

(x · ν) > 0 and d = max
x∈Ω

|x|. (3.2)

Lemma 3.2 (see [21, Lemma A.2]). Let Ω be a bounded domain in R
3 assumed to be star-shaped and

convex in two orthogonal directions. Then for any non-negative C1-function u and n ≥ 1, we have

∫

Ω
u

3n
2 dx ≤

[
3

2ρ0

∫

Ω
undx +

n

2

(
1 +

d

ρ0

) ∫

Ω
un−1|∇u|dx

] 3
2

, (3.3)

where ρ0 and d are defined in Lemma 3.1.
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Proof of Theorem 1.2. Differentiating Θ(t) in (1.16), we obtain

Θ′(t) = m(r − 1)
k

∑
i=1

∫

Ω
u

m(r−1)−1
i uitdx

= m(r − 1)
k

∑
i=1

∫

Ω
u

m(r−1)−1
i div(|∇ui|p−2∇ui)dx

= m(r − 1)
k

∑
i=1

∫

∂Ω
u

m(r−1)−1
i fi(u1, u2, . . . , uk)ds

−m(r − 1)[m(r − 1)− 1]
k

∑
i=1

∫

Ω
u

m(r−1)−2
i |∇ui|pdx.

(3.4)

By the definition of the functions fi, i = 1, 2, . . . , k and Lemma 3.1, we have

k

∑
i=1

∫

∂Ω
u

m(r−1)−1
i fi(u1, u2, . . . , uk)ds

≤ C
k

∑
i=1

∫

∂Ω
u
(m+1)(r−1)
i ds

≤ 3C

ρ0

k

∑
i=1

∫

Ω
u
(m+1)(r−1)
i dx +

C(m + 1)(r − 1)d

ρ0

k

∑
i=1

∫

Ω
u
(m+1)(r−1)−1
i |∇ui|dx,

(3.5)

where C is a positive constant. Combining (3.4) with (3.5), we derive

Θ′(t) ≤3m(r − 1)C

ρ0
I1(t) +

Cm(m + 1)(r − 1)2d

ρ0
I2(t)

− m(r − 1)[m(r − 1)− 1]I3(t),

(3.6)

where

I1(t) =
k

∑
i=1

∫

Ω
u
(m+1)(r−1)
i dx =

k

∑
i=1

I1i(t), (3.7)

I2(t) =
k

∑
i=1

∫

Ω
u
(m+1)(r−1)−1
i |∇ui|dx =

k

∑
i=1

I2i(t), (3.8)

and

I3(t) =
k

∑
i=1

∫

Ω
u

m(r−1)−2
i |∇ui|pdx =

k

∑
i=1

I3i(t). (3.9)

By Lemma 3.2 and Hölder’s inequality, we obtain

I1i(t) =
∫

Ω
u
(m+1)(r−1)
i dx

≤
[

3

2ρ0

∫

Ω
u

2
3 (m+1)(r−1)
i dx +

(m + 1)(r − 1)

3

(
1 +

d

ρ0

)

×
∫

Ω
u

2
3 (m+1)(r−1)−1

i |∇ui|dx

] 3
2

≤
[

3|Ω| m−2
3m

2ρ0

(∫

Ω
u

m(r−1)
i dx

) 2(m+1)
3m

+
(m + 1)(r − 1)(ρ0 + d)

3ρ0

×
∫

Ω
u

2
3 (m+1)(r−1)−1

i |∇ui|dx

] 3
2

,

(3.10)
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where i = 1, 2, . . . , k and |Ω| is the measure of Ω. By using Hölder’s inequality twice again,

we have

∫

Ω
u

2
3 (m+1)(r−1)−1

i |∇ui|dx ≤
(∫

Ω
u

2
3 (m+1)(r−1)(1−δ1)
i dx

) p−1
p
(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p

≤



(∫

Ω
u

m(r−1)
i dx

) 2(m+1)(1−δ1)
3m

|Ω|1−
2(m+1)(1−δ1)

3m




p−1
p

×
(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p

,

(3.11)

where i = 1, 2, . . . , k and δ1 = (m−2)(r−1)+3p−6
2(m+1)(r−1)(p−1)

∈ (0, 1) due to (1.16). Therefore, it follows from

(3.10) and (3.11) that

I1i(t) ≤




3|Ω| m−2
3m

2ρ0

(∫

Ω
u

m(r−1)
i dx

) 2(m+1)
3m

+
(m + 1)(r − 1)(ρ0 + d)

3ρ0

×



(∫

Ω
u

m(r−1)
i dx

) 2(m+1)(1−δ1)
3m

|Ω|1−
2(m+1)(1−δ1)

3m




p−1
p (∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p




3
2

≤ c1

(∫

Ω
u

m(r−1)
i dx

) m+1
m

+ c2

(∫

Ω
u

m(r−1)
i dx

) (m+1)(p−1)(1−δ1)
mp

(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 3
2p

≤ c1Θ
m+1

m (t) + c2Θ
(m+1)(p−1)(1−δ1)

mp (t)I
3

2p

3 (t), i = 1, 2, . . . , k, (3.12)

where

c1 =
3
√

3

2
ρ
− 3

2
0 |Ω| m−2

2m > 0 (3.13)

and

c2 =

√
6

9

(
(m + 1)(r − 1)(ρ0 + d)

ρ0

) 3
2

|Ω|
(

1− 2(m+1)(1−δ1)
3m

)
3(p−1)

2p
> 0. (3.14)

Hence, we infer from (3.12) that

I1(t) =
k

∑
i=1

I1i ≤ kc1Θ
m+1

m (t) + kc2Θ
(m+1)(p−1)(1−δ1)

mp (t)I
3

2p

3 (t). (3.15)

Next, we estimate I2(t). By using Hölder’s inequality, we have

I2i(t) =
∫

Ω
u
(m+1)(r−1)−1
i |∇ui|dx

≤
(∫

Ω
u
(m+2)(r−1)(1−δ2)
i dx

) p−1
p
(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p

≤
((∫

Ω
u
(m+2)(r−1)
i dx

)1−δ2

|Ω|δ2

) p−1
p

I
1
p

3i(t)

= |Ω|
(p−1)δ2

p

(∫

Ω
u
(m+2)(r−1)
i dx

) (p−1)(1−δ2)
p

I
1
p

3i(t), i = 1, 2, . . . , k,

(3.16)
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where

δ2 =
r(p − 2)

(m + 2)(r − 1)(p − 1)
∈ (0, 1). (3.17)

It follows from Lemma 3.2 and Hölder’s inequality that

∫

Ω
u
(m+2)(r−1)
i dx ≤

[
3

2ρ0

∫

Ω
u

2
3 (m+2)(r−1)
i dx +

(m + 2)(r − 1)

3

(
1 +

d

ρ0

)

×
∫

Ω
u

2
3 (m+2)(r−1)−1

i |∇ui|dx

] 3
2

≤
[

3|Ω| m−4
3m

2ρ0

(∫

Ω
u

m(r−1)
i dx

) 2(m+2)
3m

+
(m + 2)(r − 1)(ρ0 + d)

3ρ0

×
∫

Ω
u

2
3 (m+2)(r−1)−1

i |∇ui|dx

] 3
2

, i = 1, 2, . . . , k.

(3.18)

By using Hölder’s inequality twice again, we have

∫

Ω
u

2
3 (m+2)(r−1)−1

i |∇ui|dx ≤
(∫

Ω
u

2
3 (m+2)(r−1)(1−δ3)
i dx

) p−1
p
(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p

≤



(∫

Ω
u

m(r−1)
i dx

) 2(m+2)(1−δ3)
3m

|Ω|1−
2(m+2)(1−δ3)

3m




p−1
p

×
(∫

Ω
u

m(r−1)−2
i |∇ui|pdx

) 1
p

= |Ω|(1−
2(m+2)(1−δ3)

3m ) p−1
p

(∫

Ω
u

m(r−1)
i dx

) 2(m+2)(p−1)(1−δ3)
3mp

(t)I
1
p

3i(t),

(3.19)

where i = 1, 2, . . . , k and

δ3 =
(m − 4)(r − 1) + 3p − 6

2(m + 2)(r − 1)(p − 1)
< δ1 < 1. (3.20)

Combining (3.18) with (3.19), we obtain

∫

Ω
u
(m+2)(r−1)
i dx

≤ 3
√

3

2
|Ω| m−4

2m ρ
− 3

2
0

(∫

Ω
u

m(r−1)
i dx

) m+2
m

(t) +

√
6

9

(
(m + 2)(r − 1)(ρ0 + d)

ρ0

) 3
2

×|Ω|
(

1− 2(m+2)(1−δ3)
3m

)
3(p−1)

2p

(∫

Ω
u

m(r−1)
i dx

) (m+2)(p−1)(1−δ3)
mp

(t)I
3

2p

3i (t), i = 1, 2, . . . , k.

(3.21)

Substituting (3.21) into (3.16) and applying the following inequality

(a1 + a2)
s ≤ 2s(as

1 + as
2), a1, a2 > 0 and s > 0,
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we derive

I2i(t) ≤ |Ω|
(p−1)δ2

p

(
3
√

3

2
|Ω| m−4

2m ρ
− 3

2
0

(∫

Ω
u

m(r−1)
i dx

) m+2
m

(t) +

√
6

9

(
(m + 2)(r − 1)(ρ0 + d)

ρ0

) 3
2

×|Ω|
(

1− 2(m+2)(1−δ3)
3m

)
3(p−1)

2p ·
(∫

Ω
u

m(r−1)
i dx

) (m+2)(p−1)(1−δ3)
mp

(t)I
3

2p

3i (t)

) (p−1)(1−δ2)
p

I
1
p

3i(t)

≤ c3

(∫

Ω
u

m(r−1)
i dx

) α(m+2)(1−δ2)
m

(t)I
1
p

3i(t) + c4

(∫

Ω
u

m(r−1)
i dx

) α2(m+2)(1−δ2)(1−δ3)
m

(t)I
β
3i(t)

≤ c3Θ
α(m+2)(1−δ2)

m (t)I
1
p

3 (t) + c4Θ
α2(m+2)(1−δ2)(1−δ3)

m (t)I
β
3 (t), i = 1, 2, . . . , k,

(3.22)

where

α = 1 − 1

p
, β =

1

p
+

3α(1 − δ2)

2p
< 1, (3.23)

c3 =

(
3
√

3ρ
− 3

2
0

)α(1−δ2)

|Ω| α
2m (m−4+(m+4)δ2), (3.24)

and

c4 =

(
2
√

6

9

)α(1−δ2) (
(m + 2)(r − 1)(ρ0 + d)

ρ0

) 3α(1−δ2)
2

|Ω|
(

1− 2(m+2)(1−δ3)
3m

)
3α2(1−δ2)

2 +αδ2 . (3.25)

Hence, we deduce from (3.22) that

I2(t) =
k

∑
i=1

I2i(t) ≤ kc3Θ
α(m+2)(1−δ2)

m (t)I
1
p

3 (t) + kc4Θ
α2(m+2)(1−δ2)(1−δ3)

m (t)I
β
3 (t). (3.26)

Therefore, it follows from (3.6), (3.15) and (3.26) that

Θ′(t) ≤ l1Θ
m+1

m (t) + l̃2Θ
(m+1)(p−1)(1−δ1)

mp (t)I
3

2p

3 (t) + l̃3Θ
α(m+2)(1−δ2)

m (t)I
1
p

3 (t)

+ l̃4Θ
α2(m+2)(1−δ2)(1−δ3)

m (t)I
β
3 (t)− m(r − 1)[m(r − 1)− 1]I3(t),

(3.27)

where

l1 =
9
√

3mk(r − 1)C

2ρ0
ρ
− 3

2
0 |Ω| m−2

2m > 0, (3.28)

l̃2 =

√
6mk(r − 1)C

3ρ0

(
(m + 1)(r − 1)(ρ0 + d)

ρ0

) 3
2

|Ω|
(

1− 2(m+1)(1−δ1)
3m

)
3(p−1)

2p
> 0, (3.29)

l̃3 =
mk(m + 1)(r − 1)2Cd

ρ0

(
3
√

3ρ
− 3

2
0

)α(1−δ2)

|Ω| α
2m (m−2+(m+2)δ2) > 0, (3.30)

and

l̃4 =

(
2
√

6

9

)α(1−δ2)
mk(m + 1)(r − 1)2Cd

ρ0

(
(m + 2)(r − 1)(ρ0 + d)

ρ0

) 3α(1−δ2)
2

×|Ω|
(

1− 2(m+2)(1−δ3)
3m

)
3α2(1−δ2)

2 +αδ2
> 0.

(3.31)
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Next, by using the fundamental inequality

ar1
1 ar2

2 ≤ r1a1 + r2a2, a1, a2 > 0, r1, r2 > 0 and r1 + r2 = 1, (3.32)

we have

Θ
(m+1)(p−1)(1−δ1)

mp (t)I
3

2p

3 (t) = (ε1 I3(t))
3

2p


Θ

2(m+1)(1−δ1)(p−1)
m(2p−3) (t)

ε
3

2p−3

1




1− 3
2p

≤ 3

2p
ε1 I3(t) +

(
1 − 3

2p

)
ε

3
3−2p

1 Θ
2(m+1)(1−δ1)(p−1)

m(2p−3) (t),

(3.33)

where ε1 is an arbitrary positive constant.

Similarly, we obtain

Θ
α(m+2)(1−δ2)

m (t)I
1
p

3 (t) ≤
1

p
ε2 I3(t) +

(
1 − 1

p

)
ε

1
1−p

2 Θ
αp(m+2)(1−δ2)

m(p−1) (t) (3.34)

and

Θ
α2(m+2)(1−δ2)(1−δ3)

m (t)I
β
3 (t) ≤ βε3 I3(t) + (1 − β) ε

β
β−1

3 Θ
α2(m+2)(1−δ2)(1−δ3)

m(1−β) (t), (3.35)

where ε i, i = 2, 3 are arbitrary positive constants.

Choosing the arbitrary positive constants ε i (i = 1, 2, 3) such that

3

2p
ε1 l̃2 +

1

p
ε2 l̃3 + βε3 l̃4 − m(r − 1)[m(r − 1)− 1] = 0, (3.36)

it follows from (3.27),(3.33)–(3.35) that

Θ′(t) ≤ l1Θ
m+1

m (t) + l2Θ
2(m+1)(1−δ1)(p−1)

m(2p−3) (t) + l3Θ
αp(m+2)(1−δ2)

m(p−1) (t) + l4Θ
α2(m+2)(1−δ2)(1−δ3)

m(1−β) (t)

= l1Θα1(t) + l2Θα2(t) + l3Θα3(t) + l4Θα4(t),
(3.37)

where

l2 =

(
1 − 3

2p

)
ε

3
3−2p

1 l̃2, (3.38)

l3 =

(
1 − 1

p

)
ε

1
1−p

2 l̃3, (3.39)

l4 = (1 − β) ε
β

β−1

3 l̃4, (3.40)

α1 =
m + 1

m
, (3.41)

α2 =
2(m + 1)(1 − δ1)(p − 1)

m(2p − 3)
, (3.42)

α3 =
αp(m + 2)(1 − δ2)

m(p − 1)
, (3.43)

and

α4 =
α2(m + 2)(1 − δ2)(1 − δ3)

m(1 − β)
. (3.44)
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Integrating (3.37) over (0, t), we derive

t ≥
∫ Θ(t)

Θ(0)

1
4

∑
i=1

liξαi

dξ. (3.45)

As (u1, u2, . . . , uk) blows up, we obtain the lower bound for the blow-up time t∗ as follows

t ≥
∫ ∞

Θ(0)

1
4

∑
i=1

liξαi

dξ. (3.46)

Clearly, it is unlikely that the quantity
∫ ∞

Θ(0)
1

4

∑
i=1

liξ
αi

dξ can be evaluated exactly. However a

lower bound for the integral may be obtained as follows. Let

g(Θ) =

{
LΘαm , if Θ(t) < 1,

LΘαM , if Θ(t) > 1,
(3.47)

where αm = mini{αi}, αM = maxi{αi}, (i = 1, 2, 3, 4) and L = ∑
4
i=1 li. Then we have

t ≥
∫ ∞

Θ(0)

1
4

∑
i=1

liξαi

dξ ≥
∫ ∞

Θ(0)

1

g(ξ)
dξ. (3.48)

The proof of Theorem 1.2 is complete.
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1 Introduction

In this paper we address the null controllability for the following singular heat equation with

memory:


















yt − yxx −
µ

x2
y =

∫ t

0
a(t, r, x)y(r, x) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(1.1)
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where y0 ∈ L2(0, 1), T > 0 is fixed, µ is a real parameter, Q := (0, T)× (0, 1) and 1ω stands

for a characteristic function of a nonempty open subset ω of (0, 1). Here y and u are the state

variable and the control variable, respectively; a is a given L∞ function defined on (0, T)× Q.

The analysis of evolution equations involving memory terms is a topic in continuous de-

velopment. In the last decades, many researchers have started devoting their attention to this

branch of mathematics, motivated by many applications in modelling phenomena in which

the processes are affected not only by its current state but also by its history. Indeed, there is a

large spectrum of situations in which the presence of the memory may render the description

of the phenomena more accurate. This is particularly the case for models such as heat con-

duction in materials with memory, viscoelasticity, theory of population dynamics and nuclear

reactors, where one often needs to reflect the effects of the memory of the system (see for

instance [4, 8, 32, 38]).

Controllability problems for evolution equations with memory terms have been extensively

studied in the past. Among other contributions, we mention [5,21,24,27,28,30,33,39,42] which,

as in our case, deal with parabolic type equations. We also refer to [37] for an overview of the

bibliography on control problems for systems with persistent memory. The first results for a

degenerate parabolic equation with memory can be found in [1].

In this work, for the first time to our knowledge, we study the null controllability for (1.1).

We underline that here we consider not only a memory term but also a singular potential

one. In other words, given any y0 ∈ L2(0, 1), we want to show that there exists a control

function u ∈ L2(Q) such that the corresponding solution y to (1.1) satisfies y(T, x) = 0 for

every x ∈ [0, 1]. First results in this direction are obtained in [46] in the absence of a memory

term when µ ≤ 1
4 (see also [45] for the wave and Schrödinger equations and [11] for boundary

singularity). Indeed, for the equation

ut − ∆u − µ
1

|x|2 u = 0, (t, x) ∈ (0, T)× Ω, (1.2)

with associated Dirichlet boundary conditions in a bounded domain Ω ⊂ R
N containing the

singularity x = 0 in the interior, the value of the parameter µ determines the behavior of the

equation: if µ ≤ 1/4 (which is the optimal constant of the Hardy inequality, see [9]) global

positive solutions exist, while, if µ > 1/4, instantaneous and complete blow-up occurs (for

other comments on this argument we refer to [44]). In the case of global positive solutions,

hence if µ ≤ 1
4 , using Carleman estimates, it has been proved that such equations can be

controlled (in any time T > 0) by a locally distributed control (see [46]). On the contrary, if

µ >
1
4 , the null controllability fails as shown in [14]. After these first results, several other

works followed extending them in various situations (see for instance [6, 7, 11, 15–20, 36, 44]).

However, when µ = 0 and a = 1, (1.1) reduces to the following control system associated

to the classical heat equation with memory:



















yt − yxx =
∫ t

0
y(s) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(1.3)

In this case, as shown in [24, 49], there exists a set of initial conditions such that the null

controllability property for (1.3) fails whenever the control region ω is fixed, independent of

time. For some related works in this respect we also refer to [12, 28, 48].
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Nevertheless, since the positive controllability results are important in real world applica-

tions, it is natural to analyze whether it is possible that control properties for (1.1) could be

obtained. For this reason, under suitable conditions on the singularity parameter µ and on

the kernel a (see (3.1)), we establish that (1.1) is null controllable.

Our approach is inspired from the techniques presented in the work [42] for the heat

equation perturbed with a memory-type kernel, suitably adapted in order to deal with the

additional inverse-square potential.

We recall that a natural technique for showing controllability results for parabolic equa-

tions is to prove an observability estimate for their adjoint systems by Carleman inequalities.

However, this classical strategy does not seem to be appropriate for studying the controlla-

bility problem for integro-differential parabolic equations like (1.1). In fact, as in [10, 42], in

this case we shall argue by a fixed point procedure. For this reason, we shall introduce a

nonhomogeneous singular heat equation for which we prove a null controllability result by

a modified Carleman inequality with weighted functions that do not blow up at t = 0. This

is crucial in order to get the null controllability of the memory system (1.1) by weakening

the assumptions on the kernel a. Finally, we mention that Carleman inequalities for singular

equations without memory have been obtained in [44, 46], but the employment of a weight

blowing up at t = 0 and t = T in the Carleman inequality does not permit to consider a

general kernel a.

The paper is organized as follows: Section 2 is devoted to the study of null controllability

for a nonhomogeneous singular heat equation without memory via new Carleman estimates.

In Section 3, the null controllability for the singular heat equation with memory (1.1) is proved.

A final comment on the notation: by C we shall denote universal positive constants, which

are allowed to vary from line to line.

2 Nonhomogeneous singular heat equation

In this section, we prove the null controllability for a nonhomogeneous singular heat equation

using a new modified Carleman inequality. This null controllability result is the key tool for

the controllability of the heat equation with memory. Thus, as a first step, we consider the

following problem:















yt − yxx −
µ

x2
y = f + 1ωu(t), (t, x) ∈ Q := (0, T)× (0, 1),

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(2.1)

where f ∈ L2(Q) is a given source term.

Prior to null controllability is the well-posedness of (2.1), a question we address in the next

subsection.

2.1 Functional framework and well-posedness

We analyze here existence and uniqueness of solutions for the heat problem (2.1). To sim-

plify the presentation, we first focus on the well-posedness of the following inhomogeneous
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singular problem














yt − yxx −
µ

x2
y = f , (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(2.2)

In this framework, in order to deal with the singularity of the potential, a fundamental tool is

the very famous Hardy inequality. To fix the ideas, we recall here the basic form of the Hardy

inequality in dimension one (see, for example, [29, Theorem 327] or [13, Lemma 5.3.1]):

1

4

∫ 1

0

y2

x2
dx ≤

∫ 1

0
y2

x dx, (2.3)

which is valid for every y ∈ H1(0, 1) with y(0) = 0.

Now, for any µ ≤ 1
4 , we define

H
1,µ
0 (0, 1) :=

{

y ∈ L2(0, 1) ∩ H1
loc((0, 1]) | y(0) = y(1) = 0, and

∫ 1

0

(

y2
x − µ

y2

x2

)

dx < +∞

}

.

Note that H
1,µ
0 (0, 1) is a Hilbert space obtained as the completion of C∞

c (0, 1), or H1
0(0, 1), with

respect to the norm

‖y‖µ :=

(

∫ 1

0
(y2

x − µ
y2

x2
) dx

)

1
2

, ∀ y ∈ H1
0(0, 1).

In the case of a sub-critical parameter µ <
1
4 , thanks to the Hardy inequality (2.3), one can see

that ‖ · ‖µ is equivalent to the standard norm of H1
0(0, 1), and thus H

1,µ
0 (0, 1) = H1

0(0, 1). In

the critical case µ = 1
4 , it is proved (see [47]) that this identification does not hold anymore

and the space H
1,µ
0 (0, 1) is slightly (but strictly) larger than H1

0(0, 1).

Now, define the operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) corresponding to the heat

equation with an inverse square potential in the following way:

Ay := yxx +
µ

x2
y

∀ y ∈ D(A) :=
{

y ∈ H2
loc((0, 1]) ∩ H

1,µ
0 (0, 1) : yxx +

µ

x2
y ∈ L2(0, 1)

}

.

In this context, A is self-adjoint, nonpositive on L2(0, 1) and it generates an analytic semi-

group of contractions in L2(0, 1) for the equation (2.2) (see [47]). Consequently, the singular

heat equation (2.2) is well-posed. To be precise, the next result holds.

Theorem 2.1. For all f ∈ L2(Q) and y0 ∈ L2(0, 1), there exists a unique solution

y ∈ W := C
(

[0, T]; L2(0, 1)
)

∩ L2
(

0, T; H
1,µ
0 (0, 1)

)

of (2.2) such that

sup
t∈[0,T]

‖y(t)‖2
L2(0,1) +

∫ T

0
‖y(t)‖2

µdt ≤ CT

(

‖y0‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)

, (2.4)

for some positive constant CT. Moreover, if y0 ∈ H
1,µ
0 (0, 1), then

y ∈ Z := H1
(

0, T; L2(0, 1)
)

∩ L2
(

0, T; D(A)
)

∩ C
(

[0, T]; H
1,µ
0 (0, 1)

)

, (2.5)



Null controllability for a singular heat equation with a memory term 5

and there exists a positive constant C such that

sup
t∈[0,T]

(

‖y(t)‖2
µ

)

+
∫ T

0

(

‖yt‖2
L2(0,1) +

∥

∥

∥
yxx +

µ

x2
y
∥

∥

∥

2

L2(0,1)

)

dt ≤ C
(

‖y0‖2
µ + ‖ f ‖2

L2(Q)

)

. (2.6)

Proof. In [47], the authors use semigroup theory to obtain the well-posedness result for the

problem (2.2) (see also [36]). Thus, in the rest of the proof, we will prove only (2.4)–(2.6). First,

being A the generator of a strongly continuous semigroup on L2(0, 1), if y0 ∈ L2(0, 1), then

the solution y of (2.2) belongs to C
(

[0, T]; L2(0, 1)
)

∩ L2
(

0, T; H
1,µ
0 (0, 1)

)

, while, if y0 ∈ D(A),

then y ∈ H1
(

0, T; L2(0, 1)
)

∩ L2
(

0, T; D(A)
)

.

Now, by a usual energy method we shall prove (2.5) and (2.6), from which the last required

regularity property for y will follow by standard linear arguments. First, take y0 ∈ D(A) and

multiply the equation of (2.2) by y. By the Cauchy–Schwarz inequality we obtain for every

t ∈ (0, T],
1

2

d

dt
‖y(t)‖2

L2(0,1) + ‖y(t)‖2
µ ≤ 1

2
‖ f (t)‖2

L2(0,1) +
1

2
‖y(t)‖2

L2(0,1). (2.7)

From (2.7) and using Gronwall’s inequality, we get

‖y(t)‖2
L2(0,1) ≤ eT

(

‖y(0)‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)

(2.8)

for every t ≤ T. From (2.7) and (2.8) we immediately obtain

∫ T

0
‖y(t)‖2

µdt ≤ CT

(

‖y(0)‖2
L2(0,1) + ‖ f ‖2

L2(Q)

)

(2.9)

for some universal constant CT > 0. Thus, by (2.8) and (2.9), (2.4) follows if y0 ∈ D(A). Since

D(A) is dense in L2(0, 1) (see [43, 47]), the same inequality holds if y0 ∈ L2(0, 1).

Now, multipling the equation by −yxx − µ

x2 y, integrating on (0, 1) and using the Cauchy–

Schwarz inequality, we easily get

d

dt
‖y(t)‖2

µ + ‖yxx(t) +
µ

x2
y(t)‖2

L2(0,1) ≤ ‖ f (t)‖2
L2(0,1)

for every t ∈ [0, T], so that, as before, we find C′
T > 0 such that

‖y(t)‖2
µ +

∫ T

0
‖yxx(t) +

µ

x2
y(t)‖2

L2(0,1)dt ≤ C′
T

(

‖y(0)‖µ + ‖ f ‖2
L2(Q)

)

(2.10)

for every t ≤ T. Finally, from yt = yxx +
µ

x2
y + f , squaring and integrating on Q, we find

∫ T

0
‖yt(t)‖2

L2(0,1) ≤ C

(

∫ T

0
‖yxx +

µ

x2
y‖2

L2(0,1) + ‖ f ‖2
L2(Q)

)

,

and together with (2.10) we have

∫ T

0
‖yt(t)‖2

L2(0,1) ≤ C
(

‖y(0)‖2
µ + ‖ f ‖2

L2(Q)

)

. (2.11)

In conclusion, (2.7), (2.8), (2.10) and (2.11) give (2.4) and (2.6). Notice that, (2.5) and (2.6)

hold also if y0 ∈ H
1,µ
0 (0, 1).
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2.2 Carleman estimates for a singular problem

In this subsection we prove a new Carleman estimate for the adjoint parabolic equation as-

sociated to (2.1), which will provide that the nonhomogeneous singular heat equation (2.1) is

null controllable. Hence, in the following, we concentrate on the next adjoint problem















−zt − zxx −
µ

x2
z = g, (t, x) ∈ Q,

z(t, 0) = z(t, 1) = 0, t ∈ (0, T),

z(T, x) = zT(x), x ∈ (0, 1).

(2.12)

Following [46], for every 0 < γ < 2, let us introduce the weight function

ϕ(t, x) := θ(t)ψ(x), (2.13)

where

ψ(x) := c(x2 − d), θ(t) :=

(

1

t(T − t)

)k

, k := 1 +
2

γ
, (2.14)

c > 0 and d > 1. A more precise restriction on the parameters k, c and d will be needed later.

Observe that lim
t→0+

θ(t) = lim
t→T−

θ(t) = +∞, and

ψ(x) < 0 for every x ∈ [0, 1].

Using the previous weight functions and the following improved Hardy–Poincaré inequal-

ity given in [44]:

For all η > 0, there exists some positive constant C = C(η) > 0 such that, for all z ∈ C∞
c (0, 1) :

∫ 1

0
xηz2

x dx ≤ C
∫ 1

0

(

z2
x −

1

4

z2

x2

)

dx, (2.15)

one can prove the following Carleman estimate for the case of a purely singular parabolic

equation:

Lemma 2.2 ([44, Theorem 5.1]). Assume that µ ≤ 1
4 . Then, there exists C > 0 and s0 > 0 such that,

for all s ≥ s0, every solution z of (2.12) satisfies

∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫

Q
sθ

(

z2
x − µ

z2

x2

)

e2sϕ dx dt +
∫∫

Q
sθ

z2

xγ
e2sϕ dx dt

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt

)

. (2.16)

Observe that, if the term
∫∫

Q
sθ

(

z2
x − µ

z2

x2

)

e2sϕ dx dt

is not positive, then the estimate (2.16) is not of great importance. In fact, the Hardy inequality

(2.3) only ensures the positivity of the quantity

∫∫

Q
sθ

(

z2
x − µ

z2

x2

)

dx dt.

However, from [44, Remark 3] and similarly as in [25], we will rewrite the result given in

Lemma 2.2 in a more practical way.
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Lemma 2.3. Assume that µ ≤ 1
4 . Then, there exist C > 0 and s0 > 0 such that, for all s ≥ s0, every

solution z of (2.12) satisfies

Jϕ,η,γ(z) ≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt

)

, (2.17)

where

Jϕ,η,γ(z) =
∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫

Q
sθz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

x2
e2sϕ dx dt, (2.18)

if µ <
1
4 , and

Jϕ,η,γ(z) =
∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫

Q
sθxηz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

xγ
e2sϕ dx dt, (2.19)

if µ = 1
4 . We recall that 0 < γ < 2.

Proof. Case 1: If µ <
1
4 .

Let Z = zesϕ. In order to prove [44, Theorem 5.1], the author has derived the following

estimate
∫∫

Q
s3θ3x2Z2 dx dt +

∫∫

Q
sθ

(

Z2
x − µ

Z2

x2

)

dx dt +
∫∫

Q
sθ

Z2

xγ
dx dt

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt

)

. (2.20)

Let δ < inf(1, (1 − 4µ)) be a fixed positive constant. We have

∫∫

Q
sθ

(

Z2
x − µ

Z2

x2

)

dx dt = (1 − δ)
∫∫

Q
sθ

(

Z2
x −

1

4

Z2

x2

)

dx dt

+ δ

∫∫

Q
sθZ2

x dx dt +

(

1

4
(1 − δ)− µ

)

∫∫

Q
sθ

Z2

x2
dx dt. (2.21)

By (2.20) and (2.21), we obtain

∫∫

Q
s3θ3x2Z2 dx dt + (1 − δ)

∫∫

Q
sθ

(

Z2
x −

1

4

Z2

x2

)

dx dt + δ

∫∫

Q
sθZ2

x dx dt

+

(

1

4
(1 − δ)− µ

)

∫∫

Q
sθ

Z2

x2
dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt

)

.

On the other hand, from (2.15), for all η > 0 there exists a constant c0 = c0(η) > 0 such that

∫∫

Q
sθ

(

Z2
x −

1

4

Z2

x2

)

dx dt ≥ c0

∫∫

Q
sθxηZ2

x dx dt. (2.22)

Hence,
∫∫

Q
s3θ3x2Z2 dx dt + (1 − δ)c0

∫∫

Q
sθxηZ2

x dx dt + δ

∫∫

Q
sθZ2

x dx dt

+

(

1

4
(1 − δ)− µ

)

∫∫

Q
sθ

Z2

x2
dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt

)

. (2.23)
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Using the definition of Z, we have

Z2 = z2e2sϕ, (2.24)

Zx = zxesϕ + sθψxZ and z2
xe2sϕ ≤ 2Z2

x + cs2θ2x2Z2, (2.25)

for a positive constant c. Then,
∫∫

Q
sθz2

xe2sϕ dx dt ≤ 2
∫∫

Q
sθZ2

x dx dt + c
∫∫

Q
s3θ3x2Z2 dx dt. (2.26)

Combining (2.23)–(2.26), we obtain the desired estimate (2.17). Indeed, defining

a0 = min

{

1

1 + c
,

δ

2
,

(

1

4
(1 − δ)− µ

)}

> 0,

we have

a0

(

∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫

Q
sθz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

x2
e2sϕ dx dt +

∫∫

Q
sθ

z2

xγ
e2sϕ dx dt

)

≤ a0

(

(1 + c)
∫∫

Q
s3θ3x2Z2 dx dt + 2

∫∫

Q
sθZ2

xdxdt +
∫∫

Q
sθ

Z2

x2
dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

)

≤
∫∫

Q
s3θ3x2Z2 dx dt + δ

∫∫

Q
sθZ2

xdxdt +

(

1

4
(1 − δ)− µ

)

∫∫

Q
sθ

Z2

x2
dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

≤
∫∫

Q
s3θ3x2Z2 dx dt + (1 − δ)c0

∫∫

Q
sθxηZ2

x dx dt + δ

∫∫

Q
sθZ2

x dx dt

+

(

1

4
(1 − δ)− µ

)

∫∫

Q
sθ

Z2

x2
dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθZ2

x(t, 1) dx dt

)

.

Thus, the conclusion follows.

Case 2: If µ = 1
4 .

As before, let Z = zesϕ and define

a0 = min

{

1

1 + c
,

c0

2

}

> 0,

where c0 and c are the constants of (2.22) and (2.25), respectively. Then, by (2.20), (2.22), (2.24)

and (2.25), that still hold if µ = 1
4 , we have

a0

(

∫∫

Q
s3θ3x2z2e2sϕ dx dt +

∫∫

Q
sθxηz2

xe2sϕ dx dt +
∫∫

Q
sθ

z2

xγ
e2sϕ dx dt

)

≤ a0

(

∫∫

Q
s3θ3x2Z2 dx dt + 2

∫∫

Q
sθxηZ2

x dx dt + c
∫∫

Q
s3θ3x2Z2 dx dt +

∫∫

Q
sθ

Z2

xγ
dx dt

)

≤ a0(1 + c)
∫∫

Q
s3θ3x2Z2 dx dt + a0

2

c0

∫∫

Q
sθ

(

Z2
x −

1

4

Z2

x2

)

dx dt + a0

∫∫

Q
sθ

Z2

xγ
dx dt

(by (2.20))

≤ C

(

∫∫

Q
g2e2sϕ dx dt +

∫ T

0
sθz2

x(t, 1)e2sϕ(t,1) dx dt

)

.

(2.27)

Hence, also in this case the conclusion follows.
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We point out that the Carleman estimates stated above are not appropriate to achieve our

goal. In fact, all these estimates does not have the observation term in the interior of the

domain. However, we use them to obtain the main Carleman estimate stated in Proposition

2.5. More precisely, from the boundary Carleman estimates (2.17), we will deduce a global

Carleman estimate for the adjoint problem (2.12) with a distributed observation on a subregion

ω′ := (α′, β′) ⊂⊂ ω. (2.28)

To do so, we recall the following weight functions associated to nonsingular Carleman esti-

mates which are suited to our purpose:

Φ(t, x) := θ(t)Ψ(x)

where θ is defined in (2.14) and Ψ(x) = eρσ − e2ρ‖σ‖∞ . Here ρ > 0, σ ∈ C2([0, 1]) is such that

σ(x) > 0 in (0, 1), σ(0) = σ(1) = 0 and σx(x) 6= 0 in [0, 1] \ ω̃, being ω̃ an arbitrary open

subset of ω.

In the following, we choose the constant c in (2.14) so that

c ≥ e2ρ‖σ‖∞ − 1

d − 1
.

By this choice one can prove that the function ϕ defined in (2.13) satisfies the next estimate

ϕ(t, x) ≤ Φ(t, x) for every (t, x) ∈ [0, T]× [0, 1]. (2.29)

Thanks to this property, we can prove the main Carleman estimate of this paper whose

proof is based also on the following Caccioppoli’s inequality:

Proposition 2.4 (Caccioppoli’s inequality). Let ω′ and ω′′ be two nonempty open subsets of (0, 1)

such that ω′′ ⊂ ω′ and φ(t, x) = θ(t)̺(x), where ̺ ∈ C2(ω′, R). Then, there exists a constant

C > 0 such that any solution z of (2.12) satisfies
∫∫

Qω′′
z2

xe2sφ dx dt ≤ C
∫∫

Qω′
(g2 + s2θ2z2)e2sφ dx dt, (2.30)

where Qω := (0, T)× ω.

The proof of the previous result is similar to the one given, for instance, in [3, Lemma 6.1],

so we omit it.

Now, we are ready to prove the following result:

Proposition 2.5. Assume that µ ≤ 1
4 . Then, there exist two positive constants C and s0 such that, the

solution z of equation (2.12) satisfies, for all s ≥ s0

Jϕ,η,γ(z) ≤ C

(

∫∫

Q
g2e2sΦ dx dt +

∫∫

Qω′
s3θ3z2e2sΦ dx dt

)

. (2.31)

Here Jϕ,η,γ(·) is defined in (2.18) or (2.19).

Proof. Let us set ω′′ = (α′′, β′′) ⊂⊂ ω′ and consider a smooth cut-off function ξ ∈ C∞([0, 1])

such that 0 ≤ ξ(x) ≤ 1 for x ∈ (0, 1), ξ(x) = 1 for x ∈ [0, α′′] and ξ(x) = 0 for x ∈ [β′′, 1].

Define w := ξz where z is the solution of (2.12). Then, w satisfies the following problem:














−wt − wxx −
µ

x2
w = ξg − ξxxz − 2ξxzx, (t, x) ∈ Q,

w(t, 1) = w(t, 0) = 0, t ∈ (0, T),

w(T, x) = ξ(x)zT(x), x ∈ (0, 1).

(2.32)
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First of all, we prove the first intermediate Carleman estimate for z in (0, T)× (0, α′) (recall

that z ≡ w in [0, α′]):

Jϕ,η,γ(w) ≤ C

(

∫∫

Q
ξ2g2e2sϕ dx dt +

∫∫

Qω′
(g2 + s2θ2z2)e2sϕ dx dt

)

≤ C

(

∫∫

Q
ξ2g2e2sΦ dx dt +

∫∫

Qω′
(g2 + s2θ2z2)e2sΦ dx dt

)

.

(2.33)

The second inequality in (2.33) follows by (2.29), thus it is sufficient to prove the first inequality

of (2.33). Applying the Carleman estimate (2.17) to (2.32), we obtain

Jϕ,η,γ(w) ≤ C
∫∫

Q

(

ξ2g2 +
(

ξxxz + 2ξxzx

)2
)

e2sϕ dx dt. (2.34)

From the definition of ξ and the Caccioppoli inequality (2.30), we obtain

∫∫

Q

(

ξxxz + 2ξxzx

)2
e2sϕ dx dt ≤ C

∫∫

Qω′′
(z2 + z2

x)e
2sϕ dx dt

≤ C
∫∫

Qω′
(g2 + s2θ2z2)e2sϕ dx dt. (2.35)

Combining (2.34) and (2.35) we obtain (2.33).

Now, using the non singular Carleman estimate of Corollary 5.2, we are going to show a

second estimate of z in (0, T)× (β′, 1). For this purpose, let v = ζz where ζ := 1 − ξ (hence

z ≡ v in [β′, 1]). Clearly, the function v is a solution of the uniformly parabolic equation















−vt − vxx −
µ

x2
v = ζg − ζxxz − 2ζxzx, (t, x) ∈ (0, T)× (α′, 1),

v(t, 1) = v(t, α′) = 0, t ∈ (0, T),

v(T, x) = ζ(x)zT(x), x ∈ (α′, 1).

(2.36)

Since ζ has its support in [α′′, β′′], by Corollary 5.2 we have

∫∫

Q

(

sθv2
x + s3θ3v2

)

e2sΦ dx dt =
∫ T

0

∫ 1

α′

(

sθv2
x + s3θ3v2

)

e2sΦ dx dt

≤ C

(

∫ T

0

∫ 1

α′

(

ζ2g2 +
(

ζxxz + 2ζxzx

)2
)

e2sΦ dx dt +
∫∫

Qω′′
s3θ3v2e2sΦ dx dt

)

≤ C

(

∫∫

Q
ζ2g2e2sΦ dx dt +

∫∫

Qω′′
(z2 + z2

x)e
2sΦ dx dt +

∫∫

Qω′′
s3θ3v2e2sΦ dx dt

)

.

Therefore, by the previous estimate, by (2.29) and using the Caccioppoli inequality (2.30),

we deduce

∫∫

Q

(

sθv2
x + s3θ3v2

)

e2sϕ dx dt ≤
∫∫

Q

(

sθv2
x + s3θ3v2

)

e2sΦ dx dt

≤ C

(

∫∫

Q
ζ2g2e2sΦ dx dt +

∫∫

Qω′

(

g2 + s3θ3z2
)

e2sΦ dx dt

)

.

(2.37)
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Thus, since v = ζz has its support in [0, T]× [α′′, 1], that is far away from the singularity point

x = 0, one can prove that there exists a constant C > 0 such that:

Jϕ,η,γ(v) ≤ C
∫∫

Q

(

sθv2
x + s3θ3v2

)

e2sϕ dx dt

(by (2.37))

≤ C

(

∫∫

Q
ζ2g2e2sΦ dx dt +

∫∫

Qω′

(

g2 + s3θ3z2
)

e2sΦ dx dt

)

.

(2.38)

Note that

z2 = (w + v)2 ≤ 2(w2 + v2) and z2
x = (wx + vx)

2 ≤ 2(w2
x + v2

x).

Therefore, adding (2.33) and (2.38), (2.31) follows immediately.

For our purposes in the next section, we concentrate now on a Carleman inequality for

solutions of (2.12) obtained via weight functions not exploding at t = 0. To this end, we will

apply a classical argument that can be found, for instance, in [22] and recently in [1] for a

degenerate parabolic equation with memory. More precisely, let us consider the function:

ν(t) =















θ

(

T

2

)

, t ∈
[

0,
T

2

]

,

θ(t), t ∈
[

T

2
, T

]

,

(2.39)

and the following associated weight functions:

ϕ̃(t, x) := ν(t)ψ(x), Φ̃(t, x) := ν(t)Ψ(x),

Φ̂(t) := max
x∈[0,1]

Φ̃(t, x), ϕ̂(t) := max
x∈[0,1]

ϕ̃(t, x) and ϕ̌(t) := min
x∈[0,1]

ϕ̃(t, x). (2.40)

Now we are ready to state and prove this new modified Carleman estimate for the adjoint

problem (2.12).

Lemma 2.6. Assume that µ ≤ 1
4 . Then, there exist two positive constants C and s0 such that every

solution z of (2.12) satisfies, for all s ≥ s0

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫∫

Q
νz2e2sϕ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(

∫∫

Q
g2e2sΦ̃ dx dt +

∫∫

Qω

s3ν3z2e2sΦ̃ dx dt

)

. (2.41)

Proof. By the definitions of ν and ϕ̃ and using Proposition 2.5, it results that there exists a

positive constant C such that all the solutions to equation (2.12) satisfy

∫ T

T
2

∫ 1

0
νz2e2sϕ̃ dx dt =

∫ T

T
2

∫ 1

0
θz2e2sϕ dx dt ≤ C

∫ T

T
2

∫ 1

0
sθ

z2

xγ
e2sϕ dx dt

≤ C

(

∫∫

Q
g2e2sΦ dx dt +

∫∫

Qω′
s3θ3z2e2sΦ dx dt

)

. (2.42)

Let us introduce a function τ ∈ C1([0, T]) such that τ = 1 in
[

0, T
2

]

and τ ≡ 0 in
[

5T
8 , T

]

.

Denote τ̃ = esϕ̂(0)
√

ντ, where esϕ̂(0) = max0≤t≤T esϕ̂(t).
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Let z̃ = τ̃z, then z̃ satisfies














−z̃t − z̃xx −
µ

x2
z̃ = −τ̃tz + τ̃g, (t, x) ∈ Q,

z̃(t, 0) = z̃(t, 1) = 0, t ∈ (0, T),

z̃(T, x) = 0, x ∈ (0, 1).

(2.43)

Thanks to the estimate of supt∈[0,T] ‖z̃(t)‖2
L2(0,1)

(see the energy estimate (2.4)), we have

‖z̃(0)‖2
L2(0,1) + ‖z̃‖2

L2(Q) ≤ C
∫∫

Q
(τ̃tz + τ̃g)2 dx dt,

which implies

ν(0)‖esϕ̂(0)z(0)‖2
L2(0,1) + ‖esϕ̂(0)

√
ντz‖2

L2(Q) ≤ C
∫∫

Q
(τ̃tz + τ̃g)2 dx dt.

By using the boundedness of θ in
[

T
2 , 5T

8

]

, the definitions of τ and of ν in
[

0, 5T
8

]

and the fact

that νt(t) = 0 in
[

0, T
2

]

and τ(t) = 0 in
[

5T
8 , T

]

, it holds that

c̄

(

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ 5T
8

0

∫ 1

0
ντ2z2e2sϕ̂ dx dt

)

≤ ν(0)‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ 5T
8

0

∫ 1

0
ντ2z2e2sϕ̂ dx dt

≤ C

(

∫ 5T
8

T
2

∫ 1

0
(θ2(t) + θ(t))z2e2sϕ̂(0) dx dt +

∫ 5T
8

0

∫ 1

0
νg2e2sϕ̂(0) dx dt

)

≤ C

(

∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̂(0) dx dt +

∫ 5T
8

0

∫ 1

0
g2e2sϕ̂(0) dx dt

)

,

where c̄ := min{ν(0), 1}. That is,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ C

(

∫ 5T
8

T
2

∫ 1

0
z2e2s(ϕ̂(0)−ϕ̃)e2sϕ̃ dx dt +

∫ 5T
8

0

∫ 1

0
g2e2s(ϕ̂(0)−ϕ̃)e2sϕ̃ dx dt

)

.

Observe that

ϕ̌

(

5T

8

)

≤ ϕ̃ in

(

0,
5T

8

)

× (0, 1)

so that,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(

∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̃ dx dt +

∫ 5T
8

0

∫ 1

0
g2e2sϕ̃ dx dt

)

. (2.44)

As in (2.42), one can prove that there exists a positive constant C such that

∫ 5T
8

T
2

∫ 1

0
z2e2sϕ̃ dx dt ≤ C

(

∫∫

Q
g2e2sΦ dx dt +

∫∫

Qω

s3θ3z2e2sΦ dx dt

)

.
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Using this last inequality in (2.44), we have

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T
2

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(

∫∫

Q
g2e2sΦ dx dt +

∫∫

Qω

s3θ3z2e2sΦ dx dt +
∫ 5T

8

0

∫ 1

0
g2e2sϕ̃ dx dt

)

. (2.45)

From (2.29) and by the definition of the modified weights, notice that, in particular ϕ̃ ≤ Φ̃ and

Φ ≤ Φ̃ in Q. This, together with (2.42) and (2.45), implies that

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫ T

0

∫ 1

0
νz2e2sϕ̃ dx dt

≤ Ce2s(ϕ̂(0)−ϕ̌( 5T
8 ))

(

∫∫

Q
g2e2sΦ̃ dx dt +

∫∫

Qω

s3θ3z2e2sΦ dx dt

)

. (2.46)

To conclude, it suffices to remark that for c > 0, the function s 7→ s3e−cs is nonincreasing for s

sufficiently large. So, since ν(t) ≤ θ(t) by taking s large enough, one has

s3θ3e2sΦ ≤ s3ν3e2sΦ̃,

which, together with (2.46), provides the desired inequality.

2.3 Null controllability result

Following the classical method as in [22], with the modified Carleman inequality proved

in the previous subsection, we can get a null controllability result for (2.1). However, as

explained in [42], this null controllability result cannot help to solve the controllability for

integro-differential equations. Indeed, we will need to prove the null controllability of the

singular heat equation (2.1), for more regular solutions. For this reason, to formulate our

results we introduce the following function space where the controllability will be solved:

Xs :=
{

y ∈ Z : e−sΦ̃y ∈ L2(Q)
}

equipped with the norm

‖y‖Xs := ‖e−sΦ̃y‖L2(Q).

Observe that, since Φ̃ < 0, we have that the function e−sΦ̃ tends to +∞ for t → T−. Therefore,

y ∈ Xs requires that the solution y has more regularity than the one in Lemma 2.1. Moreover,

if y ∈ Xs then y(T, x) = 0 in (0, 1). (2.47)

From now on, we denote by s0 the parameter defined in Lemma 2.6. Our first result, stated as

follows, ensures the null controllability for (2.1).

Theorem 2.7. Assume that µ ≤ 1
4 and y0 ∈ H

1,µ
0 (0, 1). If e−sϕ̃ f ∈ L2(Q) with s ≥ s0, then there

exists a control function u ∈ L2(Q), such that the associated solution y of (2.1) belongs to Xs.

Moreover, there exists a positive constant C such that y satisfies the following estimate:
∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(

∫∫

Q
f 2e−2sϕ̃ dx dt + ‖y0e−sϕ̂(0)‖2

L2(0,1)

)

.

(2.48)
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Proof. Following the ideas in [10, 42], fixed s ≥ s0, let us consider the functional

J(y, u) =

(

∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

)

, (2.49)

where (y, u) satisfies















yt − yxx −
µ

x2
y = f + 1ωu(t), (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), y(T, x) = 0, x ∈ (0, 1),

(2.50)

with u ∈ L2(Q).

By means of standard arguments, it is easy to prove (see [34,35]) that J attains its minimizer

at a unique point denoted as (ȳ, ū).

We set

Lµy := yt − yxx −
µ

x2
y in Q.

We will first prove that there exists a dual variable z̄ such that














ȳ = e2sΦ̃L⋆

µ z̄, in Q,

ū = −s3ν3e2sΦ̃ z̄, in (0, T)× ω,

z̄ = 0, on (0, T)× {0, 1},

(2.51)

where L⋆

µ is the (formally) adjoint operator of Lµ.

Let us start by introducing the following linear space

P0 =
{

z ∈ C∞(Q) : z = 0 on (0, T)× {0, 1}
}

,

and introduce the bilinear form a:

a(z1, z2) =
∫∫

Q
e2sΦ̃L⋆

µz1L⋆

µz2 dx dt +
∫∫

Qω

s3ν3e2sΦ̃z1z2 dx dt, ∀ z1, z2 ∈ P0.

Then, if the functions ȳ and ū given by (2.51) satisfy the parabolic problem (2.50), we must

have

a(z̄, z) =
∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ z ∈ P0. (2.52)

The key idea in this proof is to show that there exists exactly one z̄ satisfying (2.52) in an

appropriate class. We will then define ȳ and ū using (2.51) and we will check that the couple

(ȳ, ū) fulfills the desired properties.

Observe that the modified Carleman inequality (2.41) holds for all z ∈ P0. Consequently,

‖esϕ̂(0)z(0)‖2
L2(0,1) +

∫∫

Q
νz2e2sϕ̃ dx dt ≤ Ce2s[ϕ̂(0)−ϕ̌( 5T

8 )]a(z, z). (2.53)

In particular, a(·, ·) is a strictly positive and symmetric bilinear form, that is, a(·, ·) is a scalar

product in P0.

Denote by P the Hilbert space which is the completion of P0 with respect to the norm

associated to a(·, ·) (which we denote by ‖ · ‖P ). Let us now consider the linear form l, given

by

l(z) =
∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ z ∈ P .
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By the Cauchy–Schwarz inequality and in view of (2.53), we have that

|l(z)| ≤
∥

∥

∥

∥

f
e−sϕ̃

√
ν

∥

∥

∥

∥

L2(Q)

‖z
√

νesϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)‖z(0)esϕ̂(0)‖L2(0,1)

≤ Ces[ϕ̂(0)−ϕ̌( 5T
8 )]
(

‖ f e−sϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)

)

‖z‖P ,

and then l is a linear continuous form on P . Hence, in view of Lax–Milgram’s Lemma, there

exists one and only one z̄ ∈ P satisfying

a(z̄, z) = l(z), ∀ z ∈ P . (2.54)

Moreover, we have

‖z̄‖P ≤ Ces[ϕ̂(0)−ϕ̌( 5T
8 )]
(

‖ f e−sϕ̃‖L2(Q) + ‖y0e−sϕ̂(0)‖L2(0,1)

)

. (2.55)

Let us set

ȳ = e2sΦ̃L⋆

µ z̄ and ū = −1ωs3ν3e2sΦ̃ z̄. (2.56)

With these definitions and by (2.55), it is easy to check that ȳ and ū satisfy

∫∫

Q
ȳ2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3ū2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]
(

‖ f e−sϕ̃‖2
L2(Q) + ‖y0e−sϕ̂(0)‖2

L2(0,1)

)

,

(2.57)

which implies (2.48).

It remains to check that ȳ is the solution of (2.50) corresponding to ū. First of all, it is

immediate that ȳ ∈ Xs and ū ∈ L2(Q). Denote by ỹ the (weak) solution of (2.1) associated to

the control function u = ū, then ỹ is also the unique solution of (2.1) defined by transposition.

In other words, ỹ is the unique function in L2(Q) satisfying

∫∫

Q
ỹh dx dt =

∫∫

Q
1ωūz dx dt +

∫∫

Q
f z dx dt +

∫ 1

0
y0z(0) dx, ∀ h ∈ L2(Q), (2.58)

where z is the solution to














−zt − zxx − µ

x2 z = h, (t, x) ∈ Q,

z(t, 0) = z(t, 1) = 0, t ∈ (0, T),

z(T, x) = 0 x ∈ (0, 1).

According to (2.54) and (2.56), we see that ȳ also satisfies (2.58). Therefore, ȳ = ỹ. Conse-

quently, the control ū ∈ L2(ω × (0, T)) drives the state ȳ ∈ Xs exactly to zero at time T.

3 Singular heat equation with memory

Prior to null controllability is the well-posedness of problem (1.1). From the results in [23], we

recall that in the nonsingular case (µ = 0), it is well known that the heat operator with memory

gives rise to well-posed Cauchy–Dirichlet problems. Likewise in [23], by an application of the

Contraction Mapping Principle and invoking Theorem 2.1, we have that (1.1) is well-posed in

the following sense:
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Proposition 3.1. Assume that µ ≤ 1
4 . If y0 ∈ L2(0, 1) and u ∈ L2(Q), then there exists a unique

solution y of (1.1) such that

y ∈ C
(

[0, T]; L2(0, 1)
)

∩ L2
(

0, T; H
1,µ
0 (0, 1)

)

.

Now, we pass to derive our main result, which concerns the null controllability of the sin-

gular heat equation with memory (1.1). Hence, in what follows, we assume that the function

a satisfies

e
4kscd

Tk(T−t)k a ∈ L∞((0, T)× Q), (3.1)

where c, d, k are the constants defined in (2.14) and s is the same of Theorem 2.7.

Remark 3.2. It is worth mentioning that, from the results in Guerrero and Imanuvilov [24],

it seems that the null controllability property of parabolic equations with memory may fail

without any additional conditions on the kernel. On the other hand, observe that the condition

(3.1) may appear as a quite strong restriction on the admissible function a, but it is a natural

one. Indeed, the only thing that we are asking is its integrability with respect to the Carleman

weight: it just restricts the function a very near T, which is due to the fact that the function ν

blows up only at t = T (see also [6]).

For our proof, we are going to employ a fixed point strategy. For R > 0, we define

Xs,R =
{

w ∈ Xs : ‖e−sΦ̃w‖L2(Q) ≤ R
}

,

which is a bounded, closed, and convex subset of L2(Q).

For any w ∈ Xs,R, let us consider the control problem


















yt − yxx −
µ

x2
y =

∫ t

0
a(t, r, x)w(r, x) dr + 1ωu, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1).

(3.2)

By Theorem 2.7 we first derive a null controllability result for (3.2); then, as a second step, we

will obtain the same controllability result for (1.1) applying Kakutani’s fixed point Theorem.

Our main result is thus the following.

Theorem 3.3. Assume that µ ≤ 1
4 . If the function a satisfies (3.1), then for any y0 ∈ H

1,µ
0 (0, 1), there

exists a control function u ∈ L2(Q) such that the associated solution y ∈ Z of (1.1) satisfies

y(T, ·) = 0 in (0, 1). (3.3)

Proof. Setting C0 := 4kcd
Tk , by (3.1) and the estimate e−sϕ̃ ≤ e

sC0
(T−t)k , we get that

∫∫

Q

(

e−sϕ̃
∫ t

0
a(t, r, x)w(r, x) dr

)2

dx dt ≤ C
∫∫

Q

∫ t

0
e

2C0s

(T−t)k a2(t, r, x)w2(r, x) dr dx dt

≤ C
∫∫

Q
w2 dx dt ≤ C

(

sup(t,x)∈Q e2sΦ̃

)

∫∫

Q
e−2sΦ̃w2 dx dt ≤ CR2

< +∞.

(recall that w ∈ Xs,R). Thus, the result in Theorem 2.7 holds for the equation (3.2), i.e. for any

y0 ∈ H
1,µ
0 (0, 1), there exists a control function u ∈ L2(Q) such that the associated solution y of

(3.2) is in Xs and

y(T, ·) = 0 in (0, 1).
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Let us now introduce, for every w ∈ Xs,R, the multivalued map

Λ : Xs,R ⊂ Xs → 2Xs

with

Λ(w) =

{

y ∈ Xs : for some u ∈ L2(Q) satisfying

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt ≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(

R2 +
∫ 1

0
y2

0e−2sϕ̂(0) dx

)

y solves (3.2)

}

.

Observe that if y ∈ Λ(w), then y(T, ·) = 0 in (0, 1) via (2.47).

To achieve our goal, it will suffice to show that Λ possesses at least one fixed point. To this

purpose, we shall apply Kakutani’s fixed point Theorem (see [10, Theorem 2.3]).

It is readily seen that Λ(w) is a nonempty, closed and convex subset of L2(Q) for every

w ∈ Xs,R. Then, we prove that Λ(Xs,R) ⊂ Xs,R with sufficiently large R > 0. By (2.48) and

condition (3.1), and arguing as before we have

∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(

∫∫

Q
e−2sϕ̃

(

∫ t

0
a(t, r, x)w(r, x) dr

)2

dx dt + e−2sϕ̂(0)
∫ 1

0
y2

0 dx

)

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]

(

∫∫

Q
w2(t, x) dx dt + e−2sϕ̂(0)

∫ 1

0
y2

0 dx

)

≤ Ce2s[ϕ̂(0)−ϕ̌( 5T
8 )]
(

sup(t,x)∈Q e2sΦ̃

)

(

∫∫

Q
e−2sΦ̃(t,x)w2(t, x) dx dt

)

+ Ce−2sϕ̌( 5T
8 )
∫ 1

0
y2

0 dx.

By virtue of ϕ̂(0) ≤ Φ̂(0) and Φ̃ ≤ Φ̂(0) in Q, we get

∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt

≤ Ces[2ϕ̂(0)−2ϕ̌( 5T
8 )+2Φ̂(0)]

∫∫

Q
e−2sΦ̃(t,x)w2(t, x) dx dt + Ce−2sϕ̌( 5T

8 )
∫ 1

0
y2

0 dx

≤ Ces[4Φ̂(0)−2ϕ̌( 5T
8 )]R2 + Ce−2sϕ̌( 5T

8 )
∫ 1

0
y2

0 dx. (3.4)

Now, choosing the constant c (see (2.14)) in the interval

(

e2ρ‖σ‖∞ − 1

d − 1
,

16

15

e2ρ‖σ‖∞ − eρ‖σ‖∞

d − 1

)

,

which is not empty for ρ sufficiently large, we have

2Φ̂(0)− ϕ̌

(

5T

8

)

=

(

4

T2

)k
[

2(eρ‖σ‖∞ − e2ρ‖σ‖∞) + cd

(

16

15

)k
]

<

(

4

T2

)k
(

−2 +
d

d − 1

(

16

15

)k+1
)

(e2ρ‖σ‖∞ − eρ‖σ‖∞).
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Therefore, taking the parameters d and k defined in (2.14) in such a way that d > 3 and

2 < k <
ln(4/3)

ln(16/15)
− 1, we infer that

2Φ̂(0)− ϕ̌(
5T

8
) < 0.

Hence for s sufficiently large, increasing the parameter s0 if necessary, we obtain

∫∫

Q
y2e−2sΦ̃ dx dt +

∫∫

Qω

s−3ν−3u2e−2sΦ̃ dx dt ≤ 1

2
R2 + Ce−2sϕ̌( 5T

8 )
∫ 1

0
y2

0 dx.

Then, for s and R large enough, we obtain

∫∫

Q
y2e−2sΦ̃ dx dt ≤ R2.

It follows that Λ(Xs,R) ⊂ Xs,R. Furthermore, let {wn} be a sequence of Xs,R. The regularity

assumption on y0 and Theorem 2.1, imply that the associated solutions {yn} are bounded in

H1
(

0, T; L2(0, 1)
)

∩ L2
(

0, T; D(A)
)

. Therefore, Λ(Xs,R) is a relatively compact subset of L2(Q)

by the Aubin–Lions Theorem [41].

In order to conclude, we have to prove that Λ is upper-semicontinuous under the L2

topology. First, observe that for any w ∈ Xs,R, we have at least u ∈ L2(Q) such that the

corresponding solution y ∈ Xs,R. Hence, taking {wn} a sequence in Xs,R, we can find a

sequence of controls {un} such that the corresponding solutions {yn} is in L2(Q). Thus, let

{wn} be a sequence satisfying wn → w in Xs,R and yn ∈ Λ(wn) such that yn → y in L2(Q). We

must prove that y ∈ Λ(w). For every n, we have a control un ∈ L2(Q) such that the system



















yn,t − yn,xx −
µ

x2
yn =

∫ t

0
a(t, r, x)wn(r, x) dr + 1ωun, (t, x) ∈ Q,

yn(t, 0) = yn(t, 1) = 0, t ∈ (0, T),

yn(0, x) = y0(x), x ∈ (0, 1)

(3.5)

has a least one solution yn ∈ L2(Q) that satisfies

yn(T, ·) = 0 in (0, 1).

From Theorem 2.1 and (3.4), it follows (at least for a subsequence) that

un → u weakly in L2(Q),

yn → y weakly in H1
(

0, T; L2(0, 1)
)

∩ L2
(

0, T; D(A)
)

,

strongly in C(0, T; L2(0, 1)).

Passing to the limit in (3.5), we obtain a control u ∈ L2(Q) such that the corresponding

solution y to (3.2) satisfies (3.3). This shows that y ∈ Λ(w) and, therefore, the map Λ is

upper-semicontinuous.

Hence, the multivalued map Λ possesses at least one fixed point, i.e., there exists y ∈ Xs,R

such that y ∈ Λ(y). By the definition of Λ, this implies that there exists at least one pair (y, u)

satisfying the conditions of Theorem 3.3. The uniqueness of y follows by Proposition 3.1. This

ends the proof of Theorem 3.3.

As a consequence of the previous theorem one has the next result.
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Theorem 3.4. Assume that µ ≤ 1
4 . If the function a satisfies (3.1), then for any y0 ∈ L2(0, 1), there

exists a control function u ∈ L2(Q) such that the associated solution y ∈ W of (1.1) satisfies

y(T, ·) = 0 in (0, 1).

Proof. Consider the following singular parabolic problem:



























wt − wxx −
µ

x2
w =

∫ t

0
a(t, r, x)w(r, x) dr, (t, x) ∈

(

0,
T

2

)

× (0, 1),

w(t, 0) = w(t, 1) = 0, t ∈
(

0,
T

2

)

,

w(0, x) = y0(x), x ∈ (0, 1),

where y0 ∈ L2(0, 1) is the initial condition in (1.1).

By Theorem 2.1, the solution of this system belongs to

W
(

0,
T

2

)

:= L2

(

0,
T

2
; H

1,µ
0 (0, 1)

)

∩ C

([

0,
T

2

]

; L2(0, 1)

)

.

Then, there exists t0 ∈ (0, T
2 ) such that w(t0, ·) := w̃(·) ∈ H

1,µ
0 (0, 1).

Now, we consider the following controlled parabolic system:



















zt − zxx −
µ

x2
z =

∫ t

0
a(t, r, x)z(r, x) dr + 1ωh (t, x) ∈ (t0, T)× (0, 1),

z(t, 0) = z(t, 1) = 0, t ∈ (t0, T),

z(t0, x) = w̃(x), x ∈ (0, 1).

We start by observing that, since Theorem 3.3 holds also in a general domain (t0, T)× (0, 1)

with suitable changes, we can see that there exists a control function h ∈ L2((t0, T)× (0, 1))

such that the associated solution

z ∈ Z(t0, T) := L2(t0, T; D(A)) ∩ H1(t0, T; L2(0, 1)) ∩ C
(

[t0, T] ; H
1,µ
0 (0, 1)

)

satisfies

z(T, ·) = 0 in (0, 1).

Finally, setting

y :=

{

w, in
[

0, t0

]

,

z, in
[

t0, T
] and u :=

{

0, in
[

0, t0

]

,

h, in
[

t0, T
]

,

one can prove that y ∈ W is the solution to the system (1.1) corresponding to u and satisfies

y(T, ·) = 0 in (0, 1).

Hence, our assertion is proved.
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4 Conclusions and perspectives

In this work, we have addressed the problem of null controllability for a class of one dimen-

sional heat equations with an inverse square potential and a memory type-kernel. Using

Carleman-based techniques and a fixed point argument, we have proved that under suitable

decaying conditions on the memory kernel, the null controllability of the system is ensured

by means of a distributed control.

In what follows, we highlight a few possible directions related with the topics addressed

in this work.

Memory-type null controllability of singular parabolic equation: This work addresses only

the null controllability property for system (1.1). It would be of interest to consider the prob-

lem of memory-type controllability (see [12] for the corresponding definition). The goal is then

not only to drive the solution to rest at some time-instant, but also to require the memory term

to vanish at the same time, ensuring that the whole process reaches the equilibrium. In the

spirit of previous results in [12, 31], it would be interesting to analyse this memory-type null

controllability problem for system (1.1), provided the support of the control moves, covering

the whole domain where the equation evolves.

Coupled singular parabolic systems with memory: Inspired by the results in [2, 26, 40], it

would be quite interesting to consider the null controllability of coupled system of parabolic

equations with singular potentials and memory effects, with less controls than equations (and

ideally only one control if possible).

Degenerate and singular parabolic equation with memory: In [1], the null controllability

for a one-dimensional degenerate heat equation is investigated. So, in this regard, following

the method of proof used in this paper (see also [1]), we think that it is possible to combine

the techniques in both papers and obtain a result for the degenerate/singular equation with

memory-type kernel.

5 Appendix

In this section, we recall a classical Carleman estimate for the following nonsingular heat

equation














yt − yxx − by = f , (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0, 1),

(5.1)

where b ∈ L∞(Q) and f ∈ L2(Q).

Following [22], we introduce the weight functions

Φ̃(t, x) := θ(t)(e−ρσ(x) − e2ρ‖σ‖∞) and φ(t, x) := θ(t)eρσ(x),

where θ, ρ and σ are defined in Subsection 2.2. Then, [22, Lemma 1.2] gives the following.

Lemma 5.1. There exists a positive constant ρ0 such that for an arbitrary ρ ≥ ρ0 there exists s0(ρ0) >

0 such that for each s ≥ s0(ρ0) the solutions of (5.1) satisfy the inequality
∫∫

Q

(

sφv2
x + s3φ3v2

)

(e2sΦ + e2sΦ̃) dx dt

≤ C

(

∫∫

Q
f 2(e2sΦ + e2sΦ̃) dx dt +

∫∫

Qω

s3φ3v2(e2sΦ + e2sΦ̃) dx dt

)

.
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Since 0 ≤ σ(x) ≤ ‖σ‖∞ , one has Φ̃ ≤ Φ and θ(t) ≤ φ(t, x) ≤ θ(t)eρ‖σ‖∞ for all (t, x) ∈ Q.

Hence, from Lemma 5.1 one can easily deduce the following result.

Corollary 5.2. There exists a positive constant ρ0 such that for an arbitrary ρ ≥ ρ0 there exists

s0(ρ0) > 0 such that for each s ≥ s0(ρ0) the solutions of (5.1) satisfy

∫∫

Q

(

sθv2
x + s3θ3v2

)

e2sΦ dx dt ≤ C

(

∫∫

Q
f 2e2sΦ dx dt +

∫∫

Qω

s3θ3v2e2sΦ dx dt

)

.
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Abstract. Given a homogeneous linear discrete or continuous dynamical system, its
stability index is given by the dimension of the stable manifold of the zero solution.
In particular, for the n dimensional case, the zero solution is globally asymptotically
stable if and only if this stability index is n. Fixed n, let X be the random variable
that assigns to each linear random dynamical system its stability index, and let pk with
k = 0, 1, . . . , n, denote the probabilities that P(X = k). In this paper we obtain either the
exact values pk, or their estimations by combining the Monte Carlo method with a least
square approach that uses some affine relations among the values pk, k = 0, 1, . . . , n.
The particular case of n-order homogeneous linear random differential or difference
equations is also studied in detail.

Keywords: stability index, random differential equations, random difference equations,
random dynamical systems.
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1 Introduction

Nowadays it is unnecessary to emphasize the importance of ordinary differential equations
and discrete dynamical systems to model real world phenomena, from physics to biology,
from economics to sociology. These dynamical systems, a concept that includes both continu-
ous and discrete models (and even dynamic equations in time-scales), can have undetermined
coefficients that in the case of real applications must be adjusted to fixed values that serve to
make good predictions: this is known as the identification process. Once these coefficients are
fixed we obtain a deterministic model.

In recent years some authors have highlighted the utility of considering random rather
than deterministic coefficients to incorporate effects due to errors in the identification process,

BCorresponding author. Email: victor.manosa@upc.edu
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natural variability in some of the physical parameters, or as a method to treat and to incor-
porate uncertainties in the model, see [5,6,21] for examples coming from biological modeling
and [11] for examples coming from mechanical systems.

In the same aim that inspires some works like [1, 7, 14], in this paper we focus on giving a
statistical measure of the stability for both discrete and continuous linear dynamical systems,

ẋ = A x or xk+1 = A xk, (1.1)

where both x, xk ∈ Rn and A is an n × n real matrix.
More concretely, in the continuous (resp. discrete) case we define the stability index of the

origin, s(A), as the number of eigenvalues, taking into account their multiplicities, of A with
negative real part (resp. modulus smaller than 1). This index coincides with the dimension of
the invariant stable manifold of the origin. Notice also that if s(A) = n (resp. s(A) = 0) the
origin is a global stable attractor (resp. a global unstable repeller).

In this work we study the probabilities pk for a linear dynamic system (1.1) to have a given
stability index k when the parameters of the matrix A are random variables with a given
natural distribution. As we will see in Section 2, this distribution must be that all the elements
of A are independent and identically distributed (i.i.d.) normal random variables with zero mean.
We also will study the same question for linear n-th order differential equations and for linear
difference equations.

We also remark that our results can be extrapolated to know a measure of the stability
behaviour of critical or fixed points for general non-linear dynamical systems, because near
them they can be written as

ẋ = A x + f (x), or xk+1 = A xk + f (xk),

with f being a non-linear term vanishing at zero. Moreover, while the situation where the
origin is non-hyperbolic is negligible, in the complementary situation, the stability index of
the linear part coincides with the dimension of the local stable manifold at the point.

In the continuous case, the key tool to know the stability index of a matrix is the Routh–
Hurwitz criterion, see for instance [10, §15.715, p. 1076]. This approach allows to know the
number of roots of a polynomial with negative real part in terms of algebraic inequalities
among its coefficients. Similarly, its counterpart for the discrete case is called the Jury criterion.
It is worth observing that in fact both are equivalent and it is possible to get one from the other
by using a Möbius transformation that sends the left hand part of the complex plane into the
complex ball of radius 1.

In all the cases, when we do not know how to compute analytically the true probabilities,
we introduce a two step approach to obtain estimations of them:

• Step 1: We start using the celebrated Monte Carlo method. Recall that this computa-
tional algorithm relies on repeated random sampling and gives estimations of the true
probabilities based on the law of large numbers and the law of iterated logarithm, see
[2,3,13,18]. It is the case that using M samples this approach gives the true value with an
absolute error of order O

(
((log log M)/M)1/2), which practically behaves as O(M−1/2),

where O stands for the usual Landau notation. In all our simulations we will work with
M = 108, so our first approaches to the desired probabilities will have an asymptotic
absolute error of order 10−4. More detailed explanations of the sharpness of our estima-
tions for this value of M are given in Section 3.2 by using the Chebyshev inequality and
the Central limit theorem.
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We have used the default in-built pseudo-random number generator in the Statistics

package of Maple in our simulations*. This procedure use the Mersenne Twister method
with period 219937 − 1 to generate uniformly-distributed pseudo-random numbers, and
then the Ziggurat method, which is a kind of rejection sampling algorithm, to obtain
the normally-distributed pseudo-random numbers, see [16] and [17]. Observe that our
sample size M = 108 is much smaller than the period of the pseudo-random number
generator, which is greater that 106001.

• Step 2: Since the results of the plain Monte Carlo simulations do not satisfy certain linear
constrains concerning the true probabilities, we propose to correct them by using a least
squares approach. We take as final estimates of the true probabilities the least squares
solution ([20, Def. 6.1]) of the inconsistent overdetermined system obtained when relative
frequencies of the Monte Carlo simulation are forced to satisfy these linear constrains.
See Section 3.2 for more details. We would like to remark that there are other options to
improve plain Monte Carlo simulations like variance reduction and quasi-Monte Carlo
methods [2, 13].

To have a flavour of the type of results that we will obtain we describe several consequences
of some of our results for linear homogeneous differential or difference equations of order n

with constant coefficients (see Sections 5 and 7). A first result is that in both cases the expected
stability index is n/2. Moreover, let rn denote the probability of the 0 solution to be a global
stable attractor (stability index equals n) for them. Then, for differential equations, rn ≤ 1/2n.
Furthermore, r1 = 1/2, r2 = 1/4, r3 = 1/16 and our two step approach gives that r4 ≃ 0.00925,
r5 ≃ 0.00071, and that rk is smaller that 10−4 for bigger k. In the case of difference equations
we prove that r1 = 1/2 and r2 = 1

π arctan(
√

2) ≃ 0.304.

2 A suitable probability space

In our approach, the starting point is to determine which is the natural choice of the proba-
bility space and the distribution law of the coefficients of the linear dynamical system. Only
after this step is fixed we can ask for the probabilities of some dynamical features or some
phase portraits.

For completeness, we start with some previous considerations and with an example, al-
ready considered in the literature, see [1,14,23]. Consider the planar linear differential system:

(
ẋ

ẏ

)
=

(
A B

C D

)(
x

y

)
(2.1)

where A, B, C, D are random variables, so we can set the sample space to be Ω = R4. It
is plausible to require that these real random variables are independent and identically dis-
tributed (i.i.d.) and continuous. Also, according to the principle of indifference (or principle of
insufficient reason) [8], it would seem reasonable to impose that these variables were such
that the random vector (A, B, C, D) had some kind of uniform distribution in R4. But there
is no uniform distribution for unbounded probability spaces. Nevertheless, there is a natural
choice for the distribution of the variables A, B, C and D.

Indeed, it is well-known that the phase portrait of the above system does not vary if we
multiply the right-hand side of both equations by a positive constant (which corresponds to a

*Concretely, we use the commands RandomVariable(Normal(0,1)) and Sample.
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proportional change in the time scale). This means that in the space of parameters, R4, all the
systems with parameters belonging to the same half-straight line passing through the origin
are topologically equivalent and in particular have the same stability index. Hence, we can
ask for a probability distribution density f of the coefficients such that the random vector

(
A

S
,

B

S
,

C

S
,

D

S

)
, with S =

√
A2 + B2 + C2 + D2, (2.2)

has a uniform distribution on the sphere S3 ⊂ R4. This achieves our objective, since S3 is a
compact set.

The question is: which are the probability densities f that give rise to a uniform distribu-
tion of the vector (2.2) on the sphere? The answer is that, just assuming that f is continuous
and positive, f must be the density of a normal random variable with zero mean. Moreover,
this result is true for arbitrary dimension: see the next theorem. We remark that the converse
result is well-known [15, 19].

Theorem 2.1. Let X1, X2, . . . , Xn be i.i.d. one-dimensional random variables with a continuous positive

density function f . The random vector
(

X1

S
,

X2

S
, . . . ,

Xn

S

)
, with S =

( n

∑
i=1

X2
i

)1/2
,

has a uniform distribution in Sn−1 ⊂ Rn if and only if each Xi is a normal random variable with zero

mean.

Curiously, in the case that we cannot assign uniform distributions, there is an extension of
the indifference principle which suggests to use those distributions that maximize the entropy,
i.e. the quantity h( f ) = −

∫
Ω

f (x) ln( f (x))dx for any given density f . The one-dimensional
random variables with continuous probability density function f on Ω = R that maximize
the entropy are again the Gaussian ones, [8, Thm 3.2].

Of course, if instead of properties concerning general dynamical systems one focuses on
particular models in which the parameters have specific restrictions—due to physical or bio-
logical reasons—one must consider other type of distributions, see for instance [21].

Using Theorem 2.1, and going back to the initial motivating example, in order to study (2.1)
we have to consider the probability space (Ω,F , P) where Ω = R4, F is the σ-algebra gen-
erated by the open sets of R4 and P : F → [0, 1] is the probability function with density

1
4π2 e−(a2+b2+c2+d2)/2, where for simplicity we take variance 1 in each marginal density func-
tion.

For instance, assume that we want to compute the probability α of system (2.1) to have
exactly one eigenvalue with negative real part. Next, we observe that the probability of having
one null eigenvalue is zero. This is because the event which characterizes this possibility is
a subset of an event which is itself described by an algebraic equality between the random
variables A, B, C, D. This subset has Lebesgue measure zero and therefore, by virtue of the
fact that the joint distribution is continuous, the probability of this event, and therefore the
event characterizing the null eigenvalue, must also be zero. Thus we have that α coincides
with the probability of having a saddle (stability index 1) at the origin, i.e. AD − BC < 0.
Then, the open set U := {(a, b, c, d) ∈ R4 : ad − bc < 0} belongs to F and

α = P(AD − BC < 0) =
1

4π2

∫

U
e−

a2+b2+c2+d2
2 da db dc dd,

which is 1/2 by symmetry, as we will see.
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Proof of Theorem 2.1. Let (X1, . . . , Xn) be the random vector associated with the random vari-
ables of the statement, with joint continuous density function g(x1, . . . , xn). We claim that

g(x1, . . . , xn) = h(x2
1 + · · ·+ x2

n), (2.3)

for some continuous function h.
Taking spherical coordinates, we consider the new random vector (R, Θ) ∈ Rn where R =

(X2
1 + · · ·+ X2

n)
1/2 and Θ = (Θ1, . . . , Θn−1). We have X1 = R cos Θ1, X2 = R sin Θ1 cos Θ2, . . .

Xn−1 = R sin Θ1 sin Θ2 · · · sin Θn−2 cos Θn−1 and Xn = R sin Θ1 sin Θ2 · · · sin Θn−2 sin Θn−1. By
the change of variables theorem, the joint density function of (R, Θ) is

gR,Θ(r, θ) = g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2) · χ

where θ = (θ1, . . . , θn−1), and

χ := χ[0,∞)(r) · χ[0,2π)(θn−1) ·
n−2

∏
i=1

χ[0,π)(θi),

where χA stands for the characteristic function of the set A.
The density function of (R, Θ) conditioned to R, gΘ|R, is

gΘ|R(r, θ) :=
gR,Θ(r, θ)

gR(r)
,

where gR(r) is the marginal density of R:

gR(r) :=
∫ π

0
· · ·
∫ π

0

∫ 2π

0
g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1))dS ,

where dS = rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθn−1 · · ·dθ1 is the n-dimensional surface
element in spherical coordinates.

To prove the statement, we need to characterize which are the joint density functions
g(x1, . . . , xn) such that when we fix R = r, the probability on the (n − 1)-dimensional sphere
of radius r, denoted by Sn−1(r), is uniformly distributed. In such a case the partial spherical
segment Σr = {R = r, θi ∈ [αi, βi] for i = 1, . . . , n − 1} must have probability P(Σr) =

S(Σr)/S(Sn−1(r)) where S denotes the surface area. Set α = (α1, . . . , αn−1) and β = (β1, . . . ,
βn−1). Notice that

S(Σr) =
∫ β1

α1

· · ·
∫ βn−1

αn−1

dS = rn−1 A(α, β)

where

A(α, β) =
∫ β1

α1

· · ·
∫ βn−1

αn−1

sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθn−1 · · ·dθ1

and S(Sn−1(r)) = 2π
n
2

Γ( n
2 )

rn−1. Hence, on the one hand,

P(Σr) = Γ
(n

2

) A(α, β)

2π
n
2

,

which does not depend on r. On the other hand,

P(Σr) =
∫ β1

α1

· · ·
∫ βn−1

αn−1

gΘ|R dθ
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where dθ = dθn−1 · · ·dθ2dθ1. This implies that
∫ β1

α1

· · ·
∫ βn−1

αn−1

g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1 sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2) · χ
gR(r)

dθ

=
Γ
(

n
2
)

2π
n
2

∫ β1

α1

· · ·
∫ βn−1

αn−1

sinn−2(θ1) sinn−1(θ2) · · · sin(θn−2)dθ,

for all αi, βi ∈ [0, π) for i = 1, . . . , n− 2 with αi < βi and αn−2, βn−2 ∈ [0, 2π) with αn−2 < βn−2.
This last equality implies that almost everywhere

Γ
(

n
2

)

2π
n
2

=
g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) rn−1

gR(r)
,

and therefore g(r cos(θ1), . . . , r sin(θ1) · · · sin(θn−1)) is a function that only depends on r.
In consequence, writing this fact in Cartesian coordinates, we get that almost everywhere
g(x1, . . . , xn) = h(x2

1 + · · ·+ x2
n), for some continuous function h and the claim (2.3) follows.

Now we complete the proof. Since X1, . . . , Xn are i.i.d. with positive density f , we know
that g(x1, . . . , xn) = f (x1) · · · f (xn). So equation (2.3) can be expressed as

f (x1) · · · f (xn) = h(x2
1 + · · ·+ x2

n) for all (x1, . . . , xn) ∈ R
n

where h is a positive function. Taking x2 = · · · = xn = 0 we have that f (x1) f (0)n−1 = h(x2
1)

and h(0) = ( f (0))n
> 0. Thus,

f (x1) · · · f (xn) =
h(x2

1)

( f (0))n−1 · · · h(x2
n)

( f (0))n−1 =
h(x2

1)

( f (0))n
· · · h(x2

n)

( f (0))n
( f (0))n = h(x2

1 + · · ·+ x2
n).

Hence, using that h(0) = ( f (0))n
> 0,

h(x2
1)

h(0)
· · · h(x2

n)

h(0)
=

h(x2
1 + · · ·+ x2

n)

h(0)
.

Taking H(ξ) := h(ξ)/h(0), and ui = x2
i , it holds that

H(u1) · · · H(un) = H(u1 + · · ·+ un) with H(0) = 1. (2.4)

Hence, ϕ(u) = log(H(u)) is a continuous function that satisfies Cauchy’s functional equation

ϕ(u1) + · · ·+ ϕ(un) = ϕ(u1 + · · ·+ un) with ϕ(0) = 0.

It is well-known that all its continuous solutions are ϕ(x) = ax, for some a ∈ R. Hence all
continuous solutions of (2.4) are H(x) = eax.

As a consequence, f (x) = b eax2
for some (a, b) ∈ R2. Since f is a density function, a < 0.

Moreover, using
∫ ∞

−∞
beax2

dx = b
√
−π/a = 1, and setting a = −1/(2σ2), we get that

f (x) =
1√

2πσ2
e−

x2

2σ2 ,

so each variable Xi is a normal random variable N(0, σ2).
The converse part is straightforward and well-known [15, 19].

Remark 2.2. The continuity condition for f in Theorem 2.1 is relevant since Equation (2.4) also
admits non-continuous solutions that can be constructed, for instance, from non-continuous
solutions of Cauchy’s functional equation known for n = 2, see [12].
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3 A preliminary result and methodology

We will investigate the probabilities of having a certain stability index for several linear dy-
namical systems with random coefficients. In particular we consider:

(a) Differential systems ẋ = A x where x ∈ Rn and A is a real constant n × n matrix,

(b) Homogeneous linear differential equation of order n with constant coefficients: anx(n) +

an−1x(n−1) + · · ·+ a1x′ + a0x = 0,

(c) Linear discrete systems b xk+1 = A xk where xk ∈ Rn, b ∈ R; and A is a real constant
n × n matrix,

(d) Linear homogeneous difference equation of order n with constant coefficients anxk+n +

an−1xk+n−1 + · · ·+ a1xk+1 + a0xk = 0.

Notice that in the four situations the behaviour of the dynamical systems does not change
if we multiply all the involved constants by the same positive real number. This fact situates
the four problems in the same context that the motivating example (2.1). Hence, following the
results of Section 2, in all the cases, we may take the coefficients to be i.i.d. random normal
variables with zero mean and variance 1.

Hence in every case we have a well-defined probability space (Ω,F , P), where Ω = Rm,
with m = n2, n + 1, n2 + 1 or n + 1 according we are in case (a), (b), (c) or (d), respectively, F
is the σ-algebra generated by the open sets and for each A ∈ F ,

P(A) =
1

(
√

2π)m

∫

A
e−||a||2/2da, (3.1)

where a = (a1, a2, . . . , am), ||a||2 = ∑
m
j=1 a2

j and da = da1 da2 . . . dam. For instance the matrices
A appearing in case (a) and (c) are the so called random matrices.

The use of Routh–Hurwitz algorithm is a very useful tool to count the number of roots
of a polynomial with negative real parts and it is implemented in many computer algebra
systems. These conditions are given in terms of algebraic inequalities among the coefficients
of the polynomials. Let us recall how to use it to count the number of roots with modulus less
than one of a polynomial and, hence, to obtain the so called Jury conditions.

Given any polynomial Q(λ) = qnλn + qn−1λn−1 + · · ·+ q1λ + q0 with qj ∈ C, by using the
conformal transformation λ = z+1

z−1 , we get the associated polynomial

Q⋆(z) = qn(z + 1)n + qn−1(z + 1)n−1(z − 1) + · · ·+ q0(z − 1)n. (3.2)

It is straightforward to observe that λ0 ∈ C is a root of of Q(λ) such that |λ0| < 1 if and only
if z0 = (λ0 + 1)/(λ0 − 1) is a root of Q⋆(z) such that Re(z0) < 0.

Hence, because Routh–Hurwitz and Jury conditions are semi-algebraic, in every case the
random variable X that assigns to each dynamical system its stability index k, 0 ≤ k ≤ n,
is measurable. Hence Ak := {a ∈ Rm : X(a) = k} ∈ F and its probability pk := P(Ak)

is well-defined. Observe also that the non-hyperbolic cases are totally negligible because in
their characterization some algebraic equalities appear. In this paper we will either calculate
or estimate in the four situations the values pk for k ≤ 10.
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3.1 A preliminary result

In three of the above considered cases we will apply the following auxiliary result:

Lemma 3.1. Let (Ω,F , P) be a probability space and let Y : Ω → R be a discrete random variable with

image Im(Y) = {0, 1, . . . , n}, and probability mass function pk = P(Y = k) such that pk = pn−k for

all k = 0, . . . , n. Then E(Y) = ∑
n
k=0 kpk = n/2. Moreover

(a) If n is odd then 2 ∑
n−1

2
k=0 pk = 1. In particular, when n = 1, p0 = p1 = 1

2 .

(b) If n is even and n ≥ 2 then 2 ∑
n
2 −1
k=0 pk + p n

2
= 1.

If, additionally, n is even** and ∑i odd pi = ∑i even pi =
1
2 , then

(c) If n
2 is even, then 2 ∑

n
2 −2
k=0, k even pk + p n

2
= 1

2 , and 2 ∑
n
2 −1
k=1, k odd pk =

1
2 . In particular, when n = 4,

p1 = p3 = 1
4 , p2 = 1

2 − 2p0 and p4 = p0.

(d) If n
2 is odd, then 2 ∑

n
2 −1
k=0, k even pk = 1

2 , and ∑
n
2 −2
k=1, k odd pk + p n

2
= 1

2 . In particular, when n = 2,
p0 = p2 = 1

4 and p1 = 1
2 .

Proof. We start proving that E(Y) = n/2. Assume for instance that n is odd. Since pk = pn−k,
its holds that kpk + (n − k)pn−k = npk, for each k ≤ (n − 1)/2. Hence,

E(Y) = np0 + np1 + · · ·+ np n−1
2

=
n

2

(
2p0 + 2p1 + · · ·+ 2p n−1

2

)

=
n

2
(
(p0 + pn) + (p1 + pn−1) + · · ·+ (p n−1

2
+ p n+1

2
)
)
=

n

2
.

When n is even the proof is similar.
The proof of all the four items is straightforward and we omit it.

3.2 Experimental methodology

In every case considered in the paper, when we can not give an exact value of the probabilities
pk we start estimating them by using the Monte Carlo method, see [18]. The estimates obtained
(namely, the observed relative frequencies) are then improved via the least squares method, by
using the linear constraints given in Corollaries 4.2, 5.2 and 7.4.

In every case we will use Monte Carlo method with M = 108 to obtain an estimation, say p̃,
for a probability p := P(A) like the one given in equality (3.1) for different measurable sets A.
Further details for each concrete situation are given in each of the following subsections.

In brief, recall that p̃ is given by the proportion of samples that are in A. For studying, for a
given M, how close are p and p̃, let Bj, j = 1, . . . , M be i.i.d. Bernoulli random variables, where
each one of them that takes the value 1 with probability p and the value 0 with probability 1−
p.

Define PM = 1
M ∑

M
j=1 Bj. Then, the value obtained for the random variable PM, p̃ is the ap-

proximation of p given by the Monte Carlo method. Let us see, by using Chebyshev inequality
or the Central limit theorem, that with very high probability, p̃ is a good approximation of p.

Notice first that E(PM) = p and due to the independence of the Bj,

Var(PM) = Var

(
1
M

M

∑
j=1

Bj

)
=

1
M2 M Var(B1) =

p(1 − p)

M
≤ 1

4M

**When n is odd the imposed equalities automatically hold.
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because p(1 − p) ≤ 1/4. Recall also that for each ε > 0 and any random variable X, with
E(X2) < ∞, the Chebyshev inequality reads as

P (|X − E(X)| < ε) ≥ 1 − Var(X)

ε2 .

Hence, applying the Chebyshev inequality to X = PM we get that

P (|PM − p| < ε) ≥ 1 − p(1 − p)

Mε2 ≥ 1 − 1
4Mε2 .

Taking M = 108, as in our computations, denoting p̃ = P108 , and considering ε = 10−3 we
get that the above probability gives the following conservative estimate of the reliability of the
method

P
(
| p̃ − p| < 10−3) ≥ 1 − 1

400
=

399
400

= 0.9975.

Let us see, by using the Central limit theorem, that the above probability seems to be much
bigger. By this theorem we know that for M big enough, and p(1 − p)M also big enough, the
distribution of the random variable

PM − E(PM)√
Var(PM)

=
PM − p√

p(1−p)
M

can be practically considered to be a random variable Z with distribution N(0, 1). In fact, in
Statistics it is usually imposed that p(1 − p)M > 18. Hence, unless p is very close to 0 or 1,
the value M = 108 is big enough. Hence

P (|PM − p| < ε) = P

(√
M|PM − p|√

p(1 − p)
<

ε
√

M√
p(1 − p)

)
≃ P

(
|Z| < ε

√
M√

p(1 − p)

)

= 2Φ

(
ε
√

M√
p(1 − p)

)
− 1 > 2Φ

(
2ε
√

M
)
− 1,

where Φ is the distribution function of a N(0, 1) random variable. Taking again M = 108 and
either ε = 10−3 or ε = 2 × 10−4 we get

P
(
| p̃ − p| < 10−3) & 2Φ (20)− 1 > 1 − 10−88

or

P
(
| p̃ − p| < 2 × 10−4

)
& 2Φ (4)− 1 > 0.99993.

In fact, for instance looking at the values pk of Table 4.1 for n = 2 in Section 4, that can
also be obtained analytically, we get that | p̃k − pk| ≤ 6 × 10−5, for k = 0, 1, 2. So, the actual
bound is smaller that the bounds obtained above.

Finally, to illustrate how the error decays when the sample size increases, we show the
evolution of the errors in one case where the true probabilities are known. We consider the
second order difference equation A2xk+2 + A1xk+1 + A0xk = 0 where Ai are i.i.d. random
variables with N(0, 1) distribution. The stability index is given by the number of zeroes with
modulus smaller than 1 of the characteristic polynomial Q(λ) = A2λ2 + A1λ + A0. Let X be
the random variable that counts the number of roots with modulus smaller than 1 of Q(λ), and
pk = P(X = k) for k = 0, 1, 2. The true value of the probabilities pk is obtained in Corollary 7.4.
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Performing Monte Carlo simulations with M = 10m with m = 2, . . . , 10 we obtain the observed
frequencies p̃2(m) shown in Table 3.1. These frequencies are the estimated probabilities for
the origin to be asymptotically stable. Notice that in Proposition 7.3 and in Corollary 7.4 we
prove that p0 = p2 = arctan(

√
2)/π and, of course, p1 = 1 − p0 − p2 = 2 arctan(1/

√
2)/π.

For M = 10m we denote the absolute error em = | p̃2(m)− p2|:

M = 102 M = 103 M = 104

p̃2(2) = 0.37 p̃2(3) = 0.319 p̃2(4) = 0.3102
e2 ≈ 0.065913276015 e3 ≈ 0.014913276015 e4 ≈ 0.006113276015
M = 105 M = 106 M = 107

p̃2(5) = 0.30416 p̃2(6) = 0.303892 p̃2(7) = 0.3041241
e5 ≈ 0.000073276015 e6 ≈ 0.000194723985 e7 ≈ 0.000037376015
M = 108 M = 109 M = 1010

p̃2(8) = 0.30406079 p̃2(9) = 0.304076699 p̃2(10) = 0.304079098
e8 ≈ 0.000025933985 e9 ≈ 0.000010024985 e10 ≈ 0.000007625985

Table 3.1: Observed frequency and absolute error of p2 for second order differ-
ence equations, using that p2 = arctan(

√
2)/π ≈ 0.304086723985.

With the above results, the regression line of Y = log(em) versus X = log(M) = m log(10)
is Y = −0.505 X − 1.260 with R2 = 0.893. The slope is therefore −0.505 ≈ −1/2 as was
expected a priori since, in practice, the absolute error behaves as O(M−1/2) as M → ∞ (see
the Step 2 in the Introduction).

A more detailed explanation of the second step, about the improvement of the Monte
Carlo estimations using the least squares method, is as follows: the probabilities pk satisfy
some affine relations, like the ones in Lemma 3.1 or the ones in Proposition 7.3 below. Then,
if we denote p = (p0, . . . , pn)t ∈ Rn+1 it is possible to write p = Mq + b where q ∈ Rk with
k ≤ n is a vector whose components are different elements of p0, . . . , pn; M ∈ Mn×k(R); and
b ∈ Rk. Let p̃ = ( p̃0, . . . , p̃n)t be the vector with the estimated probabilities obtained by the
observed relative frequencies using the Monte Carlo method. Then, we can find the least
squares solution [20, Def. 6.1] of the the system,

p̃ = Mq̂ + b, (3.3)

which is
q̂ = (Mt · M)−1 · Mt · (p̃ − b), (3.4)

see [9, Sect. 5.7, p. 198] or [22, p. 200]. So we can find some improved estimations p̂, via

p̂ = Mq̂ + b. (3.5)

Some detailed examples are given in Sections 4, 5 and 7.

4 Linear random differential systems

Consider linear differential systems ẋ = A x where x ∈ Rn, A ∈ Mn×n(R), where A is a
random matrix whose entries are i.i.d. random variables with N(0, 1) distribution. Let X be
the random variable that counts the number of eigenvalues of A with negative real part, s(A).
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Proposition 4.1. With the above notations, set pk = P(X = k). The following holds:

(a) ∑
n
k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c) ∑i odd pi = ∑i even pi =
1
2 .

Proof. The assertion (a) is trivial. To prove (b) we observe that if a matrix A has k eigenvalues
with negative real part, then B = −A has n − k eigenvalues with negative real part. Calling
qm the probability that B has m eigenvalues with negative real part, we get that pm = qm. This
is so, because if X ∼ N(0, 1) then −X ∼ N(0, 1) and as a consequence the entries of A and B

have the same distribution. Then, qk = pn−k and the result follows.
To see (c) we claim that s(A) is even if and only if the determinant of A is positive and,

moreover, P(det(A) > 0) = 1/2. From this claim we get the result because ∑i even pi is the
probability of s(A) being even. To prove the first part of the claim notice first that we can
assume that 0 6= det(A) = λ1λ2 · · · λn, where λ1, λ2, . . . , λn are the n eigenvalues of A. We
write λ1λ2 · · · λn = (λ1λ2 · · · λk)(λk+1λk+2 · · · λn) where λ1, λ2, . . . , λk are all the real negative
eigenvalues. Observe also that for complex eigenvalues λλ̄ > 0. Hence λk+1λk+2 · · · λn > 0,
sign(det(A)) = (−1)k and the condition that s(A) is even is characterized by det(A) > 0. To
prove that P(det(A) > 0) = 1/2 note that if B is the matrix obtained by changing the sign
of one column of A then det(A) · det(B) < 0 and hence P(det(A) < 0) = P(det(B) > 0).
Furthermore, since the entries of A and B have the same distribution we have P(det(B) >

0) = P(det(A) > 0), thus P(det(A) < 0) = P(det(A) > 0) = 1/2.

From the above proposition it easily follows:

Corollary 4.2. Consider ẋ = A x, x ∈ Rn with A ∈ Mn×n(R) a random matrix with i.i.d. N(0, 1)
entries, let X be the random variable defined above and pk = P(X = k). Then the probabilities pk

satisfy all the consequences of Lemma 3.1. In particular E(X) = n/2.

Now we reproduce some experiments to estimate the probabilities pk for low dimensional
cases. We apply the Monte Carlo method, that is, for each considered dimension n, we have
generated 108 matrices A ∈ Mn×n(R) whose entries are pseudo-random numbers simulating
the realizations on n2 independent random variables with N(0, 1) distribution. For each matrix
A we have computed the characteristic polynomial, and counted the number of eigenvalues
with negative real part by using the Routh–Hurwitz zeros counter [10, §15.715, p. 1076]. We
are aware that the stability of the calculation of the coefficients of the characteristic polynomial
from the entries of a matrix is critical (see [22, pp. 378–379] and references therein); however
we have only used this calculation for low dimensions, namely n ≤ 4. For n ≥ 5, and in order
to decrease the computation time, we have directly computed numerically the eigenvalues of
A and counted the number of them with negative real part.

For each considered dimension of the phase space n, and in order to take advantage of the
relations stated in Corollary 4.2, we can refine the solutions using the least squares solutions
of the inconsistent linear system associated with these relations when using the observed
frequencies obtained by the Monte Carlo simulation.

We give details of one example. Set n = 7, for instance. By Corollary 4.2 we have p3 =

p4 = 1
2 − p0 − p1 − p2; p5 = p2; p6 = p1 and p7 = p0. So, using the notation introduced in
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Section 3.2, we can write p = Mq + b, where pt = (p0, . . . , p7);

M =




1 0 0
0 1 0
0 0 1
−1 −1 −1
−1 −1 −1
0 0 1
0 1 0
1 0 0




; q =




p0

p1

p2


 ; and b =




0
0
0
1
2
1
2
0
0
0




.

The observed relative frequencies in our Monte Carlo simulation are

p̃t =

(
31643

50000000
,

261137
12500000

,
7124967
50000000

,
1344047
4000000

,
33597117
100000000

,
14248187
100000000

,
1043913
50000000

,
63379

100000000

)
.

By finding the least squares solution of the system (3.3) ([9, Sect. 5.7, p. 198] or [22, p. 200]),
given by (3.5), we obtain

p̂t =

(
25333

40000000
,

2088461
100000000

,
28498121
200000000

,
16799573
50000000

,
16799573
50000000

,
28498121

200000000
,

2088461
100000000

,
25333

40000000

)
.

The other cases follow similarly.

We summarize the results of our experiments in the Table 4.1, where the observed relative
frequencies and the estimates are presented only up to the fifth decimal (in the table, and in
the whole paper, frequency stands for relative frequency) because as we already explained
in the introduction, the predicted absolute error will be of order 10−4. Observe that in the
cases n = 1, 2 the true probabilities are known. We include the results of the Monte Carlo
simulations for completeness, but it makes no sense to apply the least squares method.

Dimension Observed frequency Least squares Relations (Corol. 4.2)
n = 1 p̃0 = 0.49996 p0 = 0.5

p̃1 = 0.50004 p1 = 0.5
n = 2 p̃0 = 0.24999 p0 = 0.25

p̃1 = 0.50006 p1 = 0.5
p̃2 = 0.24995 p2 = 0.25

n = 3 p̃0 = 0.10447 p̂0 = 0.10450 p0

p̃1 = 0.39542 p̂1 = 0.39550 p1 = 1
2 − p0

p̃2 = 0.39557 p̂2 = 0.39550 p2 = 1
2 − p0

p̃3 = 0.10454 p̂3 = 0.10450 p3 = p0

n = 4 p̃0 = 0.03722 p̂0 = 0.03721 p0

p̃1 = 0.25009 p̂1 = 0.25000 p1 = 1
4

p̃2 = 0.42556 p̂2 = 0.42558 p2 = 1
2 − 2p0

p̃3 = 0.24998 p̂3 = 0.25000 p3 = 1
4

p̃4 = 0.03715 p̂4 = 0.03721 p4 = p0

n = 5 p̃0 = 0.01126 p̂0 = 0.01126 p0

p̃1 = 0.13028 p̂1 = 0.13024 p1

p̃2 = 0.35848 p̂2 = 0.35850 p2 = 1
2 − p0 − p1

p̃3 = 0.35852 p̂3 = 0.35850 p3 = 1
2 − p0 − p1

p̃4 = 0.13020 p̂4 = 0.13024 p4 = p1

p̃5 = 0.01126 p̂5 = 0.01126 p5 = p0
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Dimension Observed frequency Least squares Relations (Corol. 4.2)
n = 6 p̃0 = 0.00289 p̂0 = 0.00288 p0

p̃1 = 0.05675 p̂1 = 0.05678 p1

p̃2 = 0.24710 p̂2 = 0.24712 p2 = 1
4 − p0

p̃3 = 0.38642 p̂3 = 0.38644 p3 = 1
2 − 2p1

p̃4 = 0.24714 p̂4 = 0.24712 p4 = 1
4 − p0

p̃5 = 0.56810 p̂5 = 0.05678 p5 = p1

p̃6 = 0.00289 p̂6 = 0.00288 p6 = p0

n = 7 p̃0 = 0.00063 p̂0 = 0.00063 p0

p̃1 = 0.02089 p̂1 = 0.02088 p1

p̃2 = 0.14250 p̂2 = 0.14249 p2

p̃3 = 0.33601 p̂3 = 0.33600 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.33597 p̂4 = 0.33600 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.14248 p̂5 = 0.14249 p5 = p2

p̃6 = 0.02088 p̂6 = 0.02088 p6 = p1

p̃7 = 0.00063 p̂7 = 0.00063 p7 = p0

n = 8 p̃0 = 0.00012 p̂0 = 0.00012 p0

p̃1 = 0.00651 p̂1 = 0.00650 p1

p̃2 = 0.06948 p̂2 = 0.06948 p2

p̃3 = 0.24356 p̂3 = 0.24350 p3 = 1
4 − p1

p̃4 = 0.36080 p̂4 = 0.36080 p4 = 1
2 − 2p0 − 2p2

p̃5 = 0.24346 p̂5 = 0.24350 p5 = 1
4 − p1

p̃6 = 0.06946 p̂6 = 0.06948 p6 = p2

p̃7 = 0.00650 p̂7 = 0.00650 p7 = p1

p̃8 = 0.00012 p̂8 = 0.00012 p8 = p0

n = 9 p̃0 = 0.00002 p̂0 = 0.00002 p0

p̃1 = 0.00171 p̂1 = 0.00171 p1

p̃2 = 0.02880 p̂2 = 0.02879 p2

p̃3 = 0.14952 p̂3 = 0.14955 p3

p̃4 = 0.31987 p̂4 = 0.31993 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.31999 p̂5 = 0.31993 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.14958 p̂6 = 0.14955 p6 = p3

p̃7 = 0.02878 p̂7 = 0.02879 p7 = p2

p̃8 = 0.00171 p̂8 = 0.00171 p8 = p1

p̃9 = 0.00002 p̂9 = 0.00002 p9 = p0

n = 10 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00038 p̂1 = 0.00038 p1

p̃2 = 0.01015 p̂2 = 0.01015 p2

p̃3 = 0.07850 p̂3 = 0.07850 p3

p̃4 = 0.23987 p̂4 = 0.23985 p4 = 1
4 − p0 − p2

p̃5 = 0.34224 p̂5 = 0.34224 p5 = 1
2 − 2p1 − 2p3

p̃6 = 0.23984 p̂6 = 0.23985 p6 = 1
4 − p0 − p2

p̃7 = 0.07849 p̂7 = 0.07850 p7 = p3

p̃8 = 0.01015 p̂8 = 0.01015 p8 = p2

p̃9 = 0.00038 p̂9 = 0.00038 p9 = p1

p̃10 = 0 p̂10 = 0 p10 = p0

Table 4.1: Linear stability indexes for linear random differential systems.
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5 Linear random differential equations of order n

In this section we consider linear random homogeneous differential equations of order n

Anx(n) + An−1x(n−1) + · · ·+ A2x′′ + A1x′ + A0x = 0, (5.1)

where x = x(t), the derivatives are taken in respect to t, and Aj are again i.i.d. random
variables with N(0, 1) distribution.

To get the stability index for these differential equations we only need to know the prob-
ability distributions of the number of roots with negative real part of its associated random
characteristic polynomial:

Q(λ) = Anλn + An−1λn−1 + · · ·+ A1λ + A0.

Let X be the random variable that counts the number of roots of Q(λ) with negative real parts
and define pk = P(X = k) for k = 0, 1, . . . , n.

Proposition 5.1. Set pk = P(X = k), where X is the random variable defined above. Then

(a) ∑
n
k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c) ∑i odd pi = ∑i even pi =
1
2 .

Proof. The proof of (a) is trivial. To prove (b) consider equation (5.1) with its characteristic
polynomial Q(λ) and also the new differential equation

(−1)n Anx(n) + (−1)n−1An−1x(n−1) + · · ·+ A2x′′ − A1x′ + A0x = 0 (5.2)

with its characteristic polynomial Q∗(λ) = Q(−λ) = (−1)n Anλn + (−1)n−1An−1λn−1 + · · · −
A1λ + A0. Since Q(λ) = 0 if and only if Q∗(−λ) = 0 we get that pk = p∗n−k where p∗i the
probability that Q∗(λ) has i roots with negative real part. But also pk = p∗k because the
coefficients of the equations (5.1) and (5.2) have the same distributions. Hence, the result
follows.

Similarly, as in the proof of (c) of Proposition 4.1, we observe that the polynomial Q(λ)

has an odd number of roots with negative real part if and only if A0 · An < 0, because we
can neglect the case of having some roots with zero real part. Since the coefficients of (5.1)
are symmetric independent random variables, the probability that Q(λ) has an odd number
of roots with negative real part is

P({A0 > 0} ∩ {An < 0}) + P({A0 < 0} ∩ {An > 0}) = 1
2
× 1

2
+

1
2
× 1

2
=

1
2

.

Corollary 5.2. Consider the linear random homogeneous differential equation of order n (5.1), with

all Ai being i.i.d. N(0, 1) random variables, let X be defined above, and set pk = P(X = k). Then the

probabilities pk satisfy all the conclusions of Lemma 3.1. In particular E(X) = n/2.

For each n, let rn be the probability of the origin to be a global stable attractor (asymp-
totically stable equilibrium) for (5.1), that is rn = pn. By Proposition 5.1(b) this probability
coincides with the probability of being a repeller because pn = p0. Our results in Proposi-
tion 5.4 seem to indicate that rn decreases with n. Before proving this proposition we need a
preliminary result.



Stability index of linear random dynamical system 15

Lemma 5.3. Let U, V, S and T be i.i.d. random variables with standard normal distribution. Then

p+ := P(U > 0; V > 0; S > 0; T > 0; UT − SV > 0) = 1/32.

Proof. Set A± = {U > 0; V > 0; S > 0; T > 0;±(UT − SV) > 0}, and A0 = {U > 0; V >

0; S > 0; T > 0; UT − SV = 0}. Denote by p± = P(A±) and p0 = P(A0). Then, since p0 = 0
and A− ∪A0 ∪A+ = {U > 0; V > 0; S > 0; T > 0} it holds that p+ + p− = (1/2)4 = 1/16. To
end the proof it suffices to show that p+ = p−.

Notice first that

A+ = {U > 0; V > 0; S > 0; T > 0; UT − SV > 0} = {V > 0; S > 0; T > 0; UT − SV > 0},

A− = {U > 0; V > 0; S > 0; T > 0; UT − SV < 0} = {U > 0; S > 0; T > 0; SV − UT > 0}.

This is so, because for instance in the definition of A+, the last inequality can also be written
as U > SV/T > 0 and from it we know that the condition U > 0 can be removed. Finally,
interchanging U and V and S and T we get the same relations in the definitions of A+ and A−.
Since all variables are independent N(0, 1), both sets have the same probability and p+ = p−,
as we wanted to prove.

Proposition 5.4. With the above notations, rn ≤ 1/2n, for all n ≥ 1. Moreover, r1 = 1/2, r2 = 1/4,
r3 = 1/16 and r4 < r3/2 = 1/32.

Proof of Proposition 5.4. Notice that rn is the probability that the characteristic polynomial
Q(λ), associated with the random differential equation (5.1), is a Hurwitz stable polynomial;
that is rn = P(Every root of Q(λ) belongs to R

−), where R
− = {z ∈ C such that Re(z) < 0}.

It is well-known that a necessary condition for a polynomial to have every root in R
− is that

all its coefficients have the same sign. This is so because it holds for polynomials of degree 1
and 2, and this property is preserved when we multiply two polynomials satisfying it. Hence,

{
A0, . . . , An such that all roots of P(λ) are in R

−} ⊂
{

n⋂

i=0

{Ai < 0}
}
⋃
{

n⋂

i=0

{Ai > 0}
}

. (5.3)

Since the variables Ai are independent and symmetric

P

(
n⋂

i=0

{Ai < 0}
)

= P

(
n⋂

i=0

{Ai > 0}
)

=
1

2n+1 .

As a consequence,

rn ≤ P

(
n⋂

i=0

{Ai < 0}
)
+ P

(
n⋂

i=0

{Ai > 0}
)

=
1
2n

,

and the first statement follows.
The equalities r1 = 1/2 and r2 = 1/4 are a simple consequence that for n = 1, 2 the

inclusion (5.3) is an equality.
Let us prove that r3 = p3 = 1/16. By using the Routh–Hurwitz criterion [10, §15.715,

p. 1076], it can be seen that a3λ3 + a2λ2 + a1λ + a0 has every root in R
− if and only if

all its coefficients have the same sign and moreover a1a2 − a0a3 > 0. Hence, p3 = p−3 +

p+3 , where p−3 := P(A0 < 0; A1 < 0; A2 < 0; A3 < 0; A1A2 − A0 A3 > 0); and p+3 :=
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P(A0 > 0; A1 > 0; A2 > 0; A3 > 0; A1A2 − A0 A3 > 0), with all the Ai being N(0, 1) dis-
tributed and independent. Due to their symmetry, the random variables Ai and −Ai, for
i = 0, . . . , 3 have the same distribution and hence p+3 = p−3 . Therefore p3 = 2p+3 . The result
follows now by Lemma 5.3, which gives p+3 = 1/32.

Let us prove that r4 < r3/2. To compare both probabilities, here it will be more convenient
to write the coefficients of the polynomials with subscripts with increasing ordering, that is
qn(x) = a0xn + a1xn−1 + · · · + an−1x + an. With this notation, which also respects the tradi-
tional notation when writing the Hurwitz matrices, and when a0 > 0, the Routh–Hurwitz
conditions to have stability index n for n = 3, 4 are precisely that the principal minors of the
following matrices




a1 a3 0
a0 a2 0
0 a1 a3


 and




a1 a3 0 0
a0 a2 a4 0
0 a1 a3 0
0 a0 a2 a4


 ,

are positive, where the left-hand one corresponds to the case n = 3 and the other to the case
when n = 4. Hence, these conditions when a0 > 0 and for n = 3 are: a1 > 0, a1a2 − a0a3 > 0
and a3 > 0. Similarly, for n = 4 the conditions are a1 > 0, a1a2 − a0a3 > 0, a3(a1a2 − a0a3)−
a4a2

1 > 0 and a4 > 0.
Consider now, for n = 3, 4, the random polynomials Qn(x) = Ã0xn + Ã1xn−1 + · · · +

Ãn−1x + Ãn, where Ãi ∼ N(0, 1) and are independent (notice that with this notation each
coefficient Ãi is the coefficient An−i of the characteristic polynomial). For simplicity we de-
note with the same name the coefficients of Q3 and Q4 although they are different random
variables. As above, r3 = 2p+3 and r4 = 2p+4 , where p+k = P(A+

k ), with

A+
3 = {Ã0 > 0; Ã1 > 0; Ã3 > 0; Ã1 Ã2 − Ã0 Ã3 > 0},

A+
4 = {Ã0 > 0; Ã1 > 0; Ã3 > Ã4 Ã2

1/(Ã1Ã2 − Ã0Ã3); Ã1 Ã2 − Ã0 Ã3 > 0, Ã4 > 0}.

Notice that if we define

B = {Ã0 > 0; Ã1 > 0; Ã3 > 0; Ã1 Ã2 − Ã0Ã3 > 0; Ã4 > 0}

it is clear that P(B) = p+3 /2 and, moreover A+
4 ⊂ B3, with the inclusion being strict. Since

the joint density is positive and B ∩ (A+
4 )

c has positive Lebesgue measure, we have P(B ∩
(A+

4 )
c) > 0. Thus P(A+

4 ) < P(B), and hence p+4 = P(A+
4 ) < P(B) = p+3 /2, and r4 < r3/2, as

we wanted to show.

Corollary 5.5. Consider a linear random homogeneous differential equation of order n = 3 and the

random variable X defined above. Then p0 = p3 = 1/16 and p1 = p2 = 7/16.

Proof. By the above proposition, for n = 3, p0 = p3 = r3 = 1/16. Hence, by Proposition 5.1,
p1 = p2 = 7/16.

The computations in this case are similar to the ones of the previous section and the
obtained results are summarized in Table 5.1. We only give some comments for the cases
n = 8 and 10, where we have encountered that the vectors p̂ have negative and very small
entries. This has occurred because the observed frequencies obtained by the Monte Carlo
approach corresponding to these probabilities are not accurate enough. For this reason, we
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have made a new optimization step. As before, we use the least squares method to obtain a
vector p̂. However, if negative entries appear in this vector (which is clearly objectionable), we
force them to be zero and find a new least squares estimate, which still respects the original
linear constraints.

We explain this process for the n = 8 order case; the n = 10 case follows analogously. The
observed relative frequencies vector obtained by the Monte Carlo method is

p̃t =

(
1

50000000
,

6599
50000000

,
1159359

50000000
,

4996163
20000000

,
45377377
100000000

,

4995607
20000000

,
2318357

100000000
,

13497
100000000

,
1

100000000

)
.

The relations stated in Corollary 5.2 are p3 = 1/4 − p1, p4 = 1/2 − 2p0 − 2p2, p5 = p3,
p6 = p2, p7 = p1, p8 = p0. By solving the system (3.3) with

M =




1 0 0
0 1 0
0 0 1
0 −1 0
−2 0 −2
0 −1 0
0 0 1
0 1 0
1 0 0




; q =




p0

p1

p2


 ; and b =




0
0
0
1
2
1
4
1
2
0
0
0




we obtain

q̂t =

(
− 5779

200000000
,

13569
80000000

,
4631293

200000000

)
.

Hence, by (3.5) we get

p̂ =

(
−5779

200000000
,

13569
80000000

,
4631293

200000000
,

19986431
80000000

,
22687243
50000000

,

19986431
80000000

,
4631293

200000000
,

13569
80000000

,
−5779

200000000

)
.

So we impose that p0 = p8 = 0. Thus we have p3 = p5 = 1/4 − p1, p4 = 1/2 − 2p0 − 2p2 =

1/2 − 2p2, p6 = p2 and p7 = p1. We find the least squares solution of the system



p̂1

p̂2

p̂3

p̂4

p̂5

p̂6

p̂7




=




1 0
0 1
−1 0
0 −2
−1 0
0 1
1 0




·
(

p̂∗1
p̂∗2

)
+




0
0
1
4
1
2
1
4
0
0




.

Using (3.4) and (3.5) we obtain

p̂∗ =
(

0,
13569

80000000
,

13882321
600000000

,
19986431
80000000

,
136117679
300000000

,
19986431
80000000

,
13882321
600000000

,
13569

80000000
, 0
)

≃ (0, 0.00017, 0.02314, 0.24983, 0.45373, 0.24983, 0.02314, 0.00017, 0) .
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Dimension Observed frequency Least squares Relations (Corol. 5.2 and 5.5)
n = 1 p̃0 = 0.49997 p0 = 0.5

p̃1 = 0.50003 p1 = 0.5
n = 2 p̃0 = 0.24994 p0 = 0.25

p̃1 = 0.49999 p1 = 0.5
p̃2 = 0.25007 p2 = 0.25

n = 3 p̃0 = 0.06252 p0 = 1
16 = 0.0625

p̃1 = 0.43743 p1 = 7
16 = 0.4375

p̃2 = 0.43756 p2 = 7
16 = 0.4375

p̃3 = 0.06249 p3 = 1
16 = 0.0625

n = 4 p̃0 = 0.00928 p̂0 = 0.00925 p0

p̃1 = 0.24998 p̂1 = 0.25 p1 = 1
4

p̃2 = 0.48152 p̂2 = 0.48150 p2 = 1
2 − 2p0

p̃3 = 0.24994 p̂3 = 0.25 p3 = 1
4

p̃4 = 0.00929 p̂4 = 0.00925 p4 = p0

n = 5 p̃0 = 0.00071 p̂0 = 0.00071 p0

p̃1 = 0.08405 p̂1 = 0.08404 p1

p̃2 = 0.41526 p̂2 = 0.41525 p2 = 1
2 − p0 − p1

p̃3 = 0.41523 p̂3 = 0.41525 p3 = 1
2 − p0 − p1

p̃4 = 0.08404 p̂4 = 0.08404 p4 = p1

p̃5 = 0.00071 p̂5 = 0.00071 p5 = p0

n = 6 p̃0 = 0.00003 p̂0 = 0.00005 p0

p̃1 = 0.01723 p̂1 = 0.01720 p1

p̃2 = 0.24994 p̂2 = 0.24995 p2 = 1
4 − p0

p̃3 = 0.46562 p̂3 = 0.46560 p3 = 1
2 − 2p1

p̃4 = 0.24993 p̂4 = 0.24995 p4 = 1
4 − p0

p̃5 = 0.01723 p̂5 = 0.01720 p5 = p1

p̃6 = 0.00003 p̂6 = 0.00005 p6 = p0

n = 7 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00200 p̂1 = 0.00200 p1

p̃2 = 0.09571 p̂2 = 0.09572 p2

p̃3 = 0.40224 p̂3 = 0.40228 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.40233 p̂4 = 0.40228 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.09573 p̂5 = 0.09572 p5 = p2

p̃6 = 0.00199 p̂6 = 0.00200 p6 = p1

p̃7 = 0 p̂7 = 0 p7 = p0

n = 8 p̃0 = 0 p̂∗0 = 0 p0

p̃1 = 0.00013 p̂∗1 = 0.00017 p1

p̃2 = 0.02319 p̂∗2 = 0.02314 p2

p̃3 = 0.24981 p̂∗3 = 0.24983 p3 = 1
4 − p1

p̃4 = 0.45377 p̂∗4 = 0.45372 p4 = 1
2 − 2p0 − 2p2

p̃5 = 0.24978 p̂∗5 = 0.24983 p5 = 1
4 − p1

p̃6 = 0.02318 p̂∗6 = 0.02314 p6 = p2

p̃7 = 0.00013 p̂∗7 = 0.00017 p7 = p1

p̃8 = 0 p̂∗8 = 0 p8 = p0
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Dimension Observed frequency Least squares Relations (Corol. 5.2 and 5.5)
n = 9 p̃0 = 0 p̂0 = 0 p0

p̃1 = 0.00001 p̂1 = 0.00005 p1

p̃2 = 0.00336 p̂2 = 0.00337 p2

p̃3 = 0.10337 p̂3 = 0.10335 p3

p̃4 = 0.39328 p̂4 = 0.39328 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.39328 p̂5 = 0.39328 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.10332 p̂6 = 0.10335 p6 = p3

p̃7 = 0.00338 p̂7 = 0.00337 p7 = p2

p̃8 = 0 p̂8 = 0.00005 p8 = p1

p̃9 = 0 p̂9 = 0 p9 = p0

n = 10 p̃0 = 0 p̂∗0 = 0 p0

p̃1 = 0 p̂∗1 = 0.00002 p1

p̃2 = 0.00030 p̂∗2 = 0.00028 p2

p̃3 = 0.02784 p̂∗3 = 0.02787 p3

p̃4 = 0.24976 p̂∗4 = 0.24972 p4 = 1
4 − p0 − p2

p̃5 = 0.44421 p̂∗5 = 0.44422 p5 = 1
2 − 2p1 − 2p3

p̃6 = 0.24973 p̂∗6 = 0.24972 p6 = 1
4 − p0 − p2

p̃7 = 0.02787 p̂∗7 = 0.02787 p7 = p3

p̃8 = 0.00029 p̂∗8 = 0.00028 p8 = p2

p̃9 = 0 p̂∗9 = 0.00002 p9 = p1

p̃10 = 0 p̂∗10 = 0 p10 = p0

Table 5.1: Stability indexes for order n linear random homogeneous differential
equations.

6 Linear random maps

In order to keep the approach of the preceding sections, we suggest to consider random linear
discrete dynamical systems of the form

B xk+1 = A xk where x ∈ R
n, (6.1)

where B and each of the n2 entries of the random matrix A are i.i.d. N(0, 1) random variables.
Observe that to ensure that the results are invariant under time-scaling, is necessary to add
the term B in the left-hand side of Equation (6.1). Then, given a linear discrete random system
(6.1), its characteristic random polynomial associated with the matrix 1

B A is

Q(λ) = Qnλn + Qn−1λn−1 + · · ·+ Q1λ + Q0

where each random variable Qj is a polynomial in the variables 1/B, A1,1, . . . , An,n which has
a complicated distribution function. We denote by X the random variables that assigns to each
Q its number of roots with modulus smaller than 1, that is, the stability index of the matrix
1
B A. Also pk denotes the probabilities that X takes the value k.

As we will see in the examples, in this case the condition pk = pn−k is no longer satisfied.
Among other reasons it happens that the entries of A−1 have complicated distributions. Since
we do not know other relations on the probabilities pk apart from the trivial one ∑

n
k=0 pk = 1,

and this is directly fulfilled by the observed relative frequencies, in this case we do not perform
the least squares refinement.
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The case n = 1 is the only one that we have been able to solve analytically. Notice that
in this situation the only solution of Q(λ) = 0 is λ = A/B, with A and B independent and
N(0, 1). Hence p0 = P(|A/B| > 1) and p1 = P(|A/B| < 1) = P(|B/A| > 1). Since A/B and
B/A have the same distribution it holds that p0 = p1 = 1/2. The results obtained for n ≤ 10
are shown in Table 6.1.

Dimension Observed frequency
n = 1 p̃0 = 0.49994

p̃1 = 0.50006
n = 2 p̃0 = 0.46348

p̃1 = 0.27705
p̃2 = 0.25947

n = 3 p̃0 = 0.45261
p̃1 = 0.25828
p̃2 = 0.15351
p̃3 = 0.13560

n = 4 p̃0 = 0.45040
p̃1 = 0.24732
p̃2 = 0.14799
p̃3 = 0.08127
p̃4 = 0.07302

n = 5 p̃0 = 0.44957
p̃1 = 0.24536
p̃2 = 0.13956
p̃3 = 0.08116
p̃4 = 0.04443
p̃5 = 0.03992

n = 6 p̃0 = 0.44944
p̃1 = 0.24419
p̃2 = 0.13838
p̃3 = 0.07536
p̃4 = 0.04606
p̃5 = 0.02449
p̃6 = 0.02209

n = 7 p̃0 = 0.44937
p̃1 = 0.24394
p̃2 = 0.13723
p̃3 = 0.07480
p̃4 = 0.04226
p̃5 = 0.02636
p̃6 = 0.01367
p̃7 = 0.01236

Dimension Observed frequency
n = 8 p̃0 = 0.44937

p̃1 = 0.24381
p̃2 = 0.13702
p̃3 = 0.07388
p̃4 = 0.04207
p̃5 = 0.02394
p̃6 = 0.01526
p̃7 = 0.00768
p̃8 = 0.00698

n = 9 p̃0 = 0.44941
p̃1 = 0.24374
p̃2 = 0.13680
p̃3 = 0.07371
p̃4 = 0.04139
p̃5 = 0.02400
p̃6 = 0.01374
p̃7 = 0.00889
p̃8 = 0.00434
p̃9 = 0.00397

n = 10 p̃0 = 0.44934
p̃1 = 0.24371
p̃2 = 0.13687
p̃3 = 0.07358
p̃4 = 0.04129
p̃5 = 0.02348
p̃6 = 0.01388
p̃7 = 0.00792
p̃8 = 0.00520
p̃9 = 0.00247
p̃10 = 0.00226

Table 6.1: Stability indexes for linear random maps.

As in the other models, for each dimension n ≤ 10, we generate 108 discrete systems of
the form (6.1). For each matrix 1

B A we have computed the characteristic polynomial Q and its
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associated polynomial Q⋆ (see Equation (3.2)) and have counted the number of roots of this
last polynomial by using the Routh–Hurwitz zero counter. For n ≥ 5 and in order to decrease
the computation time we have directly numerically computed the eigenvalues of the matrix
and counted the number of them with modulus less than one.

7 Linear random difference equations of order n

Finally we consider difference equations of order n of type

Anxk+n + An−1xk+n−1 + · · ·+ A1xk+1 + A0xk = 0,

where all the coefficients are i.i.d. random variables with N(0, 1) distribution. In this situation,
the stability index is given by the number of zeros with modulus smaller than 1 of the random
characteristic polynomial Q(λ) = Anλn + An−1λn−1 + · · · + A1λ + A0. As in the preceding
sections let X be the random variable that counts the number of roots of Q(λ) with modulus
smaller than 1 and set pk = P(X = k) for k = 0, 1, . . . , n.

Before proving some relations among the probabilities pk, we give two preliminary lem-
mas. Let erf(x) = 2√

π

∫ x
0 e−u2

du be the error function. The following result is stated in [4]. We
prove it for the sake of completeness.

Lemma 7.1. For α > 0 and β ∈ R,

F(α, β) :=
∫ ∞

0
e−α2x2

erf(βx)dx =
arctan(β/α)

α
√

π
.

Proof. Fixed α > 0, the function that defines F is absolutely integrable because | erf(x)| ≤
1. Moreover its partial derivative with respect to β is also absolutely integrable. Hence
limβ→0 F(α, β) = F(α, 0) = 0 and

∂F(α, β)

∂β
=
∫ ∞

0

∂

∂β

(
e−α2x2

erf(βx)
)

dx =
2√
π

∫ ∞

0
x e−α2x2

e−β2x2
dx

=
2√
π

∫ ∞

0
x e−(α2+β2) x2

dx =
1

(α2 + β2)
√

π
.

Therefore

F(α, β) = F(α, 0) +
∫ β

0

∂F(α, t)

∂t
dt =

∫ β

0

1
(α2 + t2)

√
π

dt =
arctan(β/α)

α
√

π
,

as we wanted to prove.

The next result is a consequence of the previous lemma.

Lemma 7.2. Let U ∼ N(0, σ2) and V ∼ N(0, ρ2) be independent normal random variables. Then

P(U2 − V2
> 0) = 2

π arctan(σ/ρ).

Proof. The joint density function of the random vector (U, V) is fσ(u) fρ(v), where fs(u) =

e−u2/(2s2)/(
√

2πs). Observe that the points (u, v) ∈ R2 such that u2 − v2
> 0 is the region

where −|u| < v < |u|, hence by symmetry,

P(U2 − V2
> 0) = 4

∫ ∞

0
fσ(u)

∫ u

0
fρ(v)dv du =

4
2πσρ

∫ ∞

0
e−u2/(2σ2)

∫ u

0
e−v2/(2ρ2) dv du

=
2

πσρ

∫ ∞

0
e−u2/(2σ2) erf

(
u√
2ρ

)√
π

2
ρ du =

2
π

arctan
(

σ

ρ

)
,

where in the last equality we have used Lemma 7.1.
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Notice that with the notation of the above lemma, P(U2 − V2
> 0) + P(U2 − V2

< 0) = 1.
Hence

P(U2 − V2
< 0) = 1 − 2

π
arctan

(
σ

ρ

)
=

2
π

arctan
(

ρ

σ

)
, (7.1)

where we have used the fact that arctan(x) + arctan(1/x) = π/2 or, simply, the same lemma
interchanging U and V. Observe also that when σ = ρ, P(U2 − V2

> 0) = P(U2 − V2
< 0) =

1/2, a result that, in fact, is a straightforward consequence that in this situation U2 − V2 and
V2 − U2 have the same distribution.

Proposition 7.3. With the above notation:

(a) ∑
n
k=0 pk = 1.

(b) For all k ∈ {0, 1, . . . , n}, pk = pn−k.

(c) When n is odd, ∑i even pi = ∑i odd pi =
1
2 .

(d) When n = 2k is even,

∑
i even

pi =
2
π

arctan

(√
k + 1

k

)
and ∑

i odd
pi =

2
π

arctan

(√
k

k + 1

)
. (7.2)

Proof. The first assertion is obvious. To see the second one we compare the difference equation
anxk+n + an−1xk+n−1 + · · ·+ a1xk+1 + a0xk = 0, with ai ∈ R, i = 0, 1, . . . , n, with characteristic
polynomial Q(λ) = anλn + an−1λn−1 + · · · + a2λ2 + a1λ + a0 with the difference equation
anxk + an−1xk+1 + · · ·+ a0xk+n = 0 with characteristic polynomial Q∗(λ) = an + an−1λ + · · ·+
a1λn−1 + a0λn. Notice that if Q(λ) has m non-zero roots with modulus smaller than 1 and
n − m with modulus bigger than 1, then the converse follows for Q∗(λ) because Q(λ) = 0 if
and only if Q∗( 1

λ ) = 0. From this result applied to the corresponding random polynomials
we get that pk = pn−k, because both have identically distributed coefficients. So we have
proved statement (b). To prove items (c) and (d) recall first that it was proved in item (c) of
Proposition 5.1 that a polynomial Q(λ) = anλn + an−1λn−1 + · · ·+ a2λ2 + a1λ + a0, without
roots with zero real part, has an even number of roots with negative real part if and only if
ana0 > 0. By using the polynomial

Q⋆(z) = an(z + 1)n + an−1(z + 1)n−1(z − 1) + . . . + a0(z − 1)n

= (an + an−1 + · · ·+ a1 + a0)z
n + · · ·+ (an − an−1 + an−2 − · · ·+ (−1)na0),

introduced in Section 3 (Equation (3.2)) we get that Q(λ), without roots of modulus 1, has an
even number (2m) of roots with modulus smaller than 1 if and only if Q⋆(z) has exactly 2m

roots with negative real part and this happens if and only if (an + an−1 + · · ·+ a1 + a0) · (an −
an−1 + an−2 − · · ·+ (−1)na0) > 0. Hence, considering the corresponding random polynomials,
we have that

∑
i even

pi = P
(
(An + An−1 + · · ·+ A0) · (An − An−1 + · · ·+ (−1)n A0) > 0

)

= P(U2 − V2
> 0),

where U = An + An−2 + An−4 + · · · and V = An−1 + An−3 + An−5 + · · · and the sums end
either at A0 or A1 according the parity of n. Since Aj ∼ N(0, 1) and all Aj are independent
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we get that when n = 2k (resp. n = 2k − 1) then U ∼ N(0, k + 1) (resp. U ∼ N(0.k)) and
V ∼ N(0, k) and U and V are independent. Hence, by using Lemma 7.2, we obtain that when
n = 2k − 1, P(U2 − V2

> 0) = 1/2 and that when n = 2k,

∑
i even

pi = P(U2 − V2
> 0) =

2
π

arctan

(√
k + 1

k

)
.

The sum of all pi when i is odd can be obtained from the above formula, see also (7.1).

Corollary 7.4.

(i) Consider the linear random homogeneous difference equation of order n, let X be the random

variable defined above and pk = P(X = k). Then the probabilities pk satisfy all the conclusions

of Lemma 3.1. In particular E(X) = n/2.

(ii) Moreover the new affine relations given in Equations (7.2) hold. In particular, for n = 2, p0 =

p2 = 1
π arctan(

√
2) and p1 = 2

π arctan
(
1/

√
2
)
; and for n = 4, p1 = p3 = 1

π arctan(
√

2/3).

In this case, and for the situations where we have not been able to obtain the exact proba-
bilities we have done similar computations than in the previous section, first with the Monte
Carlo method, generating for each order n = 0, . . . , 10, 108 random vectors (A0, . . . , An) ∈
Rn+1 whose components are pseudo-random numbers with N(0, 1) distribution. Then, by
using the relations in Proposition 7.3 and Corollary 7.4 we have performed a least squares
refinement.

For instance for n = 4, by Corollary 7.4 we have p1 = p3 = arctan(
√

2/3)/π ≃ 0.217953;
p2 = 2 arctan(

√
3/2)/π − 2p0 and p4 = p0. Hence, we fix the values p̂1 = p1 and p̂3 = p3 and

system (3.3) can be written in the form

Mq̂ + b =




1
−2

1


 · ( p̂0) +




0
2
π arctan

(√
3
2

)

0


 =




p̃0

p̃2

p̃4


 .

Hence we can easily find the least squares solution of the above incompatible linear system:

(1,−2, 1) ·







1
−2

1


 · ( p̂0) +




0
2
π arctan

(√
3
2

)

0





 = (1,−2, 1) ·




p̃0

p̃2

p̃4


 ,

and thus we get the result in Equation (3.4): p̂0 = 1
6 ( p̃0 − 2p̃2 + p̃4) +

2
3π arctan

(√
3/2

)
, and

therefore p̂4 = p̂0 and p̂2 = 2 arctan(
√

3/2)/π − 2p̂0. Since our Monte Carlo simulations give

( p̃0, p̃2, p̃4) =

(
2056203
20000000

,
7169499

20000000
,

10285619
100000000

)
≃ (0.10281, 0.35847, 0.10286) ,

the above relations show that ( p̂0, p̂2, p̂4) ≃ (0.10282, 0.35846, 0.10282) .
All our results are collected in Table 7.1.
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Order Observed frequency Least squares Relations (Prop. 7.3 and Cor. 7.4))
n = 1 p̃0 = 0.49991 p0 = 0.5

p̃1 = 0.50009 p1 = 0.5
n = 2 p̃0 = 0.30410 p0 = 1

π arctan(
√

2) ≃ 0.304087
p̃1 = 0.39184 p1 = 2

π arctan
( 1√

2

)
≃ 0.391826

p̃2 = 0.30406 p2 = 1
π arctan(

√
2) ≃ 0.304087

n = 3 p̃0 = 0.17251 p̂0 = 0.17248 p0

p̃1 = 0.32752 p̂1 = 0.32752 p1 = 1
2 − p0

p̃2 = 0.32753 p̂2 = 0.32752 p2 = 1
2 − p0

p̃3 = 0.17244 p̂3 = 0.17248 p3 = p0

n = 4 p̃0 = 0.10281 p̂0 = 0.10282 p0

p̃1 = 0.21792 p̂1 = 0.21795 p1 = 1
π arctan

(√
2
3

)
≃ 0.217953

p̃2 = 0.35847 p̂2 = 0.35846 p2 = 2
π arctan

(√
3
2

)
− 2p0

p̃3 = 0.21794 p̂3 = 0.21795 p3 = 1
π arctan

(√
2
3

)
≃ 0.217953

p̃4 = 0.10286 p̂4 = 0.10282 p4 = p0

n = 5 p̃0 = 0.05909 p̂0 = 0.05909 p0

p̃1 = 0.15331 p̂1 = 0.15333 p1

p̃2 = 0.28760 p̂2 = 0.28758 p2 = 1
2 − p0 − p1

p̃3 = 0.28756 p̂3 = 0.28758 p3 = 1
2 − p0 − p1

p̃4 = 0.15335 p̂4 = 0.15333 p4 = p1

p̃5 = 0.05908 p̂5 = 0.05909 p5 = p0

n = 6 p̃0 = 0.03501 p̂0 = 0.03502 p0

p̃1 = 0.09726 p̂1 = 0.09726 p1

p̃2 = 0.23777 p̂2 = 0.23779 p2 = 1
π arctan

(√
4
3

)
− p0

p̃3 = 0.25985 p̂3 = 0.25986 p3 = 2
π arctan

(√
3
4

)
− 2p1

p̃4 = 0.23781 p̂4 = 0.23779 p4 = 1
π arctan

(√
4
3

)
− p0

p̃5 = 0.09724 p̂5 = 0.09726 p5 = p1

p̃6 = 0.03505 p̂6 = 0.03502 p6 = p0

n = 7 p̃0 = 0.02025 p̂0 = 0.02025 p0

p̃1 = 0.06432 p̂1 = 0.06430 p1

p̃2 = 0.17174 p̂2 = 0.17176 p2

p̃3 = 0.24376 p̂3 = 0.24369 p3 = 1
2 − p0 − p1 − p2

p̃4 = 0.24361 p̂4 = 0.24369 p4 = 1
2 − p0 − p1 − p2

p̃5 = 0.17177 p̂5 = 0.17176 p5 = p2

p̃6 = 0.06428 p̂6 = 0.06430 p6 = p1

p̃7 = 0.02025 p̂7 = 0.02025 p7 = p0

n = 8 p̃0 = 0.01194 p̂0 = 0.01196 p0

p̃1 = 0.03994 p̂1 = 0.03994 p1

p̃2 = 0.12272 p̂2 = 0.12726 p2

p̃3 = 0.19230 p̂3 = 0.19234 p3 = 1
π arctan

(√
4
5

)
− p1

p̃4 = 0.25701 p̂4 = 0.25700 p4 = 2
π arctan

(√
5
4

)
− 2p0 − 2p2

p̃5 = 0.19238 p̂5 = 0.19234 p5 = 1
π arctan

(√
4
5

)
− p1

p̃6 = 0.12724 p̂6 = 0.12726 p6 = p2

p̃7 = 0.03994 p̂7 = 0.03994 p7 = p1

p̃8 = 0.01197 p̂8 = 0.01196 p8 = p0
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Order Observed frequency Least squares Relations (Prop. 7.3 and Cor. 7.4)
n = 9 p̃0 = 0.00693 p̂0 = 0.00693 p0

p̃1 = 0.02556 p̂1 = 0.02556 p1

p̃2 = 0.08711 p̂2 = 0.08711 p2

p̃3 = 0.15653 p̂3 = 0.15653 p3

p̃4 = 0.22389 p̂4 = 0.22386 p4 = 1
2 − p0 − p1 − p2 − p3

p̃5 = 0.22382 p̂5 = 0.22386 p5 = 1
2 − p0 − p1 − p2 − p3

p̃6 = 0.15654 p̂6 = 0.15653 p6 = p3

p̃7 = 0.08712 p̂7 = 0.08711 p7 = p2

p̃8 = 0.02557 p̂8 = 0.02556 p8 = p1

p̃9 = 0.00693 p̂9 = 0.00693 p9 = p0

n = 10 p̃0 = 0.00409 p̂0 = 0.00411 p0

p̃1 = 0.01567 p̂1 = 0.01566 p1

p̃2 = 0.06089 p̂2 = 0.06091 p2

p̃3 = 0.11500 p̂3 = 0.11497 p3

p̃4 = 0.19950 p̂4 = 0.19947 p4 = 1
π arctan

(√
6
5

)
− p0 − p2

p̃5 = 0.20978 p̂5 = 0.20976 p5 = 2
π arctan

(√
5
6

)
− 2p1 − 2p3

p̃6 = 0.19941 p̂6 = 0.19947 p6 = 1
π arctan

(√
6
5

)
− p0 − p2

p̃7 = 0.11499 p̂7 = 0.11497 p7 = p3

p̃8 = 0.06088 p̂8 = 0.06091 p8 = p2

p̃9 = 0.01570 p̂9 = 0.01566 p9 = p1

p̃10 = 0.00408 p̂10 = 0.00411 p10 = p0

Table 7.1: Stability indexes for order n linear random homogeneous difference
equations.
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Abstract. This paper is devoted to the study of the period function of planar generic and
non-generic turning points. In the generic case (resp. non-generic) a non-degenerate
(resp. degenerate) center disappears in the limit ǫ → 0, where ǫ ≥ 0 is the singular
perturbation parameter. We show that, for each ǫ > 0 and ǫ ∼ 0, the period function
is monotonously increasing (resp. has exactly one minimum). The result is valid in an
ǫ-uniform neighborhood of the turning points. We also solve a part of the conjecture
about a uniform upper bound for the number of critical periods inside classical Liénard
systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use
singular perturbation theory and the family blow-up.
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1 Introduction

We consider slow-fast polynomial Liénard equations of center type

Xǫ,η :





ẋ = y −
(

x2n +
l

∑
k=1

akx2n+2k

)
,

ẏ = ǫ2n

(
−x2n−1 +

m

∑
k=1

bkx2n+2k−1

)
,

(1.1)

where l, m, n ≥ 1, η := (a1, . . . , al , b1, . . . , bm) is kept in a compact set K of Rl+m and ǫ ≥ 0 is

the singular perturbation parameter kept small. System Xǫ,η is invariant under the symmetry

(x, t) → (−x,−t) and has a center at the origin for all ǫ > 0, ǫ ∼ 0, and for all η ∈ K.

The center is non-degenerate when n = 1 or nilpotent when n > 1. In the limit ǫ = 0, we

encounter drastic changes in the dynamics of (1.1): the system has a curve of singular points,

given by {y = x2n + ∑
l
k=1 akx2n+2k}, passing through the origin, and horizontal regular orbits

(see Figure 1.1).

BCorresponding author. Email: david.rojas@udg.edu
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Figure 1.1: Dynamics of X0,η with 5 contact points.

A portion of the curve of singularities near the origin consists of the normally attracting

part {x > 0}, the normally repelling part {x < 0} and the contact point (x, y) = (0, 0) between

them. We call the contact point a turning point because closed orbits surrounding the center,

for ǫ > 0 small, pass from the attracting part to the repelling part of the curve of singularities.

When n = 1, the turning point at the origin is generic (sometimes called simple). When n > 1,

we deal with a non-generic or degenerate turning point.

The period function of a center assigns to each periodic orbit its minimal period. Isolated

critical points of the period function are called critical periods (or critical periodic orbits)

and are central in the qualitative study of the period function. One can note that critical

periods do not depend on the parametrization of the set of periodic orbits used. Indeed, if

{γs}s∈(0,1) is such a parametrization and s 7→ T(s) is the period of the periodic orbit γs, for

any diffeomorphism s 7→ ξ = ξ(s), d
ds T(ξ(s)) = d

dξ T(ξ(s)) d
ds ξ(s). Therefore the number of

isolated zeros of d
ds (T ◦ ξ) and d

ds T are the same.

The main purpose of this paper is to give a complete local study of the period function of

Xǫ,η , near the center at the origin, in both the generic and non-generic case. The study is valid

in a small fixed neighborhood of the turning point that is independent of (ǫ, η). Thus, the

neighborhood does not shrink to the origin as ǫ → 0. In the generic (resp. non-generic) case,

the period function of the center in Xǫ,η is strictly monotonous increasing (resp. has exactly

one critical period which is a minimum). More precisely, let us denote by T(y; ǫ) the period

function of the center at the origin of system (1.1) with ǫ > 0, ǫ ∼ 0, parametrized by the

positive y-axis. Then we have:

Theorem 1.1. Let l, m ≥ 1 and n = 1 (resp. n > 1) be fixed. For any compact K ⊂ Rl+m there exist

ǫ0 > 0 and y0 > 0 small enough such that the period function T(y; ǫ) of the center of system (1.1) is

strictly monotonous increasing (resp. has a global minimum) in the interval ]0, y0], for all ǫ ∈ ]0, ǫ0]

and η ∈ K.

We prove Theorem 1.1 in Section 3.4. To prove Theorem 1.1, we use a blow-up at the origin

in the (x, y, ǫ)-space to desingularize system (1.1). Roughly speaking, after the blow-up we

distinguish between “very small”, “small” and “intermediate” closed orbits surrounding the

center (x, y) = (0, 0). The period function of the center of system (1.1) cannot be studied uni-

formly in these three regions and we have to use different techniques for each type of closed

orbits. To treat the period function near the very small closed orbits (the ones closest to the

center), we use Chicone and Jacobs [2], in the generic case, and generalized polar coordinates,

in the non-generic case. The small closed orbits can be treated using the monotonicity crite-

rion due to Schaaf [11], in the generic case, and a result due to Sabatini [10], in the non-generic

case. The size of the very small and small closed orbits tends to zero as ǫ → 0. In order to
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obtain the result in an (ǫ, η)-uniform neighborhood of (x, y) = (0, 0), the period function near

the passage from the small closed orbits to large closed orbits of size O(1) in the (x, y)-space

has to be studied. In this passage, we encounter the so-called intermediate closed orbits. The

period function near such intermediate closed orbits, in both the generic and non-generic

case, will be studied using techniques from [6, 8], where small-amplitude limit cycles in an

ǫ-uniform neighborhood of slow-fast Hopf points have been investigated (the slow-fast Hopf

points correspond to the generic case). For more details we refer to Section 2.

We point out that Theorem 1.1 can be proved in a more general framework of smooth

Liénard systems. More precisely, the same local result is true if we replace (1.1) with {ẋ =

y − x2n + O(x2n+2), ẏ = ǫ2n
(
−x2n−1 + O(x2n+1)

)
} where O(x2n+2) (resp. O(x2n+1)) is an even

(resp. odd) C∞-perturbation term that may depend on parameters kept in a compact set. The

proof in this more general setting is analogous to the proof for polynomial Liénard equations

presented in this paper.

Theorem 1.1, in the generic case n = 1, can be used to solve a part of the following

conjecture formulated in [4]: there exists a uniform upper bound on the number of critical

periods of classical Liénard equations {ẋ = y − G(x), ẏ = −x} where G is an even polynomial

of degree 2N, N ≥ 1, and G(0) = 0. Moreover, this upper bound is conjectured to be 2N − 2.

Following Theorem 5 in [4], this can be reduced to the following problem: there exist a small

ǫ0 > 0 and an integer M > 0 such that the slow-fast system





ẋ = y −
(

x2N +
N−1

∑
k=1

c2kx2k

)
,

ẏ = −ǫx,

(1.2)

has at most M critical periods, for all ǫ ∈ ]0, ǫ0] and (c2, c4, . . . , c2(N−1)) ∈ SN−2. The following

result covers the case where the curve of singularities of (1.2), at level ǫ = 0, has only one

contact point, the one at the origin (x, y) = (0, 0).

Theorem 1.2. Let c0
2 > 0 be small and fixed and let N ≥ 1 be a fixed integer. Denote by C the

set of all values (c2, c4, . . . , c2(N−1)) ∈ SN−2 such that c2 ≥ c0
2 and G′(x)

x > 0 for all x ∈ R, where

G(x) = x2N + ∑
N−1
k=1 c2kx2k. For any compact set C̃, with C̃ ⊂ C, there exists a small ǫ0 > 0 such

that system (1.2) has no critical periods for all ǫ ∈ ]0, ǫ0] and (c2, c4, . . . , c2(N−1)) ∈ C̃.

We prove Theorem 1.2 in Section 3.5. Note that keeping the parameter in a compact set C̃

ensures that the critical curve has no contact points other than the origin. The compact set

C̃ = {(c2, c4, . . . , c2(N−1)) ∈ S
N−2 | c2 ≥ c0

2 and ci ≥ 0 for i = 4, . . . , 2(N − 1)}

is always contained in the set C defined in Theorem 1.2. When N = 1, Theorem 1.2 implies

that {ẋ = y − x2, ẏ = −ǫx} has no critical periods for all ǫ ∈ ]0, ǫ0], for some small ǫ0 > 0.

When N = 2, we have to deal with the slow-fast systems {ẋ = y − x4 ± x2, ẏ = −ǫx}. From

Theorem 1.2 follows that the system with the negative sign in front of x2 has no critical periods.

The system with the positive sign in front of x2 is conjectured to have at most 2 critical periods

(see [4]). As explained in [4], it is more difficult to deal with the part of the conjecture when

the curve of singularities of (1.2) has more contact points.

When c2 is uniformly nonzero, Theorem 1.1 in the generic case implies that system (1.2)

has no critical periods in an ǫ-uniform neighborhood of the origin in the (x, y)-space. It

suffices to notice that the change of coordinates (x, y) → (c2x, c2y) transforms (1.2) into (1.1).

See Section 3.5.
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2 Blow-up and statement of results

2.1 Family blow-up at the origin in the (x, y, ǫ)-space

To be able to study the period function near the turning point, uniformly in (ǫ, η) with ǫ > 0

small, we have to desingularize the system Xǫ,η near (x, y, ǫ) = (0, 0, 0) using the so-called

family blow-up. The family blow-up is the following “singular” coordinate change with

n ≥ 1:

Ψ : R
+ × S

2
+ → R

3 : (r, (x̄, ȳ, ǭ)) 7→ (x, y, ǫ) = (rx̄, r2nȳ, rǭ), ǭ ≥ 0.

We define the blown-up vector field as the pullback of Xǫ,η + 0 ∂
∂ǫ divided by r2n−1: X̄η :=

1
r2n−1 Ψ∗(Xǫ,η + 0 ∂

∂ǫ

)
. To study the blown-up vector field X̄η (or r2n−1X̄η) near the blow-up

locus {0} × S2
+, it is convenient to use different charts with “rectified” coordinates, instead

of the spherical coordinates. For our purposes, only the family chart {ǭ = 1} and the phase

directional chart {ȳ = 1} are relevant for the study of the period function since all closed

orbits near the center (x, y) = (0, 0) are visible therein (see Figure 2.1).

In the family chart {ǭ = 1}, we have

(x, y, ǫ) = (rx̄, r2nȳ, r)

with (x̄, ȳ) kept in an arbitrary but fixed compact set. In this chart, r = ǫ and system (1.1)

becomes XF := ǫ2n−1X̄F, where

X̄F :





˙̄x = ȳ −
(

x̄2n +
l

∑
k=1

akǫ2k x̄2n+2k

)
,

˙̄y = −x̄2n−1 +
m

∑
k=1

bkǫ2k x̄2n+2k−1.

(2.1)

System (2.1) is invariant under the symmetry (x̄, t) → (−x̄,−t) and has a center at the origin,

for all ǫ ≥ 0, ǫ ∼ 0 and η ∈ K. When ǫ = 0, we are located on the blow-up locus and the

vector field (2.1) becomes {
˙̄x = ȳ − x̄2n,

˙̄y = −x̄2n−1.
(2.2)

A first integral of (2.2) is given by

H(x̄, ȳ) = e−2nȳ

(
ȳ − x̄2n +

1

2n

)
. (2.3)

Note that the invariant curve {ȳ = x̄2n − 1
2n} is the boundary of the period annulus (see Figure

2.1). The main advantage of the family blow-up is that the blown-up vector field (2.1) has no

curves of singularities.

The (x̄, ȳ)-compact sets in which we will study system (2.1) (see Section 2.2) shrink to the

origin in the (x, y)-space as ǫ → 0. To obtain (ǫ, η)-uniform results, we also have to study

Xǫ,η in the phase directional chart {ȳ = 1}. In the chart {ȳ = 1}, we deal with the coordinate

change

(x, y, ǫ) = (RX, R2n, RE),
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ǭ = 1

ȳ = 1

p−p+

Figure 2.1: The family blow-up at the origin (x, y, ǫ) = (0, 0, 0) and dynamics

on the blow-up locus. To study the period function of (1.1) in an (ǫ, η)-uniform

neighborhood of (x, y) = (0, 0), it suffices to use the charts {ǭ = 1} and {ȳ = 1}.

where R ≥ 0 and E ≥ 0 are small and X is kept in any compact set. System (1.1) becomes

XD := R2n−1X̄D, where

X̄D :





Ẋ = 1 −
(

X2n +
l

∑
k=1

akR2kX2n+2k

)
+

1

2n
XE2nF(X, R, η),

Ṙ = − 1

2n
RE2nF(X, R, η),

Ė =
1

2n
E2n+1F(X, R, η),

(2.4)

with F(X, R, η) = X2n−1 −∑
m
k=1 bkR2kX2n+2k−1. For R = E = 0, the system has semi-hyperbolic

singularities at X = −1 (denoted by p+) and X = 1 (denoted by p−). The singularity p+ (resp.

p−) has the X-axis as unstable (resp. stable) manifold and a two-dimensional center manifold,

transverse to the X-axis.

Using (2.1) and (2.4) we easily detect the singular polycycle Γ on the blow-up locus con-

sisting of singularities p+ and p− and the regular orbits that are heteroclinic to them (see

Figure 2.1). Note that p± are the end points of the regular curve {ȳ = x̄2n − 1
2n}.

It is clear now that the study of the period function of the center in (1.1), in a small ǫ-

uniform neighborhood of (x, y) = (0, 0), can be divided into three parts: the study near the

center (x̄, ȳ) = (0, 0) of (2.1), the study of the interior of the period annulus inside the family

(2.1), away from (x̄, ȳ) = (0, 0) and Γ, and the study near Γ, combining systems (2.1) and (2.4).

The results related to the first two parts (resp. the third part) are stated in Section 2.2 (resp.

Section 2.3).

2.2 Statement of results inside the vector field X̄F

Let l, m ≥ 1 be fixed. For the vector field X̄F given in (2.1) we define by TF(ȳ; ǫ) the period

function of the center at the origin parametrized by the ȳ-axis. As we will see in Sections 3.1

and 3.2, the function TF(ȳ; ǫ) is well defined in any compact interval [ȳ1, ȳ2] and when the

turning point is generic it can be extended analytically to ȳ = 0. We prove the following two
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results concerning the period function of system X̄F. The first one states the behaviour of the

period function of the center of system (2.1) close to the equilibrium at the origin, whereas the

second one is a global statement in the interior of the period annulus.

Theorem 2.1. For any compact K ⊂ Rl+m there exist ȳ0 > 0 small enough and ǫ0 > 0 small enough

such that d
dȳ TF(ȳ; ǫ) > 0 (resp. d

dȳ TF(ȳ; ǫ) < 0) for n = 1 (resp. n > 1) for all ȳ ∈ ]0, ȳ0], ǫ ∈ [0, ǫ0]

and η ∈ K. Moreover, TF(ȳ; ǫ) → 2π (resp. +∞) as ȳ → 0+ for n = 1 (resp. n > 1).

Theorem 2.2. For any compact K ⊂ Rl+m and any 0 < ȳ1 < ȳ2 < +∞ there exists ǫ0 > 0 small

enough such that d
dȳ TF(ȳ; ǫ) > 0 (resp. d2

dȳ2 TF(ȳ; ǫ) > 0) for n = 1 (resp. n > 1) for all ȳ ∈ [ȳ1, ȳ2],

ǫ ∈ [0, ǫ0] and η ∈ K.

We prove Theorem 2.1 in Section 3.1 and Theorem 2.2 in Section 3.2. A key fact in the

proof of the previous results is that, when ǫ = 0, the vector field (2.1) becomes (2.2) with a

first integral given by (2.3). As we will see, the period function of (2.1) is an ǫ-perturbation of

the period function of (2.2).

2.3 Statement of results near Γ

In both the generic and non-generic case, we have the following result about the period func-

tion of the center of the vector field r2n−1X̄η , with r > 0, in an η-uniform neighborhood of Γ.

Theorem 2.3. Let l, m ≥ 1 be fixed. For any compact K ⊂ Rl+m there exists ǫ0 > 0 small enough

such that the period function of the center of system r2n−1X̄η , with r > 0, near the polycycle Γ is

monotonous increasing for all ǫ ∈ ]0, ǫ0] and η ∈ K.

We prove Theorem 2.3 in Section 3.3. For a precise definition of a neighborhood of Γ in

the family blow-up coordinates and the period function near Γ see Section 3.3.

3 Proof of Theorem 1.1–Theorem 2.3

First we prove Theorem 2.1, Theorem 2.2 and Theorem 2.3. Then we glue them together and

prove Theorem 1.1 (see Section 3.4). Theorem 1.2 is proved in Section 3.5.

3.1 Proof of Theorem 2.1

Let us start considering the case n = 1. We define by TF(x̄; ǫ) the period function of system

(2.1) parametrized by the x̄-axis. Notice that, since n = 1, the center at the origin is non-

degenerate and therefore the period function can be extended analytically to x̄ = 0. For ǫ ≥ 0

small system (2.1) is an analytic perturbation of the quadratic system

{
˙̄x = ȳ − x̄2,

˙̄y = −x̄.
(3.1)

Therefore we can consider the Taylor’s series development at ǫ = 0 of TF(x̄; ǫ),

TF(x̄; ǫ) = T0(x̄) + O(ǫ),

where T0(x̄) is the period function of system (3.1) parametrized by the x̄-axis. In particular, if
d

dx̄T0(x̄) > 0 then d
dx̄TF(x̄; ǫ) > 0 for every ǫ ≥ 0 small enough. In consequence, the assertion
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concerning n = 1 in Theorem 2.1 will follow once we show that the period function T0(x̄) of

the quadratic system (3.1) is monotonous increasing near the origin.

To do so we use Chicone and Jacobs [2] result on quadratic centers to deduce that, in a

neighborhood of the origin,

T0(x̄) = 2π + p2(λ)x̄2 + O(x̄3),

where p2(λ) = π
12 (16λ2

2 + 8λ2λ5 + λ2
5 + 18λ2

3 − 12λ3λ6 + 9λ3λ4 + 10λ2
6 − λ4λ6 + λ2

4), λ =

(λi)
6
i=2, and λi stand for the coefficients of the Bautin’s normal form for quadratic systems

{
ẋ = −y − λ3x2 + (2λ2 + λ5)xy + λ6y2,

ẏ = x + λ2x2 + (2λ3 + λ4)xy − λ2y2.

In our case system (3.1) can be brought to the Bautin’s normal form with the change of

variable {ȳ 7→ −ȳ} and corresponds to the parameters λ2 = λ5 = λ6 = 0, λ3 = 1 and

λ4 = −2. Consequently, for system (3.1) the period function near the origin can be written as

T0(x̄) = 2π +
π

3
x̄2 + O(x̄3).

This fact, together with the discussion at the beginning of the section, shows that there exist

ǫ0, x̄0 > 0 small such that d
dx̄TF(x̄; ǫ) > 0 for x̄ ∈ ]0, x̄0] and ǫ ∈ [0, ǫ0]. Since monotonicity is

unaltered by parametrization, this finishes the proof of Theorem 2.1 for the case n = 1.

For n > 1 the center at the origin becomes degenerate and Chicone–Jacobs procedure

do not apply. With the aim of studying the period function of system (2.1) near the origin

(x̄, ȳ) = (0, 0) for n > 1 we consider the change to generalized polar coordinates

(x̄, ȳ) = (r cos θ, rn sin θ)

with r ≥ 0 and θ ∈ T. After this change system (2.1) is written as





ṙ =
rn

cos2 θ + n sin2 θ

(
cos θ sin θ − cos2n−1 θ sin θ + O(r)

)
,

θ̇ =
rn−1

cos2 θ + n sin2 θ

(
− n sin2 θ − cos2n θ + O(r)

)
.

We note that terms with ǫ small are inside O(r) so the forthcoming arguments are uniform

with respect to ǫ ∈ [0, ǫ0].

For r > 0 small enough we have θ̇ < 0. Therefore we can parametrize the orbits near

the origin by ϕ := −θ. We denote by TF(s; ǫ) the period of the solution r(ϕ, s) and for the

sake of simplicity we write f (ϕ) := cos2 ϕ + n sin2 ϕ, α(ϕ) := cos2n−1 ϕ sin ϕ − cos ϕ sin ϕ,

β(ϕ) := n sin2 ϕ + cos2n ϕ. Note that β(ϕ) > 0. Due to the symmetry of system (2.1) the

function TF(s; ǫ) writes

TF(s; ǫ) = 2
∫ π

2

− π
2

dϕ

ϕ̇
= 2

∫ π
2

− π
2

f (ϕ)dϕ

r(ϕ, s)n−1
(

β(ϕ) + O(r(ϕ, s))
) .

Moreover,
d

dϕ
r(ϕ, s)

r(ϕ, s)
=

α(ϕ)

β(ϕ)
+ O(r(ϕ, s)) =

α(ϕ)

β(ϕ)
+ O(s),
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where in the second equality we use r(ϕ, s) = O(s). Therefore,

r(ϕ, s) = r(0, s)e
∫ ϕ

0

(
α(φ)
β(φ)

+O(s)
)

dφ
= s
(
e
∫ ϕ

0
α(φ)
β(φ)

dφ
+ O(s)

)
.

We denote ρ(ϕ) := e
∫ ϕ

0
α(φ)
β(φ)

dφ
> 0. Substituting the previous equality in the expression of

TF(s; ǫ) and taking into account that O(r(ϕ, s)) = O(s) we get

TF(s; ǫ) =
2

sn−1

∫ π
2

− π
2

f (ϕ)dϕ
(
ρ(ϕ) + O(s)

)n−1(
β(ϕ) + O(s)

)

=
2

sn−1

∫ π
2

− π
2

(
f (ϕ)

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
dϕ

=
2

sn−1

(∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
.

Since f , ρ and β are positive, the last equality shows that TF(s; ǫ) → +∞ as s → 0+ for n > 1.

Moreover,

d

ds
TF(s; ǫ) = −2(n − 1)

sn

(∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
+

2

sn−1
O(1)

=
1

sn

(
−2(n − 1)

∫ π
2

− π
2

f (ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+ O(s)

)
.

The last equality shows that d
dsTF(s; ǫ) → −∞ as s → 0+. This ends the proof of Theorem 2.1

for n > 1.

Remark 3.1. We could also use the following generalized polar coordinates

(x̄, ȳ) = (rρ1(θ), rnρ2(θ))

where (ρ1(θ), ρ2(θ)) is the solution of {ẋ = −y, ẏ = x2n−1} with initial condition (x(0), y(0)) =

(1, 0). Using this coordinate change the above expressions become simpler (e.g. β(ϕ) = 1 for

all ϕ, with ϕ = −θ).

3.2 Proof of Theorem 2.2

In order to study the global behaviour of the period function of system (2.1) uniformly on

ǫ ≥ 0 small in a compact set inside the period annulus it is enough to study the period

function of the system (2.2), that is when ǫ = 0. We denote by T0(ȳ) the period function

of system (2.2) parametrized by the positive ȳ-axis, and we consider ȳ inside an arbitrary

compact interval [ȳ1, ȳ2] with 0 < ȳ1 < ȳ2 < +∞. By continuity with respect to the small

parameter ǫ of system (2.1), taking ǫ small enough the ȳ-axis is also transversal to all orbits

of (2.1), which are also periodic for ȳ ∈ [ȳ1, ȳ2]. We can then define TF(ȳ; ǫ) as the period

function of system (2.1) parametrized by the same ȳ as T0. The function TF(ȳ; ǫ) is analytic for

ǫ ≥ 0, ǫ ∼ 0, and so we can consider its Taylor’s series development at ǫ = 0,

TF(ȳ; ǫ) = T0(ȳ) + O(ǫ).

Then, since the center of system (2.2) is not isochronous, properties of the period function

of system for ǫ = 0 are reflected for ǫ ≥ 0 small enough. In particular, d
dȳ T0(ȳ) > 0 and

d2

dȳ2 T0(ȳ) > 0 for all ȳ ∈ [ȳ1, ȳ2] will imply d
dȳ TF(ȳ; ǫ) > 0 and d2

dȳ2 TF(ȳ; ǫ) > 0 for all ȳ ∈ [ȳ1, ȳ2]

and ǫ ≥ 0 small, respectively. For this reason, Theorem 2.2 is a consequence of the following

result.
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Proposition 3.2. The period function of the center (2.2) is strictly monotone increasing for n = 1 and

it is strictly convex for n > 1.

The first part of the proof of Proposition 3.2 relies on the application of the following

monotonicity criterion due to Schaaf [11].

Theorem 3.3. Consider a Hamiltonian system of the form u̇ = −v, v̇ = g(u), where function g satisfy

the following assumptions:

1. g : R → R is three times continuously differentiable with g(0) = 0 and g′(0) > 0.

2. For all u ∈ R where g′(u) > 0:
(
5(g′′)2 − 3g′g′′′

)
(u) > 0.

3. If g′(u) = 0 then g(u)g′′(u) < 0.

Then the origin is a center and the period function is strictly increasing in the whole period annulus.

One of the key elements to prove the second part of Proposition 3.2 is to show that at

most one critical period can exist in the interior of the period annulus. To do so we use the

following result due to Sabatini [10]. For the sake of shortness in the statement, we define the

following operator for smooth functions defined on an interval I:

K[g] :=
3g2g′′2 − 3gg′2g′′ − g2g′g′′′

g′4
.

Theorem 3.4. Consider a Hamiltonian of the form H(u, v) = G(u) + F(v), where G(u) = αu2k +

o(u2k) ∈ C∞(IG), F(v) = βv2ℓ + o(v2ℓ) ∈ C∞(IF), 0 ∈ IG ∩ IF, 0 < k, ℓ ∈ N, α, β > 0. Here IG

and IF denote the maximal interval of definition of G and F, respectively. Then the origin is a center

and if

µs2 := 4

(
1 + 2

GG′′

G′2
FF′′

F′2 +K[G] +K[F]

)
> 0

then the period function is strictly convex in the whole period annulus.

Proof of Proposition 3.2. The change of variables {u = ln(1 + 2n(ȳ − x̄2n)), v = x̄} transforms

(2.2) into the Hamiltonian system with separable variables

{
u̇ = −2nv2n−1,

v̇ = V ′
n(u),

(3.2)

where Vn(u) =
1

2n (e
u − u − 1). We notice that both periodic functions of system (3.2) and (2.2)

are the same through the change of variable. We shall prove the results for (3.2).

Let us prove the first assertion of the statement. To do so, we apply Schaaf’s criterion to

system (3.2) with n = 1. After a positive constant rescaling of time and taking g = V ′
1 we

have that the assumptions in Theorem 3.3 are fulfilled since g′(u) = V ′′
1 (u) =

1
2 eu > 0 for all

u ∈ R and
(
5(g′′)2 − 3g′g′′′

)
(u) = 1

2 e2u > 0 for all u ∈ R. Therefore the period function of

system (3.2) is strictly increasing and so d
dȳ T0(ȳ) > 0 for all ȳ > 0. This proves the assertion

concerning n = 1.

Let us consider n > 1. With the aim of applying Theorem 3.4 we denote G(u) = Vn(u) =
1

2n (e
u − u − 1) and F(v) = v2n. Clearly the first part of the assumptions of the theorem are

fulfilled since Vn(u) =
1

4n u2 + o(u2). We claim that µs2 ≥ 1
n2 > 0 for all n ≥ 2. After showing

the inequality, the result follows by direct application of Theorem 3.4.
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Using the expressions of F and G we have that

µ̂s2(u, n) := µs2(u, n)− 1

n2
=

4eu

n(eu − 1)4
η(u, n),

where η(u, n) = nu2 + (1 + 3n)u + 2n + 1 + (2nu2 − 2u − 3n − 3)eu + ((1 − 3n)u + 3)e2u +

(n − 1)e3u. A direct computation shows that

d

dn
µ̂s2(u) =

4(eu − u − 1)eu

n2(eu − 1)2
> 0

for all u ∈ R. Therefore to prove the claim it is enough to show that η(u, 2) ≥ 0.

We perform a derivation-division procedure with respect to eu achieving the following

equality:

e−u d3

du3

(
e−u d3

du3
η(u, 2)

)
= 216eu − 40u − 156.

The previous expression has exactly two simple negative zeros. Indeed, its derivative is zero

only at u = ln(5/27), the image at u = 0 is positive and the limits u → ±∞ are both +∞. A

sequence of simple arguments of continuity, number of zeros of the derivative, the values at

u = 0 and the values of the limits at ±∞ yields to show that η(u, 2) ≥ 0 for all u ∈ R. This

finishes the proof of the claim.

3.3 Proof of Theorem 2.3

We define a section Σ1 ⊂ {X = 0} parametrized by (R1, E1) ∈ [0, R0
1]× [0, E0

1] for some small

R0
1, E0

1 > 0. The section Σ1 is defined using the coordinates (X, R, E) of (2.4) (we write (R1, E1)

instead of (R, E) to avoid confusion later). Similarly, we define Σ4 ⊂ {x̄ = 0} parametrized

by (ȳ, ǫ), with ǫ ∈ [0, R0
1E0

1], where (x̄, ȳ, ǫ) are the coordinates of (2.1). The sections Σ1, Σ4 are

transverse to the blown-up vector field X̄η and located near the polycycle Γ (see Figure 3.1).

Since system (2.1) (resp. (2.4)) is invariant under the symmetry (x̄, t) → (−x̄,−t) (resp.

(X, t) → (−X,−t)), it suffices to study the time spent between Σ1 and Σ4, i.e. the half time

period function of r2n−1X̄η , denoted by H. Our goal is to prove that LH > 0 on Σ1 (for

R0
1, E0

1 > 0 small enough but fixed), with ǫ > 0, where L is the Lie-derivative along the vector

field R ∂
∂R − E ∂

∂E (see Section 3.3.5). This implies that r2n−1X̄η (r > 0) has no critical periods

near Γ and the period function is monotonous increasing there. When ǫ = 0, system (1.1) has

no center.

We aligned up H in three parts: the time H1,2 spent between Σ1 and Σ2 (Section 3.3.2), the

time H2,3 spent between Σ2 and Σ3, near the semi-hyperbolic singularity p− (Section 3.3.1),

and the time H3,4 between Σ3 and Σ4 (Section 3.3.3). In Section 3.3.4 we glue the local results

together. Section 3.3.5 is devoted to the study of the Lie-derivative LH.

3.3.1 The study of H2,3

In this section we study the time H2,3 inside the family XD, i.e. X̄D multiplied by R2n−1. First,

we bring X̃D := F(X, R, η)−1X̄D, locally near p− = (1, 0, 0), to a normal form which simplifies

the study of H2,3 (transverse sections Σ2,3 will be defined in the normal form coordinates).

Since p− is partially hyperbolic for all η ∈ K, there exists a Ck η-family of center manifolds at

p−, given as a graph of X = 1 + ψ(R, E, η) with ψ(0, 0, η) ≡ 0. Following [5] in the generic
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R = 0

X
R

E = 0

E

RE = ǫ

p−

p+

Σ1Σ2
Σ3

Σ4

(a) (b)

RE = ǫ

Figure 3.1: (a) Closed orbits near the polycycle Γ, inside RE = ǫ, for a fixed

ǫ > 0. Γ is located on the blow-up locus {r = 0} (it corresponds to {R = 0}
in the phase directional chart). The center is visible in the family chart. (b) The

study of the time spent inside {x ≥ 0} is divided into three parts: Σ1 → Σ2,

Σ2 → Σ3 and Σ3 → Σ4. In the first two parts, we use the vector field XD, and in

the last part we use XF.

case or [3] in the non-generic case, an η-family of center manifolds can be chosen to be C∞

(i.e. ψ can be C∞). We fix such ψ.

Using the coordinate change Z = X − (1+ψ(R, E, η)), the fixed family of center manifolds

becomes {Z = 0} and the vector field X̃D changes to




Ż = −
(
Φ(R, E, η) + O(Z)

)
Z,

Ṙ = − 1

2n
RE2n,

Ė =
1

2n
E2n+1,

(3.3)

where Φ is a smooth function with Φ(0, 0, η) = 2n. We used the fact that the family of center

manifolds is invariant for X̃D. Now, we can normally linearize the vector field (3.3) using

Theorem 1.1 of [7].

Theorem 3.5. There is a smooth family Πη : (Z, R, E) → (Z̄, R, E) of local diffeomorphisms, defined

in an η-uniform neighborhood of the origin in the (Z, R, E)-space, which brings (3.3) into the normally

linearized vector field

X̂D :





Ż = −Φ(R, E, η)Z,

Ṙ = − 1

2n
RE2n,

Ė =
1

2n
E2n+1,

(3.4)

where Φ is defined in (3.3) and where we denote Z̄ again by Z. The diffeomorphisms Πη preserve

{RE = const}: Πη(Z, R, E) = (Z(1 + Zπη(Z, R, E)), R, E) with a smooth family πη .

Remark 3.6. The coordinate change in the normal linearization theorem from [7] is C∞-smooth

and preserves the parameter η and the leaves of the foliation {RE = const} (the center vari-
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ables R, E are preserved). In [6], this normal linearization theorem has been used in the generic

case (see also Remark 1.2 in [7]). In the same way we apply it to the non-generic case. We

point out that we could also use Ck center manifolds and the normal linearization theorem of

[1] with a Ck-coordinate change that preserves η and {RE = const}. The size of the domain

of the coordinate change may tend to zero as k → ∞. The finite smoothness is not a problem

in our proof.

We conclude that, in the normal form coordinates (Z, R, E) of (3.4), XD can be written as

R2n−1κ(Z, R, E, η)X̂D, (3.5)

where κ(Z, R, E, η) = F(Z(1 + O(Z)) + 1 + ψ, R, η) and κ(0, 0, 0, η) = 1.

In the normal form coordinates, we define Σ2 ⊂ {Z = −Z0}, parametrized by (R2, E2) ∈
[0, R0

2]× [0, E0
2] for some small constants Z0, R0

2, E0
2 > 0, and Σ3 ⊂ {E = E3}, parametrized by

(Z, R) with Z ∼ 0 and R ∈ [0, R3] for some small constants R3, E3 > 0. All the constants are

chosen such that the transverse sections Σ2,3 are located in the domain of Π−1
η and such that

the passage w.r.t. X̂D between Σ2 and Σ3 is well-defined.

We can now find the time H2,3(R2, E2) in (3.5), spent between Σ2 and Σ3. Note that the

orbit of X̂D (or (3.5) with R > 0) with the initial point (R2, E2) > (0, 0) on Σ2 has the form

(
Z(E, R2, E2),

R2E2

E
, E

)

with Z(E, R2, E2) = −Z0 exp
(
−2n

∫ E
E2

Φ(
R2E2

s ,s,η)

s2n+1 ds
)
. Using this, the time H2,3 can be written as

H2,3(R2, E2) =
2n

(R2E2)2n−1

∫ E3

E2

dE

E2κ(Z(E, R2, E2),
R2E2

E , E, η)
. (3.6)

Since |Z(E, R2, E2)| ≤ Z0 for E ≥ E2 and κ is positive and bounded for (Z, R, E) ∼ (0, 0, 0)

and η ∈ K, it is clear that (3.6) tends to +∞ as ǫ = R2E2 → 0, uniformly in η. (Note that the

integral in (3.6) is of order O( 1
E2
).) We will use the expression (3.6) in Section 3.3.4.

We conclude this section with a result about the transition map of X̂D between Σ2 and Σ3.

Proposition 3.7. There is a C∞-function J in (R2, E2, E2
2 ln E2, η) such that the transition map

(R2, E2) → (Z, R) along the trajectories of (3.4) between Σ2 and Σ3 is given by R = R2E2
E3

and

Z = −Z0 exp

(
− 1

E2n
2

J(R2, E2, E2
2 ln E2, η)

)

with J(0, 0, 0, η) = 2n.

Proof. When n = 1, the proof of the proposition can be found in [6] (Proposition 4.9). The

proof of the case “n > 1” is analogous to the proof of the case “n = 1”.

Proposition 3.7 implies that the transition map between Σ2 and Σ3 is C∞-smooth in

(R2, E2, η). This will be used in the gluing process in Section 3.3.4.
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3.3.2 The study of H1,2

In this section we deal with the time H1,2, spent between Σ1 and Σ2, inside the vector field XD.

The smooth sections Σ1,2 are defined above. Note that the system (2.4) has no singularities

between Σ1 and Σ2 (since the section Σ2 is located uniformly away from the singularity p−,

the X-component of (2.4) is strictly positive between Σ1 and Σ2, for all (R, E) ∼ (0, 0) and for

all η kept in the compact set K). Since XD is (2.4), multiplied by R2n−1, it can be seen that

H1,2(R1, E1) =
1

R2n−1
1

I1 (R1, E1, η) , (3.7)

where I1 is a strictly positive C∞-function. We conclude this section with

Proposition 3.8. There exists a C∞-function J(R1, E1, η) such that the transition map (R1, E1) →
(R2, E2) along the trajectories of (2.4) between Σ1 and Σ2 is given by

(R2, E2) =
(

R1(1 + E2n
1 J(R1, E1, η)), E1(1 + E2n

1 J(R1, E1, η))−1
)

.

Proof. In the generic case (n = 1), the proof of the proposition is given in [6, Proposition 5.1].

The proof of the non-generic case (n > 1) is analogous to the proof of the generic case.

We use (3.7) and Proposition 3.8 in Section 3.3.4.

3.3.3 The study of H3,4

In this section we deal with the time H3,4, spent between Σ3 and Σ4, inside the vector field XF

(XF is equal to (2.1), multiplied by a constant ǫ2n−1 = (RE)2n−1). The smooth sections Σ3,4 are

defined above. If we parametrize Σ3 with (x̄, ǫ) ((x̄, ȳ, ǫ) are the coordinates of (2.1)), then we

can write H3,4 as

H3,4(x̄, ǫ) =
1

ǫ2n−1
I3 (x̄, ǫ, η) , (3.8)

where I3 is a strictly positive C∞-function. This follows from the fact that the vector field (2.1)

is regular along Γ on the blow-up locus, between Σ3 and Σ4 (see Figure 3.1).

3.3.4 The study of H

In this section we glue together the local results obtained in Sections 3.3.1–3.3.3 and find an

expression for the half time period function H. We know that

H(R1, E1) = H1,2(R1, E1) + H2,3(R2, E2) + H3,4(x̄, ǫ),

where the orbit of r2n−1X̄η (X̄η is the blown-up vector field defined in Section 2) with the

initial point (R1, E1) ∈ Σ1 intersects section Σ2 at the point (R2, E2) and section Σ3 at the point

(x̄, ǫ). From (3.6) follows that

H2,3(R2, E2) =
2n

(R1E1)2n−1

∫ E3

E2

dE

E2κ(Z(E, R2, E2),
R1E1

E , E, η)
, (3.9)

where R2 and E2 are the C∞-functions of (R1, E1, η) given in Proposition 3.8. Here we used

that ǫ = R1E1 = R2E2. Now, we want express H3,4(x̄, ǫ) in terms of (R1, E1). Let us recall that

the constant E3 > 0 comes from the definition of Σ3. Using x̄ = X
E3

and X = Z(1 + O(Z)) +
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1 + ψ(R1E1
E3

, E3, η) on Σ3 (O(Z) is a C∞-function, see Section 3.3.1), and the fact that Z is a

C∞-function in (R1, E1, η) (we combine Proposition 3.7 and Proposition 3.8), we see that x̄ is a

C∞-function of (R1, E1, η) and ǫ = R1E1. This and (3.8) imply that

H3,4(x̄, ǫ) =
1

(R1E1)2n−1
Ĩ3 (R1, E1, η) (3.10)

where Ĩ3 is a strictly positive C∞-function. Combining (3.7), (3.9) and (3.10), we finally get

H(R1, E1) =
2n

(R1E1)2n−1

(∫ E3

E2

dE

E2κ(Z(E, R2, E2),
R1E1

E , E, η)
+ I(R1, E1, η)

)
, (3.11)

where I is a C∞-function (thus, bounded). Note that the H2,3-contribution is dominant in

(3.11) and that H(R1, E1) tends to +∞ as ǫ = R1E1 → 0, uniformly in η. We know that

R2 = R1 (1 + o(1)) and E2 = E1 (1 + o(1)) where the o(1)-terms are C∞-functions of (R1, E1, η),

equal to 0 when E1 = 0. In Section 3.3.5 we show that the Lie-derivative of the integral in

(3.11) is of order O( 1
E1
).

3.3.5 Lie-derivative of H

When we fix any value of (ǫ, η), with ǫ > 0 small, H is 1-variable function defined on interval

{(R1, E1) ∈ Σ1 | R1E1 = ǫ} (see Figure 3.1(b)). To study critical periods of H on such intervals,

we define the Lie-derivative of H along the vector field R1
∂

∂R1
− E1

∂
∂E1

(it is tangent to the

intervals and without singularities there):

LH := R1
∂H

∂R1
− E1

∂H

∂E1
.

It can be easily seen that the Lie-derivative of a C∞-function in (R1, E1, η) (e.g. Ĩ in (3.11)) is

a C∞-function in (R1, E1, η), equal to zero when (R1, E1) = (0, 0). We also have L (R1E1) = 0

and L
(

Rl1
1 El2

1

)
= (l1 − l2)Rl1

1 El2
1 for l1, l2 ∈ Z. For more details about the Lie-derivative we

refer the reader to [6, 9].

The Lie-derivative of the time (3.11) can be written as

(LH)(R1, E1) =
2n

(R1E1)2n−1

(
1 + o(1)

E1κ(−Z0, R1(1 + o(1)), E1(1 + o(1)), η)

+
∫ E3

E2

− ∂κ
∂Z (Z(E, R2, E2),

R1E1
E , E, η)

E2
(

κ(Z(E, R2, E2),
R1E1

E , E, η)
)2

(LZ)(E, R1, E1)dE + o(1)

)
, (3.12)

where o(1)-terms are C∞-functions of (R1, E1, η), equal to zero when (R1, E1) = (0, 0), and LZ

is given by

(LZ)(E, R1, E1) =
2nZ0 (Φ(R1, E1, η) + o(1))

E2n
1

exp

(
−2n

∫ E

E2

Φ(R1E1
s , s, η)

s2n+1
ds

)
, (3.13)

where o(1)-terms have the same property as above. We show that the first term in (3.12) is

dominant.
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Since κ is uniformly positive near the origin (κ(0, 0, 0, η) = 1) and ∂κ
∂Z and Φ are bounded,

we find an upper bound for the integral in (3.12):

∣∣∣∣
∫ E3

E1(1+o(1))

∣∣∣∣ ≤
αZ0

E2n
1

∫ E3

E1(1+o(1))

1

E2
exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1
ds

)
dE (3.14)

for some constant α > 0 independent of Z0. (We write E2 = E1(1 + o(1)).) For E1 > 0 and

E1 ∼ 0, we aligned up the integral on the right-hand side of (3.14) in two parts:

∫ E3

E1(1+o(1))
=
∫ 2E1

E1(1+o(1))
+
∫ E3

2E1

.

We denote the first integral by J1 and the second by J2. We make in J1 the change of variable

E = E1τ, getting

J1 =
1

E1

∫ 2

1+o(1)

1

τ2
exp

(
−2n

∫ E1τ

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1
ds

)
dτ

=
1

E1

∫ 2

1+o(1)

1

τ2
exp

(
− 2n

E2n
1

∫ τ

1+o(1)

Φ(R1
u , E1u, η)

u2n+1
du

)
dτ

≤ 1

E1

∫ 2

1+o(1)

1

τ2
exp

(
− β

E2n
1

(τ − 1 − o(1))

)
dτ

≤ γE2n−1
1 (3.15)

for some constants β, γ > 0 independent of Z0. In the second step we used the change of

variable s = E1u and in the third step we used the fact that the integrand function in
∫ τ

1+o(1)

is uniformly positive (Φ(0, 0, η) = 2n). In the last step the term 1
τ2 is bounded on the segment

[1 + o(1), 2] and the integral of the exponential function is bounded by E2n
1 , multiplied by a

positive constant. Note also that the o(1)-terms in the last step are equal.

Concerning the integral J2 we get

J2 =
∫ E3

2E1

1

E2
exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1
ds

)
dE

≤
∫ E3

2E1

1

E2
exp

(
−2n

∫ 2E1

E1(1+o(1))

Φ(R1E1
s , s, η)

s2n+1
ds

)
dE

=
∫ E3

2E1

1

E2
exp

(
− 2n

E2n
1

∫ 2

(1+o(1))

Φ(R1
u , E1u, η)

u2n+1
du

)
dE

≤ exp

(
− β

E2n
1

) ∫ E3

2E1

1

E2
dE ≤ γ

E1
exp

(
− β

E2n
1

)
(3.16)

for some new constants β, γ > 0. Finally, combining inequalities (3.15) and (3.16) we obtain

∣∣∣∣
∫ E3

E1(1+o(1))

∣∣∣∣ ≤
αZ0

E2n
1

(J1 + J2) ≤
α1Z0

E1
+

α2

E2n+1
1

exp

(
− β

E2n
1

)

for some constants α1, α2, β > 0. It is clear now that the first term in (3.12) is the leading term

since 1
κ > α1Z0 (Z0 > 0 is as small as we want but fixed).
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We conclude that there are no critical periods for any fixed level ǫ > 0 on Σ1 with R0
1, E0

1 >

0 small enough and fixed, uniformly in η. The Lie-derivative LH tends to +∞ as ǫ → 0,

uniformly in η. Since LH > 0 and 2nȳ ∂
∂ȳ + 0 ∂

∂ǫ = R1
∂

∂R1
− E1

∂
∂E1

the period function is

monotonous increasing (as large ȳ increases, i.e. as we go away from the center (x̄, ȳ) = (0, 0),

the period function increases). This completes the proof of Theorem 2.3.

3.4 Proof of Theorem 1.1

Let n ≥ 1 and T(y; ǫ) be the period function of the center at the origin of system (1.1) with

ǫ > 0, ǫ ∼ 0, parametrized by the positive y-axis, with y ∼ 0. We have the following relation

between the (x, y, ǫ)-coordinates, the family directional coordinates and the phase directional

coordinates defined in Section 2.1:

x = ǫx̄ = RX, y = ǫ2nȳ = R2n, ǫ = RE.

Note that the positive y-axis is given by {x = 0}. In the family chart (resp. the phase direc-

tional chart), it corresponds to {x̄ = 0} (resp. {X = 0}).

For each ǫ > 0 and ǫ ∼ 0, we consider T in the following intervals: ]0, ǫ2nȳ0], [ǫ2nȳ1, ǫ2nȳ2]

and [ǫ2nȳ3, y0] where ȳ0, ȳ1, y0 > 0 are small and independent of ǫ and ȳ2, ȳ3 > 0 are large

and independent of ǫ. For ȳ0, y0 small and ȳ3 large, it suffices to decrease ȳ1 and increase

ȳ2 to cover the interval ]0, y0]. In the interval ]0, ǫ2nȳ0] (resp. [ǫ2nȳ1, ǫ2nȳ2] and [ǫ2nȳ3, y0])

we use Theorem 2.1 (resp. Theorem 2.2 and Theorem 2.3). Let us recall that the results of

Theorem 2.3 are valid in a section Σ1 ⊂ {X = 0} parametrized by (R, E) ∈ ]0, R0
1]×]0, E0

1]

where R0
1, E0

1 > 0 are small enough and fixed (see Section 3.3). The interval ]0, R0
1] × {E0

1}
corresponds to y = ǫ2n(E0

1)
−2n and ǫ ∈ ]0, R0

1E0
1] (we denote (E0

1)
−2n by ȳ3). The interval

{R0
1}×]0, E0

1] is given by y = (R0
1)

2n (we denote (R0
1)

2n by y0) and ǫ ∈ ]0, R0
1E0

1]. Theorem 2.1 is

valid for ȳ ∈ ]0, ȳ0] and ǫ ∈ ]0, ǫ0] where ȳ0, ǫ0 > 0 are small enough. In the (y, ǫ)-coordinates,

it corresponds to y ∈ ]0, ǫ2nȳ0] and ǫ ∈ ]0, ǫ0]. Finally, for any small ȳ1 > 0 and any large

ȳ2 > 0, Theorem 2.2 is valid for ȳ ∈ [ȳ1, ȳ2] and ǫ ∈ ]0, ǫ1] where ǫ1 > 0 is small enough. It

corresponds to y ∈ [ǫ2nȳ1, ǫ2nȳ2] and ǫ ∈ ]0, ǫ1] in the original coordinates.

Note that the notion of critical period is independent of the chosen coordinates and the

chosen transverse section (for example, if we work with the polar coordinates (r, θ) instead of

(x̄, ȳ), we have the same number of critical periods, counting multiplicity).

We consider two cases: n = 1 and n > 1. Suppose first that n = 1. Following Theorem

2.1, we have that ∂T
∂y (y; ǫ) > 0 for all y ∈ ]0, ǫ2ȳ0] and ǫ ∈ ]0, ǫ0]. Indeed, we know that

T(y; ǫ) = 1
ǫ TF(

y
ǫ2 ; ǫ) where TF(ȳ; ǫ) is the period function of the center of (2.1), parametrized

by the positive ȳ-axis. Now, it suffices to see that

∂T

∂y
(y; ǫ) =

1

ǫ3

∂TF

∂ȳ

( y

ǫ2
; ǫ
)

(3.17)

and that ∂TF
∂ȳ (ȳ; ǫ) > 0 for all ȳ ∈ ]0, ȳ0] and ǫ ∈ ]0, ǫ0] (Theorem 2.1). On the other hand,

we know that T(y; ǫ) = TD(
√

y, ǫ√
y ) where TD(R, E) is the period function of rX̄η near the

polycycle Γ (X̄η is the blown-up vector field). Note that

∂T

∂y
(y; ǫ) =

1

2y
(LTD)

(√
y,

ǫ√
y

)

and that LTD > 0 for all (R, E) ∈ ]0, R0
1]×]0, E0

1] (see Theorem 2.3). Thus, ∂T
∂y (y; ǫ) > 0 for

all y ∈ [ǫ2ȳ3, y0] and ǫ > 0 small. Finally, by taking ȳ1 < ȳ0 and ȳ2 > ȳ3, we have that
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∂TF
∂ȳ (ȳ; ǫ) > 0 for all ȳ ∈ [ȳ1, ȳ2] and ǫ > 0 small (see Theorem 2.2) and thus ∂T

∂y (y; ǫ) > 0 for all

y ∈ [ǫ2ȳ1, ǫ2ȳ2] and ǫ > 0 small (see (3.17)). This ends the proof of Theorem 1.1 in the generic

case.

Suppose now that n > 1. The study of the non-generic case is similar to the study of the

generic case. We have ∂T
∂y (y; ǫ) < 0 for all y ∈ ]0, ǫ2ȳ0] and for all ǫ > 0 small (see Theorem 2.1),

and ∂T
∂y (y; ǫ) > 0 for all y ∈ [ǫ2ȳ3, y0] and ǫ > 0 small (see Theorem 2.3). Using Theorem 2.2

we find that ∂2T
∂y2 (y; ǫ) > 0 for all y ∈ [ǫ2ȳ1, ǫ2ȳ2] and ǫ > 0 small. This implies that at most

one critical period can exist in ]0, y0]. Since ∂T
∂y goes from − to +, we conclude that precisely

one critical period exists in ]0, y0]. This completes the proof of Theorem 1.1 in the non-generic

case.

3.5 Proof of Theorem 1.2

We consider system (1.2) with N ≥ 1 and denote c := (c2, c4, . . . , c2(N−1)) ∈ SN−2 (when N = 1,

we don’t have the parameter c). When N ≥ 2, we assume that c2 ≥ c0
2 for some arbitrarily

small and fixed c0
2 > 0. Let C and G be as defined in Theorem 1.2 and let C̃ be an arbitrary

and fixed compact subset of C. Let c ∈ C̃. We replace ǫ in (1.2) by ǫ2. It is clear that, if we

can prove the result in a small interval in the new ǫ-space, then we have proved it in a small

interval in the old ǫ-space.

If we apply the scaling (x, y) =
(

x̃
c2

,
ỹ
c2

)
to (1.2), we get





ẋ = y −
(

x2 +
N−1

∑
k=2

c̄2kx2k + c̄2Nx2N

)
,

ẏ = −ǫ2x,

(3.18)

where c̄2k = c2kc1−2k
2 , for k = 2, . . . , N − 1, and c̄2N = c1−2N

2 . (We use the old notation (x, y)

instead of (x̃, ỹ) for the sake of simplicity.) Since c is kept in the compact set C̃, it is clear that

c̄ = (c̄4, . . . , c̄2N) is also contained in a compact set, denoted by C̄, and that

Ḡ′(x)

x
> 0, (3.19)

for all x ∈ R and c̄ ∈ C̄, where Ḡ denotes the polynomial in x in the first equation of (3.18).

Note that Ḡ(x) = c2G( x
c2
) and that system (3.18) is of type (1.1) with n = 1.

It suffices to show that there exists ǫ0 > 0 small such that system (3.18) has no critical

periods for all ǫ ∈ ]0, ǫ0] and c̄ ∈ C̄. Let T(y; ǫ) be the period function of the center at the

origin of system (3.18) with ǫ > 0 and ǫ ∼ 0, parametrized by the positive y-axis. In the rest

of this section we prove that d
dy T(y; ǫ) > 0 on {y > 0}, for all ǫ ∈ ]0, ǫ0] and c̄ ∈ C̄, for some

ǫ0 > 0. This will imply that there are no critical periods uniformly in ǫ ∼ 0. We study the

period function T in the following intervals: ]0, y0], [ρ, 1
ρ ] and [y1, ∞[, where y0 > 0 is small

enough, y1 > 0 is large enough and ρ > 0 is arbitrarily small (see Figure 3.2). When we find

y0 and y1, we decrease ρ (i.e., increase the segment [ρ, 1
ρ ]) to cover the entire {y > 0}.

Following Theorem 1.1, there exist ǫ0 > 0 and y0 > 0 such that d
dy T(y; ǫ) > 0 for all

y ∈ ]0, y0] and (ǫ, c̄) ∈ ]0, ǫ0]× C̄.

Consider now the period function T in the segment [ρ, 1
ρ ], for any small and fixed ρ > 0.

The reduced flow (sometimes called the slow system) of (3.18) along the critical curve {y =
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Figure 3.2: Dynamics of (3.18). The curve of singularities, at level ǫ = 0, with

indication of small-amplitude, detectable and large closed orbits, for ǫ > 0 and

ǫ ∼ 0.

Ḡ(x)}, away from the contact point (x, y) = (0, 0), is given by

x′ = − x

Ḡ′(x)
(or y′ = −x).

Note that the reduced flow is well-defined and uniformly negative for all x kept in large

compact sets and c̄ ∈ C̄. Here we use (3.19). The orbit through the point y ∈ [ρ, 1
ρ ] is attracted

to the curve of singularities {x > 0}, follows the reduced flow directed towards the turning

point at the origin and then goes back to the point y due to the symmetry. This implies that T

is well-defined for y ∈ [ρ, 1
ρ ]. Following [3, Theorem 2.1] or [4], the period function T and its

derivative, restricted to the segment [ρ, 1
ρ ], are given by

T(y; ǫ) = 2
1

ǫ2

(
T0(y) + o(1)

)
and

d

dy
T(y; ǫ) = 2

1

ǫ2

(
d

dy
T0(y) + o(1)

)
,

with ǫ > 0 small enough, where T0(y) is the transition time (at level ǫ = 0) of the reduced flow

along the attracting part of the curve of singularities between the ω-limit of the point y ∈ [ρ, 1
ρ ]

and the turning point. Using the expressions for the reduced flow we have for y ∈ [ρ, 1
ρ ]

T0(y) = −
∫ 0

y

dỹ

x̃
= −

∫ 0

y

dỹ

g(ỹ)
,

where x̃ = g(ỹ) represents the attracting part of the critical curve, i.e. ỹ = Ḡ(g(ỹ)). Finally,

we get

d

dy
T0(y) =

1

g(y)
> 0

for all y ∈ [ρ, 1
ρ ] and c̄ ∈ C̄. We conclude that d

dy T(y; ǫ) > 0 for all y ∈ [ρ, 1
ρ ], c̄ ∈ C̄ and

ǫ ∈ ]0, ǫ0] for some small ǫ0 > 0. We point out that we are allowed to use the results of [3]

because the reduced flow has no singularities.

It remains to show that d
dy T(y; ǫ) > 0 for y ∈ [y1, ∞[, c̄ ∈ C̄ and ǫ ∈ ]0, ǫ0] for y1 > 0

large enough and ǫ0 > 0 small enough. To investigate the period function when y → ∞, we

apply the coordinate change (x, y) =
(

x̃
q , 1

q2N

)
to (3.18), where q > 0 is small and x̃ is kept in

a compact set. In the new coordinates (3.18) becomes 1
q2N−1 X∞ where the vector field X∞ is
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given by 



˙̃x = 1 −
(

q2N−2 x̃2 +
N−1

∑
k=2

c̄2kq2N−2k x̃2k + c̄2N x̃2N
)
+

1

2N
ǫ2q4N−2 x̃2,

q̇ =
1

2N
ǫ2q4N−1 x̃.

(3.20)

On the line {q = 0} (it represents infinity in the (x, y)-phase space), system (3.20) has two

semi-hyperbolic singularities x̃ = ±
(

1
c̄2N

) 1
2N (resp. x̃ = ±1) when N ≥ 2 (resp. N = 1). Note

that c̄2N is uniformly positive and bounded. It suffices to look at the positive sign. When

ǫ = 0, we have the curve of (semi-hyperbolic) singularities x̃ =
(

1
c̄2N

) 1
2N + O(q) (resp. x̃ = 1).

The reduced flow is given by

q′ =
1

2N
q4N−1

((
1

c̄2N

) 1
2N

+ O(q)

) (
resp. q′ =

1

2
q3

)
.

Using a Takens normal form for Ck-equivalence (see e.g. [5]), system X∞ near the semi-

hyperbolic singularity on the line {q = 0} is Ck-equivalent to

{
˙̂x = −x̂,

˙̂q = ǫ2q̂4N−1h(q̂, ǫ, c̄),
(3.21)

where h is a positive Ck-function. We denote system (3.21) by X̂∞. We conclude that in the

normal form coordinates (x̂, q̂) the vector field 1
q2N−1 X∞ can be written as

1

q̂2N−1ĥ(x̂, q̂, ǫ, c̄)
X̂∞, (3.22)

where ĥ is a positive Ck-function. We choose two transverse sections Σ− ⊂ {x̂ = x̂0},

parametrized by q̂, and Σ+ ⊂ {q̂ = q̂0}, parametrized by x̂, for some small and fixed x̂0, q̂0 > 0.

We compute the time of (3.22) spent between Σ− and Σ+, near (x̂, q̂) = (0, 0). The orbit of

(3.21) or (3.22) starting at q̂1 ∈ Σ−, with q̂1 > 0, is given by

x̂(q̂, q̂1) = x̂0 exp

(
− 1

ǫ2

∫ q̂

q̂1

dz

z4N−1h(z, ǫ, c̄)

)
.

Now is the time spent by the orbit given by

T (q̂1; ǫ) =
1

ǫ2

∫ q̂0

q̂1

h̄(x̂(z, q̂1), z, ǫ, c̄)dz

z2N

with a positive Ck-function h̄. The derivative is given by

d

dq̂1
T (q̂1; ǫ) = − h̄(x̂0, q̂1, ǫ, c̄)

ǫ2q̂2N
1

+
1

ǫ2

∫ q̂0

q̂1

∂h̄
∂x̂ (x̂(z, q̂1), z, ǫ, c̄) ∂x̂

∂q̂1
(z, q̂1)

z2N
dz. (3.23)

Now, we proceed exactly as in Section 3.3.5. The first term in (3.23) tends to −∞ as ǫ2q̂2N
1 → 0

and we show that it is a dominant term. We have

∣∣∣∣
1

ǫ2

∫ q̂0

q̂1

∣∣∣∣ ≤
αx̂0

ǫ4q̂4N−1
1

∫ q̂0

q̂1

exp
(
− 1

ǫ2

∫ z
q̂1

ds
s4N−1h(s,ǫ,c̄)

)

z2N
dz (3.24)
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with a positive constant α. We used the fact that ∂h̄
∂x̂ is bounded and h is uniformly positive.

For the [q̂1, 2q̂1]-part of the integral on the right hand side of (3.24), we get

∫ 2q̂1

q̂1

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1

ǫ2

∫ q̂1 z̃
q̂1

ds
s4N−1h(s,ǫ,c̄)

)

z̃2N
dz̃

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1

ǫ2 q̂4N−2
1

∫ z̃
1

ds̃
s̃4N−1h(q̂1 s̃,ǫ,c̄)

)

z̃2N
dz̃

≤ 1

q̂2N−1
1

∫ 2

1

exp
(
− β(z̃−1)

ǫ2 q̂4N−2
1

)

z̃2N
dz̃

≤ γǫ2q̂2N−1
1 , (3.25)

where β, γ > 0 are constants. (See Section 3.3.5 for each step.) On the other hand, we have

∫ q̂0

2q̂1

≤
∫ q̂0

2q̂1

exp
(
− 1

ǫ2

∫ 2q̂1

q̂1

ds
s4N−1h(s,ǫ,c̄)

)

z2N
dz

=
∫ q̂0

2q̂1

exp
(
− 1

ǫ2 q̂4N−2
1

∫ 2
1

ds̃
s̃4N−1h(q̂1 s̃,ǫ,c̄)

)

z2N
dz

≤ exp

(
− β

ǫ2q̂4N−2
1

) ∫ q̂0

2q̂1

dz

z2N

≤ γ

q̂2N−1
1

exp

(
− β

ǫ2q̂4N−2
1

)
(3.26)

for some new constants β, γ > 0. Combining (3.24), (3.25) and (3.26) we finally have

∣∣∣∣
1

ǫ2

∫ q̂0

q̂1

∣∣∣∣ ≤
α1 x̂0

ǫ2q̂2N
1

+
α2

ǫ4q̂6N−2
1

exp

(
− β

ǫ2q̂4N−2
1

)

for positive constants α1, α2, β. Now, it suffices to notice that x̂0 > 0 can be arbitrarily small

but fixed.

The time of 1
q2N−1 X∞ spent between {x̃ = 0} and Σ− is of order O(q2N−1) (X∞ is regular in

this region). Following [3], the time spent between Σ− and the turning point and its derivative

are of order O( 1
ǫ2 ). This implies that the contribution (3.23) is dominant. Thus, d

dy T(y; ǫ) > 0

for large y. This ends the proof of Theorem 1.2.
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Abstract. In this paper, we consider the large time behavior of solution for the
chemotaxis-shallow water system in R

2. The lower bound for time decay rates of the
bacterial density and the chemoattractant concentration are proved by the method of en-
ergy estimates, which implies these two variables tend to zero at the L2-rate (1 + t)−

1
2 .

Furthermore, by the Fourier splitting method, we also show the first order spatial
derivatives of the bacterial density tends to zero at the L2-rate (1 + t)−1.

Keywords: chemotaxis, shallow water system, decay rates.
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1 Introduction

In this paper, we are interested in two-dimensional chemotaxis-shallow water system




nt + div(nu) = Dn∆n −∇ · (nχ(c)∇c),

ct + div(cu) = Dc∆c − n f (c),

ht + div(hu) = 0,

hut + hu · ∇u + h2∇n +
1

2
(1 + n)∇h2 = µ∆u + (µ + λ)∇(divu),

(1.1)

which was proposed in [2] to describe the dynamics of the oxygen and aerobic bacteria in

the incompressible fluids with free surface. Here n, c, h, u denote the bacterial density, the

chemoattractant concentration, the fluid height and the fluid velocity field, respectively. The

constants Dn and Dc are the corresponding diffusion coefficients for the cells and substrate.

The chemotactic sensitivity χ(c) and the consumption rate of the substrate by the cells f (c)

are supposed to be given smooth functions. The constants µ and λ are the shear viscosity

and the bulk viscosity coefficients respectively with the following physical restrictions: µ >

0, µ + λ ≥ 0. In order to complete system (1.1), the initial conditions are given by

(n, c, h, u)(x, t)|t=0 = (n0(x), c0(x), h0(x), u0(x)), for x ∈ R
2. (1.2)

BCorresponding author. Email: taoq@szu.edu.cn; taoq060@126.com



2 Y. Huang and Q. Tao

As the space variable tends to infinity, we assume

lim
|x|→∞

(n0, c0, h0 − 1, u0)(x) = 0. (1.3)

Chemotaxis exists widely in the nature. The bacteria or microorganisms often live in a

viscous fluid with chemical stimulation and like to move towards a chemically more advan-

tageous circumstance for better survival known as chemotaxis. To describe the dynamics of

swimming bacteria, Tuval et al. [16] proposed a coupled system of the chemotaxis model and

the viscous incompressible fluid. Since then, there has been many results in literature on the

solvability and stability of this chemotaxis-fluid system. The local weak solution was proved

by Lorz [9] and the local smooth solution was showed by Chae–Kang–Lee [1]. Liu–Lorz [8]

and Winkler [22] established the global weak solutions. The global classical and strong solu-

tion was proved by Winkler [19] and Duan–Lorz–Markowich [4], respectively. The stability

problem was studied in [3,11,20,23] and the small-convection limit was investigated by Wang

et al.[18]. We also would like refer to [5–7,12,13,15,21,24] and the references therein for more

related works on the chemotaxis-fluid system with nonlinear diffusion.

Considering the fact that the surface of the fluid is a free boundary, the modified shallow

water type chemotactic model (1.1) is derived in [2]. For large initial data allowing vacuum,

i.e. the bacterial density n is allowed to vanish, the authors in [2] established the local existence

of strong solutions and the blow-up criterion. In [14], we proved the global well-posedness of

strong solution and studied the upper bound decay rates of the global solution with the initial

data far from vacuum. Recently, Wang–Wang [17] showed the upper bound decay estimates

of the global solutions in Lp space with the initial bacterial density allowing vacuum.

In this paper, based on the previous works [14, 17], we are interested in the large time

behavior of the global solution for the chemotaxis-shallow water system with the bacterial

density n being allowed to vanish. The lower bound decay rates for the chemoattractant

concentration c, the bacterial density n and its one order spatial derivatives will be given.

In what follows, for simplicity, let Dn = Dc = 1, χ(c) ≡ 1, f (c) = c. Furthermore, through-

out this paper, we use Hk(R2)(k ∈ R) to denote the usual Sobolev spaces with norm ‖ · ‖Hk

and Lp(R2)(1 ≤ p ≤ ∞) to denote the usual Lp spaces with norm ‖ · ‖Lp . C denotes constant

independent of time t. For the sake of simplicity, ‖(A, B)‖X := ‖A‖X + ‖B‖X.

Now, we first recall the following result obtained in [17].

Theorem 1.1. Assume that the initial data (n0, c0, h0 − 1, u0) ∈ H4 ∩ L1 satisfies n0, c0 ≥ 0 and

h0 > 0 and there exists a small positive constant δ0 such that ‖(n0, c0, h0 − 1, u0)‖H4∩L1 ≤ δ0, then

the system (1.1)–(1.3) has a unique global classical solution which satisfies

‖∇k(n, c, h − 1, u)(t)‖L2 ≤ C(1 + t)−
1+k

2 , for k = 0, 1, 2. (1.4)

The main result in this paper can be stated as follows.

Theorem 1.2. Assume that the assumptions of Theorem 1.1 hold and the Fourier transform F (n0) =

n̂0 and F (c0) = ĉ0 satisfy |n̂0| ≥ n̄ > 0 and |ĉ0| ≥ c̄ > 0 for 0 ≤ |ξ| ≪ 1, with n̄ and c̄ are small

constants. Then, the bacterial density n and the chemoattractant concentration c of global solution to

the system (1.1)–(1.3) has the lower bound for time decay rates for all t ≥ T1

‖(n, c)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇n(t)‖L2 ≥ C(1 + t)−1,

where T1 is a positive large time.
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Remark 1.3. By combining the results in Theorem 1.1 and Theorem 1.2, one can find that the

bacterial density and the chemoattractant concentration tend to zero at the L2-rate (1 + t)−
1
2

and the first order spatial derivatives of the bacterial density tends to zero at the L2-rate

(1 + t)−1.

Remark 1.4. From the structure of the system (1.1), we can find the fluid height and the fluid

velocity field satisfy the hyperbolic and parabolic coupled system with linear term ∇n. This

means that the method in this paper will no longer be valid for the lower bound decay rates

of the fluid height and the fluid velocity field.

Remark 1.5. It is worth mentioning that many functions, for example δ0e−|x| or δ0e−|x|2 , can

fulfill the hypotheses in Theorem 1.1 and Theorem 1.2 simultaneously.

2 The lower bound for time decay rates

Let us first consider the following linearized system of (1.1)1 and (1.1)2.
{

∂tnl − ∆nl = 0,

∂tcl − ∆cl = 0,
(2.1)

with the initial data (nl , cl)(x, 0) = (n0, c0)(x).

Lemma 2.1. Assume that the Fourier transform F (n0) = n̂0 and F (c0) = ĉ0 satisfy |n̂0| ≥ n̄ > 0

and |ĉ0| ≥ c̄ > 0 for 0 ≤ |ξ| ≪ 1, with n̄ and c̄ are small constants. Then, nl and cl in (2.1) have the

decay rates

‖(nl , cl)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇(nl , cl)(t)‖L2 ≥ C(1 + t)−1. (2.2)

Proof. Since nl satisfies a heat equation, with the help of semigroup method, we have

nl(x, t) = e−∆tn0(x). Thus, using the Fourier transform, we have
∫

R2
|nl |

2dx =
∫

R2
|n̂0|

2e−2|ξ|2tdξ ≥ n̄2
∫

|ξ|≪1
e−2|ξ|2tdξ ≥ C(1 + t)−1,

∫

R2
|∇nl |

2dx =
∫

R2
|n̂0|

2ξ2e−2|ξ|2tdξ ≥ C(1 + t)−2.

Similarly, we can also obtain the lower bounds for cl . Therefore, we complete the proof of this

lemma. �

Next, we recall a known result which will be used later (see [3, 17]).

Lemma 2.2. Assume that the assumptions of Theorem 1.1 hold. Then the global strong solution

(n, c, h, u) to the Cauchy problem of system (1.1)–(1.3) satisfies

n(t, x) ≥ 0, c(t, x) ≥ 0 a.e. in (0,+∞)× R
2. (2.3)

Now, we are ready to deal with the nonlinear part of (1.1)1 and (1.1)2. Set nr = n − nl and

cr = c − cl , then nr and cr satisfy
{

∂tnr − ∆nr = −div(nu)−∇ · (n∇c),

∂tcr − ∆cr = −div(cu)− nc,
(2.4)

with the initial data (nr, cr)(x, 0) = (0, 0). Here, (2.4) is a non-homogeneous linear heat equa-

tions.
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Remark 2.3. It is worth mentioning that the method in our paper can be extended to parabolic

equations with other different types of nonlinear sources to get the lower bound for time decay

rates. However, these nonlinear sources can not contain linear part in it. More precisely, taking

the logistic source term in the equation for n as an example, we consider

∂tnr − ∆nr = −div(nu)−∇ · (n∇c) + ρn − µn2,

where ρ and µ are constants. It follows from (1.4), the linear term ‖ρn(t)‖L2 only gives us

(1 + t)−
1
2 decay rate. Thus, we can not get the the lower bound for time decay rates with

‖nr(t)‖L2 ≤ C(1 + t)−
1
2 .

Lemma 2.4. Assume that the assumptions of Theorem 1.1 hold. Then, nr and cr in (2.4) have the decay

rates

‖(nr, cr)(t)‖L2 ≤ C(1 + t)−1 and ‖∇nr(t)‖L2 ≤ C(1 + t)−
3
2 . (2.5)

Proof. Define S1 = div(nu)+∇ · (n∇c) and S2 = div(cu). By virtue of the semigroup method,

Duhamel’s principle and Lemma 2.2, from (2.4) we have

‖(nr, cr)(t)‖L2

≤
∫ t

0

(∫

R2
e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|

2)dξ

) 1
2

dτ

≤
∫ t

0

(∫

|ξ|≤1
e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|

2)dξ +
∫

|ξ|≥1
e−2|ξ|2(t−τ)(|(Ŝ1, Ŝ2)|

2)dξ

) 1
2

dτ (2.6)

≤ C
∫ t

0
(1 + t − τ)−1

(
‖|ξ|−1(Ŝ1, Ŝ2)‖L∞ + ‖(S1, S2)‖L2

)
dτ

≤ C
∫ t

0
(1 + t − τ)−1

(
‖(n, c, u,∇c)‖2

L2 + ‖(S1, S2)‖L2

)
dτ.

It follows from the Sobolev inequality and (1.4) that

‖(S1, S2)‖L2 ≤ ‖∇u‖L4‖(n, c)‖L4 + ‖u‖L4‖∇(n, c)‖L4 + ‖∇n‖L4‖∇c‖L4 + ‖n‖L∞‖∇2c‖L2

≤ C(1 + t)−2.
(2.7)

Thus, using (1.4) again, we obtain

∫ t

0
(1 + t − τ−1‖(n, c, u,∇c)‖2

L2‖L2 dτ ≤
∫ t

0
(1 + t − τ)−1(1 + τ)−1dτ ≤ (1 + t)−1,

∫ t

0
(1 + t − τ)−1‖(S1, S2)‖L2 dτ ≤

∫ t

0
(1 + t − τ)−1(1 + τ)−2dτ ≤ (1 + t)−1.

This, together with (2.6), implies

‖(nr, cr)(t)‖L2 ≤ C(1 + t)−1. (2.8)

Next, applying ∇ to (2.4)1, then multiplying by ∇n, integrating over R
2, after integration

by parts and using (2.7), it infers that

1

2

d

dt

∫

R2
|∇nr|

2dx +
∫

R2
|∇2nr|

2dx =
∫

R2
S1 · ∇

2nrdx ≤
1

2

∫

R2
|∇2nr|

2dx + C(1 + t)−4,
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which gives

d

dt

∫

R2
|∇nr|

2dx +
∫

R2
|∇2nr|

2dx ≤ C(1 + t)−4. (2.9)

Denoting the time sphere S0 (see [10]) as follows

S0 :=

{
ξ ∈ R

2
∣∣ |ξ| ≤

(
R

1 + t

) 1
2

}
,

where R is a constant defined below. Then, we can get

∫

R2
|∇2nr|

2dx ≥
∫

R2\S0

|ξ|4|n̂r|
2dξ

≥
R

1 + t

∫

R2\S0

|ξ|2|n̂r|
2dξ

≥
R

1 + t

∫

R2
|ξ|2|n̂r|

2dξ −
R2

(1 + t)2

∫

S0

|n̂r|
2dξ.

(2.10)

Substituting (2.10) into (2.9) and then applying (2.8), we obtain

d

dt

∫

R2
|∇nr|

2dx +
R

1 + t

∫

R2
|∇nr|

2dx

≤
R2

(1 + t)2

∫

R2
|nr|

2dx + C(1 + t)−4 ≤ CR2(1 + t)−4. (2.11)

Choosing R = 7
2 , multiplying (2.11) by (1 + t)

7
2 and integrating over [0, t], it holds that

‖∇nr(t)‖
2
L2 ≤ C(1 + t)−3,

which, together with (2.8) completes the proof of this lemma.

Proof of Theorem 1.2. It follows from Lemma 2.1 and Lemma 2.4 that

‖(n, c)‖L2 ≥ ‖(nl , cl)‖L2 − ‖(nr, cr)‖L2

≥ C(1 + t)−
1
2 − C(1 + t)−1

≥ C(1 + t)−
1
2 −

C

(1 + t)
1
2

(1 + t)−
1
2 ,

‖∇n‖L2 ≥ ‖∇nl‖L2 − ‖∇nr‖L2

≥ C(1 + t)−1 − C(1 + t)−
3
2

≥ C(1 + t)−1 −
C

(1 + t)
1
2

(1 + t)−1.

Obviously, we can choose a T1 > 0 large enough such that for t ≥ T1, we have the lower bound

for time decay rates

‖(n, c)(t)‖L2 ≥ C(1 + t)−
1
2 and ‖∇n(t)‖L2 ≥ C(1 + t)−1.

Therefore, we complete the proof of Theorem 1.2.
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1 Introduction

We consider the two-dimensional nonautonomous differential system

x′ = −e(t)x + f (t)y − p(t)x
(

x2 + y2)λ
,

y′ = −g(t)x − h(t)y − q(t)y
(

x2 + y2)λ
,

(1.1)

where e, f , g, h, p and q are continuous for t ≥ t0, and λ > 0. Since the right hand side of this
system is continuously differentiable with respect to (x, y), so it satisfies the Lipschitz condi-
tion. Therefore, the local existence and uniqueness of solutions of (1.1) are guaranteed for the
initial-value problem. We can show that, for each t0 ∈ R and (x0, y0) ∈ R2, the initial value
problem (1.1) with (x(t0), y(t0)) = (x0, y0) has a unique solution on [t0, ∞) under some con-
ditions (this fact will be shown in Lemma 3.4.). We denote it by (x(t; t0, x0, y0), y(t; t0, x0, y0)).
Clearly, (1.1) has the zero solution (x(t), y(t)) ≡ (0, 0). Throughout this paper, ‖(x, y)‖ means

BCorresponding author. Email: onitsuka@xmath.ous.ac.jp
*Email: satoshi.tanaka.d4@tohoku.ac.jp
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the Euclidean norm of (x, y); that is, ‖(x, y)‖ :=
√

x2 + y2. Here, let us give a definition about
the zero solution of (1.1). The zero solution of (1.1) is said to be globally attractive if

lim
t→∞

‖(x(t; t1, x0, y0), y(t; t1, x0, y0))‖ = 0

for any t1 ∈ [t0, ∞) and any (x0, y0) ∈ R2. Now rewrite (x(t; t0, x0, y0), y(t; t0, x0, y0)) by
(x(t), y(t)). We define the orbit of (x(t), y(t)) by

Γ(t0,x,y) := {(x(t), y(t)) ∈ R2 : t ≥ t0}.

The orbit Γ(t0,x,y) is said to be simple if (x(t1), y(t1)) 6= (x(t2), y(t2)) for any t1, t2 ∈ [t0, ∞) with
t1 6= t2. Now, we assume that the zero solution of (1.1) is globally attractive. The simple orbit
Γ(t0,x,y) is said to be rectifiable if the length of Γ(t0,x,y) is finite, that is,

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds < ∞.

Otherwise, it is said to be nonrectifiable.
When λ = 1 and e(t) = h(t) = a0, f (t) = g(t) = 1, p(t) = q(t) = 1 for all t ≥ t0, system

(1.1) reduces to the planar nonlinear differential system

x′ = y − x
(

x2 + y2 + a0
)

,

y′ = −x − y
(

x2 + y2 + a0
)

.
(1.2)

For every solution (x(t), y(t)) of (1.2), using the polar coordinate transformation x = r cos θ,
y = r sin θ, then we have

r′ = −r
(

r2 + a0
)

,

θ′ = −1.

From θ′ = −1, every orbit Γ(t0,x,y) of (1.2) is rotating in a clockwise direction. Moreover, if we
suppose a0 ≥ 0, then r′ ≤ −r3, so that

r(t) ≤ 1
√

2(t − t0) + r−2(t0)
≤ 1

√

2(t − t0)

for t ≥ t0. This says that a0 ≥ 0 implies that the zero solution of (1.2) is globally attractive.
Hence, every orbit Γ(t0,x,y) of (1.2) is a spiral.

Remark 1.1. Since (1.2) is an autonomous system and r′ ≤ −r3, the orbit Γ(t0,x,y) corresponding
to any nontrivial solution (x(t), y(t)) of (1.2) is simple.

Milišić, Žubrinić and Županović [10] studied rectifiability for more general autonomous
differential systems based on planar system (1.2). Theorem 8 given in [10] and the above
mentioned facts imply the following.

Theorem A. Let (x(t), y(t)) be any nontrivial solution of (1.2). Suppose that a0 ≥ 0 holds. Then

the zero solution of (1.2) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple,

and (i) and (ii) below hold:

(i) if a0 > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if a0 = 0, then the orbit Γ(t0,x,y) is nonrectifiable.
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Remark 1.2. Milišić, Žubrinić and Županović [10] and Žubrinić and Županović [23, 24] dealt
with the rectifiability and the fractal analysis of spiral orbits (or trajectories) of some au-
tonomous systems including (1.2). They dealt with more general, but autonomous systems.
This study focuses on the rectifiability of the nonautonomous systems.

For simplicity, we denote

α1(t) := min{e(t), h(t)} − | f (t)− g(t)|
2

, β1(t) := min{p(t), q(t)},

α2(t) := max{e(t), h(t)}+ | f (t)− g(t)|
2

, β2(t) := max{p(t), q(t)},
(1.3)

and

γ1(t) := −max{ f (t), g(t)} − |e(t)− h(t)|
2

− |p(t)− q(t)|
2

,

γ2(t) := −min{ f (t), g(t)}+ |e(t)− h(t)|
2

+
|p(t)− q(t)|

2
.

(1.4)

If e(t) ≡ h(t), f (t) ≡ g(t) and p(t) ≡ q(t), then

α1(t) = α2(t) = e(t), β1(t) = β2(t) = p(t) and γ1(t) = γ2(t) = − f (t)

for t ≥ t0. Moreover, for each c > 0, we denote

ρi(t; c) := exp
(

2λ

∫ t

t0

αi(s)ds

)(

c + 2λ

∫ t

t0

βi(s) exp
(

−2λ

∫ s

t0

αi(τ)dτ

)

ds

)

, i = 1, 2. (1.5)

The first main result in this paper is as follows.

Theorem 1.3. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that

α1(t) ≥ 0, β1(t) ≥ 0 for t ≥ t0, (1.6)

α1(t) + β1(t) > 0 for t ≥ t0, (1.7)

and

lim
t→∞

∫ t

t0

α1(s)ds = ∞ or lim
t→∞

∫ t

t0

β1(s)ds = ∞. (1.8)

Then the zero solution of (1.1) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is

simple, and (i), (ii) and (iii) below hold:

(i) if α1(t) > 0 for t ≥ t0, and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
α1(t)

< ∞, (1.9)

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if 0 < λ < 1/2 and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c) + β1(t)

< ∞ for each c > 0, (1.10)

then the orbit Γ(t0,x,y) is rectifiable;
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(iii) if λ ≥ 1/2 and

lim inf
t→∞

max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c) + β2(t)

> 0 for each c > 0, (1.11)

then the orbit Γ(t0,x,y) is nonrectifiable.

Using Theorem 1.3 we get the following result, immediately.

Corollary 1.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (x(t), y(t)) be any nontrivial

solution of (1.1). Suppose that (1.6), (1.7) and (1.8) hold. Then the zero solution of (1.1) is globally

attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

(i) if α1(t) > 0 for t ≥ t0, and (1.9), then the orbit Γ(t0,x,y) is rectifiable;

(ii) if 0 < λ < 1/2 and β1(t) > 0 for t ≥ t0, and

lim sup
t→∞

max{|γ1(t)|, |γ2(t)|}
β1(t)

< ∞, (1.12)

then the orbit Γ(t0,x,y) is rectifiable;

(iii) if λ ≥ 1/2 and α2(t) = 0 for t ≥ t0, and

lim inf
t→∞

max{γ1(t),−γ2(t), 0}
β2(t)

> 0, (1.13)

then the orbit Γ(t0,x,y) is nonrectifiable.

Corollary 1.4 is expressed in a form which does not include the functions ρ1 and ρ2.
If e(t) = h(t) = a0 ≥ 0, f (t) = g(t) = 1, p(t) = q(t) = 1 for all t ≥ t0, then system (1.1)

reduces to the planar system

x′ = −a0x + y − x
(

x2 + y2)λ
,

y′ = −x − a0y − y
(

x2 + y2)λ
.

(1.14)

In this case, we know that α1(t) = α2(t) = a0, β1(t) = β2(t) = 1 and γ1(t) = γ2(t) = −1 for
all t ≥ t0. Then (1.6), (1.7), (1.8), (1.12) and (1.13) hold. If a0 > 0 then (i) in Corollary 1.4 holds.
Hence, we get the following result, immediately.

Corollary 1.5. Let (x(t), y(t)) be any nontrivial solution of (1.14). Suppose that a0 ≥ 0 holds.

Then the zero solution of (1.14) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is

simple, and (i), (ii) and (iii) below hold:

(i) if a0 > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if a0 = 0 and 0 < λ < 1/2, then the orbit Γ(t0,x,y) is rectifiable;

(iii) if a0 = 0 and λ ≥ 1/2, then the orbit Γ(t0,x,y) is nonrectifiable.

Remark 1.6. From Corollary 1.5, Theorem A is easily obtained.

Figures 1.1–1.4 below show that the orbits corresponding to the nontrivial solution
(x(t), y(t)) of (1.14) with (x(0), y(0)) = (0.9, 0). We choose a0 and λ as follows: a0 = 0.1
and λ = 1 in Fig. 1.1; a0 = 0 and λ = 0.1 in Fig. 1.2; a0 = 0 and λ = 0.5 in Fig. 1.3; a0 = 0 and
λ = 0.9 in Fig. 1.4.
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Figure 1.1: a0 = 0.1, λ = 1; rectifi-
able.
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Figure 1.2: a0 = 0, λ = 0.1; rectifi-
able.
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Figure 1.3: a0 = 0, λ = 0.5; nonrec-
tifiable.
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Figure 1.4: a0 = 0, λ = 0.9; nonrec-
tifiable.

The second main result in this paper is as follows.

Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6), (1.7) and

(1.8) hold. Then the zero solution of (1.1) is globally attractive, the orbit Γ(t0,x,y) corresponding to

(x(t), y(t)) is simple, and (i) and (ii) below hold:

(i) if

lim
t→∞

∫ t

t0

√

[α2(s) + β2(s)(ρ1(s; c))−1]
2 + (max{|γ1(s)|, |γ2(s)|})2

(ρ1(s; c))
1

2λ

ds < ∞ (1.15)

for each c > 0, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if

lim
t→∞

∫ t

t0

√

[α1(s) + β1(s)(ρ2(s; c))−1]
2 + (max{γ1(s),−γ2(s), 0})2

(ρ2(s; c))
1

2λ

ds = ∞ (1.16)

for each c > 0, then the orbit Γ(t0,x,y) is nonrectifiable.
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If p(t) ≡ q(t) ≡ 0, then system (1.1) reduces to the two-dimensional linear differential
system

x′ = −e(t)x + f (t)y,

y′ = −g(t)x − h(t)y.
(1.17)

Note that β1(t) ≡ β2(t) ≡ 0. For this linear system, using Theorem 1.7, we obtain the following
corollary.

Corollary 1.8. Let (x(t), y(t)) be any nontrivial solution of (1.17). Suppose that

α1(t) > 0 for t ≥ t0,

and

lim
t→∞

∫ t

t0

α1(s)ds = ∞.

Then the zero solution of (1.17) is globally attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is

simple, and (i) and (ii) below hold:

(i) if

lim
t→∞

∫ t

t0

√

α2
2(s) + (max{|γ1(s)|, |γ2(s)|})2 exp

(

−
∫ s

t0

α1(τ)dτ

)

ds < ∞,

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if

lim
t→∞

∫ t

t0

√

α2
1(s) + (max{γ1(s),−γ2(s), 0})2 exp

(

−
∫ s

t0

α2(τ)dτ

)

ds = ∞,

then the orbit Γ(t0,x,y) is nonrectifiable.

In particular, if e(t) ≡ h(t), f (t) ≡ g(t) then we have the two-dimensional linear differen-
tial system

x′ = −e(t)x + f (t)y,

y′ = − f (t)x − e(t)y.
(1.18)

In this case, we know that α1(t) ≡ α2(t) ≡ e(t), β1(t) ≡ β2(t) ≡ 0 and γ1(t) ≡ γ2(t) ≡ − f (t).
We can establish the following result by Corollary 1.8.

Corollary 1.9. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that

e(t) > 0 for t ≥ t0, (1.19)

and

lim
t→∞

∫ t

t0

e(s)ds = ∞. (1.20)

Then the zero solution of (1.18) is attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple,

and the orbit Γ(t0,x,y) is rectifiable if and only if

lim
t→∞

∫ t

t0

√

e2(s) + f 2(s) exp
(

−
∫ s

t0

e(τ)dτ

)

ds < ∞. (1.21)

Remark 1.10. It is well known that the local attractivity and the global attractivity are equiv-
alent in the linear case (see [1, 20–22]). Hence, the attractivity of (1.18) means the global
attractivity.
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Consider the two-dimensional nonautonomous linear system

x′ = −1
t

x + tσy,

y′ = −tσx − 1
t

y,
(1.22)

where σ ∈ R and t ≥ 1. Then assumptions (1.19) and (1.20) are easily satisfied. By Corol-
lary 1.9, the zero solution of (1.22) is attractive, the orbit Γ(t0,x,y) corresponding to (x(t), y(t))

is simple. Moreover, we can see that the orbit Γ(t0,x,y) is rectifiable if and only if σ < 0 (The
conditions of Corollary 1.9 will be confirmed in Section 5).

Remark 1.11. Our result on the rectifiability of orbits (or trajectories) of (1.22) is the same as
one that the special case of the result given by Naito, Pašić and Tanaka [12, Example 5.2].
Note here that they dealt with half-linear systems. On the other hand, as related research,
the rectifiability results of the authors [13, 14] can be mentioned, but note that this study has
no inclusion relation with them. Moreover, we can find many results on the rectifiability
and the fractal analysis of the systems and equations. For example, the reader is referred to
[4–7, 9, 11, 15–19].

In the next section, we will discuss the rectifiability for more general systems under the
assumption that the zero solution is globally attractive, and the orbit Γ(t0,x,y) is simple. In
Section 3, the simplicity and the global attractivity for (1.1) are considered. In Section 4, we
prove Theorems 1.3 and 1.7. In Section 5, some examples and numerical simulations are
presented.

2 Rectifiability

In this section, we consider the two-dimensional nonautonomous differential system

x′ = F1(t, x, y),

y′ = F2(t, x, y),
(2.1)

where F1 and F2 are continuously differentiable with respect to (x, y), and satisfying

(F1(t, 0, 0), F2(t, 0, 0)) ≡ (0, 0).

For every solution (x(t), y(t)) of (2.1), we introduce the polar coordinate transformation
x = r cos θ, y = r sin θ. Then we obtain

r′ = G1(t, r, θ),

rθ′ = G2(t, r, θ),
(2.2)

where G1 and G2 are defined by

G1(t, r, θ) = cos θF1(t, r cos θ, r sin θ) + sin θF2(t, r cos θ, r sin θ) (2.3)

and
G2(t, r, θ) = cos θF2(t, r cos θ, r sin θ)− sin θF1(t, r cos θ, r sin θ). (2.4)

The obtained result is as follows.
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Theorem 2.1. Let G1 and G2 be the functions given by (2.3) and (2.4), respectively. Let (x(t), y(t)) be

any nontrivial solution of (2.1) on [t0, ∞). Suppose that the zero solution of (2.1) is globally attractive,

and the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple. Then, (i) and (ii) below hold:

(i) if there exist an r > 0 and a continuous function h : (0, r) → (0, ∞) such that

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤ −h(r)G1(t, r, θ), (t, r, θ) ∈ [t0, ∞)× (0, r)× R, (2.5)

and

lim
r→+0

∫ r

r
h(η)dη < ∞, (2.6)

then the orbit Γ(t0,x,y) is rectifiable;

(ii) if there exist an r > 0 and a continuous function h : (0, r) → (0, ∞) such that

‖(G1(t, r, θ), G2(t, r, θ))‖ ≥ −h(r)G1(t, r, θ), (t, r, θ) ∈ [t0, ∞)× (0, r)× R, (2.7)

and

lim
r→+0

∫ r

r
h(η)dη = ∞, (2.8)

then the orbit Γ(t0,x,y) is nonrectifiable.

Proof. Let (x(t), y(t)) be any nontrivial solution of (2.1). Define the functions r and θ by

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t)

for t ≥ t0, where
r(t) = ‖(x(t), y(t))‖.

Then (r(t), θ(t)) is a solution to (2.2). Since the existence and uniqueness of solutions of (2.1)
are guaranteed for the initial-value problem, the zero solution (x(t), y(t)) ≡ (0, 0) is unique.
Thus, r(t) > 0 for t ≥ t0. This together with the global attractivity of (2.1) implies that
limt→∞ r(t) = 0, and there exists a T > 0 such that

r(t) ∈ (0, r) (2.9)

for t ≥ t0 + T.
Now, we consider case (i). Using (2.5) and (2.9), we have

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖

=
√

(cos θF1 + sin θF2)2 + (cos θF2 − sin θF1)2

= ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖
≤ −h(r(t))G1(t, r(t), θ(t)) = −h(r(t))r′(t)

for t ≥ t0 + T. Since h(r) is a positive continuous function on (0, r), and (2.9) holds, we see
that

∫ t

t0+T
‖(x′(s), y′(s))‖ds ≤ −

∫ t

t0+T
h(r(s))r′(s)ds =

∫ r(t0+T)

r(t)
h(η)dη

≤
∫ r

r(t)
h(η)dη
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for t ≥ t0 + T. Therefore, we have

∫ t

t0

‖(x′(s), y′(s))‖ds =
∫ t0+T

t0

‖(x′(s), y′(s))‖ds +
∫ t

t0+T
‖(x′(s), y′(s))‖ds

≤
∫ t0+T

t0

‖(x′(s), y′(s))‖ds +
∫ r

r(t)
h(η)dη

for t ≥ t0 + T. Using (2.6), (2.9) with limt→∞ r(t) = 0, we conclude that

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds < ∞.

Hence, the simple orbit Γ(t0,x,y) is rectifiable.
Next, we consider case (ii). From (2.7) and (2.9), we have

‖(x′(t), y′(t))‖ ≥ −h(r(t))G1(t, r(t), θ(t)) = −h(r(t))r′(t)

for t ≥ t0 + T. Since h(r) is a positive continuous function on (0, r), and (2.9) holds, we see
that

∫ t

t0

‖(x′(s), y′(s))‖ds ≥
∫ t

t0+T
‖(x′(s), y′(s))‖ds

≥ −
∫ t

t0+T
h(r(s))r′(s)ds =

∫ r(t0+T)

r(t)
h(η)dη

=
∫ r

r(t)
h(η)dη −

∫ r

r(t0+T)
h(η)dη

for t ≥ t0 + T. From (2.8), (2.9) with limt→∞ r(t) = 0, we get

lim
t→∞

∫ t

t0

‖(x′(s), y′(s))‖ds = ∞.

Consequently, the simple orbit Γ(t0,x,y) is nonrectifiable. This completes the proof.

For our main system (1.1), we find that

F1(t, x, y) = −e(t)x + f (t)y − p(t)x
(

x2 + y2)λ
,

F2(t, x, y) = −g(t)x − h(t)y − q(t)y
(

x2 + y2)λ
,

and
G1(t, r, θ) = −

(

e(t) cos2 θ + h(t) sin2 θ
)

r + ( f (t)− g(t))r sin θ cos θ

−
(

p(t) cos2 θ + q(t) sin2 θ
)

r2λ+1,

G2(t, r, θ) = −
(

g(t) cos2 θ + f (t) sin2 θ
)

r + (e(t)− h(t))r sin θ cos θ

+ (p(t)− q(t))r2λ+1 sin θ cos θ.

(2.10)

3 Simplicity and global attractivity

In this section, we deal with the simplicity and the global attractivity for our main system
(1.1). First, we give two lemmas.



10 M. Onitsuka and S. Tanaka

Lemma 3.1. Let G1 be the function given in (2.10). Then

G1(t, r, θ) ≤ −
(

α1(t) + β1(t)r
2λ
)

r

holds for t ≥ t0 and r ∈ [0, ∞), where α1 and β1 are given in (1.3).

Proof. By (2.10), we get

G1(t, r, θ) ≤ −min{e(t), h(t)}r +
| f (t)− g(t)|

2
r − min{p(t), q(t)}r2λ+1

= −
(

α1(t) + β1(t)r
2λ
)

r

for t ≥ t0 and r ∈ [0, ∞).

Lemma 3.2. Suppose that (1.6) and (1.7) hold. Then

(

α1(t) + β1(t)r
2λ
)

r > 0

holds for t ≥ t0 and r ∈ (0, ∞), where α1 and β1 are given in (1.3).

Proof. By way of contradiction, we suppose that there exists a t1 ≥ t0 such that

(

α1(t1) + β1(t1)r
2λ
)

r ≤ 0.

From (1.6) and r ∈ (0, ∞), we have

α1(t1) + β1(t1)r
2λ = 0.

This together with (1.6) says that α1(t1) = β1(t1) = 0. However, this contradicts assumption
(1.7).

We now consider the simplicity of the nontrivial solutions to (1.1). The obtained result is
as follows.

Lemma 3.3. Let (x(t), y(t)) be a nontrivial solution of (1.1). Suppose that (1.6) and (1.7) hold. Then

the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple.

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1). Assume to the contrary that there exist
t1, t2 ∈ [t0, ∞) such that t1 < t2 with (x(t1), y(t1)) = (x(t2), y(t2)). Let (r(t), θ(t)) be the
solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Then r(t1) = r(t2) holds. Since
(x(t), y(t)) is a nontrivial solution and the zero solution is unique, we know that r(t) > 0
for all t ≥ t0. From Lemmas 3.1 and 3.2, we see that r′(t) < 0 for t ≥ t0. Integrating this
inequality from t1 to t2, we obtain

r(t2)− r(t1) =
∫ t2

t1

r′(t)dt < 0.

This is a contradiction. Consequently, Γ(t0,x,y) is a simple orbit.

We will give an important inequality.
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Lemma 3.4. Let (x(t), y(t)) be a nontrivial solution of (1.1) with the initial condition (x(t0), y(t0)) =

(x0, y0). Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Suppose

that β1(t) ≥ 0 holds for t ≥ t0. Then (x(t), y(t)) exists on [t0, ∞) and is the unique solution of (1.1)
with (x(t0), y(t0)) = (x0, y0), and the inequality

0 < r(t) ≤ exp
(

−
∫ t

t0

α1(s)ds

)(

r−2λ(t0) + 2λ

∫ t

t0

β1(s) exp
(

−2λ

∫ s

t0

α1(τ)dτ

)

ds

)− 1
2λ

(3.1)

holds for t ≥ t0, where α1 and β1 are given in (1.3).

Proof. Let (x(t), y(t)) be a nontrivial solution of (1.1) with (x(t0), y(t0)) = (x0, y0). Let
(r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Let I ⊂ [t0, ∞)

be the maximal interval of the existence of (x(t), y(t)). Then r(t) > 0 holds for t ∈ I, from the
uniqueness of the zero solution. Using Lemma 3.1, we have

r′(t) ≤ −
(

α1(t) + β1(t)r
2λ(t)

)

r(t)

for t ∈ I. Set z(t) := r−2λ(t). Then, it follows from the above inequality and r(t) > 0 that

z′(t) = −2λr−2λ−1(t)r′(t) ≥ 2λr−2λ(t)
(

α1(t) + β1(t)r
2λ(t)

)

= 2λα1(t)z(t) + 2λβ1(t)

for t ∈ I. Hence
(

exp
(

−2λ

∫ t

t0

α1(s)ds

)

z(t)

)′
≥ 2λβ1(t) exp

(

−2λ

∫ t

t0

α1(s)ds

)

for t ∈ I. Integrating this inequality from t0 to t, we get

exp
(

−2λ

∫ t

t0

α1(s)ds

)

z(t) ≥ z(t0) + 2λ

∫ t

t0

β1(s) exp
(

−2λ

∫ s

t0

α1(τ)dτ

)

ds,

and so that

r−2λ(t) = z(t) ≥ exp
(

2λ

∫ t

t0

α1(s)ds

)(

r−2λ(t0) + 2λ

∫ t

t0

β1(s) exp
(

−2λ

∫ s

t0

α1(τ)dτ

)

ds

)

for t ∈ I. Therefore, if β1(t) ≥ 0 for t ≥ t0, then we obtain (3.1) for t ∈ I.
Using the above inequality and β1(t) ≥ 0 for t ≥ t0, we have

r−2λ(t) ≥ exp
(

2λ

∫ t

t0

α1(s)ds

)

r−2λ(t0),

and thus,

0 < ‖(x(t), y(t))‖ ≤ ‖(x0, y0)‖ exp
(

−
∫ t

t0

α1(s)ds

)

for t ∈ I. (3.2)

This inequality means that I = [t0, ∞), that is, any nontrivial solution of (1.1) exists on [t0, ∞)

by a standard argument of a general theory on ordinary differential equations. Consequently,
the initial value problem (1.1) with (x(t0), y(t0)) = (x0, y0) has a unique solution on [t0, ∞).

Next, we consider the global attractivity for (1.1). Assuming a stronger condition, we can
get stronger stability. The zero solution is said to be globally exponentially stable if there exists
a k > 0 and, for any η > 0, there exists a δ(η) > 0 such that t1 ∈ R with t1 ≥ t0 and
‖(x0, y0)‖ < η imply

‖(x(t; t1, x0, y0), y(t; t1, x0, y0))‖ ≤ δ(η)‖(x0, y0)‖e−k(t−t1)

for all t ≥ t1. The following lemma is established.
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Lemma 3.5. Suppose that (1.6) and (1.8) hold, where α1 and β1 are given in (1.3). Then the zero

solution of (1.1) is globally attractive. In particular, if there exists an a > 0 such that

α1(s) ≥ a for t ≥ t0, (3.3)

then the zero solution of (1.1) is globally exponentially stable.

Proof. Let t1 satisfy t1 ≥ t0. Let (x(t), y(t)) be any nontrivial solution of (1.1) with (x(t1), y(t1))

= (x0, y0). Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)).
Using Lemma 3.4, we have inequality (3.1) for t ≥ t1.

Now we consider the case limt→∞

∫ t
t0

α1(s)ds < ∞. This together with (1.8) yields

lim
t→∞

∫ t

t0

β1(s)ds = ∞.

Let L := limt→∞

∫ t
t0

α1(s)ds ≥ 0. Using this and (3.1), we obtain

0 < ‖(x(t), y(t))‖ = r(t) ≤ 1
(

r−2λ(t1) + 2λe−2λL
∫ t

t1
β1(s)ds

)
1

2λ

<
1

(

2λe−2λL
∫ t

t1
β1(s)ds

)
1

2λ

for t ≥ t1. Hence, any nontrivial solution of (1.1) tends to (0, 0) as t → ∞. That is, the zero
solution of (1.1) is globally attractive.

Next we consider the case limt→∞

∫ t
t0

α1(s)ds = ∞. Then, by assumption (1.6), we obtain
inequality (3.2). Therefore, the zero solution of (1.1) is globally attractive. Moreover, if we sup-
pose condition (3.3), then inequality (3.2) implies global exponential stability. This completes
the proof.

Remark 3.6. If α1(t) ≡ 0 then, it does not imply the (global) exponential stability for (1.1). For
example, we consider the case λ = 1, e(t) = h(t) = 0 and f (t) = g(t) = 1 and p(t) = q(t) = 1
for t ≥ t0. That is, α1(t) = α2(t) = 0, β1(t) = β2(t) = 1 and γ1(t) = γ2(t) = −1 for t ≥ t0.
From (2.2) and (2.10), we have

r′ = −r3.

Solving this equation, we get

r(t) =
1

√

2(t − t0) + r−2(t0)

for t ≥ t0. Thus, the zero solution is not exponentially stable. Although not described here
in detail, we can see that the zero solution of this system is uniformly asymptotically stable.
It is well known that the exponential stability implies the uniform asymptotic stability; the
uniform asymptotic stability implies the asymptotic stability (the zero solution is attractive
and stable). If (1.1) is a periodic or autonomous system, then the asymptotic stability and
the uniform asymptotic stability are equivalent. For example, see [2, 3, 8, 21, 22]. Moreover,
if (1.1) is a linear system, the uniform asymptotic stability and the exponential stability are
equivalent. For example, the reader is referred to [3,21,22] and the references cited therein. In
general, our main equations are nonautonomous and nonlinear, so their stabilities are often
different.
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4 Proofs of the main theorems

Before proving the main theorems, we give three lemmas.

Lemma 4.1. Let G1 be the function given in (2.10). Then

G1(t, r, θ) ≥ −
(

α2(t) + β2(t)r
2λ
)

r (4.1)

holds for t ≥ t0 and r ∈ [0, ∞), where α2 and β2 are given in (1.3).

Proof. By (2.10), we get

G1(t, r, θ) ≥ −max{e(t), h(t)}r − | f (t)− g(t)|
2

r − max{p(t), q(t)}r2λ+1

= −
(

α2(t) + β2(t)r
2λ
)

r

for t ≥ t0 and r ∈ [0, ∞).

Lemma 4.2. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (r(t), θ(t)) be the solution of

(2.2) with (2.10) corresponding to (x(t), y(t)). Suppose that β2(t) ≥ 0 holds for t ≥ t0. Then the

inequality

r(t) ≥ exp
(

−
∫ t

t0

α2(s)ds

)(

r−2λ(t0) + 2λ

∫ t

t0

β2(s) exp
(

−2λ

∫ s

t0

α2(τ)dτ

)

ds

)− 1
2λ

(4.2)

holds for t ≥ t0, where α2 and β2 are given in (1.3).

Proof. Let (x(t), y(t)) be any nontrivial solution of (1.1). Let (r(t), θ(t)) be the solution of (2.2)
with (2.10) corresponding to (x(t), y(t)). Using Lemma 4.1, we have

r′(t) ≥ −
(

α2(t) + β2(t)r
2λ(t)

)

r(t)

for t ≥ t0. Set z(t) := r−2λ(t). Then, it follows from the above inequality and r(t) > 0 that

z′(t) ≤ 2λα2(t)z(t) + 2λβ2(t)

for t ≥ t0. Hence
(

exp
(

−2λ

∫ t

t0

α2(s)ds

)

z(t)

)′
≤ 2λβ2(t) exp

(

−2λ

∫ t

t0

α2(s)ds

)

for t ≥ t0. Integrating this inequality from t0 to t, we get

r−2λ(t) ≤ exp
(

2λ

∫ t

t0

α2(s)ds

)(

r−2λ(t0) + 2λ

∫ t

t0

β2(s) exp
(

−2λ

∫ s

t0

α2(τ)dτ

)

ds

)

for t ≥ t0. Therefore, if β2(t) ≥ 0 for t ≥ t0, then we obtain the inequality in Lemma 4.2.

Lemma 4.3. Let G2 be the function given in (2.10). Then

γ1(t)r ≤ G2(t, r, θ) ≤ γ2(t)r (4.3)

holds for t ≥ t0 and r ∈ [0, 1), where γ1 and γ2 are given by (1.4).
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Proof. By (2.10) and r ∈ [0, 1), we obtain

G2(t, r, θ) ≥ −max{ f (t), g(t)}r − |e(t)− h(t)|
2

r − |p(t)− q(t)|
2

r2λ+1

≥ γ1(t)r

and

G2(t, r, θ) ≤ −min{ f (t), g(t)}r +
|e(t)− h(t)|

2
r +

|p(t)− q(t)|
2

r2λ+1

≤ γ2(t)r.

Thus, (4.3) holds.

Now, we will prove the main theorems.

Proof of Theorem 1.3. From Lemma 3.5, the zero solution of (1.1) is globally attractive. Let
(x(t), y(t)) be any nontrivial solution of (1.1). By Lemma 3.3, the orbit Γ(t0,x,y) corresponding
to (x(t), y(t)) is simple. Let x = r cos θ, y = r sin θ. Then we have (2.3) and (2.4). By Lemmas
3.1, 3.2, 4.1 and 4.3, the inequalities

0 <

(

α1(t) + β1(t)r
2λ
)

r ≤ |G1(t, r, θ)| = −G1(t, r, θ) ≤
(

α2(t) + β2(t)r
2λ
)

r, (4.4)

and
max{γ1(t),−γ2(t), 0}r ≤ |G2(t, r, θ)| ≤ max{|γ1(t)|, |γ2(t)|}r (4.5)

hold for t ≥ t0 and r ∈ (0, 1). Therefore, we obtain

max{γ1(t),−γ2(t), 0}
α2(t) + β2(t)r2λ

≤
∣

∣

∣

∣

G2(t, r, θ)

G1(t, r, θ)

∣

∣

∣

∣

≤ max{|γ1(t)|, |γ2(t)|}
α1(t) + β1(t)r2λ

(4.6)

for t ≥ t0 and r ∈ (0, 1).
First, we consider case (i). Suppose that α1(t) > 0 for t ≥ t0, and (1.9), that is, there exists

a µ > 0 and a t1 ≥ t0 such that

max{|γ1(t)|, |γ2(t)|}
α1(t)

≤ µ

holds for t ≥ t1. By (1.6), β1(t) ≥ 0 for t ≥ t0. This together with the above inequality implies
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t) + β1(t)r2λ

)2

≤
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t)

)2

≤
√

1 + µ2

for t ≥ t1. Moreover, we can choose an M1 ≥
√

1 + µ2 such that
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t) + β1(t)r2λ

)2

≤ M1

for t0 ≤ t ≤ t1. Using these inequalities and (4.6), we have

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤ −
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t) + β1(t)r2λ

)2

G1(t, r, θ) ≤ −M1G1(t, r, θ)
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for t ≥ t0 and r ∈ (0, 1), so that we get (2.5) with r = 1 and h(r) = M1. By

lim
r→+0

∫ 1

r
h(η)dη = M1,

we have (2.6). Consequently, the orbit Γ(t0,x,y) is rectifiable.
Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to (x(t), y(t)). Before

proving cases (ii) and (iii), we will discuss some properties of r(t). By the global attractivity
for (1.1), there exits a t1 ≥ t0 such that

0 < r(t) ≤ 1 for t ≥ t1.

From Lemmas 3.4 and 4.2, we have

ρ1(t; c0) ≤ r−2λ(t) ≤ ρ2(t; c0) for some c0 > 0, (4.7)

and for t ≥ t0, where ρ1 and ρ2 are given by (1.5). This together with (4.6) implies that

max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c0) + β2(t)

r−2λ(t) ≤
∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

≤ max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

r−2λ(t) (4.8)

for t ≥ t1.
Now, we consider case (ii). Suppose that 0 < λ < 1/2 and (1.10) hold, that is, there exists

a µ > 0 and a t2 ≥ t1 such that

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c) + β1(t)

≤ µ

holds for t ≥ t2. By (4.8), we have
√

1 +
∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

2

≤
√

r4λ(t) +

(

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

r−2λ(t)

≤
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

r−2λ(t)

≤
√

1 + µ2r−2λ(t)

for t ≥ t2. Moreover, we can choose an M2 ≥
√

1 + µ2 such that
√

1 +
(

max{|γ1(t)|, |γ2(t)|}
α1(t)ρ1(t; c0) + β1(t)

)2

≤ M2

for t0 ≤ t ≤ t2. Therefore, we see that

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖ = ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖

=

√

1 +
∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

2

|G1(t, r(t), θ(t))|

≤ M2r−2λ(t)|G1(t, r(t), θ(t))| = −M2r−2λ(t)r′(t)

holds for t ≥ t0. Integrating this inequality, we obtain
∫ t

t0

‖(x′(s), y′(s))‖ds ≤ M2

∫ r(t0)

r(t)
η−2λdη =

M2

1 − 2λ

(

r1−2λ(t0)− r1−2λ(t)
)

<
M2r1−2λ(t0)

1 − 2λ
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for t ≥ t0. Hence, we conclude that the orbit Γ(t0,x,y) is rectifiable.
Finally, we consider case (iii). Suppose that λ ≥ 1/2 and (1.11) hold, that is, there exists a

ν > 0 and a t2 ≥ t1 such that
max{γ1(t),−γ2(t), 0}

α2(t)ρ2(t; c) + β2(t)
≥ ν

holds for t ≥ t2. By (4.8), we have
√

1 +
∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

2

>

∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

≥ max{γ1(t),−γ2(t), 0}
α2(t)ρ2(t; c0) + β2(t)

r−2λ(t) ≥ νr−2λ(t)

for t ≥ t2. From this, we see that

‖(x′(t), y′(t))‖ =

√

1 +
∣

∣

∣

∣

G2(t, r(t), θ(t))

G1(t, r(t), θ(t))

∣

∣

∣

∣

2

|G1(t, r(t), θ(t))|

> νr−2λ(t)|G1(t, r(t), θ(t))| = −νr−2λ(t)r′(t) (4.9)

for t ≥ t2. Now, we consider the case λ = 1/2. Integrating (4.9), we obtain

∫ t

t0

‖(x′(s), y′(s))‖ds ≥ −ν

∫ r(t)

r(t2)
η−1dη = −ν log

r(t)

r(t2)

for t ≥ t2. Since the zero solution of (1.1) is globally attractive, we conclude that the orbit
Γ(t0,x,y) is nonrectifiable. On the other hand, we consider the case λ > 1/2. Integrating (4.9),
we obtain

∫ t

t0

‖(x′(s), y′(s))‖ds ≥ −ν

∫ r(t)

r(t2)
η−2λdη =

ν

2λ − 1

(

1
r2λ−1(t)

− 1
r2λ−1(t2)

)

for t ≥ t2. Consequently, Γ(t0,x,y) is nonrectifiable. This completes the proof of Theorem 1.3.

Proof of Theorem 1.7. Let (x(t), y(t)) be any nontrivial solution of (1.1). From Lemmas 3.3 and
3.5, the zero solution of (1.1) is globally attractive, and the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple. Let (r(t), θ(t)) be the solution of (2.2) with (2.10) corresponding to
(x(t), y(t)). Then the global attractivity for (1.1) implies that there exits a t1 ≥ t0 such that

0 < r(t) < 1 for t ≥ t1.

From Lemmas 3.4 and 4.2, we have (4.7) for t ≥ t0. Using Lemmas 3.1, 3.2, 4.1 and 4.3, we get
inequalities (4.4) and (4.5) for t ≥ t0 and r ∈ (0, 1). Therefore,

‖(G1(t, r, θ), G2(t, r, θ))‖ ≤
√

(α2(t) + β2(t)r2λ)
2
+ (max{|γ1(t)|, |γ2(t)|})2r (4.10)

and

‖(G1(t, r, θ), G2(t, r, θ))‖ ≥
√

(α1(t) + β1(t)r2λ)
2
+ (max{γ1(t),−γ2(t), 0})2r (4.11)

for t ≥ t0 and r ∈ (0, 1).
First we consider case (i). By (4.7), (4.10) and the fact

‖(x′(t), y′(t))‖ = ‖(F1(t, x(t), y(t)), F2(t, x(t), y(t)))‖ = ‖(G1(t, r(t), θ(t)), G2(t, r(t), θ(t)))‖,
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we obtain

‖(x′(t), y′(t))‖ ≤

√

[α2(t) + β2(t)(ρ1(t; c0))−1]
2 + (max{|γ1(t)|, |γ2(t)|})2

(ρ1(t; c0))
1

2λ

for t ≥ t1. Hence from (1.15) it follows that Γ(t0,x,y) is rectifiable.
Next we consider case (iii). By (4.7) and (4.11), we obtain

‖(x′(t), y′(t))‖ ≥

√

[α1(t) + β1(t)(ρ2(t; c0))−1]
2 + (max{γ1(t),−γ2(t), 0})2

(ρ2(t; c0))
1

2λ

for t ≥ t1. Integrating this inequality and using (1.16), we conclude that Γ(t0,x,y) is nonrectifi-
able. This completes the proof of Theorem 1.7.

Using Theorems 1.3 and 1.7, and Lemma 3.5, we can establish the following result.

Theorem 4.4. Let (x(t), y(t)) be any nontrivial solution of (1.1). Suppose that (1.6) and (3.3) hold.

Then the zero solution of (1.1) is globally exponentially stable, the orbit Γ(t0,x,y) corresponding to

(x(t), y(t)) is simple, and (i), (ii) and (iii) below hold:

(i) if (1.9) holds, then the orbit Γ(t0,x,y) is rectifiable;

(ii) if (1.15) holds, then the orbit Γ(t0,x,y) is rectifiable;

(iii) if (1.16) holds, then the orbit Γ(t0,x,y) is nonrectifiable.

Corollary 1.9 and Lemma 3.5 imply the following.

Corollary 4.5. Let (x(t), y(t)) be any nontrivial solution of (1.18). Suppose that there exists an e > 0
such that

e(t) ≥ e for t ≥ t0. (4.12)

Then the zero solution of (1.18) is exponentially stable, the orbit Γ(t0,x,y) corresponding to (x(t), y(t))

is simple, and the orbit Γ(t0,x,y) is rectifiable if and only if (1.21) holds.

5 Examples and numerical simulations

In this section we will present some examples and numerical simulations.

Example 5.1. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) =
1
t

, f (t) = g(t) =
10 cos t

t
and p(t) = q(t) = t. (5.1)

Then

α1(t) = α2(t) = e(t) =
1
t

, β1(t) = β2(t) = p(t) = t and γ1(t) = γ2(t) = − f (t) = −10 cos t

t
.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

α1(t) =
1
t
> 0 for t ≥ 1,



18 M. Onitsuka and S. Tanaka

and
max{|γ1(t)|, |γ2(t)|}

α1(t)
= 10| cos t| ≤ 10 for t ≥ 1.

By Theorem 1.3 (i), we conclude that the zero solution of (1.1) with (5.1) is globally attractive,
the orbit Γ(t0,x,y) is simple and rectifiable. Fig. 5.1 shows the orbit Γ(1,x,y) corresponding to the
nontrivial solution (x(t), y(t)) of (1.1) with (5.1) and (x(1), y(1)) = (0.9, 0).

Example 5.2. Let λ = 0.1. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) = 0, f (t) = g(t) =
1
2
+

cos t

t
and p(t) = q(t) = 0.1. (5.2)

Then

α1(t) = α2(t) = 0, β1(t) = β2(t) = 0.1 and γ1(t) = γ2(t) = −1
2
− cos t

t
.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Moreover,

max{|γ1(t)|, |γ2(t)|}
β1(t)

= 10
(

1
2
+

cos t

t

)

≤ 15 for t ≥ 1.

By Corollary 1.4 (ii), we conclude that the zero solution of (1.1) with (5.2) is globally attractive,
the orbit Γ(t0,x,y) is simple and rectifiable. Fig. 5.2 shows the orbit Γ(1,x,y) corresponding to the
nontrivial solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.3. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with (5.2). Then

max{γ1(t),−γ2(t), 0}
β2(t)

≥ −γ2(t)

β2(t)
= 10

(

1
2
+

cos t

t

)

>
5
2

for t ≥ 4.

By Corollary 1.4 (iii), the zero solution of (1.1) with (5.2) is globally attractive, the orbit Γ(t0,x,y)
is simple and nonrectifiable. Fig. 5.3 shows the orbit Γ(1,x,y) corresponding to the nontrivial
solution (x(t), y(t)) of (1.1) with (5.2) and (x(1), y(1)) = (0.9, 0).

Example 5.4. Let λ = 0.5. Consider the two-dimensional nonautonomous differential system
(1.1) with

e(t) = h(t) =
1
t

, f (t) = g(t) = 2 + cos t and p(t) = q(t) =
1
t2 . (5.3)

Then

α1(t) = α2(t) =
1
t

, β1(t) = β2(t) =
1
t2 and γ1(t) = γ2(t) = −2 − cos t.

Hence, assumptions (1.6), (1.7) and (1.8) are easily satisfied. Since

exp
(

2λ

∫ t

t0

α2(s)ds

)

= exp
(

log
t

t0

)

=
t

t0

for t ≥ t0, we have

ρ2(t; c) =
t

t0

(

c + t0

∫ t

t0

s−3ds

)

= t

(

c

t0
+

1
2t2

0
− 1

2t2

)

,
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Figure 5.1: Example 5.1; Theo-
rem 1.3 (i); rectifiable.
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Figure 5.2: Example 5.2; Corol-
lary 1.4 (ii); rectifiable.

and hence
max{γ1(t),−γ2(t), 0}

α2(t)ρ2(t; c) + β2(t)
≥ 2 + cos t

c
t0
+ 1

2t2
0
+ 1

2t2

≥ 1
c
t0
+ 1

t2
0

for t ≥ t0. Hence (1.11) is satisfied. By Theorem 1.3 (iii), the zero solution of (1.1) with (5.3)
is globally attractive, the orbit Γ(t0,x,y) is simple and nonrectifiable. Fig. 5.4 shows the orbit
Γ(1,x,y) corresponding to the nontrivial solution (x(t), y(t)) of (1.1) with (5.3) and (x(1), y(1)) =
(0.9, 0).

Example 5.5. Consider the two-dimensional nonautonomous linear system (1.18) with

e(t) = 1 and f (t) = et. (5.4)

Then assumption (4.12) is easily satisfied. It is clear that

∫ t

t0

√

e2(s) + f 2(s) exp
(

−
∫ s

t0

e(τ)dτ

)

ds ≥
∫ t

t0

ese−s+t0 ds = et0(t − t0)

for all t ≥ t0. Hence, by Corollary 4.5 we conclude that the zero solution of (1.18) with (5.4)
is exponentially stable, the orbit Γ(t0,x,y) corresponding to (x(t), y(t)) is simple and nonrecti-
fiable. Fig. 5.5 shows the orbit Γ(1,x,y) corresponding to the nontrivial solution (x(t), y(t)) of
(1.18) with (5.4) and (x(1), y(1)) = (0.9, 0).

Example 5.6. Consider the two-dimensional nonautonomous linear system (1.22), where
σ ∈ R. Then assumptions (1.19) and (1.20) are easily satisfied. By Corollary 1.9 we con-
clude that the zero solution of (1.22) is globally attractive, the orbit Γ(t0,x,y) corresponding to
(x(t), y(t)) is simple. Moreover, the orbit Γ(t0,x,y) is rectifiable if and only if

lim
t→∞

∫ t

t0

√

e2(s) + f 2(s) exp
(

−
∫ s

t0

e(τ)dτ

)

ds < ∞.

Let

ω(t) :=
√

e2(t) + f 2(t) exp
(

−
∫ t

t0

e(s)ds

)
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Figure 5.3: Example 5.3; Corol-
lary 1.4 (iii); nonrectifiable.
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Figure 5.4: Example 5.4; Theo-
rem 1.3 (iii); nonrectifiable.
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Figure 5.5: Example 5.5; Corol-
lary 4.5; exponentially stable; non-
rectifiable.

for all t ≥ 1. Then we have
ω(t) = t−1

√

t−2 + t2σ (5.5)

holds for all t ≥ 1. We will consider the three cases (i) σ ≤ −1, (ii) −1 < σ < 0 and (iii) σ ≥ 0.
Case (i). Using (5.5), we get

∫ t

1
ω(s)ds =

∫ t

1
s−2

√

1 + s2(σ+1)ds ≤
√

2
∫ t

1
s−2ds = −

√
2(t−1 − 1) <

√
2

for all t ≥ 1. By Theorem 1.9 we see that the orbit Γ(t0,x,y) is rectifiable.
Case (ii). From (5.5), we have

∫ t

1
ω(s)ds =

∫ t

1
sσ−1

√

s−2(σ+1) + 1ds ≤
√

2
∫ t

1
sσ−1ds =

√
2

σ
(tσ − 1) <

√
2

−σ

for all t ≥ 1. By Corollary 1.9 we see that the orbit Γ(t0,x,y) is rectifiable.
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Case (iii). Using (5.5), we get
∫ t

1
ω(s)ds ≥

∫ t

1
sσ−1ds ≥

∫ t

1
s−1ds = log t

for all t ≥ t0. By Corollary 1.9 we see that the orbit Γ(t0,x,y) is nonrectifiable. Consequently, we
can conclude that the orbit Γ(t0,x,y) is rectifiable if and only if σ < 0.
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1 Incorrect propositions, their consequences and corrections

The vector impulsive differential equation under our consideration in [1] takes the form






x′ = F(t, x), t 6= tj := jω, for some given ω > 0,

x(t+j ) = I(x(t−j )), j ∈ Z,
(1.1)

where F : R × R
n → R is the Carathéodory mapping such that F(t, x) ≡ F(t + ω, x), equation

x′ = F(t, x) satisfies a uniqueness condition and a global existence of all its solutions on

(−∞, ∞). Let, furthermore, I : R
n → R

n be a compact continuous impulsive mapping such

that K0 := I(Rn) and I(K0) = K0.

Unfortunately, there is a gap in the second part of the proof of the following proposition.

Proposition 1.1 (cf. [1, Proposition 3.1]). Let Tω : R
n → R

n be the associated Poincaré translation

operator along the trajectories of x′ = F(t, x), such that K1 := Tω(K0) and K0 ⊂ K1. Then the equality

h
(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

= h
(

I
∣

∣

K0

)

(1.2)

holds for the topological entropies h of the maps I
∣

∣

K1
◦ Tω

∣

∣

K0
: K0 → K0 and I

∣

∣

K0
: K0 → K0.
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Since the equality (1.2) was used in the proof of the first main theorem (see [1, Theo-

rem 3.5]), this theorem can be corrected in the simplest way, when assuming (1.2) or, more

generally the inequality

h
(

Tω

∣

∣

K0
◦ I

∣

∣

K1

)

≥ h
(

I
∣

∣

K0

)

, (1.3)

explicitly. Then the following correction has rather a character of a proposition.

Theorem 1.2. The vector impulsive differential equation (1.1) exhibits under (1.3) chaos in the sense

of a positive topological entropy of the composition I
∣

∣

K1
◦ Tω

∣

∣

K0
, i.e. h

(

I
∣

∣

K1
◦ Tω

∣

∣

K0

)

> 0, provided

I(K0) = K0 and K0 ⊂ K1, where K0 := I(Rn) and K1 := Tω(K0), jointly with h
(

I
∣

∣

K0

)

> 0.

Despite this gap, all the related illustrative examples (see [1, Examples 3.7–3.9]) can be

shown to be correct, when verifying (1.3), by means of e.g. a slightly generalized version of

[2, Proposition 3.2].

The same type of a gap is in the proposition for the problem (1.1) considered, under the

natural additional assumptions

F(t, . . . , xj, . . . ) ≡ F(t, . . . , xj+1, . . . ), j = 1, . . . , n, (1.4)

and

I(. . . , xj, . . . ) ≡ I(. . . , xj+1, . . . ) (mod 1), j = 1, . . . , n, (1.5)

on the torus R
n/Z

n (see [1, Proposition 4.1]). Quite analogously, the second main theorem

(see [1, Theorem 4.3]) can be corrected by the additional technical assumption

h ((τ ◦ Tω) ◦ (τ ◦ I)) ≥ h(τ ◦ I), (1.6)

where τ : R
n → R

n/Z
n denotes the natural projection.

Since on tori, we have to our disposal the Ivanov inequality for the lower estimate of topo-

logical entropy in terms of the asymptotic Nielsen numbers (see [4] and cf. [1, Proposition 2.7]),

the third main theorem in [1, Theorem 4.6] remains valid, even without verifying (1.6), in the

following way.

Theorem 1.3. Consider, under the above assumptions and (1.4), (1.5), the vector impulsive differen-

tial equation (1.1) on R
n/Z

n. Assume that the impulsive mapping (τ ◦ I) : R
n/Z

n → R
n/Z

n is

homotopic to a continuous map f : R
n/Z

n → R
n/Z

n such that N∞( f ) > 1, i.e.

lim sup
m→∞

|λ( f m)|
1
m > 1,

where λ( f m) stands for the Lefschetz number of the m-th iterate of f .

Then

h ((τ ◦ I) ◦ (τ ◦ Tω)) ≥ lim sup
m→∞

1

m
log N

(

(

(τ ◦ I) ◦ (τ ◦ Tω)
)m

)

= lim sup
m→∞

1

m
log N ((τ ◦ I)m) = lim sup

m→∞

1

m
log N ( f m) > 0

holds, where N( f m) denotes the Nielsen number of the m-th iterate of f , and subsequently equation

(1.1) exhibits on R
n/Z

n chaos in the sense of a positive topological entropy of the composition (τ ◦ I) ◦

(τ ◦ Tω).

That is also why that all the related illustrative examples (see [1, Examples 4.5, 4.7, 4.9])

remain on this basis correct.
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2 Concluding remarks

To verify the inequalities (1.3) and (1.6) is not an easy task (see e.g. [3]). We will try to affirm

them at least in some particular cases elsewhere. In R, the most promising way seems to be

via the statements along the lines of [2, Proposition 3.2].
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1 Introduction

Equations of the following type

∂u

∂t
= −∂6u

∂x6
+ A

∂4u

∂x4
− B

∂2u

∂x2
+ Cu − λh(t, x, u(t, x)) (1.1)

arise when an interface between two phases is examined because they help to reveal a more

detailed structure of the interface and a description of the behaviour of phase fronts in mate-

rials that are undergoing a transition between the liquid and solid state [1, 7, 13]. Here we are

concerned in periodic stationary solutions of (1.1). More precisely, we will give some multiple

results for the following problem

{

−u(vi) + Au(iv) − Bu′′ + Cu = λ f (x, u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,
(Pλ)

BCorresponding author. Email: bonanno@unime.it
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where f : [0, 1]× R → R is a continuous function, A, B and C are given real constants, while

λ > 0.

In [13], starting from the interest for the stationary solutions of a class of fourth-order equa-

tions, the so-called extended Fisher–Kolmogorov equation, a variational approach is proposed

for obtaining existence and non existence of stationary periodic solutions, observing that the

same arguments apply also to sixth-order equations. In [6, 16], taking advantage from a min-

imization theorem as well as Clark’s theorem, the existence and the multiplicity of periodic

solutions is investigated for a problem similar to (P1), provided that A, B and C satisfy some

suitable relations and the nonlinear term is a polynomial with a kind of symmetry. Again the

variational methods have been exploited in [9] where two Brezis–Nirenberg linking theorems

represent the main tool for assuring the existence of at least two or three periodic solutions

for a sixth-order equation with super-quadratic nonlinearities, namely

lim
t→+∞

F(x, t)

t2
= +∞, lim

t→0

F(x, t)

t2
= 0

uniformly with respect to x, where F(x, t) =
∫ t

0 f (x, s) ds for every x ∈ [0, 1]. We also cite [11,

21], where under suitable assumptions, in particular on the coefficients A, B, C, the existence

of one or two positive solutions for problem (Pλ) is established by applying the theory of fixed

point index in cones. Further nice results on higher-order differential equations are contained

in [8, 17–20], where non-local conditions have also been considered.

In this note we look at the existence of infinitely many solutions to problem (Pλ). In

particular, under different assumptions on the parameters A, B and C and requiring a suitable

oscillation on f (x, ·) at infinity (see assumption ii) of Theorem 3.2), an unbounded sequence

of classical solutions of (Pλ) is assured provided that λ belongs to a well determined interval.

We explicitly stress that no symmetry conditions on the reaction term are involved. The

variational structure of the problem is exploited and the solutions are obtained as local minima

of the energy functional related to (Pλ). For this reason a crucial tool is a local minimum

theorem proved in [2], see Theorem 2.8.

A further investigation is devoted to constant sign solutions of (Pλ). Whenever f is non-

negative the classical solutions are assured to be positive provided that suitable conditions

on the coefficients are assumed (see Remark 3.3) owing to a strong maximum principle for

sixth-order differential equations pointed out in Remark 3.4.

As example, here is a consequence of our main results.

Theorem 1.1. Let g : R → R be a nonnegative continuous function such that

lim inf
t→+∞

G(t)

t2
= 0, lim sup

t→+∞

G(t)

t2
= +∞,

where G(t) =
∫ t

0 g(s) ds for every t ∈ R, and fix D ≥ 0.

Then, the problem

{

−u(vi) + 3Du(iv) − 3D2u
′′
+ D3u = g(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(P)

admits an unbounded sequence of positive classical solutions.

Finally, when the oscillating behaviour is required at zero, instead that at infinity, a se-

quence of classical solutions that strong converges at zero is obtained (see Theorem 3.11).
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In Section 2 we recall some useful preliminaries and detail the variational set pointing

out the general strategy for obtaining classical solutions. The main results as well as their

consequences and examples are contained in Section 3.

2 Basic notations and auxiliary results

Throughout the paper X denote the following Sobolev subspace of H3(0, 1) ∩ H1
0(0, 1)

X = {u ∈ H3(0, 1) ∩ H1
0(0, 1) : u′′(0) = u′′(1) = 0}

considered with the norm

‖u‖ =
(

‖u′′′‖2
2 + ‖u′′‖2

2 + ‖u′‖2
2 + ‖u‖2

2

)1/2
, ∀ u ∈ X, (2.1)

where ‖ · ‖2 denotes the usual norm in L2(0, 1). It is well known that ‖ · ‖ is induced by the

inner product

〈u, v〉 =
∫ 1

0
(u′′′(x)v′′′(x) + u′′(x)v′′(x) + u′(x)v′(x) + u(x)v(x)) dx, ∀ u, v ∈ X.

Now, arguing as in [13], we point out some useful Poincaré type inequalities.

Proposition 2.1. For every u ∈ X, if k = 1/π2, one has

‖u(i)‖2
2 ≤ kj−i‖u(j)‖2

2, i = 0, 1, 2, j = 1, 2, 3 with i < j. (2.2)

Proof. Let us consider all the possible situations.

j = 1. In this case only i = 0 occurs and (2.2) reduces to the well known Poincaré inequality.

j = 2. The case i = 1 can be obtained observing that
∫ 1

0 (u
′)2 = −

∫ 1
0 uu′′. Hence, putting

together the Hölder and the Poincaré inequalities one has

‖u′‖2
2 ≤ ‖u‖2‖u′′‖2 ≤ k1/2‖u′‖2‖u′′‖2

from which directly follows (2.2).

For i = 0 condition (2.2) is derived putting together the Poincaré inequality with the

case i = 1.

j = 3. The case i = 2 is directly the Poincaré inequality applied to u′′ ∈ H1
0(0, 1).

For i = 1, arguing as above one has

‖u′‖2
2 ≤ ‖u‖2‖u′′‖2 ≤ k1/2‖u′‖2k1/2‖u′′′‖2 = k‖u′‖2‖u′′′‖2,

where (2.2) for i = 2 has been also exploited. Hence, (2.2) is verified for i = 1.

Finally, for i = 0 the conclusion is achieved putting together the Poincaré inequality

and using the case i = 1, indeed

‖u‖2
2 ≤ k‖u′‖2

2 ≤ k3‖u′′′‖2
2.
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Remark 2.2. The constants in (2.2) are the best ones as one can verify considering the function

sin πx that realizes the equalities. Moreover, it is worth noting as follows. Indeed, we recall

that, in general, one has

‖v‖2
2 ≤ 4k‖v′‖2

2 (2.3)

for all v ∈ H1([0, 1]) for which there is c ∈ [0, 1] such that v(c) = 0, and the equality for

appropriate functions v also holds (see for instance [10, page 182]). So, if we apply the classical

Poincaré inequality (2.3) to v = u′, then we obtain

‖u′‖2
2 ≤ 4k‖u′′‖2

2,

that, as shows (2.2), does not realize the best constant, on the contrary of (2.3). Clearly, this is

due because in our case we have a greater regularity of u′ (since u ∈ X).

We will introduce a convenient norm, equivalent to ‖ · ‖, that still makes X a Hilbert space.

For this reason, for A, B, C ∈ R let us define the function N : X → R by putting

N(u) = ‖u′′′‖2
2 + A‖u′′‖2

2 + B‖u′‖2
2 + C‖u‖2

2

for every u ∈ X.

Now consider the following set of conditions according to the signs of the constants A, B

and C:

(H)1 A ≥ 0, B ≥ 0, C ≥ 0;

(H)2 A ≥ 0, B ≥ 0, C < 0 and −Ak − Bk2 − Ck3
< 1;

(H)3 A ≥ 0, B < 0, C ≥ 0 and −Ak − Bk2
< 1;

(H)4 A ≥ 0, B < 0, C < 0 and −Ak − Bk2 − Ck3
< 1;

(H)5 A < 0, B ≥ 0, C ≥ 0 and −Ak < 1;

(H)6 A < 0, B ≥ 0, C < 0 and max{−Ak, −Ak − Bk2 − Ck3} < 1;

(H)7 A < 0, B < 0, C ≥ 0 and −Ak − Bk2
< 1;

(H)8 A < 0, B < 0, C < 0 and −Ak − Bk2 − Ck3
< 1.

Moreover, fix A, B, C ∈ R and consider the following condition:

(H) max{−Ak, −Ak − Bk2, −Ak − Bk2 − Ck3} < 1.

We have the following result.

Proposition 2.3. Condition (H) holds if and only if one of conditions (H)1–(H)8 holds.

Proof. Assume (H). Clearly, according to the signs of the constants A, B, C, one of conditions

(H)1–(H)8 is immediately verified. On the contrary, assuming one of conditions (H)1–(H)8,

then a direct computation shows that (H) is verified. As an example, assume at first (H)5 and

next (H)8. In the first of such cases, since B ≥ 0 and C ≥ 0, one has −Ak − Bk2 ≤ −Ak and

−Ak − Bk2 − Ck3 ≤ −Ak, for which max{−Ak, −Ak − Bk2, −Ak − Bk2 − Ck3} ≤ Ak < 1,

that is, (H) holds. In the other case, we have that the sum of three positive addends is less

than 1, that is, 0 < −Ak − Bk2 − Ck3
< 1. If, arguing by a contradiction, either −Ak ≥ 1 or

−Ak − Bk2 ≥ 1, then −Ak − Bk2 − Ck3 ≥ 1 and this is absurd. So, −Ak < 1, −Ak − Bk2
< 1

and −Ak − Bk2 − Ck3
< 1, for which (H) is satisfied.
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Proposition 2.4. Assume (H). Then, there exits m > 0 such that

N(u) ≥ m‖u‖2, ∀ u ∈ X. (2.4)

Proof. Fix u ∈ X and distinguish the different cases, taking Proposition 2.3 into account.

Assume (H)1.

Then, in view of (2.2) one has

N(u) ≥ ‖u′′′‖2
2 ≥ 1

4

(

‖u′′′‖2
2 +

1

k
‖u′′‖2

2 +
1

k2
‖u′‖2

2 +
1

k3
‖u‖2

2

)

≥ 1

4
‖u‖2 (2.5)

and (2.4) holds with m = 1
4 .

Assume (H)2.

Then, in view of (2.2)

N(u) ≥ ‖u′′′‖2
2 + A‖u′′‖2

2 + (B + Ck) ‖u′‖2
2.

Hence, if B + Ck ≥ 0 we can argue as in (2.5) and (2.4) holds with m = 1
4 . Otherwise, again

from (2.2)

N(u) ≥ ‖u′′′‖2
2 + (A + Bk + Ck2)‖u′′‖2

2.

So, if A + Bk + Ck2 ≥ 0 we can argue as in (2.5) and conclude that (2.4) holds with m = 1
4 .

Conversely, always from (2.2) one obtains

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and assumption (H)2, combined with the same above arguments, leads to (2.4) with m =
1+Ak+Bk2+Ck3

4 . Summarizing, (2.4) holds with m = min
{

1
4 , 1+Ak+Bk2+Ck3

4

}

.

Assume (H)3.

Then, in view of (2.2) one has

N(u) ≥ ‖u′′′‖2
2 + (A + Bk)‖u′′‖2

2.

If A + Bk ≥ 0, following the reasoning as in (2.5) we conclude that (2.4) holds with m = 1
4 .

Otherwise, (2.2) implies

N(u) ≥ (1 + Ak + Bk2)‖u′′′‖2
2.

and assumption (H)3 implies that (2.4) holds with m = 1+Ak+Bk2

4 .

Summarizing, (2.4) holds with m = min
{

1
4 , 1+Ak+Bk2

4

}

.

Assume (H)4.

Then, from (2.2) one has

N(u) ≥ ‖u′′′‖2
2 + (A + Bk + Ck2)‖u′′‖2

2.

If A + Bk + Ck2 ≥ 0 we conclude choosing m = 1
4 . Otherwise, with the same technique,

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and we can complete also this case, pointing out that m = min
{

1
4 , 1+Ak+Bk2+Ck3

4

}

.

Assume (H)5.
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Then, from (2.2) one has

N(u) ≥ (1 + Ak)‖u′′′‖2
2

and (2.4) holds with m = 1+Ak
4 .

Assume (H)6.

Then, from (2.2) one has

N(u) ≥ (1 + Ak)‖u′′′‖+ (B + Ck)‖u′‖2.

If B + Ck ≥ 0 then assumption (H)6 implies (2.4) with m = 1+Ak
4 . Otherwise,

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

we can conclude again but with m = 1+Ak+Bk2+Ck3

4 . Summarizing, in this case one has m =

min
{

1+Ak
4 , 1+Ak+Bk2+Ck3

4

}

.

Assume (H)7.

Then, from (2.2) one has

N(u) ≥ (1 + Ak + Bk2)‖u′′′‖2
2

and (2.4) holds with m = 1+Ak+Bk2

4 .

Assume (H)8.

Then, from (2.2) one has

N(u) ≥ (1 + Ak + Bk2 + Ck3)‖u′′′‖2
2

and (2.4) holds with m = 1+Ak+Bk2+Ck3

4 .

From the above considerations one can derive the following

Proposition 2.5. Assume that (H) holds and put

‖u‖X =
√

N(u), ∀ u ∈ X. (2.6)

Then, ‖ · ‖X is a norm equivalent to the usual one defined in (2.1) and (X, ‖ · ‖X) is a Hilbert space.

Proof. The definition of N and Proposition 2.4 assure that ‖ · ‖X is the norm induced by the

inner product

〈·, ·〉X =
∫ 1

0
(u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)) dx, ∀ u, v ∈ X.

It is simple to observe that there exists M > 0 such that

‖u‖2
X ≤ M‖u‖2 (2.7)

for every u ∈ X. Hence, the equivalence is an immediate consequence of (2.4) and (2.7) and

the proof is complete.
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Clearly (X, ‖ · ‖X) →֒ (C0(0, 1), ‖ · ‖∞) and the embedding is compact. For a qualitative

estimate of the constant of this embedding it is useful to introduce the following number

δ =























































1, if (H)1 holds,

min{1, 1 + Ak + Bk2 + Ck3}, if (H)2 or (H)4 holds,

min{1, 1 + Ak + Bk2}, if (H)3 holds,

1 + Ak, if (H)5 holds,

min{1 + Ak, 1 + Ak + Bk2}, if (H)6 holds,

1 + Ak + Bk2, if (H)7 holds,

1 + Ak + Bk2 + Ck3, if (H)8 holds.

(2.8)

We explicitly observe that the proof of Proposition 2.4 shows in addition that

‖u‖2
X ≥ δ‖u′′′‖2

2 (2.9)

for every u ∈ X, and δ = 4m, where m is the number assured from the same Proposition 2.4.

Proposition 2.6. Assume that (H) holds. One has

‖u‖∞ ≤ k

2
√

δ
‖u‖X (2.10)

for every u ∈ X, where δ is given in (2.8).

Proof. It is well known that H1
0(0, 1) →֒ C0(0, 1) and ‖u‖∞ ≤ 1

2‖u′‖2, thus, taking in mind

(2.2),

‖u‖∞ ≤ k

2
‖u′′′‖2. (2.11)

Moreover, from (2.9) one has

‖u′′′‖2 ≤ 1√
δ
‖u‖X

and (2.10) holds, in view of (2.11).

In order to clarify the variational structure of problem (Pλ), we introduce the functionals

Φ, Ψ : X → R defined by putting

Φ(u) =
1

2
‖u‖2

X, Ψ(u) =
∫ 1

0
F(x, u(x)) dx, ∀ u ∈ X, (2.12)

where F(x, t) =
∫ t

0 f (x, s) ds for every (x, t) ∈ [0, 1]× R.

With standard arguments one can verify that Φ and Ψ are continuously Gâteaux differen-

tiable, being in particular

Φ
′(u)(v) =

∫ 1

0

(

u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)
)

dx

and

Ψ
′(u)(v) =

∫ 1

0
f (x, u(x))v(x) dx

for every u, v ∈ X.
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Recall that a weak solution of problem (Pλ) is any u ∈ X such that

∫ 1

0

(

u′′′(x)v′′′(x) + Au′′(x)v′′(x) + Bu′(x)v′(x) + Cu(x)v(x)
)

dx

= λ
∫ 1

0
f (x, u(x))v(x) dx, ∀v ∈ X. (2.13)

Hence, the weak solutions of (Pλ) are exactly the critical points of the functional Φ − λΨ.

Proposition 2.7. Every weak solution of (Pλ) is also a classical solution.

Proof. Let u ∈ X be a weak solution of (Pλ). Then, since

A
∫ 1

0
u′′(x)v′′(x) dx = −A

∫ 1

0
u′(x)v′′′(x) dx

and

B
∫ 1

0
u′(x)v′(x) dx = −B

∫ 1

0
u′′(x)v(x) dx,

one can observe that

∫ 1

0

(

u′′′(x)− Au′(x)
)

v′′′(x) dx =
∫ 1

0

(

Bu′′(x)− Cu(x) + λ f (x, u(x))
)

v(x) dx

for every v ∈ X. Hence, u′′′ − Au′ ∈ H3(0, 1) and

(

u′′′ − Au′)′′′ = −Bu′′ + Cu − λ f (x, u). (2.14)

The continuity of f and the embedding X →֒ C2(0, 1) imply that u′′′ − Au′ ∈ C3(0, 1). Thus,

since

u′′′ = u′′′ − Au′ + Au′ (2.15)

it is clear that u ∈ C4(0, 1), namely u′ ∈ C3(0, 1) and (2.15) leads to u ∈ C6(0, 1). From (2.14)

one obtains

− u(vi) + Au(iv) − Bu′′ + Cu = λ f (x, u). (2.16)

At this point, integrating by parts (2.13) and exploiting (2.16) one has

[

−u(iv)(x)v′(x)
]1

0
= 0

for every v ∈ X, thus u(iv)(0) = u(iv)(1) = 0 and the proof is complete.

The main tool in our approach is the following critical point theorem (see [2, Theorem 7.4])

Theorem 2.8. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously Gâteaux

differentiable functions with Φ bounded from below. Put

γ = lim inf
r→+∞

ϕ(r), χ = lim inf
r→(infX Φ)+

ϕ(r),

where

ϕ(r) = inf
Φ(v)<r

sup
Φ(u)<r Ψ(u)− Ψ(v)

r − Φ(v)

(

r > inf
X

Φ

)

.
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(a) If γ < +∞ and for each λ ∈
]

0, 1
γ

[

the function Iλ = Φ − λΨ satisfies (PS)[r]-condition for all

r ∈ R then, for each λ ∈
]

0, 1
γ

[

, the following alternative holds:

either

(a1) Iλ possesses a global minimum,

or

(a2) there is a sequence {un} of critical points (local minima) of Iλ such that limn→∞ Φ(un) =

+∞.

(b) If χ < +∞ and for each λ ∈
]

0, 1
χ

[

the function Iλ = Φ − λΨ satisfies (PS)[r]-condition for

some r > infX Φ then, for each λ ∈
]

0, 1
χ

[

, the following alternative holds:

either

(b1) there is a global minimum of Φ which is a local minimum of Iλ,

or

(b2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ such that

limn→∞ Φ(un) = infX Φ.

For the sake of completeness, we recall that for r ∈ R, Iλ = Φ − λΨ is said to satisfy the

(PS)[r]-condition if any sequence {un} such that

(α1) {Iλ(un)} is bounded,

(α2) ‖I′λ(un)‖X∗ → 0 as n → ∞,

(α3) Φ(un) < r ∀ n ∈ N

has a convergent subsequence.

3 Main results

In this section we are going to present the announced multiplicity result. The following

technical constant will be useful

τ = 4δπ4

(

96

(

12

5

)5

+ 4A

(

12

5

)4

+ B
1248

175
+ C

493

756

)−1

(3.1)

where A, B and C are the real numbers involved in problem (Pλ) and such that (H) holds,

while δ has been introduced in (2.8).

Remark 3.1. We wish to stress a useful estimate for τ. If we consider the function

w(x) =















v(x), if x ∈ [0, 5/12[,

1, if x ∈ [5/12, 7/12],

v(1 − x), if x ∈ ]7/12, 1],

(3.2)
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where v(x) =
(

12
5

)4
x4 − 2

(

12
5

)3
x3 + 24

5 x for every x ∈ [0, 5/12], a straightforward computation

shows that w ∈ X = H3(0, 1) ∩ H1
0(0, 1) and, in particular

‖w‖2
X =

4δπ4

τ
.

Recalling that (H) holds, the positivity of τ follows from the positivity of δ as seen in the

arguments presented in the previous section (see also Proposition 2.4). Moreover, from (2.10),

since ‖w‖∞ = 1, one can even conclude that

0 < τ ≤ 1.

Here is the first main result.

Theorem 3.2. Assume that

i) F(x, t) ≥ 0 for every (x, t) ∈ ([0, 5/12] ∪ [7/12, 1])× R,

ii) lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2
< τ lim sup

t→+∞

∫ 7/12
5/12 F(x, t) dx

t2
.

Then, for every

λ ∈ Λ =





2δπ4

τ

1

lim supt→+∞

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→+∞

∫ 1
0 max|s|≤t F(x,s) dx

t2





the problem (Pλ) admits an unbounded sequence of classical solutions.

Proof. We wish to apply Theorem 2.8, case (a), with X = H3(0, 1)∩ H1
0(0, 1) endowed with the

norm ‖ · ‖X defined in (2.6), Φ and Ψ as in (2.12).

In the previous section we have already pointed out that Φ, Ψ ∈ C1(X). It is simple

to verify that Φ is bounded from below, coercive and its derivative is a homeomorphism.

Moreover, the compactness of the embedding X →֒ C0(0, 1) assures that Ψ
′ is a compact

operator. Hence, we can conclude that, for every λ > 0 (indeed for every λ ∈ R) the functional

Iλ = Φ − λΨ satisfies the (PS)[r]-condition for every r ∈ R (see [2, Remark 2.1]). Our aim is

now to verify that γ < +∞. Let us begin by observing that, in view of (2.10) one has

{v ∈ X : Φ(v) < r} ⊂
{

v ∈ C0(0, 1) : ‖v‖∞ ≤ k√
δ

√

r

2

}

for all r > 0. Let {tn} be in R
+ such that tn → +∞ and

lim
n→∞

∫ 1
0 max|s|≤tn

F(x, s) dx

t2
n

= lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2
.

Put rn = 2δπ4t2
n for every n ∈ N. Hence, one has

ϕ(rn) = inf
Φ(v)<rn

sup
Φ(u)<rn

Ψ(u)− Ψ(v)

r − Φ(v)

≤
sup

Φ(u)<rn
Ψ(u)

rn

≤ 1

2δπ4

∫ 1
0 max|s|≤tn

F(x, s) dx

t2
n

.
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Passing to the lim inf in the previous inequality one obtains

γ ≤ lim inf
n→∞

ϕ(rn) ≤
1

2δπ4
lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2
< +∞.

In particular, we have also verified that

Λ ⊂
]

0,
1

γ

[

.

Fix now λ ∈ Λ and let us check that Iλ is unbounded from below. We can explicitly observe

that

1

2δπ4
lim inf
t→+∞

∫ 1
0 max|s|≤t F(x, s) dx

t2
<

1

λ
<

τ

2δπ4
lim sup

t→+∞

∫ 7/12
5/12 F(x, t) dx

t2
.

Pick η > 0 such that

1

λ
< η <

τ

2δπ4
lim sup

t→+∞

∫ 7/12
5/12 F(x, t) dx

t2

and consider a sequence {dn} in R
+ such that dn → +∞ and

∫ 7/12
5/12 F(x, dn)

d2
n

> η
2δπ4

τ

for every n ∈ N. If, for every n ∈ N we define

wn(x) = dnw(x),

where w has been defined in (3.2), it is clear that 0 ≤ wn(x) ≤ dn for every x ∈ [0, 1], wn ∈ X

and, in particular

‖wn‖2
X =

4δπ4

τ
d2

n.

Thus, also in view of i),

Iλ(wn) = Φ(wn)− λΨ(wn)

=
2δπ4

τ
d2

n − λ
∫ 1

0
F(x, wn(x)) dx

<
2δπ4

τ
(1 − λη)d2

n.

Namely, passing to the limit and taking in mind that 1 − λη < 0 one achieves that Iλ is

unbounded from below.

We are now in the position to apply Theorem 2.8, case (a), and obtain a sequence {un}
in X of critical points (local minima) of Iλ such that ‖un‖X → +∞. Taking in mind that the

critical points of Iλ are classical solutions of (Pλ), see Proposition 2.7, we have completed the

proof.

The following remark will be useful in order to obtain a sign condition on the solutions

of (Pλ).
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Remark 3.3. Recall that if µ ≥ 0 and w ∈ H2(0, T) is such that
{

−w′′ + µw ≥ 0, x ∈ [0, 1],

w(0) = w(1) = 0,

then w(x) ≥ 0 for every x ∈ [0, 1] (see also [4, Théorème VIII.17]).

Remark 3.4. We wish to point out that if u ∈ C6(0, 1) is a nonnegative and nontrivial function

such that
{

−u(vi) + Au(iv) − Bu′′ + Cu ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

and there exist three nonnegative numbers X, Y and Z such that














X + Y + Z = A,

XY + XZ + YZ = B,

XYZ = C,

(3.3)

then u(x) > 0 for every x ∈ (0, 1). To justify this, we can observe that for the following linear

differential operators

L1(w) = −w′′ + Xw, L2(w) = −w′′ + Yw, L3(w) = −w′′ + Zw

is possible to apply the strong maximum principle (see [14]). Hence, in particular, since in

view of (3.3)

L1(L2(L3(u))) = −u(vi) + (X + Y + Z)u(iv) − (XY + XZ + YZ)u′′ + XYZu

= −u(vi) + Au(iv) − Bu′′ + Cu,

one has, using several times Remark 3.3,

L1(L2(L3(u))) ≥ 0 ⇒ L2(L3(u)) ≥ 0 ⇒ L3(u) ≥ 0 ⇒ u ≥ 0 in [0, 1].

Finally, from [14, Theorem 3] one can conclude that u(x) > 0 for every x ∈ (0, 1).

We refer to [12] for further considerations on maximum principle for high-order differen-

tial equations.

Example 3.5. If u ∈ C6(0, 1) is such that
{

−u(vi) + 3u(iv) − 3u′′ + u ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

then u > 0 in (0, 1). It suffices to take X = Y = Z = 1 in (3.3), so that A = B = 3 and C = 1.

Example 3.6. If C = 0 and A, B ≥ 0 are such that A2 − 4B ≥ 0 then every nonnegative and

nontrivial u ∈ C6(0, 1) such that
{

−u(vi) + Au(iv) − Bu′′ ≥ 0, x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = uiv(0) = uiv(1) = 0,

is positive in (0, 1). Indeed, we can recall Remark 3.4, in (3.3) consider X = A+
√

A2−4B
2 ,

Y = A−
√

A2−4B
2 , Z = 0 and conclude that u > 0 in (0, 1).
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In the following we say that A, B, C satisfy the (H+) condition if

(H+) there exist nonnegative numbers X, Y and Z such that (3.3) holds.

The existence of constant sign solutions can be pointed out, provided

f (x, t) ≥ 0, ∀(x, t) ∈ [0, 1]× [0,+∞[. (3.4)

In particular the following result holds.

Theorem 3.7. Assume that assumption (3.4) and (H+) hold and

ii’) lim inf
t→+∞

∫ 1
0 F(x, t) dx

t2
< τ lim sup

t→+∞

∫ 7/12
5/12 F(x, t) dx

t2
.

Then, for every

λ ∈ Λ̃ =





2δπ4

τ

1

lim supt→+∞

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→+∞

∫ 1
0 F(x,t) dx

t2





the problem (Pλ) admits an unbounded sequence of positive classical solutions.

Proof. Put

f+(x, t) =















f (x, t), if (x, t) ∈ [0, 1]× [0,+∞[ ,

f (x, 0), if (x, t) ∈ [0, 1]×]− ∞, 0[ ,

and F+(x, t) =
∫ t

0 f+(x, s) ds. Clearly f+|[0,1]×[0,+∞[
= f|[0,1]×[0,+∞[ as well as F+

|[0,1]×[0,+∞[
=

F|[0,1]×[0,+∞[. Hence, in view of ii’),

lim inf
t→+∞

∫ 1
0 max|s|≤t F+(x, s) dx

t2
= lim inf

t→+∞

∫ 1
0 max0≤s≤t F(x, s) dx

t2

= lim inf
t→+∞

∫ 1
0 F(x, t) dx

t2

< τ lim sup
t→+∞

∫ 7/12
5/12 F(x, t) dx

t2

= τ lim sup
t→+∞

∫ 7/12
5/12 F+(x, t) dx

t2
.

Thus, we can apply Theorem 3.2 to f+ and F+ and assure that for every λ ∈ Λ̃, the problem

{

−u(vi) + Au(iv) − Bu′′ + Cu = λ f+(x, u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(3.5)

admits an unbounded sequence of classical solutions.

We claim that

Every solution of (3.5) is a nonnegative solution of (Pλ).
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Indeed, if u solves (3.5), since f+(x, t) ≥ 0 for every (x, t) ∈ [0, 1]×R, we can recall Remark 3.4

and deduce that u is positive. Hence, f+(x, u(x)) = f (x, u(x)) for every x ∈ [0, 1] and u solves

(Pλ). The claim is now verified and the proof is completed.

We now present an autonomous version of the previous result.

Theorem 3.8. Suppose (H+) holds and assume that g is a nonnegative continuous function such that

lim inf
t→+∞

G(t)

t2
<

τ

6
lim sup

t→+∞

G(t)

t2
, (3.6)

where G(t) =
∫ t

0 g(s) ds for every t ∈ R.

Then, for every λ ∈
]

12δπ4

τ
1

lim supt→+∞

G(t)

t2

, 2δπ4

lim inft→+∞
G(t)

t2

[

the problem

{

−u(vi) + Au(iv) − Bu′′ + Cu = λg(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0
(P̃λ)

admits an unbounded sequence of classical positive solutions.

Proof. Apply Theorem 3.7 to f (x, t) = g(t) for all (x, t) ∈ [0, 1]× R and observe that

F(x, t) = G(t),
∫ 7/12

5/12
F(x, t) dx =

1

6
G(t).

Example 3.9. Fix A, B and C (as usual such that (H+) holds) let τ be the number defined in

(3.1), pick ρ >
6−τ

τ and consider the continuous function g : R → R defined by putting

g(t) =







2t
[

1 + ρ sin2(ln(ρ2 + ln2 t)) + sin(2 ln(ρ2 + ln2 t)) ρ ln t

ρ2+ln2 t

]

, if t > 0,

0, if t ≤ 0.

Then, for every λ ∈
]

12δπ4

τ(1+ρ)
, 2δπ4

[

the problem

{

−u(vi) + Au(iv) − Bu′′ + Cu = λg(u), x ∈ [0, 1],

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0

admits an unbounded sequence of classical positive solutions.

Indeed, a direct computation shows that 0 < τ ≤ 1 (see Remark 3.1). Hence, ρ > 0 and

exploiting the boundedness of the function t → sin(2 ln(ρ2 + ln2 t)) ρ ln t

ρ2+ln2 t
one has

g(t) ≥ 2t

[

1

2
+ ρ sin2(ln(ρ2 + ln2 t))

]

> 0

for every t > 0. Moreover,

G(t) =

{

t2(1 + ρ sin2(ln(ρ2 + ln2 t))), if t > 0,

0, if t ≤ 0.
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Hence, if we put an = e
√

enπ−ρ2
and bn = e

√
e(2n+1)π/2−ρ2

for every n ∈ N with n > (2/π) ln ρ,

one has

lim inf
t→+∞

G(t)

t2
≤ lim

n→+∞

G(an)

a2
n

= 1

<
τ

6
(1 + ρ)

=
τ

6
lim

n→+∞

G(bn)

b2
n

≤ τ

6
lim sup

t→+∞

G(t)

t2
.

At this point we can apply Theorem 3.8 observing that

]

12δπ4

τ(1 + ρ)
, 2δπ4

[

⊆
]

12δπ4

τ

1

lim supt→+∞

G(t)
t2

,
2δπ4

lim inft→+∞

G(t)
t2

[

.

We can directly derive the proof of Theorem 1.1 from Theorem 3.8.

Proof of Theorem 1.1. Apply Theorem 3.8, with A = 3D; B = 3D2; C = D3, and exploit Re-

mark 3.4, by choosing X = Y = Z = D.

Remark 3.10. Clearly, if (H) holds and (H+) is not satisfied, the assumptions of Theorems 3.7

and 3.8 ensure the existence of infinitely many classical solutions.

We conclude the present note pointing out that, adapting the previous arguments, one can

exploit case (b) of Theorem 2.8 in order to prove the existence of arbitrary small solutions of

problem (Pλ).

Theorem 3.11. Assume that

j) there exists r > 0 such that F(x, t) ≥ 0 for every (x, t) ∈ ([0, 5/12] ∪ [7/12, 1])× [0, r],

jj) lim inf
t→0+

∫ 1
0 max|s|≤t F(x, s) dx

t2
< τ lim sup

t→0+

∫ 7/12
5/12 F(x, t) dx

t2
.

Then, for every

λ ∈ Γ =





2δπ4

τ

1

lim supt→0+

∫ 7/12
5/12 F(x,t) dx

t2

,
2δπ4

lim inft→0+

∫ 1
0 max|s|≤t F(x,s) dx

t2





the problem (Pλ) admits a sequence of pairwise distinct nontrivial classical solutions, which strongly

converges to 0 in X.

Clearly, starting from Theorem 3.11 and arguing as above, further results dealing with the

existence of arbitrary small (positive) classical solutions could be furnished.
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Abstract. The well known λ-Lemma has been proved by J. Palis for a hyperbolic fixed
point of a C1-diffeomorphism. In this paper we show that the result is true for some
cases of nonhyperbolic point.
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1 Introduction

The well known λ-Lemma [9] gives an important description of chaotic dynamics. A basic

assumption of this theorem is hyperbolicity.

Theorem 1.1 (Palis). Let f be a C1 diffeomorphism of R
n with a hyperbolic fixed point at 0 and m-

and p-dimensional stable and unstable manifolds WS and WU (m + p = n). Let D be a p-disk in WU ,

and w be another p-disk in WU meeting WS at some point A transversely. Then
⋃

n≥0 f n(w) contains

p-disks arbitrarily C1-close to D.

Generally, for C1 diffeomorphism f of compact manifold M periodic point z is called

hyperbolic if there exists a splitting Tz(M) = Es ⊕ Eu with constants k > 0 and 0 < λ < 1

such that

‖(D f n)|Es‖ ≤ kλn (n > 0),

‖(D f−n)|Eu‖ ≤ kλn (n > 0).

Here Es and Eu are called stable and unstable subspaces of f , respectively. If z is nonhyperbolic

this splitting can be written as Tz(M) = Es ⊕ Eu ⊕ Ec, where Es and Eu are the same as above

and Ec is called the center subspace of f .

Some extensions of this lemma can be found in the [1–4, 11]. One question that arises is

whether it is possible to put weaker conditions in this lemma instead of being hyperbolic. In

this paper we append some new cases in which we have affirmative answer. We think these

cases can be used in extending the connecting lemma of Hayashi[5]. Our result can help to

generalize [7, 8] to some new cases.

BEmail: mvelayat@iaun.ac.ir
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Definition 1.2. We say that a nonhyperbolic periodic point z satisfies the invariant conditions

(IC) if there is a local chart (U, φ) at z such that in φ(U) one of the following is true:

I1) Es ⊕ Eu is invariant under f ;

I2) Ec ⊕ Es is invariant under f ;

I3) Ec ⊕ Eu is invariant under f .

Notice that f in I1, I2 and I3 is in fact f̃ = φ f φ−1.

Let us give an example of a system which satisfies in IC.

Example 1.3. Let R
3
∞ be the compactification* of R

3. As known this is a C∞ manifold with

two charts, one at the origin and the other at ∞. We define the diffeomorphism

f (x, y, z) =
(

2x,
y

2
, z
)

It is easy to see that the axes are the three invariant manifolds of the origin and the whole of

coordinate surface are invariant under f . But, origin is not hyperbolic.

2 Preliminaries

Let A = D f (0) and Let p be a nonhyperbolic fixed point of f satisfying IC, i.e. f satisfies

either I1, I2 or I3.

First assume I1 is true. Since f is locally invariant on Es ⊕ Eu, if Ws
loc(0) and Wu

loc(0) are the

graphs of φs and φu respectively, then locally we can write

φs : Bs → Eu and φu : Bu → Es.

Here φs and φu are Cr, Dφs(0) = 0, Dφu(0) = 0, φs(0) = 0 and φu(0) = 0. Consider the map

φ : Bs ⊕ Bu ⊕ Ec → Es ⊕ Eu ⊕ Ec

(xs, xu, xc) 7→ (xs − φu(xu), xu − φs(xs), xc).

It is clear that φ is Cr and Dφ(0) is a the identity and φ is diffeomorphism when restricted to

some neighborhood of 0. Let f̃ = φ f φ−1 then f̃ is a diffeomorphism on a neighborhood of 0

and f̃ (0) = 0, D f̃ (0) = A and Es, Eu are local stable and unstable manifold of f̃ . It is clear that

Es ⊕ Eu is still invariant. This shows that in this case we can always assume that local stable

and unstable manifolds of f are discs in Es and Eu, respectively.

Let Bs ⊆ Es and Bu ⊆ Eu be such that Bs ⊆ Ws
loc(0) and Bu ⊆ Wu

loc(0). Let Bc be the

intersection of local chart containing z, with Ec.

Now we can rewrite the proof of λ-lemma in [10] as the following lemmas.

Lemma 2.1. Let z be a nonhyperbolic fixed point of f which satisfies I1. Let V = Bs × Bu × Bc, and

let D be a disc transversal to Bs at q with dim(D) = dim(Eu). If Dn is the connected component of

f n(D) ∩ V to which f n(q) belongs, then for any given small positive ǫ we can find n such that Dn is

ǫ-C1 close to Bu.

*We have to suppose compactification because in the definition of a hyperbolic fixed point that was mentioned

above we need a compact manifold.
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The proof is very similar to the proof of λ-lemma in [10]. Notice that the existence of Ec

does not change the the main flow of the original proof, since Es ⊕ Eu is invariant under f .

Let I2 be true. We get the Cr map φu : Bu → Es ⊕ Ec that its graph is Ws
loc(0). Thus,

Dφu(0) = 0 and φu(0) = 0. Assume that φu(xu) = (φus(xu), φuc(xu)). Consider the map

φ : Bs ⊕ Eu ⊕ Ec → Es ⊕ Eu ⊕ Ec,

(xs, xu, xc) 7→ (xs − φus(xu), xu, xc − φuc(xc)),

where φ is Cr and Dφ(0) is identity. Thus, φ is a diffeomorphism defined on a neighborhood

of 0. Let f̃ = φ f φ−1, then f̃ is a diffeomorphism of a neighborhood of 0 with f̃ (0) = 0, and,

D f̃ (0) = A. Moreover, Eu and Ec ⊕ Es are invariant under f̃ . This implies that for every f

which satisfies I2 for a nonhyperbolic fixed point, we can find a local chart such that Eu and

Es ⊕ Ec are invariant with respect to f .

Lemma 2.2. Let z be a nonhyperbolic fixed point of f which satisfies I2 and D be a transversal disc to

Ec ⊕ Es at q ∈ Es and Du ⊆ Eu a disc containing 0, then for an arbitrary small positive ǫ, there exists

n such that a section of f n(D) is ǫ-C1 close to Du.

Proof. Let A = D f (0) and Acs and Au be respectively restriction of A to subspaces Ecs =

Ec ⊕ Es and Eu, thus f on a neighborhood V of origin becomes:

f (xcs, xu) = (Acsxcs + φcs(xcs, xu), Auxu + φu(xcs, xu)),

whence

(D f )0 = (Acs, Au), xcs ∈ Bcs = V ∩ Ecs, xu ∈ Bu = V ∩ Eu,

‖Acs‖ ≤ 1, ‖Au‖ ≥ a > 1,

∂φcs

∂xu

∣

∣

∣

∣

Bu

=
∂φu

∂xcs

∣

∣

∣

∣

Bcs

= 0.

From above and continuity of partial differential we can find 0 < k < 1 such that k <
a−1

8 and

for V ′ ⊂ V,

max
V′

=

∥

∥

∥

∥

∂φi

∂xj

∥

∥

∥

∥

≤ k, i, j = cs, u.

Let q ∈ V ′ , Bu ⊂ V ′ take arbitrary unit vector v0 in (TD)q. Because V = Bcs × Bu then

v0 = (vcs
0 , vu

0). If λ0 is the slope of v0 then λ0 =
‖vcs

0 ‖
‖vu

0‖
. In this fraction ‖vu

0‖ 6= 0 because D is

transversal disc to Bcs.
q1 = f (q), v1 = D fq(v0)

q2 = f (q1), v2 = D fq1
(v1)

...
...

qn = f (qn−1), vn = D fqn−1
(vn−1).

(2.1)

for q ∈ ∂Bcs

D fq(v0) =

(

Acs + ∂φcs

∂xcs
(q) ∂φcs

∂xu
(q)

0 Au + ∂φu

∂xu
(q)

)

(

vcs
0

vu
0

)

=

(

Acsvcs
0 + ∂φcs

∂xcs
(q)vcs

0 + ∂φcs

∂xu
(q)vu

0

Auvu
0 +

∂φu

∂xu
(q)vu

0

)

.
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Thus

λ1 =
‖vcs

1 ‖
∥

∥vu
1

∥

∥

=

∥

∥

∥
Acsvcs

0 + ∂φcs

∂xcs
(q)vcs

0 + ∂φcs

∂xu
(q)vu

0

∥

∥

∥

∥

∥

∥
Auvu

0 +
∂φu

∂xu
(q)vu

0

∥

∥

∥

.

The numerator of above fraction is less than

‖Acsvcs
0 ‖+

∥

∥

∥

∥

∂φcs

∂xcs
(q)vcs

0

∥

∥

∥

∥

+

∥

∥

∥

∥

∂φcs

∂xu
(q)vu

0

∥

∥

∥

∥

≤ (1 + k)‖vcs
0 ‖+ k‖vs

0‖

and its denominator is greater than

‖Auvu
0‖ −

∥

∥

∥

∥

∂φu

∂xu
(q)vu

0

∥

∥

∥

∥

≥ (a − k)‖vu
0‖,

then

λ1 ≤
(1 + k)λ0 + k

a − k
≤

1 + k

a − k
λ0 +

k

a − k
,

λ2 =
‖vcs

2 ‖

‖vu
2‖

≤
(1 + k)λ1 + k

a − k
≤

(

1 + k

a − k

)2

λ0 +
k

1 + k

2

∑
i=1

(

1 + k

a − k

)i

...

λn =
‖vcs

n ‖

‖vu
n‖

≤

(

1 + k

a − k

)n

λ0 +
k

1 + k

n

∑
i=1

(

1 + k

a − k

)i

≤

(

1 + k

a − k

)n

λ0 +
a − k

a − 1 − 2k
.

Because
(

1+k
a−k

)n
λ0 → 0, then there exists n0 ∈ N such that for n > n0 we have λn <

a−k
a−1−2k .

Consider the number k1 such that 0 < k1 < min(ǫ, k). Because
∂φcs

∂xu

∣

∣

Bu = 0 and Bu is

compact, there exists δ < ǫ such that V1 = δBcs × Bu ⊂ V so

max
V1

∥

∥

∥

∥

∂φcs

∂xu

∥

∥

∥

∥

≤ k1.

Let δBcs be a ball with radius δ times radius of Bcs . We can assume that v0 is a vector in

(TD)q that has maximal slope, so for n ≥ n0 the slope of all unit vectors in (TDn)qn is less

than a−k
a−1−2k . For a properly chosen n0 we have qn0 ∈ V1. From the continuity of the tangent

space Dn0 , we can find a disk D̃ embedded in Dn0 with center qn0 such that for all p ∈ D̃ the

slope of all unit vectors in (TD̃)p is less than 2(a−k)
a−1−2k .

Let v ∈ (TD̃)p be a unit vector. If v = (vcs, vu) and its slope is λn0 =
‖vcs‖
‖vu‖

then

D fp =

(

Acsvcs + ∂φcs

∂xcs
(p)vcs + ∂φcs

∂xu
(p)vu

∂φu

∂xcs
(p)vcs + Auvu + ∂φu

∂xu
(p)vu

)

.

Thus

λn0+1 =

∥

∥

∥
Acsvcs + ∂φcs

∂xcs
(p)vcs + ∂φcs

∂xu
(p)vu

∥

∥

∥

∥

∥

∥

∂φu

∂xcs
(p)vcs + Auvu + ∂φu

∂xu
(p)vu

∥

∥

∥

.

The numerator of above fraction is less that (1 + k)‖vcs‖ + k1‖vu‖ and its denominator is

greater than

‖Auvu‖ −

∥

∥

∥

∥

∂φu

∂xu
(p)vu

∥

∥

∥

∥

−

∥

∥

∥

∥

∂φu

∂xcs
(p)vcs

∥

∥

∥

∥

≥ (a − k)‖vu‖ − k‖vcs‖.
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Thus

λn0+1 ≤
(1 + k)λn0 + k1

a − k − kλn0

≤
(1 + k)λn0 + k1

a − k − k 2(a−k)
a−1−2k

≤
(1 + k)λn0 + k1

(a−k)(a−1−4k)
a−1−2k

.

Let b = (a−k)(a−1−4k)
a−1−2k . It is easy to see that k + 1 < b. Therefore we have

λn+n0 ≤

(

1 + k

b

)n

λn0 + k1
b

(b − 1 − k)(k + 1)
.

Then there exits ñ such that for n ≥ ñ

λn+n0 ≤ ǫ

(

1 +
b

(b − 1 − k)(k + 1)

)

.

This shows that for n ≥ ñ the slope of nonzero tangent vectors to f n(D̃) ∩ V1 is less than

given ǫ.

Now we show that the length of any tangent vector to f n(D̃) ∩ V1 is growing as n is

increasing. We denote the image of (vcs
n , vu

n) under D f as (vcs
n+1, vu

n+1), thus
√

‖vcs
n+1‖

2 + ‖vu
n+1‖

2

√

‖vcs
n ‖

2 + ‖vu
n‖

2
=

‖vu
n+1‖

‖vu
n‖

√

1 + λ2
n+1

1 + λ2
n

.

But
‖vu

n+1‖

‖vu
n‖

≥ a − k − λn.

As n is growing, λn and λn+1 become small enough; then the length of the tangent vectors

to f n(D̃) ∩ V1 are increasing with ratio a − k > 1. This fact and tendency to zero of the slope

of the tangent vectors imply that for n > ñ the f n(D̃) ∩ V1 are approaching in C1 topology

to Bu.

Finally suppose that condition I3 is true, we replace f by f−1, then condition I2 is true for

f−1 and using the above lemma we have:

Lemma 2.3. Let z be a nonhyperbolic fixed point of f that satisfies I3 and D be a disc transversal to

Eu ⊕ Ec at q ∈ Eu and Ds ⊆ Es a disc containing 0, then for an arbitrary small positive ǫ there exists

n that f−n(d) is ǫ-C1 close to Ds.

As a consequence of the above lemmas, the following proposition can be obtained. We

first need the definition of forwardly related from [6].

For any C1 diffeomorphism f of compact manifold M and p ∈ M the forward orbit of p is

O+
f = {x ∈ M : ∃ n ∈ Z s.t. f n(p) = x}.

Definition 2.4. A point p ∈ M is called forwardly related to q ∈ M if q /∈ O+
f (p) and

there exists a sequence diffeomorphisms { fn} such that fn → f and a sequence of strings

γn = { f k
n(pn) : k = 0, . . . , sn} such that pn → p and f sn

n (pn) → q.

Proposition 2.5. Let z be a nonhyperbolic fixed point satisfying IC, let p ∈ Ws
loc(z), and, q ∈ Wu

loc(z).

Then p is forwardly related to q.

All the above results are true for periodic point p. It is sufficient to replace f by f n where n is the

period of p.



6 M. R. Velayati

References

[1] J. Cresson, A λ-lemma for partially hyperbolic tori and the obstruction property, Lett.

Math. Phys. 42(1997), No. 4, 363–377. https://doi.org/10.1023/A:1007433819941

[2] J. Cresson, Un λ-lemme pour des tores partiellement hyperboliques (in French), C. R.

Acad. Sci. Paris Sér. I Math. 331(2000), No. 1, 65–70. https://doi.org/10.1016/S0764-

4442(00)00507-3

[3] J. Cresson, S. Wiggins, A λ-lemma for normally hyperbolic invariant manifolds, Regul.

Chaot. Dyn. 20(2015), 94–108. https://doi.org/10.1134/S1560354715010074

[4] E. Fontich, P. Martín, Differentiable invariant manifolds for partially hyperbolic tori

and a lambda lemma, Nonlinearity 13(2000), No. 5, 1561–1593. https://doi.org/10.

1088/0951-7715/13/5/309

[5] S. Hayashi, Connecting invariant manifolds and the solution of the C1 stability and

Ω-stability conjectures for flows, Ann. of Math. 145(1997), 81–137. https://doi.org/10.

2307/2951824

[6] S. Hayashi, Hyperbolicity, heterodimensional cycles and lyapunov exponents for par-

tially hyperbolic dynamics, Bull. Braz. Math. Soc. (N.S.) 38(2007), No. 2, 203–218. https:

//doi.org/10.1007/s00574-007-0044-3

[7] B. Honary, M. R. Velayati, A C1 conjugacy diffeomorphism, Int. J. Pure Appl. Math.

15(2004), 353–358. Zbl 1068.37009

[8] B. Honary, M. Pourbarat, M. R. Velayati, On the arithmetic difference of affine

Cantor sets, J. Dyn. Syst. Geom. Theor. 4(2006), No. 2, 139–146. https://doi.org/10.1080/

1726037X.2006.10698511

[9] J. Palis, On Morse–Smale dynamical systems, Topology 8(1969), No. 4, 385–404. https://

doi.org/10.1016/0040-9383(69)90024-X

[10] J. Palis, W. de Melo, Geometric theory of dynamical systems, Springer Verlag, New York,

1982. Zbl 0491.58001

[11] V. Rayskin, Multidimensional singular λ-lemma, Electron. J. Differential Equations 2003,

No. 38, 1–9. Zbl 1039.37018



Electronic Journal of Qualitative Theory of Differential Equations
2021, No. 22, 1–14; https://doi.org/10.14232/ejqtde.2021.1.22 www.math.u-szeged.hu/ejqtde/

On solvability of focal boundary value problems

for higher order functional differential equations

with integral restrictions

Eugene BravyiB

Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russia

Received 8 October 2020, appeared 30 March 2021

Communicated by Leonid Berezansky

Abstract. Sharp conditions are obtained for the unique solvability of focal bound-
ary value problems for higher-order functional differential equations under integral
restrictions on functional operators. In terms of the norm of the functional operator,
unimprovable conditions for the unique solvability of the boundary value problem are
established in the explicit form. If these conditions are not fulfilled, then there exists a
positive bounded operator with a given norm such that the focal boundary value prob-
lem with this operator is not uniquely solvable. In the symmetric case, some estimates
of the best constants in the solvability conditions are given. Comparison with existing
results is also performed.

Keywords: functional differential equations, focal boundary value problem, unique
solvability.

2020 Mathematics Subject Classification: 34K06, 34K10.

1 Introduction

We consider here boundary value problems




(−1)(n−k)x(n) (t) + (Tx) (t) = f (t) , t ∈ [0, 1] ,

x(i) (0) = 0, i = 0, . . . , k − 1,

x(j) (1) = 0, j = k, . . . , n − 1,

(1.1)

where n ∈ {2, 3, . . .}, k ∈ {1, 2, . . . , n − 1}, T : C[0, 1] → L[0, 1] is a linear bounded operator,
C[0, 1] and L[0, 1] are the space of real continuous and integrable functions (respectively)
with the standard norms, f ∈ L[0, 1]. A real absolutely continuous function with absolutely
continuous derivatives up to (n − 1)-th order which satisfies the boundary conditions from
(1.1) and satisfies the functional differential equation from (1.1) almost everywhere on [0, 1] is
called a solution to problem (1.1).

BEmail: bravyi@perm.ru



2 E. Bravyi

The boundary value problems with such kind of boundary conditions are called focal ones.
The solvability of such problems for linear and non-linear functional differential equations
occupies a special place in many studies of physical, chemical, and biological processes (see,
for example, [1, 2, 7, 14, 31, 37] end references there).

The focal problem for the ordinary differential equation





(−1)(n−k)x(n) (t) = f (t) , t ∈ [0, 1] ,

x(i) (0) = 0, i = 0, . . . , k − 1,

x(j) (1) = 0, j = k, . . . , n − 1,

has a unique solution x(t) =
∫ 1

0 G(t, s) f (s) ds, t ∈ [0, 1], where Green’s function G(t, s) is
defined by the equality [20]

G(t, s) =
1

(n − k − 1)!
1

(k − 1)!

∫ min(t,s)

0
(s − τ)n−k−1(t − τ)k−1 dτ, t, s ∈ [0, 1]. (1.2)

Note, that the function G(t, s) is an oscillating kernel by the Kalafaty–Gantmacher–Krein The-
orem [17] (see also [18, 19, 22, 34]), therefore, in particular, the inequality

∣∣∣∣
G(τ1, s1) G(τ1, s2)

G(τ2, s1) G(τ2, s2)

∣∣∣∣ > 0 (1.3)

holds for all 0 < τ1 < τ2 ≤ 1, 0 < s1 < s2 ≤ 1. Problem (1.1) enjoys the Fredholm property
[8, Ch. 2]. Thus, if the homogeneous problem has only a trivial solution, then problem (1.1)
has a unique solution for all f ∈ L[0, 1].

Obviously, boundary value problem (1.1) is equivalent to the equation

x(t) = −
∫ 1

0
G(t, s)(Tx)(s) ds +

∫ 1

0
G(t, s) f (s) ds, t ∈ [0, 1]. (1.4)

Applying some fixed point theorems, for example, the classical methods for estimating the
norm of the operator G : C[0, 1] → C[0, 1] defined by the equality

(Gx)(t) = −
∫ 1

0
G(t, s)(Tx)(s) ds, t ∈ [0, 1],

one can obtain various unique solvability conditions for problem (1.1).
Conditions for the solvability of focal boundary value problems for higher-order differen-

tial equations were obtained in the works by R. Agarwal [1,4], R. Agarwal and I. Kiguradze [3],
and others [5,6,15,20,21,23,28,29,31,32,35,36,38]. As for those conditions as applied to the lin-
ear higher-order functional differential equations, among the results related to the norm of the
operator T, the author does not know of any that would significantly improve the following.

Denote

T̃n,k ≡ (n − 1)(n − k − 1)!(k − 1)!

Proposition 1.1. Problem (1.1) is uniquely solvable if

‖ T‖C→L ≤ T̃n,k. (1.5)
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Proof. We have

G(1, 1) =
1

T̃n,k
> G(t, s) ≥ 0

for all (t, s) ∈ [0, 1] × [0, 1], (t, s) 6= (1, 1). Therefore, if the condition of the statement is
fulfilled, then for any non-zero solution x to equation (1.4) for f ≡ 0 the following inequalities
hold:

|x(t)| =
∣∣∣∣
∫ 1

0
G(t, s)(Tx)(s) ds

∣∣∣∣ < G(1, 1)
∫ 1

0
|(Tx)(s)| ds

≤ G(1, 1)‖ T‖C→L‖ x‖C ≤ ‖ x‖C for all t ∈ [0, 1].

Since the continuous function |x(t)| has a maximal value at a corresponding point t⋆ ∈ [0, 1],
the inequality |x(t⋆)| < ‖x‖C is impossible. It follows that the homogeneous boundary value
problem has only the trivial solution. Therefore, the Fredholm boundary value problem (1.1)
is uniquely solvable.

Examples show that the constant in the right-hand side of inequality (1.5) is unimpovable.
Let us define a linear bounded operator Tθ : C[0, 1] → L[0, 1], θ ∈ (0, 1), by the equality

(Tθx)(t) =





0, t ∈ [0, θ],

− x(1)∫ 1
θ

G(1,s) ds
, t ∈ (θ, 1].

Homogeneous problem (1.1) for T = Tθ and f ≡ 0 has a non-trivial solution

x(t) =
∫ 1

θ

G(t, s) ds, t ∈ [0, 1].

Therefore, this problem isn’t uniquely solvable. Since

lim
θ→1−

‖ Tθ‖C→L = lim
θ→1−

1 − θ
∫ 1

θ
G(1, s) ds

= T̃n,k,

for every ε > 0 there exists a linear bounded operator T : C[0, 1] → L[0, 1] with ‖ T‖C→L =

T̃n,k + ε such that problem (1.1) isn’t uniquely solvable.
However, it was shown in [24–26] that for certain monotone functional operators and

for some boundary value problems, the solvability conditions based on contraction mapping
principle can be essentially weakened.

An operator T : C[0, 1] → L[0, 1] is called positive if it maps non-negative functions from
C[0, 1] to almost everywhere non-negative functions from L[0, 1]. The norm of such an oper-
ator is defined by the equality ‖ T‖C→L =

∫ 1
0 (T1 )(t) dt, where 1 (t) = 1, t ∈ [0, 1], is the unit

function. For p ∈ L[0, 1] and a measurable function h : [0, 1] → [0, 1], the operator

(Tx)(t) = p(t)x(h(t)), t ∈ [0, 1],

is positive if the function p ∈ L[0, 1] is non-negative. Its norm equals ‖ T‖C→L =
∫ 1

0 p(t) dt.
This work is devoted to weakening the solvability conditions (1.5) for problem (1.1) with

positive linear operators T : C[0, 1] → L[0, 1]. We obtain a necessary and sufficient condition
for the focal boundary value problem (1.1) to be uniquely solvable for all positive operators T

with a given norm.
For some other boundary value problems, similar unimprovable conditions are obtained

by R. Hakl, A. Lomtatidze, S. Mukhigulashvili, B. Půža, J. Šremr, and others [10,16,24–27,30].
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2 Main results

Theorem 2.1. Let a non-negative number T be given. Problem (1.1) is uniquely solvable for all

positive linear operators T : C[0, 1] → L[0, 1] with norm T if and only if

T ≤ min
0<t<1, 0<s<1

G(t, 1) + G(1, s) + 2
√

G(t, s)G(1, 1)
G(t, s)G(1, 1)− G(t, 1)G(1, s)

≡ Tn,k.

Taking into account (1.3), the constants Tn,k are well-defined. Green’s function G(t, s) has
explicit representation (1.2), therefore, the best constant Tn,k from the solvability conditions can
be easily calculated approximately. Note, since Green’s functions of corresponding problems
are symmetric, we have

Tn,k = Tn,n−k.

In some cases, the constants are calculated exactly. In particular, T2,1, T4,2, T6,3 are obtained in
Example 3.3, and the constant T3,1 is obtained in Example 3.9. For even n in Theorem 3.2, the
constants Tn,n/2 are represented using one-dimensional minimization. In Corollaries 3.5, 3.6,
asymptotically unimprovable estimates for Tn,n/2 are obtained.

The proof of Theorem 2.1 is based on the following assertion [11, Theorem 2.28, p. 106]
(see also a similar proof in [12]).

Proposition 2.2 ([11,12]). Let T be a non-negative number. Problem (1.1) is uniquely solvable for all

positive linear operators T : C[0, 1] → L[0, 1] with norm T if and only if for all numbers c, d, τ1, τ2,

T1, T2 satisfying the conditions

c, d ∈ [0, 1], 0 ≤ τ1 ≤ τ2 ≤ 1, T1 ≥ 0, T2 ≥ 0, T1 + T2 ≤ T , (2.1)

the inequality

∆ ≡ ∆(τ1, τ2, c, d, T1, T2)

≡ 1 + T1G(τ1, c) + T2G(τ2, d) + T1T2(G(τ1, c)G(τ2, d)− G(τ2, c)G(τ1, d)) ≥ 0
(2.2)

holds.

Proof of Theorem 2.1. We will use Proposition 2.2. Let

R ≡ G(τ1, c)G(τ2, d)− G(τ2, c)G(τ1, d).

If R ≥ 0, then ∆ = 1 + T1G(τ1, c) + T2G(τ2, d) + T1T2R > 0.
Let further R < 0 and 0 < τ1 < τ2 < 1. From (1.3) and R < 0 it follows that

0 < d < c ≤ 1. (2.3)

For fixed points τ1, τ2, c, d, and T1, ∆ takes its minimum at T2 = T − T1 or at T2 = 0. In
the latter case, ∆ = 1 + T1G(τ1, c) ≥ 1.

Thus, the inequality (2.2) should be verified only at T2 = T − T1 for all T1 ∈ [0, T ]. In this
case, we have

∆ ≡ ∆(τ1, τ2, c, d, T1)

≡ 1 + T1G(τ1, c) + (1 − T1)G(τ2, d) + T1(1 − T1)R

= −T 2
1 R + T1(G(τ1, c)− G(τ2, d) + T R) + 1 + T G(τ2, d).
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Let us find the minimum of this value in the variable T1 at fixed values of other variables.
Denote B ≡ G(τ1, c)− G(τ2, d).
If |B/R| > T , then the value ∆ takes its minimum on T1 ∈ [0, T ] at T1 = 0 or T1 = T . In

the first case, we have ∆ = 1 + T G(τ2, d) ≥ 1, in the second one, ∆ = 1 + T G(τ1, c) ≥ 1.
If |B/R| ≤ T , then the minimum of ∆ occurs at

T1 =
G(τ1, c)− G(τ2, d) + T R

2R
≡ T + B/R

2
.

This minimum value is equal to

∆min =
R

4
T 2 + T

(
B

2
+ G(τ2, d)

)
+ 1 +

B2

4R
,

therefore, ∆min ≥ 0 if and only if the following inequalities hold:

Q(τ1, τ2, c, d) ≤ T ≤ S(τ1, τ2, c, d),

where

Q(τ1, τ2, c, d) ≡ G(τ1, c) + G(τ2, d)− 2
√

G(τ1, d)G(τ2, c)

|R| ,

S(τ1, τ2, c, d) ≡ G(τ1, c) + G(τ2, d) + 2
√

G(τ1, d)G(τ2, c)

|R| .

From the inequality (1.3) for s1 = d and s2 = c it follows that

G(τ1, c) + G(τ2, d)− 2
√

G(τ1, d)G(τ2, c)

|R| ≤ |G(τ1, c)− G(τ2, d)|
|R| ≤ |B|

|R| ≤ T .

Therefore, inequality (2.2) is satisfied for all parameters satisfying the conditions (2.1) if
and only if

T ≤ min
0≤τ1≤τ2≤1

c,d∈[0,1], R<0

S(τ1, τ2, d, c) ≡ T̃ .

Since (2.3), we have

T̃ = min
0<τ1<τ2≤1
0<d<c≤1

S(τ1, τ2, d, c).

Our aim is to simplify the expression for evaluating T̃ .
For 0 ≤ τ1 ≤ τ2 ≤ 1, 0 < d < c ≤ 1, we prove that

S′
τ2
(τ1, τ2, d, c) =

1
R2

(
G′

τ2
(τ2, d)

G(τ2, d)
A − G′

τ2
(τ2, c)

G(τ2, c)
B

)
≤ 0, (2.4)

where

A = G(τ1, c)2G(τ2, d) + G(τ1, d)G(τ2, d)G(τ2, c) + 2G(τ1, c)G(τ2, d)
√

G(τ1, d)G(τ2, c),

B = G(τ1, c)G(τ1, d)G(τ2, c) + G(τ1, d)G(τ2, d)G(τ2, c)

+ (G(τ1, c)G(τ2, d) + G(τ1, d)G(τ2, c))
√

G(τ1, d)G(τ2, c).
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Since the function G(t, s) is an oscillating kernel, we easily see that B ≥ A ≥ 0. Indeed, we
have

B − A = (G(τ1, c) +
√

G(τ1, d)G(τ2, c))(G(τ1, d)G(τ2, c)− G(τ1, c)G(τ2, d)) ≥ 0.

Let us prove that for each t ∈ (0, 1] the function G′
t(t,s)

G(t,s) does not decrease in the second
argument for s ∈ (0, 1]. It suffices to show that for all 0 < t1 < t2 ≤ 1, 0 < s1 < s2 ≤ 1, the
inequality

G(t2, s2)− G(t1, s2)

G(t1, s2)
≥ G(t2, s1)− G(t1, s1)

G(t1, s1)

holds. This inequality is a direct consequence of the inequality (1.3). It follows that inequality
B ≥ A implies inequality (2.4).

Similarly, it is verified that for 0 ≤ τ1 ≤ τ2 ≤ 1, 0 < d < c ≤ 1, the inequality

S′
c(τ1, τ2, d, c) ≤ 0 (2.5)

holds. From (2.4) and (2.5) it follows that in (2.5) the value T̃ has the minimum point at τ2 = 1
and c = 1. This implies the assertion of the theorem.

3 Consequences

For calculating the constants Tn,n/2, we need the following lemma, a technical proof of which
was carried out in the paper [13].

Lemma 3.1. Let n = 2k. Then the function

M(t, s) =
√

G(t, s)G(1, 1)−
√

G(t, 1)G(s, 1), t, s ∈ [0, 1],

has its maximum value at t = s.

Let us show that for even n to calculate the constants Tn,n/2, it is sufficient to solve an
one-dimensional optimization problem.

Theorem 3.2. Let a non-negative number T and n = 2k be given. Problem (1.1) is uniquely solvable

for all positive linear operators T : C[0, 1] → L[0, 1] with the norm T if and only if

T ≤ 2 ((n/2 − 1)!)2

max
0<t<1

(
t(n−1)/2

n−1 −
∫ t

0 (t − τ)n/2−1(1 − τ)n/2−1 dτ

) ≡ Tn,n/2. (3.1)

Proof. Let us use the Theorem 2.1. We have

G(t, 1) + G(1, s) + 2
√

G(t, s)G(1, 1)
G(t, s)G(1, 1)− G(t, 1)G(1, s)

=
(
√

G(t, 1)−
√

G(1, s))2

G(t, s)G(1, 1)− G(t, 1)G(1, s)
+

2√
G(t, s)G(1, 1)−

√
G(t, 1)G(1, s)

.

It follows that if t0 = s0 and the point (t, s) = (t0, s0) is the minimum point of the function

2√
G(t, s)G(1, 1)−

√
G(t, 1)G(1, s)

,
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then the minimum of the value expressing the exact estimate of the norm of the operator T

under the conditions of the Theorem 2.1 will be taken at this point.
Lemma 3.1 implies that for n = 2k the minimum under the conditions of Theorem 2.1 is

taken namely at s = t. Calculating G(t, t) and G(t, 1) using representation (1.2), we obtain the
assertion of the theorem.

Example 3.3. Under the conditions of the Theorem 3.2 for n = 2, n = 4, and n = 6 the values
Tn,n/2 are calculated exactly. We have

T2,1 = 8

(the maximum in the representation of T2,1 (3.1) occurs at t2 = 1/4);

T4,2 = 66 + 30
√

5,

(the maximum in the representation of T4,2 (3.1) occurs at t4 = 3−
√

5
2 );

T6,3 = 120
2t3

6 − 10t2
6 + 20t6 + 12

√
t6

t3
6(1 − t6)(t4

6 − 9t3
6 + 36t2

6 − 64t1
6 + 36)

≈ 2610,

where the point of the maximum t6 in representation (3.1) of T6,3 is defined by the equalities

t6 = ((C − 1 −
√

27 − C2 + 22/C)/4)2 ≈ 0.49,

C =

√
2(124 + 4

√
97)1/3 + 9 + 48(124 + 4

√
97)−1/3.

Remark 3.4. Apparently only the constant

T2,1 = 8 (3.2)

was previously known. In particular, equality (3.2) follows from the results of the work [33] on
the solvability of two-dimensional systems functional differential equations. The solvability
conditions associated with the rest of the found constants Tn,k are new.

For even n ≥ 8, we obtain sufficient conditions for solvability (lower bounds for the con-
stants Tn,n/2).

Corollary 3.5. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

‖ T‖C→L ≤ (n2 − 9)(n2 − 1) ((n/2 − 1)!)2

3 + (n − 2)
(

n−7
n−3

) n+1
2

,

then problem (1.1) is uniquely solvable.

Corollary 3.6. Let n = 2k ≥ 8 and a linear operator T : C[0, 1] → L[0, 1] be positive. If

‖ T‖C→L ≤ e2(n − 3)3 ((n/2 − 1)!)2 , (3.3)

then problem (1.1) is uniquely solvable.

Remark 3.7. In (3.3), the constant e2 and the exponent 3 are sharp.
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Proof of Corollary 3.5. Let us introduce the notation

yn(t) ≡
t(n−1)/2

n − 1
−

∫ t

0
(t − τ)n/2−1(1 − τ)n/2−1 dτ,

Yn ≡ max
0<t<1

yn(t), Tn ≡ Tn,n/2.

By Theorem 3.2, it is obvious that

Tn ≡ 2 ((n/2 − 1)!)2

Yn
.

We obtain the estimate Ŷn ≥ Yn. Then

Tn ≥ T̂n ≡ 2 ((n/2 − 1)!)2

Ŷn

,

therefore, the condition T ≤ T̂n ensures the unique solvability of the problem (1.1) for each
positive operator T with given norm T .

It is convenient to present y′n using the hypergeometric function 2F1 [9, p. 69]:

y′n(t) =
t(n−3)/2

2
− (n/2 − 1)

∫ t

0
(t − τ)n/2−2(1 − τ)n/2−1 dτ

=
t(n−3)/2

2
− (n/2 − 1)tn/2−1

∫ 1

0
(1 − θ)n/2−2(1 − tθ)n/2−1 dθ

=
t(n−3)/2

2
− tn/2−1

2F1(1 − n/2, 1; n/2; t) ≡ t(n−3)/2

2
zn(t),

(3.4)

where
zn(t) ≡ 1 − 2

√
t 2F1(1, 1 − n/2; n/2; t).

Further, for the hypergeometric function, the following properties will be used (it is obvious
that in our case the hypergeometric function is a polynomial, moreover, we only need real
parameters and a real argument). [9, p. 71–72] :

dm

dtm 2F1(a, b; c; t) =
(a)m(b)m

(c)m
2F1(a + m, b + m; c + m; t), t ∈ [0, 1],

(a)m = a(a + 1) · . . . · (a + m − 1), m = 1, 2, 3, . . . , (a)0 = 1,

2F1(a, b; c; t) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0

θ
b−1(1 − θ)c−b−1

(1 − tθ)c−b−1 θ t ∈ [0, 1], c > b > 0. (3.5)

Estimating zn(t), we obtain an approximation for y′n(t). Let

ẑn(t) ≡ (t − 1)
(

1
2(n − 3)

+
t − 1

8

)
.

Lemma 3.8. For every n ≥ 8, the inequality

zn(t) ≥ ẑn(t), t ∈ [0, 1], (3.6)

holds.
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Proof. It suffices to show that

Hn(t) ≡ 2F1(1, 1 − n/2; n/2; t) ≤
1 + (1 − t)

(
1

2(n−3) +
t−1

8

)

2
√

t
≡ Zn(t), t ∈ (0, 1]. (3.7)

We have

Zn(1) = Hn(1) = 1/2, Z′
n(1) = H′

n(1) = − n − 2
4(n − 3)

, Z′′
n (1) = H′

n(1) =
n − 2

4(n − 3)
.

To prove (3.7), it is now sufficient to prove that for all t ∈ (0, 1]

H′′′
n (t) =

6 (1 − n
2 )3

( n
2 )3

2F1(4, 4 − n/2; n/2 + 3; t) ≥ Z′′′
n (t) =

3(n(t2 + 2t − 35) + 3t2 − 10t + 85)
128(n − 3)t7/2 .

It remains to verify the chain of the inequalities

H′′′
n (t) ≥ w0(t) ≥ w1(t) ≥ w2(t) ≥ Z′′′

n (t), t ∈ (0, 1], (3.8)

where
w0(t) ≡ H′′′

n (0) + t(H′′′
n (1)− H′′′

n (0)),

H′′′
n (0) = −6

(n/2 − 3)(n/2 − 2)(n/2 − 1)
(n/2)(n/2 + 1)(n/2 + 2)

, H′′′
n (1) = −6

(n/2 − 1)2(n/2 − 2)(n/2 − 3)
(n − 5)(n − 4)(n − 3)(n − 2)

,

w1(t) ≡
45
8

t − 6, w2(t) =
3(t2 + 2t − 35)

128t7/2 .

To prove the first inequality in (3.8), we use the equality [9, p. 71]

H
(m)
n (t) =

(1 − n/2)m(1)m

(n/2)m
2F1(1 − n/2 + m, 1 + m; n/2 + m; t),

from which it follows that the sign of the function H
(m)
n (t) coincides with (−1)m, in particular,

for m = 3, m = 4, m = 5 (it is also taken into account that due to the integral representa-
tion (3.5) [9, p. 72] the function 2F1(1 − n/2 + m, 1 + m; n/2 + m; t) is non-negative. The rest
inequalities can be verified directly.

Define the function ŷn by the equality

ŷn(t) ≡ −1
2

∫ 1

t
s

n−3
2 ẑn(s) ds, t ∈ (0, 1].

It is clear that ŷn(1) = yn(1) = 0. From (3.4) and (3.6) it follows that

ŷn(t) ≥ yn(t), t ∈ [0, 1].

Its maximum Ŷn ≥ Yn the function ŷn(t) takes at the point tn ∈ (0, 1) defined by the equality

ŷ′n(tn) =
t

n−3
2

n

2
ẑn(tn) = 0.

therefore, we get

tn =
n − 7
n − 3

,

Ŷn =
∫ 1

tn

s
n−3

2

2
(1 − s)

(
1

2(n − 3)
+

s − 1
8

)
ds =

6 + 2(n − 2)
(

n−7
n−3

)n/2+1/2

(n2 − 9)(n2 − 1)
.

This implies the assertion of Corollary 3.5.
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Proof of Corollary 3.6. It is easy to see that

lim
n→∞

(n − 3)3Ŷn =
2
e2 .

Moreover, (n − 3)3Ŷn <
2
e2 for all n ≥ 8. Thus, the statement of Corollary 3.6 is also true.

Example 3.9. Consider problem (1.1) for the third-order equation for k = 1




x′′′ (t) + (Tx) (t) = f (t) , t ∈ [0, 1] ,

x(0) = 0,

x′(1) = 0, x′′(1) = 0,

(3.9)

By Theorem 2.1 problems (3.9) is uniquely solvable for all positive linear operators T :
C[0, 1] → L[0, 1] with the norm T if and only if

T ≤ min
0<s≤t<1

2
t2 − s2 + 2s + 2

√
(2t − s)s

s(1 − t)(2t − s − st)
= 6(3 + 2

√
3) ≅ 38.8.

Note, the minimum occurs at s = (3 −
√

3)/6, t = (3 −
√

3)/3.
For each ε > 0, there is a positive operator with the norm 6(3 + 2

√
3) + ε, for which

problem (3.9) is not uniquely solvable.
Proposition 1.1 only allows us to claim that problems (3.9) is uniquely solvable if the norm

of the operator T is less than or equal to two.

Example 3.10. It is clear that the constant Tn,k from the necessary and sufficient conditions of
Theorem 2.1 is equal or greater than the constants T̃n,k from Preposition 1.1. With the help
of approximate computation, we make the following table containing the integer parts of the
quotients Tn,k/T̃n,k, which shows how the classical results are improved by Theorem 2.1:

k = 1 k = 2 k = 3 k = 4 k = 5
n = 2 8
n = 3 19
n = 4 31 44
n = 5 42 75
n = 6 54 109 130
n = 7 66 145 190
n = 8 78 184 255 275
n = 9 90 226 326 366
n = 10 101 269 404 464 481

Every element of this table shows approximately how many times the conditions of Theo-
rem 2.1 are weaker than in Proposition 1.1 for given n and k, and gives a sufficient solvability
conditions for corresponding problem (1.1). Formulate, for example, one such sufficient con-
dition.

Proposition 3.11. For n = 10 and k = 1 problem (1.1) is uniquely solvable if T : C[0, 1] → L[0, 1] is

a linear positive operator and
∫ 1

0 (T1 )(t) dt ≤ 101 · 9!. There exists a linear positive operator T with∫ 1
0 (T1 )(t) dt ≥ 102 · 9! such that problem (1.1) isn’t uniquely solvable.
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Abstract. The Nagumo lattice differential equation admits stationary solutions with
arbitrary spatial period for sufficiently small diffusion rate. The continuation from the
stationary solutions of the decoupled system (a system of isolated nodes) is used to
determine their types; the solutions are labelled by words from a three-letter alphabet.
Each stationary solution type can be assigned a parameter region in which the solu-
tion can be uniquely identified. Numerous symmetries present in the equation cause
some of the regions to have identical or similar shape. With the help of combinatorial
enumeration, we derive formulas determining the number of qualitatively different ex-
istence regions. We also discuss possible extensions to other systems with more general
nonlinear terms and/or spatial structure.

Keywords: reaction-diffusion equation, lattice differential equation, graph differential
equation, stationary solutions, enumeration, symmetry groups.
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1 Introduction

In this paper, we consider the Nagumo lattice differential equation (LDE)

u′
i(t) = d

(
ui−1(t)− 2ui(t) + ui+1(t)

)
+ f

(
ui(t); a

)
(1.1)

for i ∈ Z, t > 0 with d > 0, where the nonlinear term f is given by

f (s; a) = s(1 − s)(s − a), (1.2)

with a ∈ (0, 1). The LDE (1.1) is used as a prototype bistable equation arising from the mod-
elling of a nerve impulse propagation in a myelinated axon [4]. The bistable equations have
their use in modelling of active transmission lines [32, 33], cardiophysiology [3], neurophysi-
ology [4], nonlinear optics [25], population dynamics [28] and other fields.

BCorresponding author. Email: sviglerv@kma.zcu.cz
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Throughout this paper, we shall use correspondence of the LDE (1.1) and the Nagumo
graph differential equation on a cycle (1.6). The graph and lattice reaction-diffusion differ-
ential equations are used in modelling of dynamical systems whose spatial structure is not
continuous but can be described by individual vertices (possibly infinitely many) and their in-
teraction via edges. The main difference is such that a lattice (the underlying structure of (1.1))
is infinite but there are strong assumptions on its regularity whereas graphs are usually (but
not exclusively) finite and nothing is assumed about their structure in general. Such models
arise in population dynamics [1], image processing [29], chemistry [27], epidemiology [26] and
other fields. Alternative focus lies in the numerical analysis where the graph differential equa-
tions describe spatial discretizations of partial differential equations [17, 23]. Mathematically,
the interaction between analytic and graph theoretic properties represent new and interesting
challenges. The graph and lattice reaction-diffusion differential equations exhibit behaviour
which cannot be observed in their partial differential equation counterparts such as a rich
structure of stationary solutions [36], or other phenomena described in the forthcoming text
such as pinning, multichromatic waves and other.

The LDE (1.1) is known to possess travelling wave solutions of the form

ui(t) = ϕ(i − ct),

lim
s→−∞

ϕ(s) = 0, lim
s→+∞

ϕ(s) = 1.
(1.3)

As the authors in [24] and [38] had shown, there are nontrivial parameter (a, d)-regimes pre-
venting the solutions of type (1.3) from travelling (c = 0) creating the so-called pinning region.
This propagation failure phenomenon can be partially clarified by the existence of countably
many stable stationary solutions (including the periodic ones) of (1.1) which inhabit mainly
the pinning region, see Figure 1.1. This pinning phenomenon was observed in other lattice
systems [10], experimentally in chemistry [27] and also hinted in systems of coupled oscilla-
tors [6]. It is worth mentioning that the equation (1.1) can be obtained via spatial discretization
of the Nagumo partial differential equation

ut(x, t) = duxx(x, t) + f
(
u(x, t); a

)
,

which possesses travelling wave solutions of type

u(x, t) = ϕ(x − ct),

lim
s→−∞

ϕ(s) = 0, lim
s→+∞

ϕ(s) = 1;
(1.4)

the waves are pinned if and only if
∫ 1

0 f (s; a)ds = 0.
The waves of type (1.3) (whether the travelling or the pinned ones) can be perceived as so-

lutions connecting two homogeneous stable states of the LDE (1.1); constant 0 and constant 1.
This concept can be generalized to the solutions connecting the nonhomogeneous periodic
steady states. Let u, v ∈ R

n be two vectors such that their periodic extensions are asymptoti-
cally stable stationary solutions of the LDE (1.1). The multichromatic wave is then a solution
of a form

ui(t) = φ(i − ct),

lim
s→−∞

φ(s) = u, lim
s→+∞

φ(s) = v,
(1.5)

where

φ = (φ1, φ2, . . . , φn) : R → R
n.
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Figure 1.1: Numerically computed regions in the (a, d)-plane in which the waves
of the type (1.3) travel (the regions above the two dot-dashed curves) and the
pinning region (the region between the a-axis and the two dot-dashed curves).
To better illustrate the significance and the presence of the stable heterogeneous
n-periodic stationary solutions of the LDE (1.1) in the pinning region, we include
the existence regions for the two-periodic stable stationary solutions (dotted
edge), the three-periodic stable stationary solutions (dashed edge) and the four-
periodic stable stationary solutions (solid edge).

The bichromatic waves connecting homogeneous and two-periodic solutions were examined
in [19]. The tri- and quadrichromatic waves incorporating three- and four-periodic solutions
were studied in detail in [20]. Stationary solutions with analogous construction idea, the
oscillatory plateaus whose limits approach homogeneous steady states and there exists a middle
section close to a periodic stationary solution, were analysed in [7].

Motivated by the importance of detailed understanding of the existence of the stationary
solutions to the analysis of the advanced structures, the focal point of this paper is the exam-
ination of the (a, d)-regions in which particular periodic stationary solutions of the LDE (1.1)
exist. Our aim is to derive counting formulas for inequivalent existence regions; the notion of
equivalence is rigorously defined in the forthcoming section since it requires certain technical
preliminaries. It is useful to have a detailed knowledge of the shape of the regions because of
their connection to other phenomena. It has been shown in [19,20] that they are closely related
to the travelling regions of the multichromatic waves. As simulations hint (see Figure 1.1), the
regions corresponding to the stable stationary solutions seem to inhabit mainly the pinning
region. Finally, we emphasize their obvious significance as the condition for emergence of
spatial patterns in the LDE (1.1). To reach the goal, we employ the idea from [21] where we
have shown a one-to-one correspondence of the LDE (1.1) n-periodic stationary solutions and
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stationary solutions of the Nagumo graph differential equation (GDE) on an n-vertex cycle




u′
1(t) = d

(
un(t)− 2u1(t) + u2(t)

)
+ f

(
u1(t); a

)
,

u′
2(t) = d

(
u1(t)− 2u2(t) + u3(t)

)
+ f

(
u2(t); a

)
,

...

u′
i(t) = d

(
ui−1(t)− 2ui(t) + ui+1(t)

)
+ f

(
ui(t); a

)
,

...

u′
n(t) = d

(
un−1(t)− 2un(t) + u1(t)

)
+ f

(
un(t); a

)
,

(1.6)

and, subsequently, with vectors of length n having elements in the three letter alphabet A3 =

{0, a, 1}, also called the words. The words encode the origin of the bifurcation branches for
d = 0 whose existence can be shown by using the implicit function theorem for d > 0 small
enough. Moreover, the implicit function theorem also implies that the solutions preserve their
stability and the asymptotically stable solutions can be thus identified with words created
with the two letter alphabet A2 = {0, 1}. The region in the (a, d)-space belonging to a solution
labelled by a word w is denoted by Ωw ⊂ H = [0, 1] × R

+. Since the stationary problem
for (1.6) is equivalent to the problem of searching for the roots of a 3n-th order polynomial
it is a convoluted task to derive some information about the regions. There are known lower
estimates for their upper boundaries, [12], asymptotics near threshold points a ≈ 0, a ≈ 1
and numerical results, both [19, 20]. The computations and the numerical simulations can be
cumbersome to carry out and thus the exploitation of the equation symmetries is beneficial.
The idea is to observe, whether a symmetry present in the equation relates two regions Ωw

without any a-priori knowledge of their shapes. For example, the LDE (1.1) is invariant to an
index shift and the GDE (1.6) is invariant to the rotation of indices. Consider n = 3, then given
a parameter tuple (a, d) ∈ H, if there exists a stationary solution u1 of the GDE (1.6) emerging
from (0, 0, 1) for d = 0, then there surely exist solutions u2, u3 emerging from (0, 1, 0), (1, 0, 0),
respectively. Moreover, u1, u2, u3 have identical values which are just rotated by one element
to the left. We can thus say that the regions of existence of the solutions emerging from
(0, 0, 1), (0, 1, 0) and (1, 0, 0) are identical, i.e., Ω001 = Ω010 = Ω100.

We show how the symmetries of the LDE (1.1) and the GDE (1.6) correspond and how
they propagate to the set of the labelling words An

3 . Namely, the index rotation i 7→ i + 1,
the reflection i 7→ n − i + 1 create word subsets whose respective regions are identical. The
value switch 0 ↔ 1 relates solution types whose respective regions are axially symmetric to
each other. To this end, we define groups acting on the set of the words An

3 and compute the
number of their orbits (the number of the word subsets which are pairwise unreachable by the
action of the group) via Burnside’s lemma, Theorem 2.6. We next restrict the computations
to the words whose primitive period is equal to their length since the periodic extension of
the GDE (1.6) stationary solution of a certain type (e.g., 0a0a0a) is identical to a periodic
extension of its subword with the length equal to the original word’s primitive period (0a
here). The main tool is Möbius inversion formula in this case, Theorem 2.7. The division of
the word set An

3 into orbits with respect to the action of a group can be achieved with the
cost proportional to the number of the words (3n in this case), see [9]. Our results do not help
with the generation of the representative words directly but enable us to easily determine
their number. All results are also provided for asymptotically stable stationary solutions of
the LDE (1.1) whose corresponding labelling set is An

2 .
The paper is organized as follows. In §2 we provide an overview of the properties of
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the periodic stationary solutions of the LDE (1.1) including the introduction of the labelling
scheme and the statement of our main result, Theorem 2.9. We next include a list of rele-
vant symmetries of the equation and their influence on the regions Ωw and conclude with
presentation of the used group-theoretical tools together with the commentary of the known
results. Using the formal definitions from the preceding text, §3 is devoted to the derivation
of lemmas needed for the proof of the main statement in §4. The final paragraphs elaborate
on possible extensions to other models and we discuss open questions therein.

2 Preliminaries

2.1 Periodic stationary solutions and existence regions

Searching for a general stationary solution of the LDE (1.1) requires solving a countable sys-
tem of nonlinear analytic equations. The restriction to periodic solutions simplifies the case
to a finite-dimensional problem. Indeed, the problem is thus reduced to finding stationary
solutions of the GDE (1.6).

Lemma 2.1 ([21, Lemma 1]). Let n ≥ 3. The vector u = (u1, u2, . . . , un) is a stationary solution
of the GDE (1.6) if and only if its periodic extension u is an n-periodic stationary solution of the
LDE (1.1). Moreover, u is an asymptotically stable solution of the GDE (1.6) if and only if u is an
asymptotically stable solution of the LDE (1.1) with respect to the ℓ∞-norm.

If u = (u1, u2, . . . , un) ∈ R
n is a vector then the periodic extension (ui)i∈Z ∈ ℓ∞ of u

satisfies ui = u1+mod (i,n) for all i ∈ Z. In the further text, the function mod (a, b) denotes the
remainder of the integer division of a/b for a, b ∈ N.

Let us denote the function on the right-hand side of the GDE (1.6) by h : R
n × (0, 1)×R

+
0 →

R
n,

h(u; a, d) =




d
(
un − 2u1 + u2

)
+ f (u1; a)

...
d
(
ui−1 − 2ui + ui+1

)
+ f (ui; a)

...
d
(
un−1 − 2un + u1

)
+ f (un; a)




. (2.1)

The problem of finding a stationary solution of the GDE (1.6) can be now reformulated as

h(u; a, d) = 0. (2.2)

The problems of type (2.2), i.e., a diagonal nonlinear perturbation of a finite-dimensional linear
operator, are being treated with a wide spectrum of methods ranging from variational tech-
niques, topological approaches to monotone operator theory, see [37] and references therein.
We derive some information about the system using the perturbation theory. Suppose d = 0,
then the problem

h(u; a, 0) = 0 (2.3)

has precisely 3n solutions u ∈ R
n which are vectors of length n with the coordinates in the

set {0, a, 1}; the system (2.3) contains n independent equations. There is also an easy way to
determine the stability of the roots of (2.3). One can readily calculate that

f ′(0; a) = −a, f ′(a; a) = a(1 − a), f ′(1; a) = a − 1,
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which gives f ′(s; a) < 0 for either s = 0 or s = 1 and f ′(s; a) > 0 for s = a. The derivative
of the function h with respect to the first variable, D1h(u; a, 0), is a regular diagonal matrix at
each solution of (2.3)

D1h(u; a, 0) = diag
(

f ′(u1; a), f ′(u2; a), . . . , f ′(un; a)
)
.

If the solution vector contains the value a then it is an unstable stationary solution of the
GDE (1.6) and it is stable otherwise for d = 0. Let some a∗ ∈ (0, 1) be given. The implicit
function theorem now ensures the existence of the solutions of the system (2.2) for (a, d) ∈
U ∩ H, where U is some neighbourhood of the point (a∗, 0). The parameter dependence is
smooth and the sign of the Jacobian is preserved.

The discussion above justifies the introduction of the naming scheme for the roots of (2.2)
where each solution is identified with the origin of its bifurcation branch at d = 0. It is
important to realize that the parameter a ∈ (0, 1) is allowed to vary in our considerations. The
identification must be made through the substitute alphabet A3 = {0, a, 1} and we define a
function w|a : An

3 → {0, a, 1}n for given a ∈ [0, 1] by

(w|a)i =





0, wi = 0,

a, wi = a,

1, wi = 1.

Definition 2.2 ([20, Definition 2.1]). Consider a word w ∈ An
3 together with a triplet

(u, a, d) ∈ [0, 1]n × (0, 1)× R
+
0 .

Then we say that u is an equilibrium of the type w if there exists a C1-smooth curve

[0, 1] ∋ t 7→
(
v(t), α(t), δ(t)

)
∈ [0, 1]n × (0, 1)× R

+
0

so that we have

(v, α, δ)(0) = (w|a, a, 0),

(v, α, δ)(1) = (u, a, d),

together with

h(v(t); α(t), δ(t)) = 0, det D1h(v(t); α(t), δ(t)) 6= 0

for all 0 ≤ t ≤ 1.

We define an open pathwise connected set for each w ∈ An
3 by

Ωw =
{
(a, d) ∈ H | the system (2.2) admits a solution of the type w

}
.

Under further considerations, it can be shown that any parameter-dependent solution uw(a, d)
of type w of the system (2.2) is uniquely defined in Ωw and if (a, d) ∈ Ωw1 ∩ Ωw2 6= ∅ for
any two given words w1 6= w2 then uw1(a, d) 6= uw2(a, d). We recommend the reader to
consult [20, §2.1] for a full-length discussion. The notion of solution type can be now passed
on to the periodic stationary solutions of the LDE (1.1) via the statement of Lemma 2.1, see
Figure 2.1 for illustration.

Remark 2.3. The definition of the naming scheme, Definition 2.2, ensures that a solution
uw of a given type w ∈ An

3 preserves its stability inside Ωw since the determinant of the
Jacobian matrix is not allowed to change its sign. Words from An

2 = {0, 1}n thus represent
asymptotically stable steady states.
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(a) A two-periodic stationary solution of
type 0a.

(b) A three-periodic stationary solution of
type 011.

(c) A four-periodic stationary solution of
type 0a11.

××

(d) Regions of existence Ωw for solutions of type 0a,
011, 0a11.

Figure 2.1: Examples of two-, three- and four-periodic stationary solutions of
the LDE (1.1) and the regions of existence for solutions of their respective type.
The parameters (a, d) = (0.475, 0.025) are set to be identical in all three cases.

2.2 Symmetries of the periodic solutions

We start with a list of symmetries of the system (2.2) which are relevant to the similarities of
the regions Ωw and then discuss their general impact on the number of the regions. Note that
the results apply to the periodic stationary solutions of the LDE (1.1) via Lemma 2.1.

2.2.1 Rotations

Let the rotation operator r : An
3 → An

3 be defined by
(
r(w)

)
i = w1+mod (i,n) (2.4)

for i = 1, 2, . . . , n with obvious extension to vectors in [0, 1]n. A shift in indexing in (2.2) shows
that u ∈ [0, 1]n is the system (2.2) solution of type w ∈ An

3 if and only if r(u) is a solution
of type r(w). Note that this is true in general even if u cannot be assigned a type; the claim
“u is a solution of the system (2.2)” is invariant with respect to the rotation r. As a direct
consequence, we have

Ωw = Ωr(w)

for all w ∈ An
3 .

The transformation r generates a finite cyclic group of order n which we denote by

Cn =
(
{r0, r1, . . . , rn−1}, ◦

)
.

where the group operation ◦ is composition of the rotations ri ◦ rj = rmod (i+j,n). For the sake
of consistency with the future notation, we denote the identity element e by r0 and r1 = r. Let
us mention one fact which is implicitly used throughout the paper. If i and n are relatively
coprime, then ri is a generator of the group Cn. For example, let n = 4, then the repetitive
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composition of r3 gives the sequence r3 → r2 → r1 → r0 → r3 → . . . which covers the whole
element set of C4. On the other hand, the composition of r2 gives r2 → r0 → r2 → . . . which
does not span the whole element set of C4.

2.2.2 Reflections

Let the reflection operator s : An
3 → An

3 be defined by
(
s(w)

)
i = wn−i+1 (2.5)

together with its natural extension to vectors in [0, 1]n. Similar argumentation as in the previ-
ous paragraph shows that u ∈ [0, 1]n is a solution of type w of the system (2.2) if and only if
s(u) is a solution of type s(w).

Adding the reflection s to the cyclic group Cn results in construction of the dihedral group
Dn which is generated by the transformations r and s. Let us denote the composition of the
rotation ri and the reflection s by sri = ri ◦ s (i.e., we first reflect and then rotate). For the sake
of consistency, we also set sr0 = s. This allows us to define the dihedral group

Dn =
(
{r0, r1, . . . , rn−1, sr0, sr1, . . . , srn−1}, ◦

)

and

Ωw = Ωg(w)

holds for all w ∈ An
3 and g ∈ Dn.

2.2.3 Value permutation

The third symmetry exploits a specific property of the cubic nonlinearity

f (s; a) = − f (1 − s; 1 − a)

with s, a ∈ [0, 1]. We therefore have

h(u; a, d) = −h(1 − u; 1 − a, d) (2.6)

for any u ∈ [0, 1]n and a ∈ [0, 1] where the subtraction 1− u is element-wise. Let us define the
value permutation π : An

3 → An
3 by

(
π(w)

)
i =





1, wi = 0,

a, wi = a,

0, wi = 1.

(2.7)

The equality (2.6) now shows that u is a solution of type w of the system (2.2) if and only if
1 − u is a solution of type π(w) with a 7→ 1 − a. As a direct consequence,

Ωw = T
(
Ωπ(w)

)

holds for all w ∈ An
3 where T : H → H is

T (a, d) = (1 − a, d). (2.8)
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The transformation T is a vertical reflection with respect to the line a = 1/2.
The operation π generates the two element group

Π =
(
{e, π}, ◦

)
,

where e is the identity element. The group Π can be also restricted to operate on the set of all
words made with the two letter alphabet A2 by

(
π(w)

)
i =

{
1, wi = 0,

0, wi = 1.

To enlighten the notation, we denote the symbol permutation group by the letter Π regardless
of the used alphabet.

In virtue of the previous notation, let us define πri = ri ◦ π and πsri = ri ◦ s ◦ π and the
group CΠ

n by

CΠ
n =

(
{r0, r1, . . . , rn−1, πr0, πr1, . . . , πrn−1}, ◦

)
.

Note that the group CΠ
n contains elements from Cn and the elements from Cn composed with

the symbol permutation π. Equivalently, we define the group DΠ
n by

DΠ
n =

({
r0, r1, . . . , rn−1, πr0, πr1, . . . , πrn−1,
sr0, sr1, . . . , srn−1, πsr0, πsr1, . . . , πsrn−1

}
, ◦

)
.

Although our main aim is the examination of the action of the group DΠ
n it is convenient to

study the group CΠ
n separately to be able to obtain partial results which are used in the proof

of the main theorem. Let us also emphasize that the action of the groups CΠ
n and DΠ

n preserves
stability of the corresponding solutions.

2.2.4 Primitive periods

Let us assume that a word w of length n has a primitive period of length m < n (say, 1aa1aa),
i.e., it consists of n/m-times repeated word wm of length m (1aa in this case). Then surely

Ωw = Ωwm ;

their respective regions are identical. It is not difficult to include this in the counting formulas
alone but the interplay with the group operations (Cn, Dn, CΠ

n , DΠ
n ) is more intricate and is

treated later via Möbius inversion formula, Theorem 2.7.

2.2.5 Other solution properties

It is clear that regions belonging to the constant solutions of type 00 . . . 0, aa . . . a and 11 . . . 1
are trivial

Ω00...0 = Ωaa...a = Ω11...1 = H.

Another notable similarity of regions can be illustrated on the words 01 and 0011. Argu-
mentation in [20, Section 4] shows that the region Ω0011 has exactly the same shape as twice
vertically stretched region Ω01. Indeed, we can consider u1 = u2 and u3 = u4 for solution
of type 0011 and the system (2.2) reduces to two equations with halved diffusion coefficient
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d. We were however not able to generalize this observation to other types of solutions since,
e.g., the natural candidate Ω000111 does not possess this property since u1 6= u2 6= u3 holds in
general.

Motivated by the previous paragraphs, we define the notion of similarity of the sets Ωw.

Definition 2.4. Two regions Ωw1 , Ωw2 ⊂ H are called qualitatively equivalent if either

Ωw1 = Ωw2 or Ωw1 = T (Ωw2).

Two sets are called qualitatively distinct if they are not qualitatively equivalent.

2.3 Orbits and equivalence classes

Orbit of a word from An
3 is a subset of An

3 reachable by the action of some group G. As
indicated in the previous section, we are interested in the number of different orbits since each
orbit with respect to the group DΠ

n contains words whose respective regions are qualitatively
equivalent. In fact, the orbits divide the sets of words An

2 ,An
3 into equivalence classes, i.e.,

two words w1, w2 belong to the same equivalence class (have the same orbit) if there exists a
group operation g ∈ G such that w1 = g(w2). Burnside’s lemma (Theorem 2.6) and Möbius
inversion formula (Theorem 2.7) are the main tools for determining the number of the classes
and the classes representing words with a given primitive period, respectively.

Example 2.5. There are 27 words of length n = 3 made with the alphabet A3 = {0, a, 1}:

WA3(3) ={000, 00a, 001, 0a0, 0aa, 0a1, 010, 01a, 011,

a00, a0a, a01, aa0, aaa, aa1, a10, a1a, a11,

100, 10a, 101, 1a0, 1aa, 1a1, 110, 11a, 111}.

Taking into account the action of the group C3, there are 11 equivalence classes

WC3
A3
(3) =

{
{000}, {aaa}, {111},

{00a, 0a0, a00}, {001, 010, 100}, {0aa, aa0, a0a},

{0a1, a10, 10a}, {01a, 1a0, a01}, {011, 110, 101},

{aa1, a1a, 1aa}, {a11, 11a, 1a1}
}

,

while the action of the group D3 merges two of these classes

WD3
A3

(3) =
{
{000}, {aaa}, {111},

{00a, 0a0, a00}, {001, 010, 100}, {0aa, aa0, a0a},

{0a1, a10, 10a, 1a0, a01, 01a}, {011, 110, 101},

{aa1, a1a, 1aa}, {a11, 11a, 1a1}
}

.

The action of the groups CΠ
3 and DΠ

3 divides the set of the words into the same system of
6 equivalence classes

WCΠ
3

A3
(3) = WDΠ

3
A3

(3) =
{
{000, 111}, {aaa},

{00a, 0a0, a00, 11a, 1a1, a11}, {001, 010, 100,

110, 101, 011}, {0aa, aa0, a0a, 1aa, aa1, a1a},

{0a1, a10, 10a, 1a0, a01, 01a}
}

.

See Figure 2.2 for a graphical illustration of the equivalence classes.
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Figure 2.2: A diagram capturing the action of the groups C3, D3, CΠ
3 and DΠ

3
on the set of three-letter words made with the alphabet A3. The presence of a
line connecting two words indicates the existence of an operation transforming
the solutions onto each other. The rotation r is expressed by a solid line, the
reflection s is expressed by a dashed line and the symbol permutation π is ex-
pressed by a dotted line. Every maximal connected subgraph with appropriate
line types represents one equivalence class with respect to the action of a certain
group, e.g., the action of CΠ

3 is depicted by solid and dotted lines.

The crucial question is whether we can determine the number of equivalence classes in a
systematic manner. A useful tool for this is Burnside’s lemma [8].

Theorem 2.6 (Burnside’s lemma). Let G be a finite group operating on a finite set S. Let I(g) be the
number of set elements such that the group operation g ∈ G leaves them invariant. Then the number
of distinct orbits O is given by the formula

O =
1
|G| ∑

g∈G
I(g).

The power of Burnside’s lemma lies in the fact that one counts fixed points of the group
operations instead of the orbits themselves. This can be much simpler in many cases as can
be seen in the forthcoming sections.

The number of the orbits induced by the action of the group Cn is usually called the
number of the necklaces made with n beads in two (the alphabet A2) or three (the alphabet A3)
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colors. The bracelets are induced by the action of the dihedral group Dn. Due to the lack of a
common terminology, we call the classes induced by the action of the groups CΠ

n and DΠ
n the

permuted necklaces and the permuted bracelets, respectively.
Burnside’s lemma does not take into account the primitive period of the words. For ex-

ample, the existence region of the solutions of type 0a1 coincides with the region of 0a10a1

and thus cannot be counted twice. The assumption of the primitive period of a given length
together with the action of the cyclic group Cn create classes which are called the Lyndon
necklaces. The Lyndon bracelets are a natural counterpart resulting from the action of the dihe-
dral group Dn together with the assumption of a given primitive period length. The classes
representing words with a given primitive period length without specification of the group
are called the Lyndon words. We emphasize that the terminology is not fully unified in the
literature but the one presented here suits our purpose best without rising any unnecessary
confusion.

Theorem 2.7 (Möbius inversion formula). Let f , g : N → R be two arithmetic functions such that

f (n) = ∑
d|n

g(d),

holds for all n ∈ N. Then the values of the latter function g can be expressed as

g(n) = ∑
d|n

µ
(n

d

)
f (d),

where µ is the Möbius function.

The Möbius function µ was first introduced in [30] as

µ(n) =

{
(−1)P(n), each prime factor of n is present at most once,

0, otherwise,

where P(n) number of the prime factors of n. Use of Möbius inversion formula is a straight-
forward one. Let us assume, that we know the number f (n) of the equivalence classes induced
by the action of one of the above defined groups (Cn, Dn, CΠ

n , DΠ
n ) for each n ∈ N (note that

the group actions preserve the length of the primitive period of each of the words). Then for
each n, this number f (n) is given as the sum of the number of equivalence classes representing
the words with primitive period of length d dividing n.

In the further text, we extensively exploit two crucial properties of Möbius inversion for-
mula. Firstly, the formula is linear in the sense, that

m

∑
i=1

αi fi(n) = ∑
d|n

g(d)

implies

g(n) = ∑
d|n

µ
(n

d

) m

∑
i=1

αi fi(d) =
m

∑
i=1

αi ∑
d|n

µ
(n

d

)
fi(d),

and thus, each fi can be treated separately. Secondly, we can freely exchange indices in the
following manner

g(n) = ∑
d|n

µ
(n

d

)
f (d) = ∑

d|n

µ(d) f
(n

d

)

since n = n/d · d.
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Example 2.8. We complement Example 2.5 with the list of equivalence classes of the of the
words with length n = 4 made with the alphabet A2 = {0, 1}. There exist words of length
4 with the primitive period 2 and thus the set of the equivalence classes and the set of the
Lyndon words will differ not by only the trivial constant words {0000}, {1111}. There are 16
words of length 4

WA2(4) =
{
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111
}

.

We next include the equivalence classes induced by the action of the groups C4, D4, CΠ
4 , DΠ

4 .
The words with the primitive period of length smaller than 4 are highlighted by a grey color

WC4
A2
(4) = WD4

A2
(4) =

{
{0000}, {1111}, {0101, 1010}, {0011, 0110, 1100, 1001},

{0001, 0010, 0100, 1000}, {0111, 1110, 1101, 1011}
}

,

WCΠ
4

A2
(4) = WDΠ

4
A2

(4) =
{
{0000, 1111}, {0101, 1010}, {0011, 0110, 1100, 1001},

{0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111}
}

.

This introduction allows us to state the main theorem of the paper which gives an upper
estimate of qualitatively distinct regions belonging to words of length m which ranges from
one up to some given value n ∈ N. We must combine the action of the dihedral group DΠ

m
with the assumption of the primitive period equal to the word length (Lyndon bracelets) for
each m ≤ n. It is however upper estimate only, since we cannot be sure whether there exist
two qualitatively equivalent regions whose labelling words are not related via any of the above
mentioned symmetries. Numerical simulations however indicate that the upper bound may
be close to optimal, [20].

Since the expressions in the theorem may look confusing at the first sight we include a
short preliminary commentary. The function BLπ

k (m) denotes the number of the permuted
Lyndon bracelets of length m and the formulas are defined by parts since they incorporate the
number of the bracelets which cannot be written in a consistent form for even and odd m’s.
The functions #≤Ak

(n) just add the numbers of Lyndon bracelets of length ranging from two to
n including the one region Ω0 = Ωa = Ω1 = H identical for all homogeneous solutions.

Theorem 2.9. Let n ≥ 2 be given. There are at most

#≤A3
(n) = 1 +

n

∑
m=2

BLπ
A3
(m) (2.9)

qualitatively distinct regions Ωw, w ∈ Am
3 , out of which at most

#≤A2
(n) = 1 +

n

∑
m=2

BLπ
A2
(m) (2.10)
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regions belong to the asymptotically stable stationary solutions, where

BLπ
A3
(m) =

1
4m

[
∑

d|m, d odd

µ(d) 3
m
d + XNL(m) + 2m ∑

d|m

µ
(m

d

)
Xπ

B,3(d)
]

, (2.11)

BLπ
A2
(m) =

1
4m

[
∑

d|m, d odd

µ(d) 2
m
d + 2n ∑

d|m

µ
(m

d

)
Xπ

B,2(d)
]

, (2.12)

XNL(m) =





1, m = 1,

−1, m = 2α, α ∈ N,

0, otherwise

and

Xπ
B,3(d) =





4
3
· 3

d
2 , d is even,

2 · 3
d−1

2 , d is odd,
Xπ

B,2(d) =





2
d
2 , d is even,

2
d−1

2 , d is odd.
(2.13)

The formulas from Theorem 2.9 are enumerated in Table 2.1.

n 3n 2n #≤A3
(n) BLπ

A3
(n) #≤A2

(n) BLπ
A2

(n)

2 9 4 3 2 {01, 0a} 2 1 {01}
3 27 8 7 4 {00a, 001, 0a1,

0aa}
3 1 {001}

4 81 16 16 9 {000a, 0001, 00aa,
00a1, 0011, 0a0a,
0aaa, 0aa1, 0a1a}

5 2 {0001, 0011}

5 243 32 36 20 not listed 8 3 {00001, 00011, 00101 }
6 729 64 80 44 not listed 13 5 {000001, 000011, 000101,

000111, 001011}
7 2187 128 184 104 not listed 21 8 not listed
8 6561 256 437 253 not listed 35 14 not listed
9 19683 512 1061 624 not listed 56 21 not listed
10 59049 1024 2689 1628 not listed 95 39 not listed

Table 2.1: Enumerated formulas from Theorem 2.9. The columns for 3n and 2n

are added for comparison since there are in total 3n regions Ωw with w ∈ An
3

and 2n of them correspond to the asymptotically stable stationary solutions.
The unlabelled columns list the lexicographically smallest representatives of the
Lyndon bracelets of a given length created with the respective alphabets; further
lists are omitted to prevent clutter. Note that #≤Ak

(n + 1) = #≤Ak
(n) + BLπ

Ak
(n + 1)

holds for n ≥ 2 and k = 2, 3.

2.4 Known results

Here, we summarize known results relevant to the focus of this paper. This summary consists
of two parts since our main result, Theorem 2.9, contributes to the knowledge of the periodic
stationary solutions of the LDE (1.1) as well as to the theory of combinatorial enumeration.
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The number of equivalence classes with respect to the action of the groups Cn and Dn and
their connection to the stationary solutions of the GDE (1.6) and the LDE (1.1) were studied in
the paper [21]. The results considered all stationary solutions (words from An

3 ) as well as the
stable solutions (words from An

2 ). Möbius inversion formula was used therein to determine
the numbers of the Lyndon necklaces and the Lyndon bracelets.

A more general case of the group CΠ
n which acted on the set of words created with a

given number of symbols not necessarily less or equal to three was considered in [13]. The
author also simplified the counting formulas for the permuted necklaces and the permuted
Lyndon necklaces for the case of two symbols, i.e., the alphabet A2, to the form which also
appears in this paper, Lemmas 3.3 and 3.10. However, none of the presented results could be
directly applied to the case of the transformation π acting on the words from An

3 . Formally,
the studied object was the group product of a cyclic group Cn and a symmetric group Sk (the
group of all permutations of k symbols). This coincides with our case only if k = 2, i.e., the
words are created with a two symbol alphabet A2. If k = 3, then the group CΠ

n is isomorphic
to the group product Cn × G where G is only a specific subgroup of S3. Let us also mention
that the problem was studied from the combinatorial point of view.

The authors in [14] were among other results able to derive a general counting formula for
the permuted bracelets and the permuted Lyndon bracelets of words created with an arbitrary
number of symbols. As in the case of the necklaces in [13], the results relevant to this paper
cover the case of the reduced alphabet A2 only. The generality of the presented formulas
however comes with a cost of their complexity. Taking advantage of our more specific setting,
we are able to utilize alternative approach which enables us to further simplify the formulas
for the case of the words from An

2 . Also, the focus of the work lied mainly in clarifying certain
combinatorial concepts.

3 Counting of equivalence classes

We continue with listing and deriving auxiliary counting formulas as well as those which are
directly used to prove the main result, Theorem 2.9.

In this section, (m, n) denotes the greatest common divisor of m, n ∈ N.

3.1 Counting of non-Lyndon words

We start with counting of the necklaces of length n made with k symbols.

Lemma 3.1 ([34, p. 162]). Given n ∈ N, the number of equivalence classes induced by the action of
the group Cn on the set of all words of length n made with a k-symbol alphabet is

Nk(n) =
1
n ∑

d|n

ϕ(d)k
n
d . (3.1)

The function ϕ(d) is the Euler totient function which counts relatively coprime numbers
to d, see [2]. Another classical result concerns the number of the bracelets of length n made
with k symbols.

Lemma 3.2 ([34, p. 150]). Given n ∈ N, the number of equivalence classes induced by the action of
the group Dn on the set of all words of length n made with a k-symbol alphabet is

Bk(n) =
1
2

[
Nk(n) + XB,k(n)

]
, (3.2)
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where

XB,k(n) =





k + 1
2

k
n
2 , n is even,

k
n+1

2 , n is odd.
(3.3)

The formulas for the necklaces and the bracelets can be derived for a general number of
symbols k. If we take the symbol permutation π into the account, the formulas regarding the
alphabets A2 and A3 are slightly different and thus, we treat both cases separately. The main
difference is that there are no invariant words with respect to the value permutation π with
the alphabet A2 and n odd. Indeed, the necessary condition for the invariance is that the word
has the same number of 0’s and 1’s. This can be bypassed by the use of the symbol a from the
alphabet A3.

Lemma 3.3 ([13, p. 300]). Given n ∈ N, the number of equivalence classes induced by the action of
the group CΠ

n on the set of all words of length n made with the alphabet A2 is

Nπ
A2
(n) =

1
2n

[
∑

d|n, d odd

ϕ(d) 2
n
d + 2 ∑

d|n, d even

ϕ(d) 2
n
d

]
. (3.4)

A somewhat similar formula can be derived for the necklaces made with the three-letter
alphabet A3.

Lemma 3.4. Given n ∈ N, the number of equivalence classes induced by the action of the group CΠ
n

on the set of all words of length n made with the alphabet A3 is

Nπ
A3
(n) =

1
2n

[
∑

d|n, d odd

ϕ(d)
(

1 + 3
n
d

)
+ 2 ∑

d|n, d even

ϕ(d) 3
n
d

]
. (3.5)

Proof. The group CΠ
n contains the pure rotations ri and the rotations with the symbol permu-

tations rπi totalling 2n operations. A direct application of Burnside’s lemma (Theorem 2.6)
yields

Nπ
A3
(n) =

1
2n

[ n−1

∑
l=0

I(rl) +
n−1

∑
l=0

I(πrl)

]
.

The expression (3.1) in the context of Lemma 3.1 shows that

n−1

∑
l=0

I(rl) = ∑
d|n

ϕ(d)3
n
d .

Given l = 0, 1, . . . , n − 1, the aim is to express the general form of a word w invariant to
the operation πrl . A rotation by l positions induces a permutation of the word’s w letters with
(n, l) cycles of length n/(n, l). The word w is then divided into n/(n, l) disjoint subwords of
length (n, l). Assume that the first (n, l) letters of the word w are given. A repeated application
of the operation πrl then determines the form of all the remaining subwords of length (n, l).
Indeed, the rotation by l positions applied to a word of length n induces a rotation by l/(n, l)
positions of the n/(n, l) subwords because l/(n, l) and n/(n, l) are relatively coprime. Here,
the parity of the subwords’ number n/(n, l) must be considered. If n/(n, l) is odd, then the
only possible word invariant to πrl is constant a’s. The even n/(n, l) allows 3(n,l) possible
words.
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Let us pick an arbitrary divisor d of n. Then, surely d = n/(n, l) for some l ∈ {0, 1, . . . ,
n − 1}. The cyclic group Cd with d elements can be generated by ϕ(d) different values rela-
tively coprime to d.

The argumentation above results in

Nπ
A3
(n) =

1
2n

[ n−1

∑
l=0

I(rl) +
n−1

∑
l=0

I(πrl)

]
,

=
1

2n

[
∑
d|n

ϕ(d) 3
n
d + ∑

d|n, d odd

ϕ(d) + ∑
d|n, d even

ϕ(d) 3
n
d

]
,

=
1

2n

[
∑

d|n, d odd

ϕ(d)
(

1 + 3
n
d

)
+ 2 ∑

d|n, d even

ϕ(d) 3
n
d

]
.

We now approach to the formulas regarding the group DΠ
n ; the permuted bracelets. As

in the previous text, we treat the cases of the alphabets A2 and A3 separately. A general
counting formula regarding the alphabet A2 as a special case was derived in [14]. We present
an alternative proof which can be generalized to the case of the alphabet A3.

Lemma 3.5. Given n ∈ N, the number of equivalence classes induced by the action of the group DΠ
n

on the set of all words of length n made with the alphabet A2 is

Bπ
A2
(n) =

1
2

[
Nπ
A2
(n) + Xπ

B,2(n)
]
, (3.6)

where

Xπ
B,2(n) =

{
2

n
2 , n is even,

2
n−1

2 , n is odd.
(3.7)

Proof. The group DΠ
n contains the rotations ri, the rotations with the reflection sri, the rota-

tions with the symbol permutation πri and the rotations with the reflection and the symbol
permutation πsri. Burnside’s lemma (Theorem 2.6) then yields

Nπ
A3
(n) =

1
4n

[ n−1

∑
l=0

I(rl) +
n−1

∑
l=0

I(πrl) +
n−1

∑
l=0

I(srl) +
n−1

∑
l=0

I(πsrl)

]
.

The equivalence classes induced by the transformations rl and πrl are enumerated in the
expression (3.4) of Lemma 3.3. Each line in formula (3.3) counts the number of orbits with
respect to the rotation with reflection srl .

First, we clarify certain concepts valid for the operation srl and subsequently apply them
to the case of πsrl . The composition of the rotation and the reflection is not commutative in
general, but srl = rl ◦ sr0 = sr0 ◦ rn−l holds for l = 0, 1, . . . , n − 1. This formula and the
group associativity yields

srl ◦ srl = (rl ◦ sr0) ◦ (sr0 ◦ rn−l) = rl ◦ rn−l = r0 = e.

Thus, the induced permutation of the word’s letters has cycles of the length 1 or 2 only.
Given l = 0, 1, . . . , n − 1, then

(
srl(w)

)
i = wn−l−i+1
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Figure 3.1: Illustration of operation of the group transformation rsl on the word
w of length n. The transformation srl divides the word w into two subwords
whose elements starting from the edges map to each other.

for i ≤ ⌈l/2⌉. Due to the composition formula, the positions from n − l + 1 to n transform
accordingly. This induces a partition of the word w into two subwords, see Figure 3.1 for
illustration. The combined parities of n and l determine the parity of the subwords’ length
and thus whether there is a middle letter mapped to itself. For any subword of odd length,
there is exactly one loop. All possible combinations are

n\l even odd
even even, even odd, odd
odd odd, even even, odd

.

Let us now assume the operation πsrl . If n is odd, then one of the subwords induced by
the action of srl is always odd and thus there are no words fixed by πsrl . If n is even the only
possibility for the word w to be fixed is when l is also even. There are then n/2 cycles of
length 2 leading to n/2 · 2n/2 words fixed by the operation of the form πsri.

The summing of all cases and including (3.3) for I(srl) results in

Bπ
A2
(n)

∣∣∣∣
n even

=
1

4n

[
2n · Nπ

A2
(n) +

3n
2

· 2
n
2 +

n
2
· 2

n
2

]
,

=
1
2

[
Nπ
A2
(n) + 2

n
2

]
,

Bπ
A2
(n)

∣∣∣∣
n odd

=
1

4n

[
2n · Nπ

A2
(n) + n · 2

n+1
2

]

=
1
2

[
Nπ
A2
(n) + 2

n−1
2

]
.

A general idea presented in the proof of Lemma 3.5 can be applied to the case of the three
letter alphabet A3.

Lemma 3.6. Given n ∈ N, the number of equivalence classes induced by the action of the group DΠ
n

on the set of all words of length n made with the alphabet A3 is

Bπ
A3
(n) =

1
2

[
Nπ
A3
(n) + Xπ

B,3(n)
]
, (3.8)

where

Xπ
B,3(n) =





4
3
· 3

n
2 , n is even,

2 · 3
n−1

2 , n is odd.
(3.9)

Proof. As in the proof of Lemma 3.5, the only operations to be considered in detail are of
the form πsri. For the sake of completeness, we note that there are 2n · 3n/2 (for n even)
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and n · 3(n+1)/2 (for n odd) words invariant to the action of transformations of the form sri,
see (3.3).

Let l = 0, 1, . . . , n − 1 be given. The operation srl induces a letter permutation with cycles
of length 1 or 2. In order for the word w to be fixed by the operation πsrl , positions in the
cycle of length 1 can contain the letter a only.

If n is odd, then there are (n− 1)/2 cycles of length 2 leading to n · 3(n−1)/2 fixed words. If n
is even, then there are two cycles of length 1 only if l is odd. Summing over all l = 0, . . . , n − 1
leads to n/2 · (3n/2−1 + 3n/2).

The summary of the results gives

Bπ
A3
(n)

∣∣∣∣
n even

=
1

4n

[
2n · Nπ

A3
(n) + 2n · 3

n
2 +

n
2
· (3

n
2 −1 + 3

n
2 )

]
,

=
1
2

[
Nπ
A3
(n) +

4
3
· 3

n
2

]
,

Bπ
A3
(n)

∣∣∣∣
n odd

=
1

4n

[
2n · Nπ

A2
(n) + n · 3

n+1
2 + n · 3

n−1
2

]
,

=
1
2

[
Nπ
A3
(n) + 2 · 3

n−1
2

]
.

3.2 Counting of the Lyndon words

To derive the forthcoming formulas, we use a special property of the Möbius function µ

and the Euler totient function ϕ; these functions are multiplicative. An arithmetic function
ψ : N → R is multiplicative if and only if ψ(1) = 1 and ψ(ab) = ψ(a)ψ(b) provided a and b
are relatively coprime. To prove that two multiplicative functions ψ1, ψ2 are equal it is enough
to show that ψ1(pα) = ψ2(pα) for all prime p and α ∈ N. For further information about the
multiplicative functions see, e.g., [2].

We start with a technical lemma which is used later.

Lemma 3.7. The identity

∑
d|n

µ
(n

d

) n
d

ϕ(d) = µ(n) (3.10)

holds for any n ∈ N. Furthermore, the following identities hold for any n even,

∑
d|n, d even

µ
(n

d

) n
d

ϕ(d)
∣∣∣∣
n even

= −µ(n), (3.11)

∑
d|n, d odd

µ
(n

d

) n
d

ϕ(d)
∣∣∣∣
n even

= 2µ(n). (3.12)

Proof. The expression (3.10) is an equality of two multiplicative functions. It is sufficient to
verify the formula for n = pα, where p is a prime and α ∈ N, [2]. If α ≥ 2 then µ(pα) = 0 and

∑
d|n

µ
(n

d

) n
d

ϕ(d) = µ(p) p ϕ(pα−1) + µ(1) ϕ(pα) = −pα−1(p − 1) + pα−1(p − 1) = 0,

if α = 1, then µ(pα) = −1 and

∑
d|n

µ
(n

d

) n
d

ϕ(d) = µ(p) p ϕ(1) + µ(1) ϕ(p) = −p + p − 1 = −1,



20 V. Švígler

if α = 0, then µ(pα) = 1 and

∑
d|n

µ
(n

d

) n
d

ϕ(d) = µ(1) 1 ϕ(1) = 1.

This proves (3.10).
Let us assume, that the even integer n ∈ N has the form n = 2βP, where P is a product of

odd primes. We can now rewrite (3.12) as

∑
d|n, d odd

µ
(n

d

) n
d

ϕ(d) = ∑
d|n/2β

µ
(n

d

) n
d

ϕ(d).

If β ≥ 1, then the fraction n/d always contains a squared prime factor and thus µ(n/d) = 0
which corresponds to µ(2βP) = 0. Suppose β = 1. We can now use the substitution m = n/2
together with the formula (3.10)

∑
d|n/2

µ
(n

d

) n
d

ϕ(d) = ∑
d|m

µ

(
2m
d

)
2m
d

ϕ(d)

= −2 ∑
d|m

µ
(m

d

) m
d

ϕ(d) = −2µ(m) = −2µ
(n

2

)
= 2µ(n).

The first sign change is possible due to the fact that the fraction m/d is an odd integer and
thus 2 is not part of its prime factorization. The second one utilizes the same idea. This
concludes the proof of (3.12).

The identity (3.11) follows from (3.10) and (3.12) since

∑
d|n

f (d) = ∑
d|n, d even

f (d) + ∑
d|n, d odd

f (d),

holds for any n ∈ N.

The counting formula for the Lyndon necklaces can be derived by a direct argument as
in [15] but we choose more technical approach whose idea is useful in later proofs.

Lemma 3.8. Given n ∈ N, the number of the Lyndon necklaces (the group Cn) with period n on the
set of all words of length n made with k symbols is

NLk(n) =
1
n ∑

d|n

µ
(n

d

)
kd. (3.13)

Proof. Since

Lk(n) = ∑
d|n

NLk(n)

holds for all n ∈ N the use of the Möbius inversion formula (Theorem 2.7) and the subsequent
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substitution d = ml yields

NLk(n) = ∑
m|n

µ (m) Lk

(
n
m

)
,

= ∑
m|n

µ (m)
m
n ∑

l|m/n

ϕ(l) k
n

ml ,

=
1
n ∑

d|n

k
n
d ∑

l|d

µ

(
d
l

)
d
l

ϕ(l),

=
1
n ∑

d|n

k
n
d µ(d).

The last step uses (3.10).

The counting formula for the Lyndon bracelets is a direct consequence of Möbius inversion
formula (Theorem 2.7) and Lemmas 3.2 and 3.8.

Lemma 3.9. Given n ∈ N, the number of the Lyndon bracelets (the group Dn) with period n on the
set of all words of length n made with k symbols is

BLk(n) =
1
2

[
NLk(n) + ∑

d|n

µ
(n

d

)
XB,k(d)

]
, (3.14)

where XB,k(d) is given by (3.3).

We continue with the counting formulas for the permuted Lyndon necklaces.

Lemma 3.10 ([13, p. 301]). Let n ∈ N be given. The number of the permuted Lyndon necklaces (the
group CΠ

n ) with period n on the set of all words of length n made with the alphabet A2 is

NLπ
A2
(n) =

1
2n ∑

d|n, d odd

µ(d) 2
n
d . (3.15)

As previously mentioned, the statement of Lemma 3.10 cannot be generalized to the case
of the three-letter alphabet A3 in a straightforward manner.

Lemma 3.11. Given n ∈ N, the number of the permuted Lyndon necklaces (the group CΠ
n ) with period

n on the set of all words of length n made with the alphabet A3 is

NLπ
A3
(n) =

1
2n

[
∑

d|n, d odd

µ(d) 3
n
d + XNL(n)

]
, (3.16)

where

XNL(n) =





1, n = 1,

−1, n = 2α, α ∈ N,

0, otherwise.

Proof. We directly apply Möbius inversion formula (Theorem 2.7) to (3.5) in an adjusted form

Nπ
A3
(n) =

1
2n

[
∑
d|n

ϕ(d) 3
n
d + ∑

d|n, d even

ϕ(d) 3
n
d + ∑

d|n, d odd

ϕ(d)
]

.



22 V. Švígler

Thanks to the linearity of Möbius inversion formula, we may threat the expression summand-
wise. For the sake of simplicity, the first summand is readily rewritten in the virtue of
Lemma 3.8

NLπ
A3
(n) = ∑

m|n

µ(m) Nπ
A3

(
n
m

)
,

=
1

2n ∑
d|n

µ(d) 3
n
d + ∑

m|n

µ(m)
m
2n ∑

l|n/m, l even

ϕ(l) 3
n

ml + ∑
d|n

µ (d)
d

2n ∑
l|n/d, l odd

ϕ(l).

We now want to show that

∑
m|n

µ(m)
m
2n ∑

l|n/m, l even

ϕ(l) 3
n

ml = −
1

2n ∑
d|n, d even

µ(d) 3
n
d ,

which proves the first part of (3.16). Indeed, the use of the substitution d = ml in the virtue of
the proof of Lemma 3.8 and (3.11) yields

∑
m|n

µ(m)
m
2n ∑

l|n/m, l even

ϕ(l) 3
n

ml =
1

2n ∑
d|n

3
n
d ∑

l|n/d, l even

µ

(
d
l

)
d
l

ϕ(l) = −
1

2n ∑
d|n, d even

µ(d) 3
n
d .

The rest of the proof is concluded by the evaluation of

∑
d|n

µ (d)
d

2n ∑
l|n/d, l odd

ϕ(l).

Any number m ∈ N can be expressed as m = 2αP, where α ∈ N0 and P is a product of odd
primes. Then

1
m ∑

d/m, d odd
ϕ(d) =

P
m

=
1
2α

(3.17)

since

∑
d|m

ϕ(d) = m,

holds in general, [2].
Assume now that n ∈ N can be expressed as n = 2βQ, where β ∈ N0 and Q is a product

of odd primes. Let us turn our attention to the equality

1
n

XNL(n) = ∑
d|n

µ (d)
d
n ∑

l|n/d, l odd

ϕ(l).

Any d|n can be represented as 2γR, where 0 ≤ γ ≤ β and R is a product of odd primes.
Decomposing the expression by the exponent γ and using (3.17) lead to

1
n

XNL(n) =
β

∑
γ=0

∑
R|Q

µ(2γR)
1

2β−γ
=

β

∑
γ=0

1
2β−γ ∑

R|Q

µ(2γR). (3.18)

Assume that β = 0 and Q = 1. A straightforward computation gives

1
n

XNL(n)

∣∣∣∣
n=1

= µ(1) · 1 = 1.
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Assume that β > 1 and Q = 1. If we consider γ ≥ 2 in (3.18), then µ(2γR) = 0. The sum
can be now evaluated

1
n

XNL(n)

∣∣∣∣
n=2β

= µ(1)
1
2β

+ µ(2)
1

2β−1 = −
1
2β

= −
1
n

.

Assume that Q > 1. Let us fix γ such that 0 ≤ γ ≤ β. Without loss of generality, we can
assume that γ ≤ 1 and each prime factor in R is present at most once. Indeed, µ(2γR) = 0
otherwise. The sign of the nonzero expression µ(2γR) is now dependent on the number of
prime factors of R. If there are m prime factors in Q, then R with l factors can be chosen in
(m

l ) possible ways. The sign of µ(2γR) alternates as l increases and we have

m

∑
l=0

(−1)l
(

m
l

)
= 0.

This results in

1
n

XNL(n)

∣∣∣∣
n=2βQ

= 0.

We conclude this section with two lemmas that are direct consequences of Möbius inver-
sion formula (Theorem 2.7), Lemma 3.5 (respectively 3.6) and Lemma 3.8.

Lemma 3.12. Given n ∈ N, the number of the permuted Lyndon bracelets (the group DΠ
n ) with period

n on the set of all words of length n made with the alphabet A2 is

BLπ
A2
(n) =

1
2

[
NLπ

A2
(n) + ∑

d|n

µ
(n

d

)
Xπ

B,2(d)
]

, (3.19)

where NLπ
A2
(n) and Xπ

B,2(d) are given by (3.15) and (3.7), respectively.

Lemma 3.13. Given n ∈ N, the number of the permuted Lyndon bracelets (the group DΠ
n ) with period

n on the set of all words of length n made with the alphabet A3 is

BLπ
A3
(n) =

1
2

[
NLπ

A3
(n) + ∑

d|n

µ
(n

d

)
Xπ

B,3(d)
]

, (3.20)

where NLπ
A3
(n) and Xπ

B,3(d) are given by (3.16) and (3.9), respectively.

4 Conclusion

We start the final part of this paper with the proof of the main result, Theorem 2.9.

Proof of Theorem 2.9. For given n ≥ 2 the sequence BLπ
A3
(n) gives the number of the permuted

Lyndon bracelets, i.e., the equivalence classes of words with respect to the rotations ri, the
reflection s, the value permutation π (group DΠ

n ), their compositions and with primitive pe-
riod of length n. As discussed in §2.2, regions Ωw surely have identical (the rotations ri, the
reflections s) or similar, with respect to the operator T defined by (2.8), (the value permutation
π) shape and are thus qualitatively equivalent (see Definition 2.4). The expression (2.11) is ex-
actly (3.20) with (3.16) substituted and (2.13) corresponds to (3.9). We sum BLπ

A3
(n) from m = 2

to avoid including trivial existence regions for the constant words 00 . . . 0, aa . . . a and 11 . . . 1
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which are represented by the additional 1, this yields (2.9). The formulas are upper estimates
only since we cannot eliminate the possibility that there are two qualitatively equivalent re-
gions whose respective words are not related by any of the symmetries. Similar argumentation
holds for regions belonging to the stable stationary solutions since the corresponding words
are made with the alphabet A2, Lemma 2.1 and Definition 2.2. The expression (2.12) is equal
to (3.19) where BLπ

A2
(n) is given by (3.15).

The approach presented here can be used to obtain similar results in other or more general
settings. The two main extension directions are the change of a spatial structure and the
change of dynamics. The extensions can be combined but we present them separately for the
sake of clarity.

4.1 Change of spatial structure

4.1.1 Graphs with nontrivial automorphism

The main objects of interests were the LDE (1.1) and the GDE (1.6) in this paper. In general,
given a graph G = (V, E), the Nagumo graph differential equation can be written as

u′
i(t) = d ∑

j∈N (i)

(
uj(t)− ui(t)

)
+ f

(
ui(t); a

)
,

where i ∈ V and N (i) is the set of all neighbours of the vertex i, i.e., j ∈ N (i) if and only if
(i, j) ∈ E. Provided the graph G has a nontrivial automorphism (a nontrivial self-map which
preserves the edge-vertex connectivity) the approach used here can be extended. Indeed, the
group Dn is the automorphism group of the cycle graph with n vertices and all computations
can be carried out by replacing the dihedral group Dn with the automorphism group of the
graph G.

4.1.2 Multi-dimensional square lattices

The underlying spatial structure of the LDE (1.1) is a one-dimensional lattice, an infinite
path graph. Examination of bistable reaction-diffusion systems on multi-dimensional square
lattices has been carried out, see e.g., [11, 18, 22]. For example, let us have a bistable reaction-
diffusion system on the two-dimensional square lattice

u′
i,j(t) = d

(
ui−1,j(t) + ui+1,j(t) + ui,j−1(t) + ui,j+1(t)− 4ui,j(t)

)
+ f

(
ui,j(t); a

)
, (4.1)

for i, j ∈ Z. A reproduction of the proof of Lemma 2.1 together with the comparison prin-
ciple [16, Proposition 3.1] show that the stationary solutions of the LDE (4.1) in the form of
a repeated 2 × 2 pattern are equivalent to the stationary solutions of the GDE (1.6) on four
vertices with the doubled diffusion rate d, see Figure 4.1 for illustration.

4.2 Change of dynamics

Various changes in the nonlinear part of (1.1) are discussed here. The proof of Lemma 2.1
in [21, Lemma 1] is actually independent of the nonlinear term with one exception. Indeed,
the only part of the proof dependent on the specific nonlinear term is the comparison principle
from [11, Lemma 1] and the only assumption is the existence of two ordered steady states of
the equation, constant 0 and constant 1 in our case. This is satisfied for bistable and multistable
reaction terms presented here.
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Figure 4.1: Illustration of a possible Lemma 2.1 extension for patterns on two-
dimensional lattices. A general idea is that the edges crossing the dashed line
are wrapped back inside from the opposite sides.

4.2.1 Scaled cubic nonlinearity

The cubic bistable nonlinear term (1.2) is dependent on one parameter only and moreover, the
value of the parameter is actually one of its roots. Let us assume the function

fcub(s, p) = s
(
s − ν−(p)

)(
ν+(p)− s

)
, (4.2)

where p ∈ Θ ⊂ R
m is a detuning vector, Θ is an open set and we assume that ν−, ν+ : Θ → R

+

and 0 < ν−(p) < ν+(p) for all p ∈ Θ. The term fcub has two bounding roots 0 and ν+(p)
for any given p ∈ Θ. The LDE (1.1) with fcub thus admits the comparison principle and its
n-periodic stationary solutions correspond to the stationary solutions of its respective GDE on
a cycle graph with n vertices.

The stationary problem for the GDE can be written in the form

h̃(u; p, d) = 0, (4.3)

where

h̃i(u; p, d) = d(ui−1 − 2ui + ui+1) + fcub(ui, p).

We omitted the modulo wrapping at vertices 1 and n as in (2.2) to enlighten the notation. A
direct computation yields

h̃(u; p, d) = ν3
+(p) h

(
u

ν+(p)
;

ν−(p)
ν+(p)

,
d

ν2
+(p)

)
.

This enables us to define solution types for (4.3) via Definition 2.2 (the sign of the first deriva-
tive’s determinant agrees) and to obtain corresponding existence regions Ω̃w through the
implicit transformation

Ω̃w =

{
(p, d) ∈ Θ × R

+
0

∣∣∣∣
(

ν−(p)
ν+(p)

,
d

ν2
+(p)

)
∈ Ωw

}
. (4.4)
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An example of system leading to (4.3) is the reduced version of the model decribing po-
tential propagation in myelinated axon with recovery [4]

u′
i(t) = d

(
ui−1(t)− 2ui(t) + ui+1(t)

)
+ fBell

(
ui(t); a, b

)
− vi(t),

v′i(t) = σ ui(t)− γ vi(t)
(4.5)

such that

fBell
(
s; a, b

)
= s(s − a)(b − s).

Via approach similar to [4], we assume, that the change of the recovery value vi is faster than
the change in ui and thus the second equation in (4.5) resides at its steady state. The problem
can be then expressed as

u′
i(t) = d

(
ui−1(t)− 2ui(t) + ui+1(t)

)
+ fBell

(
ui(t); a, b

)
− β ui(t)

with β = σ/γ possibly small and the generalization of Lemma 2.1 ensures the equivalence of
the periodic steady states of (4.5) and the system (4.3) solutions. We can directly determine

p = (a, b, β), Θ =

(
(a, b, β) ∈ R

3
∣∣∣∣ a, b, β > 0, b > a, β <

(a − b)2

4

)
, (4.6)

ν±(a, b, β) =
1
2

(
a + b ±

√
(a − b)2 − 4β

)
. (4.7)

The inequality b > a preserves the bistable behaviour in the original equation. See Figure 4.2
for illustration.

Figure 4.2: The left panel depicts the region Ω01 for the equation (1.1) and its
comparison to the same region for (4.5) obtained via the transformation in (4.4).
The parameter b = 1 was set.

4.2.2 Polynomial nonlinearity of higher order

This paper focused on the model (1.1) with the cubic bistable nonlinearity

f (s; a) = s(1 − s)(s − a).

The idea presented in §2.1 can be extended to a general polynomial nonlinearity provided it
allows a spatially nonhomogeneous steady state of the LDE (1.1) or the GDE (1.6)

fext(s; a1, . . . , aq) = s(1 − s)
q

∏
i=1

(s − ai)
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for q ≥ 3 odd, ai ∈ (0, 1) and ai 6= aj for all i, j ∈ {1, . . . , q} such that i 6= j. Note that

fext(s; a1, . . . , aq) = − fext(1 − s; 1 − a1, . . . , 1 − aq)

holds and the value permutation π can be thus redefined as

(
π(w)

)
i =





1, wi = 0,

aq−i+1, wi = ai, i = 1, . . . , q,

0, wi = 1.

The counting formulas for the necklaces (3.1), the bracelets (3.2) and the Lyndon words (3.13),
(3.14) can be then straightforwardly applied with k = q + 2 for all solutions and k = 2 +

(q − 1)/2 for asymptotically stable solutions.
The cubic-quintic nonlinearity, [5],

fcq(s, µ) = µs + 2s3 − s5

has five distinct roots

{
0,±

√
1 ±

√
1 − µ

}
.

for µ ∈ (0, 1). The LDE with fcq can be rescaled for the stationary solutions to fit the interval
[0, 1] and the approach described in the previous paragraph can be used. Note that sequence
of 1/2’s is then always a stationary solution regardless of µ and all the counting formulas
would count not only shape-distinct regions Ωw but distinct periodic stationary solutions.
This is true for (1.1) only if a = 1/2.

4.2.3 General bistable nonlinearity

A system with a general bistable nonlinearity fgen as considered in [24]

1. fgen(0) = fgen(a) = fgen(1) = 0, 0 < a < 1 and fgen(x) 6= 0 for x 6= 0, a, 1,

2. fgen(x) < 0 for 0 < x < a and fgen(x) > 0 for a < x < 1,

3. f ′gen(x0) = f ′gen(x1) = 0, 0 < x0 < a < x1 < 1 and f ′gen(x) 6= 0 for x 6= x0, x1,

can be only partially treated by the methods presented here. The conditions above allow the
application of the implicit function theorem. It is however possible for a general bistable non-
linearity to exhibit the “blue sky” bifurcation before any of the determinants in Definition 2.2
reaches zero, see [31, §1.2.2]. Moreover, the action of the value permutation group Π can be
included only if fgen can be expressed in a form such that

fgen(x; a) = − fgen(1 − x; 1 − a)

holds.
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4.2.4 Multi-dimensional local dynamics

The local dynamics at an isolated vertex of models (1.1) and (1.6) are one-dimensional since
the behaviour at a single vertex can be described by a single equation. This is not always the
case in many reaction-diffusion models. For example, the Lotka–Volterra competition model
on a graph as in [35]

u′
i(t) = du ∑

j∈N(i)

(
uj(t)− ui(t)

)
+ ρuui(t)

(
1 − ui(t)− αvi(t)

)
,

v′i(t) = dv ∑
j∈N(i)

(
vj(t)− vi(t)

)
+ ρvvi(t)

(
1 − βui(t)− vi(t)

)
,

(4.8)

where N(i) is the set of all neighbours of the vertex i, locally possesses two asymptotically
stable stationary solutions (originating from the points (0, 1) and (1, 0) which can be de-
noted by 0, 1) and one unstable nontrivial stationary solution (originating from the point
((1 − α)/(1 − αβ), (1 − β)/(1 − αβ)) here denoted by a) at each separated vertex provided
α, β > 1. The solutions containing elements originating from (0, 0) are not considered since
their immediate continuation is directed outside the positive quadrant. The implicit function
theorem assures that the naming scheme from Definition 2.2 can be employed. A proper
scaling results in ρu = ρv = 1 and the regions of existence are pathwise connected sets of
points (du, dv, α, β) ∈ R

+
0 × R

+
0 × (1, ∞)× (1, ∞). As in [35], it is convenient to fix the ratio

η := du/dv and consider the regions Ωw in a three-dimensional space only. The stationary
problem for (4.8) is now invariant with respect to the transformation ui ↔ vi, α ↔ β and all
counting results can be thus applied provided the underlying graph has a nontrivial automor-
phism.

4.3 Open questions

The idea of Lemma 2.1 is such that the restriction to the periodic stationary solutions of
the LDE (1.1) allows us to formally divide the lattice into a countable number of identical
finite graphs. Similar approach was used in §4.1. General equivalence claim which helps to
reduce the search for an arbitrary periodic patterns in sufficiently regular infinite graphs (e.g.,
triangular lattice, hexagonal lattice) into a finite-dimensional problem is still missing.

Acknowledgements

Author acknowledges the support of the project LO1506 of the Czech Ministry of Education,
Youth and Sports under the program NPU I and the support of Grant Agency of the Czech
Republic, project no. 18-03253S. The author is grateful to Petr Stehlík and Jonáš Volek for their
valuable comments and patience. The author would also like to express his gratitude to the
anonymous referee.

References

[1] L. J. S. Allen, Persistence, extinction, and critical patch number for island populations, J.
Math. Biol. 24(1987), No. 6, 617–625. https://doi.org/10.1007/bf00275506; MR0880448;
Zbl 0603.92019



Periodic stationary solutions of the Nagumo lattice equation 29

[2] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.
https://doi.org/10.1007/978-1-4757-5579-4; MR0434929; Zbl 0335.10001

[3] G. W. Beeler, H. Reuter, Reconstruction of the action potential of ventricular myocardial
fibres, J. Physiol. 268(1977), No. 1, 177–210. https://doi.org/10.1113/jphysiol.1977.
sp011853

[4] J. Bell, Some threshold results for models of myelinated nerves, Math. Biosci. 54(1981),
No. 3–4, 181–190. https://doi.org/10.1016/0025-5564(81)90085-7; MR0630848; Zbl
0454.92009

[5] G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, F. Sanchez,
Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,
Opt. Commun. 219(2003), No. 1–6, 427–433. https://doi.org/10.1016/s0030-4018(03)
01341-5

[6] J. J. Bramburger, Rotating wave solutions to lattice synamical systems I: The anti-
continuum limit, J. Dynam. Differential Equations 31(2019), No. 1, 469–498. https://doi.
org/10.1007/s10884-018-9678-7; MR3935152; Zbl 07047675

[7] J. J. Bramburger, B. Sandstede, Spatially localized structures in lattice dynamical sys-
tems, J. Nonlinear Sci. 30(2020), No. 2, 603–644. https://doi.org/10.1007/s00332-019-
09584-x; MR4081151; Zbl 1440.37072

[8] W. Burnside, Theory of groups of finite order, Cambridge University Press, 1911.

[9] G. Butler, Fundamental algorithms for permutation groups, Springer Berlin Heidelberg,
1991. MR1225579; Zbl 0785.20001

[10] J. W. Cahn, J. Mallet-Paret, E. S. Van Vleck, Traveling wave solutions for systems of
ODEs on a two-dimensional spatial lattice, SIAM J. Appl. Math. 59(1999), No. 2, 455–493.
https://doi.org/10.1137/s0036139996312703; MR1654427; Zbl 0917.34052

[11] X. Chen, J.-S. Guo, C.-C. Wu., Traveling waves in discrete periodic media for bistable dy-
namics, Arch. Ration. Mech. An. 189(2008), 189–236. https://doi.org/10.1007/s00205-
007-0103-3; MR2413095; Zbl 1152.37033

[12] C.-Y. Cheng, C.-W. Shih, Pattern formations and spatial entropy for spatially discrete
diffusion equations, Phys. D 204(2005), No. 3–4, 135–160. https://doi.org/10.1016/j.
physd.2005.04.007; MR2148376; Zbl 1081.37052

[13] N. J. Fine, Classes of periodic sequences, Illinois J. Math. 2(1958), No. 2, 285–302. https:
//doi.org/10.1215/ijm/1255381350

[14] E. N. Gilbert, J. Riordan, Symmetry types of periodic sequences, Illinois J. Math. 5(1961),
No. 4, 657–665. https://doi.org/10.1215/ijm/1255631587

[15] S. W. Golomb, B. Gordon, L. R. Welch, Comma-free codes, Canadian J. Math. 10(1993),
202–209. https://doi.org/10.4153/cjm-1958-023-9; MR0095091; Zbl 0081.14601

[16] A. Hoffman, H. Hupkes, E. V. Vleck, Entire solutions for bistable lattice differential
equations with obstacles, Mem. Am. Math. Soc. 250(2017), No. 1188. https://doi.org/
10.1090/memo/1188; MR3709723; Zbl 1406.34003



30 V. Švígler

[17] R. Hošek, J. Volek, Discrete advection-diffusion equations on graphs: maximum prin-
ciple and finite volumes, Appl. Math. Comput. 361(2019), 630–644. https://doi.org/10.
1016/j.amc.2019.06.014; MR3973160 ; Zbl 1429.65212

[18] H. J. Hupkes, L.Morelli, Travelling corners for spatially discrete reaction-diffusion sys-
tems, Commun. Pure Appl. Anal. 19(2020), No. 3, 1609–1667. https://doi.org/10.3934/
cpaa.2020058; MR4064047; Zbl 1436.34009

[19] H. J. Hupkes, L. Morelli, P. Stehlík, Bichromatic travelling waves for lattice Nagumo
equations, SIAM J. Appl. Dyn. Syst. 18(2019), No. 2, 973–1014. https://doi.org/10.1137/
18m1189221; MR3952666; Zbl 1428.34029

[20] H. J. Hupkes, L. Morelli, P. Stehlík, V. Švígler, Multichromatic travelling waves for
lattice Nagumo equations, Appl. Math. Comput. 361(2019), 430–452. https://doi.org/10.
1016/j.amc.2019.05.036; MR3961829; Zbl 1428.34030

[21] H. J. Hupkes, L. Morelli, P. Stehlík, V. Švígler, Counting and ordering periodic
stationary solutions of lattice Nagumo equations, Appl. Math. Lett. 98(2019), 398–405.
https://doi.org/10.1016/j.aml.2019.06.038; MR3980231; Zbl 1423.92258

[22] H. J. Hupkes, E. S. Van Vleck, Negative diffusion and traveling waves in high di-
mensional lattice systems, SIAM J. Math. Anal. 45(2013), No. 3, 1068–1135. https:

//doi.org/10.1137/120880628; MR3049651; Zbl 1301.34098

[23] H. J. Hupkes, E. S. Van Vleck, Travelling waves for complete discretizations of reaction
diffusion systems, J. Dynam Differential Equations 28(2016), No. 3–4, 955–1006. https:
//doi.org/10.1007/s10884-014-9423-9; MR3537361; Zbl 1353.34094

[24] J. P. Keener, Propagation and its failure in coupled systems of discrete excitable
cells, SIAM J. Appl. Math. 47(1987), No. 3, 556–572. https://doi.org/10.1137/0147038;
MR0889639; Zbl 0649.34019

[25] P. G. Kevrekidis, The discrete nonlinear Schrödinger equation, Springer, 2009. https:
//doi.org/10.1007/978-3-540-89199-4

[26] I. Z. Kiss, J. C. Miller, P. L. Simon, Mathematics of epidemics on networks. From ex-
act to approximate models, Springer, 2017. https://doi.org/10.1007/978-3-319-50806-1;
MR3644065; Zbl 1373.92001

[27] J. Laplante, T. Erneux., Propagation failure and multiple steady states in an array of
diffusion coupled flow reactors, Phys. A 188(1992), No. 1–3, 89–98. https://doi.org/10.
1016/0378-4371(92)90256-P

[28] S. A. Levin, Dispersion and population interactions, Am. Nat. 108(1974), No. 960, 207–228.
https://doi.org/10.1086/282900

[29] T. Lindeberg, Scale-space for discrete dignals, IEEE T. Pattern Anal. 12(1990), No. 3, 234–
254. https://doi.org/10.1109/34.49051

[30] A. F. Möbius, Über eine besondere Art von Umkehrung der Reihen (in German) [About
a special kind of reversal of the series], J. Reine Angew. Math 9(1832), 105–123. https:
//doi.org/10.1515/crll.1832.9.105; MR1577896



Periodic stationary solutions of the Nagumo lattice equation 31

[31] L. Morelli, Travelling patterns on discrete media, PhD Thesis, Leiden University, 2019.

[32] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating
nerve axon, Proc. IRE 50(1962), No. 10, 2061–2070. https://doi.org/10.1109/jrproc.
1962.288235

[33] J. Nagumo, S. Yoshizawa, S. Arimoto, Bistable transmission lines, IEEE T. Circuit Th.
12(1965), No. 3, 400–412. https://doi.org/10.1109/tct.1965.1082476

[34] J. Riordan, An introduction to combinatorial analysis, John Wiley & Sons, Inc., 1958.

[35] A. Slavík, Lotka–Volterra competition model on graphs, SIAM J. Appl. Dyn. Syst.
19(2020), No. 2, 725–762. https://doi.org/10.1137/19m1276285; MR4081801; Zbl
1437.92103

[36] P. Stehlík, Exponential number of stationary solutions for Nagumo equations on graphs,
J. Math. Anal. Appl. 455(2017), No. 2, 1749–1764. https://doi.org/10.1016/j.jmaa.

2017.06.075; MR3671252; Zbl 1432.35214

[37] J. Volek, Landesman–Lazer conditions for difference equations involving sublinear per-
turbations, J. Difference Equ. Appl. 22(2016), No. 11, 1698–1719. https://doi.org/10.

1080/10236198.2016.1234617; MR3590409; Zbl 1361.39003

[38] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equa-
tion, J. Differential Equations 96(1992), No. 1, 1–27. https://doi.org/10.1016/0022-

0396(92)90142-a; MR1153307; Zbl 0752.34007



Electronic Journal of Qualitative Theory of Differential Equations
2021, No. 24, 1–19; https://doi.org/10.14232/ejqtde.2021.1.24 www.math.u-szeged.hu/ejqtde/

On the BMO and C
1,γ-regularity

for a weak solution of fully nonlinear elliptic systems

in dimension three and four
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1 Introduction.

In this paper we give conditions guaranteeing that the first derivatives of weak solutions to
the Dirichlet problem for a nonlinear elliptic system

{
−Dα Aα

i (x, Du) = Dα f α
i , i = 1, . . . , N, α ∈ R

n, |α| = 1, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω .
(1.1)

Here Ω ⊂ R
n, n ≥ 3 is a bounded C1,1 domain with points x = (x1, . . . , xn), u : Ω →

R
N , u(x) = (u1(x), . . . , uN(x)), N ≥ 2 is a vector-valued function with gradient Du =

(D1u, . . . , Dnu), Dα = ∂/∂xα and coefficients Aα
i are continuously differentiable with respect

to Du and Hölder continuous with respect to x and in the following we will specify our as-
sumptions imposed on the function ( f α

i ) and boundary datum g (throughout the whole text
we use the summation convention over repeated indexes).

It is well known that elliptic systems in general do not conserve the regularizing property
of Laplace equation and the attempts to find conditions guaranteeing the smoothness of weak

BCorresponding author. Email: danecek.j@seznam.cz
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solutions as well as to construct counterexamples are rich and far reaching. The positive re-
sults, i.e. proof that weak solutions of systems of order 2k have (under suitable assumptions)
continuous partial derivatives of order k, started already with pioneering work of Ch. B. Mor-
rey in 1937 for domains Ω in R

2 (see [16]) and continued by deep results of E. De Giorgi (see
[7]) who proved that weak solutions of one equation of second order with linear growth and
bounded and measurable coefficients on Ω ⊂ R

n have continuous first derivatives. The case
of nonlinear systems on plane domains was solved in paper by J. Stará (see [23]) in 1971 for
systems of higher order.

In dimensions n ≥ 3 analogous results do not hold as was shown by counterexamples of
E. De Giorgi (see [8]) and E. Giusti and M. Miranda in 1968 (see [10]), J. Nečas in 1975 (see
[19]) and L. Šverák and X. Yan in 2002 (see [24]).

The system (1.1) has been extensively studied in the papers [1, 2, 9, 12, 15, 17, 20] and for
detailed and well-arranged informations, see [15]. If n ≥ 3, it is known that Du can be
discontinuous. Campanato in [3] proved for the system (1.1) that Du ∈ L2,θ

loc(Ω, R
nN) with

n − 2 < θ < n, and also u ∈ C
0,(θ−n+2)/2
loc (Ω, R

N) if n = 3, 4. More important for our work is a
more general result from Kristensen–Melcher [13].

There are known many conditions on the coefficients which guarantee that solutions of
nonlinear elliptic system of equations have required smoothness and, vice versa, counterex-
amples illustrating that generally such assertions do not hold.

In the present paper, that is extending the articles [4], [5] and [6], we introduce another
conditions on coefficients of a nonlinear elliptic system (1.1) and we show that if the first
derivatives of weak solutions u to Dirichlet problem for the system satisfy (1.11) with given M
and Ψ̃ from (1.10) then the gradient of weak solutions are locally BMO or Hölder continuous
on domains Ω in R

3 and R
4. The condition (1.11) shows that the our result is applicable to

broader class of problems for smaller value of M. Finally, the reality of our theoretical result
is illustrated by means of numerical examples.

By a weak solution to the Dirichlet problem for (1.1) we understand u ∈ W1,2(Ω, R
N) such

that u − g ∈ W1,2
0 (Ω, R

N), g ∈ W1,2(Ω, R
N), f ∈ L2(Ω, R

nN) and

∫

Ω
Aα

i (x, Du(x)) Dα ϕi(x) dx = −
∫

Ω
f α
i (x)Dα ϕi(x) dx, ∀ ϕ ∈ W1,2

0 (Ω, R
N). (1.2)

Further the symbol Ωo ⊂⊂ Ω stands for Ωo ⊂ Ω, dΩ = diam(Ω) and for the sake of simplicity
we denote by | · | the norm in R

n as well as in R
N and R

nN . If x ∈ R
n and r is a positive real

number, we set Br(x) = {y ∈ R
n : |y − x| < r}, (i.e., the open ball in R

n), Ωr(x) = Ω ∩ Br(x).
Denote by ux,r = ur =

∫
Ωr(x) u(y) dy/mn(Ωr(x)) =

∫
Ωr(x)− u(y) dy the mean value of the func-

tion u ∈ L(Ω, R
N) over the set Ωr(x). Here mn(Ωr(x)) is the n-dimensional Lebesgue measure

of Ωr(x) and we set Ur(x) =
∫

Ωr(x) |Du(y) − (Du)x,r|2 dy/rn =
∫

Ωr(x)− |Du(y) − (Du)x,r|2 dy,

φ(x, r) =
∫

Ωr(x) |Du(y)− (Du)x,r|2 dy.

The coefficients (Aα
i )i=1,...,N,α=1,...,n have linear controlled growth and satisfy strong uni-

form ellipticity condition. Without loss of generality we can suppose that Aα
i (x, 0) = 0. We

suppose that Aα
i (x, p) ∈ C1(RnN) for all x ∈ Ω and

(i) the strong ellipticity condition holds, i.e. there exist ν, M > 0 such that for every x ∈ Ω

and p, ξ ∈ R
nN

ν|ξ|2 ≤ ∂Aα
i

∂p
j
β

(x, p)ξ i
αξ

j
β ≤ M|ξ|2, (1.3)
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(ii)

|Aα
i (x, p)| ≤ M(1 + |p|), ∑

i,j,α,β

∣∣∣∣∣∣
∂Aα

i

∂p
j
β

(x, p)

∣∣∣∣∣∣
≤ M, (1.4)

for all (x, p) ∈ Ω × R
nN ,

(iii) for all x, y ∈ Ω and p ∈ R
nN

|Aα
i (x, p)− Aα

i (y, p)| ≤ CH |x − y|χ|p|, CH > 0 (1.5)

where χ = 1 for n = 3, 4,

(iv) there is a real function ω continuous on [0, ∞), which is bounded, nondecreasing, con-
cave, ω(0) = 0 and such that for all x ∈ Ω and p, q ∈ R

nN

∣∣∣∣∣∣
∂Aα

i

∂p
j
β

(x, p)− ∂Aα
i

∂p
j
β

(x, q)

∣∣∣∣∣∣
≤ ω (|p − q|) . (1.6)

We denote ω∞ = limt→∞ ω(t) and clearly ω(t) ≤ 2M.
It is well known (see [9], p.169) that for uniformly continuous ∂Aα

i /∂p
j
β there exists a real

function ω satisfying (iv) and, viceversa, (1.6) implies uniform continuity of ∂Aα
i /∂p

j
β and

absolute continuity of ω on [0, ∞). By pointwise derivative ω′ we will understand the right
derivative of ω which is finite on (0, ∞).

Here we will consider the function ω from (1.6) given by the formula

ω(t) =





ωo(t), for 0 ≤ t ≤ to, to > 0

ω1(t) =

√
ε

t
γ
o

tγ , for to < t < t1,

ω∞ for t ≥ t1

(1.7)

where ωo is arbitrary continuous, concave, nondecreasing function such that ωo(0) = 0 and
the constants 0 < γ ≤ 0.44, to > 0 are selected in such a way that ω is continuous and concave
on [0, ∞).

For example we can choose

ωo(t) =
2
√

ε

2 + ln to
t

for 0 < t ≤ to,

and this function fail to satisfy Dini condition. It is obvious that in such case the coefficients
∂Aα

i /∂p
j
β are only continuous.

It is well known that on the above assumptions the Dirichlet problem

{
div (A(x, Du) + f ) = 0 in Ω,

u − g ∈ W1,2
0 (Ω, R

N)
(1.8)

has for any function f , g ∈ W1,2(Ω, R
N) the unique solution u in the same space.
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For the problem (1.8) the following estimate holds
∫

Ω
− |Du − (Du)Ω|2 dy

≤ 12
(

M

ν

)2 ∫

Ω
− |Dg − (Dg)Ω|2 dx +

(
10E

ν

)2
(

E

ν
+

M

ν
+ 3

(
M

ν

)2
) ∫

Ω
−|Dg|2 dx

+ 20
(

nN

ν

)2
(

1 +
(

4E

ν

)2
) ∫

Ω
− | f − ( f )Ω|2 dx (1.9)

where E = nNCHd
χ
Ω

(see Appendix A for the proof of (1.9)).

In the following we will use the function Ψ̃(u) = ueu2/(2µ−1)
, here u ≥ 0, µ ≥ 17 (for detailed

information for Ψ̃, see (2.6)) and we can define the value

M = sup
to<t<∞

Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)

t − to
< ∞ (1.10)

where ω is from (1.7), ε = ω2
∞/Cα

µ, α > 1 − 2/n and Cµ =
(
(n−2)µ

2e

)µ
.

Now we can formulate the main theorem.

Theorem 1.1. Let Ωo ⊂⊂ Ω ⊂ R
n, do = dist(Ωo, ∂Ω)/2, n = 3, 4. Assume that g ∈ W1,2(Ω, R

N),

Dg ∈ L2,ζ(Ω, R
nN), ζ > 2, f ∈ W1,2 ∩L2,ξ(Ω, R

N), n < ξ ≤ n+ 2, n ≤ ϑ < λ = min{2χ+ ζ, ξ}
and moreover div f ∈ Lζ(Ω, R

nN). Let u ∈ W1,2(Ω, R
N) be a weak solution to the system (1.1)

satisfying the conditions ∫

Ω
− |Du − (Du)Ω|2 dy <

1
M2 , (1.11)

(1.13) and

CMC2
H + [ f ]2L2,ξ (Ω,RnN) ≤

|Ω|
(

1 − (4ǫo)
λ
ϑ −1
)

ǫ3
o ν2

8dn
o max{dλ

o , dλ−n
o }M2

(1.12)

where ǫo = 1/4(2n+5L)
ϑ

n+2−ϑ , the constants L, CH, CM come from Lemma 2.5, (1.5) and (3.8), respec-

tively. Then Du ∈ C0,(ϑ−n)/2(Ωo, R
nN) in the case ϑ > n and Du ∈ BMO(Ωo, R

nN) for ϑ = n.

Remark 1.2. In the foregoing formulas the constants µ ≥ 17, α > 1 − 2/n have to be such that

C
n

n−2 α−1
µ ≥ 2

6
n−2

(
20CS

Mω∞

ν2

( |Ω|
(2do)n

) 1
2n

) 2n
n−2

ǫ
− n

n−2
o . (1.13)

Here CS is the Sobolev embedding constant.

The theorem we formulated above tells that, if coefficients of a nonlinear system satisfy
(iv) with some ω given (1.7) and (1.11)–(1.13) are fulfilled, then the gradient of u is Hölder
continuous on Ωo.

In most partial regularity results for the system (1.1) the regular points x ∈ Ω of solution u

are characterized in such a way that for some rx > 0 the quantity Urx(x) (for its definition see
first section) has to be sufficiently small, but our condition regularity (1.11) allows Ur(x) not
to be necessarily small. Moreover, the condition (1.11) is global condition (we do not know
an analogous condition from the literature) and has fundamental meaning for domain Ω in
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which it is possible ensure that the ratio |Ω|/(2do)n is not extremely great (e.g. for the ball,
see (1.13)).

For the function ω from (1.7) the right-hand side of (1.11) can be chosen in the following
form

1
M2 =

t2
o

4


min





1
3γ

,
C
(−1+ 1

2γ )α
µ

eC
2α

2µ−1
µ








2

. (1.14)

(see Appendix B for more information and for µ and α see Remark 1.2).

Remark 1.3. We would like to point that, in the case of (1.8), the left-hand side of (1.11) could
be substituted with the right-hand side of (1.9). We can present some consequences of our
theorem that follow from estimate (1.9).

g = const. ∧ f = const. =⇒
∫

Ω
− |Du − (Du)Ω|2 dy = 0 =⇒ u = P1

g = P1 ∧ f = const. ∧ CH = 0 =⇒
∫

Ω
− |Du − (Du)Ω|2 dy = 0 =⇒ u = P1

g = P1 ∧ f = const. ∧ dΩ ց 0 =⇒
∫

Ω
− |Du − (Du)Ω|2 dy ց 0

g = P1 ∧ f ∈ L2,ξ(Ω, R
nN), ξ > n ∧ CH = 0 ∧ dΩ ց 0 =⇒

∫

Ω
− |Du − (Du)Ω|2 dy ց 0

where P1 is a polynom of at most first degree. We note that the last mentioned condition
involves the data of the problem (1.8) only.

Remark 1.4. It is useful to point out that in the case when the ratio ω∞/ν is small enough, the
regularity of solution to the problem (1.8) is guaranteed by the Proposition 2.4 from [4].

2 Preliminaries and notations

Beside the usually used space C∞
0 (Ω, R

N), Hölder space C0,α(Ω, R
N) and Sobolev spaces

Wk,p(Ω, R
N), W

k,p
loc (Ω, R

N), W
k,p
0 (Ω, R

N) (see, e.g.[22]) we use the following Campanato and
Morrey spaces.

Definition 2.1 (Campanato and Morrey spaces). Let υ ∈ [0, n]. The Morrey space L2,υ(Ω, R
N)

is the subspaces of such functions u ∈ L2(Ω, R
N) for which

‖u‖2
L2,υ(Ω,RN) = sup

r>0,x∈Ω

r−υ
∫

Ωr(x)

|u(y)|2 dy < ∞.

Let υ ∈ [0, n + 2]. The Campanato space L2,υ(Ω, R
N) is the subspace of such functions u ∈

L2(Ω, R
N) for which

[u]2L2,υ(Ω,RN) = sup
r>0,x∈Ω

r−υ
∫

Ωr(x)

|u(y)− ux,r|2 dy < ∞.

Remark 2.2. It is worth recalling the trivial but basic property that
∫

Ω
|u − uΩ|2dx =

minc∈RN

∫
Ω
|u − c|2 dx holds for each u ∈ L2(Ω, R

N).

For more details see [1], [9] and [22]. In particular, we will use:
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Proposition 2.3. For a bounded domain Ω ⊂ R
n with a Lipschitz boundary we have the following

(a) L2,υ(Ω, R
N) is isomorphic to the C0,(υ−n)/2(Ω, R

N), for n < υ ≤ n + 2,

(b) L2,υ(Ω, R
N) is isomorphic to the L2,υ(Ω, R

N), 0 ≤ υ < n,

(c) the imbedding L2,υ1(Ω, R
N) ⊂ L2,υ2(Ω, R

N) is continuous for all 0 ≤ υ2 < υ1 ≤ n + 2,

(d) L2,n(Ω, R
N) is isomorphic to the L∞(Ω, R

N)  L2,n(Ω, R
N).

The following lemma is a modification of a lemma from [5].

Lemma 2.4. Let A > 1, d be positive numbers, C, B1, B2 ≥ 0, n ≤ δ < β, δ < α ≤ n + 2 and

0 < s ≤ 1. Then there exist positive constants k1, k2 so that for any nonnegative nondecreasing

function ϕ defined on [0, d] and satisfying the inequalities

ϕ(σ) ≤ A
( σ

R

)α
ϕ(R)

+
1
2

(
1 + A

( σ

R

)α) [
(B1 + B2Us

2R) ϕ(2R) + CRβ
]

, ∀ 0 < σ < R ≤ d

2
(2.1)

and

B1 + B2Us
d ≤ 1

4
τδ, B2

(
Cm

2βτδ(1 − τβ−δ)

)s

≤ 1
4

τδ (2.2)

where UR = φ(R)/Rn, m = max{dβ, dβ−n} and τ = 1/(2α+1A)
1

α−δ . Then it holds

Uσ ≤ σδ−n(k1 ϕ(d) + k2), ∀ σ ∈ (0, d] . (2.3)

Proof. I. We will prove by induction that

ϕ(τkd) ≤ τkδ

(
ϕ(d) +

Cm

2βτδ

k−1

∑
j=0

τ(β−δ)j

)
, Uτkd ≤ τk(δ−n)

(
Ud +

Cm

2βτδ

k−1

∑
j=0

τ(β−δ)j

)
. (2.4)

Let k = 1. Putting σ = τd, R = d/2 in (2.1) we obtain thanks to (2.2) and the assumption
on τ

ϕ(τd) ≤ 2α Aτα ϕ
(

d
2

)
+ 1

2 (1 + 2α Aτα)

[
(B1 + B2Us

d) ϕ(d) + C
(

d
2

)β
]

≤ (2α Aτα + B1 + B2Us
d) ϕ(d) + C

(
d
2

)β
= τδ

(
ϕ(d) + Cm

2βτδ

)
.

Also by means of (2.2) we get

Uτd ≤ τδ−n
(

Ud +
Cm

2βτδ

)
, B1 + B2Us

τd ≤ 1
2

τδ .

Next put σ = τk+1d, R = τkd/2 into (2.1) we get

ϕ(τk+1d) ≤ 2α Aτα ϕ
(

1
2 τkd

)
+ 1

2 (1 + 2α Aτα)
[(

B1 + B2Us
τkd

)
ϕ(τkd) + Cdβ

2β τkβ
]

≤
(
2α Aτα + B1 + B2Us

τkd

)
ϕ(τkd) + Cdβ

2βτδ τkβ+δ ≤ τδ ϕ(τkd) + Cm
2βτδ τ(k+1)δ
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because 2α Aτα + B1 + B2Us
τkd

≤ τδ. Using (2.4) we get

ϕ(τk+1d) ≤ τδ ϕ(τkd) + Cdβ

2βτδ τ(k+1)δ ≤ τ(k+1)δ

(
ϕ(d) +

Cm

2βτδ

k−1

∑
j=0

τ(β−δ)j

)
+

Cm

2βτδ
τ(k+1)δ

= τ(k+1)δ

(
ϕ(d) +

Cm

2βτδ

k

∑
j=0

τ(β−δ)j

)
.

It immediately implies the estimate of Uτk+1d.
II. Let now σ be an arbitrary positive number less than d. Then there is an integer k such

that τk+1d ≤ σ < τkd. Using monotonicity of ϕ, this inequality and (2.4) we get

ϕ(σ) ≤ ϕ(τkd) ≤ τkδ

(
ϕ(d) +

Cm

2βτδ

k−1

∑
j=0

τ j(β−δ)

)
≤ σδ

(τd)δ

(
ϕ(d) +

Cm

2βτδ(1 − τβ−δ)

)

and this estimate together with the choice of k1 = 1/(τd)δ, k2 = Cm/(2βdδτ2δ(1 − τβ−δ))

completes the proof.

For the statement of following Lemma see e.g. [1, 9, 20].

Lemma 2.5. Consider system of the type (1.1) with Aα
i (x, p) = A

αβ
ij p

j
β, A

αβ
ij ∈ R (i.e. linear

system with constant coefficients) satisfying (i), (ii) and (iii). Then there exists a constant L =

L(n, N, M/ν) ≥ 1 such that for every weak solution v ∈ W1,2(Ω, R
N) and for every x ∈ Ω and

0 < σ ≤ R ≤ dist(x, ∂Ω) the following estimate

∫

Bσ(x)
|Dv(y)− (Dv)x,σ|2 dy ≤ L

( σ

R

)n+2 ∫

BR(x)
|Dv(y)− (Dv)x,R|2 dy

holds.

Remark 2.6. The constant L from the previous lemma can be stated as

L = c(n, N)

(
M

ν

)2(2+[ n
2 ])

and, because of a better presentment, choosing n = 3, N = 2 we can compute L < 1.4 ·
108(M/ν)6.

In the paper [4, p. 108] a system for n = N = 3 of type (1.1) was presented for which we
can compute L ≈ 108.

Lemma 2.7. [25, p. 37] Let φ : [0, ∞] → [0, ∞] be non decreasing function which is absolutely

continuous on every closed interval of finite length, φ(0) = 0. If w ≥ 0 is measurable and E(t) =

{y ∈ R
n : w(y) > t} then

∫

Rn
φ ◦ w dy =

∫ ∞

0
mn (E(t)) φ′(t) dt .

In the proof of Theorem 1.1 we will use an inequality which is a consequence of Natanson’s
lemma (see e.g. [18, p. 262]) and Fatou’s lemma. It can be read as follows.
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Lemma 2.8. Let f : [a, ∞) → R be a nonnegative function which is integrable on [a, b] for all

a < b < ∞ and

N = sup
0<h<∞

1
h

∫ a+h

a
f (t) dt < ∞

is satisfied. Let g : [a, ∞) → R be an arbitrary nonnegative, non-increasing and integrable function.

Then ∫ ∞

a
f (t)g(t) dt

exists and ∫ ∞

a
f (t)g(t) dt ≤ N

∫ ∞

a
g(t) dt

holds.

In the proof of Theorem 1.1 we use an inequality which can be read as follows.

Proposition 2.9 (see [4]). Let u ∈ W1,2(Ω, R
N) be a weak solution to (1.1) satisfying (i), (ii), (iii)

and (iv). Then for every ball B2R(x) ⊂ Ω and arbitrary constants µ ≥ 2, b > 0, 1 < q ≤ n/(n − 2)
and c ∈ R

nN we have
∫

BR(x)
|Du − (Du)x,R|2 lnµ

+

(
b|Du − (Du)x,R|2

)
dy

≤ 2n(q−1)
(

5CS
M

ν

)2q( µ

(q − 1)e

)µ( b

(2R)n

∫

B2R(x)
|Du − c|2 dy

)q−1∫

B2R(x)
|Du − c|2 dy (2.5)

where CS is the Sobolev embedding constant.

Hereafter we shall use conjugate Young functions Φ, Ψ

Φ(u) = u lnµ
+(au) for u ≥ 0, Ψ(u) ≤ Ψ(u) =

1
a

ueu
2

2µ−1
for u ≥ 0, (2.6)

where a > 0 and µ ≥ 2 are constants,

ln+(au) =

{
0 for 0 ≤ u <

1
a ,

ln(au) for u ≥ 1
a .

Then Young inequality for Φ, Ψ reads as

xy ≤ Φ(x) + Ψ(y), ∀ x, y ∈ R. (2.7)

3 Proof of Theorem 1.1

Let xo be any point of Ωo ∩ S (it means that
∫

BR(xo)
|Du − (Du)xo ,R|2 dx > 0) and R ≤ do.

Where no confusion can result, we will use the notation BR, UR, φ(R) and (Du)R instead of
BR(xo), UR(xo), φ(xo, R) and (Du)xo ,R. Denoting A

αβ
ij,0 = A

αβ
ij (xo, (Du)R),

Ã
αβ
ij =

∫ 1

0
A

αβ
ij (xo, (Du)R + t (Du − (Du)R)) dt ,

we can rewrite the system (1.1) as

−Dα

(
A

αβ
ij,0Dβuj

)
=− Dα

((
A

αβ
ij,0 − Ã

αβ
ij

) (
Dβuj −

(
Dβuj

)
R

))

− Dα (Aα
i (xo, Du)− Aα

i (x, Du)) + Dα ( f α
i (x)− ( f α

i )R) .
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Split u as v + w where v is the solution of the Dirichlet problem

−Dα

(
A

αβ
ij,0Dβvj

)
= 0 in B(R)

v − u ∈ W1,2
0

(
BR, R

N
)

.

and w ∈ W1,2
0 (BR, R

N) is the weak solution of the system

−Dα

(
A

αβ
ij,0Dβwj

)
=− Dα

((
A

αβ
ij,0 − Ã

αβ
ij

) (
Dβuj −

(
Dβuj

)
R

))

− Dα (Aα
i (xo, Du)− Aα

i (x, Du)) + Dα ( f α
i (x)− ( f α

i )R) .

For every 0 < σ ≤ R from Lemma 2.5 it follows
∫

Bσ

|Dv − (Dv)σ|2 dx ≤ L
( σ

R

)n+2 ∫

BR

|Dv − (Dv)R|2 dx

hence
∫

Bσ

|Du − (Du)σ|2 dx ≤ 2L
( σ

R

)n+2 ∫

BR

|Dv − (Dv)R|2 dx + 4
∫

BR

|Dw|2 dx

≤ 4L
( σ

R

)n+2 ∫

BR

|Du − (Du)R|2 dx + 4
(

1 + 2L
( σ

R

)n+2
) ∫

BR

|Dw|2 dx. (3.1)

Now w ∈ W1,2
0 (BR, R

N) satisfies
∫

BR

A
αβ
ij,0DβwjDα ϕi dx ≤

∫

BR

∣∣∣Aαβ
ij,0 − Ã

αβ
ij

∣∣∣
∣∣∣Dβuj − (Dβuj)R||Dα ϕi

∣∣∣ dx

+
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|
∣∣∣Dα ϕi

∣∣∣ dx

≤
(∫

BR

ω2 (|Du − (Du)R|) |Du − (Du)R|2 dx

)1/2 (∫

BR

|Dϕ|2 dx

)1/2

+

(∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx

)1/2 (∫

BR

|Dϕ|2 dx

)1/2

+

(∫

BR

| f − fR|2 dx

)1/2 (∫

BR

|Dϕ|2 dx

)1/2

for any ϕ ∈ W1,2
0 (BR, R

N). Hence, choosing ϕ = w, we get

ν2
∫

BR

|Dw|2 dx ≤ 2
∫

BR

ω2 (|Du − (Du)R|) |Du − (Du)R|2 dx

+ 4
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx + 4
∫

BR

| f − fR|2 dx. (3.2)

From (3.1) and (3.2) we have

φ(σ) =
∫

Bσ

|Du − (Du)σ|2 dx ≤ 4L
( σ

R

)n+2 ∫

BR

|Du − (Du)R|2 dx

+
8
(

1 + 2L
(

σ
R

)n+2
)

ν2

[∫

BR

ω2 (|Du − (Du)R|) |Du − (Du)R|2 dx

+ 2
∫

BR

|Aα
i (xo, Du)− Aα

i (x, Du)|2 dx + 2
∫

BR

| f − fR|2 dx

]

= 4L
( σ

R

)n+2
φ(R) +

8
(

1 + 2L
(

σ
R

)n+2
)

ν2 (I1 + 2I2 + 2I3) (3.3)
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We use the Young inequality (2.7) (here complementary functions are defined through
(2.6)) and for any 0 < ε < ω2

∞ we obtain

I1 =
∫

BR

ω2 (|Du − (Du)R|) |Du − (Du)R|2 dx

≤ ε
∫

BR

|Du − (Du)R|2 ln+

(
aε |Du − (Du)R|2

)
dx +

∫

BR

Ψ

(
ω2

R

ε

)
dx = εJ1 + J2 (3.4)

where ω2
R(x) = ω2 (|Du(x)− (Du)R|).

The term J1 can be estimated by means of Proposition 2.9 (here q = n/(n − 2)) and we get

J1 ≤ CCµ (aεU2R)
q−1 φ(2R) (3.5)

where

C = 2(q−1)n
(

5CS
M

ν

)2q

, Cµ =

(
n − 2

2e
µ

)µ

.

Taking in Lemma 2.7 w(y) = |v(y)− vx,R| on BR(x) and w = 0 otherwise, we have ER(t) =

{y ∈ BR(x) : |v(y)− vx,R| > t} and for the the second integral J2 we get

J2 =
1
a

∫ ∞

0

d

dt
Ψ̃

(
ω2(t)

ε

)
mn (ER(t)) dt (3.6)

where Ψ̃ = aΨ.
We have (we use Lemma 2.8) for ∀ ε > 0

∫ ∞

0

d

dt
Ψ̃

(
ω2(t)

ε

)
mn (ER(t)) dt

≤
∫ to

0

d

dt
Ψ̃

(
ω2(t)

ε

)
mn (ER(t)) dt +

∫ ∞

to

d

dt
Ψ̃

(
ω2(t)

ε

)
mn (ER(t)) dt

≤ κnRn
∫ to

0

d

dt
Ψ̃

(
ω2(t)

ε

)
dt + sup

to<t<∞

(
1

t − to

∫ t

to

d

ds
Ψ̃

(
ω2(s)

ε

)
ds

) ∫ ∞

to

mn (ER(s)) ds

≤ κnΨ̃

(
ω2(to)

ε

)
Rn + sup

to<t<∞




Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)

t − to



∫

BR

|Du − (Du)R| dx

≤ κnΨ̃

(
ω2(to)

ε

)
Rn +Mκ1/2

n Rn/2φ1/2(R)

≤

κn

2n

Ψ̃
(

ω2(to)
ε

)

U2R
+
(κn

2n

)1/2 M√
U2R


 φ(2R) ≤




Ψ̃
(

ω2(to)
ε

)

U2R
+

M√
U2R


 φ(2R) . (3.7)

If for some R > 0 the average UR = 0 then it is clear that xo is the regular point. So next
we can suppose UR is positive for all R > 0.

From [2] and [13] we have that Du ∈ L2,ζ(Ω, R
nN), ζ ∈ (2, 3) and also

∫

BR

|Du|2 dx ≤ c2(ζ, M/ν, CH, χ, Ω)

ν2

(
‖ f ‖2

L2,ζ (Ω,RnN) + ‖Dg‖2
L2,ζ (Ω,RnN)

)
Rζ

= CM Rζ , ∀ 0 < R ≤ do . (3.8)
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From the assumptions (iii) follows

I2 ≤ CMC2
HR2χ

∫

BR

|Du|2 dx ≤ CMC2
HR2χ+ζ (3.9)

and
I3 ≤ [ f ]2L2,ξ (Ωo ,RnN)R

ξ . (3.10)

We get from (3.3) and (3.4) by means of (3.5), (3.7), (3.9) and (3.10)

φ(σ) ≤ 4L
( σ

R

)n+2
φ(2R)

+ 8
(

1+2L
( σ

R

)n+2
){[

CCµ ε

ν2 (aεU2R)
q−1+

1
aν2

(
Ψ̃

(
ω2(to)

ε

)
1

U2R
+

M√
U2R

)]
φ(2R)

+2CM

(
CH

ν

)2

R2+ζ +
2
ν2 [ f ]2L2,ξ (Ωo ,RnN)R

ξ

}

≤ 4L
( σ

R

)n+2
φ(2R) + 8

(
1 + 2L

( σ

R

)n+2
)
×

×
{[

CCµε

ν2 (aεU2R)
q−1 +

1
aν2

(
Ψ̃

(
ω2(to)

ε

)
1

U2R
+

M√
U2R

)]
φ(2R)

+
2
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ

}
(3.11)

where λ = min{2χ + ζ, ξ}.
In (3.11) we can choose

ε =
ω2

∞

Cα
µ

, a =
128|Ω|1/2

(2do)
n/2 ν2ǫo U2R

for U(2R) > 0 (3.12)

where ǫo =
1

4(2n+5L)ϑ/(n+2−ϑ) and µ ≥ 17, α > 1 − 2/n are suitable constants.

We set P = ω∞/ν. Then we obtain for U2R > 0

φ(σ) ≤ 4L
( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×






16CP2

Cα−1
µ

(
128|Ω|1/2P2

(2do)n/2 Cα
µ ǫo

)q−1

+
(2do)n/2ν2

8|Ω|1/2

(
Ψ̃

(
ω2(to)

ε

)
+M

√
U2R

)
ǫo


 φ(2R)

+
32
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ





≤ 4L
( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×






 27q−3CP2q

C
qα−1
µ ǫ

q−1
o

( |Ω|
(2do)n

) q−1
2

+
1
8

(
3 +

(2do)n/2

|Ω|1/2 M
√

U2R

)
ǫ0


 φ(2R)

+
32
ν2

(
CMC2

H + [ f ]2L2,ξ (Ωo ,RnN)

)
Rλ
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for all 0 < σ ≤ R ≤ do (for the estimate Ψ̃(ω2(to)/ε) ≤ 3, see Appendix).
In the last term of the foregoing inequality we employed the estimate from (1.11). The

constants α > 1 − 2/n and µ ≥ 17 can be always chosen in such a way that

27q−3CP2q

C
qα−1
µ ǫ

q−1
o

( |Ω|
(2do)n

) q−1
2

≤ 1
2

ǫo ⇐⇒ C
qα−1
µ ≥ 27q−3CP2q

ǫ
q
o

( |Ω|
(2do)n

) q−1
2

(3.13)

and we get

φ(σ) ≤ 4L
( σ

R

)n+2
φ(R) +

1
2

(
1 + 2L

( σ

R

)n+2
)

×





[
7
8

ǫo +
1
8

ǫoM
(2do)n/2

|Ω|1/2

√
U2R

]
φ(2R) +

32
(

CMC2
H + [ f ]2L2,ξ (Ω,RnN)

)

ν2 Rλ





for all 0 < σ ≤ R ≤ do.
We can put A = 4L, α = n + 2,

B1 =
7
8

ǫo, B2 =
M (2do)n/2

8|Ω|1/2 ǫo, C =
32
(

CMC2
H + [ f ]2L2,ξ (Ω,RnN)

)

ν2 ,

s = 1/2, β = λ, δ = ϑ, τδ/4 = ǫo and d = do. Now from (1.11) follows that B2
√

U2do
(x) ≤

ǫo/8 and if (1.12) is satisfied we can using Lemma 2.4. In conclusion we get

φ(σ) ≤ σϑ(k1φ(2do) + k2), ∀ 0 < σ ≤ do, n ≤ ϑ < λ .

�

4 Illustrating examples and comments

Example 4.1. We will consider the system (1.1) with ω from Example 1.7 for Ω = BR(0),
Ωo = BR/2(0) and also do = R/4. Supposing n = 3, N = 2, q = 3, ϑ = 3.1, ω∞ = ν, M/ν = 10,
CS = 10, ǫo ≈ 10−28 (the value ǫo seems to be realistic, see Remark 2.6, here L ≈ 1014), χ = 1
and λ = 4 we can get as follows:

ω∞ = 1030 1050 1070 1090 10110 10130

to = 103 1011 1018 1024 1030 1036

ω(to) ≈ 108 1028 1048 1068 1088 10108

t1 ≈ 1058 1067 1073 1079 1085 1091

ω(ω∞) ≈ 1019 1044 1069 1090 10110 10130

real value 1
M2 ≈ 105 1021 1035 1047 1059 1071

estimate 1
M2 by means of (1.14) ≈ 105 1021 1035 1047 1059 1071

ω
( 1
M2

)
≈ 1010 1032 1055 1078 10100 10122

α = 1.9 1.92 1.92 1.92 1.91 1.9
γ = 0.39 0.39 0.39 0.39 0.39 0.39
µ = 30.3 30.1 30.1 30.1 30.2 30.3

the right-hand side of (1.12) ≈ 10−16

ZR

1040

ZR

1094

ZR

10146

ZR

10198

ZR

10250

ZR
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Here t1 is the point for which ω(t1) = ω∞ and ZR = max{(R/4)4, R/4}. It is necessary to re-
member that the condition (1.13) from the main Theorem is satisfied for the above-mentioned
parameters.

In conclusion is possible to say, that the theorem gives good results if ν ≥ 1/ǫo =

4(2n+5L)
ϑ

n+2−ϑ .

Appendix A

First we have to estimate of
∫

Ω
|Du|2 dx. We can rewrite the system (1.1) as

∫

Ω

[
Ã

αβ
ij

(
Dβuj − Dβgj

)
+ (Aα

i (x, Du)− Aα
i (xo, Du)) + ˜̃A

αβ

ij Dβgj

]
Dα ϕi dx

=
∫

Ω
( f α

i − ( f α
i )Ω) Dα ϕi dx (A.1)

where Ã
αβ
ij =

∫ 1
0 A

αβ
ij (xo, Dg + t(Du − Dg)) dt and ˜̃A

αβ

ij =
∫ 1

0 A
αβ
ij (xo, tDg) dt.

We put in (A.1) ϕi = ui − gi and we get as follows
∫

Ω
Ã

αβ
ij DβujDαui dx +

∫

Ω
Ã

αβ
ij DβgjDαgi dx

=
∫

Ω
Ã

αβ
ij

(
DβujDαgi + DβgjDαui

)
dx −

∫

Ω

˜̃A
αβ

ij DβgjDαui dx +
∫

Ω

˜̃A
αβ

ij DβgjDαgi dx

−
∫

Ω
(Aα

i (x, Dg)− Aα
i (xo, Dg))

(
Dαui − Dαgi

)
dx

+
∫

Ω
( f α

i − ( f α
i )Ω) Dαui dx −

∫

Ω
( f α

i − ( f α
i )Ω) Dαgi dx

From ellipticity (1.3) we have

ν
∫

Ω
|Du|2 dx + ν

∫

Ω
|Dg|2 dx

≤
∫

Ω

∣∣∣Ãαβ
ij

∣∣∣
(
|Dβuj||Dαgi|+ |Dβgj||Dαui|

)
dx

+
∫

Ω

∣∣∣∣
˜̃A

αβ

ij

∣∣∣∣ |Dβgj||Dαui| dx +
∫

Ω

∣∣∣∣
˜̃A

αβ

ij

∣∣∣∣ |Dβgj||Dαgi| dx

+
∫

Ω
|Aα

i (x, Dg)− Aα
i (xo, Dg)| |Dαgi| dx

+
∫

Ω
| f α

i − ( f α
i )Ω| |Dαui| dx +

∫

Ω
| f α

i − ( f α
i )Ω| |Dαgi| dx

= I1 + I2 + I3 + I4 + I5 + I6 . (A.2)

By means of Young’s inequality we get by choosing ε = ν/2M

I1 ≤ 2
∫

Ω
|Du||Dg|∑

∣∣∣Ãαβ
ij

∣∣∣ dx ≤ 1
2

ν
∫

Ω
|Du|2 dx +

2M2

ν

∫

Ω
|Dg|2 dx ,

I2 ≤
∫

Ω
|Du||Dg|∑

∣∣∣∣
˜̃A

αβ

ij

∣∣∣∣ dx ≤ 1
4

ν
∫

Ω
|Du|2 dx +

M2

ν

∫

Ω
|Dg|2 dx ,

I3 ≤
∫

Ω
|Dg||Dg|∑

∣∣∣∣
˜̃A

αβ

ij

∣∣∣∣ dx ≤ M
∫

Ω
|Dg|2 dx ,

I4 ≤ CH

∫

Ω
|x − xo|χ|Dg|∑ |Dαgi| dx ≤ nNCHd

χ
Ω

∫

Ω
|Dg|2 dx ,
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ε = ν/4

I5 =
∫

Ω
| f α

i − ( f α
i )Ω||Dαui| dx ≤

∫

Ω
|Du|∑ | f α

i − ( f α
i )Ω| dx

≤ 1
8

ν
∫

Ω
|Du|2 dx +

2n2N2

ν

∫

Ω
| f − ( f )Ω|2 dx ,

ε = 2ν

I6 =
∫

Ω
∑ | f α

i − ( f α
i )Ω||Dαgi| dx ≤

∫

Ω
|Dg|∑ | f α

i − ( f α
i )Ω| dx

≤ 2ν
∫

Ω
|Dg|2 dx +

n2N2

8ν

∫

Ω
| f − ( f )Ω|2 dx .

Together from (A.2) we have

∫

Ω
|Du|2 dx ≤ 8

(
nNCHd

χ
Ω

ν
+

M

ν
+ 3

(
M

ν

)2
)∫

Ω
|Dg|2 dx +

18n2N2

ν2

∫

Ω
| f − ( f )Ω|2 dx .

(A.3)
Now we can rewrite the system (1.1) as

∫

Ω

[
Ã

αβ
ij

(
Dβuj − (Dβgj)Ω

)
+ (Aα

i (x, Du)− Aα
i (xo, Du))

]
Dα ϕi dx

=
∫

Ω
( f α

i − ( f α
i )Ω) Dα ϕi dx (A.4)

where Ã
αβ
ij =

∫ 1
0 A

αβ
ij (xo, (Dg)Ω + t (Du − (Dg)Ω)) dt.

We put in (A.4) ϕi =
(
ui − (Dαgi)Ωxα)− (gi − (Dαgi)Ωxα

)
and we get as follows

∫

Ω
Ã

αβ
ij

(
Dβuj − (Dβgj)Ω

) (
Dαui − (Dαgi)Ω

)

−
∫

Ω
Ã

αβ
ij

(
Dβuj − (Dβgj)Ω

) (
Dαgi − (Dαgi)Ω

)
dx

+
∫

Ω
(Aα

i (x, Du)− Aα
i (xo, Du))

(
Dαui − (Dαgi)Ω

)
dx

−
∫

Ω
(Aα

i (x, Du)− Aα
i (xo, Du))

(
Dαgi − (Dαgi)Ω

)
dx

=
∫

Ω
( f α

i (x)− ( f α
i )Ω)

(
Dαui − (Dαgi)Ω

)
dx −

∫

Ω
( f α

i (x)− ( f α
i )Ω)

(
Dαgi − (Dαgi)Ω

)
dx .

From ellipticity (1.3) we have

ν
∫

Ω
|Du − (Dg)Ω|2 dx ≤

∫

Ω

∣∣∣Ãαβ
ij

∣∣∣
∣∣∣Dαui − (Dαgi)Ω

∣∣∣
∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
|Aα

i (x, Du)− Aα
i (xo, Du)|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
|Aα

i (x, Du)− Aα
i (xo, Du)|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

+
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

= I1 + I2 + I3 + I4 + I5 . (A.5)
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By means of Young inequality we get by choosing ε = ν/M

I1 ≤
∫

Ω
|Du − (Dg)Ω| |Dg − (Dg)Ω|∑

∣∣∣Ãαβ
ij

∣∣∣ dx

≤ 1
2

ν
∫

Ω
|Du − (Dg)Ω|2 dx +

M2

2ν

∫

Ω
|Dg − (Dg)Ω|2 dx ,

ε = ν/2

I2 ≤
∫

Ω
|Du − (Dg)Ω|∑ |Aα

i (x, Du)− Aα
i (xo, Du)| dx

≤ 1
4

ν
∫

Ω
|Du − (Dg)Ω|2 dx +

n2N2

ν

∫

Ω
|A(x, Du)− A(xo, Du)|2 dx

≤ 1
4

ν
∫

Ω
|Du − (Dg)Ω|2 dx +

n2N2C2
Hd

2χ
Ω

ν

∫

Ω
|Du|2 dx ,

ε = ν

I3 ≤
∫

Ω
|Dg − (Dg)Ω|∑ |Aα

i (x, Du)− Aα
i (xo, Du)| dx

≤ 1
2

ν
∫

Ω
|Dg − (Dg)Ω|2 dx +

n2N2

2ν

∫

Ω
|A(x, Du)− A(xo, Du)|2 dx

≤ 1
2

ν
∫

Ω
|Dg − (Dg)Ω|2 dx +

n2N2C2
Hd

2χ
Ω

2ν

∫

Ω
|Du|2 dx ,

I5 ≤
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαgi − (Dαgi)Ω

∣∣∣ dx

≤ 1
2

ν
∫

Ω
|Dg − (Dg)Ω|2 dx +

n2N2

2ν

∫

Ω
| f − ( f )Ω|2 dx ,

ε = ν/4

I4 ≤
∫

Ω
| f α

i (x)− ( f α
i )Ω|

∣∣∣Dαui − (Dαgi)Ω

∣∣∣ dx

≤ 1
8

ν
∫

Ω
|Du − (Dg)Ω|2 dx +

2n2N2

ν

∫

Ω
| f − ( f )Ω|2 dx .

Together we get

∫

Ω
|Du − (Du)Ω|2 dx ≤

∫

Ω
|Du − (Dg)Ω|2 dx ≤ 4

(
2 +

(
M

ν

)2
) ∫

Ω
|Dg − (Dg)Ω|2 dx

+
20n2N2

ν2

∫

Ω
| f − ( f )Ω|2 dx +

12n2N2C2
Hd

2χ
Ω

ν2

∫

Ω
|Du|2 dx . (A.6)

By means of (A.3) we are getting from (A.6) final estimate

∫

Ω
|Du − (Du)Ω|2 dx ≤ 4

(
2 +

(
M

ν

)2
) ∫

Ω
|Dg − (Dg)Ω|2 dx

+
96n2N2C2

Hd
2χ
Ω

ν2

[
nNCHd

χ
Ω

ν
+

M

ν
+ 3

(
M

ν

)2
] ∫

Ω
|Dg|2 dx

+
4n2N2

ν2

[
5 +

54n2N2C2
Hd

2χ
Ω

ν2

] ∫

Ω
| f − ( f )Ω|2 dx .
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Appendix B

We give estimates of the constant M defined by (1.10) where ω is defined by (1.7). We consider
to > 0, α > 1 − 2/n, µ ≥ 17 and 0 < γ ≤ 0.44.

h′(t) =




Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)

t − to




′

=

ω(t)

[
2ω′(t)

(
1+ 2

2µ−1

(
ω2(t)

ε

) 2
2µ−1
)
(t− to)− ω(t)

]
e
(

ω2(t)
ε

) 2
2µ−1

+ ω2(to)e
(

ω2(t0)
ε

) 2
2µ−1

ε(t − to)2

=
ω(t)

[
2ω′(t)

(
1+ a

(
ω2(t)

ε

)a)
(t − to)−ω(t)

]
e
(

ω2(t)
ε

)a

+ω2(to)e
(

ω2(t0)
ε

)a

ε(t − to)2 , 0 < to < t < t1.

where a = 2/(2µ − 1) < 0.06 (µ ≥ 17).
For ω(t) = ω1(t) = ktγ, k =

√
ε/t

γ
o we get

h′(t) =

k2



t2γ

[
2γ
(

1 + a
(

k2t2γ

ε

)a) (
1 − to

t

)
− 1
]

e
(

k2t2γ

ε

)a

+ t
2γ
o e

(
k2t

2γ
o

ε

)a




ε(t − to)2

=

2γ

(
1 + a

(
t
to

)2aγ
) (

1 − to
t

)
+
(

to
t

)2γ
e
(

1−( t
to )

2aγ
)

− 1

(t − to)2

(
t

to

)2γ

e(
t

to )
2aγ

=
g1(t) + g2(t)− 1

(t − to)2

(
t

to

)2γ

e(
t

to )
2aγ

, 0 < to < t < t1 . (B.1)

We prove that there exists at most one point to < tm ≤ t1 such that h′(t) < 0 on (to, tm)

and h′(t) > 0 on (tm, ∞). For the proof, that h′(t) < 0 on (to, tm) is sufficiently show, that

g1(t) + g2(t)− 1 < 0, ∀ to < t < tm.

If we put t = to + h, h > 0 and ξ = 2aγ we have

g1(to + h) + g2(to + h) = 2γ

(
1 + a

(
1 +

h

to

)ξ
)

h

to + h
+

(
1 − h

to + h

)2γ

e1−(1+ h
to )

ξ

< 1.

Now we development the functions (1 + h/to)ξ , (1 − h/(to + h))2γ and e1−(1+h/to)ξ
to power

series we can rewrite the previous ones into the form

2γ + ξ

to + h
h +

ξ2

to(to + h)
h2 + o1(h

2) +

(
1 − 2γ

to + h
h − γ(1 − 2γ)

(to + h)2 h2 + o2(h
2)

)

×
(

1 − ξ

to
h +

ξ(1 − ξ)

2t2
o

h2 + o1(h
2) +

1
2

(
− ξ

to
h +

ξ(1 − ξ)

2t2
o

h2 + o1(h
2)

)2

+ o3(h
2)

)
< 1 .

After some adjustment and if we suppose that h ≤ to we can write
(

ξ2 + 2γξ

to(to + h)
− γ(1 − 2γ)

(to + h)2

)
h2 +

c(a, γ)

t3
o

h3
< 0 .
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It is also sufficient to prove

γ

to + h

(
4a2γ + 4aγ

to
− 1 − 2γ

to + h

)
h2 +

c(a, γ)

t3
o

h3
< 0

⇐⇒
[
2(1 + 2a + 2a2)γ − 1

]
to + c1(a, γ)h < 0

and because limh→0+ c1(a, γ)h = 0 we can rewrite for sufficiently small 0 < h ≤ to preceding
inequality as follows

γ <
1

2
(

1 + 4
2µ−1 +

8
(2µ−1)2

) > 0.44, ∀ µ ≥ 17 . (B.2)

From this consideration we have

M = sup
to<t<t1

Ψ̃
(

ω2(t)
ε

)
− Ψ̃

(
ω2(to)

ε

)

t − to
= max





(
d

dt
Ψ̃

(
ω2(t)

ε

))

t=to

,
Ψ̃
(

ω2(t1)
ε

)
− Ψ̃

(
ω2(to)

ε

)

t1 − to





= max





6γ

to
,

Cα
µeC

2α
2µ−1
µ − e

to(C
α

2γ
µ − 1)





≤ 1
to

max





6γ,
Cα

µeC
2α

2µ−1
µ − e

C
α

2γ
µ − 1





≤ 2
to

max





3γ,
eC

2α
2µ−1
µ

C
(−1+ 1

2γ )α
µ





. (B.3)

For the term Ψ̃
(ω2(to)

ε

)
from the definition of M we get

Ψ̃

(
ω2(to)

ε

)
=

ω2(to)

ε
e

(
ω2(to)

ε

)2/(2µ−1)

= e, ∀ to > 0 .
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Abstract. A stochastic competition system with harvesting and distributed delay is in-
vestigated, which is described by stochastic differential equations with distributed de-
lay. The existence and uniqueness of a global positive solution are proved via Lyapunov
functions, and an ergodic method is used to obtain that the system is asymptotically sta-
ble in distribution. By using the comparison theorem of stochastic differential equations
and limit superior theory, sufficient conditions for persistence in mean and extinction
of the stochastic competition system are established. We thereby obtain the optimal
harvest strategy and maximum net economic revenue by the optimal harvesting theory
of differential equations.

Keywords: stochastic differential equation, distributed delay, competition system, sta-
bility in distribution, optimal harvesting strategy.
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1 Introduction

In nature, relationships between species can be classified as either competition, predator-

prey, or mutualism. Because of limited natural resources, competition among populations is

widespread. Many scholars have researched competition models. Early studies mainly con-

sidered deterministic models [5, 16]. Individual organisms experience a growth process, from

infancy to adulthood, immaturity to maturity, and adulthood to old age, with viability vary-

ing by age. Young individuals have a weaker ability to cope with environmental disturbances,

predators, and competitors’ survival pressure, while the survival ability of adult individu-

als is strong, and they are able to conceive the next generation. The stage-structured model

is popular among scholars, and the study of the stage-structured deterministic model, as a

single-species model [7] or two-species competitive model [14], is comprehensive. Predator-

prey models with stage structures have been discussed in the literature [4,17,18]. X. Y. Huang

et al. presented the sufficient conditions of extinction for a two-species competitive stage-

structured system with harvesting [6].

BCorresponding author. Email: zhangyue@mail.neu.edu.cn
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The effects of population competition are not immediate, hence, it is necessary to consider

time delays in the governing equations [9, 15, 20]. We propose a competitive model with

distributed delay and harvesting,



























dx1 = (a11x2 − a12x2
1 − sx1)dt,

dx2 =

(

a21x1 − a22x2
2 − d1x2

∫ t

−∞
f1(t − υ)x3(υ)dυ − βx2

)

dt,

dx3 =

(

x3

(

r

(

1 − x3

k3

)

− d2

∫ t

−∞
f2(t − υ)x2(υ)dυ − qE

))

dt,

(1.1)

where xi is the density of the ith species, i = 1, 2, 3, where x1, x2, respectively represent

the juveniles and adults of one of two species. a11 is the birth rate of juveniles and a21 is

the transformation rate from juveniles to adults. a12, a22 denote inter-specific competitive

coefficients of x1 and x2. Considering x1 is young and not competitive, we assume that only

x2 and x3 are competitive. d1 and d2 are the loss rates of populations x2 and x3 in competition.

r and k3 are respectively the intrinsic growth rate and environmental capacity of species x3.

The sum of the death and conversion rates of juveniles x1 and the sum of the death rates of

adults x2 are expressed by s and β, respectively. q is the catchability coefficient of species x3.

E denotes the effort used to harvest the population x3. All of the parameters are assumed to

be positive constants. The kernel fi : [0, ∞) → [0, ∞) is normalized as

∫ ∞

0
fi(υ)dυ = 1, i = 1, 2.

For the distributed delay, MacDonald [10] initially proposed that it is reasonable to use a

Gamma distribution,

fi(t) =
tnαn+1

i e−αit

n!
, i = 1, 2,

as a kernel, where αi > 0, i = 1, 2 denote the rate of decay of effects of past memories, and n

is called the order of the delay kernel fi(t). They are nonnegative integers.

This article mainly considers the weak kernel case, i.e., fi = αie
−αit for n = 0. The strong

kernel case can be considered similarly. Let

u1 =
∫ t

−∞
f1(t − υ)x3(υ)dυ, u2 =

∫ t

−∞
f2(t − υ)x2(υ)dυ.

Then, by the linear chain technique [13], the system (1.1) is transformed to the following

equivalent system:










































dx1 = (a11x2 − a12x2
1 − sx1)dt,

dx2 = (a21x1 − a22x2
2 − d1x2u1 − βx2)dt,

dx3 =

(

x3

(

r

(

1 − x3

k3

)

− d2u2 − qE

))

dt,

du1 = α1(x3 − u1)dt,

du2 = α2(x2 − u2)dt,

(1.2)

In addition, the population must be disturbed by realistic environmental noise, which is

important in the study of bio-mathematical models [12, 15, 19], such as rainfall, wind, and

drought. White noise is introduced to indicate the effects on the system disturbance. It is

assumed that environmental disturbances will manifest themselves mainly as disturbances in
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population density xi (i = 1, 2, 3) of a system (1.2). Further, the following system of stochastic

differential equations is obtained:











































dx1 = (a11x2 − a12x2
1 − sx1)dt + σ1x1dB1(t),

dx2 = (a21x1 − a22x2
2 − d1x2u1 − βx2)dt + σ1x2dB1(t),

dx3 =

(

x3

(

r

(

1 − x3

k3

)

− d2u2 − qE

))

dt + σ2x3dB2(t),

du1 = α1(x3 − u1)dt,

du2 = α2(x2 − u2)dt,

(1.3)

where Bi(t), i = 1, 2, are independent standard Brownian motions and σ2
i , i = 1, 2, represent

the intensity of the white noise. Because x1 and x2 live together, they are affected by the same

noise.

The following assumption applies throughout this paper.

Assumption 1.1. Because of limited environmental supply and interspecific and intra-specific

constraints, species xi must have environmental capacity ki.

2 Existence and uniqueness of the global positive solution

Theorem 2.1. For any initial value x(0) =
(

x1(0), x2(0), x3(0), u1(0), u2(0)
)

∈ R5
+, there is a

unique solution x(t) =
(

x1(t), x2(t), x3(t), u1(t), u2(t)
)

of system (1.3) on t > 0. Furthermore, the

solution will remain in R5
+ with probability 1.

Proof. System (1.3) is locally Lipschitz continuous, so for any initial value x(0) =
(

x1(0), x2(0),

x3(0), u1(0), u2(0)
)

∈ R5
+, there is a unique maximal local solution x(t) =

(

x1(t), x2(t), x3(t),

u1(t), u2(t)
)

for t ∈ [0, τe) a.s., where τe is the explosion time [1].

We must show that τe = ∞ a.s. Let m0 > 0 be sufficiently large that the initial value xi(0) is

in the interval
[

1
m0

, m0

]

. For each m > m0, define a stopping time,

τm = inf

{

t ∈ [0, τe) : xi(t) 6∈
(

1

m
, m

)

, i = 1, 2, 3

}

.

Obviously, τm increases as m → ∞. Let τ∞ = limm→∞ τm. Hence τ∞ ≤ τe a.s., which is enough

to certify τ∞ = ∞ a.s.

In contrast, there is a pair of constants T > 0 and ε ∈ (0, 1), such that

P{τ∞ ≤ T} > ε.

Hence an integer m1 > m0 exists, and for arbitrary m > m1,

P{τm ≤ T} ≤ ε.

A Lyapunov function V : R5
+ → R+ is defined as

V(x) = x1 − 1 − ln x1 + x2 − a − a ln
x2

a
+ x3 − b − b ln

x3

b

+
1

α1
(u1 − 1 − ln u1) +

1

α2
(u2 − 1 − ln u2),
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where a, b are positive constants to be determined later. The nonnegativity of this function

can be seen because

ω − 1 − ln ω ≥ 0 for any ω > 0.

Let T > 0 be a random positive constant. For any 0 ≤ t ≤ τm ∧ T, using Itô’s formula, one

obtains

dV(x) = LV(x)dt + σ1(x1 − 1)dB1(t) + σ1(x2 − 1)dB1(t) + σ2(x3 − 1)dB2(t), (2.1)

where

LV(x) =

(

1 − 1

x1

)

(a11x2 − a12x2
1 − sx1) +

(

1 − a

x2

)

(a21x1 − a22x2
2 − d1x2u1 − βx2)

+ (x3 − b)

(

r

(

1 − x3

k3

)

− d2u2 − qE

)

+ σ2
1 +

1

2
σ2

2 +

(

1 − 1

u1

)

(x3 − u1)

+

(

1 − 1

u2

)

(x2 − u2)

≤ (a11 − β + a22a + 1)x2 − a22x2
2 − a12x2

1 + (a21 − s + a12)x1

+

(

r − qE +
r

k3
b + 1

)

x3 −
r

k3
x2

3 + (ad1 − 1)u1 + (bd2 − 1)u2

+ s + aβ − br + bqE + 2 + σ2
1 +

1

2
σ2

2

≤ M + (ad1 − 1)u1 + (bd2 − 1)u2 + s +
β

d1
− r

d2
+

qE

d2
+ 2 + σ2

1 +
1

2
σ2

2 ,

(2.2)

where M = sup{−a22x2
2 + (a11 − β + a22

d1
+ 1)x2 − a12x2

1 + (a21 − s + a12)x1} − r
k3

x2
3 + (r − qE +

r
k3d2

+ 1)x3}.

Choose a = 1
d1

, b = 1
d2

such that ad1 − 1 = 0, bd2 − 1 = 0. Then one obtains

LV(x) ≤ M + s +
β

d1
− r

d2
+

qE

d2
+ 2 + σ2

1 +
1

2
σ2

2 = K1. (2.3)

The following proof is similar to that of Bao and Yuan [2].

Apply inequality (2.3) to equation (2.1), and integrate from 0 to τm ∧ T to obtain

∫ τm∧T

0
d
(

V
(

x(υ)
))

dυ ≤
∫ τm∧T

0
Kdυ +

∫ τm∧T

0
σ1(x1 − 1)dB1(υ) +

∫ τm∧T

0
σ1(x2 − 1)dB1(υ)

+
∫ τm∧T

0
σ2(x3 − 1)dB2(υ).

Taking the expectations, the above inequality becomes

E
(

V
(

x(τm ∧ T)
))

≤ V
(

x(0)
)

+ E
(

K1(τm ∧ T)
)

,

i.e.,

E
(

V
(

x(τm ∧ T)
))

≤ V
(

x(0)
)

+ K1T.

For each u ≥ 0, define µ(u) = inf{V(x), |xi| ≥ u, i = 1, 2, 3}. Clearly, if u → ∞, then

µ(u) → ∞. One can see that

µ(m)P(τm ≤ T) ≤ E
(

V
(

x(τm)
)

I{τm≤T}
)

≤ V
(

x(0)
)

+ K1T.

When m → ∞, it is easy to see that P(τ∞ ≤ T) = 0. Owing to the arbitrariness of T,

P(τ∞ = ∞) = 1. The proof is completed.
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3 Stability in distribution

Lemma 3.1. Suppose x(t) =
(

x1(t), x2(t), x3(t), u1(t), u2(t)
)

is a solution of system (1.3) with any

given initial value. Then there exists a constant K2 > 0, such that lim supt→+∞ E|x(t)| ≤ K2.

Proof. The proof is similar to Theorem 3.1 in paper [2], and hence is omitted here.

Then one can further prove the following theorem.

Theorem 3.2. If a12 > 2(a11 ∨ a21), a22 > α2 + (a11 ∨ a21), r > α1k3, α1 > d1, α2 > d2,

then system (1.3) will be asymptotically stable in distribution, i.e., when t → +∞, there is a unique

probability measure µ(·) such that the transition probability density p(t, φ, ·) of x(t) converges weakly

to µ(·) with any given initial value φ(t) ∈ R5
+.

Proof. Let xφ(t) and xϕ(t) be two solutions of system (1.3), with initial values φ(θ) ∈ R5
+ and

ϕ(t) ∈ R5
+, respectively. Applying Itô’s formula to

V(t) =
3

∑
i=1

| ln x
φ
i (t)− ln x

ϕ
i (t)|+

2

∑
j=1

| ln u
φ
i (t)− ln u

ϕ
i (t)|

yields

d+V(t) =
3

∑
i=1

sgn
(

x
φ
i (t)− x

ϕ
i (t)

)

d
(

ln x
φ
i (t)− ln x

ϕ
i (t)

)

+
2

∑
j=1

sgn
(

u
φ
i (t)− u

ϕ
i (t)

)

d
(

ln u
φ
i (t)− ln u

ϕ
i (t)

)

≤ a11

∣

∣

∣

∣

∣

x
φ
2 (t)

x
φ
1 (t)

− x
ϕ
2 (t)

x
ϕ
1 (t)

∣

∣

∣

∣

∣

dt − a12|xφ
1 (t)− x

ϕ
1 (t)|dt − (a22 − α2)|xφ

2 (t)− x
ϕ
2 (t)|dt

+ a21

∣

∣

∣

∣

∣

x
φ
1 (t)

x
φ
2 (t)

− x
ϕ
1 (t)

x
ϕ
2 (t)

∣

∣

∣

∣

∣

dt − (α1 − d1)|uφ
1 (t)− u

ϕ
1 (t)|dt −

(

r

k3
− α1

)

|xφ
3 (t)− x

ϕ
3 (t)|dt

− (α2 − d2)|uφ
2 (t)− u

ϕ
2 (t)|dt

≤−
(

a12 − 2(a11 ∨ a21)
)

|xφ
1 (t)− x

ϕ
1 (t)|dt −

(

a22 − α2 − 2(a11 ∨ a21)
)

|xφ
2 (t)− x

ϕ
2 (t)|dt

−
(

r

k3
− α1

)

|xφ
3 (t)− x

ϕ
3 (t)|dt − (α1 − d1)|uφ

1 (t)− u
ϕ
1 (t)|dt

− (α2 − d2)|uφ
2 (t)− u

ϕ
2 (t)|dt.

Therefore,

E(V(t))≤V(0)−
(

a12 − 2(a11 ∨ a21)
)

∫ t

0
E|xφ

1 (υ)− x
ϕ
1 (υ)|dυ

−
(

a22 − α2 − 2(a11 ∨ a21)
)

∫ t

0
E|xφ

2 (υ)− x
ϕ
2 (υ)|dυ −

(

r

k3
− α1

)

∫ t

0
E|xφ

3 (υ)− x
ϕ
3 (υ)|dυ

− (α1 − d1)
∫ t

0
E|uφ

1 (υ)− u
ϕ
1 (υ)|dυ − (α2 − d2)

∫ t

0
E|uφ

2 (υ)− u
ϕ
2 (υ)|dυ.
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Because V(t) ≥ 0, according to the inequality above,

(

a12 − 2(a11 ∨ a21)
)

∫ t

0
E|xφ

1 (υ)− x
ϕ
1 (υ)|dυ +

(

a22 − α2 − 2(a11 ∨ a21)
)

∫ t

0
E|xφ

2 (υ)− x
ϕ
2 (υ)|dυ

+

(

r

k3
− α1

)

∫ t

0
E|xφ

3 (υ)− x
ϕ
3 (υ)|dυ + (α1 − d1)

∫ t

0
E|uφ

1 (υ)− u
ϕ
1 (υ)|dυ

+ (α2 − d2)
∫ t

0
E|uφ

2 (υ)− u
ϕ
2 (υ)|dυ ≤ V(0) < ∞.

That is,

E|xφ
i (υ)− x

ϕ
i (υ)| ∈ L1[0,+∞), i = 1, 2, 3 and E|uφ

j (υ)− u
ϕ
j (υ)| ∈ L1[0,+∞), j = 1, 2.

Moreover, it can be seen from the first equation of system (1.3) that

E
(

x1(t)
)

= x1(0) +
∫ t

0

[

a11E
(

x2(υ)
)

− a12E
(

x2
1(υ)

)

− sE
(

x1(υ)
)]

dυ.

Thus E
(

x1(t)
)

is a continuously differentiable function. By Lemma 3.1,

dE
(

x1(t)
)

dt
≤ a11E

(

x2(t)
)

≤ K2.

Hence E
(

x1(t)
)

is uniformly continuous. Using the same method on the other equations of

system (1.3), one can obtain that E
(

x2(t)
)

, E
(

x3(t)
)

, E
(

u1(t)
)

, and E
(

u2(t)
)

are uniformly

continuous. According to [3],

lim
t→∞

E|xφ
i (t)− x

ϕ
i (t)| = 0 a.s., lim

t→∞
E|uφ

j (t)− u
ϕ
j (t)| = 0 a.s. (3.1)

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfy-

ing the usual conditions (i.e., it is increasing and right continuous while Ft contains all P-null

sets). Suppose p(t, φ, dy) is the transition probability density of the process x(t), and p(t, φ, A)

is the probability of event xφ(t) ∈ A with initial value φ(θ) ∈ R5
+. By Lemma 3.1 and Cheby-

shev’s inequality, the family of transition probability p(t, φ, A) is tight. So, a compact subset

K ∈ R5
+ can be obtained such that p(t, φ,K) ≥ 1 − ǫ∗ for any ǫ∗ > 0.

Let P(R5
+) be probability measures on R5

+. For any two measures P1, P2 ∈ P , we define

the metric

dL(P1, P2) = sup
g∈L

∣

∣

∣

∣

∫

R5
+

g(x)P1(dx)−
∫

R5
+

g(x)P2(dx)

∣

∣

∣

∣

,

where

L = {g : R5
+ → R : ‖g(x)− g(y)‖ ≤ ‖x − y‖, |g(·)| ≤ 1}.

For any g ∈ L and t, ι > 0, one obtains

|Eg
(

xφ(t + ι)
)

− Eg
(

xφ(t)
)

| = |E[E
(

g
(

xφ(t + ι)
)

|Fϑ

)

]− Eg
(

xφ(t)
)

|

=

∣

∣

∣

∣

∫

R5
+

E
(

g
(

xξ(t)
)

p(ϑ, φ, dξ)
)

− Eg
(

xφ(t)
)

∣

∣

∣

∣

≤ 2p(ϑ, φ, Uc
K) +

∫

UK

|E
(

g
(

xξ(t)
))

− E
(

g
(

xφ(t)
))

|p(ϑ, φ, dξ),
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where UK = {x ∈ R5
+ : |x| ≤ K}, and Uc

K is a complementary set of UK. Since the family of

p(t, φ, dy) is tight, for any given ι ≥ 0, there exists sufficiently large K such that p(ι, φ, Uc
K) <

ǫ∗
4 . From (3.1), there exists T > 0 such that for t ≥ T,

sup
g∈L

|E
(

g
(

xξ(t)
))

− E
(

g
(

xφ(t)
))

| ≤ ǫ∗

2
.

Consequently, it is easy to find that |Eg
(

xφ(t+ ι)
)

− Eg
(

xφ(t)
)

| ≤ ǫ∗. By the arbitrariness of g,

we have

sup
g∈L

|Eg
(

xφ(t + ι)
)

− Eg
(

xφ(t)
)

| ≤ ǫ∗.

That is,

dL

(

p(t + ι, φ, ·), p(t, φ, ·)
)

≤ ǫ∗, ∀t ≥ T, ι > 0.

Therefore, {p(t, 0, ·) : t ≥ 0} is Cauchy in P with metric dL. There is a unique µ(·) ∈ P(R5
+)

such that limt→∞ dL

(

p(t, 0, ·), µ(·)
)

= 0. In addition, it follows from (3.1) that

lim
t→∞

dL

(

p(t, φ, ·), p(t, 0, ·)
)

= 0.

Hence

lim
t→∞

dL

(

p(t, φ, ·), µ(·)
)

≤ lim
t→∞

dL

(

p(t, φ, ·), p(t, 0, ·)
)

+ lim
t→∞

dL

(

p(t, 0, ·), µ(·)
)

= 0.

The proof is completed.

4 Optimal harvesting

For convenience, we introduce the following notation:

b1 = s +
1

2
σ2

1 , b2 = β +
1

2
σ2

1 , b3 = r − 1

2
σ2

2 ,

Γ1 = a12a22b3 − d2(a21(a11k2 − b1)− a12b2),

f ∗ = lim sup
t→∞

f (t), f∗ = lim inf
t→∞

f (t), 〈 f 〉 = t−1
∫ t

0
f (s)ds.

Lemma 4.1 ([8]). For x(t) ∈ R+, the following holds:

(i) If there are positive constants T and δ0 such that

ln x(t) ≤ δt − δ0

∫ t

0
x(v)dv + αB(t), a.s.

for any t ≥ T, where α, δ1, δ2 are constants, then






〈x〉∗ ≤ δ
δ0

, a.s. if δ ≥ 0,

lim
t→∞

x(t) = 0, a.s. if δ ≤ 0.

(ii) If there are positive constants T, δ, and δ0 such that

ln x(t) ≥ δt − δ0

∫ t

0
x(v)dv + αB(t), a.s.

for any t ≥ T, then 〈x〉∗ ≥ δ
δ0

a.s.
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Lemma 4.2 (Strong law of large numbers [11]). Let M = {Mt}t≥0 be a real-valued continuous

local martingale vanishing at t = 0. Then

lim
t→∞

〈M, M〉t = ∞ a.s. ⇒ lim
t→∞

Mt

〈M, M〉t
= 0 a.s.

and

lim sup
t→∞

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→∞

Mt

t
= 0 a.s.

Lemma 4.3 (Strong law of large numbers for local martingales [11]). Let M(t), t ≥ 0, be a local

martingale vanishing at time t = 0 and define

ρM(t) =
∫ t

0

d〈M〉(s)
(1 + s)2

, t ≥ 0,

where M(t) = 〈M, M〉(t) is a Meyers angle bracket process. Then

lim
t→∞

M(t)

t
= 0 a.s.,

provided

lim
t→∞

ρM(t) < ∞ a.s.

Lemma 4.4. Let (x1(t), x2(t), x3(t), u1(t), u2(t)) be the solution of system (1.3) with any initial value

(x1(0), x2(0), x3(0), u1(0), u2(0)) ∈ R5
+. Then, if α1 > α2, then

lim
t→∞

u1(t)

t
= 0, lim

t→∞

u2(t)

t
= 0, a.s.

and

〈u1(t)〉 = 〈x3(t)〉 −
u1(t)− u1(0)

α1t
, 〈u2(t)〉 = 〈x2(t)〉 −

u2(t)− u2(0)

α2t
.

Proof. Define V∗(w) = (1 + w)θ , where θ is a positive constant to be determined later, and

w(t) = x1(t) + x2(t) + x3(t) +
r

2k3α1
u2

1(t) +
a12

2α2
u2

2(t).

By Itô’s formula,

dV∗(w) = LV∗(w)dt + σ1(1 + w)θ−1x1dB1(t) + σ1(1 + w)θ−1x2dB1(t) + σ2(1 + w)θ−1x3dB2(t),
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where

LV∗(w) = θ(1 + w)θ−1(a11x2 − a12x2
1 − sx1 + a21x1 − a22x2

2 − d1x2u1 − βx2 + rx3

− r

k3
x2

3 − d2x3u2 − qEx3 +
r

k3
x3u1 −

r

k3
u2

1 + a12x2u2 − a12u2
2)

+
σ2

1 θ(θ − 1)

2
(1 + w)θ−2(x2

1 + x2
2) +

σ2
2 θ(θ − 1)

2
(1 + w)θ−2x2

3

≤ θ(1 + w)θ−1

(

− a12x2
1 + (a21 − s)x1 − a22x2

2 + (a11 − β)x2 −
r

k3
x2

3

+ (r − qE)x3 +
r

2k3
x2

3 +
r

2k3
u2

1 −
r

k3
u2

1 +
a12

2
x2

2 +
a12

2
u2

2 − a12u2
2

)

+
σ2

1 θ(θ − 1)

2
(1 + w)θ−2(x2

1 + x2
2) +

σ2
2 θ(θ − 1)

2
(1 + w)θ−2x2

3

= θ(1 + w)θ−2

(

(1 + w)(−a12x2
1 + (a21 − s)x1 −

(

a22 +
a12

2

)

x2
2 + (a11 − β)x2

− r

2k3
x2

3 + (r − qE)x3 −
r

2k3
u2

1 −
a12

2
u2

2) +
σ2

1 θ(θ − 1)

2
(x2

1 + x2
2)

+
σ2

2 θ(θ − 1)

2
x2

3

)

≤ θ(1 + w)θ−1

(

− a12x2
1 + (a21 − s + α1)x1 −

(

a22 +
a12

2

)

x2
2

+ (a11 − β + α1)x2 −
r

2k3
x2

3 + (r − qE + α1)x3 − α1w +
a12

2

(

α1

α2
− 1

)

u2
2

)

+ σ2
1 θ(θ − 1)(1 + w)θ−2w2 +

σ2
2 θ(θ − 1)

2
(1 + w)θ−2w2

≤ θ(1 + w)θ−2

(

(1 + w)(−a12x2
1 + (a21 − s + α2)x1 − a22x2

2 + (a11 − β + α2)x2

− r

2k3
x2

3 + (r − qE + α2)x3 − α2w) +
(2σ2

1 + σ2
2 )

2
(θ − 1)w2

)

≤ θ(1 + w)θ−2

(

−
(

α2 −
(2σ2

1 + σ2
2 )

2
(θ − 1)

)

w2 + (M1 − α2)w + M1

)

,

where

M1 = sup
x1,x2,x3∈(0,+∞)

{

− a12x2
1 + (a21 − s − α1)x1 − a22x2

2

+ (a11 − β + α1)x2 −
r

2k3
x2

3 + (r − qE + α1)x3

}

.

Choose θ ∈
(

1, 2α2

2σ2
1+σ2

2
+ 1
)

such that λ∗ = α2 − 2σ2
1+σ2

2
2 (θ − 1) > 0. Then

dV∗ ≤ θ(1 + w)θ−2
(

− λ∗w2 + (M1 − α2)w + M1

)

dt + σ1(1 + w)θ−1x1dB1(t)

+ σ1(1 + w)θ−1x2dB1(t) + σ2(1 + w)θ−1x3dB2(t).
(4.1)

Hence, for 0 < µ < θλ∗, we have

d
(

eµtV∗(w)
)

≤ L
(

eµtV∗(w)
)

dt + σ1θeµt(1 + w)θ−1x1dB1(t) + σ1θeµt(1 + w)θ−1x2dB1(t)

+ σ2θeµt(1 + w)θ−1x3dB2(t),
(4.2)
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where

L
(

eµtV∗(w)
)

≤ µeµt(1 + w)θ + eµtθ(1 + w)θ−2
(

− λ∗w2 + (M1 − α2)w + M1

)

= eµt(1 + w)θ−2
(

− (θλ∗ − µ)w2 + (2µ + M1θ − α2θ)w + M1θ + µ
)

≤ eµt M2,

where

M2 = sup
w∈(0,+∞)

(1 + w)θ−2
(

− (θλ∗ − µ)w2 + (2µ + M1θ − α2θ)w + M1θ + µ
)

.

Integrating from 0 to t and taking the expectation of two sides of (4.2) yields

E
(

eµtV∗(w(t))
)

= V∗(w(0)
)

+
∫ t

0
E
(

L
(

eµϑV∗(w(ϑ)
))

)

dϑ

≤ (1 + w(0))θ +
M2

µ
eµt, a.s.

On account of the continuity of V∗(w(t)), there exists a constant H > 0 such that

E
((

1 + w(t)
)θ) ≤ H, t ≥ 0, a.s. (4.3)

From (4.1) and (4.3), for sufficiently small δ > 0, n = 1, 2, . . . ,

E

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

≤ E
((

1 + w(nδ)
)θ)

+ I1 + I2, (4.4)

where

I1 = θE

(

sup
nδ≤t≤(n+1)δ

∣

∣

∣

∣

∫ t

nδ
(1 + w)θ−2

(

− λ∗w2 + (M1 − α2)w + M1

)

dt

∣

∣

∣

∣

)

I2 = σ1θE

(

sup
nδ≤t≤(n+1)δ

∣

∣

∣

∣

∫ t

nδ

(

1 + w(ϑ)

)θ−1

x1(ϑ)dB1(ϑ)

∣

∣

∣

∣

)

+ σ1θE

(

sup
nδ≤t≤(n+1)δ

∣

∣

∣

∣

∫ t

nδ

(

1 + w(ϑ)

)θ−1

x2(ϑ)dB1(ϑ)

∣

∣

∣

∣

)

+ σ2θE

(

sup
nδ≤t≤(n+1)δ

∣

∣

∣

∣

∫ t

nδ

(

1 + w(ϑ)

)θ−1

x3(ϑ)dB2(ϑ)

∣

∣

∣

∣

)

.

Furthermore,

I1 ≤ max

{

λ∗,
1

2
|M1 − α2|, M1

}

θE

(

sup
nδ≤t≤(n+1)δ

∣

∣

∣

∣

∫ t

nδ
(1 + w)θ−2(w2 + 2w + 1)dt

∣

∣

∣

∣

)

≤ C1δE

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)

)θ)

,

(4.5)

where C1 = θ max{λ∗, 1
2 |M1 − α2|, M1}. According to the Burkholder–Davis–Gundy inequal-
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ity [1],

I2 ≤
√

32σ1θE

(

∣

∣

∣

∣

∫ (n+1)δ

nδ

(

1 + w(ϑ)
)2θ−2

x2
1(ϑ)dϑ

∣

∣

∣

∣

1
2

)

+
√

32σ1θE

(

∣

∣

∣

∣

∫ (n+1)δ

nδ

(

1 + w(ϑ)
)2θ−2

x2
2(ϑ)dϑ

∣

∣

∣

∣

1
2

)

+
√

32σ2θE

(

∣

∣

∣

∣

∫ (n+1)δ

nδ

(

1 + w(ϑ)
)2θ−2

x2
3(ϑ)dϑ

∣

∣

∣

∣

1
2

)

≤ 2
√

32σ1θE

(

∣

∣

∣

∣

∫ (n+1)δ

nδ

(

1 + w(ϑ)
)2θ

dϑ

∣

∣

∣

∣

1
2

)

+
√

32σ2θE

(

∣

∣

∣

∣

∫ (n+1)δ

nδ

(

1 + w(ϑ)
)2θ

dϑ

∣

∣

∣

∣

1
2

)

≤ 2
√

32σ1θ
√

δE

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

+
√

32σ2θ
√

δE

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

= (2σ1 + σ2)
√

32θ
√

δE

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

.

(4.6)

By (4.4)-(4.6), we obtain that

(1 − C1δ − (2σ1 + σ2)
√

32θ
√

δ)E

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

≤ H

for a sufficiently small constant δ > 0 such that C1δ + (2σ1 + σ2)
√

32θ
√

δ ≤ 1
2 . Then

E

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

≤ 2H.

For arbitrary ǫ, according to Chebyshev’s inequality,

P

(

sup
nδ≤t≤(n+1)δ

(

1 + w(t)
)θ

> (nδ)1+ǫ

)

≤
E

(

supnδ≤t≤(n+1)δ

(

1 + w(t)
)θ
)

(nδ)1+ǫ
≤ 2H

(nδ)1+ǫ
.

From the Borel–Cantelli lemma [11], we have that supnδ≤t≤(n+1)δ

(

1 + w(t)
)θ ≤ (nδ)1+ǫ, a.s.

holds for all but finitely many n.

For ǫ → 0, we have lim supt→+∞
ln(1+w(t))θ

ln t ≤ 1, a.s. Hence

lim sup
t→+∞

ln w(t)

ln t
≤ lim sup

t→+∞

ln
(

1 + w(t)
)

ln t
≤ 1

θ
.

For ǫ0 < 1, there exists T > 0 such that

ln w(t) ≤
(

1

θ
+ ǫ0

)

ln t, when t ≥ T.

Thus

lim sup
t→+∞

w(t)

t2
≤ lim sup

t→+∞

t
1
θ +ǫ0−2 = 0,
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i.e.,

lim sup
t→+∞

x1(t) + x2(t) + x3(t) +
a12
2α2

u2
2(t) +

r
2k3α1

u2
1(t)

t2
= 0,

which, together with the positivity of x1(t), x2(t), x3(t), u1(t), u2(t), gives

lim
t→∞

u1(t)

t
= 0, lim

t→∞

u2(t)

t
= 0, a.s.

Indeed, integration of the system (1.3) from 0 to t yields

u1(t)− u1(0)

t
= α1〈x3(t)〉 − α1〈u1(t)〉

u2(t)− u2(0)

t
= α1〈x2(t)〉 − α2〈u2(t)〉.

Thus

〈u1(t)〉 = 〈x3(t)〉 −
u1(t)− u1(0)

α1t
, 〈u2(t)〉 = 〈x2(t)〉 −

u2(t)− u2(0)

α2t
.

Next, to obtain the optimal harvest strategy of system (1.3), we establish the following

auxiliary systems:































dy1(t) = y1

(

a11k2 − a12y1(t)− s
)

dt + σ1y1(t)dB1(t),

dy2(t) = y2

(

a21y1 − a22y2(t)− β
)

dt + σ1y2(t)dB1(t),

dy3(t) =

(

y3(t)

(

r

(

1 − y3(t)

k3

)

− d2v(t)− qE

))

dt + σ2y3(t)dB2(t),

dv(t) = α2(y2(t)− v(t)).

(4.7)

On the basis of Lemma 4.4, we similarly obtain 〈v(t)〉 = 〈y2(t)〉 − v(t)−v(0)
α2t and limt→∞

v(t)
t = 0

a.s.

Theorem 4.5. Under Assumption 1.1, if a11k2 − b1 > 0, a21(a11k2 − b1) − a12b2 > 0, then the

solution (y1(t), y2(t), y3(t), v(t)) of system (4.7) with initial value (y1(0), y2(0), y3(0), v(0)) meets

the conditions

lim
t→∞

〈y1(t)〉 =
a11k2 − b1

a12
a.s., lim

t→∞
〈y2(t)〉 =

a21(a11k2 − b1)− a12b2

a12a22
a.s.











lim
t→∞

〈y3(t)〉 = 0 a.s. if Γ1 < a12a22qE,

lim
t→∞

〈y3(t)〉 =
(Γ1 − a12a22qE)k3

a12a22r
a.s. if Γ1 > a12a22qE.

Proof. By Itô’s formula, we have

d ln y1(t) = (a11k2 − a12y1(t)− b1)dt + σ1dB1(t),

d ln y2(t) = (a21y1 − a22y2(t)− b2)dt + σ1dB1(t),

d ln y3(t) =

(

− r

k3
y3(t)− d2v(t)− qE + b3

)

dt + σ2dB2(t).
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We integrate both sides of the above equation from 0 to t and divide by t to obtain

t−1 ln
y1(t)

y1(0)
= −a12〈y1(t)〉+ a11k2 − b1 + t−1σ1B1(t), (4.8)

t−1 ln
y2(t)

y2(0)
= a21〈y1(t)〉 − a22〈y2(t)〉 − b2 + t−1σ1B1(t), (4.9)

t−1 ln
y3(t)

y3(0)
= −d2〈v(t)〉 −

r

k3
〈y3(t)〉 − qE + b3 + t−1σ2B2(t) (4.10)

= −d2〈y2(t)〉+ d2
v(t)− v(0)

α2t
− r

k3
〈y3(t)〉 − qE + b3 + t−1σ2B2(t). (4.11)

It is apparent that

lim
t→∞

t−1 ln yi(0) = 0, i = 1, 2, 3, (4.12)

i.e., for any ǫ1 > 0, t is sufficiently large that

t−1 ln y1(t) ≤ −a12〈y1(t)〉+ a11k2 − b1 + ǫ1 + t−1σ1B1(t),

t−1 ln y1(t) ≥ −a12〈y1(t)〉+ a11k2 − b1 − ǫ1 + t−1σ1B1(t).

Note that a11k2 − b1 > 0. Let ǫ1 be sufficiently small that a11k2 − b1 − ǫ1 > 0. Then, by

Lemma 4.1, we have

lim
t→∞

〈y1(t)〉 ≤
a11k2 − b1 + ǫ1

a12
a.s, lim

t→∞
〈y1(t)〉 ≥

a11k2 − b1 − ǫ1

a12
a.s,

and by the arbitrariness of ǫ1,

lim
t→∞

〈y1(t)〉 =
a11k2 − b1

a12
a.s. (4.13)

Substitute (4.13) in (4.8) and note that lim
t→∞

t−1σ1B1(t) = 0. Then, by Lemma 4.2,

lim
t→∞

ln y1(t)

t
= 0. (4.14)

Compute a21×(4.8)+a12×(4.9) to obtain

a21t−1 ln
y1(t)

y1(0)
+ a12t−1 ln

y2(t)

y2(0)

= −a12a22〈y2(t)〉+ a21(a11k2 − b1)− a12b2 + (a21 + a12)t
−1σ1B1(t), (4.15)

and compute a12a22×(4.10)−d2×(4.15) to obtain

a12a22t−1 ln
y3(t)

y3(0)
− a21d2t−1 ln

y2(t)

y2(0)
− a12d2t−1 ln

y1(t)

y1(0)

= Γ1 − a12a22qE − r

k3
a12a22〈y3(t)〉+ a12a22d2

v(t)− v(0)

α2t

− d2(a21 + a12)t
−1σ1B1(t) + a12a22t−1σ2B2(t).

(4.16)

Combining (4.12) with (4.14) yields that for any 0 < ǫ2 < a21(a11k2 − b1)− a12b2, there exists

T1 > 0 such that

− ǫ2 < a21t−1 ln
y1(t)

y1(0)
+ a12t−1 ln y2(0) < ǫ2, t ≥ T1. (4.17)



14 Y. Zhang and J. Zhang

By (4.15) and (4.17), we can obtain that

a12t−1 ln y2(t) ≤ −a12a22〈y2(t)〉+ a21(a11k2 − b1)− a12b2 + ǫ2 + (a21 + a12)t
−1σ1B1(t),

a12t−1 ln y2(t) ≥ −a12a22〈y2(t)〉+ a21(a11k2 − b1)− a12b2 − ǫ2 + (a21 + a12)t
−1σ1B1(t).

It then follows from Lemma 4.1 that

lim
t→∞

〈y2(t)〉 ≤
a21(a11k2 − b1)− a12b2 + ǫ2

a12a22
a.s.,

lim
t→∞

〈y2(t)〉 ≥
a21(a11k2 − b1)− a12b2 − ǫ2

a12a22
a.s.

From the arbitrariness of ǫ2, we can get that

lim
t→∞

〈y2(t)〉 =
a21(a11k2 − b1)− a12b2

a12a22
a.s. (4.18)

From (4.14), (4.15), and (4.18), one can observe that

lim
t→∞

ln y2(t)

t
= 0. (4.19)

Analogously, applying Lemmas 4.1 and 4.4 and combining (4.12), (4.14), and (4.19) with

(4.16), one can see that when Γ1 > a12a22qE, we have

lim
t→∞

〈y3(t)〉 =
k3

r

(

Γ1

a12a22
− qE

)

a.s. (4.20)

From (4.14), (4.19), (4.20), and (4.16), one can see that

lim
t→∞

ln y3(t)

t
= 0, (4.21)

and if Γ1 < a12a22qE, then

lim
t→∞

〈y3(t)〉 = 0. (4.22)

The proof is completed.

Then, for system (1.3), we have the following theorem.

Theorem 4.6. Under Assumption 1.1 and when α1 > α2:

(i) if a11k2 < b1 and b3 < qE, then all x1, x2, and x3 go to extinction almost surely, i.e.,

limt→∞ x1(t) = 0, limt→∞ x2(t) = 0, limt→∞ x3(t) = 0.

(ii) if a11 > b1k1, a21 > b2k2, and Γ1 < a12a22qE, then x1, x2 are persistent in mean a.s., and x3

goes to extinction a.s.

(iii) if a11k2 < b1 and b3 > qE, then both x1 and x2 go to extinction a.s., and x3 is persistent in mean

a.s.

(iv) if a11 > b1k1, a12a22r(a21 − b2k2) > d1k3(Γ1 − a12a22qE), and Γ1 > a12a22qE, then x1, x2, x3

are all persistent in mean a.s.
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Proof. By the stochastic comparison theorem, we obtain

x1(t) ≤ y1(t), x2(t) ≤ y2(t), x3(t) ≤ y3(t). (4.23)

So, it follows from (4.14), (4.19), and (4.21) that

lim
t→∞

ln x1(t)

t
= 0, lim

t→∞

ln x2(t)

t
= 0, lim

t→∞

ln x3(t)

t
= 0. (4.24)

Applying Itô’s formula to system (1.3) yields

d ln x1(t) =

(

a11
x2(t)

x1(t)
− a12x1(t)− b1

)

dt + σ1dB1(t),

d ln x2(t) =

(

a21
x1(t)

x2(t)
− a22x2(t)− d1u1(t)− b2

)

dt + σ1dB1(t),

d ln x3(t) =

(

− r

k3
x3(t)− d2u2(t)− qE + b3

)

dt + σ2dB2(t).

Integrate both sides of the above three equations from 0 to t, and divide by t to obtain

t−1 ln
x1(t)

x1(0)
= a11t−1

∫ t

0

x2(v)

x1(v)
dv − a12〈x1(t)〉 − b1 + t−1σ1B1(t), (4.25)

t−1 ln
x2(t)

x2(0)
= a21t−1

∫ t

0

x1(v)

x2(v)
dv − a22〈x2(t)〉 − d1〈u1(t)〉 − b2 + t−1σ1B1(t)

= a21t−1
∫ t

0

x1(v)

x2(v)
dv − a22〈x2(t)〉 − d1〈x3(t)〉+ d1

u1(t)− u1(0)

α1t

− b2 + t−1σ1B1(t), (4.26)

t−1 ln
x3(t)

x3(0)
= − r

k3
〈x3(t)〉 − d2〈u2(t)〉 − qE + b3 + t−1σ2B2(t)

= − r

k3
〈x3(t)〉 − d2〈x2(t)〉+ d2

u2(t)− u2(0)

α2t
− qE + b3 + t−1σ2B2(t). (4.27)

Now, let us prove conclusion (i). We use Lemma 4.2 to obtain

lim
t→∞

σ1B1(t)

t
= 0, lim

t→∞

σ2B2(t)

t
= 0.

Then, for arbitrary ǫ3 > 0, there exists T2 > 0 such that

∣

∣

∣

∣

σ1B1(t)

t

∣

∣

∣

∣

<
ǫ3

4
,

∣

∣

∣

∣

σ2B2(t)

t

∣

∣

∣

∣

<
ǫ3

4
,

∣

∣

∣

∣

ln xi(0)

t

∣

∣

∣

∣

<
ǫ3

4
, i = 1, 2, 3.

Using the specific property of the limit superior in (4.25) gives

t−1 ln x1(t) ≤ a11k2 − b1 − a12〈x1(t)〉+ ǫ3, t > T2.

By the assumption a11k2 < b1, we can let ǫ3 be sufficiently small that a11k2 < b1 − ǫ3, and by

Lemma 4.1, limt→∞ x1(t) = 0 and limt→∞〈x1(t)〉 = 0.

From Lemma (4.4), for the above ǫ3, there exists T3 > 0 such that
∣

∣

∣

∣

u1(t)− u1(0)

t

∣

∣

∣

∣

<
α1ǫ3

2d1
, t ≥ T3.
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Using limit superior in (4.26) gives

t−1 ln x2(t) ≤ −b2 + ǫ3 − a22〈x2(t)〉 − d1〈x3(t)〉∗, t ≥ T3.

Let ǫ3 be sufficiently small that −b2 + ǫ3 < 0. Then limt→∞ x2(t) = 0 by Lemma 4.1.

Similarly, from Lemma 4.4, there exists T4 > 0 such that

∣

∣

∣

∣

u2(t)− u1(0)

t

∣

∣

∣

∣

<
α2ǫ3

2d2
, t ≥ T4.

Then

t−1 ln x3(t) ≤ b3 − qE + ǫ3 −
r

k3
〈x3(t)〉 − d2〈x2(t)〉∗, t ≥ T4.

Because b3 < 0, ǫ3 is sufficiently small that b3 + ǫ5 < 0, and we have limt→∞ x3(t) = 0 by

Lemma 4.1.

Next, we prove (ii). Because limt→∞ y3(t) = 0 a.s. when Γ1 < a12a22qE from Theorem 4.5

and (4.23), we know limt→∞ x3(t) = 0 a.s. Hence system (1.3) can be simplified to a stage-

structured single-population model,

{

dx1(t) =
(

a11x2(t)− a12x2
1(t)− sx1(t)

)

dt + σ1x1(t)dB1(t),

dx2(t) =
(

a21x1(t)− a22x2
2(t)− βx2(t)

)

dt + σ1x2(t)dB1(t).

Integrate both sides of the above equations from 0 to t and divide by t to obtain:

t−1 ln
x1(t)

x1(0)
≥ a11

k1
− a12〈x1(t)〉 − b1 + t−1σ1B1(t), (4.28)

t−1 ln
x2(t)

x2(0)
≥ a21

k2
− a22〈x2(t)〉 − b2 + t−1σ1B1(t). (4.29)

According to Lemma 4.1 and the proof of Theorem 4.5, one can obtain that

lim
t→∞

〈x1(t)〉 ≥
a11 − b1k1

a12k1
> 0,

lim
t→∞

〈x2(t)〉 ≥
a21 − b2k2

a22k2
> 0,

and the proof of (ii) is completed.

Similar to (ii), we can see that limt→∞ x1(t) = 0, limt→∞ x2(t) = 0, from (i) under the

condition a11k2 < b1, and system (1.3) can be simplified to a single-species model,

dx3(t) = x3(t)

(

r

(

1 − x3(t)

k3(t)

)

− qE

)

dt + σ2x3(t)dB2(t).

Therefore,

t−1 ln
x3(t)

x3(0)
=− r

k3
〈x3(t)〉+ b3 − qE + t−1σ2B2(t).

Applying Lemma 4.1 and similar proof with Theorem 4.5 to the above equation, we obtain:

lim
t→∞

〈x3(t)〉 =
(b3 − qE)k3

r
> 0.
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Finally, we prove (iv). From (4.25)–(4.27), we obtain

t−1 ln
x1(t)

x1(0)
≥ a11

k1
− a12〈x1(t)〉 − b1 + t−1σ1B1(t),

t−1 ln
x2(t)

x2(0)
≥ a21

k2
− a22〈x2(t)〉 − d1〈x3(t)〉∗ +

d1

(

u1(t)− u1(0)
)

α1t
− b2 + t−1σ1B1(t)

≥ a21

k2
− a22〈x2(t)〉 − d1

k3

r

(

Γ1

a12a22
− qE

)

+
d1

(

u1(t)− u1(0)
)

α1t
− b2

+ t−1σ1dB1(t),

t−1 ln
x3(t)

x3(0)
≥− r

k3
〈x3(t)〉 − d2〈x2(t)〉∗ +

d2

(

u2(t)− u2(0)
)

α2t
+ b3 − qE + t−1σ2B2(t)

≥− r

k3
〈x3(t)〉+

d2

(

u2(t)− u2(0)
)

α2t
+

Γ1

a12a22
− qE + t−1σ2B2(t).

Simply, one can obtain that:

lim
t→∞

〈x1(t)〉 ≥
a11 − k1b1

a12k1
> 0,

lim
t→∞

〈x2(t)〉 ≥
a21 − b2k2

a22k2
− d1k3

a22r

(

Γ1

a12a22
− qE

)

> 0,

lim
t→∞

〈x3(t)〉 ≥
k3

r

(

Γ1

a12a22
− qE

)

> 0.

Theorem 4.7. If the conditions of Theorem 4.6 (iv) hold, then the optimal harvested efforts of species

x3 are

E⋆ =
1

2pq

(

pΓ1

a12a22
− r

k3
c

)

,

and the maximum expectation of net economic revenue is

m(E⋆) =
k3

4pqr

(

pΓ1

a12a22
− r

k3
c

)

,

where p and c
x3(t)

are respectively the unit price and unit cost of a commercially harvested population.

Proof. According to the conclusions of Theorems 4.5 and 4.6, we can obtain that

lim
t→∞

〈x3(t)〉 ≤
k3

r

(

Γ1

a12a22
− qE

)

, lim
t→∞

〈x3(t)〉 ≥
k3

r

(

Γ1

a12a22
− qE

)

.

Hence

lim
t→∞

〈x3(t)〉 =
k3

r

(

Γ1

a12a22
− qE

)

.

Then the net economic revenue is

m(E) = lim
t→∞



pE

∫ t
0 x3(v)dv

t
− c

∫ t
0 x3(v)dv

t

∫ t
0 x3(v)dv

t
E





=
k3

r

(

Γ1

a12a22
pE − pqE2

)

− cE.
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Letting dm(E)
dE = 0, the optimal harvested efforts are

E⋆ =
1

2pq

(

pΓ1

a12a22
− r

k3
c

)

,

and the maximum expectation of net economic revenue is

m(E⋆) =
k3

4pqr

(

pΓ1

a12a22
− r

k3
c

)

.

5 Numerical analysis

We use some hypothetical parameter values to verify Theorems 4.6 and 4.7. We choose k1 =

50, k2 = 50, k3 = 100, and initial values x1(0) = 5, x2(0) = 5, x3(0) = 8. Assign different

values to other parameters in Table 5.1, which satisfies Theorem 4.6 , to prove theoretical

results. Fig. 5.1–Fig. 5.4 show the different survival states of the species, as demonstrated in

Theorem 4.6.

Parameter Fig. 5.1 values Fig. 5.2 values Fig. 5.3 values Fig. 5.4–5.5 values

a11 0.04 13.8 0.03 12.8

a12 0.1 0.2 0.05 0.85

a21 0.2 0.24 0.5 0.24

a22 0.1 0.2 0.1 0.5

s 0.7 0.25 0.5 0.25

d1 0.1 0.2 0.1 0.01

d2 0.35 0.2 0.35 0.01

r 1 1.25 1.1 2

q 0.45 0.5 0.5 0.55

E 3 3 2 3.5

β 0.1 0.004 0.1 0.004

σ1 1.62 0.05 1.42 0.1

σ2 0.2 0.2 0.2 0.2

α1 0.5 0.5 0.5 0.5

α2 0.4 0.4 0.4 0.2

Table 5.1: Parameter values.

Regarding the optimal harvesting effort, we still select the same parameters with the

Fig. 5.4. By Theorem 4.7, we obtain E∗ = 1.788. Therefore, the optimal harvesting policy

exists, we show it in Fig. 5.5. The maximum expectation of net economic revenue exists when

E∗ = 1.788.
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Figure 5.1: x1, x2 and x3 all go to extinction.
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Figure 5.2: x1 and x2 are permanent, x3 goes to extinction.
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Figure 5.3: x1,x2 go to extinction, x3 is permanent.
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Figure 5.4: x1, x2 and x3 are permanent.
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Figure 5.5: The optimal harvesting effort and the maximum of net economic

revenue.

6 Conclusion

We investigated the dynamics of a stochastic stage-structured competitive system with dis-

tributed delay and harvesting. We took a weak kernel case as an example for convenience,

and we similarly discuss the strong kernel case. Our objective was to study the optimal har-

vest strategy and the maximum net economic revenue. Some main results are as follows:

(i) The existence and uniqueness of the positive solution of system (1.3) was proved, using

a Lyapunov function to ensure the rationality of the system and provide support for later

results.

(ii) We showed that when a12 > 2(a11 ∨ a21), a22 > α2 + (a11 ∨ a21), r > α1k3, α1 > d1,

α2 > d2, system (1.3) would be asymptotically stable in distribution.

(iii) The research of the optimal harvest and maximum expectation of net economic rev-

enue of stochastic models has clear practical significance. Species extinction must be strictly

prevented during fishing. First, sufficient conditions for persistence in mean and extinction
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were established. The optimal harvested efforts were

E⋆ =
1

2pq

(

pΓ1

a12a22
− r

k3
c

)

,

and the maximum expectation of net economic revenue was

m(E⋆) =
k3

4pqr

(

pΓ1

a12a22
− r

k3
c

)

.

We only considered the effect of white noise and delay on the dynamics of the stage-

structured competitive system. It is also interesting to consider the effect of telephone noise,

toxins, and Markovian switching, and these will be topics of our further research.
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[3] I. Barbălat, Systèmes d’équations différentielles d’oscillations non linéaires (in French),

Rev. Math. Pures Appl. 4(1959), No. 4, 267–270. MR111896; Zbl 0090.06601

[4] K. Chakraborty, M. Chakraborty, T. K. Karet, Optimal control of harvest and bifurca-

tion of a prey–predator model with stage structure, Appl. Math. Comput. 217(2011), No. 21,

8778–8792. https://doi.org/10.1016/j.amc.2011.03.139; MR2802286; Zbl 1215.92059

[5] F. Chen, Global asymptotic stability in n-species non-autonomous Lotka–Volterra

competitive systems with infinite delays and feedback control, Appl. Math. Com-

put. 170(2005), No. 2, 1452–1468. https://doi.org/10.1016/j.amc.2005.01.028;

MR2175295; Zbl 1081.92038

[6] X. Huang, F. Chen, X. Xie, L. Zhao, Extinction of a two species competitive stage-

structured system with the effect of toxic substance and harvesting, Open Math. 17(2019),

No. 1, 856–873. https://doi.org/10.1515/math-2019-0067; MR3990646; Zbl 07140100

[7] R. Kon, Y. Saito, Y. Takeuchi, Permanence of single-species stage-structured models,

J. Math. Biol. 48(2004), No. 5, 515–528. https://doi.org/10.1007/s00285-003-0239-1;

MR2067114; Zbl 1057.92043

[8] M. Liu, C. Bai, Optimal harvesting of a stochastic logistic model with time delay,

J. Nonlinear Sci. 25(2015), No. 2, 277–289. https://doi.org/10.1007/s00332-014-9229-2;

MR3318796; Zbl 1329.60186



22 Y. Zhang and J. Zhang

[9] Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamics of a stochastic predator–prey model

with distributed delay and Markovian switching, Phys. A 527(2019), No. 1, 121264. https:

//doi.org/10.1016/j.physa.2019.121264; MR3946958;

[10] N. Macdonald, Time lags in biological models, Lecture Notes in Biomathematics, Vol. 27,

Springer-Verlag, New York, 1978. https://doi.org/10.1007/978-3-642-93107-9;

MR521439; Zbl 0403.92020

[11] X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997.

https://doi.org/10.1533/9780857099402; Zbl 0892.60057

[12] R. Rudnicki, Long-time behaviour of a stochastic prey–predator model, Stochastic Pro-

cess. Appl. 108(2003), No. 1, 93–107. https://doi.org/10.1016/S0304-4149(03)00090-5;

MR2067114; Zbl 1075.60539

[13] H. L. Smith, An introduction to delay differential equations with applications to the life sciences,

Texts in Applied Mathematics, Vol. 57, Springer, New York, 2011. https://doi.org/10.

1007/978-1-4419-7646-8; MR2724792; Zbl 1227.34001

[14] X. Song, L. Chen, Optimal harvesting and stability for a two-species competitive system

with stage structure, Math. Biosci. 170(2001), No. 2, 173–186. https://doi.org/10.1016/

S0025-5564(00)00068-7; MR1832710; Zbl 1028.34049

[15] X. Sun, W. Zuo, D. Jiang, T. Hayat, Unique stationary distribution and ergodicity of

a stochastic logistic model with distributed delay, Phys. A 512(2018), No. 15, 864–881.

https://doi.org/10.1016/j.physa.2018.08.048; MR3851707;

[16] M. L. Zeeman, Extinction in competitive Lotka–Volterra systems, Proc. Amer. Math. Soc.

123(1995), No. 1, 87–96. https://doi.org/10.2307/2160613; MR1264833; Zbl 0815.34039

[17] Y. Zhang, Q. Zhang, Dynamic behavior in a delayed stage-structured population model

with stochastic fluctuation and harvesting, Nonlinear Dynam. 66(2011), No. 1–2, 231–245.

https://doi.org/10.1007/s11071-010-9923-z; MR2836612; Zbl 1303.92109

[18] Y. Zhang, Y. Zheng, X. Liu, Q. Zhang, A. Li, Dynamical analysis of a differen-

tial algebraic bio-economic model with stage-structured and stochastic fluctuations,

Phys. A 462(2016), No. 15, 222–229. https://doi.org/10.1016/j.physa.2016.06.005;

MR3531554; Zbl 1400.92597

[19] C. Zhu, G. Yin, On competitive Lotka–Volterra model in random environments, J. Math.

Anal. Appl. 357(2009), No. 1, 154–170. https://doi.org/10.1016/j.jmaa.2009.03.066;

MR2526815; Zbl 1182.34078

[20] W. Zuo, D. Jiang, X. Sun, T. Hayat, A. Alsaedi, Long-time behaviors of a stochas-

tic cooperative Lotka–Volterra system with distributed delay, Phys. A 506(2018), No. 15,

542–559. https://doi.org/10.1016/j.physa.2018.03.071; MR3810380;



Electronic Journal of Qualitative Theory of Differential Equations
2021, No. 26, 1–20; https://doi.org/10.14232/ejqtde.2021.1.26 www.math.u-szeged.hu/ejqtde/

Existence and multiplicity of positive solutions

for a singular system via sub-supersolution method

and Mountain Pass Theorem

Suellen Cristina Q. ArrudaB 1 and Rubia G. Nascimento*2

1Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará,
68440-000 Abaetetuba, Pará, Brazil

2Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110 Belém, Pará, Brazil

Received 3 April 2020, appeared 1 April 2021

Communicated by Gennaro Infante

Abstract: In this paper we show the existence and multiplicity of positive solutions
using the sub-supersolution method and Mountain Pass Theorem in a general singular
system which the operator is not homogeneous neither linear.

Keywords: p&q-Laplacian operator, sub-supersolution method, singular system,
Mountain Pass theorem.

2020 Mathematics Subject Classification: Primary 35J20, 35J50; Secondary 58E05.

1 Introduction

In this paper we treat the question of the existence and multiplicity of positive solutions for
the following class of singular systems of nonlinear elliptic equation





−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x)u−γ1 + Fu(x, u, v) in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x)v−γ2 + Fv(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary, N ≥ 3 and 2 ≤ p1, p2 < N. For

i = 1, 2, γi > 0 is a fixed constant, ai : R
+ → R

+ is a C1-function and hi ≥ 0 is a nontrivial
measurable function. More precisely, we suppose that the functions hi and ai satisfy the
following assumptions:

(H) There exists 0 < φ0 ∈ C1
0(Ω) such that hiφ

−γi
0 ∈ L∞(Ω).

BCorresponding author. Email: scqarruda@ufpa.br
*Email: rubia@ufpa.br



2 S. Arruda and R. Nascimento

(A1) There exist constants k1, k2, k3, k4 > 0 and 2 ≤ pi ≤ qi < N such that

k1tpi + k2tqi ≤ ai(t
pi)tpi ≤ k3tpi + k4tqi , for all t ≥ 0.

(A2) The functions
t 7−→ ai(t

pi)tpi−2 are increasing.

(A3) The functions
t 7−→ Ai(t

pi) are strictly convex,

where Ai(t) =
∫ t

0 ai(s)ds.

(A4) There exist constants µi, 1
q∗1

< θs <
1
q1

and 1
q∗2

< θt <
1
q2

such that

1
µi

ai(t)t ≤ Ai(t), for all t ≥ 0,

with q1
p1

≤ µ1 <
1

θs p1
and q2

p2
≤ µ2 <

1
θt p2

.

Notice that the functions ai satisfy suitable monotonicity conditions which allow to con-
sider a larger class of p&q type problems. In order to illustrate the degree of generality of
the kind of problems studied here, in the following we present some examples of functions ai

which are interesting from the mathematical point of view and have a wide range of applica-
tions in physics and related sciences.

Example 1.1. If ai ≡ 1, for each i = 1, 2, our operator is the p-Laplacian and so problem (1.1)
becomes 




−∆p1 u = h1(x)u−γ1 + Fu(x, u, v) in Ω,

−∆p2 v = h2(x)v−γ2 + Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

with qi = pi, k1 + k2 = 1 and k3 + k4 = 1.

Example 1.2. If ai(t) = 1 + t
qi−pi

pi , for each i = 1, 2, we obtain




−∆p1 u − ∆q1 u = h1(x)u−γ1 + Fu(x, u, v) in Ω,

−∆p2 v − ∆q2 v = h2(x)v−γ2 + Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

with k1 = k2 = k3 = k4 = 1.

Example 1.3. Taking ai(t) = 1 + 1

(1+t)
pi−2

pi

, for each i = 1, 2, we get





−div


|∇u|p1−2∇u +

|∇u|p1−2∇u

(1 + |∇u|p1)
p1−2

p1


 = h1(x)u−γ1 + Fu(x, u, v) in Ω,

−div


|∇v|p2−2∇v +

|∇v|p2−2∇v

(1 + |∇v|p2)
p2−2

p2


 = h2(x)v−γ2 + Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

with qi = pi, k1 + k2 = 1 and k3 + k4 = 2.
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Example 1.4. If we consider ai(t) = 1 + t
qi−pi

pi + 1

(1+t)
pi−2

pi

, for each i = 1, 2, we obtain





−∆p1 u − ∆q1 u − div


 |∇u|p1−2∇u

(1 + |∇u|p1)
p1−2

p1


 = h1(x)u−γ1 + Fu(x, u, v) in Ω,

−∆p2 v − ∆q2 v − div


 |∇v|p2−2∇v

(1 + |∇v|p)
p2−2

p2


 = h2(x)v−γ2 + Fv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where k1 = k2 = k4 = 1 and k3 = 2.

Remark 1.5. Note that by hypothesis (H) we have hi ∈ L∞(Ω) because

|hi| = |hiφ
−γi
0 φ

γi
0 | ≤ ‖hiφ

−γi
0 ‖∞φ

γi
0 .

Here F is a function on Ω × R
2 of class C1 satisfying

(F1) There exists 0 < δ <
1
2 such that

−h1(x) ≤ Fs(x, s, t) ≤ 0 a.e. in Ω, for all 0 ≤ s ≤ δ

and
−h2(x) ≤ Ft(x, s, t) ≤ 0 a.e. in Ω, for all 0 ≤ t ≤ δ.

It is worthwhile to point out that, since pi < qi and by the boundedness of Ω, W1,pi
0 (Ω) ∩

W1,qi
0 (Ω) = W1,qi

0 (Ω). Thus, in order to show the existence and multiplicity of solutions to
system (1.1), we define the Sobolev space X = W1,q1

0 (Ω)× W1,q2
0 (Ω) endowed with the norm

‖(u, v)‖ = ‖u‖1,q1 + ‖v‖1,q2 ,

where

‖u‖1,qi =



∫

Ω

|∇u|qi dx




1
qi

.

Moreover, we say that a pair (u, v) ∈ X is a positive weak solution of system (1.1) if
u, v > 0 in Ω and it verifies

∫

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx =
∫

Ω

h1(x)u−γ1 φ dx +
∫

Ω

Fu(x, u, v)φ dx

and ∫

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕ dx =
∫

Ω

h2(x)v−γ2 ϕ dx +
∫

Ω

Fv(x, u, v)ϕ dx,

for all (φ, ϕ) ∈ X.

In our first theorem we apply the sub-supersolution method to establish the existence of a
weak solution for system (1.1).

Theorem 1.6. Suppose that (H), (F1) and (A1)–(A3) are satisfied. Then system (1.1) has a positive
weak solution if ‖hi‖∞ is sufficiently small, for i = 1, 2.
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Furthermore, we assume the conditions below to prove the existence of two solutions for
problem (1.1).

(F2) For i = 1, 2, there exists 1 < r < q∗i = Nqi
(N−qi)

(q∗i = ∞ if qi ≥ N) such that

Fs(x, s, t) ≤ h1(x)(1 + sr−1 + tr−1) a.e. in Ω, for all s ≥ 0

and
Ft(x, s, t) ≤ h2(x)(1 + sr−1 + tr−1) a.e. in Ω, for all t ≥ 0.

(F3) There exist s0, t0 > 0 such that

0 < F(x, s, t) ≤ θssFs(x, s, t) + θttFt(x, s, t) a.e. in Ω, for all s ≥ s0 and t ≥ t0,

where θs and θt appeared in (A4).

Theorem 1.7. Suppose that (H), (F1)–(F3) and (A1)–(A4) are satisfied. Then system (1.1) has two
positive weak solutions if ‖hi‖∞ is sufficiently small, for i = 1, 2.

Singular problems has been much studied in last years. We are going to cite some authors
in last ten years. System (1.1) with Laplacian operator in both equations was studied in
[9], where it was investigated the questions of existence, non-existence and uniqueness for
solutions. The results in [9] were complemented in [16]. The general operator as we consider
in this paper was studied in [5] using continuous unbounded of solutions. The cases with
Laplacian operator involving weights were studied in [7] and [11].

In this paper we complement the results that can be found in [5], [7], [9], [11] and [16]
because we consider a general problem with singularity without restrictions in the exponents.
Moreover, we are considering the sub-supersolution method for a system that involves a non-
linear and nonhomegeneous operator. The reader can see the generality of the operator in [5].

We would like to highlight that our theorems can be applied for the model nonlinearity

F(x, s, t) = h1(x)
(

sr

r
− sδr−1

)
+ h2(x)

(
tr

r
− tδr−1

)
.

This paper is organized in the following way. Section 2 is devoted to some preliminary
results in order to prove the main results. The first theorem is proved in the Section 3 and the
second theorem in the Section 4.

2 Preliminary results

The next lemma provides the uniqueness of solution to the linear problem. The proof can be
found in [5, Lemma 1]. However, for the convenience of the reader, we also prove it here.

Lemma 2.1. Assume that the conditions (A1) and (A2) hold. Then, there exists an unique solution
ui ∈ W1,qi

0 (Ω) of the linear problem

{
−div(ai(|∇ui|

pi)|∇ui|
pi−2∇ui) = hi(x) in Ω,

ui = 0 on ∂Ω,

where hi ∈ (W1,qi
0 (Ω))′, for all i = 1, 2 and 2 ≤ pi ≤ qi < N.
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Proof. Consider the operator Ti : W1,qi
0 (Ω) −→ (W1,qi

0 (Ω))′ given by

〈Tiui, φi〉 =
∫

Ω

ai(|∇ui|
pi) |∇ui|

pi−2∇ui∇φi dx.

In virtue of hypothesis (A1), we can show that the operator Ti is well defined and it is con-
tinuous. Furthermore, by considering the hypothesis (A2), we argument as [8, Lemma 2.4] to
obtain the following inequality

Ci|ui − vi|
pi ≤ 〈ai(|ui|

pi)|ui|
pi−2ui − ai(|vi|

pi)|vi|
pi−2vi, ui − vi〉,

for some Ci > 0 and for all i = 1, 2. Therefore,

〈Tiui − Tivi, ui − vi〉 > 0, for all ui, vi ∈ W1,qi
0 (Ω) with ui 6= vi,

which implies that Ti is monotone. Moreover, using (A1) again we get

〈Tiui, ui〉

‖ui‖1,qi

≥ k2‖ui‖
qi−1
1,qi

and hence

lim
‖ui‖1,qi

→∞

〈Tiui, ui〉

‖ui‖1,qi

= +∞,

which shows that Ti is coercive. Thus, applying the Minty–Browder Theorem [2, Theo-
rem 5.15] there exists an unique ui ∈ W1,qi

0 (Ω) such that Tiui = hi(x).

Our approach in the study of system (1.1) rests heavily on the following Weak Comparison
Principle for the p&q-Laplacian operator. The proof of the result below for the scalar case can
be found in [6, Lemma 2.1].

Lemma 2.2. Let Ω a bounded domain and consider ui, vi ∈ W1,qi
0 (Ω) satisfying

{
−div(ai(|∇ui|

pi)|∇ui|
pi−2∇ui) ≤ −div(ai(|∇vi|

pi)|∇vi|
pi−2∇vi) in Ω,

ui ≤ vi on ∂Ω,

then ui ≤ vi a.e. in Ω, for all i = 1, 2 and 2 ≤ pi ≤ qi < N.

Proof. Using the test function φi = (ui − vi)
+ := max{ui − vi, 0} ∈ W1,qi

0 (Ω), we get
∫

Ω∩{ui>vi}

〈ai(|∇ui|
pi)|∇ui|

pi−2∇ui − ai(|∇vi|
pi)|∇vi|

pi−2∇vi,∇ui −∇vi〉dx ≤ 0.

From Lemma 2.1, ‖(ui − vi)
+‖ ≤ 0, which implies that ui ≤ vi a.e. in Ω.

Now, using Lemma 2.2, it is possible to repeat the same arguments of [13, Hopf’s Lemma]
to obtain the next result

Lemma 2.3. Let Ω ⊂ R
N be a bounded domain with smooth boundary and i = 1, 2. If ui ∈

C1(Ω) ∩ W1,qi
0 (Ω), with 2 ≤ pi ≤ qi < N, and





−div(ai(|∇ui|
pi)|∇ui|

pi−2∇ui) ≥ 0 in Ω,

ui > 0 in Ω,

ui = 0 on ∂Ω.

Then, ∂ui
∂η < 0 on ∂Ω, where η is the outwards normal to ∂Ω.
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We enunciate an iteration lemma due to Stampacchia that we will use to prove the L∞-
regularity of the solutions for this class of p&q type problems.

Lemma 2.4 (See [14]). Assume that φ : [0, ∞) → [0, ∞) is a nonincreasing function such that if h >

k > k0, for some α > 0, β > 1, φ(h) ≤ C(φ(k))β

(h−k)α . Then, φ(k0 + d) = 0, where dα = C2
αβ

β−1 φ(k0)β−1

and C is positive constant.

Lemma 2.5. Let ui ∈ W1,qi
0 (Ω) be solution to problem

{
−div(ai(|∇ui|

pi)|∇ui|
pi−2∇ui) = fi in Ω,

ui = 0 on ∂Ω,
(2.1)

such that fi ∈ Lri(Ω) with ri >
q∗i

q∗i −qi
. Then, ui ∈ L∞. In particular, if ‖ fi‖ri is small, then also ‖ui‖∞

is small, for all i = 1, 2 and 2 ≤ pi ≤ qi < N.

Proof. Since ui is the weak solution to (2.1) we can write
∫

Ω

ai(|∇ui|
pi)|∇ui|

pi−2∇ui∇φi dx =
∫

Ω

fiφi dx, ∀φi ∈ W1,qi
0 (Ω).

For k > 0, we define the test function

vi = sign(ui)(|ui| − k) =





u − k, if u > k,

0, if u = k,

u + k, if u < k.

Then, ui = vi + k sign(ui) and ∂ui
∂xj

= ∂vi
∂xj

in the set A(k) = {x ∈ Ω; |u(x)| > k}, vi = 0

in Ω − A(k) and vi ∈ W1,qi
0 (Ω). By considering the test function vi and using the Hölder

inequality, we get

∫

A(k)

ai(|∇vi|
pi) |∇vi|

pi dx =
∫

Ω

fivi dx ≤




∫

A(k)

|vi|
q∗i dx




1
q∗i




∫

A(k)

| fi|
ri dx




1
ri

|A(k)|
1−

(
1

q∗i
+ 1

ri

)

,

where |A(k)| denotes the Lebesgue measure of A(k). Moreover, applying (A1) and Sobolev
inequality we obtain

k2S




∫

A(k)

|vi|
q∗i dx




qi−1
q∗i

≤




∫

A(k)

| fi|
ri dx




1
ri

|A(k)|
1−

(
1

q∗i
+ 1

ri

)

, (2.2)

where S is the best constant in the Sobolev inclusion.
Note that if 0 < k < h, then A(h) ⊂ A(k) and

|A(k)|
1

q∗i (h − k) =




∫

A(h)

(h − k)q∗i dx




1
q∗i

≤




∫

A(h)

|vi|
q∗i dx




1
q∗i

≤




∫

A(k)

|vi|
q∗i dx




1
q∗i

. (2.3)
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It follows from (2.2) and (2.3) that

|A(k)| ≤
1

(h − k)q∗i

1

(k2S)
q∗i

qi−1

‖ fi‖

q∗i
qi−1
ri |A(k)|

q∗i
qi−1

[
1−

(
1

q∗i
+ 1

ri

)]

.

Since ri >
q∗i

q∗i −qi
we have β := q∗i

qi−1

[
1 −

( 1
q∗i
+ 1

ri

)]
> 1. Therefore, if we define

φ(h) = |A(h)|, α = q∗i , β :=
q∗i

qi − 1

[
1 −

(
1
q∗i

+
1
ri

)]
, k0 = 0,

we obtain that φ is a nonincreasing function and

φ(h) ≤
C(φ(k))β

(h − k)α
, for all h > k > 0.

By Lemma 2.4, we conclude that φ(d) = 0 for d = C
‖ fi‖

1
qi−1
ri

(k2S)
1

qi−1
|Ω|

β−1
α and hence,

‖ui‖∞ ≤ C
‖ fi‖

1
qi−1
ri

(k2S)
1

qi−1
|Ω|

β−1
α ,

where β, α, S and C are constants that do not depend on fi and ui.

Regarding the regularity of the solution of (2.1) the next result hold and the proof can be
done repeating the same arguments of [10, Theorem 1].

Lemma 2.6. Fix hi ∈ L∞(Ω), for all i = 1, 2, and consider ui ∈ W1,qi
0 (Ω) ∩ L∞(Ω), with 2 ≤ pi ≤

qi < N, satisfying the problem
{
−div(ai(|∇ui|

pi)|∇ui|
pi−2∇ui) = hi in Ω,

ui = 0 on ∂Ω,

Then, ui ∈ C1,α(Ω), for some α ∈ (0, 1).

The following result can be found in [12, Lemma 2.6]. The proof is presented for the
completeness of the paper.

Lemma 2.7. Let φ, ω > 0 be any functions on C1
0(Ω). If ∂φ

∂ν > 0 in ∂Ω, where ν is the inwards
normal to ∂Ω, then there exists C > 0 such that

φ(x)
ω(x)

≥ C > 0, for all x ∈ Ω.

Proof. For δ > 0 sufficiently small, we consider the following set

Ωδ = {x ∈ Ω; dist(x, ∂Ω) < δ}.

Since φ, ω > 0 in Ω and Ω \ Ωδ is compact, there exists m > 0 such that

φ(x)
ω(x)

≥ m, for all x ∈ Ω \ Ωδ. (2.4)
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It follows from ∂φ
∂ν > 0 in ∂Ω that ∂φ

∂η < 0, where η is the outwards normal to ∂Ω. Further-
more, since Ω ⊂ R

n is bounded domain, then ∂Ω is a compact set and consequently, there
exists C1 < 0 satisfying

∂φ(x)
∂η

≤ C1, for all x ∈ Ωδ.

Since ω ∈ C1
0(Ω), there exists C2 > 0 such that

∣∣∣∣
∂ω(x)

∂η

∣∣∣∣ ≤ C2, for all x ∈ Ωδ.

Consider K0 = inf
Ωδ

∂ω
∂η < 0 and define the function H(x) = αω(x)− φ(x), for all x ∈ Ωδ

and α ∈ R to be chosen later. Since 0 < α <
C1
K0

we obtain

∂H(x)
∂η

= α
∂ω(x)

∂η
−

∂φ(x)
∂η

≥ αK0 − C1 > 0, for all x ∈ Ωδ.

Now, fix x ∈ Ωδ and consider the function

f (x) = H(x + sη), for all s ∈ R.

For every x ∈ Ωδ, we choose an unique x̃ ∈ Ωδ so that there exists ŝ > 0 such that x + ŝη =

x̃ ∈ ∂Ω. Hence, since H(∂Ω) ≡ 0 we have

f (ŝ) = H(x + ŝη) = H(x̃) = 0.

Applying the Mean Value Theorem, there exists ξ ∈ (0, ŝ) such that

f (ŝ)− f (0) = f ′(ξ)(ŝ − 0),

which implies that

−H(x) =
∂H
∂η

(x + ξη)ŝ > 0 in Ωδ.

Therefore, H(x) ≤ 0 for all x ∈ Ωδ and hence,

αω(x)− φ(x) ≤ 0, for all x ∈ Ωδ,

which result in

αω(x) ≤ φ(x), for all x ∈ Ωδ.

Thus,
φ(x)
ω(x)

≥ α > 0, for all x ∈ Ωδ. (2.5)

By virtue of (2.4) and (2.5), we conclude that there exists C > 0 so that

φ(x)
ω(x)

≥ C, for all x ∈ Ω.
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3 Proof of Theorem 1.6

In the proof of Theorem 1.6, we combine the sub-supersolution method with minimization
arguments. Before this, we need of the following definition.

We say that (u, v), (u, v) ∈ X form a pair of sub and supersolution for system (1.1) if
u, u, v, v ∈ L∞(Ω) with

(a) u ≤ u, v ≤ v in Ω and u = 0 ≤ u, v = 0 ≤ v on ∂Ω,

(b) Given (φ, ϕ) ∈ X, with φ, ϕ ≥ 0, we have





∫

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇φ dx ≤
∫

Ω

h1(x)u−γ1 φ dx +
∫

Ω

Fu(x, u, w)φ dx, for all w ∈ [v, v],

∫

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇ϕ dx ≤
∫

Ω

h2(x)v−γ2 ϕ dx +
∫

Ω

Fv(x, w, v)ϕ dx, for all w ∈ [u, u]

and




∫

Ω

a1(|∇u|p1)|∇u|p1−2∇u ∇φ dx ≥
∫

Ω

h1(x)u−γ1 φ dx +
∫

Ω

Fu(x, u, w)φ dx, for all w ∈ [v, v]

∫

Ω

a2(|∇v|p2)|∇v|p2−2∇v ∇ϕ dx ≥
∫

Ω

h2(x)v−γ2 ϕ, dx +
∫

Ω

Fv(x, w, v)ϕ dx, for all w ∈ [u, u].

The next result is essential to provide the existence of a subsolution and a supersolution
for system (1.1) whenever we fix the value of ‖hi‖∞ with i = 1, 2.

Lemma 3.1. Suppose that (H), (F1) and (A1)–(A2) are satisfied. If ‖hi‖∞ is small, for i = 1, 2, then
there exist u, u, v, v ∈ C1,α(Ω), for some α ∈ (0, 1), such that

i) h1u−γ1 , h2v−γ2 ∈ L∞(Ω), ‖u‖∞ ≤ δ and ‖v‖∞ ≤ δ, where δ is the constant that appeared in
the hypothesis (F1);

ii) ‖u‖∞ ≤ δ and ‖v‖∞ ≤ δ, where δ is the constant that appeared in the hypothesis (F1);

iii) 0 < u(x) ≤ u(x) a.e. in Ω and 0 < v(x) ≤ v(x) a.e. in Ω;

iv) (u, v) is a subsolution and (u, v) is a supersolution for system (1.1).

Proof. From Lemma 2.1 and maximum principle, there exists an unique positive solution 0 <

u ∈ W1,q1
0 (Ω) satisfying the problem below

{
−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x) in Ω,

u = 0 on ∂Ω.
(3.1)

Similary, there exists an unique positive solution 0 < v ∈ W1,q2
0 (Ω) satisfying

{
−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x) in Ω,

v = 0 on ∂Ω.
(3.2)
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Since h1, h2 ∈ L∞(Ω), it follows from Lemma 2.5 that u, v ∈ L∞(Ω) and there exist C1, C2 >

0 such that

‖u‖∞ ≤ C1‖h1‖
1

p1−1
∞ and ‖v‖∞ ≤ C2‖h2‖

1
p2−1
∞ ,

where C1 and C2 are constants that does not depend on hi, u and v. Therefore, we may choose
‖hi‖∞ sufficiently small, with i = 1, 2, so that

‖u‖∞ ≤ δ <
1
2

and ‖v‖∞ ≤ δ <
1
2

.

Moreover, from Lemma 2.6 we have u, v ∈ C1,α(Ω), for some α ∈ (0, 1). Thus, by virtue of
Lemmas 2.3 and 2.7, there exist C3, C4 > 0 such that

u(x)−γ1

φ0(x)−γ1
≤ C−γ1

3 and
v(x)−γ2

φ0(x)−γ2
≤ C−γ2

4 , for all x ∈ Ω.

Therefore, by (H) we get

|h1u−γ1 | ≤ C−γ1
3 ‖h1φ

−γ1
0 ‖∞ and |h2v−γ2 | ≤ C−γ2

4 ‖h2φ
−γ2
0 ‖∞, (3.3)

implying that h1u−γ1 , h2v−γ2 ∈ L∞(Ω), which ends the proof of condition (i).
In order to prove (ii), we invoke Lemma 2.1 and maximum principle once again to claim

that there exists an unique positive solution 0 < u ∈ W1,q1
0 (Ω) satisfying

{
−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x)u−γ1 in Ω,

u = 0 on ∂Ω,
(3.4)

and there exists an unique positive solution 0 < v ∈ W1,q2
0 (Ω) satisfying

{
−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x)v−γ2 in Ω,

v = 0 on ∂Ω.
(3.5)

Since h1u−γ1 , h2v−γ2 ∈ L∞(Ω), we use Lemma 2.5 to obtain u, v ∈ L∞(Ω) and hence, from
Lemma 2.6 we obtain u, v ∈ C1,α(Ω), for some α ∈ (0, 1). Furthermore, note that using (3.3)
we have

‖u‖∞ ≤ C∗
1‖h1u−γ1‖

1
p1−1
∞ ≤ C∗

1‖h1‖
1

p1−1
∞ C

−γ1

(
1

p1−1

)

3 ‖φ0‖
−γ1

(
1

p1−1

)

∞

and

‖v‖∞ ≤ C∗
2‖h2v−γ2‖

1
p2−1
∞ ≤ C∗

2‖h2‖
1

p2−1
∞ C

−γ2

(
1

p2−1

)

4 ‖φ0‖
−γ1

(
1

p1−1

)

∞ .

So, choosing ‖hi‖∞ sufficiently small, with i = 1, 2, we obtain

‖u‖∞ ≤ δ <
1
2

and ‖v‖∞ ≤ δ <
1
2

.

Now, since ‖u‖∞ and ‖v‖∞ are small it follows from (3.1), (3.2), (3.4) and (3.5) that

−div(a1(|∇u|p1)|∇u|p1−2∇u) = h1(x)u−γ1 ≥ h1(x)‖u‖−γ1
∞ ≥ h1(x)

= −div(a1(|∇u|p1)|∇u|p1−2∇u)
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and

−div(a2(|∇v|p2)|∇v|p2−2∇v) = h2(x)v−γ2 ≥ h2(x)‖v‖−γ2
∞ ≥ h2(x)

= −div(a2(|∇v|p2)|∇v|p2−2∇v).

Therefore, applying the Weak Comparison Principle for the p&q-Laplacian operator we con-
clude that

0 < u(x) ≤ u(x) a.e. in Ω and 0 < v(x) ≤ v(x) a.e. in Ω,

which proves (iii).
Our final task is to check that the condition (iv) holds. Indeed, we invoke (F1), (i), (3.1)

and (3.2) to obtain

− div(a1(|∇u|p1)|∇u|p1−2∇u)− h1(x)u−γ1 − Fu(x, u, v)

≤ 2h1(x)− h1(x)u−γ1 ≤ h1(x)(2 − ‖u‖−γ1
∞ ) ≤ 0

and

− div(a2(|∇v|p2)|∇v|p2−2∇v)− h2(x)v−γ2 − Fv(x, u, v),

≤ 2h2(x)− h2(x)v−γ2 ≤ h2(x)(2 − ‖v‖−γ2
∞ ) ≤ 0,

which implies that (u, v) is a subsolution for system (1.1). Finally, we use (F1), (ii), (iii), (3.4)
and (3.5) to get

−div(a1(|∇u|p1)|∇u|p1−2∇u)− h1(x)u−γ1 − Fu(x, u, v) ≥ h1(x)(u−γ1 − u−γ1) ≥ 0

and

−div(a2(|∇v|p2)|∇v|p2−2∇v − h2(x)v−γ2 − Fv(x, u, v) ≥ h2(x)(v−γ2 − v−γ2) ≥ 0,

which shows that (u, v) is a supersolution for system (1.1).

Following the same idea in [4] (see also [3]), we introduce the truncation operators T :
W1,q1

0 (Ω) → L∞(Ω) and S : W1,q2
0 (Ω) → L∞(Ω) given by

Tu(x) =





u(x), if u(x) > u(x)

u(x), if u(x) ≤ u(x) ≤ u(x)

u(x), if u(x) < u(x)

(3.6)

and

Sv(x) =





v(x), if v(x) > v(x)

v(x), if v(x) ≤ v(x) ≤ v(x)

v(x), if v(x) < v(x).

(3.7)

It is well that the truncation operators T and S are continuous and bounded. Now, we consider
the following functions

Gu(x, u, v) = h1(x)(Tu)−γ1 + Fu(x, Tu, Sv) (3.8)

and
Gv(x, u, v) = h2(x)(Sv)−γ2 + Fv(x, Tu, Sv) (3.9)
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and the auxiliary problem




−div(a1(|∇u|p1)|∇u|p1−2∇u) = Gu(x, u, v) in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = Gv(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω.

(3.10)

Define the energy functional Φ : X → R associated with problem (3.10) by

Φ(u, v) =
1
p1

∫

Ω

A1(|∇u|p1)dx +
1
p2

∫

Ω

A2(|∇v|p2)dx −
∫

Ω

G(x, u, v)dx, ∀(u, v) ∈ X,

where G(x, s, t) =
∫ s

0 Gξ(x, ξ, t)dξ +
∫ t

0 Gξ(x, s, ξ)dξ.
It follows from Lemma 3.1 (i)–(iii), (3.8), (3.9) and (F1) that

|Gu(x, u, v)| ≤ K1 a.e. in Ω, for some K1 > 0, ∀(u, v) ∈ X. (3.11)

Similarly,
|Gv(x, u, v)| ≤ K2 a.e. in Ω, for some K2 > 0, ∀(u, v) ∈ X. (3.12)

Consequently, we use (A1) to show that the functional Φ is well defined and it is of class C1

on Sobolev space X with

Φ
′
(u, v)(φ, ϕ) =

∫

Ω

[
a1(|∇u|p1)|∇u|p1−2∇u∇φ + a2(|∇v|p2)|∇v|p2−2∇v∇ϕ

]
dx

−
∫

Ω

Gu(x, u, v)φ dx −
∫

Ω

Gv(x, u, v)ϕ dx, ∀(u, v), (φ, ϕ) ∈ X.

Next, consider

M = {(u, v) ∈ X; u ≤ u ≤ u a.e. in Ω and v ≤ v ≤ v a.e. in Ω}.

We claim that Φ is bounded from below in M. Indeed, for all (u, v) ∈ X, we use (A1),
(3.11), (3.12) and continuous embedding W1,qi

0 (Ω) →֒ L1,qi(Ω), for i = 1, 2, to obtain that Φ is
coercive in M. Moreover, since (A3) holds and Gu, Gv ∈ L∞(Ω) we have that Φ is weak lower
semi-continuous on M. Thus, as M is closed and convex in X, we use [15, Theorem 1.2] to
conclude that Φ is bounded from below in M and attains it is infimum at a point (u, v) ∈ M.

Using the same arguments as in the proof of [15, Theorem 2.4], we see that this minimum
point (u, v) is a weak solution of problem (3.10). Indeed, for all φ, ϕ ∈ C∞

0 (Ω) and ε > 0, let
the functions uε, vε ∈ M be given by

uε(x) =





u(x), u(x) + εφ(x) > u(x)

u(x) + εφ(x), u(x) ≤ u(x) + εφ(x) ≤ u(x)

u(x), u(x) + εφ(x) < u(x)

and

vε(x) =





v(x), v(x) + εϕ(x) > v(x)

v(x) + εϕ(x), v(x) ≤ v(x) + εϕ(x) ≤ v(x)

v(x), v(x) + εϕ(x) < v(x).
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The functions uε and vε can be written as

uε = (u + εφ)− (φε − φ
ε
) ∈ M and vε = (v + εϕ)− (ϕε − ϕ

ε
) ∈ M,

where φε = max{0, u + εφ − u} ≥ 0, φ
ε
= −min{0, u + εφ − u} ≥ 0, ϕε = max{0, v + εϕ −

v} ≥ 0 and ϕ
ε
= −min{0, v + εϕ − v} ≥ 0.

Note that φε, φ
ε
∈ W1,q1

0 (Ω) ∩ L∞(Ω), ϕε, ϕ
ε
∈ W1,q2

0 (Ω) ∩ L∞(Ω) and Φ is differentiable in
direction (uε − u, vε − v). Since (u, v) ∈ M minimizes the functional Φ in M, then

0 ≤ Φ
′(u, v)(uε − u, vε − v) = εΦ

′(u, v)(φ, ϕ)− Φ
′(u, v)(φε, ϕε) + Φ

′(u, v)(φ
ε
, ϕ

ε
).

Thus,

Φ
′(u, v)(φ, ϕ) ≥

1
ε

[
Φ

′(u, v)(φε, ϕε)− Φ
′(u, v)(φ

ε
, ϕ

ε
)
]

. (3.13)

Now, since (u, v) is a supersolution to system (1.1), we obtain

Φ
′(u, v)(φε, ϕε) = Φ

′(u, v)(φε, ϕε) +
[
Φ

′(u, v)− Φ
′(u, v)

]
(φε, ϕε)

≥
[
Φ

′(u, v)− Φ
′(u, v)

]
(φε, ϕε)

=
∫

Ωε

[
a1(|∇u|p1)|∇u|p1−2∇u − a1(|∇u|p1)|∇u|p1−2∇u

]
∇(u + εφ − u)dx

+
∫

Ωε

[
a2(|∇v|p2)|∇v|p2−2∇v − a2(|∇v|p2)|∇v|p2−2∇v

]
∇(v + εϕ − v)dx

−
∫

Ωε

[Gu(x, u, v)− Gu(x, u, v)] (u + εφ − u)dx

−
∫

Ωε

[Gv(x, u, v)− Gv(x, u, v)] (v + εϕ − v)dx

≥ ε
∫

Ωε

[
a1(|∇u|p1)|∇u|p1−2∇u − a1(|∇u|p1)|∇u|p1−2∇u

]
∇φdx

+ ε
∫

Ωε

[
a2(|∇v|p2)|∇v|p2−2∇v − a2(|∇v|p2)|∇v|p2−2∇v

]
∇ϕdx

− ε
∫

Ωε

|Gu(x, u, v)− Fu(x, u, v)| |φ|dx − ε
∫

Ωε

|Gv(x, u, v)− Gv(x, u, v)| |ϕ|dx,

where Ωε = {x ∈ Ω; u(x) + εφ(x) > u(x) ≥ u(x) and v(x) + εϕ(x) > v(x) ≥ v(x)}. Note that
|Ωε| → 0 as ε → 0. Then, Φ

′(u, v)(φε, ϕε) ≥ o(ε), where o(ε)
ε → 0 as ε → 0. Similarly, we obtain

Φ
′(u, v)(φ

ε
, ϕ

ε
) ≤ o(ε) and consequently, by (3.13) we conclude that Φ

′(u, v)(φ, ϕ) ≥ 0, for all
φ, ϕ ∈ C∞

0 (Ω). Repeating the above arguments for (−φ,−ϕ) we have Φ
′(u, v)(φ, ϕ) ≤ 0, for all

φ, ϕ ∈ C∞

0 (Ω) and hence, Φ
′(u, v)(φ, ϕ) = 0. Therefore, since C∞

0 (Ω) is dense in Wqi
0 , ∀i = 1, 2,

we prove that Φ
′(u, v) = 0, which implies that (u, v) weakly solves (3.10).

Since (u, v) ∈ M it follows from Gu(x, u, v) = h1(x)u−γ1 + Fu(x, u, v) and Gv(x, u, v) =

h2(x)v−γ2 + Fv(x, u, v), for (u, v) ∈ [u, u]× [v, v], that (u, v) ∈ X is precisely a positive weak
solution for system (1.1).
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4 Proof of Theorem 1.7

Let (u, v) ∈ L∞(Ω) × L∞(Ω) be the subsolution of system (1.1). Consider T : W1,q1
0 (Ω) →

L∞(Ω) and S : W1,q2
0 (Ω) → L∞(Ω) the truncation operators given by

T̂u(x) =

{
u(x), if u(x) > u(x)

u(x), if u(x) ≤ u(x),
(4.1)

Ŝv(x) =

{
v(x), if v(x) > v(x)

v(x), if v(x) ≤ v(x).
(4.2)

and the following functions

Ĝu(x, u, v) = h1(x)(T̂u)−γ1 + Fu(x, T̂u, Ŝv) (4.3)

and
Ĝv(x, u, v) = h2(x)(Ŝv)−γ2 + Fv(x, T̂u, Ŝv) (4.4)

Next, consider the auxiliary problem




−div(a1(|∇u|p1)|∇u|p1−2∇u) = Ĝu(x, u, v) in Ω,

−div(a2(|∇v|p2)|∇v|p2−2∇v) = Ĝv(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω.

(4.5)

and define the functional Φ̂ : X → R associated with problem (4.5) by

Φ̂(u, v) =
1
p1

∫

Ω

A1(|∇u|p1)dx +
1
p2

∫

Ω

A2(|∇v|p2)dx −
∫

Ω

Ĝ(x, u, v)dx,

where Ĝ(x, s, t) =
∫ s

0 Ĝξ(x, ξ, t)dξ +
∫ t

0 Ĝξ(x, s, ξ)dξ.
Note that, applying (4.3), (4.4), (F1) and (F2) we obtain

Ĝu(x, u, v) ≤ h1(x)u−γ1 + h1(x)(1 + |u|r−1 + |Ŝv|r−1) a.e. in Ω, ∀u, v ≥ 0 (4.6)

Similarly,

Ĝv(x, u, v) ≤ h2(x)v−γ2 + h2(x)(1 + |T̂u|r−1 + |v|r−1) a.e. in Ω, ∀u, v ≥ 0. (4.7)

Again, using (A1) its possible to prove that the functional Φ̂ ∈ C1(X, R) with the following
Fréchet derivative

Φ̂
′
(u, v)(φ, ϕ) =

∫

Ω

[
a1(|∇u|p1)|∇u|p1−2∇u∇φ + a2(|∇v|p2)|∇v|p2−2∇v∇ϕ

]
dx

−
∫

Ω

Ĝu(x, u, v)φ dx −
∫

Ω

Ĝv(x, u, v)ϕ dx,

for all (u, v), (φ, ϕ) ∈ X. Furthermore, any critical point of Φ̂ is a weak solution for auxiliary
system (4.5).

In our next result we prove that the functional Φ̂ satisfies the two geometries of the Moun-
tain Pass Theorem [1].
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Lemma 4.1. Suppose that (H), (F1)–(F3) and (A1)–(A4) are satisfied. Then, for ‖hi‖∞ small, ∀i =
1, 2, Φ̂ satisfies

(Φ̂1) There exist R, α, β with R > ‖(u, v)‖ and α < β such that

Φ̂(u, v) ≤ α < β ≤ inf
∂BR(0)

Φ̂.

(Φ̂2) There exists e ∈ X \ BR(0) such that Φ̂(e) < β.

Proof. Since (u, v) is a subsolution of (1.1) it follows from Lemma 3.1(i), (F1), (4.3) and (4.4)
that

Ĝ(x, u, v) ≥
[
h1(x)u−γ1 − h1(x)

]
u +

[
h2(x)v−γ2 − h2(x)

]
v a.e. in Ω

and hence, in view of Lemma 3.1(i) again we obtain 0 < α ∈ R such that

Φ̂(u, v) ≤
1
p1

∫

Ω

A1(|∇u|p1) dx +
1
p2

∫

Ω

A2(|∇v|p2) dx ≡ α. (4.8)

Now, without loss of generality, we can consider q1 ≤ q2. So, using (H), (A1), (4.6), (4.7),
Lemma 3.1 and Sobolev embedding there exist positive constants such that

Φ̂(u, v) ≥
K

2q1
‖(u, v)‖q1 − c1‖h1u−γ1‖∞‖(u, v)‖ − c2‖h1‖∞ ‖(u, v)‖

− c3‖h1‖∞‖(u, v)‖r − ‖h1‖∞

∫

Ω

|Ŝv|r−1|u|dx − c4‖h2v−γ2‖∞‖(u, v)‖

− c5‖h2‖∞‖(u, v)‖ − c6‖h2‖∞‖(u, v)‖r − ‖h2‖∞

∫

Ω

|T̂u|r−1|v|dx, (4.9)

where K = min
{ k̃2

q1
, k̃2

q2

}
. Note that, invoking Young’s inequality and Sobolev embedding we

get

‖h1‖∞

∫

Ω

|Ŝv|r−1|u|dx = ‖h1‖∞

∫

v≤v

|v|r−1|u|dx + ‖h1‖∞

∫

v>v

|v|r−1|u|dx

≤ c7‖h1‖∞‖v‖r−1
∞ ‖(u, v)‖+ c8‖h1‖∞‖(u, v)‖r + c9‖h1‖∞‖(u, v)‖r

and

‖h2‖∞

∫

Ω

|T̂u|r−1|v|dx = ‖h2‖∞

∫

u≤u

|u|r−1|v|dx + ‖h2‖∞

∫

u>u

|u|r−1|v|dx

≤ c10‖h2‖∞‖u‖r−1
∞ ‖(u, v)‖+ c11‖h2‖∞‖(u, v)‖r + c12‖h2‖∞‖(u, v)‖r.

Thus, taking ‖(u, v)‖ = R with R > max{1, ‖(u, v)‖} and ‖hi‖∞ sufficiently small, for
i = 1, 2, there exists 0 < β ∈ R, with β > α, such that Φ̂(u, v) ≥ β, for all (u, v) ∈ ∂BR(0).
Hence, the choices of α, β, R and ‖hi‖∞ combined with inequalities (4.8) and (4.9) result in

Φ̂(u, v) ≤ α < β ≤ inf
(u,v)∈∂BR(0)

Φ̂,

which shows the condition Φ̂1.
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Now, by definition (4.3) we have

Ĝsu(x, su, 0) ≥ Fsu(x, su, 0), for all s ≥ 1, a.e. in Ω

and invoking (A1) we obtain

Φ̂(su, 0) ≤
k3

p1
sp1‖u‖p1

1,p1
+

k4

q1
sq1‖u‖q1

1,q1
−

∫

Ω

F(x, su, 0)dx.

The hypothesis (F3) provides d1, d2 > 0 such that F(x, s, 0) ≥ d1s
1
θs − d2, for all s ≥

max{1, s0}, where s0 is the constant that appeared in (F3). Then, by Sobolev embedding
there exist positive constants d3, d4 > 0 such that

Φ̂(su, 0) ≤
k3

p1
sp1‖u‖p1

1,p1
+

k4

q1
sq1‖u‖q1

1,q1
− d3s

1
θs ‖u‖

1
θs + d4.

Since 2 ≤ p1 ≤ q1 <
1
θs

< q∗1 , we conclude that Φ̂(su, 0) → −∞ as s → +∞. So, we may

find s∗ > 0 with e = s∗(u, 0) ∈ X such that ‖e‖ > R and Φ̂(e) < β, which satisfies the
condition Φ̂2.

Lemma 4.2. The functional Φ̂ satisfies the Palais–Smale condition for all c ∈ R.

Proof. Consider (un, vn) ⊂ X a Palais–Smale sequence, i.e.,

Φ̂(un, vn) → c and Φ̂
′(un, vn) → 0. (4.10)

Thus, for all n ∈ N sufficiently large, there exists C > 0 such that

Φ̂(un, vn)−
[
θun Φ̂

′(un, vn)(un, 0) + θvn Φ̂
′(un, vn)(0, vn)

]
≤ C(1 + ‖(un, vn)‖).

On the other hand, we use (A1) and (A4) to obtain

Φ̂(un, vn)−
[
θun Φ̂

′(un, vn)(un, 0) + θvn Φ̂
′(un, vn)(0, vn)

]

≥

(
1

p1µ1
− θun

)
k̃2‖un‖

q1
1,q1

+

(
1

p2µ2
− θvn

)
k̃2‖vn‖

q2
1,q2

+
∫

Ω

[
θun Ĝun(x, un, vn)un + θvn Ĝvn(x, un, vn)vn − Ĝ(x, un, vn)

]
.

Therefore, since θun <
1

µ1 p1
, θvn <

1
µ2 p2

and q1 ≤ q2, without loss of generality, we have

C + (1 + ‖(un, vn)‖)

≥
K

2q1
‖(un, vn)‖

q1 +
∫

Ω

[
θun Ĝun(x, un, vn)un + θvn Ĝvn(x, un, vn)vn − Ĝ(x, un, vn)

]
, (4.11)

where K = min
{

k̃2
( 1

p1µ1
− θun

)
, k̃2

( 1
p2µ2

− θvn

)}
.
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Considering s0 and t0 given in (F3), it follows from (4.3), (4.4) and (F3) that there exists
Ĉ > 0 such that

∫

Ω

[
θun Ĝun(x, un, vn)un + θvn Ĝvn(x, un, vn)vn − Ĝ(x, un, vn)

]

≥
∫

Ω

[
θun h1(x)(T̂un)

−γ1 un + θvn h2(x)(Ŝvn)
−γ2 vn−

∫ un

0
h1(x)(T̂un)

−γ1 −
∫ vn

0
h2(x)(Ŝvn)

−γ2

]
−Ĉ

=
∫

{un≤u}∪{vn≤v}

[
(θun − 1) h1(x)u1−γ1 + (θvn − 1) h2(x)v1−γ2

]

+
∫

{un>u}∪{vn>v}

[(
θun −

1
1 − γ1

)
h1(x)u1−γ1

n +

(
θvn −

1
1 − γ2

)
h2(x)u1−γ2

n

]
− Ĉ. (4.12)

Now, using (A4), Lemma 3.1(i), (4.11) and (4.12) we consider the following cases below:
Case 1: If γ1, γ2 > 1, then there exists M > 0 such that

M + C‖(un, vn)‖ ≥
K

2q1
‖(un, vn)‖

q1 .

Case 2: If 0 < γ1, γ2 < 1, we apply Hölder’s inequality in (4.12) to obtain

M+C‖(un, vn)‖+

(
1

1−γ1
− θun

)
‖h1‖

q1+(γ1−1)
1,q1

‖un‖
1−γ1
1,q1

+

(
1

1−γ2
− θvn

)
‖h2‖

q2+(γ2−1)
1,q2

‖vn‖
1−γ2
1,q2

≥
K

2q1
‖(un, vn)‖

q1 ,

Case 3: If γ1 > 1 and 0 < γ2 < 1, we get

M+C‖(un, vn)‖+

(
1

1−γ2
− θvn

)
‖h2‖

q2+(γ2−1)
1,q2

‖vn‖
1−γ2
1,q2

≥
K

2q1
‖(un, vn)‖

q1 .

Case 4: If γ2 > 1 and 0 < γ1 < 1, then

M+C‖(un, vn)‖+

(
1

1−γ1
− θun

)
‖h1‖

q1+(γ1−1)
1,q1

‖un‖
1−γ1
1,q1

≥
K

2q1
‖(un, vn)‖

q1 .

Case 5: Making γ1, γ2 = 1 in (4.3) and (4.4) we have

M + C‖(un, vn)‖+‖h1‖∞‖un‖+‖h2‖∞‖vn‖ ≥
K

2q1
‖(un, vn)‖

q1 .

So, analyzing all cases above, we conclude that (un, vn) is a bounded sequence in X. Thus,
up to subsequence, there exists (u, v) ∈ X such that





un ⇀ u2 in W1,q1
0 (Ω),

un → u2 in Ls(Ω), 1 ≤ s < q∗1 ,

un(x) → u2(x) a.e. in Ω

(4.13)

and 



vn ⇀ v2 in W1,q1
0 (Ω),

vn → v2 in Lt(Ω), 1 ≤ t < q∗2 ,

vn(x) → v2(x) a.e. in Ω.

(4.14)
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Using (A2), Lemma 4.1(i), (4.10), (4.13) and (4.14) we can argue as in [5, Lemma 1] to
obtain

Cq1‖un − u‖q1
1,q1

+ Cq2‖vn − v‖q2
1,q2

≤
∫

Ω

[
Ĝun(x, un, vn)(un − u) + Ĝvn(x, un, vn)(vn − v)

]
dx. (4.15)

Moreover, we invoke (4.6), (4.7), (4.13), (4.14) and Lebesgue’s Dominated Convergence Theo-
rem to get

∫

Ω

[
Ĝun(x, un, vn)(un − u) + Ĝvn(x, un, vn)(vn − v)

]
dx → 0, as n → +∞. (4.16)

Note that, without loss of generality, we can consider q1 ≥ q2. It follows from (4.15) and
(4.16) that (un, vn) → (u, v) in X.

Next, let (u, v) and (u, v) be the subsolution and the supersolution, respectively, of system
(1.1) given in Lemma 3.1 and (u1, v1) a weak solution of system (1.1) obtained in Theorem
1.6. Invoking Lemmas 4.1 and 4.4, it follows from Mountain Pass Theorem that there exists
(u2, v2) ∈ X such that

β < Φ̂(u2, v2) = c,

where c is the minimax value of Φ̂. Furthermore, since Gu(x, u, v) = Ĝu(x, u, v) and
Gv(x, u, v) = Ĝv(x, u, v), for all (u, v) ∈ [0, u]× [0, v], then Φ(u, v) = Φ̂(u, v), for all (u, v) ∈

[0, u] × [0, v]. Thus, Φ̂(u1, v1) = infM Φ, where (u1, v1) ∈ [u, u] × [v, v] and M is given in
the proof of Theorem 1.6. Thus, auxiliary system (4.5) has two positive weak solutions
(u1, v1), (u2, v2) ∈ X such that

Φ̂(u1, v1) ≤ Φ̂(u, v) ≤ α < β ≤ Φ̂(u2, v2) = c.

Finally, let’s show that u ≤ u2 and v ≤ v2. Indeed, taking ((u − u2)+, (v − v2)+) as test
function and defining {(u2, v2) < (u, v)} := {x ∈ Ω; u2(x) < u(x) and v2(x) < v(x)}, we have

∫

Ω

a1(|∇u2|
p1)|∇u2|

p1−2∇u2∇(u − u2)
+dx +

∫

Ω

a2(|∇v2|
p2)|∇v2|

p2−2∇v2∇(v − v2)
+dx

=
∫

{u2<u}

[
h1(x)u−γ1 + Fu2(x, u, Ŝv2)

]
(u − u2)

+dx

+
∫

{v2<v}

[
h2(x)v−γ2 + Fv2(x, T̂u2, v)

]
(v − v2)

+dx.

Since (u, v) is subsolution for system (1.1), then
∫

Ω

a1(|∇u|p1)|∇u|p1−2∇u∇(u − u2)
+dx −

∫

Ω

a1(|∇u2|
p1)|∇u2|

p1−2∇u2∇(u − u2)
+dx ≤ 0

and
∫

Ω

a2(|∇v|p2)|∇v|p2−2∇v∇(v − v2)
+dx −

∫

Ω

a2(|∇v2|
p2)|∇v2|

p2−2∇v2∇(v − u2)
+dx ≤ 0,
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which implies that (u − u2)+ = 0 and (v − v2)+ = 0. Therefore, we conclude that 0 < u ≤

u2 a.e. in Ω and 0 < v ≤ v2 a.e. in Ω, as claimed. It follows from (4.3) and (4.4) that

Ĝu2(x, u2, v2) = h(x)u−γ1
2 + Fu2(x, u2, v2) in Ω

and
Ĝv2(x, u2, v2) = h(x)v−γ2

2 + Fv2(x, u2, v2) in Ω.

Then, (u1, v1) and (u2, v2) are two positive weak solutions for system (1.1).
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Abstract. In this paper we consider a class of second order Hamiltonian system with the
nonlinearity of linear growth. Compared with the existing results, we do not assume
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point theorems.
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1 Introduction

Consider the following second order Hamiltonian systems

− ẍ = Vx(t, x), (1.1)

where V ∈ C2(R × R
N , R) with V(t + T, x) = V(t, x) for some T > 0. During the past

forty years, the existence and multiplicity of periodic solutions for second order Hamiltonian

systems have been extensively studied by variational methods. There has been a lot of results

under various suitable solvability conditions, such as the sublinear conditions (see [14, 18, 22,

23, 27, 28] and references therein), the superlinear conditions (see [3, 8, 9, 16, 17, 21, 24, 29] and

references therein), and the asymptotically linear conditions (see [2, 6, 10, 15, 19, 20, 30] and

references therein).

In this paper, we shall study the existence and multiplicity of nontrivial periodic solutions

for (1.1) when the nonlinearity Vx(t, x) has linear growth. Compared with the existing results,

we do not make any assumptions at infinity on the asymptotic behaviors of the nonlinearity

Vx(t, x). Specifically, we do not require the system to be asymptotically linear at infinity.

Instead, we assume that there exists a T-periodic symmetric matrix function A∞(t) such that

for some K > 0,

Vxx(t, x) ≥ A∞(t) (or Vxx(t, x) ≤ A∞(t)), ∀t ∈ [0, T], |x| ≥ K,

BEmail: lgg112@163.com
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where for two symmetric matrices A and B, A ≤ B means that B − A is semi-positively defi-

nite. Under this general linear growth condition, we will construct a sequence of approximate

systems and use the Morse theory and two critical point theorems to establish the existence

and multiplicity of nontrivial periodic solutions for the system. The idea of our proof is closely

related to the work of Liu, Su and Wang [13], where they dealt with the existence of nontrivial

solutions of elliptic problems. Note that in [13] the authors assumed that the elliptic problem

was nonresonant at zero. By contrast, here we allow system (1.1) to be resonant at zero. On the

other hand, system (1.1) with periodic boundary condition is rather different from the elliptic

problems with Dirichlet boundary condition. These lead us to need some new technique.

Now let us say some words about the idea of the proof. We first construct a sequence of

approximate systems which are asymptotically linear and non-resonant at infinity. Then in

a crucial step we establish the L∞ bound to the solutions of the approximate systems whose

Morse index is controlled by the Morse index at infinity. Finally, we use the Morse theory

and two critical point theorems to obtain the nontrivial periodic solutions with the controlled

Morse index for the approximate systems, therefore using the previous L∞ estimate they are

also the nontrivial periodic solutions of the original system.

We make the following assumptions:

(H1) V(t, x) ∈ C2(R × R
N , R) with V(t, 0) = 0 and V(t + T, x) = V(t, x);

(H2) There exist C1 > 0 and C2 > 0 such that

|Vx(t, x)| ≤ C1(1 + |x|), |Vxx(t, x)| ≤ C2, t ∈ [0, T], x ∈ R
N ;

(H3) Vx(t, x) = A0(t)x + (G0)x(t, x), where A0(t) is a T-periodic continuous symmetric ma-

trix function and (G0)x(t, x) = o(|x|) as |x| → 0;

(H±
4 ) There exists δ > 0 such that

±G0(t, x) > 0, ∀t ∈ [0, T], 0 < |x| < δ;

(H±
5 ) There exists a T-periodic continuous symmetric matrix function A∞(t) such that for

some K > 0,

±Vxx(t, x) ≥ ±A∞(t), ∀t ∈ [0, T], |x| ≥ K.

Let E := H1
T(R, R

N), the Hilbert space of T-periodic functions on R with values in R
N

under the inner product

〈x, y〉 =
∫ T

0
(ẋ · ẏ + x · y)dt, ∀x, y ∈ E,

and norm ‖x‖ = 〈x, x〉 1
2 . We define the functional I on E by

I(x) =
1

2

∫ T

0
|ẋ(t)|2dt −

∫ T

0
V(t, x)dt. (1.2)

By (H1) and (H2), I ∈ C2(E, R) and the critical points of I in E are T-periodic solutions of (1.1).

Clearly, the set σ = {( 2kπ
T )2 | k ∈ Z

+} is the set of the eigenvalues of

− ẍ = λx (1.3)
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with T-periodic boundary condition. Consider the eigenvalue problem of the following sys-

tem

− ẍ − A∞x = λx (1.4)

with T-periodic boundary condition. Without loss of generality, in (H±
5 ) by considering

A∞(t)∓ ǫIN instead of A∞(t) for ǫ small if necessary we may assume that 0 is not the eigen-

value of (1.4). Let λ1 < λ2 < · · · < λl < 0 < λl+1 < λl+2 < · · · be distinct eigenvalues of (1.4).

Clearly, λi → ∞ as i → ∞. Let E(λi) be the eigenspace of (1.4) corresponding to λi, i ∈ Z
+.

We define the linear operator L̃ on E by

〈L̃x, y〉 :=
∫ T

0
ẋ · ẏdt, ∀x, y ∈ E.

Then L̃ is a bounded self-adjoint operator. Define the linear operators B0 and B∞ on E by

〈B0x, y〉 :=
∫ T

0
A0(t)x · ydt, ∀x, y ∈ E

and

〈B∞x, y〉 :=
∫ T

0
A∞(t)x · ydt, ∀x, y ∈ E.

Then B0 and B∞ are bounded self-adjoint compact operators on E. Let L0 := L̃ − B0 and

L∞ := L̃ − B∞. Since 0 is not an eigenvalue of (1.4), we have that L∞ is a non-degenerate

operator on E. Denote by E+
0 , E−

0 , E+
∞ and E−

∞ the positive and negative spectral subspaces of

L0 and L∞ respectively, and let E0
0 = ker L0. Then there exists a constant c0 > 0 such that for

any x ∈ E+
0 and y ∈ E−

0 ,

〈L0x, x〉 ≥ c0‖x‖2, 〈L0y, y〉 ≤ −c0‖y‖2. (1.5)

Clearly,

E−
∞ =

l⊕

i=1

E(λi), E+
∞ =

∞⊕

i=l+1

E(λi),

E = E+
0

⊕
E0

0

⊕
E−

0 = E+
∞

⊕
E−

∞.

Set

i0
0 = dim E0

0, i−0 = dim E−
0 , i−∞ = dim E−

∞.

By (H3), we see that x = 0 is a periodic solutions of (1.1) which is called trivial periodic

solution. Our aim is to find nontrivial periodic solutions of (1.1). Now we give our main

results as follows.

Theorem 1.1. Assume that (H1), (H2), (H3) hold. Then (1.1) has at least one nontrivial periodic
solution in each of the following cases:

(1) (H+
4 ), (H+

5 ) and i−0 + i0
0 < i−∞ − 1;

(2) (H−
4 ), (H+

5 ) and i−0 < i−∞ − 1;

(3) (H+
4 ), (H−

5 ) and i−0 + i0
0 > i−∞ + 1;

(4) (H−
4 ), (H−

5 ) and i−0 > i−∞ + 1.
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Theorem 1.2. Assume that (H1), (H2), (H3) hold, and V(t,−x) = V(t, x) for any (t, x) ∈ R × R
N .

(1) If (H+
4 ), (H+

5 ) hold and i−0 + i0
0 < i−∞ − 1, then (1.1) has at least i−∞ − i−0 − i0

0 − 1 pairs of
nontrivial periodic solutions;

(2) If (H−
4 ), (H+

5 ) hold and i−0 < i−∞ − 1, then (1.1) has at least i−∞ − i−0 − 1 pairs of nontrivial
periodic solutions;

(3) If (H+
4 ), (H−

5 ) hold and i−0 + i0
0 > i−∞ + 1, then (1.1) has at least i−0 + i0

0 − i−∞ − 1 pairs of
nontrivial periodic solutions;

(4) If (H−
4 ), (H−

5 ) hold and i−0 > i−∞ + 1, then (1.1) has at least i−0 − i−∞ − 1 pairs of nontrivial
periodic solutions.

Remark 1.3. In what follows, we assume that x = 0 is an isolated critical point of I in E. In

fact, if x = 0 is not an isolated critical point of I, then I has infinitely many critical points

and therefore (1.1) has infinitely many periodic solutions. Therefore Theorem 1.1 and 1.2 hold

naturally.

The paper is organized as follows. In Section 2, we construct a sequence of approximate

systems and establish the L∞ bound to the solutions of these approximate systems with ap-

propriate Morse indexes. In Section 3, we will give the proof of Theorem 1.1 by using Morse

theory and previous estimate. In Section 4, we will prove Theorem 1.2 by using two critical

point theorems for even functional and previous estimate.

2 Preliminaries

In this section we give some important preliminary lemmas. Let H be a real Hilbert space

and J ∈ C2(H, R). Denote K(J) = {u ∈ H | J′(u) = 0}. For u ∈ K(J), we denote the Morse

index of u by m−(J′′(u)) which is the dimension of the negative spectral subspace of J′′(u).
The augmented Morse index of u is defined by

m∗(J′′(u)) = m−(J′′(u)) + dim ker(J′′(u)),

where ker(J′′(u)) is the kernel of J′′(u).
To construct a sequence of approximate systems of (1.1), we first construct a sequence of

approximate functions Vk(t, x). The following result is from [13].

Lemma 2.1. Assume that (H1), (H2) and (H+
5 ) (resp. (H−

5 )) hold. Then there exists a sequence
functions Vk(t, x) ∈ C2(R × R

N , R) satisfying the following properties:

(a) Vk(t + T, x) = Vk(t, x) and there exists an increasing sequence of real numbers Rk → ∞

(k → ∞) such that
Vk(t, x) = V(t, x), ∀|x| ≤ Rk, t ∈ [0, T];

(b) there exist C′
1 > 0 and C′

2 > 0 independent of k such that

|(Vk)x(t, x)| ≤ C′
1(1 + |x|), |(Vk)xx(t, x)| ≤ C′

2;

(c) for each k ∈ Z
+, (Vk)xx(t, x) ≥ A∞(t) (resp. (Vk)xx(t, x) ≤ A∞(t)) for all t ∈ [0, T], |x| ≥ K;
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(d) there is γ > 0 independent of k such that
( 2pπ

T

)2
< γ <

( 2(p+1)π
T

)2
for some p ∈ Z

+, and for
each k ∈ Z

+ fixed,

Vk(t, x) =
γ

2
|x|2 + o(|x|2), (Vk)x(t, x) = γx + o(|x|), (Vk)xx(t, x) = γIN + o(1)

as |x| → ∞;

(e) if V(t,−x) = V(t, x), ∀t ∈ [0, T], x ∈ R
N , then for every k ∈ Z

+, Vk(t,−x) = Vk(t, x),
∀t ∈ [0, T], x ∈ R

N .

Let

Ik(x) :=
1

2

∫ T

0
|ẋ|2dt − ψk(x), x ∈ E, (2.1)

where

ψk(x) :=
∫ T

0
Vk(t, x)dt.

Clearly, Ik(x) ∈ C2(E, R) and the critical points of Ik correspond to the periodic solutions of

the following system

− ẍ = (Vk)x(t, x). (2.2)

By Lemma 2.1 (a) and Remark 1.3, x = 0 is also an isolated critical point of Ik for every k ∈ Z
+.

Define the linear operator Bγ : E → E by

〈Bγx, y〉 :=
∫ T

0
γx · ydt, ∀x, y ∈ E.

Let Lγ := L̃ − Bγ, then by Lemma 2.1, Lγ is a non-degenerate bounded linear self-adjoint

operator on E. We have the decomposition E = E−
γ ⊕ E+

γ , where E−
γ and E+

γ are the negative

and positive spectral subspaces of Lγ. Then there exists a constant cγ > 0 such that for any

x ∈ E+
γ and y ∈ E−

γ ,

〈Lγx, x〉 ≥ cγ‖x2‖, 〈Lγy, y〉 ≤ −cγ‖y2‖. (2.3)

Denote

j−∞ = dim E−
γ .

By Lemma 2.1 (c), (d), if (H+
5 ) holds, then γIN ≥ A∞(t), which implies that

E−
∞ ⊂ E−

γ and j−∞ ≥ i−∞. (2.4)

If (H−
5 ) holds, then γIN ≤ A∞(t), which implies that

E−
γ ⊂ E−

∞ and j−∞ ≤ i−∞. (2.5)

Let

Gk(t, x) = Vk(t, x)− γ

2
|x|2, G0k(t, x) = Vk(t, x)− 1

2
A0(t)x · x

and

ϕk(x) =
∫ T

0
Gk(t, x)dt, ϕ0k(x) =

∫ T

0
G0k(t, x)dt.

By (H3), Lemma 2.1 (a), (d), we see that (Gk)x(t, x) = o(|x|) as |x| → ∞ and (G0k)x(t, x) =

o(|x|) as |x| → 0. Then we have

ϕ′
k(x) = o(‖x‖) as ‖x‖ → ∞ and ϕ′

0k(x) = o(‖x‖) as ‖x‖ → 0. (2.6)

And we can rewrite the functional Ik by

Ik(x) =
1

2
〈Lγx, x〉 − ϕk(x) =

1

2
〈L0x, x〉 − ϕ0k(x), x ∈ E. (2.7)
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Lemma 2.2. Assume that (H1), (H2), (H3) and (H+
5 ) (resp. (H−

5 )) hold. For every k ∈ Z
+, if xk

is a critical point of Ik with m−(I′′k (xk)) ≤ i−∞ − 1 (resp. m∗(I′′k (xk)) ≥ i−∞ + 1), then there exists a
constant β > 0 independent of k such that ‖xk‖L∞ ≤ β.

Proof. We use an indirect argument. Assume that ‖xk‖L∞ → ∞ as k → ∞. By the Sobolev

inequality ‖x‖L∞([0,T]) ≤ C‖x‖, we have that ‖xk‖ → ∞ as k → ∞.

Let

x̄k =
xk

‖xk‖
.

Then x̄k satisfies

− ¨̄xk =
(Vk)x(t, xk)

‖xk‖
. (2.8)

Up to a subsequence, we have that for some x̄ ∈ E, x̄k ⇀ x̄ in E, x̄k → x̄ in L2([0, T]). And it

follows from Proposition 1.2 in [20] that x̄k converges uniformly to x̄ on [0, T]. By (H2), (H3)

and Lemma 2.1, there exists C′
1 > 0 such that |(Vk)x(t, xk)| ≤ C′

1|xk|. Thus for every k,

∣∣∣∣
(Vk)x(t, xk)

‖xk‖

∣∣∣∣ ≤ C′
1|x̄k|. (2.9)

Multiplying (2.8) by x̄k, one has

1 = ‖x̄k‖2 ≤ (C′
1 + 1)‖x̄k‖2

L2([0,T]).

Letting k → ∞, we get

‖x̄‖2
L2([0,T]) ≥

1

C′
1 + 1

> 0. (2.10)

Now we show that up to a subsequence ˙̄xk converges uniformly to ˙̄x on [0, T]. For any

t ∈ [0, T], by (2.8), (2.9) and Hölder inequality, we have

| ˙̄xk(0)| =
∣∣∣∣ ˙̄xk(t) +

∫ t

0

(Vk)x(s, xk)

‖xk‖
ds

∣∣∣∣

≤
∣∣∣∣ ˙̄xk(t)|+

∣∣∣∣
∫ t

0
C′

1|x̄k(s)

∣∣∣∣ ds

∣∣∣∣

≤ | ˙̄xk(t)|+ C′
1

√
T‖x̄k‖L2

≤ | ˙̄xk(t)|+ C′
1

√
T,

thus

∫ T

0
| ˙̄xk(0)|dt ≤

∫ T

0
| ˙̄xk(t)|dt +

∫ T

0
C′

1

√
Tdt

≤
√

T‖ ˙̄xk‖L2 + C′
1

√
TT

≤
√

T + C′
1

√
TT.

Hence

| ˙̄xk(0)| ≤ C2,
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where C2 =
√

T
T + C′

1

√
T. Then for any t ∈ [0, T],

| ˙̄xk(t)| =
∣∣∣∣ ˙̄xk(0) +

∫ t

0
− (Vk)x(s, xk)

‖xk‖
ds

∣∣∣∣

≤ | ˙̄xk(0)|+
∣∣∣∣
∫ t

0
C′

1|x̄k(s)|ds

∣∣∣∣

≤ C2 + C′
1

√
T‖x̄k‖L2

≤ C2 + C′
1

√
T,

which implies that for every k ∈ Z
+,

‖ ˙̄xk(t)‖C0 ≤ C2 + C′
1

√
T. (2.11)

For any ∆t ∈ R, by (2.8) and (2.9) we have

| ˙̄xk(t + ∆t)− ˙̄xk(t)| =
∣∣∣∣
∫ t+∆t

t
¨̄xk(s)ds

∣∣∣∣

=

∣∣∣∣
∫ t+∆t

t
− (Vk)x(t, xk)

‖xk‖
ds

∣∣∣∣

≤
∣∣∣∣
∫ t+∆t

t
C′

1|x̄k|ds

∣∣∣∣

≤ C′
1|∆t| 1

2 ‖x̄k‖L2 ≤ C′
1|∆t| 1

2 . (2.12)

Thus by (2.11) and (2.12), we have

‖ ˙̄xk(t)‖
C

1
2
≤ C.

Then by the Arzelà–Ascoli theorem, ˙̄xk converges uniformly to ˙̄x on [0, T].
We claim that x̄(t) 6= 0 a.e. in [0, T]. In fact, conversely, if x̄(t) = 0 in a positive measure

subset of [0, T], then there exists a point t0 ∈ [0, T] such that x̄(t0) = 0 and ˙̄x(t0) = 0. Recall

that x̄k and ˙̄xk converge uniformly to x̄ and ˙̄x respectively on [0, T], we have

x̄k(t0) → 0 and ˙̄xk(t0) → 0 (2.13)

as k → ∞. Let ȳk := ˙̄xk, then (x̄k, ȳk) satisfies the following system

{
˙̄xk = ȳk,

˙̄yk = − (Vk)x(t,xk)
‖xk‖ .

(2.14)

For any t ∈ [0, T],

|(x̄k(t), ȳk(t))| =
∣∣∣∣(x̄k(t0), ȳk(t0)) +

∫ t

t0

(
ȳk(s),−

(Vk)x(s, xk)

‖xk‖

)
ds

∣∣∣∣

≤ |(x̄k(t0), ȳk(t0))|+
∣∣∣∣
∫ t

t0

∣∣∣∣
(

ȳk(s),−
(Vk)x(s, xk)

‖xk‖

)∣∣∣∣ ds

∣∣∣∣

≤ |(x̄k(t0), ȳk(t0))|+
∣∣∣∣
∫ t

t0

√
1 + C′2

1 |(x̄k(s), ȳk(s))| ds

∣∣∣∣ .

Thus by Gronwall’s inequality, we have

|(x̄k(t), ȳk(t))| ≤ |(x̄k(t0), ȳk(t0))|e|
∫ t

t0

√
1+C′2

1 ds| ≤ C|(x̄k(t0), ȳk(t0))|, (2.15)
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where C = e
√

1+C′2
1 T. Then letting k → ∞ in (2.15), we get x̄(t) = 0 and ȳ(t) = 0 for any

t ∈ [0, T], which is contrary to (2.10). Hence the claim is proved. Note that ‖xk‖ → ∞, then by

this claim one has

|xk| → ∞ a.e. in [0, T] (2.16)

as k → ∞.

If (H+
5 ) holds, then by (2.16), Lemma 2.1 (b), (c) and Fatou’s Lemma, for any fixed x ∈

E−
∞ \ {0},

lim sup
k→∞

〈I′′k (xk)x, x〉 = 〈L̃x, x〉 − lim inf
k→∞

∫ T

0
(Vk)xx(t, xk)x · xdt

≤ 〈L̃x, x〉 −
∫ T

0
lim inf

k→∞
(Vk)xx(t, xk)x · xdt

≤ 〈L̃x, x〉 −
∫ T

0
A∞(t)x · xdt

= 〈L∞x, x〉 < 0,

which implies that there exists k(x) ∈ Z
+ such that 〈I′′k (xk)x, x〉 < 0 when k ≥ k(x). Note that

E−
∞ is finite dimensional, there must exist k0 ∈ Z

+ independent of x ∈ E−
∞ \ {0} such that

〈I′′k (xk)x, x〉 < 0

for all x ∈ E−
∞ \ {0} and k ≥ k0. This means that m−(I′′k (xk)) ≥ i−∞ for k ≥ k0, which leads to a

contradiction.

If (H−
5 ) holds, since E+

∞ is infinite dimensional, the above argument cannot be used directly.

To overcome this difficulty, we will split E+
∞ into two parts. Let

M = max
t∈[0,T]

|A∞(t)|.

Since λi → ∞ as i → ∞, then there exists i0 ∈ Z
+ such that λi0 ≥ 2(M + C′

2) where C′
2 is the

constant as in Lemma 2.1 (b). Let

E1 =
i0−1⊕

i=l+1

E(λi), E2 =
∞⊕

i=i0

E(λi).

Then E+
∞ = E1 ⊕ E2 and E1 is finite dimensional. For any y1 ∈ E2 \ {0}, note that

∫ T

0
(|ẏ1|2 − A∞y1 · y1)dt ≥ λi0

∫ T

0
|y1|2dt,

then

〈I′′k (xk)y1, y1〉 =
∫ T

0
|ẏ1|2dt −

∫ T

0
(Vk)xx(t, xk)y1 · y1dt

≥ λi0

∫ T

0
|y1|2dt +

∫ T

0
A∞y1 · y1dt −

∫ T

0
(Vk)xx(t, xk)y1 · y1dt

≥ λi0

∫ T

0
|y1|2dt −

∫ T

0
M|y1|2dt −

∫ T

0
C′

2|y1|2dt

≥ λi0

2

∫ T

0
|y1|2dt > 0. (2.17)
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For any y2 ∈ E1 \ {0}, by (2.16), Lemma 2.1 (b), (c) and Fatou’s Lemma,

lim inf
k→∞

〈I′′k (xk)y2, y2〉 =
∫ T

0
|ẏ2|2dt − lim sup

k→∞

∫ T

0
(Vk)xx(t, xk)y2 · y2dt

≥
∫ T

0
|ẏ2|2dt −

∫ T

0
lim sup

k→∞

(Vk)xx(t, xk)y2 · y2dt

≥
∫ T

0
|ẏ2|2dt −

∫ T

0
A∞(t)y2 · y2dt

= 〈L∞y2, y2〉 > 0,

which implies that there exists k(y2) ∈ Z
+ such that 〈I′′k (xk)y2, y2〉 > 0 for k ≥ k(y2). Note

that E1 is finite dimensional, there must exist k1 ∈ Z
+ independent of y2 ∈ E1 \ {0} such that

〈I′′k (xk)y2, y2〉 > 0 (2.18)

for all y2 ∈ E1 \ {0} and k ≥ k1. Hence by (2.17) and (2.18), for any y ∈ E+
∞ \ {0} and every

k ≥ k1,

〈I′′k (xk)y, y〉 > 0.

This implies that m∗(I′′k (xk)) ≤ i−∞ for k ≥ k1, which leads to a contradiction.

Therefore the lemma is proved.

3 Proof of Theorem 1.1

In this section, we will use Morse theory to prove the existence of nontrivial periodic solution

for (1.1). Let H be a real Hilbert space and J ∈ C2(H, R) be a functional satisfying the (PS)

condition, i.e., any sequence {un} ⊂ H for which J(un) is bounded and J′(un) → 0 as n → ∞

possesses a convergent subsequence. Denote by Hq(A, B) the q-th singular relative homology

group of the topological pair (A, B) with coefficients in a field F . Let u be an isolated critical

point of J with J(u) = c. The groups

Cq(J, u) := Hq(Jc, Jc \ {u}), q ∈ Z

are called the critical groups of J at u, where Jc = {u ∈ H | J(u) ≤ c}. Denote K = K(J) =

{u ∈ H | J′(u) = 0}. Suppose that J(K) is bounded from below by a ∈ R. The critical groups

of J at infinity are defined by

Cq(J, ∞) := Hq(H, Ja), q ∈ Z.

We say that J has a local linking structure at 0 with respect to the direct sum decomposition

H = H− ⊕ H+ if there exists r > 0 such that

J(u) > 0 for u ∈ H+ with 0 < ‖u‖ ≤ r, J(u) ≤ 0 for u ∈ H− with ‖u‖ ≤ r.

The following results can be found in [1], [26] and [4].

Proposition 3.1 (See [1]). Suppose J satisfies (PS) condition. If K = ∅, then Cq(J, ∞) ∼= 0, q ∈ Z.

If K = {u0}, then Cq(J, ∞) ∼= Cq(J, u0), q ∈ Z.



10 G. Liu

Proposition 3.2 (See [26]). Let 0 be an isolated critical point of J ∈ C2(H, R) with Morse index
µ0 and nullity ν0. Assume that J has a local linking structure at 0 with respect to the direct sum
decomposition H = H− ⊕ H+ and k = dim H−

< ∞. If k = µ0 or k = µ0 + ν0, then

Cq(J, u) = δq,kF , q ∈ Z.

Let A be a nondegenerate bounded self-adjoint operator defined on H. According to its

spectral decomposition, H = H+ ⊕ H−, where H+, H− are invariant subspaces corresponding

to the positive and negative spectrum of A respectively. Let

J(x) =
1

2
〈Ax, x〉+ g(x),

and the following assumptions are given:

(A1) A± := A |H± has a bounded inverse on H±;

(A2) κ := dim H−
< ∞;

(A3) g ∈ C1(H, R
1) has a compact derivative g′(x) and ‖g′(x)‖ = o(‖x‖) as ‖x‖ → ∞.

Proposition 3.3 (See [4]). Under the assumptions (A1), (A2) and (A3), we have that J satisfies (PS)
condition and Cq(J, ∞) = δq,κF .

Proposition 3.4 (See [4]). Suppose that J ∈ C2(H, R) satisfies (PS) condition, and K = {u1, . . . , uk},
then

∞

∑
q=0

Mqtq =
∞

∑
q=0

βqtq + (1 + t)Q(t),

where Q(t) is a formal series with nonnegative coefficients, Mq = ∑
k
i=0 rank Cq(J, uk) and βq =

rank Cq(J, ∞), q = 0, 1, 2, . . .

Now we compute the critical groups of Ik at zero and at infinity.

Lemma 3.5. Assume that (H1)–(H3) hold. Then for every k ∈ Z
+,

(1) if (H+
4 ) holds,

Cq(Ik, 0) = δq,i−0 +i0
0
F , q ∈ Z.

(2) if (H−
4 ) holds,

Cq(Ik, 0) = δq,i−0
F , q ∈ Z.

Proof. (1) We first show that Ik has a local linking structure at 0 with respect to E = E− ⊕ E+,

where E− = E−
0 ⊕ E0

0 and E+ = E+
0 . For x ∈ E+

0 , by (1.5) and (2.6) we have

Ik(x) =
1

2
〈L0x, x〉 − ϕ0k(x)

≥ c0

2
‖x‖2 − o(‖x‖2) (3.1)

as ‖x‖ → 0. This means that there exists small r > 0 such that

Ik(x) > 0, for x ∈ E+
0 with 0 < ‖x‖ ≤ r. (3.2)
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For x ∈ E−
0 ⊕ E0

0, we write x = x− + x0 with x− ∈ E−
0 and x0 ∈ E0

0. Then

Ik(x) =
1

2
〈L0x−, x−〉 −

∫ T

0
G0k(t, x)dt

≤ − c0

2
‖x−‖2 −

∫ T

0
G0k(t, x)dt. (3.3)

By (H+
4 ) and Lemma 2.1 (a), ∫

|x|≤δ
G0k(t, x)dt ≥ 0. (3.4)

If |x| > δ, since E0
0 is finite dimensional, we have

|x−| ≥ |x| − |x0| ≥ |x| − ‖x0‖L∞ ≥ |x| − C‖x0‖ ≥ |x| − C‖x‖,

thus let 0 < r < δ
3C , for ‖x‖ ≤ r, we have

|x−| ≥ |x| − δ

3
≥ |x| − 1

3
|x| = 2

3
|x|. (3.5)

By Lemma 2.1 (b), (d), there exists Cδ > 0 such that for |x| > δ,

|G0k(t, x)| ≤ Cδ|x|3. (3.6)

Hence, by (3.3)–(3.6), for x ∈ E−
0 ⊕ E0

0 with ‖x‖ ≤ r, we have

Ik(x) ≤ − c0

2
‖x−‖2 −

∫ T

0
G0k(t, x)dt

≤ − c0

2
‖x−‖2 −

∫

|x|≤δ
G0k(t, x)dt −

∫

|x|>δ
G0k(t, x)dt

≤ − c0

2
‖x−‖2 +

∫

|x|>δ
Cδ|x|3dt

≤ − c0

2
‖x−‖2 + Cδ

∫

|x|>δ

(
3

2

)3

|x−|3dt

≤ − c0

2
‖x−‖2 + C′

δ‖x−‖3. (3.7)

This implies that there exists r > 0 small enough such that

Ik(x) < 0, for x ∈ E−
0 ⊕ E0

0 with ‖x‖ ≤ r and ‖x−‖ > 0. (3.8)

On the other hand, for x0 ∈ E0
0, we can choose r > 0 small enough such that

0 < ‖x0‖L∞ < δ, when 0 < ‖x0‖ ≤ r.

Then for x0 ∈ E0
0 with 0 < ‖x0‖ ≤ r, since x0 ∈ C2([0, T], R

N), there must exist 0 < t1 < t2 < T
such that

0 < |x0(t)| < δ, ∀t ∈ [t1, t2].

Then by (H+
4 ) and Lemma 2.1 (a), for x0 ∈ E0

0 with 0 < ‖x0‖ ≤ r,

Ik(x0) = −
∫ T

0
G0k(t, x0)dt = −

∫ T

0
G0(t, x0)dt ≤ −

∫ t2

t1

G0(t, x0)dt < 0. (3.9)
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Hence, by (3.8) and (3.9), there exists r > 0 such that

Ik(x) < 0, for x ∈ E−
0 ⊕ E0

0 with 0 < ‖x‖ ≤ r. (3.10)

Therefore, it follows from (3.2) and (3.10) that Ik has a local linking structure at 0 with

respect to E = E− ⊕ E+, where E− = E−
0 ⊕ E0

0 and E+ = E+
0 . Then by Proposition 3.2, we have

Cq(Ik, 0) = δq,i−0 +i0
0
F , q ∈ Z.

(2) By a similar argument as (1), we can prove that Ik has a local linking structure at 0 with

respect to E = E− ⊕ E+, where E− = E−
0 and E+ = E+

0 ⊕ E0
0. Then by Proposition 3.2, we have

Cq(Ik, 0) = δq,i−0
F , q ∈ Z.

Lemma 3.6. Assume that (H1)-(H3), (H+
5 )(or (H−

5 )) hold. Then for every k ∈ Z
+, Ik satisfies (PS)

condition and the critical groups of Ik at infinity are

Cq(Ik, ∞) = δq,j−∞F , q ∈ Z.

Proof. Note that

Ik(x) =
1

2
〈Lγx, x〉 − ϕk(x)

Since Lγ is a nondegenerate operator on E, then Lγ |E±
γ

has a bounded inverse on E±
γ . Recall

that dim E−
γ = j−∞ < ∞. Thus the assumptions (A1) and (A2) in Proposition 3.3 are satisfied.

On the other hand, note that ϕk(x) ∈ C2(E, R) has compact derivative ϕ′
k(x) and ϕ′

k(x) =

o(‖x‖) as ‖x‖ → ∞, then the assumption (A3) in Proposition 3.3 is also satisfied. Hence, by

Proposition 3.3, we have

Cq(Ik, ∞) = δq,j−∞F , q ∈ Z.

Remark 3.7. Since I′k(x) = Lγx + ϕ′
k(x) = Lγx + o(‖x‖) as ‖x‖ → ∞ and Lγ is invertible, it is

easy to see that the critical point set K(Ik) is bounded for every k ∈ Z
+. Then since Ik satisfies

(PS) condition by Lemma 3.6, we conclude that K(Ik) is a compact set for every k ∈ Z
+.

Proof of Theorem 1.1. We only prove the result for the case (1), the proofs for the cases (2), (3)

and (4) are similar.

For every k ∈ Z
+, since x = 0 is an isolated critical point of Ik, there exists σ > 0 such that

Ik(x) has no nontrivial critical points in Bσ(0) := {x | ‖x‖ ≤ σ}. Since i−0 + i0
0 < i−∞ − 1, then

by (2.4), Lemma 3.5 (1) and Lemma 3.6 we have

Cq(Ik, ∞) 6= Cq(Ik, 0)

for some q ∈ Z. So by Proposition 3.1 and Remark 3.7, the set K(Ik) \ {0} is not empty and

compact. Denote Kk = K(Ik) \ {0}.

Now we show that for every k ∈ Z
+ there exists a nontrivial critical point xk ∈ Kk such

that

m−(I′′k (xk)) ≤ i−∞ − 1. (3.11)

We use an indirect argument. Suppose that for any xk ∈ Kk,

m−(I′′k (xk)) > i−∞ − 1. (3.12)

For A ⊂ E and a > 0, set

Na(A) := {x ∈ E | dist(x, A) < a}.

Using the Marino–Prodi perturbation technique from [25], for any ǫ > 0 and 0 < τ <

min{ σ
3 , 1}, we can obtain a C2 functional Jk such that:
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(i) ‖Ik − Jk‖C2 < ǫ;

(ii) Ik(x) = Jk(x), x ∈ E \ N2τ(Kk);

(iii) I′′k (x) = J′′k (x) for any x ∈ Nτ(K(Ik)), K(Jk) \ {0} ⊂ Nτ(Kk), and the nontrivial critical

points of Jk are all non-degenerate.

By (iii), J′′k (0) = I′′k (0), thus by Proposition 3.2 and Lemma 3.5, we have

Cq(Jk, 0) = Cq(Ik, 0) = δq,i−0 +i0
0
F . (3.13)

By (ii), Ik(x) = Jk(x) for x ∈ E \ N2τ(Kk), then by Lemma 3.6, Jk also satisfies (PS) condition

and

Cq(Jk, ∞) = Cq(Ik, ∞) = δq,j−∞F . (3.14)

Since K(Jk) ⊂ Nτ(K(Ik)) and K(Ik) is compact, K(Jk) is also a compact set. Moreover, note

that the notrivial critical points of Jk are all non-degenerate, we have that K(Jk) is a finite set.

Suppose that

K(Jk) \ {0} = {xk1, xk2, xk3, . . . , xkn}.

By (iii) and (3.12), we can choose τ small enough such that for all 1 ≤ i ≤ n,

m−(J′′k (xki)) > i−∞ − 1. (3.15)

By (3.13), (3.14), and Proposition 3.4 we have

ti−0 +i0
0 +

n

∑
i=1

tm−(J′′k (xki)) = tj−∞ + (1 + t)Q(t). (3.16)

Note that i−0 + i0
0 < i−∞ − 1 and i−∞ ≤ j−∞, it follows from (3.16) that (1 + t)Q(t) has a nonzero

term with exponent i−0 + i0
0. Then this means that the left hand side of (3.16) has a nonzero

term with exponent i−0 + i0
0 − 1 or i−0 + i0

0 + 1. Thus there exists a 1 ≤ i ≤ n such that

m−(J′′k (xki)) = i−0 + i0
0 − 1 or m−(J′′k (xki)) = i−0 + i0

0 + 1.

Since i−0 + i0
0 < i−∞ − 1, we have that m−(J′′k (xki)) ≤ i−∞ − 1 for some 1 ≤ i ≤ n. This is contrary

to (3.15), thus (3.11) is proved.

By Lemma 2.2 and (3.11), for every k ∈ Z
+ the functional Ik has a nontrivial critical point

xk such that ‖xk‖L∞ ≤ β. By Lemma 2.1, for k large enough such that Rk > β, xk is also a

nontrivial critical point of I, and thus xk is a nontrivial periodic solution of (1.1).

4 Proof of Theorem 1.2

We introduce two critical point theorems which will be used in proving Theorem 1.2. Let H be

a Hilbert space. Assume that J ∈ C2(H, R) is an even functional, satisfies the (PS) condition,

J(0) = 0 and K(J) is a compact set. Let Ba = {y ∈ H | ‖y‖ ≤ a} and Sa = ∂Ba = {y ∈ H |
‖y‖ = a}. The following two critical point theorems follow from Ghoussoub [7] and Chang

[4] (see also [13] ).
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Proposition 4.1 (See [7]). Assume H = Y
⊕

Z, and let X be a subspace of H, satisfying dim X =

j > k = dim Y. If there exist R > r > 0 and α > 0 such that

inf J(Sr ∩ Z) ≥ α, sup J(SR ∩ X) ≤ 0,

then J has j − k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that m−(J′′(ui)) ≤ k + i
for i = 1, 2, . . . , j − k.

Proposition 4.2 (See [4]). Assume H = Y
⊕

Z, and let X be a subspace of H, satisfying dim X =

j > k = dim Y. If there exist r > 0 and α > 0 such that

inf J(Z) > −∞, sup J(Sr ∩ X) ≤ −α,

then J has at least j− k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that m∗(J′′(ui)) ≥
k + i − 1 for i = 1, 2, . . . , j − k.

For every k ∈ Z
+, by Lemma 2.1 (e), we see that Ik(x) is an even functional on E. From

Lemma 3.6 and Remark 3.7, Ik satisfies (PS) condition and K(Ik) is compact. Now we give the

proof of Theorem 1.2.

Proof of Theorem 1.2. (1) We will use Proposition 4.1 to prove this case. Let Y = E−
0 ⊕ E0

0,

Z = E+
0 and X = E−

∞. Then E = Y ⊕ Z and dim X = i−∞ > i−0 + i0
0 = dim Y.

For x ∈ E+
0 , by (1.5) and (2.6) we have

Ik(x) =
1

2
〈L0x, x〉 − ϕ0k(x) ≥ c0

2
‖x‖2 + o(‖x‖2) (4.1)

as ‖x‖ → 0. Then there exists α > 0 and sufficiently small r > 0 such that Ik(x) ≥ α for any

x ∈ Sr ∩ E+
0 , that is

inf Ik(Sr ∩ E+
0 ) ≥ α. (4.2)

On the other hand, recall that E−
∞ ⊂ E−

γ in this case, then by (2.3) for x ∈ E−
∞ we have

Ik(x) =
1

2
〈Lγx, x〉 − ϕk(x) ≤ − cγ

2
‖x‖2 + o(‖x‖2) (4.3)

as ‖x‖ → ∞. Thus there exists R > r such that Ik(x) ≤ 0 for any x ∈ SR ∩ E−
∞, that is

sup Ik(SR ∩ E−
∞) ≤ 0. (4.4)

For every k ∈ Z
+, by (4.2), (4.4) and using Proposition 4.1, we have that Ik(x) has i−∞ − i−0 −

i0
0 pairs of nontrivial critical points {±x1

k ,±x2
k , . . . ,±x

i−∞−i−0 −i0
0

k } with m−(I′′k (xi
k)) ≤ i−0 + i0

0 + i
for i = 1, 2, . . . , i−∞ − i−0 − i0

0. By Lemma 2.2, ‖xi
k‖L∞ ≤ β for i = 1, 2, . . . , i−∞ − i−0 − i0

0 − 1. Then

for k large enough such that Rk > β, {±x1
k ,±x2

k , . . . ,±x
i−∞−i−0 −i0

0−1

k } are also nontrivial critical

points of I, and therefore are nontrivial periodic solutions of (1.1).

(2) We will also use Proposition 4.1 to prove this case. Let Y = E−
0 , Z = E+

0 ⊕ E0
0 and

X = E−
∞. Then E = Y ⊕ Z and dim X = i−∞ > i−0 = dim Y.

For x ∈ E+
0 ⊕ E0

0, we write x = x+ + x0 where x+ ∈ E+
0 and x0 ∈ E0

0. For x ∈ (E+
0 ∩ Sr)⊕

(E0
0 ∩ Br), by (1.5) we have

Ik(x) =
1

2
〈L0x+, x+〉 − ϕ0k(x+ + x0)

≥ c0

2
‖x+‖2 − o(‖x+ + x0‖2)

≥ c0

4
r2 (4.5)
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provided r is small enough.

Now we consider Ik on (E+
0 ∩ Br)⊕ (E0

0 ∩ Sr). For x ∈ (E+
0 ∩ Br)⊕ (E0

0 ∩ Sr), by (1.5) we

have that

Ik(x) =
1

2
〈L0x+, x+〉 − ϕ0k(x+ + x0)

≥ −ϕ0k(x+ + x0)

≥ −1

4
r2 (4.6)

provided r is small enough. Inspired by [12], we define a function g : E0
0 ∩ Sr → R by

g(x0) = inf{Ik(x+ + x0) | x+ ∈ E+
0 ∩ Br}.

Then by (4.6), g is well defined and continuous. For any fixed x0 ∈ E0
0 ∩ Sr, by a standard

minimization method, we see that g(x0) is attained at some x̄+ ∈ E+
0 ∩ Br, i.e.,

g(x0) = Ik(x̄+ + x0).

By the Sobolev inequality ‖x‖L∞ ≤ C‖x‖, we can choose r small enough such that

‖x̄+ + x0‖L∞ < δ.

Thus by (H−
4 ),

G0k(t, (x̄+ + x0)(t)) < 0

for any t satisfying (x̄+ + x0)(t) 6= 0. Since x0 ∈ E0
0 ∩ Sr, then x̄+ + x0 is not identically equal

to zero. This implies that ∫ T

0
G0k(t, (x̄+ + x0)(t))dt < 0

and

g(x0) = Ik(x̄+ + x0) =
1

2
〈L0 x̄+, x̄+〉 −

∫ T

0
G0k(t, (x̄+ + x0)(t))dt > 0.

Since E0
0 is finite dimensional, E0

0 ∩ Sr is a compact set. Then there exists α0 > 0 such that

g(x0) ≥ α0, ∀x0 ∈ E0
0 ∩ Sr.

Hence, by the definition of g we have

Ik(x+ + x0) ≥ g(x0) ≥ α0, ∀x+ + x0 ∈ (E+
0 ∩ Br)⊕ (E0

0 ∩ Sr). (4.7)

Let α = min{α0, c0
4 r2}. Notice that

∂[(E+
0 ∩ Br)⊕ (E0

0 ∩ Br)] = [(E+
0 ∩ Sr)⊕ (E0

0 ∩ Br)] ∪ [(E+
0 ∩ Br)⊕ (E0

0 ∩ Sr)],

then by (4.5) and (4.7) we have

Ik(x+ + x0) ≥ α, ∀x+ + x0 ∈ ∂[(E+
0 ∩ Br)⊕ (E0

0 ∩ Br)]. (4.8)

Taking α > 0 smaller if necessary, we obtain

Ik(x+ + x0) ≥ α, ∀x+ + x0 ∈ (E+
0 ⊕ E0

0) ∩ Sr, (4.9)
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that is

inf Ik((E+
0 ⊕ E0

0) ∩ Sr) ≥ α. (4.10)

By (H+
5 ), it is easy to see that (4.4) also holds in this case. Then by (4.4) and (4.10), using

Proposition 4.1 and a similar argument as the case (1), we can prove that system (1.1) has at

least i−∞ − i−0 − 1 pairs of nontrivial periodic solutions;.

(3) We will use Proposition 4.2 to prove this case. Let Y = E−
∞, Z = E+

∞ and X = E−
0 ⊕ E0

0.

Then E = Y ⊕ Z and dim X = i−0 + i0
0 > i−∞ = dim Y.

For x ∈ E+
∞, note that E+

∞ ⊂ E+
γ by (2.5) in this case, we have

Ik(x) =
1

2
〈Lγx, x〉 − ϕk(x) ≥ cγ

2
‖x‖2 − o(‖x‖2) (4.11)

as ‖x‖ → ∞. Then there exists Mk > 0 such that

Ik(x) ≥ 0, ∀x ∈ E+
∞ with ‖x‖ ≥ Mk. (4.12)

On the other hand, by Lemma 2.1, there exists a constant C′
1 > 0 such that

|Vk(t, x)| ≤ C′
1|x|2.

Thus for x ∈ E+
∞ with ‖x‖ ≤ Mk, we have

Ik(x) =
1

2

∫ T

0
|ẋ|2dt −

∫ T

0
Vk(t, x)dt ≥ −C′

1

∫ T

0
|x|2dt ≥ −C′

1M2
k . (4.13)

By (4.12) and (4.13), we have

inf Ik(E+
∞) > −∞. (4.14)

For x ∈ E−
0 ⊕ E0

0, by using a similar argument as in obtaining (4.9), we have that there exist

r > 0 and α > 0 such that

Ik(x) ≤ −α, ∀x ∈ (E−
0 ⊕ E0

0) ∩ Sr,

that is

sup Ik((E−
0 ⊕ E0

0) ∩ Sr) ≤ −α. (4.15)

Then by (4.14) and (4.15), using Proposition 4.2 and a similar argument as the case (1),

we can prove that the system (1.1) has at least i−0 + i0
0 − i−∞ − 1 pairs of nontrivial periodic

solutions.

(4) We will also use Proposition 4.2 to prove this case. Let Y = E−
∞, Z = E+

∞ and X = E−
0 .

Then E = Y ⊕ Z and dim X = i−0 > i−∞ = dim Y.

It is easy to see that (4.14) also holds in this case. For x ∈ E−
0 ,

Ik(x) =
1

2
〈L0x, x〉 − ϕ0k(x) ≤ − c0

2
‖x‖2 + o(‖x‖2) (4.16)

as ‖x‖ → 0. By (4.16), there exist r > 0 and α > 0 such that

sup Ik(E−
0 ∩ Sr) ≤ −α. (4.17)

By (4.14) and (4.17), using Proposition 4.2 and a similar argument as the case (1), we can

prove that system (1.1) has at least i−0 − i−∞ − 1 pairs of nontrivial periodic solutions.
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Abstract. This article is concerned with the study of the unique solvability of a time-
nonlocal inverse boundary value problem for second-order hyperbolic equation with an
integral overdetermination condition. To study the solvability of the inverse problem,
we first reduce the considered problem to an auxiliary system with trivial data and
prove its equivalence (in a certain sense) to the original problem. Then using the Banach
fixed point principle, the existence and uniqueness of a solution to this system is shown.
Further, on the basis of the equivalency of these problems the existence and uniqueness
theorem for the classical solution of the inverse coefficient problem is proved for the
smaller value of time.
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1 Introduction

In practice, it is often required to recover the coefficients in an ordinary or partial differential

equation from the final overspecified data. Problems of these types are called inverse prob-

lems of mathematical physics and are one of the most complicated and practically important

problems. The theory of inverse problems is widely used to solve practical problems in al-

most all fields of science, in particular, in physics, medicine, ecology, and economics. Such

problems include the locating groundwater, investigating locations for landfills, acoustics, oil

and gas exploration, electromagnetic, X-ray tomography, laser tomography, elasticity, fluid

dynamics, and so on.

In the modern mathematical literature, the theory of inverse boundary-value problems for

equations of hyperbolic type of the second-order is stated rather satisfactory. In particular, the

solvability of the inverse problems in various formulations with different overdetermination

BCorresponding author. Email: eazizbayov@bsu.edu.az
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conditions for partial differential equations is extensively studied in many monographs and

papers (see for example, [2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 21, 26], and the references therein).

Recently, problems with nonlocal conditions for partial differential equations have been of

great interest to applied sciences. In the literature, the term “nonlocal boundary value prob-

lems” refers to problems that contain conditions relating the values of the solution and/or its

derivatives either at different points of the boundary or at boundary points and some inte-

rior points [19]. It is well known that direct nonlocal boundary value problems with integral

conditions (with respect to spatial variable) [3, 6, 9, 15] are widely used for thermo-elasticity,

chemical engineering, heat conduction, and plasma physics. As well as the direct nonlocal

boundary value problems for hyperbolic equations with integral conditions (with respect to

time variable) are considered in the papers [12, 22] and the references therein. Moreover, In

[23–25] the authors present a regularity result for solutions of partial differential equations in

the framework of mixed Morrey spaces.

It should also be noted that the statement of the problem and the proof technique used

in this paper differ from those of the above articles, and the conditions in the theorems are

significantly different from those in them. A distinctive feature of this article is the considera-

tion the inverse boundary value problem for a hyperbolic equation with both spatial and time

nonlocal conditions.

2 Mathematical formulation

In the region defined by D : 0 < x < 1, 0 < t < T, DT = D, we consider the problem of

determining the unknown functions u(x, t) ∈ C1(DT)∩C2(D) and a(t) ∈ C[0, T] such that the

pair {u(x, t), a(t)} satisfies a one-dimensional hyperbolic equation

utt(x, t)− uxx(x, t) = a(t)u(x, t) + f (x, t), (x, t) ∈ D, (2.1)

with the nonlocal initial conditions

u(x, 0) + δ1u(x, T) = ϕ(x), ut(x, 0) + δ2ut(x, T) = ψ(x), 0 ≤ x ≤ 1, (2.2)

the boundary conditions

ux(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (2.3)

and integral overdetermination condition of the first kind

∫ 1

0
w(x)u(x, t)dx = H(t), 0 ≤ t ≤ T, (2.4)

where δ1, δ2 ≥ 0, and 0 < T < +∞ are given numbers, and f (x, t), ϕ(x), ψ(x), w(x), H(t) are

known functions.

To study problem (2.1)–(2.4), we consider the equation

y′′(t) = γ(t)y(t), 0 < t < T, (2.5)

with the boundary conditions

y(0) + δ1y(T) = 0, y′(0) + δ2y′(T) = 0, (2.6)
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where δ1, δ2 ≥ 0 are fixed numbers, γ(t) ∈ C[0, T] is given function, and y = y(t) is desired

function.

Clearly, the problem

y′′(t) = 0, y(0) + δ1y(T) = 0, y′(0) + δ2y′(T) = 0 (2.7)

has unique trivial solution, for all nonnegative values of δ1 and δ2.

It is known [18] that boundary value problem (2.7) has a Green’s function of the form

G(t, τ) =







− δ2t+δ1(T−τ)+δ1δ2(t−τ)
(1+δ1)(1+δ2)

, ∈ [0, τ],

− δ2t+δ1(T−τ)−(1+δ1+δ2)(t−τ)
(1+δ1)(1+δ2)

, t ∈ [τ, T].
(2.8)

Lemma 2.1. Suppose that the function γ(t) is continuous on the interval [0, T]. If δ1, δ2 ≥ 0 and

1 + 2δ1 + 3δ2 + δ1δ2

2(1 + δ1)(1 + δ2)
‖γ(t)‖C[0,T] T2

< 1, (2.9)

then problem (2.5), (2.6) has only a trivial solution.

Proof. Since problem (2.7) has a unique Green function defined by formula (2.8), then it could

be argued [18] that boundary-value problem (2.5), (2.6) is equivalent to the integral equation

y(t) =
∫ T

0
G(t, τ)γ(τ)y(τ)dτ. (2.10)

Let us introduce the notation

A(y(t)) =
∫ T

0
G(t, τ)γ(τ)y(τ)dτ. (2.11)

Then the equation (2.10) can be rewritten as

y(t) = A(y(t)). (2.12)

Obviously, the operator A is continuous in the space C[0, T].

Now we prove that A is a contraction operator in the space C[0, T]. It is easy to see that

the inequality

‖A(y1(t))− A(y2(t))‖C[0,T] ≤
1 + 2δ1 + 3δ2 + δ1δ2

2(1 + δ1)(1 + δ2)
T2 ‖γ(t)‖C[0,T] ‖y1(t)− y2(t)‖C[0,T] (2.13)

holds for any functions y1(t), y2(t) ∈ C[0, T].

In view of (2.9) and (2.13) it is clear that the operator A is contractive in C[0, T]. Therefore,

the operator A has a unique fixed point y(t) in the space C[0, T] which is a solution of equation

(2.12). Thus, the integral equation (2.10) has a unique solution in C[0, T]. Consequently,

problem (2.5), (2.6) also has a unique solution in the indicated space. Since y(t) = 0 is a

solution to problem (2.5), (2.6), it follows that this problem has a unique trivial solution.

Now, to study problem (2.1)–(2.4), we consider the following auxiliary inverse boundary

value problem: it is required to find a pair of functions u(x, t) ∈ C1(DT)∩C2(D), a(t) ∈ C[0, T]

from (2.1)–(2.3) and

H′′(t)−
∫ 1

0
w(x)uxx(x, t)dx = H(t)a(t) +

∫ 1

0
w(x) f (x, t)dx, 0 < t < T. (2.14)
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Theorem 2.2. Assume that ϕ(x), ψ(x) ∈ C[0, 1], H(t) ∈ C1[0, T] ∩ C2(0, T), H(t) 6= 0, 0 ≤ t ≤
T, f (x, t) ∈ C(DT), and that the following compatibility conditions are fulfilled

∫ 1

0
w(x)ϕ(x)dx = H(0) + δ1H(T),

∫ 1

0
w(x)ψ(x)dx = H′(0) + δ2H′(T). (2.15)

Then the following statements are true:

(i) each classical solution {u(x, t), a(t)} of problem (2.1)–(2.4) is a solution of problem (2.1)–(2.3),

(2.14), as well;

(ii) each solution {u(x, t), a(t)} of problem (2.1)–(2.3), (2.14) under the circumstance

(1 + 2δ1 + 3δ2 + δ1δ2)T2

2(1 + δ1)(1 + δ2)
‖a(t)‖C[0,T] < 1 (2.16)

is a classical solution of problem (2.1)–(2.4).

Proof. Let {u(x, t), a(t)} be a classical solution of problem (2.1)–(2.4). Multiplying the both

sides of Eq.(2.1) by a special function w(x) and integrating from 0 to 1 with respect to x gives

d2

dt2

∫ 1

0
w(x)u(x, t)dx −

∫ 1

0
w(x)uxx(x, t)dx

= a(t)
∫ 1

0
w(x)u(x, t)dx +

∫ 1

0
w(x) f (x, t)dx, 0 < t < T. (2.17)

Taking into account the condition H(t) ∈ C1[0, T]∩C2(0, T), and differentiating (2.4) twice,

we have
∫ 1

0
w(x)utt(x, t)dx = H′′(t), 0 < t < T. (2.18)

From (2.17), taking into account (2.4) and (2.18) we arrive at (2.14).

Now, suppose that {u(x, t), a(t)} is a solution to problem (2.1)–(2.3), (2.14). Then from

(2.17), by allowing for (2.14), we find:

d2

dt2

(

∫ 1

0
w(x)u(x, t)dx − H(t)

)

= a(t)

(

∫ 1

0
w(x)u(x, t)dx − H(t)

)

, (2.19)

for 0 < t < T.

By using the initial conditions (2.2) and the compatibility conditions (2.15), we may write
∫ 1

0
w(x)u(x, 0)dx − H(0) + δ1

(

∫ 1

0
w(x)u(x, T)dx − H(T)

)

=
∫ 1

0
w(x)(u(x, 0) + δ1u(x, T))dx − (H(0) + δ1H(T))

=
∫ 1

0
w(x)ϕ(x)dx − (H(0) + δ1H(T)) = 0,

∫ 1

0
w(x)ut(x, 0)dx − H′(0) + δ2

(

∫ 1

0
w(x)ut(x, T)dx − H′(T)

)

=
∫ 1

0
w(x)(ut(x, 0) + δ2ut(x, T))dx − (H′(0) + δ2H′(T))

=
∫ 1

0
w(x)ψ(x)dx − (H′(0) + δ2H′(T)) = 0. (2.20)

Lemma 2.1 enables us to conclude that the problem (2.19), (2.20) has only a trivial solution.

Then,
∫ 1

0 w(x)u(x, t)dx − H(t) = 0, 0 ≤ t ≤ T, i.e., the condition (2.4) is satisfied.
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3 Existence and uniqueness of the solution of the inverse problem

We impose the following conditions on the numbers δ1, δ2, and the functions ϕ, ψ, f , w, and H:

H1) δ1 ≥ 0, δ2 ≥ 0, 1 + δ1δ2 > δ1 + δ2;

H2) ϕ(x) ∈ C2[0, 1], ϕ′′′(x) ∈ L2(0, 1), ϕ′(0) = ϕ(1) = ϕ′′(1) = 0;

H3) ψ(x) ∈ C1[0, 1], ψ′′(x) ∈ L2(0, 1), ψ′(0) = ψ(1) = 0;

H4) f (x, t), fx(x, t) ∈ C(DT), fxx(x, t) ∈ L2(DT), fx(0, t) = f (1, t) = 0, 0 ≤ t ≤ T;

H5) w(x) ∈ L2(0, 1), H(t) ∈ C2[0, T], H(t) 6= 0, 0 ≤ t ≤ T.

We seek the first component of solution {u(x, t), a(t)} of the problem (2.1)–(2.3), (2.14) in

the form

u(x, t) =
∞

∑
k=1

uk(t) cos λkx, λk =
π

2
(2k − 1), (3.1)

where

uk(t) = 2
∫ 1

0
u(x, t) cos λkxdx, k = 1, 2, . . . ,

are twice-differentiable functions on an interval [0, T].

Applying formal scheme of the Fourier method and using (2.1) and (2.2), we get

u′′
k (t) + λ2

kuk(t) = Fk(t; a, u), k = 1, 2, . . . ; 0 < t < T, (3.2)

uk(0) + δ1uk(T) = ϕk, u′
k(0) + δ2u′

k(T) = ψk, k = 1, 2, . . . , (3.3)

where

Fk(t; u, a) = fk(t) + a(t)uk(t), fk(t) = 2
∫ 1

0
f (x, t) cos λkxdx,

ϕk = 2
∫ 1

0
ϕ(x) cos λkxdx, ψk = 2

∫ 1

0
ψ(x) cos λkxdx, k = 1, 2, . . .

Solving the problem (3.2),(3.3) gives

uk(t) =
1

ρk(T)

[

ϕk(cos λkt + δ2 cos λk(T − t)) +
ψk

λk
(sin λkt − δ1 sin λk(T − t))

]

+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ, (3.4)

where

ρk(T) = 1 + (δ1 + δ2) cos λkT + δ1δ2, (3.5)

Gk(t, τ) =































− 1
λkρk(T)

[δ1 sin λk(T − τ) cos λkt

+ δ2 cos λk(T − τ) sin λkt + δ1δ2 sin λk(t − τ)], t ∈ [0, τ],

− 1
λkρk(T)

[δ1 sin λk(T − τ) cos λkt + δ2 cos λk(T − τ) sin λkt

+ δ1δ2 sin λk(t − τ)] + 1
λk

sin λk(t − τ), t ∈ [τ, T].

(3.6)
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Substituting the expression of (3.4) into (3.1), we find the component u(x, t) of the classical

solution to problem (2.1)–(2.3), (2.14) to be

u(x, t) =
∞

∑
k=1

{

1

ρk(T)

[

ϕk(cos λkt + δ2 cos λk(T − t))

+
ψk

λk
(sin λkt − δ1 sin λk(T − t))

]

+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ

}

cos λkx. (3.7)

Thus the problem (2.7), taking into account (2.14), yields

a(t) = [H(t)]−1

{

H′′(t)−
∫ 1

0
w(x) f (x, t)dx +

1

2

∞

∑
k=1

λ2
kuk(t)wk

}

, (3.8)

where

wk = 2
∫ 1

0
w(x) cos λkxdx, k = 1, 2, . . .

After substituting (3.4) into (3.8), we find the second component a(t) of the solution to

problem (2.1)–(2.3), (2.14) in the form

a(t) = [H(t)]−1

{

H′′(t)−
∫ 1

0
w(x) f (x, t)dx +

1

2

∞

∑
k=1

wkλ2
k

(

1

ρk(T)

[

ϕk(cos λkt + δ2 cos λk(T − t))

+
ψk

λk
(sin λkt − δ1 sin λk(T − t))

]

+
∫ T

0
Gk(t, τ)Fk(τ; u, a)dτ

)}

. (3.9)

Thus the solution of problem (2.1)–(2.3), (2.14) was reduced to the solution of systems (3.7),

(3.9) with respect to unknown functions u(x, t) and a(t).

The following lemma plays an important role in studying the uniqueness of the solution

to problem (2.1)–(2.3), (2.14):

Lemma 3.1. If {u(x, t), a(t)} is any solution to problem (2.1)–(2.3), (2.14), then the functions

uk(t) = 2
∫ 1

0
u(x, t) cos λkxdx, k = 1, 2, . . .

satisfy the system (3.4) on an interval [0, T].

Proof. Let {u(x, t), a(t)} be any solution of the problem (2.1)–(2.3), (2.14). Multiplying both

sides of the Eq. (2.1) by the special functions 2 cos λkx (k = 1, 2, . . .), integrating from 0 to 1

with respect to x, and using the relations

2
∫ 1

0
utt(x, t) cos λkxdx =

d2

dt2

(

2
∫ 1

0
u(x, t) cos λkxdx

)

= u′′
k (t), k = 1, 2, . . . ,

2
∫ 1

0
uxx(x, t) cos λkxdx = −λ2

k

(

2
∫ 1

0
u(x, t) cos λkxdx

)

= −λ2
kuk(t), k = 1, 2, . . . ,

we obtain that Eq. (3.2) is satisfied.

In like manner, it follows from (2.2) that condition (3.3) is also satisfied.

Thus, the system of functions uk(t) (k = 1, 2, . . . ) is a solution of problem (3.2), (3.3). From

this fact it follows directly that the functions uk(t) (k = 1, 2, . . . ) also satisfy the system (3.4)

on [0, T].
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Obviously, if uk(t) = 2
∫ 1

0 u(x, t) cos λkxdx, k = 1, 2, . . . , is a solution to system (3.4), then

the pair {u(x, t), a(t)} of functions u(x, t) = ∑
∞
k=0 uk(t) cos λkx and a(t) is also a solution to

system (3.7), (3.9).

The next statement follows from Lemma 3.1.

Corollary 3.2. Assume that the system (3.7), (3.9) has a unique solution. Then the problem (2.1)–

(2.3), (2.14) has at most one solution, i.e., if the problem (2.1)–(2.3), (2.14) has a solution, then it is

unique.

Let us consider the functional space that is introduced in [1]. Denote by B3
2,T a set of all

functions of the form

u(x, t) =
∞

∑
k=1

uk(t) cos λkx, λk =
π

2
(2k − 1), k = 1, 2, . . . ,

considered in DT with the norm ‖u(x, t)‖B3
2,T

= JT(u), where uk(t) ∈ C[0, T] and

JT(u) ≡
{

∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

}
1
2

< +∞.

Henceforth we shall denote by E3
T the topological product of B3

2,T ×C[0, T], where the norm

of an element z = {u, a} is determined by the formula

‖z‖E3
T
= ‖u(x, t)‖B3

2,T
+ ‖a(t)‖C[0,T] .

It is known that the spaces B3
2,T and E3

T are Banach spaces [27].

Let us now consider the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)},

in the space E3
T, where

Φ1(u, a) = ũ(x, t) ≡
∞

∑
k=1

ũk(t) cos λkx, Φ2(u, a) = ã(t),

and the functions ũk(t) (k = 1, 2, . . . ) and ã(t) are equal to the right-hand sides of (3.4) and

(3.9), respectively.

It is easy to see that under conditions δ1 ≥ 0, δ2 ≥ 0, 1 + δ1δ2 > δ1 + δ2, we have

1

ρk(T)
≤ 1

1 − (δ1 + δ2) + δ1δ2
≡ ρ > 0.

Taking into account this relation, we obtain

{

∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

}
1
2

≤ 2ρ(1 + δ2)

(

∞

∑
k=1

(λ3
k |ϕk|)2

)
1
2

+ 2ρ(1 + δ1)

(

∞

∑
k=1

(λ2
k |ψk|)2

)
1
2

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

T

(

∫ T

0

∞

∑
k=1

(

λ2
k | fk(τ)|

)2
dτ

)
1
2

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T]

(

∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

)
1
2

, (3.10)
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‖ã(t)‖C[0,T] ≤
∥

∥

∥
[H(t)]−1

∥

∥

∥

C[0,T]







∥

∥

∥

∥

H′′(t)−
∫ 1

0
w(x) f (x, t)dx

∥

∥

∥

∥

C[0,T]

+
1

2

(

∞

∑
k=1

λ−2
k

)
1
2



ρ(1 + δ2)

(

∞

∑
k=1

(λ3
k |ϕk|)2

)
1
2

+ ρ(1 + δ1)

(

∞

∑
k=1

(λ2
k |ψk|)2

)
1
2

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))
√

T

(

∫ T

0

∞

∑
k=1

(λ2
k | fk(τ)|)2dτ

)
1
2

+(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T]

(

∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

)
1
2











. (3.11)

Then from (3.10) and (3.11), respectively, we find that

{

∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

}
1
2

≤ 4
√

2ρ(1 + δ2)
∥

∥ϕ′′′(x)
∥

∥

L2(0,1)
+ 4

√
2ρ(1 + δ1)

∥

∥ψ′′(x)
∥

∥

L2(0,1)

+ 4(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

2T ‖ fxx(x, t)‖L2(DT)

+ 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

,

‖ã(t)‖C[0,T] ≤
∥

∥

∥
[H(t)]−1

∥

∥

∥

C[0,T]

{

∥

∥

∥

∥

H′′(t)−
∫ 1

0
w(x) f (x, t)dx

∥

∥

∥

∥

C[0,T]

+
1

2

(

∞

∑
k=1

λ−2
k

)
1
2 [

2
√

2ρ(1 + δ2)
∥

∥ϕ′′′(x)
∥

∥

L2(0,1)

+ 2
√

2ρ(1 + δ1)
∥

∥ψ′′(x)
∥

∥

L2(0,1)
+ (1 + 2ρ(δ1 + δ2 + δ1δ2))2

√
2T ‖ fxx(x, t)‖L2(DT)

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))T ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

]

}

,

or
{

∞

∑
k=1

(λ3
k ‖ũk(t)‖C[0,T])

2

}
1
2

≤ A1(T) + B1(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.12)

‖ã(t)‖C[0,T] ≤ A2(T) + B2(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.13)

where

A1(T) = 4
√

2ρ(1 + δ2)
∥

∥ϕ′′′(x)
∥

∥

L2(0,1)
+ 4

√
2ρ(1 + δ1)

∥

∥ψ′′(x)
∥

∥

L2(0,1)

+ 4(1 + 2ρ(δ1 + δ2 + δ1δ2))
√

2T ‖ fxx(x, t)‖L2(DT)
,

B1(T) = 2(1 + 2ρ(δ1 + δ2 + δ1δ2))T,

A2(T) =
∥

∥

∥
[H(t)]−1

∥

∥

∥

C[0,T]

{

∥

∥

∥

∥

H′′(t)−
∫ 1

0
w(x) f (x, t)dx

∥

∥

∥

∥

C[0,T]

+
1

2

(

∞

∑
k=1

λ−2
k

)
1
2 [

2
√

2ρ(1 + δ2)
∥

∥ϕ′′′(x)
∥

∥

L2(0,1)
+ 2

√
2ρ(1 + δ1)

∥

∥ψ′′(x)
∥

∥

L2(0,1)

+ (1 + 2ρ(δ1 + δ2 + δ1δ2))2
√

2T ‖ fxx(x, t)‖L2(DT)

]

}

,
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B2(T) =
1

2

∥

∥

∥
[H(t)]−1

∥

∥

∥

C[0,T]

(

∞

∑
k=1

λ−2
k

)
1
2

(1 + 2ρ(δ1 + δ2 + δ1δ2))T.

Finally, from (3.12) and (3.13) we conclude:

‖ũ(x, t)‖B3
2,T

+ ‖ã(t)‖C[0,T] ≤ A(T) + B(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (3.14)

where

A(T) = A1(T) + A2(T), B(T) = B1(T) + B2(T).

So, we can prove the following theorem.

Theorem 3.3. Let the assumptions H1)–H5) and the condition

(A(T) + 2)2B(T) < 1 (3.15)

be satisfied. Then problem (2.1)–(2.3), (2.14) has a unique classical solution in the ball K =

KR(‖z‖E3
T
≤ R = A(T) + 2) of the space E3

T.

Remark 3.4. Inequality (3.15) is satisfied for sufficiently small values of T.

Proof. We consider the operator equation

z = Φz (3.16)

in the space E3
T, where z = {u, a}, and the components Φi(u, a), i = 1, 2 are defined by the

right sides of equations (3.7) and (3.9), respectively.

Similar to (3.14) we obtain that for any z, z1, z2 ∈ KR the following inequalities hold

‖Φz‖E3
T
≤ A(T) + B(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3

2,T
≤ A(T) + B(T)(A(T) + 2)2, (3.17)

‖Φz1 − Φzs‖E3
T
≤ B(T)TR(‖a1(t)− a2(t)‖C[0,T] + ‖u1(x, t)− u2(x, t)‖B3

2,T
). (3.18)

Then by virtue of (3.15) from (3.17) and (3.18) it follows that the operator Φ acts in the

ball K = KR, and satisfy the conditions of the contraction mapping principle. Therefore, the

operator Φ has a unique fixed point {u, a} in the ball K = KR, which is a solution of equation

(3.16).

In this way we conclude that the function u(x, t) as an element of space B3
2,T is continuous

and has continuous derivatives u(x, t) and uxx(x, t) in DT.

From (3.2) it is easy to see that

(

∞

∑
k=1

(λk

∥

∥u′′
k (t)

∥

∥

C[0,T]
)2

)
1
2

≤
√

2

(

∞

∑
k=1

λ−2
k

)
1
2





(

∞

∑
k=1

(λ3
k ‖uk(t)‖C[0,T])

2

)
1
2

+ ‖‖ fx(x, t) + a(t)ux(x, t)‖‖L2(0,1)



 .

Thus utt(x, t) is continuous in the region DT.

Further, it is possible to verify that Eq. (2.1) and conditions (2.2), (2.3), and (2.14) are

satisfied in the usual sense. Consequently, {u(x, t), a(t)} is a solution of (2.1)–(2.3), (2.14), and

by Lemma 3.1 it is unique.
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On the basis of Theorem 2.2 it is easy to prove the following theorem.

Theorem 3.5. Suppose that all assumptions of Theorem 3.3, and the conditions

(1 + 2δ1 + 3δ2 + δ1δ2)T2(A(T) + 2)

2(1 + δ1)(1 + δ2)
< 1,

∫ 1

0
w(x)ϕ(x)dx = H(0) + δ1H(T),

∫ 1

0
w(x)ψ(x)dx = H′(0) + δ2H′(T)

hold. Then problem (2.1)–(2.4) has a unique classical solution in the ball K = KR(‖z‖E3
T
≤ A(T) + 2)

of the space E3
T.

4 Conclusion

The unique solvability of a time-nonlocal inverse boundary value problem for a second-order

hyperbolic equation with an integral overdetermination condition is investigated. Considered

problem was reduced to an auxiliary problem in a certain sense and using the contraction

mappings principle a unique existence conditions for a solution of equivalent problem are

established. Further, on the basis of the equivalency of these problems, the existence and

uniqueness theorem for the classical solution of the original inverse coefficient problem is

proved for the smaller value of time.
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Abstract. In this paper we give a new sufficient condition in order that all nontrivial
Kneser solutions of the quasilinear ordinary differential equation

D(αn, αn−1, . . . , α1)x = (−1)n p(t)|x|βsgn x, t ≥ a, (1.1)

are singular. Here, D(αn, αn−1, . . . , α1) is the nth-order iterated differential operator
such that

D(αn, αn−1, . . . , α1)x = D(αn)D(αn−1) · · · D(α1)x

and, in general, D(α) is the first-order differential operator defined by D(α)x =
(d/dt) (|x|αsgn x) for α > 0. In the equation (1.1), the condition α1α2 · · · αn > β is
assumed. If α1 = α2 = · · · = αn = 1, then one of the results of this paper yields a
well-known theorem of Kiguradze and Chanturia.
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1 Introduction

For a positive constant α, let D(α) be the first-order differential operator defined by

D(α)x =
d

dt
(|x|αsgn x) ,

and for n positive constants α1, α2, . . . , αn let D(αi, αi−1, . . . , α1) be the ith-order iterated differ-

ential operator defined by

D(αi, αi−1, . . . , α1)x = D(αi)D(αi−1) · · · D(α1)x, i = 0, 1, 2, . . . , n.

Here, if i = 0, then D(αi, . . . , α1)x is interpreted as x.

In this paper we consider nth-order quasilinear ordinary differential equations of the form

D(αn, αn−1, . . . , α1)x = (−1)n p(t)|x|βsgn x, t ≥ a, (1.1)

where it is assumed that

BEmail: jpywm078@yahoo.co.jp
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(a) n ≥ 2 is an integer;

(b) α1, α2, . . . , αn and β are positive constants;

(c) p(t) is a continuous function on an interval [a, ∞), and p(t) ≥ 0 on [a, ∞), and p(t) 6≡ 0

on [a1, ∞) for any a1 ≥ a.

By a solution x(t) of (1.1) on [a, ∞) we mean that

D(α1)x(t), D(α2)D(α1)x(t) = D(α2, α1)x(t), . . . ,

D(αn)D(αn−1) · · · D(α1)x(t) = D(αn, αn−1, . . . , α1)x(t)

are well-defined and continuous on [a, ∞) and x(t) satisfies (1.1) at every point t ∈ [a, ∞). A

function x(t) is said to be a Kneser solution of (1.1) on [a, ∞) if x(t) is a solution of (1.1) on

[a, ∞) and satisfies

(−1)iD(αi, . . . , α1)x(t) ≥ 0, t ≥ a, i = 0, 1, 2, . . . , n − 1. (1.2)

To shorten notation, we set

D(αi, . . . , α1)x(t) = Dix(t) for i = 0, 1, 2, . . . , n.

Then, the equation (1.1) may be expressed as

Dnx = (−1)n p(t)|x|βsgn x, t ≥ a, (1.3)

and the condition (1.2) is rewritten in the form

(−1)iDix(t) ≥ 0, t ≥ a, i = 0, 1, 2, . . . , n − 1.

Suppose that x(t) is a function on [a, ∞) such that D(α)x(t), α > 0, is well-defined and

continuous on [a, ∞). It is easily seen that if D(α)x(t) ≥ 0 [resp. > 0, ≤ 0, < 0] on [a, ∞), then

x(t) is increasing [resp. strictly increasing, decreasing, strictly decreasing] on [a, ∞).

If x(t) is a nonnegative solution of (1.3) on [a, ∞), then (−1)nDnx(t) = p(t)x(t)β ≥ 0 on

[a, ∞). Therefore, if x(t) is a Kneser solution of (1.3) on [a, ∞), then (−1)iDix(t) is (nonnegative

and) decreasing on [a, ∞) (i = 0, 1, 2, . . . , n − 1).

Now, for the positive constants α1, α2, . . . , αn appearing in (1.1), we put

µn = α2 +
(

α2α3 + α3

)

+
(

α2α3α4 + α3α4 + α4

)

+ · · ·+
(

α2α3 · · · αn + α3α4 · · · αn + · · ·+ αn−1αn + αn

)

,
(1.4)

νn = α2α3 · · · αn + α3α4 · · · αn + · · ·+ αn−1αn + αn, (1.5)

ξn = α1 + α1α2 + α1α2α3 + · · ·+ α1α2 · · · αn−1 + α1α2 · · · αn. (1.6)

Very recently, Naito and Usami ([6, Theorem 4.1]) have proved that, for each A > 0, the

equation (1.1) has at least one Kneser solution x(t) on [a, ∞) such that x(a) = A. For the case

α1α2 · · · αn ≤ β, any nontrivial Kneser solution x(t) of (1.1) on [a, ∞) satisfies

(−1)iDix(t) > 0 (t ≥ a) for i = 0, 1, 2, . . . , n − 1

([6, the paragraph after the proof of Theorem 5.1]). However, for the case α1α2 · · · αn > β, a

Kneser solution x(t) of (1.1) on [a, ∞) may be singular in the sense that

x(t) > 0 (a ≤ t < b) and x(t) = 0 (t ≥ b)



Singular Kneser solutions of higher-order quasilinear ODEs 3

for some finite number b > a. Such a solution is often said to be a first kind singular solution

of (1.1). It is known ([6, Theorem 6.1]) that if α1α2 · · · αn > β and p(b) > 0 (b > a), then (1.1)

always has at least one singular Kneser solution x(t) such that

{

(−1)iDix(t) > 0 (a ≤ t < b) for i = 0, 1, 2, . . . , n − 1, and

x(t) = 0 (t ≥ b).
(1.7)

In particular, if p(t) is positive on [a, ∞), then for any b (> a) (1.1) has a singular Kneser

solution x(t) which satisfies (1.7). Note that, by putting xi = (Di−1x)αi∗ (i = 1, 2, . . . , n), the

scalar equation (1.1) is equivalent to the n-dimensional system



























x′1 = x
(1/α2)∗
2 ,

...

x′n−1 = x
(1/αn)∗
n ,

x′n = (−1)n p(t)x
(β/α1)∗
1 .

Then, applying Theorem 1 of Čanturia [2] to this n-dimensional system, we find that if p(t)

is positive on [a, ∞), then for any b (> a) there is a′ (a ≤ a′ < b) such that (1.1) has a

singular Kneser solution which is defined on [a′, ∞) and satisfies (1.7) with a replaced by a′.

Theorem 6.1 of [6] shows that a′ can be taken as a′ = a.

If p(t) is large enough in a neighborhood of ∞, then all nontrivial Kneser solutions of (1.1)

on [a, ∞) are singular. In fact, making use of Theorem 2 of Čanturia [2], we have the following

theorem.

Theorem A. Let α1α2 · · · αn > β. Let νn be the number defined by (1.5). If

lim inf
t→∞

tνn+1 p(t) > 0, (1.8)

then all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

A different proof of Theorem A has been given by Naito and Usami [6, Theorem 6.8].

The main purpose of this paper is to show that Theorem A can be generalized as follows.

Theorem 1.1. Let α1α2 · · · αn > β. Let µn, νn and ξn be the numbers defined by (1.4), (1.5) and (1.6),

respectively. Suppose that there exist σ > 0 and τ > 0 such that

(νn + 1)σ − µnτ − 1 ≥ 0, (1.9)

(

β

α1α2 · · · αn
νn + 1

)

σ −

(

µn −
νnξn

α1α2 · · · αn

)

τ − 1 ≤ 0, (1.10)

and either
∫ ∞

a+
s−µnτ+(νn+1)σ−1 p(s)σds = ∞ (a+ > max{a, 0}), (1.11)

or

lim sup
t→∞

tµnτ
∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds > 0. (1.12)

Then, all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.
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If α1 = α2 = · · · = αn = 1, then

Dix(t) = x(i)(t) (i = 0, 1, 2, . . . , n),

and so (1.1) is reduced to

x(n) = (−1)n p(t)|x|βsgn x, t ≥ a. (1.13)

If n = 2 and α1 = 1, α2 = α > 0, then (1.1) is the second-order quasilinear differential equation

(|x′|αsgn x′)′ = p(t)|x|βsgn x, t ≥ a. (1.14)

Results on the problem of existence and asymptotic behavior of Kneser solutions of (1.13) are

summarized and proved in the book of Kiguradze and Chanturia [3]. This problem has also

been studied by Mizukami, Naito and Usami [4] for (1.14), and by Naito and Usami [6] for

the general equation (1.1).

The proof of Theorem 1.1 is given in the next Section 2. In Section 3, Theorem 1.1 are

restated in several ways, and some important corollaries are mentioned.

A function x(t) is said to be a strongly increasing solution of the equation

Dnx = p(t)|x|βsgn x, t ≥ a, (1.15)

on [a, b) (a < b ≤ ∞) if x(t) is a nontrivial solution of (1.15) on [a, b) and satisfies

Dix(t) ≥ 0 (a ≤ t < b) for all i = 0, 1, 2, . . . , n − 1.

Suppose that x(t) is a strongly increasing solution of (1.15) on [a, b), and let [a, b) be the

maximal interval of existence of x(t). If b is finite, then x(t) is called singular. A singular

strongly increasing solution is often said to be a second kind singular solution of (1.15). There

is a remarkable duality between Kneser solutions of (1.3) and strongly increasing solutions of

(1.15) (see [5, 6]). In the paper [7] we have established a new sufficient condition in order that

all strongly increasing solutions of (1.15) are singular. The present paper corresponds to [7].

2 Proof of Theorem 1.1

Let us begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is done by contradiction. Suppose that (1.1) has a Kneser so-

lution x(t) on [a, ∞) such that x(t) > 0 for t ≥ a. As mentioned in the preceding section,

(−1)iDix(t) is decreasing on [a, ∞) (i = 0, 1, 2, . . . , n − 1). Furthermore, by (1.1), we easily see

that

(−1)iDix(t) > 0, t ≥ a (i = 0, 1, 2, . . . , n − 1). (2.1)

Define λ1, λ2, . . . , λn−1 and λn by

λ1 =
1

νn
α2 · · · αn(1 − σ + µnτ)−

(

α2 + α2α3 + · · ·+ α2 · · · αn−1αn

)

τ,

λ2 =
1

νn
α3 · · · αn(1 − σ + µnτ)−

(

α3 + α3α4 + · · ·+ α3 · · · αn−1αn

)

τ,

...

λn−1 =
1

νn
αn(1 − σ + µnτ)− αnτ, and

λn = σ,
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where σ and τ are positive constants satisfying (1.9) and (1.10). It is easy to see that

λ1 + λ2 + · · ·+ λn = 1, and (2.2)

λi − αi+1λi+1 = −αi+1τ (i = 1, 2, . . . , n − 2). (2.3)

We have

λi > 0 (i = 1, 2, . . . , n). (2.4)

To see this, note that the condition (1.10) is rewritten as

β

α1
σ + τ − λ1 ≤ 0. (2.5)

(The left-hand side of (1.10) multiplied by (α2 · · · αn)/νn is equal to the left-hand side of (2.5).)

It follows from (2.5) that

λ1 ≥
β

α1
σ + τ > 0.

By induction, (2.3) gives

λi+1 =
λi

αi+1
+ τ > 0 for i = 1, 2, . . . , n − 2.

Obviously, λn = σ > 0. Thus we have (2.4).

Next, define the function y(t) by

y(t) = x(t)α1 [−D1x(t)]α2 [D2x(t)]α3 · · · [(−1)n−1Dn−1x(t)]αn

for t ≥ a. By (2.1), we have y(t) > 0 (t ≥ a). It is easy to find that the derivative y′(t) of y(t)

is calculated as

y′(t) = −

[

−D1x(t)

x(t)α1
+

D2x(t)

[−D1x(t)]α2
+ · · ·+

(−1)nDnx(t)

[(−1)n−1Dn−1x(t)]αn

]

y(t), t ≥ a. (2.6)

As a general inequality we have

uλ1
1 uλ2

2 · · · uλn
n ≤ λ1u1 + λ2u2 + · · ·+ λnun

for ui ≥ 0, λi > 0, ∑
n
i=1 λi = 1 (see, for example, [1, pp. 13–14]). This inequality may be

written equivalently as

Λvλ1
1 vλ2

2 · · · vλn
n ≤ v1 + v2 + · · ·+ vn with Λ = λ−λ1

1 λ−λ2
2 · · · λ−λn

n (2.7)

for vi ≥ 0, λi > 0, ∑
n
i=1 λi = 1. Therefore, by (2.6) and by (2.7) of the case

vi =
(−1)iDix(t)

[(−1)i−1Di−1x(t)]αi
(i = 1, 2, . . . , n),

we get

y′(t) ≤− Λ

[

−D1x(t)

x(t)α1

]λ1
[

D2x(t)

[−D1x(t)]α2

]λ2

· · ·

[

(−1)nDnx(t)

[(−1)n−1Dn−1x(t)]αn

]λn

y(t)

=− Λx(t)−α1λ1 [−D1x(t)]λ1−α2λ2 · · · [(−1)n−2Dn−2x(t)]λn−2−αn−1λn−1

× [(−1)n−1Dn−1x(t)]λn−1−αnλn [(−1)nDnx(t)]λn y(t)
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for t ≥ a. Then, on account of (1.3) and (2.3), we see that

y′(t) ≤− Λx(t)−α1λ1+α1τ+βλn x(t)−α1τ[−D1x(t)]−α2τ

· · · [(−1)n−2Dn−2x(t)]−αn−1τ[(−1)n−1Dn−1x(t)]−αnτ

× [(−1)n−1Dn−1x(t)]αnτ+λn−1−αnλn p(t)λn y(t),

and, in consequence,

y′(t) ≤ −Λx(t)−α1λ1+α1τ+βσ[(−1)n−1Dn−1x(t)]αnτ+λn−1−αnσ p(t)σy(t)1−τ (2.8)

for t ≥ a. Since x(t) is decreasing on [a, ∞) and −α1λ1 + α1τ + βσ ≤ 0 (see (2.5)), we have

x(t)−α1λ1+α1τ+βσ ≥ x(a)−α1λ1+α1τ+βσ, t ≥ a. (2.9)

Next, we will claim that

lim
t→∞

tνn/αn [(−1)n−1Dn−1x(t)] = 0, (2.10)

or equivalently

εn−1(t) ≡ tα2α3···αn−1+α3···αn−1+···+αn−1+1[(−1)n−1Dn−1x(t)] → 0 (2.11)

as t → ∞. Let i = 0, 1, 2, . . . , n − 1. Since (−1)iDix(t) is positive and decreasing on [a, ∞), the

limit

lim
t→∞

(−1)iDix(t) = ℓi

exists and is nonnegative. Assume that ℓi > 0 for some i = 1, 2, . . . , n − 1. Then it is easy to

see that

lim
t→∞

[(−1)i−1Di−1x(t)]αi

t
= −ℓi < 0.

This is a contradiction to the fact that [(−1)i−1Di−1x(t)]αi is positive on [a, ∞). Hence we have

lim
t→∞

(−1)iDix(t) = 0 for any i = 1, 2, . . . , n − 1, and (2.12)

lim
t→∞

x(t) = ℓ0 ≥ 0. (2.13)

It follows from (2.13) that

x(t)α1 − ℓ
α1
0 =

∫ ∞

t
[−D1x(s)]ds, t ≥ a,

and so

x(t)α1 − ℓ
α1
0 ≥

∫ 2t

t
[−D1x(s)]ds ≥ t[−D1x(2t)], t ≥ a+. (2.14)

Here, a+ is a number such that a+ > max{a, 0}. In the same manner, it follows from (2.12)

that

[(−1)iDix(t)]
αi+1 ≥ t[(−1)i+1Di+1x(2t)], t ≥ a+, (2.15)

for i = 1, 2, . . . , n − 2. By (2.14) and (2.15), we can check with no difficulty that

[x(t)α1 − ℓ
α1
0 ]α2α3···αn−1

≥ tα2α3···αn−1(2t)α3···αn−1 · · · (2n−3t)αn−1(2n−2t)[(−1)n−1Dn−1x(2n−1t)]

= 2α3···αn−1 · · · (2n−3)αn−12n−2tα2α3···αn−1+α3···αn−1+···+αn−1+1[(−1)n−1Dn−1x(2n−1t)]
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for t ≥ a+. Then, by (2.13), it is seen that (2.11) or equivalently (2.10) holds.

According to (2.10), there is a1 > a+ such that

(−1)n−1Dn−1x(t) ≤ t−νn/αn , t ≥ a1. (2.16)

Observe that (1.9) implies

αnτ + λn−1 − αnσ = −
αn

νn
[(νn + 1)σ − µnτ − 1] ≤ 0,

and so (2.16) gives

[(−1)n−1Dn−1x(t)]αnτ+λn−1−αnσ ≥ t(νn+1)σ−µnτ−1, t ≥ a1. (2.17)

Then it follows from (2.8), (2.9) and (2.17) that

y′(t) ≤ −Lt(νn+1)σ−µnτ−1 p(t)σy(t)1−τ, t ≥ a1,

where L = Λx(a)−α1λ1+α1τ+βσ is a positive constant. From this inequality it follows that

y(t′)τ − y(t)τ ≤ −τL
∫ t′

t
s(νn+1)σ−µnτ−1 p(s)σds

for any t and t′ such that a1 ≤ t ≤ t′. Then, letting t′ → ∞, we find that

∫ ∞

a1

s(νn+1)σ−µnτ−1 p(s)σds < ∞ (2.18)

and

y(t)τ ≥ τL
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1. (2.19)

Of course, (2.18) contradicts (1.11). It will be showed that (2.19) is a contradiction to (1.12). By

the definition of y(t), the inequality (2.19) gives

[

x(t)α1 [−D1x(t)]α2 [D2x(t)]α3 · · · [(−1)n−1Dn−1x(t)]αn

]τ

≥ τL
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1.

(2.20)

As in the proof of (2.11), we can find that

εn−2(t) ≡ tα2α3···αn−2+α3···αn−2+···+αn−2+1[(−1)n−2Dn−2x(t)] → 0,

...

ε2(t) ≡ tα2+1[(−1)2D2x(t)] → 0,

ε1(t) ≡ t[−D1x(t)] → 0,

as t → ∞. Set ε0(t) = x(t). From (2.20) and the definition of ε i(t) (i = 0, 1, 2, . . . , n − 1) it

follows that

[

ε0(t)
α1 [t−1ε1(t)]

α2 [t−α2−1ε2(t)]
α3 · · · [t−α2α3···αn−1−···−αn−1−1εn−1(t)]

αn

]τ

≥ τL
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1,



8 M. Naito

and, hence,

[ε0(t)
α1 ε1(t)

α2 ε2(t)
α3 · · · εn−1(t)

αn ]τ

≥ τLt[α2+(α2+1)α3+···+(α2α3···αn−1+···+αn−1+1)αn]τ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds

= τLtµnτ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds, t ≥ a1.

Since ε0(t) = x(t) is bounded on [a, ∞) and ε i(t) → 0 as t → ∞ (i = 1, 2, . . . , n − 1), we

conclude that

lim
t→∞

tµnτ
∫ ∞

t
s(νn+1)σ−µnτ−1 p(s)σds = 0,

which is a contradiction to (1.12). This finishes the proof of Theorem 1.1.

For the case n = 2, α1 = 1 and α2 = α > 0, the equation (1.1) becomes (1.14). In this case

we have

µ2 = α, ν2 = α and ξ2 = 1 + α.

Therefore Theorem 1.1 gives an extension of Theorem 3.4 of [4]. The lim inf in the condition

(3.3) of Theorem 3.4 of [4] can be replaced to lim sup.

Theorem A can easily be derived from Theorem 1.1. To see this, we first remark that

νnξn − α1α2 · · · αnµn > 0, (2.21)

where µn, νn and ξn are defined by (1.4), (1.5) and (1.6), respectively. Therefore the term

µn − [(νnξn)/(α1α2 · · · αn)] appearing in (1.10) is a negative number. Then we find that the set

of all pairs (σ, τ) ∈ (0, ∞)× (0, ∞) satisfying (1.9) and (1.10) is nonempty. More precisely, the

set is a triangle in the στ plane. Now, to prove Theorem A, suppose that (1.8) holds. There is

a constant c > 0 such that p(t) ≥ ct−νn−1 for all large t. Take a pair (σ, τ) ∈ (0, ∞)× (0, ∞)

satisfying (1.9) and (1.10). Then we get

t−µnτ+(νn+1)σ−1 p(t)σ ≥ cσt−µnτ−1

for all large t. If (1.11) does not hold, then the above inequality implies

∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds ≥

cσ

µnτ
t−µnτ

for all large t, and, in consequence, the condition (1.12) is satisfied. Therefore we conclude

from Theorem 1.1 that all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

3 Other forms of Theorem 1.1

For simplicity, we put

ζn =
νnξn

α1α2 · · · αnµn
− 1.

By (2.21), ζn is a positive number.

Now, let α1α2 · · · αn > β. It is easy to check that σ > 0 and τ > 0 satisfy (1.9) and (1.10) if

and only if
1

νn + 1
< σ <

1

[β/(α1α2 · · · αn)] νn + 1
(3.1)
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and

0 < τ ≤
1

µn
min

{

(νn + 1)σ − 1,
1

ζn

[

1 −

(

β

α1α2 · · · αn
νn + 1

)

σ

]}

. (3.2)

Suppose that σ > 0 satisfies (3.1). Next, choose τ > 0 so that the equality holds in the

latter inequality of (3.2), and put τ = τ(σ), that is to say, we define the number τ(σ) by

τ(σ) =
1

µn
min

{

(νn + 1)σ − 1,
1

ζn

[

1 −

(

β

α1α2 · · · αn
νn + 1

)

σ

]}

. (3.3)

For this choice, the conditions (1.11) and (1.12) become
∫ ∞

a+
s−µnτ(σ)+(νn+1)σ−1 p(s)σds = ∞ (a+ > max{a, 0}) (3.4)

and

lim sup
t→∞

tµnτ(σ)
∫ ∞

t
s−µnτ(σ)+(νn+1)σ−1 p(s)σds > 0, (3.5)

respectively. Therefore Theorem 1.1 produces the following result.

Theorem 3.1. Let α1α2 · · · αn > β. Suppose that σ satisfies (3.1). Define τ(σ) by (3.3). If either (3.4)

or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on [a, ∞) are singular.

As an example, consider the fourth-order equation

(|x′′|αsgn x′′)′′ = κt−2(α+1)(1 + sin t)|x|βsgn x, t ≥ 1, (3.6)

where α > β > 0, and κ is a positive constant. The equation (3.6) is a special case of (1.1) with

n = 4, α1 = 1, α2 = 1, α3 = α, α4 = 1, and p(t) = κt−2(α+1)(1 + sin t). Then we have

µ4 = 2(2α + 1), ν4 = 2α + 1, ξ4 = 2(α + 1), ζ4 =
1

α
.

We can choose ε0 > 0 sufficiently small so that

1

2(α + 1)
<

1 + ε0

2(α + 1)
<

1

[β/α](2α + 1) + 1

and

ε0 < α

[

1 −

(

β

α
(2α + 1) + 1

)

1 + ε0

2(α + 1)

]

.

For such ε0 > 0, put

σ =
1 + ε0

2(α + 1)
.

Then, σ satisfies (3.1), and the number τ(σ) is given by

τ(σ) =
1

2(2α + 1)
min

{

2(α + 1)σ − 1, α

[

1 −

(

β

α
(2α + 1) + 1

)

σ

]}

=
ε0

2(2α + 1)
.

Moreover, we have

tµ4τ(σ)
∫ ∞

t
s−µ4τ(σ)+(ν4+1)σ−1 p(s)σds

= κ(1+ε0)/[2(α+1)]tε0

∫ ∞

t
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds.



10 M. Naito

If m = 1, 2, . . . , then

∫ ∞

2mπ
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds ≥

∞

∑
i=0

∫ (2(m+i)+1)π

2(m+i)π
s−1−ε0 ds

≥
∞

∑
i=0

[

(2(m + i) + 1)π
]−1−ε0 π ≥ π−ε0

∫ ∞

m

1

(2s + 1)1+ε0
ds

=
π−ε0

2ε0
(2m + 1)−ε0 ,

and so

lim inf
m→∞

(2mπ)ε0

∫ ∞

2mπ
s−1−ε0(1 + sin s)(1+ε0)/[2(α+1)]ds ≥

1

2ε0
> 0.

Consequently, we find that

lim sup
t→∞

tµ4τ(σ)
∫ ∞

t
s−µ4τ(σ)+(ν4+1)σ−1 p(s)σds > 0.

By Theorem 3.1, it is concluded that all nontrivial Kneser solutions of (3.6) on [1, ∞) are

singular. Note that Theorem A cannot be applied to (3.6) since the lower limit as t → ∞ of

tν4+1 p(t) is equal to 0.

Now, let α1α2 · · · αn > β, and set

σn =
ζn + 1

[β/(α1α2 · · · αn)]νn + 1 + ζn(νn + 1)
. (3.7)

We have
1

νn + 1
< σn <

1

[β/(α1α2 · · · αn)] νn + 1
.

It is easily seen that if σ satisfies

σn ≤ σ <
1

[β/(α1α2 · · · αn)] νn + 1
, (3.8)

then the number τ(σ) which is defined by (3.3) is

τ(σ) =
1

µnζn

[

1 −

(

β

α1α2 · · · αn
νn + 1

)

σ

]

. (3.9)

Therefore Theorem 3.1 produces the following result.

Theorem 3.2. Let α1α2 · · · αn > β. Let σ be a number satisfying (3.8), where σn is given by (3.7),

and define τ(σ) by (3.9). If either (3.4) or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on

[a, ∞) are singular.

We have derived Theorem 3.1 from Theorem 1.1, and Theorem 3.2 from Theorem 3.1. We

remark here that Theorem 1.1 can be derived from Theorem 3.2. In this sense, these three

theorems are essentially identical. The following is a brief proof of the fact that Theorem 1.1

is derived from Theorem 3.2. Let σ > 0 and τ > 0 be numbers which satisfy (1.9) and (1.10).

As stated before, this is equivalent to the statement that σ and τ satisfy (3.1) and (3.2). Choose

σ∗ > 0 such that σ = σ∗ satisfies (3.8) and τ(σ∗)/σ∗ < τ/σ and σ < σ∗. Here, τ(σ∗) is given
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by (3.9) with σ = σ∗. If σ∗ is taken sufficiently close to 1/{[β/(α1α2 · · · αn)] νn + 1}, then it is

possible to choose such a number σ∗. By the Höder inequality we find that

∫ t

a+
s−µnτ+(νn+1)σ−1 p(s)σds ≤ K1

(

∫ t

a+
s−µnτ(σ∗)+(νn+1)σ∗−1 p(s)σ∗

ds

)σ/σ∗

, t ≥ a+,

and

tµnτ
∫ ∞

t
s−µnτ+(νn+1)σ−1 p(s)σds ≤ K2

(

tµnτ(σ∗)
∫ ∞

t
s−µnτ(σ∗)+(νn+1)σ∗−1 p(s)σ∗

ds

)σ/σ∗

, t ≥ a+,

where K1 and K2 are certain positive constants. Therefore, (1.11) implies (3.4) with σ = σ∗,

and (1.12) implies (3.5) with σ = σ∗. This means that Theorem 1.1 is derived from Theorem 3.2

of the case σ = σ∗.

It is also clear that if σ satisfies

1

νn + 1
< σ ≤ σn, (3.10)

then the number τ(σ) defined by (3.3) is

τ(σ) =
1

µn
[(νn + 1)σ − 1]. (3.11)

Therefore, by Theorem 3.1, we have the following result.

Corollary 3.3. Let α1α2 · · · αn > β. Let σ be a number satisfying (3.10), where σn is given by (3.7),

and define τ(σ) by (3.11). If either (3.4) or (3.5) holds, then all nontrivial Kneser solutions of (1.1) on

[a, ∞) are singular.

As mentioned before, if α1 = α2 = · · · = αn = 1, then Dix(t) = x(i)(t) (i = 0, 1, 2, . . . , n),

and (1.1) is reduced to (1.13). Note that the singularity condition (1.7) is rewritten in the form

(−1)ix(i)(t) > 0 on [a, b) (i = 0, 1, 2, . . . , n − 1) and x(t) = 0 (t ≥ b).

Moreover, in the case α1 = α2 = · · · = αn = 1, we have

µn =
n(n − 1)

2
, νn = n − 1, ξn = n, ζn = 1.

Therefore Theorem 3.2 yields the following result. For simplicity, we set ρn(σ) = µnτ(σ).

Corollary 3.4. Consider the equation (1.13). Let 0 < β < 1. Let σ be a number satisfying

2/[n + (n − 1)β + 1] ≤ σ < 1/[(n − 1)β + 1], and set ρn(σ) = 1 − [(n − 1)β + 1]σ. If either
∫ ∞

a+
s−ρn(σ)+nσ−1 p(s)σds = ∞ (a+ > max{a, 0})

or

lim sup
t→∞

tρn(σ)
∫ ∞

t
s−ρn(σ)+nσ−1 p(s)σds > 0,

then all nontrivial Kneser solutions of (1.13) on [a, ∞) are singular.

Corollary 3.4 has been formulated in the book of Kiguradze and Chanturia [3, Theo-

rem 11.2 (m = 0, k = 1)].

By Corollary 3.3, we have the following result.

Corollary 3.5. Consider the equation (1.13). Let 0 < β < 1. Let σ be a number satisfying 1/n <

σ ≤ 2/[n + (n − 1)β + 1]. If either
∫ ∞

a
p(s)σds = ∞ or lim sup

t→∞

tnσ−1
∫ ∞

t
p(s)σds > 0,

then all nontrivial Kneser solutions of (1.13) on [a, ∞) are singular.
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Abstract. In this paper, we study the classical problem of the wind in the steady at-
mospheric Ekman layer with the constant eddy viscosity. Different from the previous
work, we modify the boundary conditions and derive the explicit solution by using the
notation of matrix cosine and matrix sine. For the arbitrary height-dependent eddy vis-
cosity, we get the solution of the classical problem with zero velocity and acceleration
at the bottom of the layer. In addition, uniqueness is shown and dynamical properties
of solution are characterized.

Keywords: Ekman layer, variable eddy viscosity, explicit solutions, existence, dynami-
cal properties.
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1 Introduction

The Earth’s atmosphere can be divided into several layers based on the behaviour of its tem-
perature [11], these layers are, starting from ground level upwards, the troposphere, the strato-
sphere, the mesosphere and the thermosphere, A further region, beginning about 500 km
above the ground level, is the exosphere, which fades away into the realm of interplanetary
space. The troposphere contains more than 75% of all of the air in the atmosphere, and almost
all of the water vapour (which forms clouds and rain). This is the region where the famil-
iar weather phenomena occur. The lowest part-roughly the lower third-of the troposphere is
called the atmospheric boundary layer, and it is here that friction plays an important role,
while higher up, from the stratosphere upwards, the air flow is practically inviscid.

For a better understanding of the flow dynamics, it is useful to divide the atmospheric
boundary layer into there parts [8, 11], i.e., the lamina sublayer, surface (Prandtl) layer and

BCorresponding author. Email: jrwang@gzu.edu.cn
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the Ekman layer(see Fig. 2.1), the lamina sublayer is only a few millimeters thick and is not
relevant to the transfer of wind energy. Within the surface layer, confined to 20–100 meters
of the atmosphere (above the lamina sublayer), the velocity profile is adjusted so that the
horizontal frictional stress is nearly independent of height. In contrast to this, in the Ekman
layer, located on top of the surface layer and extending to a height of about 1 km, on average,
the flow is governed by a three-way balance among frictional effects, pressure gradient and
the influence of the coriolis force [5, 8, 21]. Primarily the air flow is horizontal (the horizontal
velocities are about 104 larger than the vertical velocity [20]).

The governing equations for mesoscale steady air flow at mid-latitudes in the Ekman layer
are [8]

{

f (v − vg) = − ∂
∂z (k

∂u
∂z ),

f (u − ug) =
∂
∂z (k

∂v
∂z ),

(1.1)

where (u, v) represents the horizontal wind velocity, with zonal (West-to-East, in the sense
of the Earth’s rotation) component u = u(t, x, y, z) and meridional (positive meaning towards
the North Pole) component v = v(t, x, y, z), ug and vg are the corresponding geostrophic
wind component, k denotes the eddy viscosity, f = 2Ω sin θ is the Coriolis parameter at the
fixed latitude θ in the Northern Hemisphere and Ω ≈ 7.29 × 10−5s−1 is the angular speed of
rotation of the Earth and θ ∈ (0, π/2] is the angle of latitude in right-handed rotating spherical
coordinates (θ = 0 corresponding to the Equator and θ = π/2 to the North Pole).

The boundary conditions for the system (1.1) are

u = v = 0 at z = 0, (1.2)

and

u → ug, v → vg for z → ∞, (1.3)

expressing the fact that, due to the frictional properties of the flow below the Ekman layer, a
no-slip condition holds at the bottom z = 0 of the layer, while at the top of the Ekman layer the
horizontal components of the wind must be in geostrophic balance: above the Ekman layer
the flow is geostrophic (pressure-driven).

If k is a constant, then we can obtain the explicit formula of the solution to (1.1) with (1.2)
and (1.3) by the classic Ekman theory, but this assumption is too restrictive. The dynamics
of the atmospheric boundary-layer is very important in applications, for example, other than
meteorology (weather prediction and climate studies), in the control and management of air
pollution (since the dispersal of smog in urban environments depends strongly on meteoro-
logical conditions) and in agriculture (e.g. dewfall and frost formation). For this reason, it is
important, both from the theoretical as well as from the practical point of view, to understand
the flow dynamics of the atmospheric boundary-layer in the context of height-dependent
eddy viscosities. The available explicit solutions for height-dependent eddy viscosities are
very scare, being apparently restricted to special cases, for example, k(z) denote linear and
exponentially decaying functions [10, 12] or k(z) is a quadratic polynomial [15]. It is remark-
able that Constantin and Johnson [2] studied the Atmospheric Ekman flows with variable
eddy viscosity k(z) which is a perturbation of the asymptotic and verify the existence of the
solution by transforming the Ekman flows into a suitable integral equation and apply iterative
technique to give an efficient approach to find the explicit solution, so that for other types of
non-constant eddy viscosity we have to rely on case-by-case approximations and numerical
simulations [4, 6, 9, 13, 14, 16].
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Remark 1.1. When z = π
√

2k
f , the wind (u, v) is parallel to and nearly equally to the

geostrophic value (ug, vg), it is conventional to designate this level as the top of the Ekman
layer [8], so we can change the condition (1.3) to

u = ug, v = vg, at z = z0, (1.4)

where z0 > π
√

2k
f .

For a constant eddy viscosity k, we can obtain the explicit formula of the solution to (1.1)
with (1.2) and (1.3). Based on Remark 1.1, we consider (1.1) with (1.2) and (1.4). The first
contribution of this paper is to apply the technique of second linear ODEs (using the notion of
sin and cos matrix) to find the explicit solution of (1.1) with (1.2) and (1.4) and give a directly
approach to compute the explicit solution.

If we assume the velocity and acceleration at the bottom of the layer are zero, then (1.2) is
retained and (1.3) is changed into

u′ = 0, v′ = 0 at z = 0, (1.5)

so the second aim of this paper is to investigate the explicit solution of (1.1) with (1.2) and
(1.5) for an arbitrary height-dependent eddy viscosity k(z). We use the closed form of function
series to give the representation of solutions. By using integral change and introducing Green
function, a spectrum theorem of a corresponding anti-symmetric compact operator is used to
deriving the uniqueness result. Finally, some dynamical properties of solution like asymptotic
property, Lyapunov exponents, and stable manifold are characterized.

2 Model description

Motivated by [8], we give the details to derive (1.1) by dividing into four steps.

Step 1. We set up the momentum equation in rotating coordinates.
We derive the relationship between the total derivative of a vector in an inertial reference

frame and the corresponding total derivative in a rotating system. Let
−→
A be an arbitrary

vector whose Cartesian components in an inertial frame given by

−→
A =

−→
i′ A′

x +
−→
j′ A′

y +
−→
k′ A′

z

and whose components in a frame rotating with the angular velocity
−→
Ω are

−→
A =

−→
i Ax +

−→
j Ay +

−→
k Az,

here
−→
i ,

−→
j ,

−→
k are unit vectors which are taken to be directed eastward, northward, and

upward, respectively,
−→
Ω = (0, Ω sin φ, Ω cos φ), φ is the latitude.

Letting Dα
−→
A

Dt be the total derivative of
−→
A in the inertial frame, we can write

Dα
−→
A

Dt
=

−→
i′

DA′
x

Dt
+
−→
j′

DA′
y

Dt
+
−→
k′

DA′
z

Dt

=
−→
i

Du

Dt
+
−→
j

Dv

Dt
+
−→
k

Dw

Dt
+

Dα
−→
i

Dt
u +

Dα
−→
j

Dt
v +

Dα
−→
k

Dt
w,
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Figure 2.1: Ekman layer, surface layer and lamina sublayer are called the atmo-
sphere boundary layer.

the first three terms on the left line above can be combined to give

D
−→
A

Dt
=

−→
i

DAx

Dt
+
−→
j

DAy

Dt
+
−→
k

DAz

Dt
,

which is just the total derivative of
−→
A as viewed in the rotating coordinates. By direct calcu-

lation [8], we get

Dα
−→
i

Dt
=

−→
Ω ×−→

i ,
Dα

−→
j

Dt
=

−→
Ω ×−→

j ,
Dα

−→
k

Dt
=

−→
Ω ×−→

k ,

there, the total derivative for
−→
A in an inertial frame is related to that in a rotating frame by

Dα
−→
A

Dt
=

D
−→
A

Dt
+
−→
Ω ×−→

A . (2.1)

For a given air parcel the location (x, y, z) is a given function of t so that x = x(t), y =

y(t), z = z(t), let Dx
Dt = u, Dy

Dt = v, Dz
Dt = w , then u, v, w are the velocity components in the

x, y, z directions, respectively, let
−→
U is the velocity vector , then

−→
U =

−→
i u +

−→
j v +

−→
k w.

In an inertial reference frame, Newton’s second law of motion may be written as

∑
−→
F =

Dα
−→
Uα

Dt
,

here Dα
−→
U α

Dt is the rate of change of the absolute velocity Uα. On the rotating Earth, if −→r is a
position vector for an air parcel, from the (2.1), we get

Dα
−→r

Dt
=

D−→r
Dt

+
−→
Ω ×−→r ,
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but Dα
−→r

Dt =
−→
Uα, D−→r

Dt =
−→
U , so we obtain

−→
Uα =

−→
U +

−→
Ω ×−→r . (2.2)

We apply (2.1) to
−→
Uα and obtain

Dα
−→
Uα

Dt
=

D
−→
Uα

Dt
+
−→
Ω ×−→

Uα.

Using (2.2), we get

Dα
−→
U α

Dt
=

D
−→
Uα

Dt
+
−→
Ω ×−→

Uα

=
D

Dt
(
−→
U +

−→
Ω ×−→r ) +

−→
Ω × (

−→
U +

−→
Ω ×−→r )

=
D
−→
U

Dt
+ 2

−→
Ω ×−→

U − Ω2−→R ,

here
−→
R is a vector with direction perpendicular to the axis of rotation, and the magnitude

equal to the distance to the axis of rotation.
If we assume that the only real forces acting on the atmosphere are the pressure gradient

force
−→
Fp , gravitation force

−→
Fg and friction force

−→
Fr , then we have

D
−→
U

Dt
=

−→
Fg +

−→
Fp +

−→
Fr ,

so we get

D
−→
U

Dt
= −2

−→
Ω ×−→

U + Ω2−→R +
−→
Fg +

−→
Fp +

−→
Fr . (2.3)

Step 2. We set up the component equations in spherical coordinates.
Let (λ, φ, z) be the spherical coordinates, λ is longitude, φ is latitude, and z is the vertical

distance above the surface of the Earth, using the formula for the transformation of local
rectangular coordinate system and spherical coordinate system, we can get the following
relationships,

dx = a cos φdλ, dy = adφ, dz = dr,

where a is the radius of the Earth, r is the distance to the center of the Earth, which is related
to z by r = a + z.

The direction of the
−→
i ,

−→
j ,

−→
k unit vectors are not constant, they are the functions of

position on the spherical Earth, thus we write

D
−→
U

Dt
=

−→
i

Du

Dt
+
−→
j

Dv

Dt
+
−→
k

Dw

Dt
+ u

D
−→
i

Dt
+ v

D
−→
j

Dt
+ w

D
−→
k

Dt
, (2.4)

from [8], we get

D
−→
i

Dt
=

u

a cos φ

(−→
j sin φ −−→

k cos φ
)

,
D
−→
j

Dt
= −u tan φ

a

−→
i − v

a

−→
k , (2.5)
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and

D
−→
k

Dt
=

u

a

−→
i +

v

a

−→
j , (2.6)

substituting (2.5) and (2.6) into (2.4) and rearranging the terms, we obtain

D
−→
U

Dt
=

(

Du

Dt
− uv tan φ

a
+

uw

a

)−→
i +

(

Dv

Dt
+

u2 tan φ

a
+

vw

a

)−→
j

+

(

Dw

Dt
− u2 + v2

a

)−→
k . (2.7)

We know that

Ω2−→R +
−→
Fg = −→g , (2.8)

and

−2
−→
Ω ×−→

U = −2Ω







−→
i

−→
j

−→
k

0 cos φ sin φ

u v w







= −(2Ωw cos φ − 2Ωv sin φ)
−→
i − 2Ωu sin φ

−→
j + 2Ωu cos φ

−→
k .

(2.9)

We consider an infinitesimal volume element of air, δV = δxδyδz, center at the point (x0, y0, z0)

(see Fig. 2.2), so we can easily get the total pressure gradient force per unit mass is

−→
Fp =

1
ρ
∇−→p =

−→
i

1
ρ

∂p

∂x
+
−→
j

1
ρ

∂P

∂y
+
−→
k

1
ρ

∂P

∂z
, (2.10)

we know that

−→g = −−→
k g, (2.11)

and

−→
Fr =

−→
i Frx +

−→
j Fry +

−→
k Frz, (2.12)

where














Frx = υ[ ∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 ],

Fry = υ[ ∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 ],

Frz = υ[ ∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2 ],

υ = µ
ρ is the kinematic viscosity coefficient [8].

From (2.3) and using (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), we get the following equations


















Du
Dt = − 1

ρ
1

cos φ
∂P
∂λ + 2Ωv sin φ − 2Ωw cos φ + uv tan φ

a − uw
a + Frx,

Dv
Dt = − 1

ρ
1
a

∂P
∂φ − 2Ωu sin φ − u2 tan φ

a − vw
a + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g − 2Ωu cos φ + u2+v2

a − uw
a + Frz.

(2.13)
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Figure 2.2: The x component of the pressure gradient forcer.

Step 3. We simplify (2.13) in local rectangular coordinates system.
The table 2.1 in [8] shows the terms proportional to 1

a on the above equations are unim-
portant for midlatitude synoptic scale motions, so we omit this terms and get















Du
Dt = − 1

ρ
∂P
∂x + 2Ωv sin φ − 2Ωw cos φ + Frx,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ωu sin φ + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g − 2Ωu cos φ + Frz.

As u = u(t, x, y, z), and Dx
Dt = u, Dy

Dt = v, Dz
Dt = w, we get

Du

Dt
=

∂u

∂t
+

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t
+

∂u

∂z

∂z

∂t
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
,

Dv
Dt and Dw

Dt are similar.
For a wide range of air movements, w ≪ u, v [21], so we assume w = 0, for the atmosphere

below 100km, kinematic viscosity coefficient is negligible except in a thin layer within a few
centimeters of the Earth’s surface where the vertical shear is very large [8], so Frx = 0, Fry = 0
in Ekman layer, as shown in chapter 3 in [8], the magnitude of w can be deduced from
knowledge of the horizontal velocity u, v, so we omit the last equation of the system and get

{

Du
Dt = − 1

ρ
∂P
∂x + 2Ωv sin φ = − 1

ρ
∂p
∂x + f v,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ωu sin φ = − 1

ρ
∂p
∂y − f u.

Step 4. We set up the mean equations.
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In a turbulent fluid, a field variable such as velocity measured at a point generally fluctu-
ates rapidly in time as eddies of various scales pass the point, so we assume that the field vari-
ables can be separated into slowing varying turbulent components, for example, u = u + u′,
the corresponding means are indicated by overbars and the fluctuating component by primes.
With the aid of the continuity equation

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

and the chain rule of the differentiation, we get

Du

Dt
=

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ u(

∂u

∂x
+

∂v

∂y
+

∂w

∂z
)

=
∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
. (2.14)

Separating each dependant variable into mean and fluctuating parts, substituting into
(2.14), and averaging then yields

Du

Dt
=

∂u

∂t
+

∂

∂x
(u u + u′u′) +

∂

∂y
(u v + u′v′) +

∂

∂z
(u w + u′w′).

Noting that the mean velocity fields satisfy the continuity equation, we get

Du

Dt
=

D u

Dt
+

∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′),

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the rate of change following the mean motion, the mean equations thus have the following
form,

{

Du
Dt = − 1

ρ
∂P
∂x + f v − [ ∂u′u′

∂x + ∂u′v′
∂y + ∂u′w′

∂z ],
Dv
Dt = − 1

ρ
∂P
∂y − f u − [ ∂u′v′

∂x + ∂v′v′
∂y + ∂v′w′

∂z ].

Away from region with horizontal inhomogeneities (e.g., shorelines terms, forest edges),
we can assume turbulent fluxes are horizontally homogeneous because they are too small in
comparison to the term involving vertical differentiation [8], so we assume ∂u′u′

∂x = ∂u′v′
∂y =

∂u′v′
∂x = ∂v′v′

∂y = 0.
Outside the boundary layer, the resulting approximation was geostrophic balance, i.e.,

{

1
ρ

∂P
∂x = f vg,

1
ρ

∂P
∂y = − f ug.

For midlatitude synoptic-scale motions, the inertial acceleration terms (the terms on the left of
above equations) can be neglected compared to the Cariolis force and pressure gradient force
terms [8], so we get

{

f (v − vg)− ∂u′w′
∂z = 0,

− f (u − ug)− ∂v′w′
∂z = 0.
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By the Flux-Gradient theory, we get

{

u′w′ = −k( ∂u
∂z ),

v′w′ = −k( ∂v
∂z ),

where k(m2s−1) is the eddy viscosity coefficient, then we have

{

f (v − vg) = − ∂
∂z (k

∂u
∂z ),

f (u − ug) =
∂
∂z (k

∂v
∂z ).

Finally, we omit the overbars for simplicity to obtain (1.1).

3 Main results

3.1 Existence of explicit solution

Note that if k reduces to a constant, then (1.1) reduces to

{

d2v
dz2 = f

k (u − ug),
d2u
dz2 = − f

k (v − vg).
(3.1)

Based on Remark 1.1, we change the condition (1.3) to (1.4) in the following theorems, and
we try to find explicit solution of (3.1) with (1.2) and (1.4) by using the notion of sin and cos
matrices.

Definition 3.1 ((see [7]). It is well known that

sin Ωz = Ω
z

1!
− Ω3 z3

3!
+ · · ·+ (−1)kΩ2k+1 z2k+1

(2k + 1)!
+ · · ·,

cos Ωz = I − Ω2 z2

2!
+ · · ·+ (−1)kΩ2k z2k

(2k)!
+ · · ·.

Theorem 3.2. The solution of (3.1) with (1.2) and (1.4) can be expressed by the following formula

[

v

u

]

= cos Ωz

[−vg

−ug

]

+ sin Ωz

[

C21

C22

]

+

[

vg

ug

]

, (3.2)

where

Ω =





√

f
2k −

√

f
2k

√

f
2k

√

f
2k



 ,

and

[

C21

C22

]

= (sin Ωz0)
−1 cos Ωz0

[

vg

ug

]

.
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Remark 3.3. Note that (sin Ωz0)−1 does exist because z0 is a positive number, so using Wolfram

Mathematica, (sin Ωz0)−1 cos Ωz0 can be solved by the following computations:

sin Ωz0 =





sin
√

f
2k z0 cosh

√

f
2k z0 − cos

√

f
2k z0 sinh

√

f
2k z0

cos
√

f
2k z0 sinh

√

f
2k z0 sin

√

f
2k z0 cosh

√

f
2k z0



 ,

det sin Ωz0 =
1
2

(

cosh

(

2

√

f

2k
z0

)

− cos

(

2

√

f

2k
z0

))

> 0,

(sin Ωz0)
−1 =











2 sin
√

f
2k z0 cosh

√

f
2k z0

cosh(2
√

f
2k z0)−cos(2

√

f
2k z0)

2 cos(
√

f
2k z0) sinh

√

f
2k z0

cosh(2
√

f
2k z0)−cos(2

√

f
2k z0)

2 cos
√

f
2k z0 sinh

√

f
2k z0

cos(2
√

f
2k z0)−cosh(2

√

f
2k z0)

2 sin
√

f
2k z0 cosh

√

f
2k z0

cosh(2
√

f
2k z0)−cos(2

√

f
2k z0)











,

and

cos Ωz0 =





cos
√

f
2k z0 cosh

√

f
2k z0 sin

√

f
2k z0 sinh

√

f
2k z0

− sin
√

f
2k z0 sinh

√

f
2k z0 cos

√

f
2k z0 cosh

√

f
2k z0



 ,

det cos Ωz0 =
1
2

(

cosh

(

2

√

f

2k
z0

)

+ cos

(

2

√

f

2k
z0

))

> 0,

(sin Ωz0)
−1 cos Ωz0 =











− sin(2
√

f
2k z0)

cos(2
√

f
2k z0)−cosh(2

√

f
2k z0)

− sinh(2
√

f
2k z0)

cos(2
√

f
2k z0)−cosh(2

√

f
2k z0)

sinh(2
√

f
2k z0)

cos(2k)−cosh(2
√

f
2k z0)

− sin(2
√

f
2k z0)

cos(2
√

f
2k z0)−cosh(2

√

f
2k z0)











,

and

det
(

(sin Ωz0)
−1 cos Ωz0

)

=

cos
(

2
√

f
2k z0

)

+ cosh
(

2
√

f
2k z0

)

cosh
(

2
√

f
2k z0

)

− cos
(

2
√

f
2k z0

) > 0.

Proof. Let U = u − ug, V = v − vg and k = f
k . Then (3.1) becomes

{

d2V
dz2 = kU,
d2U
dz2 = −kV,

(3.3)

and the conditions (1.2), (1.4) are transformed into the equivalent forms

U = −ug, V = −vg at z = 0, (3.4)

U = 0, V = 0 at z = z0. (3.5)

From the (3.3), we get
[

V

U

]′′
+

[

0 − k

k 0

] [

V

U

]

= 0.

By using the matrix Ω, we obtain
[

V

U

]′′
+ Ω2

[

V

U

]

= 0. (3.6)
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So we get the solution of the (3.6) as following form,
[

V

U

]

= cos Ωz

[

C11

C12

]

+ sin Ωz

[

C21

C22

]

.

We determine the constants such that the initial conditions (3.4) and (3.5) are satisfied. Con-
sidering the condition (3.4), we get

C11 = −vg, C12 = −ug.

Considering the condition (3.5), we obtain
[

0
0

]

= cos Ωz0

[−vg

−ug

]

+ sin Ωz0

[

C21

C22

]

.

Because the matrix sin Ωz0 is nonsingular, so we get
[

C21

C22

]

= (sin Ωz0)
−1 cos Ωz0

[

vg

ug

]

.

As U = u − ug, V = v − vg, so we obtain (3.2).

We recall the following result.

Lemma 3.4 (see [1, 18]). For the matrix equation

Φ′(t, t0) = A(t)Φ(t, t0), t ∈ [t0, tα]

with the initial boundary condition Φ(t0, t0) = I, where the matrix Φ(t, t0) and A(t) are n × n

matrices, tα > t0 ≥ 0, the solution Φ(t, t0) is given by

Φ(t, t0) = I +
∫ t

t0

A(τ)dτ +
∫ t

t0

A(τ1)

[

∫ τ1

t0

A(τ2)dτ2

]

dτ1

+
∫ t

t0

A(τ1)
∫ τ1

t0

A(τ2)
∫ τ2

t0

A(τ3)dτ3dτ2dτ1 + · · ·

For (1.1), we assume the k = k(z) 6= 0, then we will get






d2v
dz2 +

k′(z)
k(z)

dv
dz = f

k(z)
(u − ug),

d2u
dz2 +

k′(z)
k(z)

du
dz = − f

k(z)
(v − vg).

Let u − ug = U, v − vg = V, then we will get

{

d2V
dz2 + α(z) dV

dz = β(z)U,
d2U
dz2 + α(z) dU

dz = −β(z)V,

where α(z) = k′(z)
k(z)

, β(z) = f
k(z)

, and the conditions (1.2) and (1.5) will become

U(0) = −ug, V(0) = −vg, (3.7)

and
U′(0) = 0, V ′(0) = 0. (3.8)
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Let V ′(z) = w1, U′(z) = w2, then we obtain

X′(z) = A(z)X(z), X(0) = X0, (3.9)

where

X =









V

U

W1

W2









, X0 =









−vg

−ug

0
0









,

and

A(z) =









0 0 1 0
0 0 0 1
0 β(z) −α(z) 0

−β(z) 0 0 −α(z)









.

We get the solution of (3.9) by using Lemma 3.4, that is

X(z) = Φ(z, z0)X0,

where

Φ(z, z0) = I +
∫ z

0
A(τ)dτ +

∫ z

0
A(τ1)

[

∫ τ1

0
A(τ2)dτ2

]

dτ1 + · · ·,

as u − ug = U, v − vg = V, so we get the solution of (1.1) with the conditions (1.2) and (1.5).
If k(z) is constant, then we will solve (3.9) with the conditions (1.2) and (1.5).

Remark 3.5. If k(z) is a constant k, then α(z) = 0, β(z) = f
k , and (1.1) will become the following

form,
X′(z) = AX(z), (3.10)

the corresponding initial conditions are

X(0) = X0,

where

A =









0 0 1 0
0 0 0 1
0 β 0 0
−β 0 0 0









. (3.11)

The characteristic equation of (3.11) is

λ4 + β2 = 0,

so we get the four eigenvalues:

λ1 =

√

f

2k
+

√

f

2k
i, λ2 = −

√

f

2k
−
√

f

2k
i, λ3 =

√

f

2k
−
√

f

2k
i, λ4 = −

√

f

2k
+

√

f

2k
i.
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Let λ = λ1, then we have

(A − λ1 I) =









−λ1 0 1 0
0 −λ1 0 1
0 β −λ1 0
−β 0 0 −λ1









,

so the corresponding eigenvector is

ξ1 =













1
i

√

f
2k +

√

f
2k i

−
√

f
2k +

√

f
2k i













,

thus we obtain

eλ1zξ1 = e

√

f
2k z

























cos
√

f
2k z + i sin

√

f
2k z

− sin
√

f
2k z + i cos

√

f
2k z

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

+
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

i

−
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

+
√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

i

























.

The two linear independent solutions are obtained:

X1(z) = e

√

f
2k z

























cos
√

f
2k z

− sin
√

f
2k z

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

−
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

























,

and

X2(z) = e

√

f
2k z

























sin
√

f
2k z

cos
√

f
2k z

√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

























.

Similarly, let λ3 = −
√

f
2k +

√

f
2k i, we will get the eigenvector

ξ2 =

















1
−i

−
√

f
2k +

√

f
2k i

√

f
2k +

√

f
2k i

















,
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therefore we have

eλ2zξ2 = e−
√

f
2k z

























cos
√

f
2k z + i sin

√

f
2k z

sin
√

f
2k z − i cos

√

f
2k z

−
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

+
√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

i

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

+
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

i

























.

The two linear independent solutions can be stated as follows,

X3(z) = e−
√

f
2k z























cos
√

f
2k z

sin
√

f
2k z

−
√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)























,

and

X4(z) = e−
√

f
2k z























sin
√

f
2k z

− cos
√

f
2k z

√

f
2k

(

cos
√

f
2k z − sin

√

f
2k z

)

√

f
2k

(

cos
√

f
2k z + sin

√

f
2k z

)























.

So the general solution of (3.9) is

X(z) = c1X1(z) + c2X2(z) + c3X3(z) + c4X4(z),

then

V = c1e

√

f
2k z cos

√

f

2k
z + c2e

√

f
2k z sin

√

f

2k
z + c3e−

√

f
2k z cos

√

f

2k
z + c4e−

√

f
2k z sin

√

f

2k
z, (3.12)

and

U = − c1e

√

f
2k z sin

√

f

2k
z + c2e

√

f
2k z cos

√

f

2k
z

+ c3e−
√

f
2k z sin

√

f

2k
z − c4e−

√

f
2k z cos

√

f

2k
z. (3.13)

By using the conditions (3.7), (3.8), we get c1 = c3 = − 1
2 vg, c2 = − 1

2 ug, c4 = 1
2 ug, so the

solution of (3.10) with the conditions (3.7), (3.8) is obtained.

Remark 3.6. From the above example, we know that the general solution of (3.10) is (3.12),
(3.13), so if we use the traditional boundary conditions (1.2), (1.3), then we will get

c1 = c2 = 0, c3 = −vg, c4 = ug,



Atmospheric Ekman flows with boundary conditions 15

then we have














V = e−
√

f
2k z

(

ug sin
√

f
2k z

)

− vg cos
√

f
2k z,

U = e−
√

f
2k z

(

−vg sin
√

f
2k z

)

− ug cos
√

f
2k z,

so the solution is














v = vg + e−
√

f
2k z

(

ug sin
√

f
2k z

)

− vg cos
√

f
2k z,

u = ug + e−
√

f
2k z

(

−vg sin
√

f
2k z

)

− ug cos
√

f
2k z,

this coincides with the result in [8].

3.2 Uniqueness

For the constant k, the explicit solution of (1.1) with (1.2) and (1.4) is obtained by Theorem 3.2,
in the following theorem, we try to find the uniqueness for k(z).

Theorem 3.7. Assume f 6= 0, then there is a unique solution of (1.1) with conditions (1.2) and (1.4).

Proof. Let û and v̂ be the solutions of (1.1) for f = 0 with (1.2) and (1.4). Then

û(z) =
l(z)

l(z0)
ug, v̂(z) =

l(z)

l(z0)
vg

for l(z) =
∫ z

0
ds

k(s)
. Thus using in (1.1) the exchange

u ↔ u + û, v ↔ v + v̂,

we get














f (v + v̂ − vg) = − ∂
∂z (k(z)

∂u
∂z ),

f (u + û − ug) =
∂
∂z (k(z)

∂v
∂z ),

u = v = 0 at z = 0, z0.

(3.14)

Introducing the corresponding Green function

G(z, s) =







l(s)
(

l(z)
l(z0)

− 1
)

for 0 ≤ s ≤ z ≤ z0,

l(z)
(

l(s)
l(z0)

− 1
)

for 0 ≤ z ≤ s ≤ z0,

(3.14) is rewritten as
{

f̂ u(z) = −
∫ z0

0 G(z, s)(v(s) + v̂(s)− vg)ds,

f̂ v(z) =
∫ z0

0 G(z, s)(u(s) + û(s)− ug)ds
(3.15)

for f̂ = f−1. Now we consider a Hilbert space H = L2(0, z0)2 with an inner product

((u1, v1), (u2, v2)) =
∫ z0

0
(u1(z)v1(z) + u2(z)v2(z))dz.

Next introducing a linear operator A : H → H by

A(u, v)(z) =

(

∫ z0

0
G(z, s)v(s)ds,−

∫ z0

0
G(z, s)u(s)ds

)
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and functions

ũ(z) = −
∫ z0

0
G(z, s)(v̂(s)− vg)ds,

ṽ(z) =
∫ z0

0
G(z, s)(û(s)− ug)ds,

(3.15) is equivalent to
f̂ (u, v) + A(u, v) = (ũ, ṽ).

Since G(z, s) = G(s, z), it is easy to see that A is anti-symmetric A∗ = −A. It is also well-
known that A is compact [1, 19]. Thus a spectrum of A consists from isolated pure imaginary
eigenvectors with a limit at the zero and the corresponding eigenvalues form an orthogonal
bases of H. Consequently, for any 0 6= f ∈ R, there is a unique solution of (3.14), and thus
also for (1.1). Some approximations methods can be used for general k(z) in order to construct
these solutions. If k(z) is constant then a method presented above is applied.

3.3 Dynamical properties

Conditions (1.2) and (1.5) are Cauchy initial value conditions for (1.1), so they determine a
unique solution on R+ = [0, ∞). We will try to study the uniqueness of (1.1) with conditions
(1.2) and (1.3).

Theorem 3.8. For any constant k̄ > 0 there is an ǭ > 0 such that for any continuous function

k : R+ → R+ satifying

sup
z∈R+

|k̄ − k(z)| < ǭ,

there is a unique solution of (1.1) with conditions (1.2) and (1.3).

Proof. To study conditions (1.2) and (1.3), we introduce

x = k
∂u

∂z
,

y = k
∂v

∂z
,

and (1.1) is replaced by


























∂u
∂z = k̂x,
∂v
∂z = k̂y,
∂x
∂z = − f (v − vg),
∂y
∂z = f (u − ug)

(3.16)

for k̂ = 1
k . The affine system (3.16) has a unique equilibrium

(ug, vg, 0, 0)

with the linearization


























∂u
∂z = k̂x,
∂v
∂z = k̂y,
∂x
∂z = − f v,
∂y
∂z = f u.

(3.17)
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If supz∈R+
k̂(z) < ∞, then the asymptotic property of (3.17) is determined by its Lyapunov

exponents. When k is a constant function, then the matrix








0 0 k̂ 0
0 0 0 k̂

0 − f 0 0
f 0 0 0









has eigenvalues

λ1 = −

√

f k̂

2
(1 + i), λ2 = −

√

f k̂

2
(1 − i), λ3 =

√

f k̂

2
(1 − i), λ4 =

√

f k̂

2
(1 + i)

with the corresponding eigenvectors
(

− (1 + i)
√

k̂√
2
√

f
,− (1 − i)

√
k̂√

2
√

f
, i, 1

)

,

(

− (1 − i)
√

k̂√
2
√

f
,− (1 + i)

√
k̂√

2
√

f
,−i, 1

)

,

(

(1 − i)
√

k̂√
2
√

f
,
(1 + i)

√
k̂√

2
√

f
,−i, 1

)

,

(

(1 + i)
√

k̂√
2
√

f
,
(1 − i)

√
k̂√

2
√

f
, i, 1

)

.

So the linear system (3.17) has a stable space

S =









(

−
√

k̂√
2
√

f
,−

√
k̂√

2
√

f
, 0, 1

)

(

−
√

k̂√
2
√

f
,

√
k̂√

2
√

f
, 1, 0

)









and (3.16) has a stable manifold

Ws = (ug, vg, 0, 0) + S.

Thus condition (1.2) holds if [17, 18]

(0, 0) ∈ (ug, vg) +









(

−
√

k̂√
2
√

f
,−

√
k̂√

2
√

f

)

(

−
√

k̂√
2
√

f
,

√
k̂√

2
√

f

)









,

which is uniquely satisfied

(0, 0) = (ug, vg) + c1

(

−
√

k̂√
2
√

f
,−

√
k̂√

2
√

f

)

+ c2

(

−
√

k̂√
2
√

f
,

√
k̂√

2
√

f

)

c1 =

√
k̂(ug + vg)√

2
√

f
, c2 =

√
k̂(ug − vg)√

2
√

f
.

Consequently, there is a unique solution of (1.1) with conditions (1.2) and (1.3). This is already
shown above in Remark 3.6. By using a roughness result [3, Proposition 1, p. 34], we see that
for any constant k̄ > 0 there is an ǭ > 0 such that for any continuous function k : R+ → R+

such that
sup
z∈R+

|k̄ − k(z)| < ǭ,

there is a unique solution of (1.1) with conditions (1.2) and (1.3). ǭ can be estimated in the
term of k̄ and f , but we do not go into details. Since k(z) is just continuous, here we have a
solution u(z), v(z) of (1.1) such that u(z), v(z), ∂u(z)

∂z , ∂v(z)
∂z , ∂

∂z (k(z)
∂u(z)

∂z ) and ∂
∂z (k(z)

∂u(z)
∂z ) exist

and continuous on R+. The proof is complete.
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Abstract. In this paper, we analyze the behavior of three-dimensional incompress-
ible flows, with small viscosities ν > 0, in the exterior of material obstacles ΩR =
Ω0 + (R, 0, 0), where Ω0 belongs to a class of smooth bounded domains and R > 0
is sufficiently large. Applying techniques developed by Kato, we prove an explicit en-
ergy estimate which, in particular, indicates the limiting flow, when both ν → 0 and
R → ∞, as that one governed by the Euler equations in the whole space. According to
this approach, it is natural to contrast our main result to that one already known in the
literature for families of viscous flows in expanding domains.

Keywords: singular perturbation in context of PDEs, vanishing viscosity limit, Navier–
Stokes equations, Euler equations.
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1 Introduction

Let Ω0 ⊂ R
3 be a smooth bounded domain, such that R

3 \ Ω0 is connected and simply
connected. We also assume that 0 = (0, 0, 0) lies inside Ω0. For each R ≥ 0, let us set

R = (R, 0, 0), ΩR = Ω0 + R, ΠR = R
3 \ ΩR and ΓR = ∂ΩR = ∂ΠR.

Under these notation, we recall the definition of some usual spaces related to incompressible
fluids:

V(ΠR) = {v ∈ (H1(ΠR))
3 : div v = 0 in ΠR and v = 0 on ΓR} (1.1)

and

H(ΠR) = {v ∈ (L2(ΠR))
3 : div v = 0 in ΠR and v · n = 0 on ΓR}, (1.2)

where n is the outward directed unit normal vector field to ΓR.

BEmail: luizviana@id.uff.br
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We fix an initial vorticity ω0, which is a smooth, divergence-free and compactly supported
vector field in R

3. Since ΠR is simply connected, there exists a unique v0,R ∈ H(ΠR) such that
curl v0,R = ω0|ΠR

(see Proposition 3.4). In addition, let us denote by u0 the velocity defined on
R

3 which is associated to the vorticity ω0, as follows:

u0(x) =
−1
4π

∫

R3

(x − y)

|x − y|3 × ω0(y)dy, (1.3)

for each x ∈ R
3, where × represents the cross product of vectors in R

3. In this context, there
exists T∗ > 0 with the following property: for all T ∈ (0, T∗), we can find a smooth solution
u = u(x, t) to the three-dimensional Euler equations in the whole space























ut + (u · ∇)u = −∇p,

div u = 0,

u(x, 0) = u0(x),

|u| → 0 as |x| → +∞,

(1.4)

defined on R
3 × [0, T]. In (1.4), u is understood as the velocity of an ideal incompressible fluid,

while p denotes its pressure.
Taking T ∈ (0, T∗) and a small viscosity ν > 0, let us also consider the incompressible

Navier–Stokes equations in ΠR, with initial data v0,R, given by























vν,R
t + (vν,R · ∇)vν,R − ν∆vν,R +∇Pν,R = 0, (x, t) ∈ ΠR × (0, T),

div vν,R = 0, (x, t) ∈ ΠR × [0, T),

vν,R(x, t) = 0, (x, t) ∈ ∂ΠR × (0, T),

vν,R(x, 0) = v0,R(x), x ∈ ΠR.

(1.5)

Above, vν,R represents the velocity of the particles of a viscous fluid and Pν,R is its pressure.
It is well-known that there exists a Leray–Hopf weak solution vν,R = vν,R(x, t) to (1.5) (see
Definition 4.1 and Theorem 4.2). We emphasize that, since we consider weak solutions to
(1.5), there is no dependence of solution’s existence time on the viscosity. Under all these
notations we have just described, we are ready to state the main result of this paper.

Theorem 1.1. As mentioned previously, let ω0 ∈ (C∞
c (R3))3 be a divergence-free vector field in

R
3, and consider the smooth solution u = u(x, t) of (1.4), defined on R

3 × [0, T], with initial data

given in (1.3). For ν > 0 and R > 0, let vν,R be a weak solution of (1.5) in ΠR × [0, T), with

initial data v0,R, where v0,R is the L2-orthogonal projection of u0|ΠR
on H(ΠR). Then, there exist

C = C(T, Ω0, ω0) > 0 and R0 > 0 such that, for all R > R0, we have

‖vν,R − u‖L∞([0,T];[L2(ΠR)]3) ≤ C

(

1
R
+
√

ν

)

. (1.6)

At this moment, we would like to list some papers where asymptotic behavior of incom-
pressible flows under singular domain perturbation has been considered. Initially, we recall
the study of incompressible flows in the presence of small obstacles, presented in [7] and [6].
In [7], it was investigated the asymptotic behavior of 2D incompressible ideal flows in the ex-
terior of a single smooth obstacle that shrinks homothetically to a point. The work developed
in [7] allowed to identify the equation satisfied by the limit flow. In fact, if γ is the circula-
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tion around the obstacle and γ = 0, then the limit velocity verifies the Euler equations in the
full-plane, with the same initial vorticity. On the other hand, when γ 6= 0, the limit equation
involves a new forcing term, with an initial vorticity that acquires a pointwise Dirac mass. In
a similar analysis for the 2D Navier–Stokes equations, considered in [6], it was proved that, if
the circulation is sufficiently small, then the limit equation is the Navier–Stokes equations in
the whole space, but an additional pointwise Dirac mass still appears in the vorticity of the
limit equation. In [4], the corresponding problem was considered in the three-dimensional
case, where it was established that the limit velocity is a solution of the Navier–Stokes equa-
tions in the full-space. Later, in [1], the research proceeded with the asymptotic behavior of
solutions of the incompressible 2D Euler equations on a bounded domain with a finite num-
ber of holes, assuming that the size of one of them vanishes. In that situation, the limit flow
was identified as a modified Euler system in the domain without its small hole.

In [5], incompressible flows around a small obstacle, with small viscosity, are considered.
Under specific assumptions, it can be seen that solutions of the Navier–Stokes system in exte-
rior domains converge to solutions of the Euler system in the full space when both viscosity
and the size of the obstacle vanish. In the proof of this result, it is presented a rate of conver-
gence in terms of the viscosity and the size of the obstacle. In addition, the complementary
situation was treated in [9], where 2D Euler and Navier–Stokes systems were analyzed in
expanding domains. To be more precise, such asymptotic analysis also pointed out that solu-
tions in large domains converge to the corresponding solution in the full plane.

As we can see, in the context of fluid dynamics, limits of singularly perturbed domain
have been extensively studied over the last years. Last but not least, we would like to high-
light [10], where Kelliher, Lopes Filho and Nussenzveig Lopes examined, in dimensions 2
and 3, the limiting behavior of incompressible flows with small viscosity inside expanding
domains. Based on energy estimates developed by Kato in [8], these three authors identified
conditions under which the limit velocity satisfies the Euler system in the whole space when
both viscosity vanishes and the domain becomes large. We are supposed to remark that their
analysis also exhibits a rate of convergence which takes into account the small viscosity of the
fluid and the enlarged boundary domain. The current work intends to be part of the list of
papers we have just mentioned. However, our purpose here is closer to [10]. In fact, we study,
in dimension 3, the limiting behavior of incompressible flows, with small viscosity, around far
obstacles. In this sense, here the boundary domain becomes distant through the translation of
Γ0 = ∂Π0 by R = (R, 0, 0), while, in [10], the boundary goes far by dilatation. In both cases,
there is some effect of distant boundaries in the vanishing viscosity limit. Thus, Theorem 1.1
should be contrasted with the corresponding three-dimensional main result of [10].

The remainder of this paper is organized as follows: in Section 2, we deal with the be-
havior of smooth solutions of (1.4) at infinity. In Section 3, we set some suitable approximate
solutions to the Euler equations and, applying the decay results obtained in Section 2, some
indispensable estimates are achieved in Propositions 3.3 and 3.4. Section 4 is devoted to a brief
discussion about the Navier–Stokes in exterior domains. At this point, we must emphasize
Proposition 4.5, where a well-known relation involving weak solutions to (4.1) is extended to
a larger class of test vector fields. In Section 5 we prove Theorem 1.1, our main result. In
Section 6, we make further comments about some aspects related to this work. At the end,
for the sake of clarity, there is an appendix, where we list domains, differential operators,
function spaces and notations related to the PDEs mentioned throughout the development of
this work.
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2 Incompressible inviscid flow in the whole space

At the beginning of this section, we would like to have a few words on the local well-posedness
for the 3D Euler system in the whole space. As said before, we fix an initial vorticity ω0 ∈
(C∞

c (R3))3, which is divergence-free, and take the associated velocity u0, expressed in (1.3).
Under these assumptions, it was proved in [12] that, for sufficiently small times, there exists
a smooth solution of (1.4), with u0 as the initial data. It means that there exists T∗ > 0,
depending on u0, such that, for all T ∈ (0, T∗), there exists a unique smooth solution (u, p) of
(1.4), defined on R

3 × [0, T].
Additionally, for each t ∈ [0, T], the vector field ω = curl(u(·, t)) is compactly supported

and there exists r > 0 such that

supp(ω(u)) ⊂ Br(0)× [0, T] (2.1)

what can be seen in [10], for example. It is important to notice that ω and u solve the system















ωt + (u · ∇)ω = (ω · ∇)u, (x, t) ∈ R
3 × (0, T),

div ω = 0, (t, x) ∈ R
3 × [0, T],

ω = curl u, (x, t) ∈ R
3 × [0, T],

(2.2)

and, due to the second PDE in (2.2), it is true that u = curl Ψ, where Ψ is the vector-valued
stream function given by

Ψ(x, t) =
−1
4π

∫

R3

ω(y, t)

|x − y|dy. (2.3)

As a consequence, for all (x, t) ∈ R
3 × [0, T], u can be recovered from ω throughout the

Biot–Savart law

u(x, t) =
−1
4π

∫

R3

(x − y)

|x − y|3 × ω(y, t)dy, (2.4)

which we had already stated in (1.3), for t = 0.
In the rest of this section, we will focus our attention on the behavior of the smooth solution

(u, p) of (1.4) at infinity.

Lemma 2.1. Let Φ = (Φ1, Φ2, Φ3) ∈ (C∞(R3))3 be a compactly supported vector field and consider

M > 0 such that supp Φ ⊂ B̄M(0). Then, there exists C > 0 such that, for any x ∈ R
3 \ B2M(0), we

have
∣

∣

∣

∣

∫

R3

Φ(y)

|x − y|dy − 1
|x|

∫

R3
Φ(y)dy

∣

∣

∣

∣

≤ C

|x|2 . (2.5)

Additionally, if
∫

R3 Φ(y)dy = 0, then the inequality

∣

∣

∣

∣

∫

R3

(x − y)

|x − y|3 × Φ(y)dy

∣

∣

∣

∣

≤ C

|x|3 (2.6)

also holds.

Proof. We start proving (2.6). Consider the vector field g = (g1, g2, g3) ∈ (C∞(R3 \ {0}))3,
given by g(x) = x

|x|3 for each x ∈ R
3 \ {0}. Let us take x ∈ R

3 \ B2M(0) and y ∈ B̄M(0). Since

{(1 − t)x + t(x − y) : t ∈ [0, 1]} ⊂ R
3 \ {0},



3D incompressible flows with small viscosity around distant obstacles 5

applying the mean value theorem, we obtain θi ∈ (0, 1) such that

gi(x − y) = gi(x) + Dgi(x − θiy)(−y),

where i ∈ {1, 2, 3}. Using that
∫

R3 Φ(y)dy = 0 and |x − θiy| ≥ |x| − θi|y| ≥ |x| − |x|
2 = |x|

2 , we
easily check that

∣

∣

∣

∣

∫

R3

[

(xi − yi)

|x − y|3 Φj(y)−
(xj − yj)

|x − y|3 Φi(y)

]

dy

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

B̄M(0)
Dgi(x − θiy)(−y)Φj(y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

B̄M(0)
Dgj(x − θjy)(−y)Φi(y)dy

∣

∣

∣

∣

≤ C

(

∫

B̄M(0)

|Φj(y)|
|x − θiy|3

dy +
∫

B̄M(0)

|Φi(y)|
|x − θjy|3

dy

)

≤ C

|x|3 ,

for all i, j ∈ {1, 2, 3}. From this, (2.6) follows.
The proof of (2.5) is analogous, but the condition

∫

R3 Φ(y)dy = 0 is not required. In fact,
we can find λ ∈ (0, 1) such that

∣

∣

∣

∣

∫

R3

Φ(y)

|x − y|dy − 1
|x|

∫

R3
Φ(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B̄M(0)

(x − λy) · y

|x − λy|3 Φ(y)dy

∣

∣

∣

∣

≤
∫

B̄M(0)

M|Φ(y)|
|x − λy|2 dy ≤ C

|x|2 ,

following the desired conclusion.

Next, we apply Lemma 2.1 in order to state the decay of u and its derivatives, as |x| → ∞.

Proposition 2.2. Consider u and ω as mentioned above and take M > 0 such that supp(ω(·, t)) ⊂
B̄M(0) for all t ∈ [0, T]. Then, there exists C > 0 such that

|u(x, t)| ≤ C

|x|2 , |ut(x, t)| ≤ C

|x|3 and |∇u(x, t)| ≤ C

|x|3 , (2.7)

for all (x, t) ∈ (R3 \ B̄2M(0))× [0, T].

Proof. During this proof, suppose that (x, t) ∈ (R3 \ B̄2M(0))× [0, T] is fixed. Thus, we easily
get

|u(x, t)| =
∣

∣

∣

∣

1
4π

∫

R3

(x − y)

|x − y|3 × ω(y, t)dy

∣

∣

∣

∣

≤
(

1
π

∫

B̄M(0)
|ω(y, t)|dy

)

1
|x|2 ≤ C

|x|2 .

For the second desired estimate, we use (2.2) and (2.4) in order to obtain

ut(x, t) =
−1
4π

∫

B̄M(0)

(x − y)

|x − y|3 × [(ω · ∇)u − (u · ∇)ω](y, t)dy.

Recalling that u and ω are two divergence-free vector fields, we take

∫

R3
[(ω · ∇)u − (u · ∇)ω](y, t) = 0.

Hence, applying the inequality (2.6) from Lemma 2.1, we have

|ut(x, t)| ≤ C

|x|3 .
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In the last part of this proof, we will estimate ∇u = [∂iuj]
3
i,j=1. Notice that, if 0 < ε < M

and y ∈ BM(0), we clearly get |x − y| ≥ |x|
2 > M > ε for all y ∈ B̄M(0). Consequently, for any

3 × 1 matrix B, we take

|[∇u(x, t)]B| = lim
ε→0

∣

∣

∣

∣

∫

|y−x|≥ε

(

ω(y, t)× B

4π|x − y|3 +
3{[(x − y)× ω(y, t)]⊗ (x − y)}B

4π|x − y|5
)

dy

∣

∣

∣

∣

≤
∫

B̄M(0)

∣

∣

∣

∣

ω(y, t)× B

4π|x − y|3 +
3{[(x − y)× ω(y, t)]⊗ (x − y)}B

4π|x − y|5
∣

∣

∣

∣

dy

≤
(

1
4π

∫

B̄M(0)

|ω(y, t)|
|x − y|3 dy

)

|B|

≤ C

|x|3 |B|,

where h ⊗ k denotes the 3 × 3 matrix [hik j]
3
i,j=1 for each h, k ∈ R

3. It completes the proof.

In the next two results, we will specify the decay of the scalar pressure p, given in (1.4), as
|x| → ∞.

Lemma 2.3. Let (u, p) be the solution of (1.4) and consider ȳ ∈ R
3 \ {0}. The following properties

hold:

(a) There exists C > 0 such that

|∇p(x, t)| ≤ C

|x|3

for any (x, t) ∈ (R3 \ {0})× [0, T].

(b) For each t ∈ [0, T], there exists

L(t) = lim
θ→∞

p(θȳ, t).

Proof. The pointwise estimate for ∇p comes immediately from Proposition 2.2.
Let us prove the second part of the result. Let (θn)∞

n=1 be a sequence of positive real
numbers which tends to infinity. Since

|p(θmȳ, t)− p(θnȳ, t)| =
∣

∣

∣

∣

∫ θm

θn

∇p(sȳ, t) · ȳds

∣

∣

∣

∣

≤ C

2|ȳ|2
∣

∣

∣

∣

1
θ2

n

− 1
θ2

m

∣

∣

∣

∣

(2.8)

for all positive integers m and n, we conclude that, for each t∈ [0, T], the sequence (p(θnȳ, t))∞
n=1

converges as n → ∞. Analogously, if (λn)∞
n=1 is another sequence of positive real numbers

which tends to infinity, we take

|p(θnȳ, t)− p(λnȳ, t)| ≤ C

2|ȳ|2
∣

∣

∣

∣

1
θ2

n

− 1
λ2

n

∣

∣

∣

∣

for all positive integers m and n, and t ∈ [0, T]. It means that there exists limθ→∞ p(θȳ, t), as
desired.

Next, we will see that Lemma 2.3 allows us to collect some properties of the pressure p.

Proposition 2.4. Let (u, p) be the solution (1.4) and consider ȳ, z̄ ∈ R
3 \ {0}. Then

(a) limθ→∞ p(θȳ, t) = limθ→∞ p(θz̄, t) for each t ∈ [0, T];
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(b) there exists a continuous function p∞ : [0, T] −→ R and C > 0 such that

|p(x, t)− p∞(t)| ≤
C

|x|2 (2.9)

for all (x, t) ∈ (R3 \ {0})× [0, T].

Proof. Firstly, let us focus on the proof of (a). Without loss of generality, we can assume that
z̄ /∈ Rȳ and |ȳ| ≥ |z̄|. Take θ > 0 and consider the sphere

S = {x ∈ R
3 : |x| = θ|z̄|}.

Let σ : [s1, s2] ⊂ [0, 2π] −→ S be the geodesic on S from θz̄ to q = θ|z̄|
|ȳ| ȳ, given by

σ(s) = (sin s)q + (cos s)θ|z̄|v,

where v belongs to the tangent plane to S at q. Thus, from Lemma 2.3, we obtain

|p(θȳ, t)− p(θz̄, t)| ≤ |p(θȳ, t)− p(q)|+ |p(q)− p(θz̄, t)|

=

∣

∣

∣

∣

∫ s2

s1

∇p(σ(s)) · σ′(s)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ θ

θ|z̄|
|ȳ|

∇p(sȳ) · ȳds

∣

∣

∣

∣

∣

≤
[

2πC

|z̄|2 +
C

2|ȳ|

( |ȳ|2
|z̄|2 − 1

)]

1
θ2 .

Therefore, limθ→∞ p(θȳ, t) = limθ→∞ p(θz̄, t) for each t ∈ [0, T].
Secondly, we must prove the part (b). Let us set the scalar function p∞ : [0, T] −→ R by

p∞(t) = limθ→∞ p(θȳ, t). Arguing as in (2.8), we easily check that,

|p(x, t)− p∞(t)| = lim
θ→∞

|p(x, t)− p(θx, t)| ≤ lim
θ→∞

C

|x|2
(

1 − 1
θ2

)

=
C

|x|2 .

This completes the proof of Proposition 2.4.

In the last result of this section, we will make use of Propositions 2.2 and 2.4 in order to
describe how the stream vector field Ψ behaves at infinity.

Proposition 2.5. Let (u, p) be the solution of (1.4) and Ψ be the associated stream vector field given in

(2.3). Consider M > 0 such that supp(ω(·, t)) ⊂ B̄M(0) for all t ∈ [0, T]. Then, there exists C > 0
such that

|Ψ(x, t)| ≤ C

|x| , |Ψt(x, t)| ≤ C

|x|2 and |∇Ψ(x, t)| ≤ C

|x|2 , (2.10)

for all (x, t) ∈ (R3 \ B̄2M(0))× [0, T].

Proof. The first inequality in (2.10) is straightforward. Now, take (x, t) ∈ (R3 \ B̄2M(0))× [0, T].
Since

Ψt(x, t) =
1

4π

∫

B̄M(0)

(ω · ∇)u − (u · ∇)ω

|x − y| (y, t)dy

and
∫

R3 [(ω · ∇)u − (u · ∇)ω](y, t) = 0, the inequality (2.5) gives us the second estimate in
(2.10). Finally, for each i ∈ {1, 2, 3}, we notice that

|∂iΨ(x, t)| =
∣

∣

∣

∣

1
4π

∫

B̄M(0)

xi − yi

|x − y|3 ω(y, t)dy

∣

∣

∣

∣

≤
∫

B̄M(0)

|ω(y, t)|
|x − y|2 dy,

and thus the third estimate in (2.10) also holds.
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3 Approximate inviscid solutions

Firstly, let us recall some notations given in Section 2. Consider ω0 ∈ (C∞
c (R3))3 and let (u, p)

be the smooth solution of (1.4) in R
3 × [0, T], with initial data

u0 = u0(x) =
−1
4π

∫

R3

x − y

|x − y|3 × ω0(y)dy. (3.1)

Also, let Ψ be the stream vector field associated to u, given in (2.3).
In this section, we intend to approximate the solution u by an appropriate net (uR)R>0 of

divergence-free vector fields. Suppose that Ω̄0 ∪ supp ω(·, t) ⊂ BM0(0) for all t ∈ [0, T], where
M0 > 0, and let us take χ ∈ C∞(R) satisfying 0 ≤ χ ≤ 1, χ ≡ 1 in R \ (−2M0, 2M0), and
χ ≡ 0 in [−M0, M0]. For each R > 0, let us set χR(x) = χ(|x − R|) and

uR(x, t) := curl(χR(Ψ + CR)) = ∇χR × (Ψ + CR) + χRu, (3.2)

where (x, t) ∈ R
3 × [0, T] and CR = −1

4πR

∫

R3 ω0(y)dy. Clearly, each uR is a smooth and
divergence-free vector field in R

3, which vanishes in the neighborhood of ΓR = ∂(ΩR), where
ΩR = Ω0 + R. Besides, taking

p = p − p∞, (3.3)

where the function p∞ : [0, T] −→ R was obtained in Proposition 2.4, we also have

uR
t = ∇χR × Ψt − χR(u · ∇)u − χR∇ p̄ (3.4)

in ΠR × (0, T), recalling that ΠR = R
3 \ ΩR.

Next, we will prove some important estimates involving (uR)R>0, which will allow us to
obtain Theorem 1.1.

Lemma 3.1. Let us consider Ψ, CR and M0 > 0 as mentioned at the beginning of this section. Then

there exist C > 0 and R0 > 0 such that

sup
|y|∈[M0,2M0]

|Ψ(y + R, t) + CR| ≤
C

R2 (3.5)

for all R > R0 and t ∈ [0, T].

Proof. Firstly, we observe that, for all x1, x2 ∈ R
3 \ {0} satisfying |x1| ≥ 2|x2|, we can apply

the mean value theorem in order to obtain
∣

∣

∣

∣

1
|x1 − x2|

− 1
|x1|

∣

∣

∣

∣

≤ 4|x2|
|x1|2

. (3.6)

Let us fix y ∈ R
3 such that |y| ∈ [M0, 2M0]. Since

∫

R3 ω(z, t)dz =
∫

R3 ω0(z)dz, for any
t ∈ [0, T], we have

|Ψ(y + R, t) + CR| =
∣

∣

∣

∣

1
4π

∫

R3

ω(z, t)

|(y + R)− z|dz − 1
4πR

∫

R3
ω0(z)dz

∣

∣

∣

∣

≤
∣

∣

∣

∣

1
4π

∫

R3

ω(z, t)

|(y + R)− z|dz − 1
4π|y + R|

∫

R3
ω(z, t)dz

∣

∣

∣

∣

+
1

4π

∣

∣

∣

∣

1
|y + R| −

1
|R|

∣

∣

∣

∣

∫

R3
|ω0(z)|dz

=: A + B.
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Taking R0 = 4M0, it is clear that, if z ∈ BM0(0) and R > R0, then |(y + R)− z| ≥ R − 3M0 > 0
and |y + R| ≥ R − 2M0 > 0. As a consequence,

A ≤ 1
4π

∫

BM0 (0)

∣

∣

∣

∣

1
|(y + R)− z| −

1
|y + R|

∣

∣

∣

∣

|ω(z, t)|dz

≤ 1
4π

∫

BM0 (0)

|z|
|(y + R)− z||y + R| |ω(z, t)|dz

≤ C

(R − 3M0)2

≤ C

R2 .

for all R > R0. Finally, applying (3.6) with x1 = −R and x2 = y, we also obtain

B ≤ |y|
πR2

∫

BM0 (0)
|ω0(z)|dz ≤ C

R2

for R > R0. Hence, (3.5) follows.

Remark 3.2. The estimates proved in Propositions 2.2 and 2.5 are valid for any (x, t) ∈ (R3 \
{0})× [0, T].

Proposition 3.3. Under the previous notation, there exist two constants C = C(Ω0, T) > 0 and

R0 > 0 such that, for all R > R0, we have:

(a) ‖uR − u‖L∞([0,T];L2(ΠR)) + ‖uR − χRu‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(b) ‖∇uR −∇u‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(c) ‖ p̄∇χR‖L∞([0,T];L2(ΠR)) + ‖∇χR × Ψt‖L∞([0,T];L2(ΠR)) ≤ C/R2;

(d) ‖uR‖L∞([0,T];L∞(ΠR)) + ‖∇uR‖L∞([0,T];L∞(ΠR)) + ‖∇uR‖L∞([0,T];L2(ΠR)) ≤ C.

Proof. ESTIMATE (a): In the first place, using (3.2) and (3.5), we get

‖uR(·, t)− χRu(·, t)‖2
L2(ΠR)

= ‖∇χR × (Ψ + CR)‖2
L2(ΠR)

=
∫

|x−R|∈[M0,2M0]
|χ′(|x − R|)|2|Ψ(x, t) + CR|2dx

=
∫

|y|∈[M0,2M0]
|χ′(|y|)|2|Ψ(y + R, t) + CR|2dy

≤ C sup
|y|∈[M0,2M0]

|Ψ(y + R, t) + CR|2

≤ C

R4 (3.7)

for all t ∈ [0, T] and R > 0 sufficiently large. On the other hand, recalling Proposition 2.2, we
also obtain
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‖(χR − 1)u(·, t)‖2
L2(ΠR)

=
∫

B2M0 (R)∩ΠR

|χ(|x − R|)− 1|2|u(x, t)|2dx

=
∫

B2M0 (0)∩Π0

|χ(|y|)− 1|2|u(y + R, t)|2dy

≤ C
∫

B2M0 (0)∩Π0

|χ(|y|)− 1|2
|y + R|4 dy

≤ C

(R − 2M0)4

≤ C

R4 (3.8)

for all t ∈ [0, T] and R > 0 sufficiently large. As a result, desired estimate holds.

ESTIMATE (b): From (3.2), we know that

∂iu
R − ∂iu = ∂i(∇χR)× (Ψ + CR) +∇χR × ∂iΨ + (∂iχ

R)u + (χR − 1)∂iu.

Hence, using Propositions 2.2 and 2.5, and Lemma 3.1, we can argue as in (3.7) and (3.8) in
order to prove that

‖∇uR −∇u‖L∞([0,T];L2(ΠR)) ≤ CR−2

for all R > 0 sufficiently large.

ESTIMATE (c): The proof of the third desired estimate is very similar to the last ones. In fact,
it is a consequence of (2.9) and (2.10), given in Propositions 2.4 and 2.5, respectively.

ESTIMATE (d): Let us prove the last estimate. Since the inviscid velocity u is a smooth vector
field, Proposition 2.2 assures that ‖∇uR‖L∞([0,T];L2(ΠR)) ≤ C for R > 0 is sufficiently large.
Finally, for all i ∈ {1, 2, 3}, it is clear that

|χR(x)|+ |∂iχ
R(x)|+ |∂i∂jχ

R(x)| ≤ C,

for all x ∈ R
3 and R > 0. It implies that ‖uR‖L∞([0,T];L∞(ΠR)) and ‖∇uR‖L∞([0,T];L∞(ΠR)) are

uniformly bounded with respect to R > 0. This ends the proof.

Next, we prove the last result of this section, which yields a suitable convergence related
to the initial data.

Proposition 3.4. As before, let ω0 ∈ (C∞
c (R3))3 be a divergence-free vector field and consider the

initial velocity u0 as in (3.1). Then, for each R > 0, there exists a unique v0,R ∈ H(ΠR) such that

curl v0,R = ω0|ΠR
. In addition, there exist C > 0 and R0 > 0 such that

‖ṽ0,R − u0‖L2(R3) ≤
C

R2 (3.9)

for all R > R0, where ṽ0,R vanishes on ΩR and equals v0,R on ΠR.

Proof. For each R > 0, the existence of exactly one vector field v0,R ∈ H(ΠR) satisfying
curl v0,R = ω0|ΠR

was given in [4], where the authors have used the Leray–Helmholtz–Weyl
orthogonal decomposition as well as the simple connectedness of ΠR.

In order to prove (3.9), we observe that

‖u0|ΠR
− v0,R‖L2(ΠR) ≤ ‖u0|ΠR

− w‖L2(ΠR)
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for all w ∈ H(ΠR). In particular, taking w(x) = uR(x, 0), where x ∈ R
3, and applying

Proposition 3.3, we obtain

‖ṽ0,R − u0‖2
L2(R3) = ‖v0,R − u0|ΠR

‖2
L2(ΠR)

+ ‖u0‖2
L2(Ω̄R)

≤ ‖u0|ΠR
− uR(·, 0)‖2

L2(ΠR)
+ ‖u0‖2

L2(Ω̄R)

≤ C

R4 + ‖u0‖2
L2(Ω̄R)

,

for all R > 0 sufficiently large. Besides, taking R > 2M0, we observe that Ω̄R ∩ supp ω0 = ∅.
As a consequence, for any x ∈ ΩR and y ∈ supp ω0, we have

|x − y| ≥ R − |y| − |x − R| ≥ R − 2M0 > 0.

Therefore,

‖u0‖2
L2(Ω̄R)

≤ C
∫

BM0 (0)

|ω0(y)|2
|x − y|4 dydx ≤ C

(R − 2M0)4 ≤ C

R4 ,

and (3.9) holds.

4 Leray–Hopf solutions in exterior domains

Throughout this section, let Π = R
3 \Ω ⊂ R

3 be a smooth exterior domain, which means that
Ω is a smooth compact set in R

3. Given T > 0 and v0 ∈ H(Π), we consider the Navier–Stokes
system























vt + (v · ∇)v − ν∆v +∇P = 0, (x, t) ∈ Π × (0, T),

div v = 0, (x, t) ∈ Π × [0, T),

v(x, t) = 0, (x, t) ∈ ∂Π × (0, T),

v(x, 0) = v0(x), x ∈ Π,

(4.1)

where v = v(x, t) is the velocity field evaluated at the point x ∈ Π and at the time t ∈ [0, T],
P = P(x, t) is the related scalar pressure field, and ν > 0 is the kinematic viscosity.

Definition 4.1. Under the notation above, a measurable vector field

v ∈ L2(0, T; V(Π)) ∩ L∞(0, T; H(Π))

is said to be a weak solution of (4.1) in Π × [0, T) if, for any Φ ∈ DT(Π), we have

∫ T

0

∫

Π
[v · Φt − ν(∇v · ∇Φ)− (v · ∇)v · Φ](x, t)dxdt = −

∫

Π
v0 · Φ(x, 0)dx. (4.2)

The next result assures the existence of a weak solution to (4.1) satisfying a very important
additional estimate, which is called a Leray–Hopf solution of (4.1).

Theorem 4.2. Given T > 0 and v0 ∈ H(Π), the system (4.1) there exists a weak solution v :
Π × [0, T) −→ R

3 which satisfies the energy estimate

‖v(·, t)‖2
L2(Π) + 2ν

∫ t

0
‖∇v(·, τ)‖2

L2(Π)dτ ≤ ‖v0‖2
L2(Π) (4.3)

for all t ∈ [0, T]
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Proof. The proof of this result can be found in [2].

Remark 4.3. Taking T > 0 and v0 ∈ H(Π), let us consider a weak solution v : Π × [0, T) −→
R

3 of (4.1). It is known that, for any Φ ∈ D(Π × [0, T)), v satisfies
∫

Π
(v · Φ)(x, t)dx −

∫

Π
(v · Φ)(x, 0)dx

=
∫ t

0

∫

Π
[v · Φt − ν(∇v · ∇Φ)− (v · ∇)v · Φ](x, τ)dτ (4.4)

for all t ∈ [0, T) (see [3], for instance).
Later, we will apply the relation (4.4) replacing Φ by each approximate inviscid solutions

uR, where R > 0. For this reason, we are supposed to prove that (4.4) remains valid when Φ

decays sufficiently fast at infinity, but is not compactly supported.

Let η : R
3 −→ R be a smooth function which satisfies 0 ≤ η ≤ 1 in R

3, η ≡ 1 in B1(0),
and η ≡ 0 in R

3 \ B2(0). For each s > 0, we set ηs(x) = η(s−1x), where x ∈ R. Under these
notations, we are ready to present the next two results.

Lemma 4.4. Let F : Π −→ R
3 and G : Π × [0, T] −→ R

3 be two smooth vector fields, with

F ∈ H1(Π). Also, suppose that there exist C > 0 and α > 0 such that

|G(x, t)| ≤ C

|x|α (4.5)

for all (x, t) ∈ (R3 \ {0})× [0, T]. The following properties hold:

(a) ‖ηsF − F‖H1(Π) → 0 as s → ∞;

(b) If a ∈ (3, ∞], then ‖∇ηs‖La(Π) → 0 as s → ∞;

(c) ‖∂iηsG(·, t)‖L2(Π) ≤ C
sα−1/2 for all t ∈ [0, T] and i ∈ {1, 2, 3};

(d) ‖∂2
ijηsG(·, t)‖L2(Π) ≤ C

sα+1/2 for all t ∈ [0, T] and i, j ∈ {1, 2, 3};

(e) If α >
3
2 , then ‖ηsG(·, t)− G(·, t)‖L2(Π) ≤ C

sα−3/2 for all t ∈ [0, T].

Proof. Take d > 0 such that Ω ⊂ Bd(0), where Π = R
3 \Ω. In this proof, we will only consider

the functions ηs : R
3 −→ R, with s ≥ d.

PART (a): It follows immediately from Lebesgue’s dominated convergence theorem.

PART (b): Let i ∈ {1, 2, 3}. If a ∈ (3,+∞), the desired convergence is a consequence of
∫

Π
|∂iηs(x)|adx =

∫

R3

∣

∣

∣
∂iη

( x

s

)∣

∣

∣

a 1
sa

dx =
1

sa−3 ‖∂iη‖a
La .

On the other hand, the estimate ‖∂iηs‖L∞(Π) ≤ C
s gives us the complete conclusion.

PARTS (c) and (d): Let us take t ∈ [0, T] and i, j ∈ {1, 2, 3}. Thus, using (4.5), we take

∫

Π
|∂iηs(x)G(x.t)|2dx =

∫

|x|∈[s,2s]

1
s2

∣

∣

∣
∂iη

( x

s

)∣

∣

∣

2
|G(x, t)|2dx

=
∫

|y|∈[1,2]
s |∂iη(y)|2 |G(sy, t)|2dy

≤ C

s2α−1

(

∫

|y|∈[1,2]
|∂iη(y)|2dy

)
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and

∫

Π
|∂2

ijηs(x)G(x, t)|2dx =
∫

|x|∈[s,2s]

1
s4

∣

∣

∣
∂2

ijη
( x

s

)∣

∣

∣

2
|G(x, t)|2dx

=
∫

|y|∈[1,2]

1
s

∣

∣

∣
∂2

ijη(y)
∣

∣

∣

2
|G(sy, t)|2dy

≤ C

s2α+1

(

∫

|y|∈[1,2]
|∂2

ijη(y)|2dy

)

.

PART (e): For the last estimate, we assume that α > 3/2. Once again, applying (4.5), we have

∫

Π
|ηs(x)G(x, t)− G(x, t)|2dx =

∫

|x|≥s

∣

∣

∣

[

η
( x

s

)

− 1
]

G(x, t)
∣

∣

∣

2
dx

=
∫

|y|≥1
|η(y)− 1|2|G(sy, t)|2s3dy

≤ C

(2α − 3)s2α−3

for each t ∈ [0, T]. It concludes the proof.

The following result is the last one of this section. We emphasize that its content brings
the information that (4.4) holds for a larger class of test functions.

Proposition 4.5. Let Ψ̃ : R
3 × [0, T] −→ R

3 and F : R
3 −→ R

3 be two smooth vector fields

satisfying:

(a) supp(Ψ̃) ⊂ (R3 \ B̄)× [0, T], where B is an open ball containing Ω;

(b) F is divergence-free and supp(F) is a compact subset of Π;

(c) There exists C1 > 0 such that

|Ψ̃(x, t)| ≤ C1

|x| , |Ψ̃t(x, t)| ≤ C1

|x|2 and |∇Ψ̃(x, t)| ≤ C1

|x|2 , (4.6)

for all (x, t) ∈ (R3 \ {0})× [0, T].

Additionally, consider Φ̃ := curl(Ψ̃) + F and suppose that there exists C2 > 0 such that

|Φ̃(x, t)| ≤ C2

|x|2 , |Φ̃t(x, t)| ≤ C2

|x|3 and |∇Φ̃(x, t)| ≤ C2

|x|3 , (4.7)

for all (x, t) ∈ (R3 \ {0})× [0, T]. Then, a weak solution v of (4.1), with initial data v0 ∈ H(Π),

satisfies

∫

Π
(v · Φ̃)(x, t)dx −

∫

Π
v0(x) · Φ̃(x, 0)dx

=
∫ t

0

∫

Π
[v · Φ̃t − ν(∇v · ∇Φ̃) + (v · ∇)Φ̃ · v](x, τ)dτ. (4.8)
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Proof. As in the proof of Lemma 2.10, consider Π = R
3 \ Ω and take d > 0 such that Ω ⊂

Bd(0). For each s ≥ d, define Φs ∈ D(Π × [0, T)) given by

Φs := curl(ηsΨ̃) + F = ∇ηs × Ψ̃ + ηs curl Ψ̃ + F.

From (4.4), we obtain
∫

Π
(v · Φs)(x, t)dx −

∫

Π
(v · Φs)(x, 0)dx

=
∫ t

0

∫

Π
[v · (Φs)t − ν(∇v · ∇Φs)− (v · ∇)v · Φs](x, τ)dτ (4.9)

for all t ∈ [0, T).
Next, we fix t ∈ [0, T), in order to pass to the limit in (4.9) as s → ∞. Firstly, using (4.3)

and Lemma 4.4, we take
∣

∣

∣

∣

∫

Π
(v · Φs)(x, t)dx −

∫

Π
(v · Φ̃)(x, t)dx

∣

∣

∣

∣

≤ ‖v(·, t)‖L2(Π)‖∇ηs × Ψ̃ + (ηs − 1) curl Ψ̃‖L2(Π)

≤
C‖v0‖L2(Π)

s1/2
(4.10)

and
∣

∣

∣

∣

∫ t

0

∫

Π
(v · (Φs)t)dxdτ−

∫ t

0

∫

Π
(v · Φ̃t)dxdτ

∣

∣

∣

∣

≤
∫ t

0

∫

Π
|v||∇ηs × Ψ̃t + (ηs − 1)(curl Ψ̃)t|(x, τ)dxdτ

≤ ‖v0‖L2(Π)

∫ t

0
(‖∇ηs × Ψ̃t‖L2(Π) + ‖(ηs − 1)(curl Ψ̃)t‖L2(Π))(τ)dτ

≤
CT‖v0‖L2(Π)

s3/2
. (4.11)

Likewise, using Lemma 4.4, (4.3) and

∂iΦ
s − ∂iΦ̃ = ∂i(∇ηs)× Ψ̃ +∇ηs × ∂iΨ̃ + (∂iηs) curl Ψ̃ + (ηs − 1)∂i(curl Ψ̃)

where i ∈ {1, 2, 3}, we obtain the estimate
∣

∣

∣

∣

∫ t

0

∫

Π
(∇v · ∇Φs)(x, τ)dxdτ −

∫ t

0

∫

Π
(∇v · ∇Φ̃)(x, τ)dxdτ

∣

∣

∣

∣

≤
3

∑
i=1

∫ t

0
‖∂iv(·, τ)‖L2(Π)‖(∂iΦ

s − ∂iΦ̃)(·, τ)‖L2(Π)dτ

≤
‖v0‖L2(Π)√

2ν

3

∑
i=1

(

∫ t

0
‖(∂iΦ

s − ∂iΦ̃)(·, τ)‖2
L2(Π)dτ

)1/2

≤ C

s1/2
. (4.12)

To conclude the proof, we use

∫ t

0

∫

Π
[(v · ∇)v] · Φs(x.τ)dxdτ = −

∫ t

0

∫

Π
[(v · ∇)Φs] · v(x.τ)dxdτ,

as well as Lemma 4.4 and (4.3) in order to get
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∣

∣

∣

∣

∫ t

0

∫

Π
[(v · ∇)v] · Φs(x.τ)dxdτ +

∫ t

0

∫

Π
[(v · ∇)Φ̃] · v(x.τ)dxdτ

∣

∣

∣

∣

≤
∫ t

0

∫

Π
|v|2|∇Φs −∇Φ̃|2(x, τ)dxdτ

≤
∫ t

0
‖v(·, τ)‖2

L4(Π)‖(∇Φs −∇Φ̃)(·, τ)‖L2(Π)dτ

≤ C

s1/2

∫ t

0
‖v(·, τ)‖2

H1(Π)dτ

≤ C

s1/2
. (4.13)

Therefore, from (4.10), (4.11), (4.12) and (4.13), the relation (4.8) holds.

5 Proof of Theorem 1.1

This section is devoted to the main result of this paper. Let us recall its hypotheses:

• ω0 is a smooth, compactly supported and divergence-free vector field in R
3;

• (u, p) is the smooth solution of (1.4), defined in R
3 × (0, T), with initial data u0, as in

(1.3).

Taken T ∈ (0, T∗), R > 0 and ν > 0, we also consider:

• uR as defined in (3.2);

• v0,R is the L2-orthogonal projection of u0|ΠR
on H(ΠR), mentioned in Proposition 3.4;

• vν,R is a weak solution of (4.1) in ΠR × [0, T), with initial data v0,R, given by Theorem 4.2.

Proof of Theorem 1.1. CLAIM: There exist C = C(T, Ω0, ω0) > 0 and R0 > 0 such that, if
R > R0, then

‖vν,R(·, t)− uR(·, t)‖2
L2(ΠR)

+ ν
∫ t

0
‖∇vν,R(·, τ)−∇uR(·, τ)‖2

L2(ΠR)
dτ ≤ C

(

1
R2 + ν

)

(5.1)

for almost every t ∈ [0, T]. As a consequence, Theorem 1.1 holds.

From now on, we will focus on the verification of (5.1). To do so, the main arguments used
below take into account those presented in [8]. Let us fix t ∈ [0, T]. From (4.3),

1
2
‖vν,R(·, t)‖2

L2(ΠR)
+ ν

∫ t

0
‖∇vν,R(·, τ)‖2

L2(ΠR)
dτ ≤ 1

2
‖v0,R‖2

L2(ΠR)
=

1
2
‖ṽ0,R‖2

L2(R3), (5.2)

where ṽ0,R equals v0,R on ΠR and vanishes otherwise.
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Next, due to (2.7) and (2.10), we can apply Proposition 4.5, with v = vν,R and Φ̃ = uR, in
order to obtain

−
∫

ΠR

(vν,R · uR)(x, t)dx +
∫

ΠR

(v0,R · uR)(x, 0)dx

= −
∫ t

0

∫

ΠR

[vν,R · uR
t − ν∇vν,R · ∇uR](x, τ)dxdτ −

∫ t

0

∫

ΠR

[(vν,R · ∇)uR] · vν,Rdxdτ

= −
∫ t

0

∫

ΠR

vν,R · [∇χR × Ψt − χR(u · ∇)u − χR∇p](x, τ)dxdτ

+ ν
∫ t

0

∫

ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ −
∫ t

0

∫

ΠR

[(vν,R · ∇)uR] · vν,R(x, τ)dxdτ

= −
∫ t

0

∫

ΠR

vν,R · [∇χR × Ψt − χR∇p](x, τ)dxdτ + ν
∫ t

0

∫

ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ

+
∫ t

0

∫

ΠR

[(χRu − uR)∇u] · vν,R(x, τ)dxdτ +
∫ t

0

∫

ΠR

[(uR · ∇)(u − uR)] · vν,R(x, τ)dxdτ

+
∫ t

0

∫

ΠR

[(vν,R − uR)∇uR] · (vν,R − uR)(x, τ)dxdτ. (5.3)

Besides, recalling that the kinetic energy E(t) = 1
2

∫

R3 |u(x, t)|2dx is a conserved quantity in
time, we also take

1
2
‖uR(·, t)‖2

L2(ΠR)
≤ 1

2
‖(∇χR × (Ψ + CR))(·, t)‖2

L2(ΠR)

+ ‖(∇χR × (Ψ + CR))(·, t)‖L2(ΠR)‖χRu‖L2(ΠR) +
1
2
‖χRu(·, t)‖2

L2(ΠR)

≤ 1
2
‖(uR − χRu)(·, t)‖2

L2(ΠR)

+ ‖(uR − χRu)(·, t)‖L2(ΠR)‖χRu‖L2(ΠR) +
1
2
‖u0‖2

L2(R3). (5.4)

As a result, from (5.2), (5.3) and (5.4) , we conclude that

1
2
‖vν,R − uR‖2

L2(ΠR)
+ ν

∫ t

0
‖(∇vν,R −∇uR)(·, τ)‖2

L2(ΠR)
dτ

≤
[

1
2
‖ṽ0,R − u0‖2

L2(R3) +
∫

ΠR

v0,R · (u0 − uR)(x, 0)dx

]

−
[

∫ t

0

∫

ΠR

vν,R · (∇χR × Ψt − χR∇p)(x, τ)dxdτ

]

+ ν

[

∫ t

0
‖∇uR‖2

L2(ΠR)
−

∫ t

0

∫

ΠR

(∇vν,R · ∇uR)(x, τ)dxdτ

]

+

[

∫ t

0

∫

ΠR

[(χRu − uR)∇u] · vν,R(x, τ)dxdτ +
∫ t

0

∫

ΠR

[(uR · ∇)(u − uR)] · vν,R(x, τ)dxdτ

]

+

[

∫ t

0

∫

ΠR

[(vν,R − uR)∇uR] · (vν,R − uR)(x, τ)dxdτ

]

+

[

1
2
‖(uR − χRu)(·, t)‖2

L2(ΠR)
+ ‖(uR − χRu)(·, t)‖L2(ΠR)‖χRu‖L2(ΠR)

]

=: A1 + A2 + A3 + A4 + A5 + A6. (5.5)
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Firstly, using Proposition 3.3(d), we easily get

|A5| ≤ C
∫ t

0
‖vν,R − uR‖2

L2(ΠR)
(x, τ)dτ.

Likewise, A6 was completely analyzed in Proposition 3.3(a). Thus, in the rest of this proof, we
will estimate each Ai, with i ∈ {1, 2, 3, 4}, in terms of R > 0 and ν > 0.

To see that

|A1| ≤
C

R2 ,

we just apply Propositions 3.3(a) and 3.4. In fact, observe that
∫

ΠR

v0,R · (u0 − uR)(x, 0)dx ≤ ‖v0,R‖L2(ΠR)‖(u0 − uR)(·, 0)‖L2(ΠR)

≤ ‖u0‖L2(R3)‖(u0 − uR)(·, 0)‖L2(ΠR)

≤ C

R2 ,

and recall (3.9).
Next, using the relation

−
∫ t

0

∫

ΠR

vν,R · (χR∇p)dxdτ =
∫ t

0

∫

ΠR

vν,R · (p∇χR)dxdτ,

and Proposition 3.3(c), we obtain

|A2| =
∣

∣

∣

∣

∫ t

0

∫

ΠR

vν,R · (∇χR × Ψt + p∇χR)(x, τ)dxdτ

∣

∣

∣

∣

≤
∫ t

0
‖vν,R‖L2(ΠR)(‖∇χR × Ψt‖L2(ΠR) + ‖p∇χR‖L2(ΠR))(·, τ)dxdτ

≤ T‖v0,R‖L2(ΠR)(‖∇χR × Ψt‖L∞([0,T];L2(ΠR)) + ‖p∇χR‖L∞([0,T];L2(ΠR)))

≤
CT‖u0‖L2(R3)

R2 .

Besides, using Young’s inequality and Proposition 3.3(d), we can easily check that

|A3| =
∣

∣

∣

∣

ν
∫ t

0

∫

ΠR

∇uR · (∇uR − vν,R)(x, τ)dxdτ

∣

∣

∣

∣

≤ ν

2

∫ t

0
‖∇uR‖2

L2(ΠR)
(τ)dτ +

ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ

≤ Cν +
ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ.

At last, the estimate

|A4| ≤
∫ t

0
‖χRu − uR‖L2(ΠR)‖∇u‖L∞(ΠR)‖vν,R‖L2(ΠR)dτ

+
∫ t

0
‖uR‖L∞(ΠR)‖∇uR −∇u‖L2(ΠR)‖vν,R‖L2(ΠR)dτ

≤ CT

R2

comes from Theorem 4.2 and Proposition 3.3(a),(b),(d).
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Therefore, there exist K > 0 and L > 0, independent of time t, such that

1
2
‖vν,R(·, t)− uR(·, t)‖2

L2(ΠR)
+

ν

2

∫ t

0
‖∇vν,R −∇uR‖2

L2(ΠR)
(τ)dτ

≤ K

(

1
R2 + ν

)

+ L
∫ t

0
‖vν,R − uR‖2

L2(ΠR)
(τ)dτ

for any t ∈ [0, T]. Thus, the integral form of Gronwall’s inequality allows us to achieve the
estimate (5.1) .

6 Some additional comments

1. In order to obtain Proposition 3.4, the circulation of the velocity on the boundary ΓR is
not required, since each ΠR is a 3D simply connected domain.

2. In this paper, we deal with three-dimensional incompressible flows, with small viscos-
ity, around distant obstacles. Perhaps, the analogous two-dimensional case can also be
studied. To be more precise, let U0 ⊂ R

2 be a smooth bounded domain, which is also
connected and simply connected. For each R ≥ 0, let us set

UR = U0 + (R, 0), VR = R
2 \ UR and CR = ∂UR = ∂ΠR.

Let us consider ω0 ∈ C∞
c (R2) and γ ∈ R, which are both independent of R > 0. Set

y0,R = KR[ω
0] + (γ + m)HR,

where m =
∫

R2 ω0dx, KR[ω
0] = KR[ω

0](x) is the Biot–Savart operator in VR and HR =

HR(x) is the generator of the harmonic vector fields in VR. Thanks to Lemma 2.2 and
Proposition 2.1 of [7], for each R > 0, we have



































div y0,R = 0, in VR,

curl y0,R = ω0, in VR,

y0,R · n̂ = 0, on CR,

|y0,R(x)| → 0, as |x| → +∞,
∫

CR
u0,R · ds = γ.

Thus, it would be very nice to understand the asymptotic behavior of the family of 2D
incompressible flows, with small viscosity, around distant obstacles, governed by























yν,R
t + (yν,R · ∇)yν,R − ν∆yν,R +∇πν,R = 0, (x, t) ∈ VR × (0, T),

div yν,R = 0, (x, t) ∈ VR × [0, T),

yν,R(x, t) = 0, (x, t) ∈ CR × (0, T),

yν,R(x, 0) = y0,R(x), x ∈ VR.

(6.1)

It means that we have fixed ω0 as an initial vorticity and γ as the circulation of the initial
flow around each obstacle UR. We should notice that y0,R ∈ L2,∞(ΠR), but y0,R /∈ L2(ΠR).
In this case, it seems to us that Kato’s argument can not be applied following the same
structure of the proof of Theorem 1.1. However, another approach may work if we take
mild solutions of (6.1), obtained [11].
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3. In order to simplify calculations and estimates, we have considered material obstacles
of the form ΩR = Ω0 + R = Ω0 + R1, where 1 = (1, 0, 0). However, our main result
remains valid if we replace ΩR by Ω0 + R~z, for each R > 0, where ~z is another unit
vector in R

3.

4. We believe that Theorem 1.1 is related to that one obtained in [10], in the three-
dimensional case. Let Ω0 ⊂ R

3 be a smooth and simply connected bounded domain
Ω0 ⊂ R

3. In that work, the authors started with a smooth initial vorticity ω0 ∈ C∞
c (R3),

which is divergence-free and, for each L > 0, they took uL
0 as the unique divergence-free

vector field in ΩL = LΩ0 that is tangent to ∂ΩL and has a curl equal to ω0 in ΩL. At this
point, they studied the limiting behavior of a family

{uν,L : ν > 0 and L > 0},

consisting of weak solutions to the Navier–Stokes system























uν,L
t + (uν,L · ∇)uν,L − ν∆uν,L +∇πν,L = 0, (x, t) ∈ ΩL × (0, T),

div uν,L = 0, (x, t) ∈ ΩL × [0, T),

uν,L(x, t) = 0, (x, t) ∈ ∂ΩL × (0, T),

uν,L(x, 0) = uL
0 (x), x ∈ ΩL.

(6.2)

Summarizing, it is proved in Theorem 1.2 of [10] that

‖uν,L − u‖L∞([0,T];L2(ΩL)) ≤
[

C

(

ν +
1√
L

)

+ ‖uL
0 − u0‖L2(ΩL)

]

eCT, (6.3)

where u = u(x, t) is a smooth solution to (1.4), with initial data u0, given in (1.3). Above,
we observe that

‖uL
0 − u0‖L2(ΩL) ≤ CL−1/2,

which allows us to contrast the current main result of this paper with (6.3). In both
cases, there are results for 3D incompressible flows, with small viscosity, in domains
with distant boundaries. Thus, it seems to us that the rates of convergence

R−1 and L−1/2

on the right side of (1.6) and (6.3), respectively, suggest that the boundary ΓR = ∂ΠR,
in (1.5), produces a bigger effect in the vanishing viscosity limit, when compared to the
same effect produced by ∂ΩL, in (6.2).
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Appendix: List of notations

This appendix reunites some notations and definitions that we have used in the previous
sections. Our purpose here is to become the reading of this article easier.
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Domains

• Ω0 ⊂ R
3 be a smooth bounded domain, such that R

3 \ Ω0 is connected and simply
connected;

• For each R ≥ 0,

R := (R, 0, 0), ΩR := Ω0 + R, ΠR := R
3 \ ΩR and ΓR := ∂ΩR = ∂ΠR.

Operators

For a smooth vector field F = (F1, F2, F3) in R
3, we denote:

• div F := ∂1F1 + ∂2F2 + ∂3F3;

• curl F := (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1);

• (F · ∇)F := F1∂1F + F2∂2F + F3∂3F.

Function spaces

Given an open set O ⊂ R
3 and a function f : O −→ R, the support of f is the closed set

supp f := {x ∈ O : f (x) 6= 0}.

Under these notations,

• L2,∞(O) denotes the Lorentz space of f satisfying sups>0 As < +∞, where

As := s2µ({x ∈ O : | f (x)| > s})

and µ is the Lebesgue measure in R
3.

• C∞
c (O) denotes the space of all infinitely differentiable real functions with compact sup-

port in O;

• D(O) := {Ψ ∈ (C∞
c (O))3 : div Ψ = 0 in O};

• V(O) := {Ψ ∈ (H1(O))3 : div Ψ = 0 in O and u = 0 on ∂O};

• H(O) := {Ψ ∈ (L2(O))3 : div Ψ = 0 in O and Ψ · n = 0 on ∂O}, where n is the outward
directed unit normal vector field to ∂O;

• Given T > 0, DT(O) denotes the set of all ϕ ∈ (C∞
c (O × [0, T)))3 such that

divx ϕ(x, t) := ∂1 ϕ1 + ∂2ϕ2 + ∂3ϕ3 = 0 in Π × [0, T).

Solutions and initial data

• ω0 ∈ D(R3) denotes a fixed initial vorticity;

• u0 represents the velocity defined on R
3, associated to the vorticity ω0, as in (1.3);

• (u, p) denotes a smooth solution of (1.4), with initial data u0;

• (v, P) denotes a Leray–Hopf solution of (4.1);

• Given R > 0 and ν > 0, (vν,R, Pν,R) denotes a Leray–Hopf solution of (1.5).
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Abstract. In this paper, we study the existence of infinitely many nodal solutions for
the following quasilinear elliptic equation

{

−∇ ·
[

φ′(|∇u|2)∇u
]

+ |u|α−2u = f (u), x ∈ R
N ,

u(x) → 0, as |x| → ∞,

where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N,

f ∈ C1(R+, R) is of subcritical, q ≤ α ≤ p∗q′/p′, let p∗ = Np
N−p , p′ and q′ be the

conjugate exponents respectively of p and q. For any given integer k ≥ 0, we prove that
the equation has a pair of radial nodal solution with exactly k nodes.

Keywords: quasilinear elliptic equation, nodal solutions, multiple solutions.

2020 Mathematics Subject Classification: 35A15, 35J62, 46E30.

1 Introduction

In this paper, we consider the following quasilinear elliptic equation

−∇ ·
[

φ′(|∇u|2)∇u
]

+ |u|α−2u = f (u), x ∈ R
N , (1.1)

where N ≥ 2, φ ∈ C2(R+, R+) has a different growth near zero and infinity. Quasilinear

equation of form (1.1) can be transformed into different differential equations corresponding

to various types of φ. For example, when φ(t) = 2[(1 + t)
1
2 − 1] and α = 2, equation (1.1)

corresponds to the prescribed mean curvature equation or the capillary surface equation

−∇ ·
( ∇u
√

1 + |∇u|2

)

+ u = f (u), x ∈ R
N .

Such problem has been deeply studied since last century, under different assumptions on the

nonlinearity f , the existence and nonexistence of solutions have been investigated by many

authors, see [3, 5, 8, 27] for example.

BEmail: yangxiaolong@mails.ccnu.edu.cn
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Equation (1.1) also related to (p, q)-Laplacian equations. In fact, if φ(t) = 2
p t

p
2 + 2

q t
q
2 , then

equation (1.1) becomes

− ∆pu − ∆qu + |u|α−2u = f (u) in R
N , (1.2)

where ∆pu = div(|∇u|p−2∇u), 1 < p < q < N and α > 2 satisfies some conditions. Equation

(1.2) originates from the following reaction diffusion system

∂u

∂t
= div

[

D(u)∇u
]

+ c(x, u), (1.3)

where D(u) = (|∇u|p−2 + |∇u|q−2). This system has a wide range of application in physics

and related sciences such as biophysics, plasma physics and chemical reaction design. In such

applications, the function u describes a concentration; the first term on the right hand side of

(1.3) corresponds to diffusion with a diffusion coefficient D(u), whereas the second one is the

reaction and relates to source and loss processes. Typically, in chemical and biological appli-

cations, the reaction term c(x, u) has a polynomial form with respect to the concentration u.

For more mathematical and physical background of equations (1.2)–(1.3), we refer the reader

to the papers [9, 24, 25, 31] and the references therein. In particular, when p = q = α = 2,

equation (1.2) reduced to

− ∆u + u = f (u) in R
N . (1.4)

There has been plenty of results on the existence, nonexistence and multiplicity of positive or

sign-changing solutions for equation (1.4), see [2, 6, 7, 10, 17] and the references therein.

If p = q = α 6= 2, then equation (1.2) becomes into the following general p-Laplacian

equation

− ∆pu + |u|p−2u = f (u) in R
N , (1.5)

which was studied by many authors. Many results for equation (1.4) has been extended to

equation (1.5). Deng, Guo and Wang in [12] proved the existence of nodal solutions for p-

Laplacian equations with critical growth. Recently in [13], Deng, Li and Shuai studied the

existence of solutions for a class of p-Laplacian equations with critical growth and potential

vanishing at infinity.

Recently, Azzollini et al. [1] studied the following quasilinear elliptic equation

{

−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = |u|s−2u, x ∈ R
N ,

u(x) → 0, as |x| → ∞,
(1.6)

where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N, 1 <

α ≤ p∗q′/p′ and max{q, α} < s < p∗ = Np
N−p , with being p′, q′ are the conjugate exponents

of p, q respectively. The authors in [1] found a sort of Orlicz–Sobolev space in which the

energy functional is well defined. They also proved that the Orlicz–Sobolev space compactly

embedded into certain Lebesgue spaces. Then, they obtained the existence of a sequence of

nontrivial radial solutions for equation (1.6) besides a nontrivial non-negative radial solution.

General quasilinear elliptic problems of (1.1) have been intensively studied, see for example,

[1, 11, 15, 16, 18, 28] and the references therein.

Motivated by the above results, in this paper, we intend to find nodal solutions for the

following quasilinear elliptic equation

{

−∇ ·
[

φ′(|∇u|2)∇u
]

+ |u|α−2u = f (u), x ∈ R
N ,

u(x) → 0, as |x| → ∞,
(1.7)



Infinitely many nodal solutions for a class of quasilinear elliptic equation 3

where N ≥ 2, φ(t) behaves like tq/2 for small t and tp/2 for large t, 1 < p < q < N, q ≤ α ≤

p∗q′/p′, and the function f satisfies some conditions given by ( f1)-( f3) in this paper. Similar

as [1], we impose some restrictions on φ, let φ ∈ C2(R+, R+) such that

(Φ1) φ(0) = 0;

(Φ2) there exists a positive constant C such that

{

Ct
p
2 −1 ≤ φ′(t), if t ≥ 1,

Ct
q
2−1 ≤ φ′(t), if 0 ≤ t ≤ 1;

(Φ3) there exists a positive constant C such that

{

φ(t) ≤ Ct
p
2 , if t ≥ 1,

φ(t) ≤ Ct
q
2 , if 0 ≤ t ≤ 1;

(Φ4) there exists α < θ such that φ′(t)/t
θ−2

2 is strictly decreasing for all t > 0;

(Φ5) the map t 7→ φ(t2) is convex.

We also assume the nonlinearity f satisfies:

( f1) f (t) = o(tα−1), as t → 0+;

( f2) f (t) = o(tp∗−1), as t → +∞;

( f3) there exists α < θ such that

0 < (θ − 1) f (t) ≤ f ′(t)t, for all t > 0.

Before we present our main result, we give some notions and definitions. In the following, we

use ‖u‖q to denote the Lq(RN) norm.

Definition 1.1 (See [1, Definition 2.1]). Let 1 < p < q and Ω ⊂ R
N . Denote Lp(Ω) + Lq(Ω)

the completion of C∞
c (Ω, R) in the norm

‖u‖Lp(Ω)+Lq(Ω) = inf
{

‖v‖Lp(Ω) + ‖w‖Lq(Ω) | v ∈ Lp(Ω), w ∈ Lq(Ω), u = v + w
}

.

Next, we denote ‖u‖p,q = ‖u‖Lp(RN)+Lq(RN). Moreover, in [4], it has shown that Lp(Ω) +

Lq(Ω) can be characterized as an Orlicz spaces.

Definition 1.2 (See [1, Definition 2.3]). Let α > 1, the Orlicz–Sobolev space W(RN) is the

completion of C∞
c (RN , R) in the norm

‖u‖ = ‖u‖α + ‖∇u‖p,q.

By Theorem 2.8 of [1], the space W(RN) can be precise description by

W(RN) =
{

u ∈ Lα(RN) ∩ Lp∗(RN) | ∇u ∈ Lp(RN) + Lq(RN)
}

.

In the following, we define

(

C∞
c (RN , R)

)

r
=
{

u ∈ C∞
c (RN , R) | u is radially symmetric

}

.
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Then Wr(RN) is the completion of
(

C∞
c (RN , R)

)

r
in the norm ‖ · ‖, namely

Wr(R
N) =

(

C∞
c (RN , R)

)

r

‖·‖
.

Thus, Wr(RN) coincides with the set of radial functions of W(RN). Define the energy func-

tional I corresponding to equation (1.7) by

I(u) =
1

2

∫

RN
φ(|∇u|2)dx +

1

α

∫

RN
|u|α dx −

∫

RN
F(u)dx, u ∈ Wr(R

N),

where F(u) =
∫ u

0 f (z)dz. The well-posedness and regularity of I(u) are given by Proposi-

tion 3.1 in [1] and hypotheses ( f1)–( f2).

A function u ∈ Wr(RN) is called a weak solution of equation (1.7) if for all ϕ ∈ C∞
0 (RN , R),

it holds
∫

RN
φ′(|∇u|2)∇u∇ϕ dx +

∫

RN
|u|α−2uϕ dx −

∫

RN
f (u)ϕ dx = 0.

In particular, for u ∈ Wr(RN), we denote

γ(u) = 〈I′(u), u〉 =
∫

RN
φ′(|∇u|2)|∇u|2 dx +

∫

RN
|u|α dx −

∫

RN
f (u)u dx.

Now we state our main result. We denote u+ = max{u, 0} and u− = min{u, 0}.

Theorem 1.3. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3)

hold, then there exists a pair of radial solutions u±
k of equation (1.7) with the following properties:

(i) u−
k (0) < 0 < u+

k (0),

(ii) u±
k possess exactly k nodes ri with 0 < r1 < r2 < · · · < rk < +∞, and u±

k (x)||x|=ri
= 0,

i = 1, 2, . . . , k.

Remark 1.4. The solutions uk obtained in Theorem 1.3, as we will see, is the least energy radial

solution of equation (1.7) and changes sign exactly k (k ∈ {0, 1, 2, . . . }) times. We should point

out that α < p∗. The existence of u0 had been proved by the Mountain Pass Theorem in [1].

Remark 1.5. Like [1], a specific example of the function φ(t) is

φ(t) =
2

p

[

(

1 + t
q
2
)

p
q − 1

]

.

In this paper, we prove by constrained minimization method in a special space in which

each function changes sign k(k ∈ {0, 1, 2, . . . }) times. We first prove the existence of minimizer

and then verify that the minimizer is indeed a solution to equation (1.7) by analyzing the least

energy related to the minimizer. Here, we have to point out that it is hard to obtain radial

solutions with a prescribed number of nodes by gluing method as in Bartsch–Willem [6] and

Cao–Zhu [10]. Because, we obtain that all weak solutions of (1.7) by Lemma 2.7 are only of

class C1,γ
loc (R

N), and it is not enough to glue the functions in each annuli by matching the

normal derivative at each junction point. We will follow the approach explored by Z. Liu and

Z.-Q. Wang [21,22], see Section 3 for more details. Moreover, we introduce some new analysis

techniques and establish better inequalities.

This paper is organized as follows. In Section 2, we give some preliminary results, which

are crucial to prove our main results. In Section 3, we will prove our main theorem.

Throughout this paper, we denote “ → ” and “ ⇀ ” as the strong convergence and the

weak convergence, respectively. We use 〈·, ·〉 to denote the duality pairing between Wr(RN)

and W
′

r(R
N). We employ C or Cj, j = 1, 2, . . . to denote the generic constant which may vary

from line to line.
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2 Some preliminary lemmas

In this section, let us first recall some known facts about (1.7). From [1], we introduce the

embedding result on Wr(RN) and a uniform decaying estimate on the functions of Wr(RN).

The proof of lemmas can be found in the corresponding references.

Lemma 2.1 (see [1, Remark 2.7]). If 1 < p < min{q, N} and 1 < p∗
q′

p′ , then for every α ∈
(

1, p∗
q′

p′

]

,

Wr(RN) is continuously embedded into Lτ(RN) with α ≤ τ ≤ p∗.

Lemma 2.2 (see [1, Theorem 2.11]). If 1 < p < q < N and 1 < p∗
q′

p′ , then for every α ∈
(

1, p∗
q′

p′

]

,

Wr(RN) is compactly embedded into Lτ(RN) with α < τ < p∗.

Lemma 2.3 (see [1, Lemma 2.13]). If 1 < p < q < N, there exists C > 0 such that for every

u ∈ Wr(RN)

|u(x)| ≤
C

|x|
N−q

q

‖∇u‖p,q, for |x| ≥ 1.

Let Ω be one of the following domains:

{x ∈ R
N : |x| < R1}, {x ∈ R

N : 0 < R2 ≤ |x| < R3 < ∞}, {x ∈ R
N : |x| ≥ R4 > 0}.

Thus, we first consider the existence of positive least energy solution for

{

−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = f (u), x ∈ Ω,

u
∣

∣

∂Ω
= 0.

(2.1)

Define

IΩ(u) =
1

2

∫

Ω
φ(|∇u|2)dx +

1

α

∫

Ω
|u|α dx −

∫

Ω
F(u)dx,

γΩ(u) = 〈I′Ω(u), u〉 =
∫

Ω
φ′(|∇u|2)|∇u|2 dx +

∫

Ω
|u|α dx −

∫

Ω
f (u)u dx

and

M(Ω) =
{

u ∈ Wr(Ω) : u 6≡ 0, u|∂Ω = 0, γΩ(u) = 0
}

.

Then we have the following lemmas.

Lemma 2.4. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold

and u ∈ Wr(Ω). Then there exists a unique t > 0 such that tu ∈ M(Ω).

Proof. For fixed u ∈ Wr(Ω) with u 6≡ 0, tu is contained in M(Ω) if and only if

γΩ(tu) =
∫

Ω
φ′(|t∇u|2)|t∇u|2 dx +

∫

Ω
|tu|α dx −

∫

Ω
f (tu)tu dx = 0. (2.2)

Hence, the problem is reduced to verify that there is only one solution of equation (2.2) with

t > 0. Since 1 < p < q ≤ α and

φ(t2) ≃

{

tp, if |t| ≫ 1,

tq, if |t| ≪ 1.

By ( f1)–( f2), for any ε > 0, there exists a constant Cε > 0 and α < s < p∗ such that

f (u)u ≤ ε|u|α + Cε|u|
s. (2.3)
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It is easy to see that IΩ(tu) → 0 as t → 0 and IΩ(tu) → −∞ as t → +∞. We have that IΩ

possesses a global maximum point t ∈ (0,+∞), i.e., tu ∈ M(Ω).

It remains to show the uniqueness of t. We shall divide our proof into two cases.

Case 1. u ∈ M(Ω). First of all, we note that it follows from γΩ(u) = 0 that

∫

Ω
φ′(|∇u|2)|∇u|2 dx +

∫

Ω
|u|α dx −

∫

Ω
f (u)u dx = 0. (2.4)

We now prove that t = 1 is the unique number such that tu ∈ M(Ω). In fact, if t > 0 such that

γΩ(tu) = 0, then we have

∫

Ω
φ′(|t∇u|2)|t∇u|2 dx +

∫

Ω
|tu|α dx −

∫

Ω
f (tu)tu dx = 0. (2.5)

Furthermore, combining equation (2.4) and (2.5), we have

∫

Ω

[

φ′(t2|∇u|2)t2|∇u|2 − tθφ′(|∇u|2)|∇u|2
]

dx

+
∫

Ω

[

(tα − tθ)|u|α +
(

tθ f (u)− f (tu)tu
)]

dx = 0.
(2.6)

On one hand, by ( f3), we can get that

f (t)

tθ−1

is increasing for all t > 0. On the other hand, by (Φ4), we can deduce that

φ′(t2)

tθ−2

is strictly decreasing for all t > 0. Assume t > 1 for a while, then we get

f (u)

uθ−1
≤

f (tu)

|tu|θ−1
,

φ′(t2|∇u|2)

tθ−2|∇u|θ−2
<

φ′(|∇u|2)

|∇u|θ−2
,

that is

tθ f (u)− f (tu)tu ≤ 0 (2.7)

and

φ′(t2|∇u|2)t2|∇u|2 − tθφ′(|∇u|2)|∇u|2 < 0. (2.8)

Since α < θ, the left side of equation (2.6) is negative, which gives a contradiction. With a

similar argument, the case t < 1 is also contradictory. Thus we deduce that t = 1.

Case 2. u 6∈ M(Ω). If there exist t1, t2 > 0 such that t1u, t2u ∈ M(Ω), we have

t2

t1
(t1u) = t2u ∈ M(Ω).

Noticing t1u ∈ M(Ω), by Case 1, we obtain t1 = t2. This completes the proof of Lemma 2.4.

Lemma 2.5. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold

and u ∈ M(Ω), t ∈ (0, ∞) and t 6= 1, then IΩ(tu) < IΩ(u).
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Proof. Define a function in (0, ∞) by g(t) = IΩ(tu)

g(t) = IΩ(tu) =
1

2

∫

Ω
φ(t2|∇u|2)dx +

tα

α

∫

Ω
|u|α dx −

∫

Ω
F(tu)dx.

Then

g′(t) =
∫

Ω
tφ′(t2|∇u|2)|∇u|2 dx + tα−1

∫

Ω
|u|α dx −

∫

Ω
f (tu)u dx.

By the fact u ∈ M(Ω), i.e.,

∫

Ω
φ′(|∇u|2)|∇u|2 dx +

∫

Ω
|u|α dx −

∫

Ω
f (u)u dx = 0,

using a similar argument to Lemma 2.4, we obtain g′(t) > 0 for 0 < t < 1 and g′(t) < 0 for

t > 1. Hence g(t) < g(1), that is IΩ(tu) < IΩ(u) for t ∈ (0, ∞) and t 6= 1.

Next we consider the following minimization problem

c̃ = inf
M(Ω)

IΩ(u).

M(Ω) is nonempty in Wr(Ω) by Lemma 2.4. Here we denote

‖u‖Ω = ‖u‖Lα(Ω) + ‖∇u‖Lp(Ω)+Lq(Ω),

and

Λu = {x ∈ Ω : |u| > 1}, Λc
u = {x ∈ Ω : |u| ≤ 1}.

Lemma 2.6. Suppose 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5) and ( f1)–( f3) hold,

then c̃ can be achieved by some positive function ũ which is a solution of equation (2.1).

Proof. We use the minimization method. The proof can be divided into two steps.

Step 1. c̃ is attained. By the definition of c̃, there exists a sequence {ũn} ⊂ M(Ω) such that

IΩ(ũn) = c̃ + o(1), γΩ(ũn) = 0,

i.e.,

IΩ(ũn) =
1

2

∫

Ω
φ(|∇ũn|

2)dx +
1

α

∫

Ω
|ũn|

α dx −
∫

Ω
F(ũn)dx = c̃ + o(1),

∫

Ω
φ′(|∇ũn|

2)|∇ũn|
2 dx +

∫

Ω
|ũn|

α dx −
∫

Ω
f (ũn)ũn dx = 0.

By the Proposition 2.2 of [1], we have

‖ũn‖Lp(Ω)+Lq(Ω) ≤ max
{

‖ũn‖Lp(Λũn )
, ‖ũn‖Lq(Λc

ũn
)

}

.

It follows from (Φ4) that φ′′(t)t <
θ−2

2 φ′(t) for all t > 0. Moreover, φ(0) = 0, we see that

φ′(t)t < θ
2 φ(t). There exists 0 < µ < 1 such that

φ′(t)t ≤
θµ

2
φ(t), for all t ≥ 0.
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Thus, by (Φ2) and the fact that ũn ∈ Lp(Λũn) ∩ Lq(Λc
ũn
) (see Proposition 2.2 (iv) in [1]), we get

c̃ + o(1) = IΩ(ũn)−
1

θ
〈I′Ω(ũn), ũn〉

≥
∫

Ω

[1

2
φ(|∇ũn|

2)−
1

θ
φ′(|∇ũn|

2)|∇ũn|
2
]

dx +
(1

α
−

1

θ

)

∫

Ω
|ũn|

α dx

≥
1 − µ

2

∫

Ω
φ(|∇ũn|

2)dx +
(1

α
−

1

θ

)

∫

Ω
|ũn|

α dx

≥ C1

∫

Λc
∇ũn

|∇ũn|
q dx + C2

∫

Λ∇ũn

|∇ũn|
p dx +

(1

α
−

1

θ

)

∫

Ω
|ũn|

α dx

≥ C
[

min
{

‖∇ũn‖
q

Lp(Ω)+Lq(Ω)
, ‖∇ũn‖

p

Lp(Ω)+Lq(Ω)

}

+ ‖ũn‖
α
Lα(Ω)

]

≥ C‖ũn‖
α
Ω.

(2.9)

Since C > 0, it is easy to verify {ũn} is bounded in M(Ω). Then by Proposition 2.5 of [1] and

Lemma 2.1, there exists ũ ∈ Wr(Ω) such that

ũn ⇀ ũ, weakly in Wr(Ω),

ũn → ũ, in Ls(Ω),

ũn → ũ, a.e. in Ω,

where α < s < p∗. By Theorem A.2 in [34], we can deduce that

f (ũn)ũn → f (ũ)ũ in L1(Ω).

Since γΩ(ũn) = 0, we first prove ũ 6≡ 0. In fact, by equation (2.3) , Lemma 2.1 and inequality

(2.9), we have

Cε‖ũn‖
s
Ω+ ε‖ũn‖

α
Ω ≥

∫

Ω
f (ũn)ũn dx =

∫

Ω
φ′(|∇ũn|

2)|∇ũn|
2 dx+

∫

Ω
|ũn|

α dx ≥ C‖ũn‖
α
Ω. (2.10)

Since s > α, we have ‖ũn‖Ω ≥ C3 > 0. Hence

Cε‖ũ‖s
Ω + ε‖ũ‖α

Ω + o(1) ≥ o(1) +
∫

Ω
f (ũ)ũ dx =

∫

Ω
φ′(|∇ũn|

2)|∇ũn|
2 dx +

∫

Ω
|ũn|

α dx

≥ C‖ũn‖
α
Ω ≥ C3,

we get ũ 6≡ 0.

According to Lemma 2.4, there exists a unique t̄ > 0 which satisfies γΩ(t̄ũ) = 0. Using the

condition (Φ5), then

1

2

∫

Ω
φ(t̄2|∇ũ|2)dx ≤ lim inf

n→∞

1

2

∫

Ω
φ(t̄2|∇ũn|

2)dx.

By the definition of c̃ and equation (2), we have

c̃ ≤ IΩ(t̄ũ) =
1

2

∫

Ω
φ(t̄2|∇ũ|2)dx +

t̄α

α

∫

Ω
|ũ|α dx −

∫

Ω
F(t̄ũ)dx

≤ lim inf
n→∞

∫

Ω

[

1

2
φ(t̄2|∇ũn|

2) +
t̄α

α
|ũn|

α − F(t̄ũn)

]

dx

≤ lim inf
n→∞

IΩ(t̄ũn) ≤ lim inf
n→∞

IΩ(ũn) = c̃.
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Thus we get

IΩ(t̄ũ) = c̃,

and c̃ is attained by t̄ũ.

Step 2. In the following, we prove that t̄ũ is a radial solution of equation (2.1), which is similar

to the Lemma 2.7 of [14]. For simplicity, we denote ũ to t̄ũ. Suppose ũ ∈ M(Ω), IΩ(ũ) = c̃,

but the conclusion of the lemma is not true. Then we can find a function ϕ ∈ W ′
r(R

N) such

that

〈I′Ω(ũ), ϕ〉 =
∫

Ω
φ′(|∇ũ|2)∇ũ∇ϕ dx +

∫

Ω
|ũ|α−2ũϕ dx −

∫

Ω
f (ũ)ϕ dx ≤ −1. (2.11)

Choosing ε > 0 small enough such that

〈

I′Ω(tũ + σϕ), ϕ
〉

≤ −
1

2
, ∀ |t − 1|+ |σ| ≤ ε.

Let η be a cut-off function such that

η(t) =

{

1, |t − 1| ≤ 1
2 ε,

0, |t − 1| ≥ ε.

We estimate

sup
t

IΩ(tũ + εη(t)ϕ).

If |t − 1| ≤ ε, then

IΩ (tũ + εη(t)ϕ) = IΩ(tũ) +
∫ 1

0
〈I′Ω(tũ + σεη(t)ϕ), εη(t)ϕ〉dσ

≤ IΩ(tũ)−
1

2
εη(t).

(2.12)

For |t − 1| ≥ ε, η(t) = 0, and the above estimate is trivial. Now, since ũ ∈ M(Ω), for t 6= 1, we

get IΩ(tũ) < IΩ(ũ) by Lemma 2.5. Hence it follows from equation (2.12) that

IΩ (tũ + εη(t)ϕ) ≤

{

IΩ(tũ) < IΩ(ũ), t 6= 1,

IΩ(ũ)−
1
2 εη(1) = IΩ(ũ)−

1
2 ε, t = 1.

In any case, we have IΩ(tũ + εη(t)ϕ) < IΩ(ũ) = c̃. In particular,

sup
0≤t≤2

IΩ (tũ + εη(t)ϕ) < c̃.

Since ũ ∈ M(Ω), we have

∫

Ω
φ′(|∇ũ|2)|∇ũ|2 dx +

∫

Ω
|ũ|α dx −

∫

Ω
f (ũ)ũ dx = 0. (2.13)

Let

h(t) =
∫

Ω

[

φ′(|∇(tũ + εη(t)ϕ)|2)|∇(tũ + εη(t)ϕ)|2 + |tũ + εη(t)ϕ|α

− f (tũ + εη(t)ϕ)(tũ + εη(t)ϕ)
]

dx.
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Without loss of generality, we assume ε < 1
4 . For t = 2, we have η(2) = 0, thus from (2.7)-(2.8)

and (2.13)

h(2) =
∫

Ω

[

4φ′(4|∇ũ|2)|∇ũ|2 + 2α|ũ|α − f (2ũ)2ũ
]

dx

=
∫

Ω

[

4φ′(4|∇ũ|2)|∇ũ|2 − 2θφ′(|∇ũ|2)|∇ũ|2
]

dx +
∫

Ω
(2α − 2θ)|ũ|α dx

+
∫

Ω

[

2θ f (ũ)ũ − f (2ũ)2ũ
]

dx

< 0.

For t = 1
2 , we have

h

(

1

2

)

=
∫

Ω

[

1

4
φ′

(

1

4
|∇ũ|2

)

|∇ũ|2 +
1

2α
|ũ|α − f

(

1

2
ũ

)

1

2
ũ

]

dx

=
∫

Ω

[

1

4
φ′

(

1

4
|∇ũ|2

)

|∇ũ|2 −
1

2θ
φ′(|∇ũ|2)|∇ũ|2

]

dx +
∫

Ω

(

1

2α
−

1

2θ

)

|ũ|α dx

+
∫

Ω

[

1

2θ
f (ũ)ũ − f

(

1

2
ũ

)

1

2
ũ

]

dx

> 0.

Consequently, we can find t̃ ∈ ( 1
2 , 2) such that h(t̃) = 0. It implies t̃ũ + εη(t̃)ϕ ∈ M(Ω), which

contradicts with (2.11). From this, ũ is a solution for equation (2.1).

If α ≥ q, we infer that the solution ũ is positive by Theorem 1 of [30]. Thus, we complete

the proof.

We shall show any Wr(RN)-solution of the equation (1.7) is C1,γ
loc (R

N)-solution of the equa-

tion (1.7).

Lemma 2.7. Assume u be a weak solution of (1.7), 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′,

u ∈ Wr(RN), (Φ1)–(Φ5) and ( f1)–( f3) hold, then u ∈ C1,γ
loc (R

N) for some 0 < γ < 1.

Proof. We first prove by the Moser’s iteration that u ∈ L∞(RN), then belongs to C1,γ
loc (R

N).

Since u ∈ Wr(RN), u ∈ Lp∗(RN). For r > 0 to be determined later, taking ϕ = |uT|pru as a

test function with

uT =















T, u > T,

u, |u| ≤ T,

−T, u < −T.

Moreover, without any loss of generality, we shall assume that T > 1. Then ∇u∇ϕ =

pr|uT|pr|∇uT|2 + |uT|pr|∇u|2, u is a weak solution of equation (1.7), i.e.,

∫

RN
φ′(|∇u|2)∇u∇ϕ dx +

∫

RN
|u|α−2uϕ dx =

∫

RN
f (u)ϕ dx.

We have

(pr + 1)
∫

|u|≤T
φ′(|∇u|2)|∇u|2|uT|pr dx

+
∫

|u|>T
φ′(|∇u|2)|∇u|2|uT|pr dx +

∫

RN
|u|α|uT|pr dx =

∫

RN
f (u)u|uT|pr dx.
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Define A =
{

x ∈ R
N : |u| ≤ T

}

∩ Λc
∇u and B =

{

x ∈ R
N : |u| ≤ T

}

∩ Λ∇u, then

∫

RN
f (u)u|uT|pr dx ≥ (pr + 1)

∫

|u|≤T
φ′(|∇u|2)|∇u|2|uT|pr dx +

∫

|u|≤T
|u|α|uT|pr dx

≥ C(1 + r)1−p min
{

∫

A
|∇|u|1+r|p dx,

∫

B
|∇|u|1+r|q dx

}

+
1

T(α−p)r

∫

|u|≤T
||u|1+r|α dx

≥ C(1 + r)1−p
[

‖∇|u|1+r‖
q

Lp(|u|≤T)+Lq(|u|≤T)
+ ‖|u|1+r‖α

Lα(|u|≤T)

]

≥ C(1 + r)1−p‖|u|1+r‖
p

Lp∗ (|u|≤T)

≥ C(1 + r)1−p
(

∫

|u|≤T
|u|(1+r)p∗ dx

)

p
p∗

.

Set d = 1 + r = Np−(N−p)(s−p)
(N−p)p

> 1, s ∈ (α, p∗). Let T → +∞, by equation (2.3) and Hölder

inequality, we have

∫

RN
f (u)u|uT|pr dx ≤ Cε

∫

RN
|u|s−p|u|pr+p dx + ε

∫

RN
|u|α−p|u|pr+p dx

≤ Cε

(

∫

RN
|u|p

∗
dx
)

p∗−pd
p∗
(

∫

RN
|u|p

∗
dx
)

pd
p∗

+ε
(

∫

RN
|u|ᾱ dx

)

p∗−pd
p∗
(

∫

RN
|u|p

∗
dx
)

pd
p∗

≤ C
(

∫

RN
|u|p

∗
dx
)

pd
p∗

,

where α < ᾱ = (α−p)(Np)
(N−p)(s−p)

< p∗. Then we get

(

∫

RN
|u|p

∗d dx
)

p
p∗

≤ C(1 + r)p−1
∫

RN
f (u)u|uT|pr dx ≤ C(1 + r)p−1

(

∫

RN
|u|p

∗
dx
)

pd
p∗

.

Hence
(

∫

RN
|u|p

∗d dx
)

1
p∗d

≤ C(1 + r)
p−1
pd

(

∫

RN
|u|p

∗
dx
)

1
p∗

.

Therefore
(

∫

RN
|u|p

∗dk
dx
)

1

p∗dk
≤
(

Πk
i=1Cdi

)
1

di

(

∫

RN
|u|p

∗
dx
)

1
p∗

.

Since Π∞
i=1(Cdi)

1

di ≤ C∗ for some constant C∗
> 0, we then deduce that u ∈ L∞(RN). Suppose

u is a weak solution of the equation (1.7) and u ∈ Wr(RN), we have that u ∈ C1,γ
loc (R

N) for

some γ > 0 by Chapter 4 of [19] or [33].

3 Existence of sign-changing solutions

In this section, we construct infinitely many nodal solutions for equation (1.7). For any given

k numbers rj (j = 1, . . . , k) such that 0 < r1 < r2 < · · · < rk < +∞, we denote r0 = 0, rk+1 = ∞,

Ω1 =
{

x ∈ R
N : |x| < r1

}

and Ωj =
{

x ∈ R
N : rj−1 < |x| < rj

}

.
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We will always extend uj ∈ Wr(Ωj) to Wr(RN) by setting uj ≡ 0 for x ∈ R
N\Ωj for every

uj, j = 1, 2, . . . , k + 1. For convenience, we use I(uj) to replace IΩj(uj) and γ(uj) to replace

γΩj(uj). Define

Y±
k (r1, r2, . . . , rk+1) =

{

u ∈ Wr(R
N) | u = ±

k+1

∑
j=1

(−1)j−1uj, uj ≥ 0,

uj 6≡ 0, uj ∈ Wr(Ω
j), j = 1, 2, . . . , k + 1

}

,

M±
k =

{

u ∈ Wr(R
N) | ∃ 0 = r0 < r1 < r2 < · · · < rk < rk+1 = +∞,

such that u ∈ Y±
k (r1, r2, . . . , rk+1) and uj ∈ M(Ωj), j = 1, 2, . . . , k + 1

}

.

Note that M±
k 6= ∅, k = 1, 2, . . . In order to prove the existence of non-negative critical points

of energy functional I, similar to [6] or [10], we only need to extend f (u) as follows

f+(u) :=

{

f (u), if u ≥ 0,

− f (−u), if u < 0,

thus the oddness assumption on nonlinear term is actually unnecessary. The function I+(u)

is defined on Wr(RN) by

I+(u) =
1

2

∫

RN
φ(|∇u|2)dx +

1

α

∫

RN
|u|α dx −

∫

RN
F+(u)dx,

c+k = infu∈M+
k

I+(u) in the same way as those in [10]. For M−
k , we can complete the proof in

the same way. By the arguments of the Section 2, it is not difficult to verify that

∀ u =
k+1

∑
j=1

(−1)j−1uj ∈ M+
k ⇔ I(u) = max

αj>0
1≤j≤k+1

I

( k+1

∑
j=1

αjǔj

)

,

where ǔj = (−1)j−1uj.

Set

ck = inf
u∈M+

k

I(u), k = 1, 2, . . .

Lemma 3.1. ck is attained provided that 1 < p < q < min{N, p∗}, q ≤ α ≤ p∗q′/p′, (Φ1)–(Φ5)

and ( f1)–( f3) hold.

Proof. We prove by induction that for each k there exists ūk ∈ M+
k such that

I(ūk) = ck.

For k = 0 or Ω = R
N , we can directly derive from Lemma 2.6. We discuss the case k ≥ 1 in

the following.

First, we prove I is bounded from below on M+
k by a positive constant. Let ū ∈ M+

k , then

ū = ∑
k+1
j=1 (−1)j−1ūj and ūj ∈ M(Ωj), j = 1, 2, . . . , k + 1. By the similar arguments of inequality

(2.10), we have ‖ūj‖Ωj ≥ Cj. It follows from the same computations in (2.9) that

I(ū) = I

( k+1

∑
j=1

(−1)j−1ūj

)

=
k+1

∑
j=1

I(ūj) ≥ C
k+1

∑
j=1

‖ūj‖
α
Ωj

≥ C
k+1

∑
j=1

Cα
j = C̄. (3.1)
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There exists a positive constant C̄ > 0 such that I(ū) ≥ C̄, for all ū ∈ M+
k .

Second, we suppose the conclusion is true for k − 1 and let {ūm}m≥1 be a minimizing

sequence of ck in M+
k , that is

lim
m→∞

I(ūm) = ck, ūm ∈ M+
k , m = 1, 2, . . .

ūm corresponding to k nodes, r1
m, r2

m, . . . , rk
m, with 0 < r1

m < r2
m < · · · < rk

m < ∞, set

Ωi
m =

{

x ∈ R
N : ri−1

m < |x| < ri
m

}

,

and

ūi
m =

{

ūm, if x ∈ Ωi
m,

0, if x 6∈ Ωi
m.

We can select a subsequence {ri
m} such that limm→∞ ri

m = ri, and 0 ≤ r1 ≤ r2 ≤ · · · ≤ rk ≤ +∞.

Now we give the following claims.

Claim 1: Under the assumptions of Lemma 3.1, ri 6= ri−1, i = 1, 2, . . . , k. Here we denote

r0 = 0.

If ri = ri−1 for some i ∈ {1, . . . , k}. Suppose there exists i0 ∈ {1, . . . , k} such that ri0 = ri0−1,

then limm→∞ ri0
m = limm→∞ ri0−1

m . We denote the measure of Ω
i0
m by |Ωi0

m|, so that |Ωi0
m| → 0 as

m → ∞. Since ūi0
m ∈ M(Ωi0

m), by Proposition 2.2 of [1] and Lemma 2.1, we have

‖ūi0
m‖

α

Ω
i0
m

≤ C

{

‖∇ūi0
m‖

q

Lp(Ω
i0
m )+Lq(Ω

i0
m )

+ ‖ūi0
m‖

α

Ω
i0
m

}

≤ C

{

max

{

∫

{x∈Ω
i0
m :|∇ū

i0
m |≤1}

|∇ūi0
m|

q dx,
∫

{x∈Ω
i0
m :|∇ū

i0
m |>1}

|∇ūi0
m|

p dx

}

+
∫

Ω
i0
m

|ūi0
m|

α dx

}

≤ C

{

∫

Ω
i0
m

φ′(|∇ūi0
m|

2)|∇ūi0
m|

2 dx +
∫

Ω
i0
m

|ūi0
m|

α dx

}

≤ C
∫

Ω
i0
m

f (ūi0
m)ū

i0
m dx

≤ Cε

∫

Ω
i0
m

|ūi0
m|

s dx + ε
∫

Ω
i0
m

|ūi0
m|

α dx

≤ Cε

∫

Ω
i0
m

|ūi0
m|

s dx + ε‖ūi0
m‖

α.

Let ε = 1
2 , then

‖ūi0
m‖

α

Ω
i0
m

≤ C

(

∫

Ω
i0
m

|ūi0
m|

p∗dx

)
s

p∗

|Ωi0
m|

1− s
p∗ ≤ C‖ūi0

m‖
s

Ω
i0
m

|Ωi0
m|

1− s
p∗ .

Since C is positive constants and α < s < p∗, we deduce that

‖ūi0
m‖Ω

i0
m
→ ∞, as m → ∞.

By inequality (3.1),

I(ūi0
m) → ∞, as m → ∞. (3.2)

From the inductive assumption and equation (3.2), for ε > 0 fixed we can choose L > 0 such

that

I(ūi0
m) > ck − ck−1 + ε, |I(ūm)− ck| < ε, as m ≥ L.
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Then we define v̄(x) ∈ M+
k−1 by

v̄(x) =















ūl
m(x), if x ∈ Ωl

m as l < i,

0, if x ∈ Ω
i0
m,

ūl
m(x), if x ∈ Ωl

m as l > i.

Hence

I(v̄(x)) = I(ūm)− I(ūi0
m) < ck + ε − (ck − ck−1 + ε) = ck−1, as m ≥ L,

which contradicts with ck−1 = infu∈M+
k−1

I(u). Thus ri 6= ri−1, i = 1, 2, . . . , k. Then the proof of

Claim 1 is completed.

Claim 2: Under the assumptions of Lemma 3.1, rk
< ∞.

If rk → ∞, then rk
m → ∞. It follows from Claim 1 and ūk

m ∈ M(Ωk
m) that

‖ūk
m‖

α
Ωk

m
≤ C

{

max

{

∫

{x∈Ωk
m :|∇ūk

m|≤1}
|∇ūk

m|
q dx,

∫

{x∈Ωk
m :|∇ūk

m|>1}
|∇ūk

m|
p dx

}

+
∫

Ωk
m

|ūk
m|

α dx

}

≤ C

{

∫

Ωk
m

φ′(|∇ūk
m|

2)|∇ūk
m|

2 dx +
∫

Ωk
m

|ūk
m|

α dx

}

≤ Cε

∫

Ωk
m

|ūk
m|

s dx + ε
∫

Ωk
m

|ūk
m|

α dx.

Using Lemma 2.3, we deduce that

‖ūk
m‖

α
Ωk

m
≤ C‖ūk

m‖
s−α
Ωk

m

∫

Ωk
m

|ūk
m|

α|x|
(q−N)(s−α)

q dx ≤ C‖ūk
m‖

s
Ωk

m
|rk

m|
(q−N)(s−α)

q ,

so ‖ūk
m‖Ωk

m
≥ C|rk

m|
N−q

q . By inequality (3.1) we find

I(ūk
m) → ∞, as m → ∞. (3.3)

Similar to the proof of Claim 1, we can obtain rk
< ∞. Claim 2 is therefore proved.

From the above two claims, by selecting a subsequence, we may assume that limm→∞ ri
m =

ri, and clearly 0 < r1
< r2

< · · · < rk
< ∞. Define Ωi = {x ∈ R

N | ri−1
< |x| < ri}, for all

i = 1, 2, . . . , k + 1, r0 = 0, rk+1 = +∞. Lemma 2.6 implies that c̄ = infu∈M(Ωi) I(u) is attained

by some positive function ûi which satisfies the following boundary value problem

{

−∇ · [φ′(|∇u|2)∇u] + |u|α−2u = f (u), x ∈ Ωi,

u|∂Ωi = 0.

Define ūk = ∑
k+1
i=1 (−1)i−1ûi(x), (ûi = 0, x 6∈ Ωi). Thus ūk ∈ M+

k .

We define functions vi
m : [ri−1, ri] → R such that







vi
m := ai

mūi
m

(

ri
m−ri−1

m

ri−ri−1 (t − ri−1) + ri−1
m

)

, for i = 1, . . . , k,

vk+1
m := ak+1

m ūk+1
m

(

rk
m

rk t
)

,

where r0
m = 0, rk+1

m = ∞ and ai
m is a unique positive real number such that vi

m ∈ M(Ωi), for

all i = 1, 2, . . . , k + 1. For m large enough, we can compute that
∫

Ωi
φ′(|∇vi

m|
2)|∇vi

m|
2 dt =

∫

Ωi
m

φ′(|ai
m|

2|∇ūi
m|

2)|ai
m|

2|∇ūi
m|

2 dx + o(1),
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∫

Ωi
|vi

m|
α dt = |ai

m|
α
∫

Ωi
m

|ūi
m|

α dx + o(1),

∫

Ωi
f (vi

m)v
i
m dt =

∫

Ωi
m

f (ai
mūi

m)ai
mūi

m dx + o(1).

Since vi
m ∈ M(Ωi), it follows

∫

Ωi
m

φ′(|ai
m|

2|∇ūi
m|

2)|ai
m|

2|∇ūi
m|

2 dx + |ai
m|

α
∫

Ωi
m

|ūi
m|

α dx −
∫

Ωi
m

f (ai
mūi

m)ai
mūi

m dx = o(1), (3.4)

for all i = 1, 2, . . . , k + 1. Note that it also holds

∫

Ωi
m

φ′(|∇ūi
m|

2)|∇ūi
m|

2 dx +
∫

Ωi
m

|ūi
m|

α dx −
∫

Ωi
m

f (ūi
m)ū

i
m dx = 0, (3.5)

for each i. Using an argument similar to that in the proof of Lemma 2.4, by (3.4) and (3.5), we

can obtain that limm→∞ ai
m = 1 for all i. Therefore we deduce that

lim
m→∞

I
(

ai
mūi

m(x)
)

= lim
m→∞

I
(

ūi
m(x)

)

.

On the other hand, since I(ûi) = infu∈M(Ωi) I(u) and ai
mūi

m(x) ∈ M(Ωi), we have

I(ûi) ≤ I
(

ai
mūi

m(x)
)

.

Thus

lim
m→∞

I
(

ūi
m(x)

)

≥ I(ûi),

and

ck = lim
m→∞

I(ūm(x)) = lim
m→∞

k+1

∑
i=1

I(ūi
m(x)) ≥

k+1

∑
i=1

I(ûi) = I(ūk).

Since ūk ∈ M+
k , which means that ck is attained.

Now, we begin to prove Theorem 1.3. Because the weak solutions of (1.7) are of class

C1,γ
loc (R

N), as stated in Lemma 2.7. We apply some ideas of in [21,22,35] to prove the minimizer

of ck is the weak solution of (1.7) instead of glue the function in each annuli by matching the

normal derivative at each junction point.

Proof of Theorem 1.1. By Lemma 3.1, there exists ūk ∈ M+
k which attains ck. Thus we get k

nodes:

r1, r2, · · · , rk, 0 < r1 < r2 < · · · < rk < +∞, Ωi = {x ∈ R
N : ri−1 < |x| < ri}

and

(ūk)
i =

{

ūk(x), x ∈ Ωi,

0, x 6∈ Ωi.

For convenience, u := ūk, and u satisfies equation (1.7) in {x ∈ R
N : |x| 6= ri, i = 1, 2, . . . , k}.

In order to show that u is a critical point of I. We assume by contradiction that there exists

ψ ∈ W ′
r(R

N) such that

〈I′(u), ψ〉 = −2.
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Similarly to the proof of Step 2 in Lemma 2.6 we choose δ ∈ (0, 1) such that if s =

(s1, s2, . . . , sk+1) ∈ D and 0 ≤ ǫ ≤ δ, then

〈

I′

(

k+1

∑
i=1

siu
i + ǫψ

)

, ψ

〉

< −1,

where

D = {(s1, . . . , sk+1) ∈ R
k+1 : |si − 1| ≤ δ, for all i ∈ {1, . . . , k + 1}}.

There is a sufficiently small ǫ such that ∑
k+1
i=1 siu

i + ǫψ changes sign exactly k times with k

nodes 0 < r1(s, ǫ) < · · · < rk(s, ǫ) < ∞. Here rj(s, ǫ) denotes that rj depends on s, ǫ for all

j = 1, · · · , k. Let η ∈ C∞
0 (RN) be a cut-off function which satisfies η(s) = 0 in a neighborhood

of ∂D, η(1, . . . , 1) = 1 and 0 ≤ η(s) ≤ 1 for all s ∈ D. If δ is small enough, we see that

∑
k+1
i=1 siu

i + δη(s)ψ also has exactly k nodes 0 < r1(s) < · · · < rk(s) < ∞ for all s ∈ D, rj(s) is

continuous about s for every j = 1, . . . , k, and

〈

I′

(

k+1

∑
i=1

siu
i + δη(s)ψ

)

, ψ

〉

< −1. (3.6)

We claim that there exists s ∈ D such that ∑
k+1
i=1 siu

i + δη(s)ψ ∈ M+
k . Let

Hi(s) =
∫

RN

[

φ′(|∇gi(s)|
2)|∇gi(s)|

2 + |gi(s)|
α − f (gi(s))gi(s)

]

dx, ∀ 1 ≤ i ≤ k + 1,

and

gi(s) =

(

k+1

∑
i=1

siu
i + δη(s)ψ

)

∣

∣

∣

∣

Ωi
s

,

where Ωi
s = {x ∈ R

N : ri−1(s) < |x| < ri(s)} for all 1 ≤ i ≤ k + 1, r0(s) = 0 and rk+1(s) = ∞.

Suppose that s ∈ ∂D, then η(s) = 0, gi(s) = siu
i. For si = 1 + δ, by (2.7)–(2.8), we have

Hi(1 + δ) =
∫

Ωi

[

(1 + δ)2φ′((1 + δ)2|∇ui|2)|∇ui|2 + (1 + δ)α|ui|α − f ((1 + δ)ui)(1 + δ)ui
]

dx

=
∫

Ωi

[

(1 + δ)2φ′((1 + δ)2|∇ui|2)|∇ui|2 − (1 + δ)θφ′(|∇ui|2)|∇ui|2
]

dx

+
∫

Ωi
((1 + δ)α− (1 + δ)θ)|ui|α dx+

∫

Ωi

[

(1 + δ)θ f (ui)ui− f ((1 + δ)ui)(1 + δ)ui
]

dx

< 0.

For si = 1 − δ, we get

Hi(1 − δ) =
∫

Ωi

[

(1 − δ)2φ′((1 − δ)2|∇ui|2)|∇ui|2 + (1 − δ)α|ui|α − f ((1 − δ)ui)(1 − δ)ui
]

dx

=
∫

Ωi

[

(1 − δ)2φ′((1 − δ)2|∇ui|2)|∇ui|2 − (1 − δ)θφ′(|∇ui|2)|∇ui|2
]

dx

+
∫

Ωi
((1 − δ)α− (1 − δ)θ)|ui|α dx+

∫

Ωi

[

(1 − δ)θ f (ui)ui− f ((1 − δ)ui)(1 − δ)ui
]

dx

> 0.

By the homotopy invariance of the topological degree (or Miranda’s Theorem [23]), we see that

there exists s ∈ D such that Hi(s) = 0 for all 1 ≤ i ≤ k + 1. That is ∑
k+1
i=1 siu

i + δη(s)ψ ∈ M+
k .
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From the claim, we get I
(

∑
k+1
i=1 siu

i + δη(s)ψ
)

≥ ck. On the other hand, by (3.6), there holds

that

I

( k+1

∑
i=1

siu
i + δη(s)ψ

)

= I

( k+1

∑
i=1

siu
i

)

+
∫ 1

0

〈

I′
( k+1

∑
i=1

siu
i + σδη(s)ψ

)

, δη(s)ψ

〉

dσ

≤ I

( k+1

∑
i=1

siu
i

)

− δη(s).

If si = 1 for all 1 ≤ i ≤ k + 1, then we have

ck ≤ I

( k+1

∑
i=1

ui

)

− δη(1, . . . , 1) = ck − δ,

which is impossible. If si 6= 1 for some 1 ≤ i ≤ k + 1, then we obtain

ck ≤ I

( k+1

∑
i=1

siu
i

)

=
k+1

∑
i=1

∫

Ωi

[

φ′

(

s2
i |∇ui|2

)

s2
i |∇ui|2 + sα

i |u
i|α − f (siu

i)(siu
i)

]

dx

=
k+1

∑
i=1

IΩi
(siu

i) <
k+1

∑
i=1

IΩi
(ui) = I

( k+1

∑
i=1

ui

)

= ck,

which is also a contradiction.

Therefore, the function u is indeed a radial solution of (1.7), which changes sign exactly k

times. We complete the proof.
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Abstract. We are concerned with the qualitative and asymptotic analysis of solutions
to the nonlocal equation

(−∆)su + V(|z|)u = Q(|z|)up in R
N ,

where N ≥ 3, 0 < s < 1, and 1 < p <
2N

N−2s . As r → ∞, we assume that the potentials
V(r) and Q(r) behave as

V(r) = V0 +
a1

rα
+ O

(
1

rα+θ1

)

Q(r) = Q0 +
a2

rβ
+ O

(
1

rβ+θ2

)

where a1, a2 ∈ R, α, β >
N+2s

N+2s+1 , and θ1, θ2 > 0, V0, Q0 > 0. Under various hypothe-
ses on a1, a2, α, β, we establish the existence of infinitely many radial solutions. A key
role in our arguments is played by the Lyapunov–Schmidt reduction method.

Keywords: fractional Laplacian, radial solution, lack of compactness, Lyapunov–
Schmidt reduction method.

2020 Mathematics Subject Classification: 35R11, 35A15, 35B40, 47G20.

1 Introduction and the main result

We consider the following nonlocal equation driven by the fractional Laplace operator

(−∆)su + V(|z|)u = Q(|z|)up, in R
N . (1.1)

BCorresponding author.

Emails: zhoufen_85@163.com (F. Zhou), szf@zjnu.edu.cn (Z. Shen), radulescu@inf.ucv.ro (V. D. Rădulescu).
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Fractional powers of the Laplacian arise in various equations in mathematical physics and

related fields; see, e.g., [1], [9], and [14]. Numerous results related to equations with fractional

Laplace operator sprout in literature. A characterization of the fractional Laplacian through

Dirichlet–Neumann maps was given in [3]. Regularity for fractional elliptic equations was

investigated in [4] and [17]. Existence of solutions was studied in many papers; see, e.g.,

[2, 7, 12].

Along with different results, there are various enlightening approaches. In [10], the author

obtained some symmetry results for equations involving the fractional Laplacian in R
N by the

method of moving planes. In [2], symmetry results for nonlinear equations with fractional

Laplacian were achieved by the sliding method. Geometric inequality was applied to inves-

tigate symmetry properties for a boundary reaction problem in [18]. The method of moving

planes and ABP (Aleksandrov–Bakelman–Pucci) estimates for fractional Laplacian were em-

ployed in [6] to study radial symmetry and monotonicity properties for positive solutions

of fractional Laplacian. We refer the readers to [7] and [11] for very recent new approaches

dealing with fractional Laplacian equations, and to [15] for a comprehensive overview of

variational methods for nonlocal fractional problems.

Inspired by [19], we obtain the existence of radial positive solutions to (1.1) by Lyapunov–

Schmidt reduction. To the best of our knowledge, this method has never been employed in

investigating radial solutions to equations as (1.1).

We will use the radial solution of

(−∆)su + u = up in R
N (1.2)

to build up the approximate solutions of problem (1.1). The uniqueness and nondegeneracy

of the radial positive solution to problem (1.2) are established in [8].

Our result is based on the following growth assumptions for V(|z|) and Q(|z|) near infin-

ity:

(V): there exist constants a1 ∈ R, α > 1, and θ1 > 0, such that V(r) = V0 +
a1
rα + O( 1

rα+θ1
) as

r → ∞;

(Q): there exist constants a2 ∈ R, β > 1, and θ2 > 0, such that Q(r) = Q0 +
a2

rβ + O( 1
rβ+θ2

) as

r → ∞.

We assume throughout this paper that V0 = 1 and Q0 = 1.

Let

xj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
, j = 1, . . . , k,

where 0 is the zero vector in R
N−2, r ∈

[
r0k

N+2s
N+2s−τ , r1k

N+2s
N+2s−τ

]
, τ = min{α, β}, 0 < r0 < r1, and

k is the number of the bumps of the solution.

Set z = (z′, z′′), z′ ∈ R
2, z′′ ∈ R

N−2 and define

Hrs =

{
u : u ∈ Hs(RN), u is even in zh, h = 2, . . . , N,

u(r cos θ, r sin θ, z′′) = u

(
r cos

(
θ +

2π j

k

)
, r sin

(
θ +

2π j

k

)
, z′′
)}

,

where Hs(RN) represents the fractional Sobolev space

Hs(RN) :=

{
u ∈ L2(RN) :

u(x)− u(y)

|x − y| N
2 +s

∈ L2(RN × R
N)

}
, 0 < s < 1.



Nonlocal problems with lack of compactness 3

Let W be the unique nondegenerate radial positive solution of problem (1.2), Then the

result in [8] shows that there exist constants B1 > B2 > 0, such that

B2

1 + |z − xj|N+2s
≤ Wxj

(z) ≤ B1

1 + |z − xj|N+2s
,

where Wxj
(z) = W(z − xj).

Set

Ur(z) =
k

∑
j=1

Wxj
(z).

The main result of this paper establishes the following multiplicity property.

Theorem 1.1. Assume that V(r), Q(r) satisfy (V) and (Q), while a1, a2, α, β satisfy one of the

following conditions:

(i) a1 > 0, a2 = 0, α < N + 2s, and α ≤ β;

(ii) a1 > 0, a2 > 0, α < N + 2s, and β ≥ N + 2s;

(iii) a1 > 0, a2 < 0, α < N + 2s, and α > β;

(iv) a1 = 0, a2 < 0, α ≥ β, and β < N + 2s;

(v) a1 < 0, a2 < 0, α ≥ N + 2s, and β < N + 2s.

Then there exists a positive integer k0 such that for any k ≥ k0, problem (1.1) has a solution Uk of the

form

Uk(z) = Urk
(z) + wk,

where wk ∈ Hrs, rk ∈
[
r0k

N+2s
N+2s−τ , r1k

N+2s
N+2s−τ

]
, and as k → +∞,

∫

RN

(
|(−∆)

s
2 wk|2 + w2

k

)
→ 0.

For some of the abstract methods used in this paper, we refer to the monographs by Molica

Bisci and Pucci [13] and Papageorgiou, Rădulescu and Repovš [16].

2 Reduction

Let

Pj =
∂Wxj

∂r
, j = 1, . . . , k,

where

xj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
, j = 1, . . . , k

and

r ∈ S :=

[(
N + 2s

τ
− ǫ

) 1
N+2s−τ

k
N+2s

N+2s−τ ,

(
N + 2s

τ
+ ǫ

) 1
N+2s−τ

k
N+2s

N+2s−τ

]
.

We have denoted τ := min{α, β}, where α and β are the constants in the expansions of V and

Q, and ǫ > 0 is a small constant.
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Define

H :=

{
u : u ∈ Hrs,

∫

RN
WP−1

xj
Pju = 0, j = 1, . . . , k.

}
.

The norm and the inner product in Hs(RN) are defined as

‖u‖ = 〈u, u〉 1
2 , u ∈ Hs(RN),

〈u, v〉 =
∫

RN

(
(−∆)

s
2 u(−∆)

s
2 v + V(|z|)uv

)
, u, v ∈ Hs(RN).

We can easily check that
∫

RN

(
(−∆)

s
2 u(−∆)

s
2 v + V(|z|)uv − pQ(|z|)Up−1

r uv
)
, u, v ∈ H

is a bounded bilinear functional in H. Thus, there exists a bounded linear operator M from H

to H satisfying

〈Mu, v〉 =
∫

RN

(
(−∆)

s
2 u(−∆)

s
2 v + V(|z|)uv − pQ(|z|)Up−1

r uv
)
, u, v ∈ H. (2.1)

We now establish that M is invertible in H.

Lemma 2.1. There exists a constant ρ > 0, independent of k, such that for any r ∈ S,

‖Mu‖ ≥ ρ‖u‖, u ∈ H.

Proof. We argue by contradiction. If the thesis does not hold, then for any ρk = 1
k (k → +∞),

there exists rk ∈ S, uk ∈ H, such that

‖Muk‖ < ρk‖uk‖.

It follows that

‖Muk‖ = o(1)‖uk‖.

Then,

〈Muk, ϕ〉 = o(1)‖uk‖‖ϕ‖, ∀ϕ ∈ H. (2.2)

We can assume ‖uk‖2 = k.

Let

Ωj =

{
z = (z′, z′′) ∈ R

2 × R
N−2 :

〈
z′

|z′| ,
xj

|xj|

〉
≥ cos

π

k

}
.

By symmetry and the definition of M, we conclude from (2.2) that for all ϕ ∈ H,

∫

Ω1

(
(−∆)

s
2 uk(−∆)

s
2 ϕ + V(|z|)uk ϕ − pQ(|z|)Up−1

rk
uk ϕ

)
=

1

k
〈Muk, ϕ〉 = o

(
1√
k

)
‖ϕ‖ . (2.3)

Particularly,
∫

Ω1

(
|(−∆)

s
2 uk|2 + V(|z|)uk

2 − pQ(|z|)Up−1
rk

uk
2
)
= o(1)

and
∫

Ω1

(
|(−∆)

s
2 uk|2 + V(|z|)uk

2
)
= 1. (2.4)
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Let ũk(z) = uk(z + x1). Since

|x2 − x1| = 2r sin
π

k
≥ 2r

π

2k
≥
(

N + 2s

2τ

) 1
N+2s−τ

k
τ

N+2s−τ π,

it follows that for any R > 0, BR(x1) ⊂ Ω1. Then from (2.4), we have for all R > 0,

∫

BR(0)

(
|(−∆)

s
2 ũk|2 + V(|z|)ũk

2) ≤ 1.

So, we can assume that there exists u ∈ Hs(RN), such that as k → +∞,

ũk ⇀ u, in Hs
loc(R

N),

and

ũk → u, in L2
loc(R

N).

Since ũk is even in zh, h = 2, . . . ., N, then u is even in zh, h = 2, . . . , N.

Besides, by ∫

RN
WP−1

x1
P1uk = 0,

we know that ∫

RN
WP−1 ∂W

∂x1
ũk = 0.

So, u satisfies

∫

RN
WP−1 ∂W

∂x1
u = 0. (2.5)

We prove in what follows that u satisfies

(−∆)su + u − pWp−1u = 0, in R
N . (2.6)

Define

H̃ =

{
ϕ : ϕ ∈ Hs(RN),

∫

RN
WP−1 ∂W

∂x1
ϕ = 0

}
.

For any R > 0, let ϕ ∈ C∞
0 (BR(0)) ∩ H̃ be any function which is even in zh, h = 2, . . . , N.

Then ϕk(z) := ϕ(z − x1) ∈ C∞
0 (BR(x1)). Substituting ϕ in (2.3) with ϕk, then by Lemma A.1,

we get

∫

RN

(
(−∆)

s
2 u(−∆)

s
2 ϕ + uϕ − pWp−1uϕ

)
= 0. (2.7)

In addition, since u is even in zh, h = 2, . . . , N, relation (2.7) holds for any ϕ ∈ C∞
0 (RN),

which is odd in zh, h = 2, . . . , N. Thus, relation (2.7) is true for any ϕ ∈ C∞
0 (BR(0)) ∩ H̃. By

the density of C∞
0 (RN) in Hs(RN), we have

∫

RN

(
(−∆)

s
2 u(−∆)

s
2 ϕ + uϕ − pWp−1uϕ

)
= 0, ∀ϕ ∈ H̃ (2.8)

Meanwhile, relation (2.8) holds for ϕ = ∂W
∂x1

. Therefore, (2.8) holds for any ϕ ∈ Hs(RN).

Substituting ϕ in (2.8) with u yields (2.6).



6 F. Zhou, Z. Shen and V. D. Rădulescu

Since W is non-degenerate, we have u = C ∂W
∂x1

because u is even in zh, h = 2, . . . ., N. By

(2.5), we know that

u = 0,

which implies

∫

BR(x1)
uk

2 = o(1), ∀R > 0.

Besides, it follows from Lemma A.1 that there exists C′
> 0 such that

Urk
(x) ≤ C′, for all x ∈ Ω1.

It follows that

o(1) =
∫

Ω1

(
|(−∆)

s
2 uk|2 + V(|z|)uk

2 − pQ(|z|)Up−1
rk

uk
2
)

=
∫

Ω1

(
|(−∆)

s
2 uk|2 + V(|z|)uk

2
)
+ o(1)− C

∫

Ω1

uk
2

≥ 1

2

∫

Ω1

(
|(−∆)

s
2 uk|2 + V(|z|)uk

2
)
+ o(1),

which contradicts (2.4). The proof is now complete.

Define

I(u) =
1

2

∫

RN

(
|(−∆)

s
2 u|2 + V(|z|)u2

)
− 1

p + 1

∫

RN
Q(|z|)|u|p+1. (2.9)

Let

J(φ) = I(Ur + φ), φ ∈ H.

Then,

J(0) =
1

2

∫

RN

(
|(−∆)

s
2 Ur|2 + V(|z|)Ur

2
)
− 1

p + 1

∫

RN
Q(|z|)|Ur|p+1.

=
1

2

∫

RN
Ur

k

∑
j=1

W
p
xj
+

1

2

∫

RN
(V(|z|)− 1)Ur

2− 1

p + 1

∫

RN
(Q(|z|)− 1)U

p+1
r − 1

p + 1

∫

RN
U

p+1
r

because Wxj
solves (1.2).

Lemma 2.2. There exists a positive integer k0 such that for each k ≥ k0, there is a C1 map from S to

Hrs: φk = φk(r), r = |x1|, satisfying φk ∈ H, and

J′(φk)
∣∣

H
= 0.

Moreover, there exists a constant C > 0, independent of k, such that

‖φk‖ ≤ C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
+δ

, (2.10)

where δ > 0 is a small constant.
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Proof. We expand J(φk) as

J(φk) = J(0) + l(φk) +
1

2
〈Mφk, φk〉+ R(φk), φk ∈ H,

where

l(φk) = 〈I′(Ur), φk〉

=
∫

RN
(V(|z|)− 1)Urφk +

∫

RN

( k

∑
j=1

W
p
xj
− U

p
r

)
φk −

∫

RN
(Q(|z|)− 1)U

p
r φk.

M is the bounded linear map defined in (2.1) and

R(φk) = − 1

p + 1

∫

RN
Q(|z|)

(
|Ur + φk|p+1 − U

p+1
r − (p + 1)UP

r φk −
1

2
p(p + 1)U

p−1
r φk

2

)
.

Since l(φk) is a bounded linear functional in H, there exists lk ∈ H, such that

l(φk) = 〈lk, φk〉.

Then, φk being a critical point of J is equivalent to

lk + Mφk + R′(φk) = 0. (2.11)

Since M is invertible, we can infer from (2.11) that

φk = T(φk) := −M−1(lk + R′(φk)).

Define

E =

{
φk : φk ∈ H, ‖φk‖ ≤ 1

k
(N+2s)(τ−1)+τ

2(N+2s−τ)

}
.

Next, we check that T is a contraction map from E to E.

Case 1: p ≤ 2. It is easy to verify that

‖R′(φk)‖ ≤ C‖φk‖|p.

In fact,

|〈R′(φk), v〉| =
∣∣∣∣
∫

RN
Q(|z|)(pU

p−1
r φkv + U

p
r v − |Ur + φk|p−1(Ur + φk)v)

∣∣∣∣

=

∣∣∣∣
∫

RN
Q(|z|)p(|Ur + θφk|p−1 − U

p−1
r )φkv

∣∣∣∣

≤ C
∫

RN
|(|Ur + θφk|p−1 − U

p−1
r )| |φk| |v|

≤ C
∫

RN
|θφk|p−1|φk| |v|

≤ C‖φk‖p‖v‖

where 0 < θ < 1.
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Then, by the boundedness of M and Lemma 2.3,

‖T(φk)‖ ≤ C(‖lk‖+ ‖φk‖p) ≤ C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
+δ

+
C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
p
≤ 1

k
(N+2s)(τ−1)+τ

2(N+2s−τ)

(2.12)

which implies that T maps E to E.

In addition,

‖R′′(φk)‖ ≤ C‖φk‖p−1.

In fact,

|〈R′′(φk)v, h〉| =
∣∣∣∣
∫

RN
Q(|z|)(pU

p−1
r vh − p|Ur + φk|p−1vh)

∣∣∣∣

= p

∣∣∣∣
∫

RN
Q(|z|)(Up−1

r vh − |Ur + φk|p−1)vh

∣∣∣∣

≤ C
∫

RN
|φk|p−1|v||h|

≤ C‖φk‖p−1‖v‖ ‖h‖.

Thus, for φk1
, φk2

∈ E,

‖T(φk1
)− T(φk2

)‖ = ‖M−1R′(φk1
)− M−1R′(φk2

)‖
≤ ‖M−1‖ ‖R′(φk1

)− R′(φk2
)‖ ≤ ‖M−1‖ ‖R′′(φk1

+ θ(φk2
− φk1

)‖ ‖φk2
− φk1

‖

≤ C(‖φk1
‖p−1 + ‖φk2

‖p−1‖)‖φk1
− φk2

‖ ≤ 1

2
‖φk1

− φk2
‖.

Note that the last inequality holds only when k is large enough, which implies the existence

of k0 in Lemma 2.2. Therefore, T is a contraction map from E to E. Then the contraction

mapping theorem implies the existence of φk as a critical point of J restricted to H.

Case 2: p > 2.

Setting h(t) = |Ur + tφk|p−1(Ur + tφk)v, then by Taylor’s formula,

|〈R′(φk), v〉| =
∣∣∣∣
∫

RN
Q(|z|)(pU

p−1
r φkv + U

p
r v − |Ur + φk|p−1(Ur + φk)v)

∣∣∣∣

=

∣∣∣∣
∫

RN
Q(|z|)(−1

2
h′′(θ))

∣∣∣∣

≤ C

∣∣∣∣
∫

RN
p(p − 1)|Ur + θφk|p−2 Ur + θφk

|Ur + θφk|
φ2

k v

∣∣∣∣

≤ C
∫

RN
(‖φk‖2 + ‖φk‖p)‖v‖

≤ C‖φk‖2‖v‖

which implies that ‖R′(φk)‖ ≤ C‖φk‖2.

By the mean value theorem we obtain

|〈R′′(φk)v, h〉| = p

∣∣∣∣
∫

RN
Q(|z|)(Up−1

r vh − |Ur + φk|p−1)vh

∣∣∣∣

= p(p − 1)

∣∣∣∣
∫

RN
Q(|z|)|Ur + θφk|p−3(Ur + θφk)φkvh

∣∣∣∣

≤ C
∫

RN
(U

p−2
r + |φk|p−2)|φk||v||h|
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where 0 < θ < 1.

By Hölder’s inequality,

∫

RN
U

p−2
r |φk||v||h| ≤ C

(∫

RN
U

p+1
r

) p−2
p+1
(∫

RN
|φk|p+1

) 1
p+1
(∫

RN
|v|p+1

) 1
p+1
(∫

RN
|h|p+1

) 1
p+1

≤ C‖φk‖ ‖v‖ ‖h‖

and

∫

RN
|φk|p−1|v||h| ≤

(∫

RN
|φk|p+1

) p−1
p+1
(∫

RN
|v|p+1

) 1
p+1
(∫

RN
|h|p+1

) 1
p+1

≤ C‖φk‖p−1‖v‖‖h‖ .

Therefore, ‖R′′(φk)‖ ≤ C‖φk‖.

Arguing similarly as in case 1, we have,

‖T(φk)‖ ≤ C(‖lk‖+ ‖φk‖2) ≤ 1

k
(N+2s)(τ−1)+τ

2(N+2s−τ)

. (2.13)

and T is a contraction map from E to E. The existence of φk follows from the contraction

mapping theorem, and (2.10) follows from (2.12) and (2.13).

Following the argument employed in [5] to prove Lemma 4.4, we conclude that φk(r) is

continuously differentiable in r.

Lemma 2.3. If τ = min{α, β} < N + 2s, there exists a small constant δ > 0 such that

‖lk‖ ≤ C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
+δ

.

Proof. We have

〈lk, φk〉 = l(φk)

=
∫

RN
(V(|z|)− 1)Urφk +

∫

RN

( k

∑
j=1

W
p
xj
− U

p
r

)
φk −

∫

RN
(Q(|z| − 1)U

p
r φk. (2.14)

By symmetry,

∫

RN
(V(|z|)− 1)Urφk =

∫

RN
(V(|z|)− 1)

( k

∑
j=1

Wxj

)
φk

=
k

∑
j=1

∫

RN
(V(|z|)− 1)Wxj

φk = k
∫

RN
(V(|z|)− 1)Wx1

φk (2.15)

and
∫

RN
(V(|z|)− 1)Wx1

φk =
∫

B r
2
(0)
(V(|z|)− 1)Wx1

φk +
∫

RN\B r
2
(0)
(V(|z|)− 1)Wx1

φk.

For z ∈ R
N\B r

2
(0),

V(|z|)− 1 =
a1

|z|α + O

(
1

|z|α+θ1

)
≤ C

|z|α ≤ 2αC

|r|α ,
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∫

RN\B r
2
(0)
(V(|z|)− 1)Wx1

φk =
2αC

|r|α
∫

RN\B r
2
(0)

Wx1
φk

≤ 2αC

|r|α
( ∫

RN\B r
2
(0)

W2
x1

) 1
2
( ∫

RN\B r
2
(0)

φ2
k

) 1
2

= O

(
1

rα

)
‖φk‖,

∫

B r
2
(0)
(V(|z|)− 1)Wx1

φk ≤ C

( ∫

B r
2
(0)

W2
x1

) 1
2
( ∫

B r
2
(0)

φ2
k

) 1
2

≤ C
1

r
N
2 +2s

‖φk‖.

Then we conclude that

∫

RN
(V(|z|)− 1)Wx1

φk ≤ O

(
1

rα

)
‖φk‖+ C

1

r
N
2 +2s

‖φk‖. (2.16)

By the mean value theorem and Lemma A.1,

∣∣∣∣
∫

RN

( k

∑
j=1

W
p
xj
− U

p
r

)
φk

∣∣∣∣ = k

∣∣∣∣
∫

Ω1

( k

∑
j=1

W
p
xj
− U

p
r

)
φk

∣∣∣∣

≤ Ck

∣∣∣∣
∫

Ω1

W
p−1
x1

( k

∑
j=2

Wxj

)
φk

∣∣∣∣ ≤ Ck
1

(k−1r)N+2s

( ∫

Ω1

W
p
x1

) p−1
p
( ∫

Ω1

|φk|p
) 1

p

≤ Ck
1

(k−1r)N+2s
‖φk‖. (2.17)

By the boundedness of Ur we have

∫

RN
(Q(|z| − 1)U

p
r φk =

∫

RN
(Q(|z| − 1)U

p−1
r Urφk

≤ C
∫

RN
(Q(|z| − 1)Urφk ≤ Ck

∫

RN
(Q(|z| − 1)Wx1

φk

≤ Ck

(
O

(
1

rβ

)
+

1

r
N
2 +2s

)
‖φk‖. (2.18)

Combining relations (2.14)–(2.18), we obtain

〈lk, φk〉 =
∫

RN
(V(|z|)− 1)Urφk +

∫

RN

(
k

∑
i=1

W
p
xj
− U

p
r

)
φk −

∫

RN
(Q(|z| − 1)U

p
r φk

≤ k

(
O

(
1

rα

)
+ O

(
1

rβ

)
+ C

1

r
N
2 +2s

+
C

(k−1r)N+2s

)
‖φk‖

≤ k

(
O

(
1

rτ

)
+

C

r
N
2 +2s

+
C

(k−1r)N+2s

)
‖φk‖. (2.19)

By r ∈ S, it holds that r ∼ k
N+2s

N+2s−τ , C

(k−1r)
N+2s ∼ O

(
1
rτ

)
,

kO

(
1

rτ

)
< C

1

k
(N+2s)τ
N+2s−τ −1

≤ C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
+δ

,

and k 1

r
N
2 +2s

<
1

k
(N+2s)(τ−1)+τ

2(N+2s−τ)

, for τ < N + 2s.
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We conclude that if τ < N + 2s, then

‖lk‖ ≤ C

k
(N+2s)(τ−1)+τ

2(N+2s−τ)
+δ

.

The proof is now complete.

3 Proof of the main result

Define

G(r) = I(Ur + φk), ∀r ∈ S,

where φk = φk(r) is the map obtained in Lemma 2.2.

According to Lemma 6.1 in [5], if r is a critical point of G(r), then Ur + φk(r) is a solution

of (1.1).

From the energy expansion in the Appendix, we have

J(0) = I(Ur)

= k

(
D +

a1 A1

rα
− a2 A2

rβ
− B

(k−1r)N+2s
+ O

(
1

rα+τ1

)
+ O

(
1

rβ+τ2

)
+ O

(
1

(k−1r)N+2s+σ

))
.

Set

H(r) =
a1 A1

rα
− a2A2

rβ
− B

(k−1r)N+2s
.

We prove in what follows that in any of the cases in Theorem 1.1, H(r) has a maximum

point rk.

For case (i): if a1 > 0, a2 = 0, α < N + 2s, and α ≤ β then

H′(r) = −αa1 A1

rα+1
+

B(N + 2s)kN+2s

rN+2s+1

and rk satisfies
αa1A1

rα+1
k

=
B(N + 2s)kN+2s

rN+2s+1
k

.

Actually, calculating the maximum points in these cases can be summed up as

τC

rτ+1
k

=
C′(N + 2s)kN+2s

rN+2s+1
k

,

where τ = min{α, β}. Then H(r) has a maximum point

rk =

(
(N + 2s)C′

τC

) 1
N+2s−τ

k
N+2s

N+2s−τ ,

which is an interior point of S. Then, there exists a small constant δ such that

J(0) = k

(
D +

a1A1

rα
− a2A2

rβ
− B

(k−1r)N+2s
+ O

(
1

k
(N+2s)τ
N+2s−τ +δ

))
.
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Consequently,

G(r) = I(Wr + φk) = I(Wr) + l(φk) +
1

2
〈Mφk, φk〉+ R(φk)

= J(0) + O(‖lk‖‖φk‖+ ‖φk‖2)

= J(0) + O

(
1

k
(N+2s)τ
N+2s−τ −1+δ

)

= k

(
D +

a1A1

rα
− a2A2

rβ
− B

(k−1r)N+2s
+ O

(
1

k
(N+2s)τ
N+2s−τ +δ

))
.

Since H(r) has a maximum point rk which is an interior point of S in any of the cases listed,

then G(r) has a critical point r̃k in the interior of S. This means that the function

Ur̃k
+ φk(r̃k)

is a solution of problem (1.1). The proof is now complete. �

A Appendix. Energy expansions

In this section, we obtain some energy estimates for the approximate solutions. Recall that

Ωj =

{
z = (z′, z′′) ∈ R

2 × R
N−2 :

〈
z′

|z′| ,
xj

|xj|

〉
≥ cos

π

k

}
,

xj =

(
r cos

2(j − 1)π

k
, r sin

2(j − 1)π

k
, 0

)
, j = 1, . . . , k,

r ∈ S :=

[(
N + 2s

τ
− ǫ

) 1
N+2s−τ

k
N+2s

N+2s−τ ,

(
N + 2s

τ
+ ǫ

) 1
N+2s−τ

k
N+2s

N+2s−τ

]
,

I(u) =
1

2

∫

RN

(
|(−∆)

s
2 u|2 + V(|z|)u2

)
− 1

p + 1

∫

RN
Q(|z|)|u|p+1,

and

I(Ur) =
1

2

∫

RN

(
|(−∆)

s
2 Ur|2 + V(|z|)Ur

2
)
− 1

p + 1

∫

RN
Q(|z|)|Ur|p+1

=
1

2

∫

RN
Ur

k

∑
j=1

W
p
xj
+

1

2

∫

RN
(V(|z|)− 1)Ur

2

− 1

p + 1

∫

RN
(Q(|z|)− 1)U

p+1
r − 1

p + 1

∫

RN
U

p+1
r .

Lemma A.1. For any z ∈ Ω1, there exists C > 0, such that

k

∑
j=2

Wxj
(z) ≤ C

(k−1r)N+2s
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Proof. By the definition of Ωj, for any z ∈ Ω1,

|z − xj| ≥
1

2
|xj − x1| = r sin

(j − 1)π

k
> 0 (j ≥ 2).

Then

k

∑
j=2

Wxj
(z) ≤ C

k

∑
j=2

1

(r sin
(j−1)π

k )
N+2s

= C
k−1

∑
i=1

1

(r sin iπ
k )

N+2s

=





2C ∑
k−1

2
i=1

1

(r sin iπ
k )

N+2s , k is odd,

2C

(
∑

k−2
2

i=1
1

(r sin iπ
k )

N+2s +
1

(r sin kπ
2k )

N+2s

)
, k is even.

When k is even,

k

∑
j=2

Wxj
(z) ≤ 2C

( k−2
2

∑
i=1

1

(r sin iπ
k )

N+2s
+

1

(r sin kπ
2k )

N+2s

)

≤ 2C

( k−2
2

∑
i=1

1

(r 2i
k )

N+2s
+

1

rN+2s

)

≤ 2C

(
1

(k−1r)N+2s

k−2
2

∑
i=1

1

iN+2s
+

1

rN+2s

)

≤ C

(k−1r)N+2s

since ∑
+∞
i=1

1
iN+2s converges.

The proof of the case where k is odd follows with similar arguments.

Lemma A.2. We have

∫

RN
(V(|z|)− 1)Ur

2 = k

(
a1

rα

∫

RN
W2 + O

(
1

rα+τ1

)
+ O

(
1

(k−1r)N+2s+σ1

))

where τ1 > 0, and σ1 > 0 are small constants.

Proof. By symmetry,

∫

RN
(V(|z|)− 1)Ur

2 = k
∫

Ω1

(V(|z|)− 1)

(
Wx1

+
k

∑
j=2

Wxj

)2

= k
∫

Ω1

(V(|z|)− 1)

(
W2

x1
+ 2Wx1

k

∑
j=2

Wxj
+

( k

∑
j=2

Wxj

)2)
(A.1)

and
∫

Ω1

(V(|z|)− 1)W2
x1
=
∫

Ω1\B r
2
(x1)

(V(|z|)− 1)W2
x1
+
∫

B r
2
(x1)

(V(|z|)− 1)W2
x1

. (A.2)
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On the one hand,
∫

Ω1\B r
2
(x1)

(V(|z|)− 1)W2
x1
≤ C

∫

Ω1\B r
2
(x1)

W2
x1
≤ C

∫

|z−x1|> r
2

(
1

|z − x1|N+2s

)2

= C
∫ +∞

r
2

tN−1

t2N+4s
dt = C

∫ +∞

r
2

1

tN+4s+1
dt = C

1

rN+4s
= O

(
1

rN+4s

)
. (A.3)

On the other hand,
∫

B r
2
(x1)

(V(|z|)− 1)W2
x1

=
∫

B r
2
(x1)

(
a1

|z|α + O

(
1

|z|α+θ1

))
W2

x1

=
∫

B r
2
(x1)

(
a1

rα
+

a1

rα+1
O(|z − x1|) +

C

rα+θ1
+

C

rα+θ1+1
O(|z − x1|)

)
W2

x1

=
a1

rα

∫

B r
2
(x1)

W2
x1
+ O

(
1

rα+τ1

)
=

a1

rα

∫

RN
W2 + O

(
1

rα+τ1

)
+ O

(
1

rN+4s

)
, (A.4)

where τ1 = min{1, θ1}.

By (A.2)–(A.4),
∫

Ω1

(V(|z|)− 1)W2
x1
=

a1

rα

∫

RN
W2 + O

(
1

rN+4s

)
+ O

(
1

rα+τ1

)
, (A.5)

∫

Ω1

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj
=
∫

Ω1\B r
2
(x1)

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj

+
∫

B r
2
(x1)

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj
(A.6)

By the boundedness of V(|z|) and Lemma A.1,

∫

Ω1\B r
2
(x1)

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj
≤ C

(k−1r)N+2s

∫

Ω1\B r
2
(x1)

Wx1

≤ C

(k−1r)N+2s

∫

|z−x1|> r
2

1

|z − x1|N+2s
=

C

(k−1r)N+2s

∫ +∞

r
2

tN−1

tN+2s
dt

=
C

(k−1r)N+2s

∫ +∞

r
2

1

t2s+1
dt =

C

(k−1r)N+2s

1

r2s

= O

(
1

(k−1r)N+4s

)
. (A.7)

Similarly to (A.4),

∫

B r
2
(x1)

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj
≤ C

(k−1r)N+2s

∫

B r
2
(x1)

(
a1

|z|α + O

(
1

|z|α+θ1

))
Wx1

=
C

(k−1r)N+2s

(
a1

rα

∫

B r
2
(x1)

Wx1
+ O

(
1

rα+1

)
+ O

(
1

rα+θ1

))

≤ C

(k−1r)N+2s

C′

rα
= O

(
1

(k−1r)N+2s+α

)
. (A.8)
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By relations (A.6)–(A.8) we get

∫

Ω1

(V(|z|)− 1)Wx1

k

∑
j=2

Wxj
= O

(
1

(k−1r)N+4s

)
+ O

(
1

(k−1r)N+2s+α

)
, (A.9)

∫

Ω1

(V(|z|)− 1)

( k

∑
j=2

Wxj

)2

≤ C

(k−1r)N+2s

k

∑
j=2

∫

Ω1

Wxj

≤ C

(k−1r)N+2s

C1

(k−1r)2s
= O

(
1

(k−1r)N+4s

)
. (A.10)

By (A.1), (A.5), (A.9), (A.10), We have

∫

RN
(V(|z|)− 1)Ur

2

= k

(
a1

rα

∫

RN
W2 + O

(
1

rN+4s

)
+ O

(
1

rα+τ1

)
+ O

(
1

(k−1r)N+4s

)
+ O

(
1

(k−1r)N+2s+α

))

= k

(
a1

rα

∫

RN
W2 + O

(
1

rα+τ1

)
+ O

(
1

(k−1r)N+2s+σ1

))
, (A.11)

where σ1 = min{2s, α}. The proof is now complete.

Remark A.3. Arguing similarly as in Lemma A.2, we have

∫

RN
(Q(|z|)− 1)Ur

p+1 = k

(
a2

rβ

∫

RN
Wp+1 + O

(
1

rβ+τ2

)
+ O

(
1

(k−1r)N+2s+σ2

))
, (A.12)

where τ2 > 0 and σ2 > 0 are small constants.

Lemma A.4. There is a small constant δ > 0, such that

I(Ur) = k

(
D +

a1

rα
A1 −

a2

rβ
A2 −

B

(k−1r)N+2s
+ O

(
1

k
(N+2s)τ
(N+2s−τ)

+δ

))
,

where

D =

(
1

2
− 1

p + 1

) ∫

RN
Wp+1, A1 =

1

2

∫

RN
W2, A2 =

1

p + 1

∫

RN
Wp+1,

and B satisfies

1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
=

B

(k−1r)N+2s
.

Proof. We first prove that there exists small constant σ3 > 0 such that

1

2

∫

RN
Ur

k

∑
j=1

W
p
xj
− 1

p + 1

∫

RN
U

p+1
r

= k

((
1

2
− 1

p + 1

) ∫

RN
Wp+1 − 1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
+ O

(
1

(k−1r)N+2s+σ3

))
. (A.13)
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By symmetry,

∫

RN
Ur

k

∑
j=1

W
p
xj
= k

∫

Ω1

Ur

k

∑
j=1

W
p
xj

= k
∫

Ω1

(
Wx1

+
k

∑
i=2

Wxi

)(
W

p
x1
+

k

∑
j=2

W
p
xj

)

= k

( ∫

Ω1

W
p+1
x1

+ W
p
x1

k

∑
i=2

Wxi
+ Wx1

k

∑
j=2

W
p
xj
+

k

∑
i=2

Wxi

k

∑
j=2

W
p
xj

)
. (A.14)

By Lemma A.1,

∫

Ω1

Wx1

k

∑
j=2

W
p
xj
≤
∫

Ω1

Wx1

k

∑
j=2

(
C

|z − xj|N+2s

)p

≤
∫

Ω1

Wx1

k

∑
j=2

Cp

( 1
2 |xj − x1|)(N+2s)p

=
k

∑
j=2

Cp

( 1
2 |xj − x1|)(N+2s)p

∫

Ω1

Wx1

≤ C′

(k−1r)(N+2s)p

∫

Ω1

Wx1
= O

(
1

(k−1r)(N+2s)p

)
(A.15)

and

∫

Ω1

k

∑
i=2

Wxi

k

∑
j=2

W
p
xj
≤ C

(k−1r)N+2s

k

∑
j=2

∫

Ω1

W
p
xj
= O

(
1

(k−1r)(N+2s)p+2s

)
. (A.16)

By Taylor’s formula,

∫

Ω1

U
p+1
r −

∫

Ω1

W
p+1
x1

−
∫

Ω1

(p + 1)W
p
x1

k

∑
j=2

Wxj

=
1

2
p(p + 1)

∫

Ω1

(
Wx1

+ θ
k

∑
j=2

Wxj

)p−1( k

∑
j=2

Wxj

)2

≤ C
∫

Ω1

(
W

p−1
x1

( k

∑
j=2

Wxj

)2

+

( k

∑
j=2

Wxj

)p+1)
.

By Lemma A.1,

∫

Ω1

W
p−1
x1

( k

∑
j=2

Wxj

)2

≤ C

(k−1r)2N+4s

∫

Ω1

W
p−1
x1

≤ C

(k−1r)2N+4s

and

∫

Ω1

( k

∑
j=2

Wxj

)p+1

≤ C

(k−1r)(N+2s)p

k

∑
j=2

∫

Ω1

Wxj
≤ C

(k−1r)(N+2s)p

C′

(k−1r)2s
.

Therefore,

∫

Ω1

U
p+1
r =

∫

Ω1

W
p+1
x1

+ (p + 1)W
p
x1

k

∑
j=2

Wxj
+ O

(
1

(k−1r)N+4s

)
. (A.17)
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Thus, by (A.13)–(A.17), we conclude that

1

2

∫

RN
Ur

k

∑
j=2

W
p
xj
− 1

p + 1

∫

RN
U

p+1
r

= k

(
1

2

∫

Ω1

Ur

k

∑
j=2

W
p
xj
− 1

p + 1

∫

Ω1

U
p+1
r

)

= k

((
1

2
− 1

p + 1

) ∫

Ω1

W
p+1
x1

− 1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
+ O

(
1

(k−1r)(N+2s)p

)
+ O

(
1

(k−1r)N+4s

))

= k

((
1

2
− 1

p + 1

) ∫

RN
Wp+1 − 1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
+ O

(
1

(k−1r)N+2s+σ3

))
(A.18)

where σ3 = min{2s, (p − 1)(N + 2s)}.

Next, we claim that there exists a constant B > 0, such that

1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
=

B

(k−1r)N+2s
.

It is easy to verify that

1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
≤ B

(k−1r)N+2s
.

Set Gk = {z ∈ R
N : |z − x1| < 1

4 |xj − x1|}. Then for a fixed R > 0, it follows that BR(x1) ⊂
Gk ⊂ Ω1. Then

1

2

∫

Ω1

W
p
x1

k

∑
j=2

Wxj
≥ 1

2

∫

Gk

W
p
x1

k

∑
j=2

Wxj
≥ 1

2

∫

Gk

W
p
x1

k

∑
j=2

C

|z − xj|N+2s

≥ C′
∫

Gk

W
p
x1

k

∑
j=2

1
∣∣ 3

2 r sin
(j−1)π

k

∣∣N+2s
= C′

k

∑
j=2

1
∣∣ 3

2 r sin
(j−1)π

k

∣∣N+2s

∫

Gk

W
p
x1

≥ C′
k

∑
j=2

1
∣∣ 3

2 r sin
(j−1)π

k

∣∣N+2s

∫

BR(0)
Wp ≥ B

(k−1r)N+2s
.

Combining this claim with Lemma A.2, Remark A.3, and (A.18), we obtain

I(Ur) = k

((
1

2
− 1

p + 1

) ∫

RN
Wp+1 +

1

2

a1

rα

∫

RN
W2 − 1

p + 1

a2

rβ

∫

RN
Wp+1

− B

(k−1r)N+2s
+ O

(
1

rα+τ1

)
+ O

(
1

rβ+τ2

)
+ O

(
1

(k−1r)N+2s+σ

))
,

where σ = min{σ1, σ2, σ3}.

Denoting

D =

(
1

2
− 1

p + 1

) ∫

RN
Wp+1, A1 =

1

2

∫

RN
W2, A2 =

1

p + 1

∫

RN
Wp+1,

and using the fact that r ∈ S, we have

I(Ur) = k

(
D +

a1

rα
A1 −

a2

rβ
A2 −

B

(k−1r)N+2s
+ O

(
1

k
(N+2s)τ
(N+2s−τ)

+δ

))
.

The proof is now complete.
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[15] G. Molica Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional

problems, Encyclopedia of Mathematics and its Applications, Vol. 162, Cambridge Univer-

sity Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316282397; MR3445279;

Zbl 1356.49003
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Abstract. The object of this paper is to study the existence and nonexistence of an im-
portant orbit in a generalized Liénard type system. This trajectory is doubly asymptotic
to an equilibrium solution, i.e., an orbit which lies in the intersection of the stable and
unstable manifolds of a critical point. Such an orbit is called a homoclinic orbit.
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1 Introduction

Consider the planar system

ẋ = P(Q(y)− F(x))

ẏ = −g(x),
(1.1)

which is a generalized Liénard type system, where P, Q, F and g are continuous functions

satisfying suitable assumptions in order to ensure the existence of a unique solution to the

initial value problems. Moreover, suppose that the following assumptions hold under which

the origin is the unique critical point of system (1.1).

P(u) and Q(y) are strictly increasing and F(0) = P(0) = Q(0) = 0,

uP(u) > 0 for u 6= 0, yQ(y) > 0 for y 6= 0 and xg(x) > 0 for x 6= 0.

System (1.1) includes the classical Liénard system as a special case, which is of great impor-

tance in various applications (see [1] to [23] and the references cited therein).

Definition 1.1. In system (1.1), a trajectory is said to be a homoclinic orbit if its α- and ω-limit

sets are the origin (see Fig. 1.1).

BCorresponding author. Email: roomi@azaruniv.ac.ir
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Figure 1.1: Homoclinic orbit

The main purpose of this paper is to give an implicit necessary and sufficient condition

and some explicit sufficient conditions on F(x), g(x), P(u) and Q(y) under which system (1.1)

has homoclinic orbits. These results extend and improve the results presented for special cases

of system (1.1) in [3, 11, 19].

The existence of homoclinic orbit is an important problem in nonlinear dynamical systems

and the theory of ordinary differential equations. The results about the existence of homoclinic

orbits for the other systems, such as the Lorenz system, Schrödinger systems, predator–prey

systems and Hamiltonian systems can be found in [13,18,22,23], respectively. Moreover, vari-

ous systems and equations such as generalized Euler equation [4] and predator–prey systems

[22] can be transformed to the Liénard type systems.

The existence of homoclinic orbits in the Liénard-type systems is closely connected with

the stability of the zero solution and the center problem (see [6, 11, 19, 21]). If system (1.1) has

a homoclinic orbit, then the zero solution is no longer stable. A homoclinic orbit and a center

cannot exist together in system (1.1). Our subject also has a near relation with the global

attractivity of the origin and oscillation of solutions and so on (see [9, 12, 20]).

The curve Γ = {(x, y)|y = Q−1(F(x))} is called the characteristic curve of (1.1). Let

Γ1 = {(x, y) | y = Q−1(F(x)) and x > 0},

and

Γ2 = {(x, y) | y = Q−1(F(x)) and x < 0}.

Then, Γ = Γ1
⋃

Γ2
⋃

(0, 0). Positive and negative orbits of (1.1) passing through p ∈ R
2 are

shown by O+(p) and O−(p), respectively.

The following definitions are presented to state our main results.

Definition 1.2. System (1.1) has property (Z+
1 ) (resp., (Z+

3 )) if there exists a point p(x0, y0) ∈
Γ1 (resp., p(x0, y0) ∈ Γ2), such that the O+(p) of (1.1) starting at p approaches the origin

through only the first (resp., third) quadrant (see Fig. 1.2).

Definition 1.3. System (1.1) has property (Z−
2 ) (resp., (Z−

4 )) if there exists a point p(x0, y0) ∈
Γ2 (resp., p(x0, y0) ∈ Γ1), such that the O−(p) of (1.1) starting at p approaches the origin

through only the second (resp., fourth) quadrant.

If system (1.1) has both properties (Z+
1 ) and (Z−

2 ), then a homoclinic orbit exists in the

upper half-plane. Similarly, if system (1.1) has both properties (Z+
3 ) and (Z−

4 ), then a homo-

clinic orbit exists in the lower half-plane. In this paper we will find conditions for deciding

whether system (1.1) has homoclinic orbit.

Hara and Yoneyama in [9] considered system (1.1) with Q(y) = y and P(u) = u and

presented some sufficient conditions under which the system has or fails to have property

(Z+
1 ). Also, Sugie presented an implicit necessary and sufficient condition for system (1.1)

with P(u) = u to have property (Z+
1 ) [19]. Next, Aghajani and Moradifam in [3] considered
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Figure 1.2: Property (Z+
1 )

system (1.1) with P(u) = u and gave an implicit necessary and sufficient condition for the

system to have property (Z+
1 ) which improved some results in [19].

In the next section an implicit necessary and sufficient condition and some explicit suffi-

cient conditions are provided for system (1.1) to have property (Z+
1 ). Since some nonlinear

functions are added to the classical Liénard system in this article, our results are proper ex-

tensions of the known ones in [3], [9], [11] and [19].

2 Necessary and sufficient conditions for property of (Z
+
1 )

In this section we will give necessary and sufficient conditions for system (1.1) to have prop-

erties (Z+
1 ) and (Z−

2 ). First, consider the following lemma about asymptotic behavior of

solutions of (1.1).

Lemma 2.1. For each point H(c, Q−1(F(c))) with c > 0 or c < 0, the positive or negative semi-orbit

of (1.1) starting at H crosses the negative y-axis if the following condition holds.

(A1) There exists a δ > 0 such that F(x) < 0 for −δ < x < δ or F(x) has an infinite number of

positive zeroes clustering at x = 0.

Remark 2.2. Lemma 2.1 implies that system (1.1) fails to have properties (Z+
1 ) and (Z−

2 ) if

(A1) holds. Hence, hereafter we assume that there exists a δ > 0 such that F(x) > 0 for

−δ < x < δ.

Theorem 2.3. System (1.1) has property (Z+
1 ) if and only if there exist a constant δ > 0 and a

continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)

P(φ(η)− F(η))
dη ≤ Q−1(φ(x)) (2.1)

for 0 < x < δ.

Proof. First, note that the positive semi-orbit of (1.1) starting at H(x0, Q−1(F(x0))) is consid-

ered as a solution y(x) of
dy

dx
=

−g(x)

P(Q(y)− F(x))
, (2.2)

with y(x0) = Q−1(F(x0)).
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Sufficiency: Suppose that system (1.1) fails to have property (Z+
1 ). Thus, there exist a point

H(x0, Q−1(F(x0))) and x0 > 0 such that the positive semi-orbit of (1.1) starting at H does not

approach the origin through the first quadrant. Taking the vector field of (1.1) into account, it

is obvious that the positive semi-orbit rotates in clockwise direction about the origin. For this

reason, it crosses the curve y = Q−1(φ(x)) and meets the y-axis at a point (0, y1) with y1 < 0.

Let

x1 = inf{x : 0 < x < δ and y(x) > Q−1(φ(x))}.

Then, (x1, y(x1)) is the intersection point of O+(H) and the curve y = Q−1(φ(x)) nearest to

the origin, that is y(x1) = Q−1(φ(x1)) and y < Q−1(φ(x)) for 0 < x < x1. Hence, from (2.1),

it can be concluded that

Q−1(φ(x1)) < y(x1)− y1 =
∫ x

0

−g(η)

P(Q(y(η))− F(η))
dη

<

∫ x1

0

−g(η)

P(φ(η)− F(η))
dη ≤ Q−1(φ(x1)),

which is a contradiction.

Necessity: Suppose that O+(H) approaches the origin through the first quadrant. Then, its

corresponding solution y(x) satisfies

y(x) → 0+ as x → 0. (2.3)

Let δ = x0 and φ(x) = Q(y(x)) for 0 < x < δ. It is obvious that φ(x) ≥ 0. Thus,

Q−1(φ(x)) = y(x) < Q−1(F(x)),

and therefore, φ(x) < F(x) for 0 < x < δ. Also, from (2.3) it can be easily seen that

∫ x

0

−g(η)

P(φ(η)− F(η))
dη =

∫ x

0

−g(η)

P(Q(y(η))− F(η))
dη = y(x)− lim

ǫ→0
y(ǫ)

= Q−1(φ(x)).

Thus, (2.1) holds and the proof is complete.

Remark 2.4. For P(u) = u, Theorem 2.3 gives the corresponding result of Sugie in [19].

Corollary 2.5. Suppose that there exists k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF(x))

∫ x

0

−g(η)

P((k − 1)F(η))
dη ≤ 1 for 0 < x < δ. (2.4)

Then, system (1.1) has property (Z+
1 ).

Proof. Let φ(x) = kF(x). The following inequality is obtained from (2.4).

∫ x

0

−g(η)

P(φ(η)− F(η))
dη =

∫ x

0

−g(η)

P((k − 1)F(η))
dη ≤ Q−1(kF(x)),

for 0 < x < δ. Thus, by Theorem 2.3 system (1.1) has property (Z+
1 ).
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Corollary 2.6. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0. If there exist k ∈ (0, 1) and

δ > 0 such that
1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη ≤ 1 for 0 < x < δ,

then system (1.1) has property (Z+
1 ).

Remark 2.7. For P(u) = u and Q(y) = y and taking k = 1
2 , Corollary 2.6 gives the result of

Hara and Yoneyama in [9].

Corollary 2.8. If for every k ∈ [0, 1] there exists a constant γk > 0 such that

lim inf
x→0+

(

1

Q−1((k + γk)F(x))

∫ x

0

−g(η)

P((k − γk − 1)F(η))
dη

)

> 1, (2.5)

then system (1.1) fails to have property (Z+
1 ).

Proof. Suppose that there exist a constant δ > 0 and a continuous function φ such that condi-

tion (2.1) holds. Define k′ = lim infx→0+
φ(x)
F(x)

. Then 0 ≤ k′ ≤ 1, and from the definition of k′ it

follows that for every ǫ > 0, there exist a b and a sequence {xn} with 0 < b < δ, 0 < xn ≤ b,

and xn → 0 as n → +∞ such that

φ(x)

F(x)
> k′ − ǫ for 0 < x ≤ b and

φ(xn)

F(xn)
< k′ + ǫ.

Hence,

φ(x) > (k′ − ǫ)F(x) for 0 < x ≤ b and φ(xn) < (k′ + ǫ)F(xn).

Thus, from (2.1) it can be concluded that

0 ≥
∫ xn

0

−g(η)

P(φ(η)− F(η))
dη − Q−1(φ(xn))

>

∫ xn

0

−g(η)

P((k′ − ǫ)F(η)− F(η))
dη − Q−1((k′ + ǫ)F(xn)).

Consequently, for n ≥ 1 the following inequality holds.

1

Q−1((k′ + ǫ)F(xn))

∫ xn

0

−g(η)

P((k′ − ǫ − 1)F(η))
dη < 1. (2.6)

Thus, (2.6) contradicts (2.5) and the proof is complete.

Corollary 2.9. Suppose that P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. If there exists β ∈ (1, 2]

such that

lim inf
x→0+

(

1

2Q−1((β + 1)F(x))

∫ x

0

g(η)

P(F(η))
dη

)

> 1, (2.7)

then system (1.1) fails to have property (Z+
1 ).

Proof. Suppose that (2.7) holds. Then, in (2.5) for every k ∈ [0, 1] let γk = (β − 1)k + 1. By

this argument, we have k − 1 − γk = 2k − βk − 2 and k + γk = βk + 1. Since 1 < β ≤ 2 and

0 ≤ k ≤ 1, then

−2 ≤ 2k − βk − 2 < −1,
1

2
≤ 1

2 + (β − 2)k
< 1 and βk + 1 ≤ β + 1.
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Now, put the last relations in the left-hand side of (2.5) and get

lim inf
x→0+

(

1

Q−1((k + γk)F(x))

∫ x

0

−g(η)

P((k − γk − 1)F(η))
dη

)

= lim inf
x→0+

(

1

Q−1((βk + 1)F(x))

∫ x

0

−g(η)

P((2k − βk − 2)F(η))
dη

)

≥ lim inf
x→0+

(

1

(2 + (β − 2)k)Q−1((β + 1)F(x))

∫ x

0

g(η)

P(F(η))
dη

)

≥ lim inf
x→0+

(

1

2Q−1((β + 1)F(x))

∫ x

0

g(η)

P(F(η))
dη

)

> 1.

This completes the proof.

By choosing k = 0 in the proof of Corollary 2.9, the following corollary can be presented

with weaker conditions.

Corollary 2.10. Suppose that P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. If

lim inf
x→0+

(

1

2Q−1(F(x))

∫ x

0

g(η)

P(F(η))
dη

)

> 1, (2.8)

then system (1.1) fails to have property (Z+
1 ).

The following corollaries can be obtained as results of Theorem 2.3 which are very useful

in applications.

Corollary 2.11. Suppose that system (1.1) with P(u) = P1(u) has (resp., fails to have) property (Z+
1 ).

If P2(u) ≤ P1(u) (resp., P2(u) ≥ P1(u)) for u < 0, then system (1.1) with P(u) = P2(u) has (resp.,

fails to have) property (Z+
1 ).

Corollary 2.12. Suppose that system (1.1) with Q(y) = Q1(y) has (resp., fails to have) property

(Z+
1 ). If Q2(y) ≤ Q1(y) (resp., Q2(y) ≥ Q1(y)) for y > 0 sufficiently small, then system (1.1) with

Q(y) = Q2(y) has (resp., fails to have) property (Z+
1 ).

By the same way, we can prove the following theorem about property (Z−
2 ).

Theorem 2.13. System (1.1) has property (Z−
2 ) if and only if there exist a constant δ > 0 and a

continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)

P(φ(η)− F(η))
dη ≤ Q−1(φ(x))

for −δ < x < 0.

Similarly, other obtained results (Corollaries 2.5–2.10) can be formulated for property (Z−
2 ).

3 Some explicit results

Condition (2.1) is implicit necessary and sufficient for system (1.1) to possess property (Z+
1 ).

However, in some cases, it is very difficult to find a suitable function φ(x) with a constant δ

satisfying (2.1). Therefore, in the following, some explicit sufficient conditions are provided
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for system (1.1) to have property (Z+
1 ). The results can also be formulated for the property

(Z+
3 ), (Z−

2 ) or (Z−
4 ). We leave the details to the reader. To state the results, define

H(y) =
∫ y

0
Q(η)dη and G(x) =

∫ x

0
g(η)dη.

Also, the inverse function of ω(y) = H(y)sgn(y) is denoted by H−1(ω).

Theorem 3.1. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0 and there exist α > 0 and

k ∈ [0, 1) such that

Q

(

x

α(1 − k)

)

≤ kP−1(αQ(x)) (3.1)

for x > 0 sufficiently small. Then, system (1.1) has property (Z+
1 ) if

F(x) ≥ P−1(αQ(H−1(G(x)))), (3.2)

for x > 0 sufficiently small.

Proof. From (3.1) it is obvious that

u

α(1 − k)Q−1(kP−1(αQ(u)))
≤ 1, (3.3)

for u > 0 sufficiently small. Since the function u(x) = H−1(G(x)) is increasing and continuous

on [0, ∞) and u(0) = 0, by (3.2) we obtain

H−1(G(x))

α(1 − k)Q−1(kP−1(αQ(H−1(G(x)))))
≤ 1, (3.4)

for x > 0 sufficiently small. Since

d

dx
H−1(G(x)) =

g(x)

Q(H−1(G(x)))
,

from (3.4) we conclude that

1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη

≤ 1

(1 − k)Q−1(kP−1(αQ(H−1(G(x)))))

∫ x

0

g(η)

αQ(H−1(G(η)))
dη

=
H−1(G(x))

α(1 − k)Q−1(kP−1(αQ(H−1(G(x)))))
≤ 1,

for x > 0 sufficiently small. Hence, by Corollary 2.6 system (1.1) has property (Z+
1 ).

By choosing α = 2, k = 1
2 and P(u) = u, condition (3.1) holds for any function Q. In

this case, the following corollary is obtained about property (Z+
1 ) which is the corresponding

result of Sugie in [19].

Corollary 3.2. Suppose that

F(x) ≥ 2Q(H−1(G(x))), (3.5)

for x > 0 sufficiently small. Then, system (1.1) with P(u) = u has property (Z+
1 ).
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Theorem 3.3. Suppose that α > 0 and P(au) ≥ aP(u) for a ∈ [−2,−1) and u > 0. Also, assume

that there exists β ∈ (1, 2] such that

Q

(

x

2α

)

≥ (β + 1)P−1(αQ(x)) (3.6)

for x > 0 sufficiently small. Then, system (1.1) fails to have property (Z+
1 ) if

F(x) ≤ P−1(λαQ(H−1(G(x)))), (3.7)

for some λ < 1.

Proof. By (3.6) it is obvious that

u

αQ−1((β + 1)P−1(αQ(u)))
≥ 2.

By the similar argument to the proof of Theorem 3.1, it can be concluded that if (3.6) and (3.7)

hold, then

lim inf
x→0+

(

1

2Q−1((β + 1)F(x))

∫ x

0

g(η)

P(F(η))
dη

)

> 1.

Hence, by Corollary 2.9 system (1.1) fails to have property (Z+
1 ).

4 Homoclinic orbit

In this section some results will be presented about the existence of homoclinic orbit in the

upper half-plane for system (1.1). The following theorem is obtained by combining Theorem

2.3 and 2.13.

Theorem 4.1. System (1.1) has homoclinic orbit in the upper half-plane if and only if there exist a

constant δ > 0 and a continuous function φ(x) such that

0 ≤ φ(x) < F(x) and
∫ x

0

−g(η)

P(φ(η)− F(η))
dη ≤ Q−1(φ(x)) (4.1)

for 0 < |x| < δ.

The following two corollaries are obtained from Theorem 4.1, which provide explicit con-

ditions for system (1.1) to have homoclinic orbit in upper half-plane. Note that, in Remark 2.2,

it is assumed that there exists a δ > 0 such that F(x) > 0 for −δ < x < δ.

Corollary 4.2. Suppose that there exist k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF(x))

∫ x

0

−g(η)

P((k − 1)F(η))
dη ≤ 1 for 0 < |x| < δ. (4.2)

Then, system (1.1) has homoclinic orbit in the upper half-plane.

Corollary 4.3. Suppose that P(au) ≤ aP(u) for a ∈ (−1, 0) and u > 0. If there exist k ∈ (0, 1) and

δ > 0 such that
1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη ≤ 1 for 0 < |x| < δ, (4.3)

then system (1.1) has homoclinic orbit in the upper half-plane.
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Remark 4.4. Suppose that F is an even and g is an odd function. It is easy to see that system

(1.1) has property (Z+
1 ) if and only if it has property (Z−

2 ). Therefore, if system (1.1) has

property (Z+
1 ), then it has a homoclinic orbit in the upper half-plane.

Similarly, Theorem 3.1 and Corollary 3.2 and some other results can be formulated about

property (Z−
2 ) and the existence of homoclinic orbits in the upper half-plane. Turning our

attention to the lower half-plane, all presented results can be formulated about properties

(Z+
3 ) and (Z−

4 ) and finally about the existence of homoclinic orbit in the lower half-plane.

In the following, two examples will be presented to illustrate our results and show the

applications of the results.

Example 4.5. Consider the following Gause-type Predator-Prey system

u̇ = ur(u)− vs f (u)

v̇ = v(q(u)− D),
(4.4)

with f (u) = u, r(u) = β − γ|u − α|, q(u) = u2, D = α2 and β > αγ. In system (4.4), u(t)

and v(t) represent prey and predator densities, the function f (u) is functional response, q(u)

is the growth rate of the predator, r(u) is the growth rate of the prey in the absence of any

predators, and D > 0 is the natural death rate of the predator in the absence of any prey.

The constants α, β and γ are positive ecological parameters. System (4.4) has the positive

equilibrium E∗ = (α, β). By the change of variables

x = u − α, y = ln β − ln v and dt = uds,

system (4.4) will be transformed into system (1.1) with

P(u) = u, Q(y) = β(1 − e−y), F(x) = γ|x| and g(x) = x + α − α2

x + α
. (4.5)

Functions F(x) and g(x) are defined on (−α,+∞) and satisfy F(0) = 0 and xg(x) > 0 for

x 6= 0. Also, Q(y) is defined on R satisfying Q(0) = 0 and yQ(y) > 0 for y 6= 0. The inverse

function of Q(y) is Q−1(y) = ln
( β

β−y

)

where defined on (−∞, β). For 0 < x <
β

kγ , by using

Corollary 4.3, it can be written that

1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη =

1

γ(1 − k) ln

(

β

β − kγx

)

(

x + α ln

(

1 +
x

α

))

<
2β

γ2(1 − k)k
.

By choosing k = 1
2 , it can be concluded that

1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη <

8β

γ2
.

If 0 < 8β ≤ γ2, then
1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη < 1.

By a similar argument, it can be shown that for −α < x < 0

1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη < 1.
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Figure 4.1: Phase portrait for system (4.4) with α = 0.2, β = 0.75 and γ = 3.

Therefore, by Corollary 4.3 this system has a homoclinic orbit in the upper half-plane (see

Fig. 4.1).

Remark 4.6. Sugie and Kimoto in [22], under the assumption Q(y) ≤ my for y > 0, showed

that system (1.1) with functions in (4.5) has homoclinic orbits in the upper half-plane if 0 <

8β ≤ γ2. In this work, the existence of homoclinic orbits has been presented without the

assumption Q(y) ≤ my for y > 0.

Example 4.7. Consider system (1.1) with functions

P(u) = u3, Q(y) = sgn(y)
√

|y|, F(x) = 4

√

|x| and g(x) = x. (4.6)

By Corollary 2.5, it can be written that

1

Q−1(kF(x))

∫ x

0

−g(η)

P((k − 1)F(η))
dη =

4
4
√

x3

5k2(1 − k)3
≤ 1

for 0 < x <

(

3
5

)4 1

5 3√5
. Therefore, this system has property (Z+

1 ). Since F is even and g is

odd, Remark 4.4 implies that this system has a homoclinic orbit in the upper half-plane (see

Fig. 4.2).

The next example shows a new application which comes from articles treating the Liénard

equation with the differential operator related to the relativistic acceleration, that is

d

dt

(

ẋ
√

1 − (ẋ)2

)

+ f (x)ẋ + g(x) = 0, (4.7)

which, nowadays, is a quite interesting topic in works concerning the case of generalized

Liénard equations. The existence of a stable limit cycle and periodic solutions of relativistic

Liénard equation (4.7) has been investigated by Mawhin and Villari in [15]. Now, we apply

our results to a special case of this equation.

Equation (4.7) can easily be transformed to system (1.1) with

P(u) =
u√

1 + u2
, Q(y) = y and F(x) =

∫ x

0
f (η)dη.
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Figure 4.2: Phase portrait for system (4.6).

Example 4.8. Consider system (1.1) with

P(u) =
u√

1 + u2
, Q(y) = y, F(x) = x2 and g(x) =

x3

2
√

1 + x4
. (4.8)

Since P(au) ≤ aP(u) for −1 < a < 0 and u > 0, from Corollary 2.6, by choosing k = 1
2 , we

have
1

(1 − k)Q−1(kF(x))

∫ x

0

g(η)

P(F(η))
dη =

2

x2

∫ x

0
ηdη = 1.

Therefore, this system has property (Z+
1 ). Since F is even and g is odd, Remark 4.4 implies

that this system has a homoclinic orbit in the upper half-plane (see Fig. 4.3).

Figure 4.3: Phase portrait for system (4.8).

Example 4.9. Consider system (1.1) with

F(x) = xm (m > 0 and even number), Q(y) = y3

P(u) = u3 and g(x) = |xq| sgn(x) with q =
10

3
m + 1.
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By choosing k = 1
2 , δ =

√

q−3m+1

8 3√2
and using Corollary 4.2 we have:

1

Q−1(kF(x))

∫ x

0

−g(η)

P((k − 1)F(η))
dη = 8

3
√

2

(

∫ x
0 ηq−3mdη

x
m
3

)

=
8 3
√

2

q − 3m + 1
xq− 10

3 m+1
< 1

for 0 < |x| <
√

q−3m+1

8 3√2
.

Thus, system (1.1) has homoclinic orbit in the upper half-plane.
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Abstract. In 1998, Artés, Kooij and Llibre proved that there exist 44 structurally stable

topologically distinct phase portraits modulo limit cycles, and in 2018 Artés, Llibre and
Rezende showed the existence of at least 204 (at most 211) structurally unstable topo-

logically distinct codimension-one phase portraits, modulo limit cycles. Artés, Oliveira
and Rezende (2020) started the study of the codimension-two systems by the set (AA),

of all quadratic systems possessing either a triple saddle, or a triple node, or a cusp

point, or two saddle-nodes. They got 34 topologically distinct phase portraits mod-
ulo limit cycles. Here we consider the sets (AB) and (AC). The set (AB) contains all

quadratic systems possessing a finite saddle-node and an infinite saddle-node obtained
by the coalescence of an infinite saddle with an infinite node. The set (AC) describes all

quadratic systems possessing a finite saddle-node and an infinite saddle-node, obtained

by the coalescence of a finite saddle (respectively, finite node) with an infinite node (re-
spectively, infinite saddle). We obtain all the potential topological phase portraits of

these sets and we prove their realization. From the set (AB) we got 71 topologically
distinct phase portraits modulo limit cycles and from the set (AC) we got 40 ones.

Keywords: quadratic differential system, structural stability, codimension two, phase

portrait, saddle-node.
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1 Introduction and statement of the main results

Mathematicians are fascinated in closing problems. Having a question solved or even sign

with a “q.e.d” a question asked in the past is a pleasure which is directly proportional to the

time elapsed between the formulation of the question and the moment of the answer.
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The advent of the differential calculus opened the possibility of solving many questions

that medieval mathematicians asked, but at the same time it opened the possibility of for-

mulating many new other questions. The search for primitive functions that could not be

expressed algebraically or with a finite number of analytic terms complicated the future re-

search lines, and even new areas of Mathematics were created to give answers to these ques-

tions. And beside the problem of finding a primitive to a differential equation in a single

dimension, if we add the possibility of more dimensions, the problem becomes much more

difficult.

Therefore, it took almost 200 years between the appearance of the first system of linear

differential equations and its complete resolution by Laplace in 1812. After the resolution of

linear differential systems, for any dimension, it seemed natural to address the classification

of quadratic differential systems. However, it was found that the problem would not have

an easy and fast solution. Unlike the linear systems that can be solved analytically, quadratic

systems (or higher degree systems) do not generically admit a solution of that kind, calculable

in a finite number of terms.

Therefore, for the resolution of non-linear differential systems, another strategy was chosen

and it allowed the creation of a new area of knowledge in Mathematics: the Qualitative Theory

of Ordinary Differential Equations [27]. Since we are not able to give a concrete mathematical

expression to the solution of a system of differential equations, this theory intends to express

by means of a complete and precise drawing the behavior of any particle located in a vector

field governed by such a differential equation, i.e. its phase portrait.

Even with all the reductions made to the problem until now, there are still difficulties.

The most expressive difficulty is that the phase portraits of differential systems may have

invariant sets as limit cycles and graphics. A linear system cannot generate limit cycles; at

most they can present a completely circular phase portrait where all the orbits are periodic.

But a differential system in the plane, polynomial or not, and starting with the quadratic ones,

may present several limit cycles. It is natural to find an infinite number of these cycles in non-

polynomial problems, but the intuition seems to indicate that a polynomial system should not

have an infinite number of limit cycles in a similar way as it cannot have an infinite number

of isolated singular points. And because the number of singular points is linked to the degree

of the polynomial system, it also seems logical to think that the number of limit cycles could

also have a similar link, either directly as the number of singular points, or even in an indirect

way from the number the parameters of such systems.

In 1900, David Hilbert [21] proposed a set of 23 problems to be solved in the 20th century,

and among them, the second part of his well-known 16th problem asks for the maximum

number of limit cycles that a polynomial differential system in the plane with degree n may

have. More than one hundred years after, we do not have an uniform upper bound for this

generic problem, only for specific families of such a system.

During discussions, in 1966 Coppel [16] expressed the belief that we could obtain the

classification of phase portraits of quadratic systems by purely algebraic means. That is, by

means of algebraic equalities and inequalities, it should be possible to determine the phase

portrait of a quadratic system. This claim was not easy to refute at that time, since the isolated

finite singular points of a quadratic system can be found by means of the resultant that is of

fourth degree, and its solutions can be calculated algebraically, like those of infinity. Moreover,

at that time it was known how to generate limit cycles by a Hopf bifurcation, whose conditions

are also determined algebraically.

On the other hand, in 1991, Dumortier and Fiddelears [17] showed that, starting with the
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quadratic systems (and following all the higher-degree systems), there exist geometric and

topological phenomena in phase portraits of such a system whose determination cannot be

fixed by means of algebraic expressions. More specifically, most part of the connections among

separatrices and the occurrence of double or semi-stable limit cycles cannot be algebraically

determined.

Therefore, the complete classification of quadratic systems is a very difficult task at the

moment and it depends on the solution of the second part of Hilbert’s 16th problem, even at

least partially for the quadratic case.

Even so, a lot of problems have been appearing related to quadratic systems to which it has

been possible to give an answer. In fact, there are more than one thousand articles published

that are directly related to quadratic systems. John Reyn, from Delft University (Netherlands),

prepared a bibliography that was published several times until his retirement (see [28,30–33]).

It is worth mentioning that in the last two decades many other articles related to quadratic

systems have appeared, so that the number of one thousand published papers on the subject

may have been widely exceeded.

Many of the questions proposed and the problems solved have dealt with subclassifica-

tions of quadratic systems, that is, classifications of systems that shared some characteristic

in common. For instance, we have systems with a center [26, 35, 36, 38], with a weak focus of

third order [3,24], with a nilpotent singularity [22], without real singular points [20], with two

invariant lines [28] and so on, up to a thousand articles. In some of them complete answers

could be given, including the problem of limit cycles (the existence and the number of limit

cycles), but in other cases, the classification was done modulo limit cycles, that is, all the pos-

sible phase portraits without taking into account the presence and number of cycles. Since in

quadratic systems a limit cycle can only surround a single finite singular point, which must

necessarily be a focus [16], then it is enough to identify the outermost limit cycle of a nesting

of cycles with a point, and interpret the stability of that point as the outer stability of this

cycle, and study everything that can happen to the phase portrait in the rest of the space.

Within the families of quadratic systems that were studied in the 20th century, we would

highlight the study of the structurally stable quadratic systems, modulo limit cycles. That is,

the goal was to determine how many and which phase portraits of a quadratic system cannot

be modified by small perturbations in their coefficients. To obtain a structurally stable system

modulo limits cycles we need a few conditions: we do not allow the existence of multiple

singular points and the existence of connections of separatrices. Centers, weak foci, semi-

stable cycles, and all other unstable elements belong to the quotient modulo limit cycles. This

systematic analysis [2] showed that the structurally stable quadratic systems have a total of 44

topologically distinct phase portraits.

From this scenario we observe that if we intent to work with classification of phase portraits

of quadratic systems before the solution of the second part of Hilbert’s 16th problem, this will

have to be done modulo limit cycles.

Additionally, the entire family of quadratic systems by definition depends on twelve pa-

rameters, but due to the action of the group of the real affine transformations and time rescal-

ing, this family ultimately depends on five parameters, but this is still a large number.

There are two ways to carry out a systematic study of all the phase portraits of the

quadratic systems. One of them is the one initiated by Reyn in which he began by study-

ing the phase portraits of all the quadratic systems in which all the finite singular points have

coalesced with infinite singular points [29]. Later, he studied those in which exactly three

finite singular points have coalesced with points of infinity, so there remains one real finite
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singularity. And then he completed the study of the cases in which two finite singular points

have coalesced with points of infinity, originating two real points, or one double point, or two

complex points. His work on finite multiplicity three was incomplete and the one on finite

multiplicity four was inaccessible.

In another approach, instead of working from the highest degrees of degeneracy to the

lower ones, is going to reverse direction. We already know that the structurally stable qua-

dratic systems produce 44 topologically distinct phase portrait, as already mentioned before.

In [6] the authors classified the structurally unstable quadratic systems of codimension one

modulo limit cycles, which are systems having one and only one of the simplest structurally

unstable objects: a saddle-node of multiplicity two (finite or infinite), a separatrix from one

saddle point to another, or a separatrix forming a loop for a saddle point with its divergence

nonzero. All the phase portraits of codimension one are split into four sets according to the

possession of a structurally unstable element: (A) possessing a finite semi-elemental saddle-

node, (B) possessing an infinite semi-elemental saddle-node (0
2)SN, (C) possessing an infinite

semi-elemental saddle-node (1
1)SN, and (D) possessing a separatrix connection. This last set

is split into five subsets according to the type of the connection: (a) finite-finite (heteroclinic

orbit), (b) loop (homoclinic orbit), (c) finite-infinite, (d) infinite-infinite between symmetric

points, and (e) infinite-infinite between adjacent points. The study of the codimension-one

systems was done in approximately 20 years and finally it was obtained at least 204 (and at

most 211) topologically distinct phase portraits of codimension one modulo limit cycles.

The next step is to study the structurally unstable quadratic systems of codimension two

(see [12]), modulo limit cycles. Up to now, we have mentioned many times the word “codi-

mension” and this is a clear concept in Geometry. However, in this classification we want

to obtain topologically distinct phase portraits, and we want to group them according to

their level of degeneracy. So, what was clear for structurally stable phase portraits and for

codimension-one phase portraits (modulo limit cycles) may become a little weird if we con-

tinue in this same way, so we must give a definition of codimension adapted to this specific

set that we want to classify.

Definition 1.1. We say that a phase portrait of a quadratic vector field is structurally stable if

any sufficiently small perturbation in the parameter space leaves the phase portrait topologi-

cally equivalent to the previous one.

Definition 1.2. We say that a phase portrait of a quadratic vector field is structurally unstable

of codimension k ∈ N if any sufficiently small perturbation in the parameter space either

leaves the phase portrait topologically equivalent the previous one or it moves it to a lower

codimension one, and there is at least one perturbation that moves it to the codimension k− 1.

Remark 1.3.

1. When applying these definitions, modulo limit cycles, to phase portraits with centers,

it would say that some phase portraits with centers would be of codimension as low as

two, while geometrically they occupy a much smaller region in R12. So, the best way to

avoid inconsistencies in the definitions is to tear apart the phase portraits with centers,

that we know they are in number 31 (see [36]), and just work with systems without

centers.

2. Starting in cubic systems, the definition of topologically equivalence, modulo limit cy-

cles, becomes more complicated since we can have limit cycles having only one singu-



Topological classification of the sets (AB) and (AC) 5

larity in its interior or more than one. So we cannot collapse the limit cycle because its

interior is also relevant for the phase portrait.

3. Moreover, our definition of codimension needs also more precision starting with cubic

systems due to new phenomena that may happen there.

Let Pn(R2) be the set of all vector fields in R2 of the form X(x, y) = (P(x, y), Q(x, y)),

with P and Q polynomials in the variables x and y of degree at most n (with n ∈ N). In

this set we consider the coefficient topology by identifying each vector field X ∈ Pn(R2) with a

point of R(n+1)(n+2) (see more details in [6]). According to the previous definition concerning

codimension two, and also according to the previously known results of codimension one, we

have the result.

Theorem 1.4. A polynomial vector field in P2(R2) is structurally unstable of codimension two modulo

limit cycles if and only if all its objects are stable except for the break of exactly two stable objects. In

other words, we allow the presence of two unstable objects of codimension one or one of codimension

two.

In what follows, instead of talking about codimension one modulo limit cycles, we will

simply say codimension one∗. Analogously we will simply say codimension two∗ instead of

talking about codimension two modulo limit cycles.

Combining the classes of codimension one∗ quadratic vector fields one to each other, we

obtain 10 new classes, where one of them is split into 15 subsets, according to Tables 1.1 and

1.2.

(A) (B) (C) (D)

(A) (AA) - - -

(B) (AB) (BB) - -

(C) (AC) (BC) (CC) -

(D) (AD) (5 cases) (BD) (5 cases) (CD) (5 cases) see Table 1.2

Table 1.1: Sets of structurally unstable quadratic vector fields of codimension

two considered from combinations of the classes of codimension one∗: (A), (B),

(C), and (D) (which in turn is split into (a), (b), (c), (d), and (e)).

(a) (b) (c) (d) (e)

(a) (aa)

(b) (ab) (bb)

(c) (ac) (bc) (cc)

(d) (ad) (bd) (cd) (dd)

(e) (ae) (be) (ce) (de) (ee)

Table 1.2: Sets of structurally unstable quadratic vector fields of codimension two∗

in the class (DD) (see Table 1.1).

Geometrically, the codimension two∗ classes can be described as follows. Let X be a codi-

mension one∗ quadratic vector field. We have the following classes:

(AA) When X already has a finite saddle-node and either a finite saddle (respectively a fi-

nite node) of X coalesces with the finite saddle-node, giving birth to a semi-elemental
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triple saddle: s(3) (respectively a triple node: n(3)), or when both separatrices of the

saddle-node limiting its parabolic sector coalesce, giving birth to a cusp of multiplic-

ity two: ĉp(2), or when another finite saddle-node is formed, having then two finite

saddle-nodes: sn(2)+sn(2). Since the phase portraits with s(3) and with n(3) would be

topologically equivalent to structurally stable phase portraits and we are mainly inter-

ested in new phase portraits, we will skip them in this classification. Anyway, we may

find them in the papers [11] and [13].

(AB) When X already has a finite saddle-node and an infinite saddle, and an infinite node

of X coalesce with a finite saddle-node: sn(2)+(
0
2)SN.

(AC) When X already has a finite saddle-node and a finite saddle (respectively node), and

an infinite node (respectively saddle) of X coalesce: sn(2)+(
1
1)SN.

(AD) When X has already a finite saddle-node and a separatrix connection is formed, con-

sidering all five types of class (D).

(BB) When an infinite saddle (respectively an infinite node) of X coalesces with an existing

infinite saddle-node (0
2)SN of X, leading to a triple saddle: (0

3)S (respectively a triple

node: (0
3)N). This case is irrelevant to the production of new phase portraits since

all the possible phase portraits that may produce are topologically equivalent to an

structurally stable one.

(BC) When a finite antisaddle (respectively finite saddle) of X coalesces with an existing

infinite saddle-node (0
2)SN of X, leading to a nilpotent elliptic saddle (̂1

2)E − H (re-

spectively nilpotent saddle (̂1
2)HHH − H). Or it may also happen that a finite saddle

(respectively node) coalesces with an elemental node (respectively saddle) in a phase

portrait having already an (0
2)SN, having then in total (1

1)SN +(0
2)SN.

(BD) When we have an infinite saddle-node(0
2)SN plus a separatrix connection, considering

all five types of class (D).

(CC) This case has two possibilities:

i) a finite saddle (respectively finite node) of X coalesces with an existing infinite

saddle-node (1
1)SN, leading to an semi-elemental triple saddle (2

1)S (respectively

an semi-elemental triple node (2
1)N),

ii) a finite saddle (respectively node) and an infinite node (respectively saddle) of

X coalesce plus an another existing infinite saddle-node (1
1)SN, leading to two

infinite saddle-nodes(1
1)SN+(1

1)SN.

The first case is irrelevant to the production of new phase portraits since all the possible

phase portraits that may produce are topologically equivalent to an structurally stable

one.

(CD) When we have an infinite saddle-node (1
1)SN plus a saddle to saddle connection, con-

sidering all five types of class (D).

(DD) When we have two saddle to saddle connections, which are grouped as follows:
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(aa) two finite-finite heteroclinic connections;

(ab) a finite-finite heteroclinic connection and a loop;

(ac) a finite-finite heteroclinic connection and a finite-infinite connection;

(ad) a finite-finite heteroclinic connection and an infinite-infinite connection between

symmetric points;

(ae) a finite-finite heteroclinic connection and an infinite-infinite connection between

adjacent points;

(bb) two loops;

(bc) a loop and a finite-infinite connection;

(bd) a loop and an infinite-infinite connection between symmetric points;

(be) a loop and an infinite-infinite connection between adjacent points;

(cc) two finite-infinite connections;

(cd) a finite-infinite connection and an infinite-infinite connection between symmetric

points;

(ce) a finite-infinite connection and an infinite-infinite connection between adjacent

points;

(dd) two infinite-infinite connections between symmetric points;

(de) an infinite-infinite connection between symmetric points and an infinite-infinite

connection between adjacent points;

(ee) two infinite-infinite connections between adjacent points.

Some of these cases have also been proved to be empty in an on course paper [8].

In [12] the authors begin the study of codimension-two quadratic systems. The approach is

the same used in the previous two works [2,6]. One must start by looking for all the potential

topological phase portraits (i.e. phase portraits that can be drawn on paper) of codimension

two modulo limit cycles, and then try to realize all of them (i.e. to find examples of quadratic

differential systems whose phase portraits are exactly those phase portraits obtained previ-

ously) or to show that some of them are non-realizable or impossible (i.e. in case of absence

of examples for the realization of a phase portrait, say Ψ, it is necessary to prove that there is

no quadratic differential system whose phase portrait is topologically equivalent to Ψ).

In [12] the authors have considered the set (AA) obtained by the coalescence of two finite

singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-

nodes. They obtained all the potential topological phase portraits modulo limit cycles of the

set (AA) and proved their realization. In their study they got 34 new topologically distinct

phase portraits (of codimension two) in the Poincaré disc modulo limit cycles. Moreover, they

also proved the impossibility of one phase portrait among the 204 phase portraits from [6].

Therefore, in [6] they actually have at least 203 (and at most 210) topologically distinct phase

portraits of codimension one modulo limit cycles. Additionally, more recent studies (in a

preprint level) have shown the impossibility of another phase portrait among the 203 cited

above. In that study it was also verified that, in fact, there exist at least 202 (and at most 209)

topologically distinct phase portraits of codimension one modulo limit cycles.

In this paper we intend to contribute to the classification of the phase portraits of planar

quadratic differential systems of codimension two, modulo limit cycles. According to what

was explained before, since there are more than 10 cases of codimension two to be analyzed,
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it is impracticable to write a single paper with all the results. So, in [12] the authors have

decided to split this study in several papers and this present article is the second one of this

series. We indicate [2, 6, 12] for more details of the context of this study as well for all related

definitions.

Here we present all the global phase portraits of the vector fields X ∈ P2(R2) belonging to

sets (AB) and (AC) and we study their realization. The set (AB) contains all quadratic systems

possessing a finite saddle-node sn(2) and an infinite saddle-node of type(0
2)SN obtained by the

coalescence of an infinite saddle with an infinite node. The set (AC) describes all quadratic

systems possessing a finite saddle-node sn(2) and an infinite saddle-node of type (1
1)SN, ob-

tained by the coalescence of a finite saddle (respectively, a finite node) with an infinite node

(respectively, an infinite saddle). Notice that the finite singularity that coalesces with an infi-

nite singularity cannot be the finite saddle-node since then what we would obtain at infinity

would not be a saddle-node of type(1
1)SN but a multiplicity three singularity. Even this is also

a codimension two∗ case and somehow can be considered inside the set (AC), we have preferred

to put it into the set (CC), which will be studied in a future paper.

We point out that in each picture representing a phase portrait we only draw the skeleton

of separatrices, according to the next definition.

Definition 1.5. Let p(X) ∈ Pn(S2) (respectively X ∈ Pn(R2)). A separatrix of p(X) (respectively

of X) is an orbit which is either a singular point (respectively a finite singular point), or a

limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector at a singular

point (respectively a finite singular point). In [25] the author proved that the set formed by

all separatrices of p(X), denoted by S(p(X)), is closed. The open connected components

of S2 \ S(p(X)) are called canonical regions of p(X). We define a separatrix configuration as

the union of S(p(X)) plus one representative solution chosen from each canonical region.

Two separatrix configurations S1 and S2 of vector fields of Pn(S2) (respectively Pn(R2)) are

said to be topologically equivalent if there exists an orientation-preserving homeomorphism

of S2 (respectively R2) which maps the trajectories of S1 onto the trajectories of S2. The

skeleton of separatrices is defined as the union of S(p(X)) without the representative solution of

each canonical region. Thus, a skeleton of separatrices can still produce different separatrix

configurations.

Let ∑
2
0 denote the set of all planar structurally stable vector fields and ∑

2
i (S) denote the

set of all structurally unstable vector fields X ∈ P2(R2) of codimension i, modulo limit cycles

belonging to the set S, where S is a set of vector fields with the same type of instability

modulo orientation. For instance, in this paper we consider the sets ∑
2
2(AB) and ∑

2
2(AC),

which denote, respectively, the set of all structurally unstable vector fields X ∈ P2(R2) of

codimension two∗ belonging to the sets (AB) and (AC).
The main goal of this paper is to prove the following two theorems.

Theorem 1.6. If X ∈ ∑
2
2(AB), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 71 phase portraits of Figures 1.1 to 1.3.
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U2
AB,1 U2

AB,2 U2
AB,3 U2

AB,4

U2
AB,5 U2

AB,6 U2
AB,7 U2

AB,8

U2
AB,9 U2

AB,10 U2
AB,11 U2

AB,12

U2
AB,13 U2

AB,14 U2
AB,15 U2

AB,16

U2
AB,17 U2

AB,18 U2
AB,19 U2

AB,20

U2
AB,21 U2

AB,22 U2
AB,23 U2

AB,24

Figure 1.1: Structurally unstable quadratic phase portraits of codimension two∗

of the set (AB).
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U2
AB,25 U2

AB,26 U2
AB,27 U2

AB,28

U2
AB,29 U2

AB,30 U2
AB,31 U2

AB,32

U2
AB,33 U2

AB,34 U2
AB,35 U2

AB,36

U2
AB,37 U2

AB,38 U2
AB,39 U2

AB,40

U2
AB,41 U2

AB,42 U2
AB,43 U2

AB,44

U2
AB,45 U2

AB,46 U2
AB,47 U2

AB,48

Figure 1.2: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AB).



Topological classification of the sets (AB) and (AC) 11

U2
AB,49 U2

AB,50 U2
AB,51 U2

AB,52

U2
AB,53 U2

AB,54 U2
AB,55 U2

AB,56

U2
AB,57 U2

AB,58 U2
AB,59 U2

AB,60

U2
AB,61 U2

AB,62 U2
AB,63 U2

AB,64

U2
AB,65 U2

AB,66 U2
AB,67 U2

AB,68

U2
AB,69 U2

AB,70 U2
AB,71

Figure 1.3: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AB).

Theorem 1.7. If X ∈ ∑
2
2(AC), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 40 phase portraits of Figures 1.4 and 1.5.
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U2
AC,1 U2

AC,2 U2
AC,3

U2
AC,4

U2
AC,5 U2

AC,6 U2
AC,7 U2

AC,8

U2
AC,9 U2

AC,10 U2
AC,11 U2

AC,12

U2
AC,13 U2

AC,14 U2
AC,15 U2

AC,16

U2
AC,17 U2

AC,18 U2
AC,19 U2

AC,20

U2
AC,21 U2

AC,22 U2
AC,23 U2

AC,24

Figure 1.4: Structurally unstable quadratic phase portraits of codimension two∗

of the set (AC).
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U2
AC,25 U2

AC,26 U2
AC,27 U2

AC,28

U2
AC,29 U2

AC,30 U2
AC,31 U2

AC,32

U2
AC,33 U2

AC,34 U2
AC,35 U2

AC,36

U2
AC,37 U2

AC,38 U2
AC,39 U2

AC,40

Figure 1.5: (Cont.) Structurally unstable quadratic phase portraits of codimension

two∗ of the set (AC).

This paper is organized as follows. In Section 2 we make a brief description of phase

portraits of codimensions zero and one that are needed in this paper.

In Section 3 we prove Theorem 1.6 and in Section 4 we prove Theorem 1.7. We point out

that in order to verify the realization of the corresponding phase portraits we compute each

one of them with the numerical program P4 [1, 18].

Once again, remember that by modulo limit cycles we mean all eyes with limit cycles are

assimilated with the unique singular point (a focus) within such an eye, i.e. we may say that

the phase portraits are blind to limit cycles. Additionally, the phase portraits are also blind

with respect to distinguishing if a singular point is a focus or a node, because these are not

topological properties. But as the phase portraits are not blind to detecting other important

features like various types of graphics, in Section 5 we discuss about the existence of graphics

and also limit cycles in this study.

2 Quadratic vector fields of codimension zero and one

In this section we summarize all the needed results from the book of Artés, Llibre and Rezende

[6]. The following three results are the restriction of Theorem 1.1 from book [6] to the sets (A),

(B), and (C), respectively (see page 4). We denote by ∑
2
1(A) (respectively, ∑

2
1(B), and ∑

2
1(C))

the set of all structurally unstable vector fields X ∈ P2(R2) of codimension one∗ belonging to
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the set (A) (respectively, (B), and (C)).

Theorem 2.1. If X ∈ ∑
2
1(A), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 69 phase portraits of Figures 2.1 to 2.3, and

all of them are realizable.

U1
A,1 U1

A,2 U1
A,3 U1

A,4

U1
A,5 U1

A,6 U1
A,7 U1

A,8

U1
A,9 U1

A,10 U1
A,11 U1

A,12

U1
A,13 U1

A,14 U1
A,15 U1

A,16

U1
A,17 U1

A,18 U1
A,19 U1

A,20

U1
A,21 U1

A,22 U1
A,23 U1

A,24

Figure 2.1: Unstable quadratic systems of codimension one∗ of the set (A) (cases

with a finite saddle-node sn(2)).
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U1
A,25 U1

A,26 U1
A,27 U1

A,28

U1
A,29 U1

A,30 U1
A,31 U1

A,32

U1
A,33 U1

A,34 U1
A,35 U1

A,36

U1
A,37 U1

A,38 U1
A,39 U1

A,40

U1
A,41 U1

A,42 U1
A,43 U1

A,44

U1
A,45 U1

A,46 U1
A,47 U1

A,48

Figure 2.2: (Cont.) Unstable quadratic systems of codimension one∗ of the set (A)

(cases with a finite saddle-node sn(2)).
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U1
A,50 U1

A,51 U1
A,52 U1

A,53

U1
A,54 U1

A,55 U1
A,56 U1

A,57

U1
A,58 U1

A,59 U1
A,60 U1

A,61

U1
A,62 U1

A,63 U1
A,64 U1

A,65

U1
A,66 U1

A,67 U1
A,68 U1

A,69

U1
A,70

Figure 2.3: (Cont.) Unstable quadratic systems of codimension one∗ of the set (A)

(cases with a finite saddle-node sn(2)).

Remark 2.2. In [12] the authors proved that the phase portrait U1
A,49 from Figure 1.4 of [6] is

actually impossible. Therefore, in our Figures 2.1 to 2.3 we have simply “skipped” this phase

portrait, since all of the remaining ones are proved to be realizable in [6]. We present this

impossible phase portrait in Figure 2.8 and there we denote it by U
1,I
A,49.
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Theorem 2.3. If X ∈ ∑
2
1(B), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 40 phase portraits of Figures 2.4 and 2.5, and

all of them are realizable.

U1
B,1 U1

B,2 U1
B,3 U1

B,4

U1
B,5 U1

B,6 U1
B,7 U1

B,8

U1
B,9 U1

B,10 U1
B,11 U1

B,12

U1
B,13 U1

B,14 U1
B,15 U1

B,16

U1
B,17 U1

B,18 U1
B,19 U1

B,20

U1
B,21 U1

B,22 U1
B,23 U1

B,24

Figure 2.4: Unstable quadratic systems of codimension one∗ of the set (B) (cases

with an infinite saddle-node of type (0
2)SN).
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U1
B,25 U1

B,26 U1
B,27 U1

B,28

U1
B,29 U1

B,30 U1
B,31 U1

B,32

U1
B,33 U1

B,34 U1
B,35 U1

B,36

U1
B,37 U1

B,38 U1
B,39 U1

B,40

Figure 2.5: (Cont.) Unstable quadratic systems of codimension one∗ of the set (B)

(cases with an infinite saddle-node of type (0
2)SN).

Theorem 2.4. If X ∈ ∑
2
1(C), then its phase portrait on the Poincaré disc is topologically equivalent

modulo orientation and modulo limit cycles to one of the 32 phase portraits of Figures 2.6 and 2.7, and

all of them are realizable.
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U1
C,1 U1

C,2 U1
C,3 U1

C,4

U1
C,5 U1

C,6 U1
C,7 U1

C,8

U1
C,9 U1

C,10 U1
C,11 U1

C,12

U1
C,13 U1

C,14 U1
C,15 U1

C,16

U1
C,17 U1

C,18 U1
C,19 U1

C,20

U1
C,21 U1

C,22 U1
C,23 U1

C,24

Figure 2.6: Unstable quadratic systems of codimension one∗ of the set (C) (cases

with an infinite saddle-node of type (1
1)SN).
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U1
C,25 U1

C,26 U1
C,27 U1

C,28

U1
C,29 U1

C,30 U1
C,31 U1

C,32

Figure 2.7: (Cont.) Unstable quadratic systems of codimension one∗ of the set (C)

(cases with an infinite saddle-node of type (1
1)SN).

Before we state our next theorem, consider the following remark.

Remark 2.5. Consider all the impossible phase portraits from the book [6]. In that book these

phase portraits are described with a specific notation. However, in this paper we changed

a little bit their notation in order to associate each impossible phase portrait with the set in

which such a phase portrait is proved to be impossible, but we keep the respective indexes.

For instance, in that book we have the presence of the impossible phase portrait U1
I,105, which

is a non-realizable case from the set (A). Such a phase portrait is denoted in this paper by

U
1,I
A,105. We also use this new notation for phase portraits which are proved to be impossible

in the sets (B) and (C).

The next result describes which phase portraits were discarded in the set (A) in [6] be-

cause they were not realizable, but their role now is important in the process of discarding

impossible phase portraits of codimension two∗.

Theorem 2.6. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (A) it is necessary and sufficient to coalesce a finite saddle and a finite

node from a structurally stable quadratic vector field, which leads to a finite saddle-node, and after some

small perturbation it disappears. For the vector fields in the set (A), the following statements hold.

(a) In Table 2.1 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (A).

(b) Inside this set (A), we have a total of 77 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, 7 of which are proved non-realizable

in [6] and another one is proved non-realizable in [12] (all of these eight non-realizable phase

portraits are given in Table 2.2). These numbers are given in the second and sixth columns of

Table 2.1.

(c) From these potential phase portraits, most of them are realizable. That is, even though there is

the topological possibility of their existence, some of them break some analytical property which

makes them not realizable inside quadratic vector fields. We have a total of 69 realizable phase

portraits. In the third and seventh columns of Table 2.1 we present the number of realizable
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cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then 8 non-realizable cases from the set (A) which we now collect in a single picture

(see Figure 2.8) and denote by U
1,I
A,k, where U

1,I
A stands for Impossible of codimension one∗ from

the set (A) and k ∈ {1, 2, 3, 49, 103, 104, 105, 106}, see Remark 2.5. These phase portraits are all

drawn in [6]. Anyway, we provide Table 2.2 in order to relate easily (giving also the page where

they appear first and the page they are proved to be impossible).

SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
2,1 1 1 U1

A,1 S
2
10,6 2 2 U1

A,34, U1
A,35

S
2
3,1 3 3 U1

A,2, U1
A,3, U1

A,4 S
2
10,7 4 3 U1

A,36, U1
A,37, U1

A,38

S
2
3,2 1 1 U1

A,5 S
2
10,8 1 1 U1

A,39

S
2
3,3 1 1 U1

A,6 S
2
10,9 2 2 U1

A,40, U1
A,41

S
2
3,4 1 1 U1

A,7 S
2
10,10 4 2 U1

A,42, U1
A,43

S
2
3,5 3 3 U1

A,8, U1
A,9, U1

A,10 S
2
10,11 1 1 U1

A,44

S
2
5,1 3 3 U1

A,11, U1
A,12, U1

A,13 S
2
10,12 2 2 U1

A,45, U1
A,46

S
2
7,1 1 1 U1

A,14 S
2
10,13 4 4 U1

A,47, U1
A,48, U1

A,50

S
2
7,2 2 2 U1

A,15, U1
A,16 S

2
10,14 4 3 U1

A,51, U1
A,52, U1

A,53

S
2
7,3 1 1 U1

A,17 S
2
10,15 1 1 U1

A,54

S
2
7,4 1 1 U1

A,18 S
2
10,16 1 1 U1

A,55

S
2
9,1 1 1 U1

A,19 S
2
12,1 2 2 U1

A,56, U1
A,57

S
2
9,2 1 1 U1

A,20 S
2
12,2 3 3 U1

A,58, U1
A,59, U1

A,60

S
2
9,3 1 1 U1

A,21 S
2
12,3 2 2 U1

A,61, U1
A,62

S
2
10,1 3 3 U1

A,22, U1
A,23, U1

A,24 S
2
12,4 3 2 U1

A,63, U1
A,64

S
2
10,2 2 2 U1

A,25, U1
A,26 S

2
12,5 2 2 U1

A,65, U1
A,66

S
2
10,3 3 2 U1

A,27, U1
A,28 S

2
12,6 2 2 U1

A,67, U1
A,68

S
2
10,4 2 2 U1

A,29, U1
A,30 S

2
12,7 3 2 U1

A,69, U1
A,70

S
2
10,5 3 3 U1

A,31, U1
A,32, U1

A,33

Table 2.1: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.
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SSQVF [2] Page [6] Impossible [6] SSQVF [2] Page [6] Impossible [6]

S
2
10,3 70 U

1,I
A,1 S

2
10,14 77 U

1,I
A,3

S
2
10,7 (73) 190 U

1,I
A,103 S

2
12,4 (80) 191 U

1,I
A,105

S
2
10,10 75; 191 U

1,I
A,2; U

1,I
A,104 S

2
12,7 (82) 188 U

1,I
A,106

S
2
10,13 76 U

1,I
A,49 (see [12])

Table 2.2: Non-realizable phase portraits from the set (A) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first and fourth

columns indicate the structurally stable quadratic vector field (SSQVF) which

suffers a bifurcation, the second and fifth columns indicate the pages where

they appear in [6] and the third and sixth columns present the corresponding

impossible phase portraits (remember that phase portrait U1
A,49 from Figure 1.4

of [6] is proved to be impossible in [12]).

U
1,I
A,1 U

1,I
A,2 U

1,I
A,3 U

1,I
A,49

U
1,I
A,103 U

1,I
A,104 U

1,I
A,105 U

1,I
A,106

Figure 2.8: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (A).

In what follows we present an analogous theorem regarding discarded phase portraits

from the set (B) in [6].

Theorem 2.7. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (B) it is necessary and sufficient to coalesce an infinite saddle with an

infinite node from a structurally stable quadratic vector field, which leads to an infinite saddle-node

of type (0
2)SN, and after some small perturbation it disappears. For the vector fields in set (B), the

following statements hold.

(a) In Table 2.3 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (B).

(b) Inside this set (B), we have a total of 55 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, 15 of which are non-realizable (they

are given in Table 2.4). These numbers are given in the second and sixth columns of Table 2.3.

(c) From these potential phase portraits, most of them are realizable. That is, even though there is

the topological possibility of their existence, some of them break some analytical property which
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makes them not realizable inside quadratic vector fields. We have a total of 40 realizable phase

portraits. In the third and seventh columns of Table 2.3 we present the number of realizable

cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then 15 non-realizable cases from the set (B) which we now collect in a single picture (see

Figure 2.9) and denote by U
1,I
B,k, where U

1,I
B stands for Impossible of codimension one∗ from the

set (B) and k ∈ {4, 5, 6, 7, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117}, see Remark 2.5.

These phase portraits are all drawn in [6]. Anyway, we provide Table 2.4 in order to relate easily

(giving also the page where they appear first and the page they are proved to be impossible).

SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
8,1 2 2 U1

B,1, U1
B,2 S

2
10,12 2 1 U1

B,22

S
2
9,1 2 2 U1

B,3, U1
B,4 S

2
10,13 2 2 U1

B,23, U1
B,24

S
2
9,2 2 2 U1

B,5, U1
B,6 S

2
10,14 2 2 U1

B,25, U1
B,26

S
2
9,3 2 2 U1

B,7, U1
B,8 S

2
10,15 2 1 U1

B,27

S
2
10,1 2 2 U1

B,9, U1
B,10 S

2
10,16 1 1 U1

B,28

S
2
10,2 2 1 U1

B,11 S
2
11,1 1 1 U1

B,29

S
2
10,3 2 1 U1

B,12 S
2
11,2 2 2 U1

B,30, U1
B,31

S
2
10,4 2 1 U1

B,13 S
2
11,3 1 1 U1

B,32

S
2
10,5 2 1 U1

B,14 S
2
12,1 2 1 U1

B,33

S
2
10,6 2 1 U1

B,15 S
2
12,2 1 1 U1

B,34

S
2
10,7 2 2 U1

B,16, U1
B,17 S

2
12,3 1 1 U1

B,35

S
2
10,8 2 1 U1

B,18 S
2
12,4 2 1 U1

B,36

S
2
10,9 2 1 U1

B,19 S
2
12,5 2 1 U1

B,37

S
2
10,10 2 1 U1

B,20 S
2
12,6 2 2 U1

B,38, U1
B,39

S
2
10,11 2 1 U1

B,21 S
2
12,7 2 1 U1

B,40

Table 2.3: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.
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SSQVF [2] Page [6] Impossible [6] SSQVF [2] Page [6] Impossible [6]

S
2
10,2 86; 200 U

1,I
B,107 S

2
10,11 90; 200 U

1,I
B,115

S
2
10,3 86; 203 U

1,I
B,108 S

2
10,12 91; 200 U

1,I
B,116

S
2
10,4 87; 200 U

1,I
B,109 S

2
10,15 92; 200 U

1,I
B,117

S
2
10,5 87; 207 U

1,I
B,110 S

2
12,1 94 U

1,I
B,4

S
2
10,6 88; 200 U

1,I
B,111 S

2
12,4 96 U

1,I
B,5

S
2
10,8 89; 200 U

1,I
B,112 S

2
12,5 96 U

1,I
B,6

S
2
10,9 89; 200 U

1,I
B,113 S

2
12,7 97 U

1,I
B,7

S
2
10,10 90; 203 U

1,I
B,114

Table 2.4: Non-realizable phase portraits from the set (B) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first and fourth

columns indicate the structurally stable quadratic vector field (SSQVF) which

suffers a bifurcation, the second and fifth columns indicate the pages where

they appear in [6] and the third and sixth columns present the corresponding

impossible phase portraits.

U
1,I
B,4 U

1,I
B,5 U

1,I
B,6 U

1,I
B,7

U
1,I
B,107 U

1,I
B,108 U

1,I
B,109 U

1,I
B,110

U
1,I
B,111 U

1,I
B,112 U

1,I
B,113 U

1,I
B,114

U
1,I
B,115 U

1,I
B,116 U

1,I
B,117

Figure 2.9: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (B).

Remark 2.8. Regarding the phase portraits of the non-realizable structurally unstable qua-

dratic vector fields of codimension one∗ from the set (B), we point out that in page 91 from [6],
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phase portrait U
1,I
B,116 (which corresponds to B31 from such a book) is wrongly drawn. In fact,

it possesses an extra infinite node and such a phase portrait should be drawn exactly as we

present in our Figure 2.9.

Finally we present an analogous theorem regarding discarded phase portraits from the set

(C) in [6].

Theorem 2.9. In order to obtain a phase portrait of a structurally unstable quadratic vector field of

codimension one∗ from the set (C) it is necessary and sufficient to coalesce a finite node (respectively, a

finite saddle) with an infinite saddle (respectively, an infinite node) from a structurally stable quadratic

vector field, which leads to an infinite saddle-node of type(1
1)SN, and after some small perturbation, this

saddle-node is split into a finite saddle (respectively, a finite node) and an infinite node (respectively, an

infinite saddle). For the vector fields in the set (C), the following statements hold.

(a) In Table 2.5 we see in the first and fifth columns the structurally stable quadratic vector fields

(following the notation present in [2, 6]) which, after the coalescence of singularities cited above,

lead to at least one phase portrait of codimension one∗ from the set (C).

(b) Inside this set (C), we have a total of 34 topologically distinct phase portraits according to the

different α-limit or ω-limit of the separatrices of their saddles, two of which are non-realizable

(they are given in Table 2.6). These numbers are given in the second and sixth columns of

Table 2.5.

(c) From these potential phase portraits, only two of them are not realizable. That is, even though

there is the topological possibility of their existence, two of them break some analytical property

which makes them not realizable inside quadratic vector fields. We have a total of 32 realizable

phase portraits. In the third and seventh columns of Table 2.5 we present the number of realizable

cases coming from the bifurcation of each structurally stable phase portrait, and in the fourth and

eighth columns we present the bifurcated phase portraits of codimension one∗ associated to each

one.

(d) There are then two non-realizable cases from the set (C) which we present in Figure 2.10 and

denote by U
1,I
C,k, where U

1,I
C stands for Impossible of codimension one∗ from the set (C) and

k ∈ {8, 9}, see Remark 2.5. These phase portraits are drawn in [6]. Anyway, we provide Table

2.6 in order to relate easily (giving also the page where they appear first and the page they are

proved to be impossible).
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SSQVF [2] #p #r SU1 [6] SSQVF [2] #p #r SU1 [6]

S
2
4,1 1 1 U1

C,1 S
2
10,16 1 1 U1

C,14

S
2
5,1 2 2 U1

C,2, U1
C,3 S

2
11,1 1 1 U1

C,15

S
2
9,1 1 1 U1

C,4 S
2
11,2 1 1 U1

C,16

S
2
10,2 2 1 U1

C,5 S
2
11,3 1 1 U1

C,17

S
2
10,3 1 1 U1

C,6 S
2
12,1 2 2 U1

C,18, U1
C,19

S
2
10,5 1 1 U1

C,7 S
2
12,2 2 2 U1

C,20, U1
C,21

S
2
10,6 1 1 U1

C,8 S
2
12,3 2 2 U1

C,22, U1
C,23

S
2
10,9 2 1 U1

C,9 S
2
12,4 2 2 U1

C,24, U1
C,25

S
2
10,10 1 1 U1

C,10 S
2
12,5 2 2 U1

C,26, U1
C,27

S
2
10,12 1 1 U1

C,11 S
2
12,6 3 3 U1

C,28, U1
C,29, U1

30

S
2
10,14 1 1 U1

C,12 S
2
12,7 2 2 U1

C,31, U1
C,32

S
2
10,15 1 1 U1

C,13

Table 2.5: Potential and realizable bifurcated phase portraits for a given struc-

turally stable quadratic vector field. In this table, SSQVF stands for structurally

stable quadratic vector fields, #p (respectively #r) for the number of topologically

potential (respectively realizable) phase portraits of codimension one∗ bifurcated

from the respective SSQVF, and SU1 for the respective phase portraits of codi-

mension one∗.

SSQVF [2] Page [6] Impossible [6]

S
2
10,2 101 U

1,I
C,8

S
2
10,9 103 U

1,I
C,9

Table 2.6: Non-realizable phase portraits from the set (C) which could bifurcate

(if existed) from structurally stable quadratic vector fields. The first column

indicates the structurally stable quadratic vector field (SSQVF) which suffers a

bifurcation, the second column indicates the pages where they appear in [6] and

the third column present the corresponding impossible phase portrait.

U
1,I
C,8 U

1,I
C,9

Figure 2.10: Phase portraits of the non-realizable structurally unstable quadratic

vector fields of codimension one∗ from the set (C).

An important result to study the impossibility of some phase portraits is Corollary 3.29 of

[6].

Corollary 2.10. If one of the structurally stable vector fields that bifurcates from a potential struc-

turally unstable vector field of codimension one∗ is not realizable, then this unstable system is also not

realizable.
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Our aim is to prove the following result, which is the analogous of the previous corollary

for the sets (AB) and (AC).

Theorem 2.11. If one of the phase portraits of codimension one∗ that bifurcates from a potential codi-

mension two∗ phase portrait from the sets (AB) and (AC) is not realizable, then this latter phase

portrait is also not realizable.

Proof. In what follows we prove the equivalent statement: If a potential codimension two∗ phase

portrait X from the sets (AB) and (AC) is realizable, then the phase portraits of codimension

one∗ that bifurcates from X are also realizable.

We start from the set (AB). We already know that a realizable phase portrait belongs to the

set (AB) if and only if it has a finite saddle-node sn(2) and an infinite saddle-node of type

(0
2)SN obtained by the coalescence of an infinite saddle with an infinite node. In [14] the

authors classified the set of all real quadratic polynomial differential systems with a finite

semi-elemental saddle-node sn(2) located at the origin of the plane and an infinite saddle-

node of type (0
2)SN located in the bisector of first and third quadrants. Such a classification

was done with respect to the normal form

ẋ = gx2 + 2hxy + (n − g − 2h)y2,

ẏ = y + lx2 + (2g + 2h − 2l − n)xy + (l − 2g − 2h + 2n)y2,
(2.1)

where g, h, l, and n are real parameters. The parameter space of this normal form is a four-

dimensional space, which can be projectivized, as it was done in [14] and the authors proved

that all generic phenomena occur for g = 1. In the paper under discussion the authors used

the Invariant Theory (developed in Sibirsky School – Moldova, see a very nice summary of this

theory in Sec. 7 of [7]) in order to construct and study their bifurcation diagram. In Lemma

5.5 from the book [9] the authors proved that a necessary and sufficient condition for a generic

quadratic system to possess an infinite saddle-node of type (0
2)SN and another simple infinite

singularity is that the comitants η and M̃ verify the conditions

η = 0, M̃ 6= 0,

for all the possible values of the parameters of the system. Additionally, in Table 5.1 from that

book the authors present the invariant polynomials which are responsible for the number,

kinds (real or/and complex), and multiplicities of finite singularities of a generic quadratic

system. In particular, they show that if the invariant polynomial D verifies the condition

D = 0,

then we have a finite singularity of multiplicity at least two. In fact, for systems (2.1) calcula-

tions show that these systems verify such conditions, since for that normal form (with g = 1)

we obtain

η = 0, M̃ = −8(1 + 2h + l − n)2(x − y)2 6= 0, D = 0.

Now, for g = 1, consider the perturbation of systems (2.1)

ẋ = (1 − ε)x2 + 2hxy + (n − 1 − 2h)y2,

ẏ = y + l(1 − ε)x2 + ((2 + 2h − n)(1 − ε)− 2l)xy + (l − 2 − 2h + 2n)y2,
(2.2)

where |ε| is small enough. For these systems, calculations show that

η = 4ε((1 + 2h + l − n)2 − (−1 − 2h + n)2ε)2 6= 0, D = 0.
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So, according to Lemma 5.5 from the mentioned book, we have three distinct infinite singu-

larities (all of them are real if ε > 0 and, if ε < 0, we have one real infinite singularity and

two complex ones). Additionally, as D = 0, perturbation (2.2) leaves unperturbed the finite

saddle-node.

On the other hand, for g = 1 consider the perturbation of systems (2.1)

ẋ = −ε + x2 + 2hxy + (n − 1 − 2h)y2,

ẏ = −εl + y + lx2 + (2 + 2h − 2l − n)xy + (l − 2 − 2h + 2n)y2,
(2.3)

where |ε| is small enough. For systems (2.3) we have

η = 0, M̃ = −8(1 + 2h + l − n)2(x − y)2 6= 0,

and

D = −768ε(−1 + (2(1 + h)(−1 + l) + n)2ε)2(1 + 2h + h2 − n + n2((−1 + l)(1 + 2h + l) + n)ε).

According to Lemma 5.5 mentioned before, the perturbation (2.3) has not affected the infinite

singular points and, according to Table 5.1 from the mentioned book, we no longer have finite

multiple singularities, i.e. the perturbation splits the origin into two points (which are real or

complex, depending on the sign of ε).

Therefore the result holds for the set (AB).

Now, consider the set (AC). A realizable phase portrait belongs to the set (AC) if and only

if it has a finite saddle-node sn(2) and an infinite saddle-node of type (1
1)SN, obtained by

the coalescence of a finite saddle (respectively, finite node) with an infinite node (respectively,

infinite saddle). Remember that, as we discussed in page 8, the case in which the finite saddle-

node is the finite singularity that coalesces with an infinite singularity will be considered in

the future during the study of the set (CC). With the Invariant Theory as the main tool, in [10]

we classified the set of all real quadratic polynomial differential systems with a finite semi-

elemental saddle-node sn(2) located at the origin of the plane and an infinite saddle-node of

type (1
1)SN. Such a classification was done with respect to the normal form

ẋ = cx + cy − cx2 + 2hxy,

ẏ = ex + ey − ex2 + 2mxy,
(2.4)

where c, h, e, and m are real parameters, with the (nondegeneracity) condition eh 6= cm. The

parameter space of this normal form is a four-dimensional space, which can be projectivized,

as it was done in that paper where we proved that all generic phenomena occur for h = 1.

In Lemma 5.2 from the book [9] the authors proved that a necessary and sufficient condition

for a generic quadratic system to possess an infinite saddle-node of type (1
1)SN is that the

comitants µ0 and µ1 verify the conditions

µ0 = 0, µ1 6= 0,

for all the possible values of the parameters of the system. Additionally, as in the previous

case, from Table 5.1 it is possible to conclude that if the invariant polynomial D verifies the

condition

D = 0,
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then we have a finite singularity of multiplicity at least two. Indeed, for systems (2.4) with

h = 1 calculations show that such conditions are fulfilled, since

µ0 = 0, µ1 = −8(e − cm)2x 6= 0, D = 0.

Now, for h = 1, consider the perturbation of systems (2.4)

ẋ = cx + cy − cx2 + 2xy + εy2,

ẏ = ex + ey − ex2 + 2mxy + εy2,
(2.5)

where |ε| is small enough, calculations show that for systems (2.5) the comitant µ0 is given by

µ0 = ε(−4(1 − m)(e − cm) + (c − e)2ε).

So the perturbation under consideration splits the infinite saddle-node (1
1)SN. Additionally,

we conclude that the perturbation maintains the finite saddle-node, since for systems (2.5)

calculations show that the invariant polynomial D vanishes.

Finally, for h = 1 (as we did for the set (AB)), consider the perturbation of systems (2.4)

ẋ = −ε + cx + cy − cx2 + 2xy,

ẏ = −εe + ex + ey − ex2 + 2mxy,
(2.6)

where |ε| is small enough. For systems (2.6) we have

µ0 = 0, µ1 = −4(e − cm)2x 6= 0,

and
D =768ε(e − cm)3

(
16ε2(e − m)3 − 8(c − 1)e(e − cm)2

)

+ 768ε2(e − cm)4
(
(9c(3c − 2)− 13)e2 + 4(11 − 9c)em − 4m2

)
.

According to the results (from the book [9]) presented before, we conclude that systems (2.6)

have the infinite saddle-node (1
1)SN and do not have the finite saddle-node sn(2), i.e. the

perturbation (2.6) of systems (2.4) keeps the infinite saddle-node and splits the finite saddle-

node.

Then the theorem also holds for the set (AC), as we wanted to prove.

As at the moment we are not interested in giving a proof for a general case of the previous

theorem, in what follows we present a conjecture.

Conjecture 2.12. If one of the phase portraits of codimension k that bifurcates from a potential codi-

mension k + 1 phase portrait is not realizable, then this latter phase portrait is also not realizable.

Remark 2.13. In Qualitative Theory of Ordinary Differential Equations is quite common to

use the term “perturbation” to denote an infinitesimal modification of the parameters of a

system such that a different phase portrait bifurcates from it. In this paper we use the term

“evolution” in order to say that we “move a codimension one∗ phase portrait to its border and

detect which phase portraits are in the other side of this border”, so with an evolution of a

codimension one∗ phase portrait we produce a codimension two∗ phase portrait. In this sense we

mean that we modify (in a continuous way) the first system inside the region of parameters in

which it is defined up to the other side of the border of this region where we obtain a system

having one codimension more. In a certain way, with this modification we are provoking an

“evolution” of the first system. Note that we contrast “perturbation” with “evolution”.
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3 Proof of Theorem 1.6

In this section we present the proof of Theorem 1.6. More precisely, in Subsection 3.1 we obtain

all the topologically potential phase portraits belonging to the set (AB) (we have 110 topolog-

ically distinct phase portraits) and we prove that 39 of them are impossible. In Subsection 3.2

we show the realization of each one of the remaining 71 phase portraits.

3.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase portraits

from the set (AB).

We already know that in the set (AB), the unstable objects of codimension two∗ belong to

the set of saddle-nodes
{

sn(2)+(
0
2)SN

}
. Considering all the different ways of obtaining phase

portraits belonging to the set (AB) of codimension two∗, we have to consider all the possible

ways of coalescing specific singular points in both sets (A) and (B). However, as the sets

(AB) and (BA) are the same (i.e. their elements are obtained independently of the order of

the evolution in the elements of the sets (A) or (B)), it is necessary to consider only all the

possible ways of obtaining an infinite saddle-node of type (0
2)SN in each element from the set

(A) (phase portraits possessing a finite saddle-node sn(2)). Anyway, in order to make things

clear, in page 54 we discuss briefly how should we perform if we start by considering the set

(B).

In order to obtain phase portraits from the set (AB) by starting our study from the set (A),

we have to consider Theorem 2.7 and also Lemma 3.25 from [6] (regarding phase portraits

from the set (B)) which we state as follows.

Lemma 3.1. Suppose that a polynomial vector field X of codimension one∗ has an infinite saddle-node

p of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)p 6= 0 and first eigenvalue equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce a struc-

turally stable system (with one infinite saddle and one infinite node, or with no singular points

in the neighborhood) or a system topologically equivalent to X.

(b) Both possibilities of structurally stable system (with one saddle and one node at infinity, or with

no singular points in the neighborhood) are realizable.

Here we consider all the 69 realizable structurally unstable quadratic vector fields of codi-

mension one∗ from the set (A). In order to obtain a phase portrait of codimension two∗ belonging

to the set (AB) starting from a phase portrait of codimension one∗ of the set (A), we keep the

existing finite saddle-node and using Lemma 3.1 we build an infinite saddle-node of type

(0
2)SN by the coalescence of an infinite saddle with an infinite node. On the other hand, from

the phase portraits of codimension two∗ from the set (AB), one can obtain phase portraits of

codimension one∗ belonging to the set (A) after perturbation of the infinite saddle-node (0
2)SN

into an infinite saddle and an infinite node, or into complex singularities.

In what follows we denote by U2
AB,k, where U2

AB stands for structurally unstable quadratic

vector field of codimension two∗ from the set (AB) and k ∈ {1, . . . , 71} (note that the notation

U2
AB is simpler than U2

(AB)). The impossible phase portraits will be denoted by U
2,I
AB,j, where

U
2,I
AB stands for Impossible of codimension two∗ from the set (AB) and j ∈ N. We need to enu-

merate also the impossible phase portraits, not for the completeness of this paper, but for the
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future papers in which someone will study codimension three∗ families. Just in the same way

as impossible codimension one∗ phase portraits are a crucial tool for the study of our families.

Note that phase portraits U1
A,1 to U1

A,13 cannot have a phase portrait possessing an infinite

saddle-node of type(0
2)SN as an evolution, since each one of them has only one infinite singu-

larity. Analogously, phase portraits U1
A,14 to U1

A,18 cannot have a phase portrait possessing an

infinite saddle-node of type (0
2)SN as an evolution, since each one of them has three infinite

singularities (which are nodes).

Phase portrait U1
A,19 has phase portraits U2

AB,1 and U2
AB,2 as evolution (see Figure 3.1,

where the arrows starting from the phase portrait U1
A,19 and pointing towards the phase

portraits U2
AB,1 and U2

AB,2 indicate that these last two phase portraits are evolution of the

phase portrait U1
A,19). After bifurcation we get phase portrait U1

A,1, in both cases, by making

the infinite saddle-node (0
2)SN disappear (split into two complex singularities). In Figure 3.1

we present the corresponding unfoldings on the right-hand side of the codimension two∗ phase

portraits.

U1
A,19

U2
AB,1

U2
AB,2 U1

A,1

U1
A,1

Figure 3.1: Unstable systems U2
AB,1 and U2

AB,2.

Note that U1
A,19 possesses two pairs of infinite nodes and only one pair of infinite saddles,

so from U1
A,19 there are only two ways of obtaining a phase portrait possessing an infinite

saddle-node of type(0
2)SN, and these cases are represented exactly by the phase portraits U2

AB,1

and U2
AB,2 from Figure 3.1. From now on, we will always omit the proof of the nonexistence of

other cases apart from those ones that we discuss by words or by presenting in figures, since

the argument of nonexistence is in general quite simple.

Before we continue with the study of the remaining codimension one∗ phase portraits, we

highlight that it is very important to have the “structure” of all the figures very well under-

stood, since the proofs of Theorems 1.6 and 1.7 require and are done based on several figures.

So, in this paragraph we discuss about it. In the next cases, when from a codimension one∗

phase portrait we have more than one codimension two∗ phase portraits which are evolution

of the codimension one∗ phase portrait, we will present figures with the same “structure” of

Figure 3.1. More precisely, all the arrows that appear starting from an unstable phase por-

trait of codimension one∗ will have the same meaning as explained for Figure 3.1, i.e., they will

point towards the phase portraits of codimension two∗ which are evolution of the respective

codimension one∗ phase portrait. Moreover, we will present the corresponding unfoldings on

the right-hand side of the codimension two∗ phase portraits. On the other hand, when from
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a codimension one∗ phase portrait we have only one codimension two∗ phase portrait which is

an evolution of the codimension one∗ phase portrait, we will present figures like Figure 3.7, for

instance, where on the left-hand side we have a codimension one∗ phase portrait, on the center

we have the corresponding codimension two∗ phase portrait and on the right-hand side we have

the respective unfolding of the codimension two∗ phase portrait.

Phase portrait U1
A,20 has phase portraits U2

AB,3 and U2
AB,4 as evolution (see Figure 3.2).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,20

U2
AB,3

U2
AB,4 U1

A,1

U1
A,1

Figure 3.2: Unstable systems U2
AB,3 and U2

AB,4.

Phase portrait U1
A,21 has phase portraits U2

AB,5 and U2
AB,6 as evolution (see Figure 3.3).

After bifurcation we get phase portrait U1
A,1, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,21

U2
AB,5

U2
AB,6 U1

A,1

U1
A,1

Figure 3.3: Unstable systems U2
AB,5 and U2

AB,6.

Phase portrait U1
A,22 has phase portraits U2

AB,7 and U2
AB,8 as evolution (see Figure 3.4).

After bifurcation we get phase portrait U1
A,2, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,23 has phase portraits U2

AB,9 and U2
AB,10 as evolution (see Figure 3.5).

After bifurcation we get phase portrait U1
A,3, in both cases, by making the infinite saddle-node

(0
2)SN disappear.
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U1
A,22

U2
AB,7

U2
AB,8 U1

A,2

U1
A,2

Figure 3.4: Unstable systems U2
AB,7 and U2

AB,8.

U1
A,23

U2
AB,9

U2
AB,10 U1

A,3

U1
A,3

Figure 3.5: Unstable systems U2
AB,9 and U2

AB,10.

Phase portrait U1
A,24 has phase portraits U2

AB,11 and U2
AB,12 as evolution (see Figure 3.6).

After bifurcation we get phase portrait U1
A,4, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,24

U2
AB,11

U2
AB,12 U1

A,4

U1
A,4

Figure 3.6: Unstable systems U2
AB,11 and U2

AB,12.

Phase portrait U1
A,25 has phase portrait U2

AB,13 as an evolution (see Figure 3.7). After
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bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,25 has the impossible phase portrait U

2,I
AB,1 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,107 of codimension one∗, see

Figure 3.8. We observe that, in the set (A), U
2,I
AB,1 unfolds in U1

A,5.

U1
A,25 U2

AB,13 U1
A,5

Figure 3.7: Unstable system U2
AB,13.

U1
A,25 U

2,I
AB,1 U

1,I
B,107

Figure 3.8: Impossible unstable phase portrait U
2,I
AB,1.

Phase portrait U1
A,26 has phase portrait U2

AB,14 as an evolution (see Figure 3.9). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,26 has the impossible phase portrait U

2,I
AB,2 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,107 of codimension one∗, see

Figure 3.10. We observe that, in the set (A), U
2,I
AB,2 unfolds in U1

A,5.

U1
A,26

U2
AB,14 U1

A,5

Figure 3.9: Unstable system U2
AB,14.

Phase portrait U1
A,27 has phase portrait U2

AB,15 as an evolution (see Figure 3.11). After

bifurcation we get phase portrait U1
A,2, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,27 has the impossible phase portrait U

2,I
AB,3 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,108 of codimension one∗, see

Figure 3.12. We observe that, in the set (A), U
2,I
AB,3 unfolds in U1

A,2.

Phase portrait U1
A,28 has phase portrait U2

AB,16 as an evolution (see Figure 3.13). After
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U1
A,26 U

2,I
AB,2 U

1,I
B,107

Figure 3.10: Impossible unstable phase portrait U
2,I
AB,2.

U1
A,27 U2

AB,15 U1
A,2

Figure 3.11: Unstable system U2
AB,15.

U1
A,27 U

2,I
AB,3 U

1,I
B,108

Figure 3.12: Impossible unstable phase portrait U
2,I
AB,3.

bifurcation we get phase portrait U1
A,3, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,28 has the impossible phase portrait U

2,I
AB,4 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,108 of codimension one∗, see

Figure 3.14. We observe that, in the set (A), U
2,I
AB,4 unfolds in U1

A,3.

U1
A,28 U2

AB,16 U1
A,3

Figure 3.13: Unstable system U2
AB,16.

Phase portrait U1
A,29 has phase portrait U2

AB,17 as an evolution (see Figure 3.15). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,29 has the impossible phase portrait U

2,I
AB,5 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,109 of codimension one∗, see

Figure 3.16. We observe that, in the set (A), U
2,I
AB,5 unfolds in U1

A,5.

Phase portrait U1
A,30 has phase portrait U2

AB,18 as an evolution (see Figure 3.17). After
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U1
A,28 U

2,I
AB,4 U

1,I
B,108

Figure 3.14: Impossible unstable phase portrait U
2,I
AB,4.

U1
A,29 U2

AB,17 U1
A,5

Figure 3.15: Unstable system U2
AB,17.

U1
A,29 U

2,I
AB,5 U

1,I
B,109

Figure 3.16: Impossible unstable phase portrait U
2,I
AB,5.

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,30 has the impossible phase portrait U

2,I
AB,6 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,109 of codimension one∗, see

Figure 3.18. We observe that, in the set (A), U
2,I
AB,6 unfolds in U1

A,5.

U1
A,30 U2

AB,18 U1
A,5

Figure 3.17: Unstable system U2
AB,18.

Phase portrait U1
A,31 has phase portrait U2

AB,19 (see Figure 3.19) as an evolution. After

bifurcation we get phase portrait U1
A,2, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,31 has the impossible phase portrait U

2,I
AB,7 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.20. We observe that, in the set (A), U
2,I
AB,7 unfolds in U1

A,2.

Phase portrait U1
A,32 has phase portrait U2

AB,20 as an evolution (see Figure 3.21). After
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U1
A,30 U

2,I
AB,6 U

1,I
B,109

Figure 3.18: Impossible unstable phase portrait U
2,I
AB,6.

U1
A,31 U2

AB,19 U1
A,2

Figure 3.19: Unstable system U2
AB,19.

U1
A,31 U

2,I
AB,7 U

1,I
B,110

Figure 3.20: Impossible unstable phase portrait U
2,I
AB,7.

bifurcation we get phase portrait U1
A,3, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,32 has the impossible phase portrait U

2,I
AB,8 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.22. We observe that, in the set (A), U
2,I
AB,8 unfolds in U1

A,3.

U1
A,32 U2

AB,20 U1
A,3

Figure 3.21: Unstable system U2
AB,20.

Phase portrait U1
A,33 has phase portrait U2

AB,21 as an evolution (see Figure 3.23). After

bifurcation we get phase portrait U1
A,4, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,33 has the impossible phase portrait U

2,I
AB,9 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,110 of codimension one∗, see

Figure 3.24. We observe that, in the set (A), U
2,I
AB,9 unfolds in U1

A,4.

Phase portrait U1
A,34 has phase portrait U2

AB,22 as an evolution (see Figure 3.25). After
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U1
A,32 U

2,I
AB,8 U

1,I
B,110

Figure 3.22: Impossible unstable phase portrait U
2,I
AB,8.

U1
A,33 U2

AB,21 U1
A,4

Figure 3.23: Unstable system U2
AB,21.

U1
A,33 U

2,I
AB,9 U

1,I
B,110

Figure 3.24: Impossible unstable phase portrait U
2,I
AB,9.

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,34 has the impossible phase portrait U

2,I
AB,10 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,111 of codimension one∗, see

Figure 3.26. We observe that, in the set (A), U
2,I
AB,10 unfolds in U1

A,5.

U1
A,34 U2

AB,22 U1
A,5

Figure 3.25: Unstable system U2
AB,22.

Phase portrait U1
A,35 has phase portrait U2

AB,23 as an evolution (see Figure 3.27). After

bifurcation we get phase portrait U1
A,5, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,35 has the impossible phase portrait U

2,I
AB,11 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,111 of codimension one∗, see

Figure 3.28. We observe that, in the set (A), U
2,I
AB,11 unfolds in U1

A,5.

Phase portrait U1
A,36 has phase portraits U2

AB,24 and U2
AB,25 as evolution (see Figure 3.29).
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U1
A,34 U

2,I
AB,10 U

1,I
B,111

Figure 3.26: Impossible unstable phase portrait U
2,I
AB,10.

U1
A,35 U2

AB,23 U1
A,5

Figure 3.27: Unstable system U2
AB,23.

U1
A,35 U

2,I
AB,11 U

1,I
B,111

Figure 3.28: Impossible unstable phase portrait U
2,I
AB,11.

After bifurcation we get phase portrait U1
A,9, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,36

U2
AB,24

U2
AB,25 U1

A,9

U1
A,9

Figure 3.29: Unstable systems U2
AB,24 and U2

AB,25.

Phase portrait U1
A,37 has phase portraits U2

AB,26 and U2
AB,27 as evolution (see Figure 3.30).

After bifurcation we get phase portrait U1
A,10, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,38 has phase portraits U2

AB,28 and U2
AB,29 as evolution (see Figure 3.31).

After bifurcation we get phase portrait U1
A,8, in both cases, by making the infinite saddle-node
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U1
A,37

U2
AB,26

U2
AB,27 U1

A,10

U1
A,10

Figure 3.30: Unstable systems U2
AB,26 and U2

AB,27.

(0
2)SN disappear.

U1
A,38

U2
AB,28

U2
AB,29 U1

A,8

U1
A,8

Figure 3.31: Unstable systems U2
AB,28 and U2

AB,29.

Phase portrait U1
A,39 has phase portrait U2

AB,30 as an evolution (see Figure 3.32). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,39 has the impossible phase portrait U

2,I
AB,12 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,112 of codimension one∗, see

Figure 3.33. We observe that, in the set (A), U
2,I
AB,12 unfolds in U1

A,6.

U1
A,39 U2

AB,30 U1
A,6

Figure 3.32: Unstable system U2
AB,30.

Phase portrait U1
A,40 has phase portrait U2

AB,31 as an evolution (see Figure 3.34). After
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U1
A,39 U

2,I
AB,12 U

1,I
B,112

Figure 3.33: Impossible unstable phase portrait U
2,I
AB,12.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,40 has the impossible phase portrait U

2,I
AB,13 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,113 of codimension one∗, see

Figure 3.35. We observe that, in the set (A), U
2,I
AB,13 unfolds in U1

A,6.

U1
A,40 U2

AB,31 U1
A,6

Figure 3.34: Unstable system U2
AB,31.

U1
A,40 U

2,I
AB,13 U

1,I
B,113

Figure 3.35: Impossible unstable phase portrait U
2,I
AB,13.

Phase portrait U1
A,41 has phase portrait U2

AB,32 as an evolution (see Figure 3.36). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,41 has the impossible phase portrait U

2,I
AB,14 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,113 of codimension one∗, see

Figure 3.37. We observe that, in the set (A), U
2,I
AB,14 unfolds in U1

A,6.

U1
A,41 U2

AB,32 U1
A,6

Figure 3.36: Unstable system U2
AB,32.
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U1
A,41

U
2,I
AB,14 U

1,I
B,113

Figure 3.37: Impossible unstable phase portrait U
2,I
AB,14.

Phase portrait U1
A,42 has phase portrait U2

AB,33 as an evolution (see Figure 3.38). After

bifurcation we get phase portrait U1
A,9, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,42 has the impossible phase portrait U

2,I
AB,15 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,114 of codimension one∗, see

Figure 3.39. We observe that, in the set (A), U
2,I
AB,15 unfolds in U1

A,9.

U1
A,42 U2

AB,33 U1
A,9

Figure 3.38: Unstable system U2
AB,33.

U1
A,42 U

2,I
AB,15 U

1,I
B,114

Figure 3.39: Impossible unstable phase portrait U
2,I
AB,15.

Phase portrait U1
A,43 has phase portrait U2

AB,34 as an evolution (see Figure 3.40). After

bifurcation we get phase portrait U1
A,10, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,43 has the impossible phase portrait U

2,I
AB,16 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,114 of codimension one∗, see

Figure 3.41. We observe that, in the set (A), U
2,I
AB,16 unfolds in U1

A,10.

Phase portrait U1
A,44 has phase portrait U2

AB,35 as an evolution (see Figure 3.42). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,44 has the impossible phase portrait U

2,I
AB,17 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,115 of codimension one∗, see

Figure 3.43. We observe that, in the set (A), U
2,I
AB,17 unfolds in U1

A,6.

Phase portrait U1
A,45 has phase portrait U2

AB,36 as an evolution (see Figure 3.44). After
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U1
A,43 U2

AB,34 U1
A,10

Figure 3.40: Unstable system U2
AB,34.

U1
A,43 U

2,I
AB,16 U

1,I
B,114

Figure 3.41: Impossible unstable phase portrait U
2,I
AB,16.

U1
A,44 U2

AB,35 U1
A,6

Figure 3.42: Unstable system U2
AB,35.

U1
A,44 U

2,I
AB,17 U

1,I
B,115

Figure 3.43: Impossible unstable phase portrait U
2,I
AB,17.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,45 has the impossible phase portrait U

2,I
AB,18 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,116 of codimension one∗, see

Figure 3.45. We observe that, in the set (A), U
2,I
AB,18 unfolds in U1

A,6.

U1
A,45 U2

AB,36 U1
A,6

Figure 3.44: Unstable system U2
AB,36.
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U1
A,45 U

2,I
AB,18 U

1,I
B,116

Figure 3.45: Impossible unstable phase portrait U
2,I
AB,18.

Phase portrait U1
A,46 has phase portrait U2

AB,37 as an evolution (see Figure 3.46). After

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,46 has the impossible phase portrait U

2,I
AB,19 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,116 of codimension one∗, see

Figure 3.47. We observe that, in the set (A), U
2,I
AB,19 unfolds in U1

A,6.

U1
A,46 U2

AB,37 U1
A,6

Figure 3.46: Unstable system U2
AB,37.

U1
A,46 U

2,I
AB,19 U

1,I
B,116

Figure 3.47: Impossible unstable phase portrait U
2,I
AB,19.

Phase portrait U1
A,47 has phase portraits U2

AB,38 and U2
AB,39 as evolution (see Figure 3.48).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,48 has phase portraits U2

AB,40 and U2
AB,41 as evolution (see Figure 3.49).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,50 has phase portraits U2

AB,42 and U2
AB,43 as evolution (see Figure 3.50).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,51 has phase portraits U2

AB,44 and U2
AB,45 as evolution (see Figure 3.51).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,52 has phase portraits U2

AB,46 and U2
AB,47 as evolution (see Figure 3.52).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node
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U1
A,47

U2
AB,38

U2
AB,39 U1

A,7

U1
A,7

Figure 3.48: Unstable systems U2
AB,38 and U2

AB,39.

U1
A,48

U2
AB,40

U2
AB,41 U1

A,7

U1
A,7

Figure 3.49: Unstable systems U2
AB,40 and U2

AB,41.

U1
A,50

U2
AB,42

U2
AB,43 U1

A,7

U1
A,7

Figure 3.50: Unstable systems U2
AB,42 and U2

AB,43.

(0
2)SN disappear.

Phase portrait U1
A,53 has phase portraits U2

AB,48 and U2
AB,49 as evolution (see Figure 3.53).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

Phase portrait U1
A,54 has phase portrait U2

AB,50 as an evolution (see Figure 3.54). After
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U1
A,51

U2
AB,44

U2
AB,45 U1

A,7

U1
A,7

Figure 3.51: Unstable systems U2
AB,44 and U2

AB,45.

U1
A,52

U2
AB,46

U2
AB,47 U1

A,7

U1
A,7

Figure 3.52: Unstable systems U2
AB,46 and U2

AB,47.

U1
A,53

U2
AB,48

U2
AB,49 U1

A,7

U1
A,7

Figure 3.53: Unstable systems U2
AB,48 and U2

AB,49.

bifurcation we get phase portrait U1
A,6, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,54 has the impossible phase portrait U

2,I
AB,20 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into

a saddle and a node we obtain the impossible phase portrait U
1,I
B,117 of codimension one∗, see



Topological classification of the sets (AB) and (AC) 47

Figure 3.55. We observe that, in the set (A), U
2,I
AB,20 unfolds in U1

A,6.

U1
A,54 U2

AB,50 U1
A,6

Figure 3.54: Unstable system U2
AB,50.

U1
A,54 U

2,I
AB,20 U

1,I
B,117

Figure 3.55: Impossible unstable phase portrait U
2,I
AB,20.

Phase portrait U1
A,55 has phase portraits U2

AB,51 and U2
AB,52 as evolution (see Figure 3.56).

After bifurcation we get phase portrait U1
A,7, in both cases, by making the infinite saddle-node

(0
2)SN disappear.

U1
A,55

U2
AB,51

U2
AB,52 U1

A,7

U1
A,7

Figure 3.56: Unstable systems U2
AB,51 and U2

AB,52.

Phase portrait U1
A,56 has phase portrait U2

AB,53 as an evolution (see Figure 3.57). After

bifurcation we get phase portrait U1
A,11, modulo limit cycle, by making the infinite saddle-node

(0
2)SN disappear. Moreover, U1

A,56 has the impossible phase portrait U
2,I
AB,21 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,4 of codimension one∗,

see Figure 3.58. We observe that, in the set (A), U
2,I
AB,21 also unfolds in an impossible phase

portrait because after bifurcation we would get a limit cycle surrounding more than one finite

singular points, and this is not possible in quadratic systems (see Lemma 3.14 from [6]).

Phase portrait U1
A,57 has phase portrait U2

AB,54 as an evolution (see Figure 3.59). After

bifurcation we get phase portrait U1
A,12, modulo limit cycle, by making the infinite saddle-node
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U1
A,56 U2

AB,53 U1
A,11

Figure 3.57: Unstable system U2
AB,53.

U1
A,56 U

2,I
AB,21 U

1,I
B,4

Figure 3.58: Impossible unstable phase portrait U
2,I
AB,21.

(0
2)SN disappear. Moreover, U1

A,57 has the impossible phase portrait U
2,I
AB,22 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,4 of codimension one∗,

see Figure 3.60. We observe that, in the set (A), U
2,I
AB,22 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,57 U2

AB,54 U1
A,12

Figure 3.59: Unstable system U2
AB,54.

U1
A,57 U

2,I
AB,22 U

1,I
B,4

Figure 3.60: Impossible unstable phase portrait U
2,I
AB,22.

Phase portrait U1
A,58 has phase portrait U2

AB,55 as an evolution (see Figure 3.61). After

bifurcation we get phase portrait U1
A,12, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,58 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,55.

Phase portrait U1
A,59 has phase portraits U2

AB,56 and U2
AB,57 as evolution (see Figure 3.62).

After bifurcation we get phase portrait U1
A,13, in both cases, by making the infinite saddle-node

(0
2)SN disappear.
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U1
A,58 U2

AB,55 U1
A,12

Figure 3.61: Unstable system U2
AB,55.

U1
A,59

U2
AB,56

U2
AB,57 U1

A,13

U1
A,13

Figure 3.62: Unstable systems U2
AB,56 and U2

AB,57.

Phase portrait U1
A,60 has phase portrait U2

AB,58 as an evolution (see Figure 3.63). After

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,60 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,58.

U1
A,60 U2

AB,58 U1
A,11

Figure 3.63: Unstable system U2
AB,58.

Phase portrait U1
A,61 has phase portraits U2

AB,59 and U2
AB,60 as evolution (see Figure 3.64).

After bifurcation we get phase portraits U1
A,11 and U1

A,12, respectively, by making the infinite

saddle-node(0
2)SN disappear.

Phase portrait U1
A,62 has phase portrait U2

AB,61 as an evolution (see Figure 3.65). After

bifurcation we get phase portrait U1
A,13, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,62 has a second phase portrait which is not presented since it is topologically

equivalent to U2
AB,61.

Phase portrait U1
A,63 has phase portrait U2

AB,62 as an evolution (see Figure 3.66). After

bifurcation we get phase portrait U1
A,11, modulo limit cycle, by making the infinite saddle-node

(0
2)SN disappear. Moreover, U1

A,63 has the impossible phase portrait U
2,I
AB,23 as an evolution. By



50 J. C. Artés, M. C. Mota and A. C. Rezende

U1
A,61

U2
AB,59 U1

A,11

U2
AB,60 U1

A,12

Figure 3.64: Unstable systems U2
AB,59 and U2

AB,60.

U1
A,62 U2

AB,61 U1
A,13

Figure 3.65: Unstable system U2
AB,61.

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,5 of codimension one∗,

see Figure 3.67. We observe that, in the set (A), U
2,I
AB,23 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,63 U2

AB,62 U1
A,11

Figure 3.66: Unstable system U2
AB,62.

U1
A,63 U

2,I
AB,23 U

1,I
B,5

Figure 3.67: Impossible unstable phase portrait U
2,I
AB,23.

Phase portrait U1
A,64 has phase portrait U2

AB,63 as an evolution (see Figure 3.68). After

bifurcation we get phase portrait U1
A,13, modulo limit cycle, by making the infinite saddle-node
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(0
2)SN disappear. Moreover, U1

A,64 has the impossible phase portrait U
2,I
AB,24 as an evolution. By

Theorem 2.11 such a phase portrait is impossible because by splitting the original finite saddle-

node into a saddle and a node we obtain the impossible phase portrait U
1,I
B,5 of codimension one∗,

see Figure 3.69. We observe that, in the set (A), U
2,I
AB,24 also unfolds in an impossible phase

portrait, as in U
2,I
AB,21.

U1
A,64 U2

AB,63 U1
A,13

Figure 3.68: Unstable system U2
AB,63.

U1
A,64 U

2,I
AB,24 U

1,I
B,5

Figure 3.69: Impossible unstable phase portrait U
2,I
AB,24.

Phase portrait U1
A,65 has phase portrait U2

AB,64 as an evolution (see Figure 3.70). After

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,65 has the impossible phase portrait U

2,I
AB,25 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,6 of codimension one∗, see Figure

3.71. We observe that, in the set (A), U
2,I
AB,25 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

U1
A,65 U2

AB,64 U1
A,11

Figure 3.70: Unstable system U2
AB,64.

Phase portrait U1
A,66 has phase portrait U2

AB,65 as an evolution (see Figure 3.72). After

bifurcation we get phase portrait U1
A,12, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,66 has the impossible phase portrait U

2,I
AB,26 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,6 of codimension one∗, see Figure

3.73. We observe that, in the set (A), U
2,I
AB,26 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.
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U1
A,65 U

2,I
AB,25 U

1,I
B,6

Figure 3.71: Impossible unstable phase portrait U
2,I
AB,25.

U1
A,66 U2

AB,65 U1
A,12

Figure 3.72: Unstable system U2
AB,65.

U1
A,66 U

2,I
AB,26 U

1,I
B,6

Figure 3.73: Impossible unstable phase portrait U
2,I
AB,26.

Phase portrait U1
A,67 has phase portraits U2

AB,66 and U2
AB,67 as evolution (see Figure 3.74).

After bifurcation we get phase portraits U1
A,11 and U1

A,13 (being this last one modulo limit

cycles), respectively, by making the infinite saddle-node (0
2)SN disappear.

U1
A,67

U2
AB,66 U1

A,11

U2
AB,67 U1

A,13

Figure 3.74: Unstable systems U2
AB,66 and U2

AB,67.

Phase portrait U1
A,68 has phase portraits U2

AB,68 and U2
AB,69 as evolution (see Figure 3.75).

After bifurcation we get phase portraits U1
A,11 (modulo limit cycles) and U1

A,13, respectively,

by making the infinite saddle-node (0
2)SN disappear.

Phase portrait U1
A,69 has phase portrait U2

AB,70 as an evolution (see Figure 3.76). After
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U1
A,68

U2
AB,68 U1

A,11

U2
AB,69 U1

A,13

Figure 3.75: Unstable systems U2
AB,68 and U2

AB,69.

bifurcation we get phase portrait U1
A,11, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,69 has the impossible phase portrait U

2,I
AB,27 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,7 of codimension one∗, see Figure

3.77. We observe that, in the set (A), U
2,I
AB,27 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

U1
A,69 U2

AB,70 U1
A,11

Figure 3.76: Unstable system U2
AB,70.

U1
A,69 U

2,I
AB,27 U

1,I
B,7

Figure 3.77: Impossible unstable phase portrait U
2,I
AB,27.

Phase portrait U1
A,70 has phase portrait U2

AB,71 as an evolution (see Figure 3.78). After

bifurcation we get phase portrait U1
A,13, by making the infinite saddle-node (0

2)SN disappear.

Moreover, U1
A,70 has the impossible phase portrait U

2,I
AB,28 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original finite saddle-node into a

saddle and a node we obtain the impossible phase portrait U
1,I
B,7 of codimension one∗, see Figure

3.79. We observe that, in the set (A), U
2,I
AB,28 also unfolds in an impossible phase portrait, as in

U
2,I
AB,21.

Therefore, we have just finished obtaining all the 71 topologically potential phase portraits
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U1
A,70 U2

AB,71 U1
A,13

Figure 3.78: Unstable system U2
AB,71.

U1
A,70 U

2,I
AB,28 U

1,I
B,7

Figure 3.79: Impossible unstable phase portrait U
2,I
AB,28.

of codimension two∗ from the set (AB) presented in Figures 1.1 to 1.3.

Now we explain how one can obtain these 71 phase portraits by starting the study from

the set (B). Let us consider all the 40 realizable structurally unstable quadratic vector fields

of codimension one∗ from the set (B). In order to obtain a phase portrait of codimension two∗

belonging to the set (AB) starting from a phase portrait of codimension one∗ of the set (B), we

keep the existing infinite saddle-node(0
2)SN and by using Theorem 2.6 we build a finite saddle-

node sn(2) by the coalescence of a finite saddle with a finite node. On the other hand, from

the phase portraits of codimension two∗ from the set (AB), there exist two ways of obtaining

phase portraits of codimension one∗ also belonging to the set (B) after perturbation: splitting

sn(2) into a saddle and a node, or moving it to complex singularities (see Remark 3.2).

Remark 3.2. We recall that, in quadratic differential systems, the finite singular points are

zeroes of a polynomial of degree four. Supposing that we have a singular point of multiplicity

two, then the remaining singular points are zeroes of a quadratic polynomial. Therefore,

these other two points can be two simple singular points, a double point (a saddle-node) or

two complex conjugate singular points.

According to these facts, if a phase portrait does not possess finite singularities (for in-

stance, U1
B,1 and U1

B,2) or if it possesses only two finite antisaddles (as for instance U1
B,29 to

U1
B,32), it is not possible to obtain a phase portrait from it which belongs to the set (AB).

The main goal of this section is to obtain all the topologically potential phase portraits

from the set (AB) and then prove their realization or show that they are not possible. So we

have to be sure that no other phase portrait can be found if one does some evolution in all

elements of the set (B) in order to obtain a phase portrait belonging to the set (AB). We point

out that we have done this verification, i.e. we have also considered each element from the set

(B) and produced a coalescence (when it was possible) of a finite saddle with a finite node and

we also have obtained the 71 topologically potential phase portraits of codimension two∗ from

the set (AB) presented in Figures 1.1 to 1.3. In what follows we show the result (modulo limit

cycles) of this study. We point out that we will not give all the details of this study. We will

not even mention anything about why there are no more potential cases to be considered an

evolution of a codimension one∗ phase portrait, since we believe that this can be easily verified
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by the reader. Additionally, we will present pictures only of the impossible phase portraits

obtained in order to explain their impossibility and we will not mention anything about phase

portraits which are topologically equivalent to phase portraits already obtained.

It is important to remark that the realizable phase portraits that we will obtain from the

set (B) to the set (AB) will coincide exactly with those ones previously found. However, the

non-realizable ones that we will find from (B) will be different from those ones coming from

(A). The reason is that the arguments used to prove the impossibility of those coming from

(A) were precisely that they would bifurcate in some impossible from (B) and now, they will

be those ones that bifurcate in some impossible from (A).

In Table 3.1 we present the study of phase portraits U1
B,3 to U1

B,11. In the first column we

present the corresponding phase portrait from the set (B), in the second column we indicate

its corresponding phase portrait belonging to the set (AB) i.e. after producing a finite saddle-

node sn(2), and in the third column we show the corresponding phase portrait after we make

this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,3 U2

AB,1 U1
B,1

U1
B,4 U2

AB,2 U1
B,2

U1
B,5 U2

AB,3 U1
B,1

U1
B,6 U2

AB,4 U1
B,2

U1
B,7 U2

AB,6 U1
B,2

U1
B,8 U2

AB,5 U1
B,1

U1
B,9

U2
AB,7

U1
B,8U2

AB,9

U2
AB,11

U1
B,10

U2
AB,8

U1
B,7U2

AB,10

U2
AB,12

U1
B,11

U2
AB,13 U1

B,4

U2
AB,14 U1

B,7

Table 3.1: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,12 has phase portraits U2

AB,15 and U2
AB,16 as evolution. After bifurcation

we get phase portrait U1
B,3 (for both cases) by making the finite saddle-node sn(2) disappear.

Moreover, U1
B,12 has the impossible phase portrait U

2,I
AB,29 as an evolution. By Theorem 2.11

such a phase portrait is impossible because by splitting the original infinite saddle-node(0
2)SN

into an infinite saddle and an infinite node we obtain the impossible phase portrait U
1,I
A,1 of

codimension one∗, see Figure 3.80. We point out that, in the set (B), the corresponding unfolding

of U
2,I
AB,29 does not exist, since if such a phase portrait does exist, it would be an evolution of

the impossible phase portrait I9,1 (see Figure 4.4 from [6]), which contradicts Theorem 2.11.

In Table 3.2 we present the study of phase portraits U1
B,13 to U1

B,15. In the first column we

present the corresponding phase portrait from the set (B), in the second column we indicate

its corresponding phase portrait belonging to the set (AB) i.e. after producing a finite saddle-
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U1
B,12 U

2,I
AB,29 U

1,I
A,1

Figure 3.80: Impossible unstable phase portrait U
2,I
AB,29.

node sn(2), and in the third column we show the corresponding phase portrait after we make

this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,13

U2
AB,17 U1

B,6

U2
AB,18 U1

B,7

U1
B,14

U2
AB,19

U1
B,3U2

AB,20

U2
AB,21

U1
B,15

U2
AB,23 U1

B,3

U2
AB,22 U1

B,5

Table 3.2: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,16 has phase portraits U2

AB,29, U2
AB,25, and U2

AB,26 as evolution. After

bifurcation we get phase portraits U1
B,5, U1

B,8 and U1
B,8 (being this last one modulo limit cy-

cle), respectively, by making the finite saddle-node sn(2) disappear. Moreover, U1
B,16 has the

impossible phase portrait U
2,I
AB,30 as an evolution. By Theorem 2.11 such a phase portrait is

impossible because by splitting the original infinite saddle-node (0
2)SN into an infinite saddle

and an infinite node we obtain the impossible phase portrait U
1,I
A,103 of codimension one∗, see

Figure 3.81. We observe that, in the set (B), U
2,I
AB,30 unfolds in U1

B,8 (modulo limit cycles).

U1
B,16 U

2,I
AB,30 U

1,I
A,103

Figure 3.81: Impossible unstable phase portrait U
2,I
AB,30.

Phase portrait U1
B,17 has phase portraits U2

AB,28, U2
AB,24, and U2

AB,27 as evolution. After

bifurcation we get phase portraits U1
B,6, U1

B,7 and U1
B,7 (being this last one modulo limit cy-

cle), respectively, by making the finite saddle-node sn(2) disappear. Moreover, U1
B,17 has the

impossible phase portrait U
2,I
AB,31 as an evolution. By Theorem 2.11 such a phase portrait is

impossible because by splitting the original infinite saddle-node (0
2)SN into an infinite saddle
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and an infinite node we obtain the impossible phase portrait U
1,I
A,103 of codimension one∗, see

Figure 3.82. We observe that, in the set (B), U
2,I
AB,31 unfolds in U1

B,7 (modulo limit cycles).

U1
B,17 U

2,I
AB,31 U

1,I
A,103

Figure 3.82: Impossible unstable phase portrait U
2,I
AB,31.

Phase portrait U1
B,18 has phase portrait U2

AB,30 as an evolution and after bifurcation we get

phase portrait U1
B,7, by making the finite saddle-node sn(2) disappear. Moreover, U1

B,18 has a

second phase portrait as an evolution which is topologically equivalent to U2
AB,30.

Phase portrait U1
B,19 has phase portraits U2

AB,32 and U2
AB,31 as evolution. After bifurca-

tion we get phase portraits U1
B,4 and U1

B,6, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,20 has phase portraits U2

AB,33 and U2
AB,34 as evolution. After bifurcation

we get phase portrait U1
B,3, in both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,20 has the impossible phase portraits

U
2,I
AB,32 and U

2,I
AB,33 as evolution. By Theorem 2.11 such phase portraits are impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portraits U
1,I
A,2 and U

1,I
A,104, respectively, of codimension one∗,

see Figure 3.83. We point out that, in the set (B), the corresponding unfolding of U
2,I
AB,32 does

not exist (by the exactly same reason that we have discussed in U
2,I
AB,29) and the corresponding

unfolding of U
2,I
AB,33 is U1

B,3 (modulo limit cycles).

U1
B,20

U
2,I
AB,32 U

1,I
A,2

U
2,I
AB,33 U

1,I
A,104

Figure 3.83: Impossible unstable phase portraits U
2,I
AB,32 and U

2,I
AB,33.

Phase portrait U1
B,21 has phase portrait U2

AB,35 as an evolution and after bifurcation we get

phase portrait U1
B,6, by making the finite saddle-node sn(2) disappear. Moreover, U1

B,21 has a

second phase portrait as an evolution which is topologically equivalent to U2
AB,35.

Phase portrait U1
B,22 has phase portraits U2

AB,36 and U2
AB,37 as evolution. After bifurca-

tion we get phase portraits U1
B,3 and U1

B,8, respective, by making the finite saddle-node sn(2)

disappear.
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Phase portrait U1
B,23 has phase portraits U2

AB,39, U2
AB,40, and U2

AB,43 as evolution. After

bifurcation we get phase portraits U1
B,5 (for the two first cases) and U1

B,8 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,23 has the impossible phase

portrait U
2,I
AB,34 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,49 of codimension one∗, see Figure 3.84. We observe

that, in the set (B), U
2,I
AB,34 unfolds in U1

B,8.

U1
B,23 U

2,I
AB,34 U

1,I
A,49

Figure 3.84: Impossible unstable phase portrait U
2,I
AB,34.

Phase portrait U1
B,24 has phase portraits U2

AB,38, U2
AB,41, and U2

AB,42 as evolution. After

bifurcation we get phase portraits U1
B,6 (for the two first cases) and U1

B,7 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,24 has the impossible phase

portrait U
2,I
AB,35 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,49 of codimension one∗, see Figure 3.85. We observe

that, in the set (B), U
2,I
AB,35 unfolds in U1

B,7.

U1
B,24 U

2,I
AB,35 U

1,I
A,49

Figure 3.85: Impossible unstable phase portrait U
2,I
AB,35.

Phase portrait U1
B,25 has phase portraits U2

AB,46, U2
AB,49, and U2

AB,44 as evolution. After

bifurcation we get phase portraits U1
B,3 (for the two first cases) and U1

B,8 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,25 has the impossible phase

portrait U
2,I
AB,36 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node

we obtain the impossible phase portrait U
1,I
A,3 of codimension one∗, see Figure 3.86. We point

out that, in the set (B), the corresponding unfolding of U
2,I
AB,36 does not exist (by the exactly

same reason that we have discussed in U
2,I
AB,29).

Phase portrait U1
B,26 has phase portraits U2

AB,47, U2
AB,48, and U2

AB,45 as evolution. After

bifurcation we get phase portraits U1
B,4 (for the two first cases) and U1

B,7 (for the third case),

by making the finite saddle-node sn(2) disappear. Moreover, U1
B,26 has the impossible phase

portrait U
2,I
AB,37 as an evolution. By Theorem 2.11 such a phase portrait is impossible because

by splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node
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U1
B,25 U

2,I
AB,36

U
1,I
A,3

Figure 3.86: Impossible unstable phase portrait U
2,I
AB,36.

we obtain the impossible phase portrait U
1,I
A,3 of codimension one∗, see Figure 3.87. We point

out that, in the set (B), the corresponding unfolding of U
2,I
AB,37 does not exist (by the exactly

same reason that we have discussed in U
2,I
AB,29).

U1
B,26 U

2,I
AB,37 U

1,I
A,3

Figure 3.87: Impossible unstable phase portrait U
2,I
AB,37.

In Table 3.3 we present the study (modulo limit cycles) of phase portraits U1
B,27 to U1

B,35.

In the first column we present the corresponding phase portrait from the set (B), in the second

column we indicate its corresponding phase portrait belonging to the set (AB) i.e. after pro-

ducing a finite saddle-node sn(2), and in the third column we show the corresponding phase

portrait after we make this finite saddle-node sn(2) disappear.

phase portrait from phase portrait from phase portrait from

the set (B) the set (AB) the set (B)

U1
B,27 U2

AB,50 U1
B,4

U1
B,28

U2
AB,51 U1

B,3

U2
AB,52 U1

B,4

U1
B,33

U2
AB,53 U1

B,29
U2

AB,54

U1
B,34

U2
AB,55

U1
B,32

U2
AB,56

U2
AB,57

U2
AB,58

U1
B,35

U2
AB,61 U1

B,29

U2
AB,59 U1

B,32
U2

AB,60

Table 3.3: Phase portraits from the set (AB) obtained from evolution of elements

of the set (B).

Phase portrait U1
B,36 has phase portraits U2

AB,62 and U2
AB,63 as evolution. After bifurcation
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we get phase portrait U1
B,29, for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,36 has the impossible phase portrait

U
2,I
AB,38 as an evolution. By Theorem 2.11 such a phase portrait is impossible because by

splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node we

obtain the impossible phase portrait U
1,I
A,105 of codimension one∗, see Figure 3.88. We observe

that, in the set (B), U
2,I
AB,38 unfolds in U1

B,29 (modulo limit cycles).

U1
B,36 U

2,I
AB,38 U

1,I
A,105

Figure 3.88: Impossible unstable phase portrait U
2,I
AB,38.

Phase portrait U1
B,37 has phase portraits U2

AB,64 and U2
AB,65 as evolution. After bifurcation

we get phase portrait U1
B,31, for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
B,38 has phase portraits U2

AB,68 and U2
AB,67 as evolution. After bifurcation

we get phase portraits U1
B,29 and U1

B,30, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,39 has phase portraits U2

AB,69 and U2
AB,66 as evolution. After bifurcation

we get phase portraits U1
B,29 and U1

B,31, respective, by making the finite saddle-node sn(2)

disappear.

Phase portrait U1
B,40 has phase portraits U2

AB,70 and U2
AB,71 as evolution. After bifurcation

we get phase portrait U1
B,31, for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, U1
B,40 has the impossible phase portrait

U
2,I
AB,39 as an evolution. By Theorem 2.11 such a phase portrait is impossible because by

splitting the original infinite saddle-node(0
2)SN into an infinite saddle and an infinite node we

obtain the impossible phase portrait U
1,I
A,106 of codimension one∗, see Figure 3.89. We observe

that, in the set (B), U
2,I
AB,39 unfolds in U1

B,31 (modulo limit cycles).

U1
B,40 U

2,I
AB,39 U

1,I
A,106

Figure 3.89: Impossible unstable phase portrait U
2,I
AB,39.

3.2 The realization of the potential phase portraits

In the previous subsection we have produced all the topologically potential phase portraits for

structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AB). And

from them, we have discarded 33 which are not realizable due to their respective unfoldings

of codimension one∗ being impossible.
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In this subsection we aim to give specific examples for the remaining 71 different topolog-

ical classes of structurally unstable quadratic systems of codimension two∗ belonging to the set

∑
2
2(AB) and presented in Figures 1.1 to 1.3.

In [2] the authors showed that for each structurally stable phase portrait with limit cycles

there exists a realizable structurally stable phase portrait without limit cycles so that modulo

limit cycles they are equivalent. On the contrary, due to the large number of cases, in [6]

the authors did not follow the same procedure for the realizable structurally unstable phase

portraits of codimension one∗. Since this present paper is directly derived from this second

study, here we have found examples of codimension two∗ phase portraits with no evidence of

limit cycles, but we have not proved the absence of the infinitesimal ones (i.e. the ones born

by Hopf-bifurcation).

In [14] the authors classified, with respect to a specific normal form, the set of all real

quadratic polynomial differential systems with a finite semi-elemental saddle-node sn(2) lo-

cated at the origin of the plane and an infinite saddle-node of type (0
2)SN (obtained by the

coalescence of an infinite saddle with an infinite node) located in the bisector of first and third

quadrants. In [10] the authors show that phase portrait V171 from [14] is not topologically

equivalent to V170 (i.e. the equivalence presented in Table 65 from the mentioned paper is not

correct) and in [10] the authors present the correct picture of phase portrait V171.

Remark 3.3. The study of a bifurcation diagram of a certain family of quadratic systems

produces not only the class of phase portraits that we look for, but also all of those of their

closure according to the normal form that we consider. Even though the study is mainly

algebraic, analytic and numerical tools are also required. This implies that these studies may

be not complete and subject to the existence of possible “islands” which could contain an

undetected phase portrait. The border of that “island” could mean the connection of two

separatrices, and its interior could contain a different phase portrait from the ones stated

in the main theorem. In [14] the authors studied a bifurcation diagram in which the most

generic phase portraits correspond to elements of the set (AB). In Section 7 of that paper

the authors said that the bifurcation diagram they obtained is completely coherent, i.e. by

taking any two points in the parameter space and joining them by a continuous curve, along

this curve the changes in phase portraits that occur when crossing the different bifurcation

surfaces could be completely explained. Nevertheless, at that moment, the authors could not

be sure that the bifurcation diagram was the complete bifurcation diagram for the family they

consider in their paper, due to the possibility of “islands” inside the bifurcation diagram. The

topological study that we do in this paper solves partially this problem, since we prove that all

the realizable phase portraits of class (AB) do really exist, and no other topological possibility

does. However, the possible existence of “islands” in the bifurcation diagram still persists

since they can be related to double limit cycles, as discussed in Section 7 of [14].

By using the phase portraits of generic regions of the bifurcation diagram from [14] plus

the correct V171 presented in [10] we realize all the 71 unstable systems of codimension two∗ of

the set (AB), i.e. we can give concrete examples of all structurally unstable phase portraits

from the set (AB).

Consider systems (2.1), which were studied in [14] and describe quadratic systems having

a finite semi-elemental saddle-node sn(2) and an infinite saddle-node of type (0
2)SN located in

the endpoints of the bisector of the first and third quadrants.

In Tables 3.4 and 3.6 we present one representative from each generic region of the bifurca-

tion diagram of [14] (as described before) corresponding to each phase portrait of codimension
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two∗ from the set (AB) and, therefore, we conclude the proof of Theorem 1.6.

Cod 2∗ [14] g h ł n

U2
AB,1 V23 1 0 1/2 10

U2
AB,2 V84 1 91/100 1 2304/625

U2
AB,3 V22 1 0 9/10 10

U2
AB,4 V85 1 22/25 1 2304/625

U2
AB,5 V20 1 0 18 10

U2
AB,6 V21 1 −2 1 10

U2
AB,7 V1 1 −21/5 18 10

U2
AB,8 V2 1 −5 10 10

U2
AB,9 V190 1 3/5 −33/10 −1

U2
AB,10 V191 1 3/5 −3 −1

U2
AB,11 V25 1 173/80 6 10

U2
AB,12 V31 1 112/25 6 30

U2
AB,13 V9 1 −5 11/10 10

U2
AB,14 V121 1 −9999/100000 4/25 81/100

U2
AB,15 V147 1 −6/5 5 −1

U2
AB,16 V66 1 5 −15 10

U2
AB,17 V7 1 −9/2 13/5 10

U2
AB,18 V136 1 −59999/100000 7/10 4/25

U2
AB,19 V64 1 11/5 −4 10

U2
AB,20 V145 1 −4/5 5 −1

U2
AB,21 V13 1 −5 1/2 10

U2
AB,22 V83 1 9201/10000 −15 2304/625

U2
AB,23 V10 1 −5 7/10 10

U2
AB,24 V141 1 −69/100 601/1000 9/100

U2
AB,25 V144 1 −7999/10000 6397/10000 1/25

U2
AB,26 V172 1 −1/10 −3 −1

U2
AB,27 V173 1 −7/100 −31/20 −1

U2
AB,28 V41 1 44773/10000 11/5 30

U2
AB,29 V69 1 11/5 6 10

Table 3.4: Correspondence between codimension two∗ phase portraits of the set

(AB) and phase portraits from generic regions of the bifurcation diagram pre-

sented in [14]. In the first column we present the codimension two∗ phase por-

traits from the set (AB) in the present paper, in the second column we show

the corresponding phase portraits from [14] given by normal form (2.1), and in

the other columns we present the values of the parameters g, h, ł, and n of (2.1)

which realizes such phase portrait (remember that the correct phase portrait

V171 is presented in [10]).
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Cod 2∗ [14] g h ł n

U2
AB,30 V15 1 −21/5 3 10

U2
AB,31 V114 1 −211/2000 9549/50000 4/5

U2
AB,32 V109 1 −41/400 99999/100000 4/5

U2
AB,33 V154 1 −7/5 8/25 −1

U2
AB,34 V102 1 481/2000 −10 1

U2
AB,35 V129 1 −5499/10000 3/4 81/400

U2
AB,36 V108 1 −41/400 11/10 4/5

U2
AB,37 V78 1 9201/10000 −50 2304/625

U2
AB,38 V42 1 44777/10000 203/100 30

U2
AB,39 V71 1 223/100 6 10

U2
AB,40 V170 1 −9/50 −3 −1

U2
AB,41 V171 1 −3/40 −3/2 −1

U2
AB,42 V142 1 −69/100 6007/10000 9/100

U2
AB,43 V143 1 −7999/10000 27/50 1/25

U2
AB,44 V104 1 573/1250 −8 19/10

U2
AB,45 V123 1 −39/400 1/100 81/100

U2
AB,46 V155 1 −7/5 3/10 −1

U2
AB,47 V165 1 −1/5 −13/10 −1

U2
AB,48 V37 1 3 11/10 10

U2
AB,49 V44 1 22/5 2 10

U2
AB,50 V110 1 −41/400 9/10 4/5

U2
AB,51 V46 1 11/5 9/10 10

U2
AB,52 V49 1 23/5 9/10 10

U2
AB,53 V6 1 −5 3 10

U2
AB,54 V189 1 37/50 −147/100 −1

U2
AB,55 V61 1 4501/1000 −1 10

U2
AB,56 V53 1 6 −1/10000 10

U2
AB,57 V107 1 9/25 −1/2 41/25

U2
AB,58 V149 1 −11/10 3/2 −1

U2
AB,59 V62 1 3 −1 10

U2
AB,60 V198 1 −2/5 11/10 −1

U2
AB,61 V51 1 6 1/5 10

U2
AB,62 V138 1 −3/5 7/10 9/100

U2
AB,63 V177 1 3/100 −9/10 −1

U2
AB,64 V3 1 −5 6 10

U2
AB,65 V192 1 3/5 −123/50 −1

U2
AB,66 V122 1 −39/400 31/1000 81/100

U2
AB,67 V169 1 −1/5 −7/10 −1

U2
AB,68 V113 1 −39/400 1/10 81/100

Table 3.5: Continuation of Table 3.4.
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Cod 2∗ [14] g h ł n

U2
AB,69 V166 1 −1/5 −53/50 −1

U2
AB,70 V140 1 −69/100 63/100 9/100

U2
AB,71 V174 1 −41/1000 −133/100 −1

Table 3.6: Continuation of Table 3.5.

4 Proof of Theorem 1.7

In this section we present the proof of Theorem 1.7. The procedure is the same as used in the

previous section. In Subsection 4.1 we obtain all the topologically potential phase portraits

possessing the saddle-nodes sn(2) and (1
1)SN (we have 45 phase portraits) and we prove that

five of them are impossible. In Subsection 4.2 we show the realization of each one of the

remaining 40 phase portraits.

4.1 The topologically potential phase portraits

The main goal of this subsection is to obtain all the topologically potential phase portraits

from the set (AC).

As we said before, inside the set (AC), the unstable objects of codimension two∗ that we are

considering in this paper belong to the set of saddle-nodes
{

sn(2)+(
1
1)SN

}
. Considering all

the different ways of obtaining phase portraits belonging to the set (AC) of codimension two∗,

we have to consider all the possible ways of coalescing specific singular points in both sets (A)

and (C). However, as the sets (AC) and (CA) are the same (i.e. their elements are obtained

independently of the order of evolution in elements of the sets (A) or (C)), it is necessary to

consider only all the possible ways of obtaining an infinite saddle-node of type (1
1)SN in each

element from the set (A) (phase portraits possessing a finite saddle-node sn(2)). Anyway, in

order to make things clear, in page 77 we discuss briefly how should we perform if we start

by considering the set (C).

In order to obtain phase portraits from the set (AC) by starting our study from the set (A),

we have to consider Theorem 2.9 and also Lemma 3.26 from [6] (regarding phase portraits

from the set (C)) which we state as follows.

Lemma 4.1. Assume that a codimension one∗ polynomial vector field X has an infinite singular point

p being a saddle-node of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)p 6= 0 and second eigenvalue

equal to zero.

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce a struc-

turally stable system (with one infinite saddle and one finite node, or vice versa) or a system

topologically equivalent to X.

(b) Both possibilities of structurally stable systems are realizable.

(c) If the saddle-node is the only unstable object in the region of definition and we consider the

perturbation which leaves a saddle and a node in a small neighborhood, then the node is ω-limit

or α-limit (depending on its stability) of at least one of the separatrices of the saddle.

(d) In the case that after bifurcation the node remains at infinity and the saddle moves to the finite

plane, then the separatrices of this new saddle have their α- and ω-limits fixed according to next

rule:
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(1) The separatrix γ that corresponds to the one of the saddle-node different from the infinity

line must maintain the same α- or ω-limit set.

(2) The separatrix (belonging to the same eigenspace of γ) which appears after bifurcation must

go to the node that remains at infinity, and this will be the only separatrix which can arrive

to this node in this side of the infinity.

(3) The two separatrices which were the infinite line in the unstable phase portrait, and that now

are two separatrices of the saddle drawn on the finite plane, must end at the same infinite

node where they ended before the bifurcation (if a node was adjacent to the saddle-node) or

in the same α- or ω-limit point of the finite separatrix of the adjacent infinite saddle. In

case that the saddle-node is the only infinite singular point, then both separatrices go to the

symmetric point which will remain as a node.

Here we consider all 69 realizable structurally unstable quadratic vector fields of codimen-

sion one∗ from the set (A). In order to obtain a phase portrait of codimension two∗ belonging

to the set (AC) starting from a phase portrait of codimension one∗ of the set (A), we keep the

existing finite saddle-node and using Lemma 4.1 we build an infinite saddle-node of type

(1
1)SN by the coalescence of a finite node (respectively, finite saddle) with an infinite saddle

(respectively, infinite node). As we said before, we point out that the finite singularity that

coalesces with an infinite singularity cannot be the finite saddle-node since then what we

would obtain at infinity would not be a saddle-node of type (1
1)SN but a multiplicity three

singularity. Even though this is also a codimension two∗ case and somehow can be considered

inside the set (AC), we have preferred to put it into the set (CC) where two possibilities will

be needed to be studied: either two finite singularities coalescing with different infinite singu-

larities, or two finite singularities coalescing with the same infinite singularity. On the other

hand, from the phase portraits of codimension two∗ from the set (AC), one can obtain phase

portraits of codimension one∗ also belonging to the set (A) after perturbation by splitting the

infinite saddle-node (1
1)SN into a finite saddle (respectively, finite node) and an infinite node

(respectively, infinite saddle). More precisely, after bifurcation the point that has arrived to

infinity remains there with the same local behavior, and the one which was at infinity moves

into the real plane at the other side of the infinity line.

As in the previous section, in what follows we denote by U2
AC,k, where U2

AC stands for

structurally unstable quadratic vector field of codimension two∗ from the set (AC) and k ∈

{1, . . . , 40}. The impossible phase portraits will be denoted by U
2,I
AC,j, where U

2,I
AC stands for

Impossible of codimension two∗ from the set (AC) and j ∈ N.

We point out that in this study we do not present phase portraits which are topologically

equivalent to phase portraits already obtained. Additionally, as we explained clearly about

how we obtain an infinite saddle-node of type (1
1)SN from a phase portrait from the set (A),

we will not mention anything about why we do not have no more possibilities (of obtaining

an infinite saddle-node of type(1
1)SN) beyond those ones that we will present.

Phase portrait U1
A,1 cannot have a phase portrait possessing an infinite saddle-node of type

(1
1)SN as an evolution, since U1

A,1 has only the finite saddle-node sn(2) and only the infinite

node.

Phase portrait U1
A,2 has phase portrait U2

AC,1 as an evolution (see Figure 4.1). After bifur-

cation we get phase portrait U1
A,11 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,3 has phase portrait U2

AC,2 as an evolution (see Figure 4.2). After bifur-
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U1
A,2 U2

AC,1 U1
A,11

Figure 4.1: Unstable system U2
AC,1.

cation we get phase portrait U1
A,12 by splitting the infinite saddle-node (1

1)SN.

U1
A,3 U2

AC,2 U1
A,12

Figure 4.2: Unstable system U2
AC,2.

Phase portrait U1
A,4 cannot have a phase portrait possessing an infinite saddle-node of type

(1
1)SN as an evolution. In fact, such a phase portrait possesses only an infinite node which

receives four separatrices from finite singularities. Then by item (d)−(2) of Lemma 4.1 the

finite saddle cannot reach the infinite node. We point out that this same situation happens in

many other phase portraits, such as in U1
A,5 to U1

A,8. Because it is quite simple to detect this

phenomena, when we deal again with this situation we will skip all the details.

Phase portrait U1
A,9 has phase portrait U2

AC,3 as an evolution (see Figure 4.3). After bifur-

cation we get phase portrait U1
A,11 by splitting the infinite saddle-node (1

1)SN.

U1
A,9 U2

AC,3 U1
A,11

Figure 4.3: Unstable system U2
AC,3.

Phase portrait U1
A,10 has phase portrait U2

AC,4 as an evolution (see Figure 4.4). After bifur-

cation we get phase portrait U1
A,13 by splitting the infinite saddle-node (1

1)SN.

U1
A,10 U2

AC,4 U1
A,13

Figure 4.4: Unstable system U2
AC,4.



Topological classification of the sets (AB) and (AC) 67

It is quite common that a given phase portrait of a certain codimension K be an unfolding

of topologically distinct phase portraits of codimension K + 1 (modulo limit cycles). This situ-

ation appears in this study. In the first column of Table 4.1 we present the phase portrait of the

set (A), in the second column we indicate the corresponding phase portrait belonging to the

set (AC), and in the third column we show the respective phase portrait after bifurcation. We

point out that it is not necessary to present any explanation for the phase portraits present in

the first column, since their corresponding elements from the third column already appeared

and were explained before.

phase portrait from phase portrait from phase portrait from

the set (A) the set (AC) the set (A)

U1
A,11

U2
AC,1 U1

A,2

U2
AC,3 U1

A,9

U1
A,12 U2

AC,2 U1
A,3

U1
A,13 U2

AC,4 U1
A,10

Table 4.1: Phase portraits from the set (AC) obtained from evolution of some

elements of the set (A).

Phase portrait U1
A,14 has phase portrait U2

AC,5 as an evolution (see Figure 4.5). After bifur-

cation we get phase portrait U1
A,55 by splitting the infinite saddle-node(1

1)SN.

U1
A,14 U2

AC,5 U1
A,55

Figure 4.5: Unstable system U2
AC,5.

Phase portrait U1
A,15 has phase portraits U2

AC,6 and U2
AC,7 as evolution (see Figure 4.6).

After bifurcation we get phase portraits U1
A,32 and U1

A,53, respectively, by splitting the infinite

saddle-node(1
1)SN.

Phase portrait U1
A,16 has phase portraits U2

AC,8, U2
AC,9, and U2

AC,10 as evolution (see Figure

4.7). After bifurcation we get phase portraits U1
A,33, U1

A,52, and U1
A,54, respectively, by splitting

the infinite saddle-node (1
1)SN.

Phase portrait U1
A,17 has phase portraits U2

AC,11, U2
AC,12, and U2

AC,13 as evolution (see Fig-

ure 4.8). After bifurcation we get phase portraits U1
A,35, U1

A,41, and U1
A,42, respectively, by

splitting the infinite saddle-node (1
1)SN.

Phase portrait U1
A,18 has phase portraits U2

AC,14, U2
AC,15, and U2

AC,16 as evolution (see Fig-

ure 4.9). After bifurcation we get phase portraits U1
A,25, U1

A,27, and U1
A,45, respectively, by

splitting the infinite saddle-node (1
1)SN.

Phase portraits U1
A,19, U1

A,20, and U1
A,21 cannot have a phase portrait possessing an infinite

saddle-node of type (1
1)SN as an evolution since each one of them has only the finite saddle-

node sn(2).
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U1
A,15

U2
AC,6 U1

A,32

U2
AC,7 U1

A,53

Figure 4.6: Unstable systems U2
AC,6 and U2

AC,7.

U1
A,16

U2
AC,8 U1

A,33

U2
AC,9 U1

A,52

U2
AC,10 U1

A,54

Figure 4.7: Unstable systems U2
AC,8, U2

AC,9, and U2
AC,10.

Phase portrait U1
A,22 has phase portrait U2

AC,17 as an evolution (see Figure 4.10). After

bifurcation we get phase portrait U1
A,65 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,23 has phase portrait U2

AC,18 as an evolution (see Figure 4.11). After

bifurcation we get phase portrait U1
A,66 by splitting the infinite saddle-node(1

1)SN.

Phase portrait U1
A,24 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution since the finite saddle cannot reach the infinite node (by item

(d)−(2) of Lemma 4.1) and the finite node cannot reach the infinite saddle (because this

elemental antisaddle is surrounded by the separatrices of the finite saddle).

Phase portrait U1
A,25 has three phase portraits as evolution.

1. U2
AC,19, see Figure 4.12, and after bifurcation we get phase portrait U1

A,56;

2. U2
AC,14, and its study was done when we spoke about U1

A,18;
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U1
A,17

U2
AC,11 U1

A,35

U2
AC,12 U1

A,41

U2
AC,13 U1

A,42

Figure 4.8: Unstable systems U2
AC,11, U2

AC,12, and U2
AC,13.

U1
A,18

U2
AC,14 U1

A,25

U2
AC,15 U1

A,27

U2
AC,16 U1

A,45

Figure 4.9: Unstable systems U2
AC,14, U2

AC,15, and U2
AC,16.

3. impossible phase portrait U
2,I
AC,1. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original finite saddle-node into a saddle and a node we obtain

the impossible phase portrait U
1,I
C,8 of codimension one∗, see Figure 4.13. We point out

that, in the set (A), the corresponding unfolding of U
2,I
AC,1 does not exist, since if such a

phase portrait does exist, it would be an evolution of the impossible phase portrait I12,3

(see Figure 4.4 from [6]), which contradicts Theorem 2.11.
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U1
A,22 U2

AC,17 U1
A,65

Figure 4.10: Unstable system U2
AC,17.

U1
A,23 U2

AC,18 U1
A,66

Figure 4.11: Unstable system U2
AC,18.

U1
A,25

U2
AC,19 U1

A,56

Figure 4.12: Unstable system U2
AC,19.

U1
A,25 U

2,I
AC,1 U

1,I
C,8

Figure 4.13: Impossible unstable phase portrait U
2,I
AC,1.

Phase portrait U1
A,26 has phase portrait U2

AC,20 as an evolution (see Figure 4.14). After

bifurcation we get phase portrait U1
A,67 by splitting the infinite saddle-node(1

1)SN.

U1
A,26 U2

AC,20 U1
A,67

Figure 4.14: Unstable system U2
AC,20.

Phase portrait U1
A,27 has phase portraits U2

AC,21 and U2
AC,22 as evolution (see Figure 4.15).

After bifurcation we get phase portraits U1
A,56 and U1

A,60, respectively, by splitting the infinite
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saddle-node (1
1)SN. Moreover, U1

A,27 also has U2
AC,15 as an evolution, and this last one was

mentioned before during the study of U1
A,18.

U1
A,27

U2
AC,21 U1

A,56

U2
AC,22 U1

A,60

Figure 4.15: Unstable systems U2
AC,21 and U2

AC,22.

Phase portrait U1
A,28 has phase portraits U2

AC,23 and U2
AC,24 as evolution (see Figure 4.16).

After bifurcation we get phase portraits U1
A,57 and U1

A,58, respectively, by splitting the infinite

saddle-node(1
1)SN.

U1
A,28

U2
AC,23 U1

A,57

U2
AC,24 U1

A,58

Figure 4.16: Unstable systems U2
AC,23 and U2

AC,24.

Phase portrait U1
A,29 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution since the finite saddle cannot reach the infinite node (by item

(d)−(2) of Lemma 4.1), the finite node cannot reach the infinite saddle (because this elemental

antisaddle is surrounded by the separatrices of the finite saddle) and the finite saddle-node

cannot go to infinity (as we have discussed during the analysis of U1
A,1).

Phase portrait U1
A,30 has phase portrait U2

AC,25 as an evolution (see Figure 4.17). After

bifurcation we get phase portrait U1
A,69 by splitting the infinite saddle-node (1

1)SN.

Phase portrait U1
A,31 has phase portrait U2

AC,26 as an evolution (see Figure 4.18). After

bifurcation we get phase portrait U1
A,61 by splitting the infinite saddle-node (1

1)SN.

Phase portrait U1
A,32 has phase portrait U2

AC,27 as an evolution (see Figure 4.19). After

bifurcation we get phase portrait U1
A,61 by splitting the infinite saddle-node (1

1)SN. Moreover,
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U1
A,30 U2

AC,25 U1
A,69

Figure 4.17: Unstable system U2
AC,25.

U1
A,31 U2

AC,26 U1
A,61

Figure 4.18: Unstable system U2
AC,26.

U1
A,32 also has U2

AC,6 as an evolution, and this last one was mentioned before during the study

of U1
A,15.

U1
A,32 U2

AC,27 U1
A,61

Figure 4.19: Unstable system U2
AC,27.

Phase portrait U1
A,33 has phase portrait U2

AC,8 as an evolution and this last one was men-

tioned before during the study of U1
A,16.

Phase portrait U1
A,34 cannot have a phase portrait possessing an infinite saddle-node of

type (1
1)SN as an evolution, we can conclude this fact by using the same arguments as used

for U1
A,29.

Phase portrait U1
A,35 has phase portrait U2

AC,11 as an evolution and this last one was men-

tioned before during the study of U1
A,17.

Phase portrait U1
A,36 has phase portrait U2

AC,28 as an evolution (see Figure 4.20). After

bifurcation we get phase portrait U1
A,69 by splitting the infinite saddle-node(1

1)SN.

U1
A,36 U2

AC,28 U1
A,69

Figure 4.20: Unstable system U2
AC,28.

Phase portrait U1
A,37 has phase portrait U2

AC,29 as an evolution (see Figure 4.21). After
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bifurcation we get phase portrait U1
A,70 by splitting the infinite saddle-node (1

1)SN.

U1
A,37 U2

AC,29 U1
A,70

Figure 4.21: Unstable system U2
AC,29.

Phase portrait U1
A,38 cannot have a phase portrait possessing an infinite saddle-node of

type(1
1)SN as an evolution.

Phase portrait U1
A,39 has phase portrait U2

AC,30 as an evolution (see Figure 4.22). After

bifurcation we get phase portrait U1
A,65 by splitting the infinite saddle-node (1

1)SN.

U1
A,39 U2

AC,30 U1
A,65

Figure 4.22: Unstable system U2
AC,30.

Phase portrait U1
A,40 cannot have a phase portrait possessing an infinite saddle-node of

type(1
1)SN as an evolution.

Phase portrait U1
A,41 has three phase portraits as evolution.

1. U2
AC,31, see Figure 4.23, and after bifurcation we get phase portrait U1

A,63;

U1
A,41 U2

AC,31 U1
A,63

Figure 4.23: Unstable system U2
AC,31.

2. U2
AC,12, and its study was done when we spoke about U1

A,17;

3. impossible phase portrait U
2,I
AC,2. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original finite saddle-node into a saddle and a node we obtain

the impossible phase portrait U
1,I
C,9 of codimension one∗, see Figure 4.24. We point out

that, in the set (A), the corresponding unfolding of U
2,I
AC,2 does not exist, since if such a

phase portrait does exist, it would be an evolution of the impossible phase portrait I12,2

(see Figure 4.4 from [6]), which contradicts Theorem 2.11.
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U1
A,41 U

2,I
AC,2 U

1,I
C,9

Figure 4.24: Impossible unstable phase portrait U
2,I
AC,2.

Phase portrait U1
A,42 has phase portraits U2

AC,32 and U2
AC,33 as evolution (see Figure 4.25).

After bifurcation we get phase portraits U1
A,60 and U1

A,63, respectively, by splitting the infinite

saddle-node (1
1)SN. Moreover, U1

A,42 also has U2
AC,13 as an evolution, and this last one was

mentioned before during the study of U1
A,17.

U1
A,42

U2
AC,32 U1

A,60

U2
AC,33 U1

A,63

Figure 4.25: Unstable systems U2
AC,32 and U2

AC,33.

Phase portrait U1
A,43 has phase portraits U2

AC,34 and U2
AC,35 as evolution (see Figure 4.26).

After bifurcation we get phase portraits U1
A,59 and U1

A,64, respectively, by splitting the infinite

saddle-node (1
1)SN.

U1
A,43

U2
AC,34 U1

A,59

U2
AC,35 U1

A,64

Figure 4.26: Unstable systems U2
AC,34 and U2

AC,35.

Phase portrait U1
A,44 cannot have a phase portrait possessing an infinite saddle-node of
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type(1
1)SN as an evolution.

Phase portrait U1
A,45 has phase portrait U2

AC,16 as an evolution, and this last one was

mentioned before during the study of U1
A,18.

Phase portraits U1
A,46 to U1

A,48 and also U1
A,50 cannot have a phase portrait possessing an

infinite saddle-node of type (1
1)SN as an evolution.

Phase portrait U1
A,51 has phase portrait U2

AC,36 as an evolution (see Figure 4.27). After

bifurcation we get phase portrait U1
A,67 by splitting the infinite saddle-node (1

1)SN.

U1
A,51 U2

AC,36 U1
A,67

Figure 4.27: Unstable system U2
AC,36.

Phase portrait U1
A,52 has phase portrait U2

AC,37 as an evolution (see Figure 4.28). After

bifurcation we get phase portrait U1
A,68, by splitting the infinite saddle-node(1

1)SN. Moreover,

U1
A,52 also has U2

AC,9 as an evolution, and this last one was mentioned before during the study

of U1
A,16.

U1
A,52 U2

AC,37 U1
A,68

Figure 4.28: Unstable system U2
AC,37.

Phase portrait U1
A,53 has phase portrait U2

AC,7 as an evolution, and this last one was men-

tioned before during the study of U1
A,15.

Phase portrait U1
A,54 has phase portrait U2

AC,38 as an evolution (see Figure 4.29). After

bifurcation we get phase portrait U1
A,68, by splitting the infinite saddle-node(1

1)SN. Moreover,

U1
A,54 also has U2

AC,10 as an evolution, and this last one was mentioned before during the

study of U1
A,16.

U1
A,54 U2

AC,38 U1
A,68

Figure 4.29: Unstable system U2
AC,38.

Phase portrait U1
A,55 has phase portraits U2

AC,39 and U2
AC,40 as evolution (see Figure 4.30).

After bifurcation we get phase portraits U1
A,61 and U1

A,62, respectively, by splitting the infinite
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saddle-node (1
1)SN. Moreover, U1

A,55 also has U2
AC,5 as an evolution, and this last one was

mentioned before during the study of U1
A,14.

U1
A,55

U2
AC,39 U1

A,61

U2
AC,40 U1

A,62

Figure 4.30: Unstable systems U2
AC,39 and U2

AC,40.

Phase portrait U1
A,56 has phase portraits U2

AC,19 and U2
AC,21 as evolution. These two phase

portraits were obtained during the study of U1
A,25 and U1

A,27, respectively.

Phase portrait U1
A,57 has phase portrait U2

AC,23 as an evolution and this last one was ob-

tained during the study of U1
A,28.

Phase portrait U1
A,58 has phase portrait U2

AC,24 as an evolution and this last one was ob-

tained during the study of U1
A,28. Moreover, U1

A,58 has a second phase portrait which is

topologically equivalent to U2
AC,24.

Phase portrait U1
A,59 has phase portrait U2

AC,34 as an evolution and this last one was ob-

tained during the study of U1
A,43. Moreover, U1

A,59 has the impossible phase portrait U
2,I
AC,3

as an evolution. By Theorem 2.11 such a phase portrait is impossible because by splitting the

obtained infinite saddle-node (1
1)SN into a finite saddle and an infinite node we obtain the

impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.31. We observe that, in the

set (C), U
2,I
AC,3 unfolds in U1

C,17 (modulo limit cycles).

U1
A,59 U

2,I
AC,3 U

1,I
A,104

Figure 4.31: Impossible unstable phase portrait U
2,I
AC,3.

In the first column of Table 4.2 we present the remaining phase portraits of the set (A),

in the second column we indicate its corresponding phase portrait belonging to the set (AC),

and in the third column we show the corresponding phase portrait after bifurcation. We point

out that it is not necessary to present any explanation for the phase portraits present in the

first column, since their corresponding elements from the third column already appeared and

were explained before.

Therefore, we have just finished obtaining all the 40 topologically potential phase portraits

of codimension two∗ from the set (AC) presented in Figures 1.4 and 1.5.



Topological classification of the sets (AB) and (AC) 77

phase portrait from phase portrait from phase portrait from

the set (A) the set (AC) the set (A)

U1
A,60

U2
AC,22 U1

A,27

U2
AC,32 U1

A,42

U1
A,61

U2
AC,26 U1

A,31

U2
AC,27 U1

A,32

U2
AC,39 U1

A,55

U1
A,62 U2

AC,40 U1
A,55

U1
A,63

U2
AC,31 U1

A,41

U2
AC,33 U1

A,42

U1
A,64 U2

AC,35 U1
A,43

U1
A,65

U2
AC,17 U1

A,22

U2
AC,30 U1

A,39

U1
A,66 U2

AC,18 U1
A,23

U1
A,67

U2
AC,20 U1

A,26

U2
AC,36 U1

A,51

U1
A,68

U2
AC,37 U1

A,52

U2
AC,38 U1

A,54

U1
A,69

U2
AC,25 U1

A,30

U2
AC,28 U1

A,36

U1
A,70 U2

AC,29 U1
A,37

Table 4.2: Phase portraits from the set (AC) obtained from evolution of some

elements of the set (A).

Now we explain how one can obtain these 40 phase portraits by starting the study from

the set (C). Let us consider all the 32 realizable structurally unstable quadratic vector fields

of codimension one∗ from the set (C). In order to obtain a phase portrait of codimension two∗

belonging to the set (AC) starting from a phase portrait of codimension one∗ of the set (C), we

keep the existing infinite saddle-node(1
1)SN and by using Theorem 2.6 we build a finite saddle-

node sn(2) by the coalescence of a finite node with a finite saddle. On the other hand, from

the phase portraits of codimension two∗ from the set (AC), there exist two ways of obtaining

phase portraits of codimension one∗ also belonging to the set (C) after perturbation: splitting

sn(2) into a saddle and a node, or moving it to complex singularities (remember Remark 3.2).

According to these facts, if a phase portrait possesses only a finite saddle-node, as U1
C,1

for instance, it is not possible to obtain a phase portrait from it which belongs to the set (AC).

Moreover, in some cases when one makes the finite saddle-node disappear, it is possible to

find a phase portrait possessing a limit cycle, as happens for instance with phase portrait U1
C,3

(see Figure 4.32). In such a figure we present the two potential phase portraits which can

be obtained by forming a finite saddle-node and then by making it disappear. Indeed, phase

portrait U1
C,3 has phase portraits U2

AC,3 and U2
AC,4 as evolution, respectively, by the coalescence

of the finite saddle with each one of the two finite nodes. After bifurcation, by making the

finite saddle-node disappear, from U2
AC,3 we get U1

C,1 and from U2
AC,4 we obtain U1

C,1, being

this last one with a limit cycle. However, as our classification of phase portraits is always done

modulo limit cycles we simply say that in this case from U2
AC,4 we have U1

C,1. This situation
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also happens when we perform analogous studies of phase portraits U1
C,20, U1

C,24, and U1
C,31,

as we will see in the sequence.

U1
C,3

U2
AC,3

U2
AC,4 U1

C,1

U1
C,1

Figure 4.32: Unstable systems U2
AC,3 and U2

AC,4 from phase portrait U1
C,3.

The main goal of this section is to obtain all the topologically potential phase portraits from

the set (AC) and then prove their realization or show that they are not possible. So we have to

be sure that no other phase portrait can be found if one does some evolution in all elements

of the set (C) in order to obtain a phase portrait belonging to the set (AC). We point out that

we have done this verification, i.e. we have also considered each element from the set (C) and

produced a coalescence (when it was possible) of a finite node with a finite saddle and we

also have obtained the 40 topologically potential phase portraits of codimension two∗ from the

set (AC) presented in Figures 1.4 and 1.5. Moreover, doing this verification we have not found

the impossible phase portraits U
2,I
AC,1 and U

2,I
AC,2 (this was expected since the corresponding

unfoldings of codimension one∗ are impossible in the set (C)). In Table 4.3 we present the

study of phase portraits U1
C,2 to U1

C,19. In the first column of the mentioned table we present

the phase portrait of the set (C), in the second column we indicate its corresponding phase

portrait belonging to the set (AC) i.e. after producing a finite saddle-node sn(2), and in the

third column we show the corresponding phase portrait after we make this finite saddle-node

sn(2) disappear. Note that the sequence of indexes in the first column is not consecutive since

in some phase portraits from the set (C) it is not possible to produce a finite saddle-node sn(2)

and then it is not possible to obtain a phase portrait belonging to the set (AC).

Phase portrait U1
C,20 has phase portraits U2

AC,32 and U2
AC,34 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,20 also has a phase portrait

which is topologically equivalent to impossible phase portrait U
2,I
AC,3, obtained before during

the study of phase portrait U
1,I
A,59. Again, by Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into a finite saddle and an infinite

node we obtain the impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.33. Also,

in the set (C), U
2,I
AC,3 unfolds in U1

C,17 (modulo limit cycles).

Phase portrait U1
C,21 has phase portraits U2

AC,22 and U2
AC,24 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
C,22 has phase portraits U2

AC,40 and U2
AC,39 as evolution. After bifurcation

we get phase portraits U1
C,15 and U1

C,17, respectively, by making the finite saddle-node sn(2)
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phase portrait from phase portrait from phase portrait from

the set (C) the set (AC) the set (C)

U1
C,2

U2
AC,1 U1

C,1
U2

AC,2

U1
C,3

U2
AC,3 U1

C,1
U2

AC,4

U1
C,5 U2

AC,14 U1
C,4

U1
C,6 U2

AC,15 U1
C,4

U1
C,7

U2
AC,6 U1

C,4
U2

AC,8

U1
C,8 U2

AC,11 U1
C,4

U1
C,9 U2

AC,12 U1
C,4

U1
C,10 U2

AC,13 U1
C,4

U1
C,11 U2

AC,16 U1
C,4

U1
C,12

U2
AC,7 U1

C,4
U2

AC,9

U1
C,13 U2

AC,10 U1
C,4

U1
C,14 U2

AC,5 U1
C,4

U1
C,18

U2
AC,21 U1

C,15
U2

AC,23

U1
C,19 U2

AC,19 U1
C,15

Table 4.3: Phase portraits from the set (AC) obtained from evolution of elements

of the set (C).

U1
C,20 U

2,I
AC,3 U

1,I
A,104

Figure 4.33: Impossible unstable phase portrait U
2,I
AC,3 (see again Figure 4.31).

disappear.

Phase portrait U1
C,23 has phase portraits U2

AC,26 and U2
AC,27 as evolution. After bifurcation

we get phase portrait U1
C,17 for both cases, by making the finite saddle-node sn(2) disappear.

Phase portrait U1
C,24 has phase portraits U2

AC,33 and U2
AC,35 as evolution. After bifurcation

we get phase portrait U1
C,15 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,24 also has the impossible

phase portrait U
2,I
AC,4 as an evolution. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into a finite saddle and an infinite

node we obtain the impossible phase portrait U
1,I
A,104 of codimension one∗, see Figure 4.34. We

observe that, in the set (C), U
2,I
AC,4 unfolds in U1

C,15 (modulo limit cycles).

In Table 4.4 we present the study of phase portraits U1
C,25 to U1

C,30 and we follow the same
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U1
C,24 U

2,I
AC,4 U

1,I
A,104

Figure 4.34: Impossible unstable phase portrait U
2,I
AC,4.

pattern used in Table 4.3.

phase portrait from phase portrait from phase portrait from

the set (C) the set (AC) the set (C)

U1
C,25 U2

AC,31 U1
C,15

U1
C,26

U2
AC,17 U1

C,16
U2

AC,18

U1
C,27 U2

AC,30 U1
C,16

U1
C,28 U2

AC,38 U1
C,15

U1
C,29 U2

AC,20 U1
C,16

U1
C,30

U2
AC,37 U1

C,15

U2
AC,36 U1

C,16

Table 4.4: Phase portraits from the set (AC) obtained from evolution of elements

of the set (C).

Phase portrait U1
C,31 has phase portraits U2

AC,28 and U2
AC,29 as evolution. After bifurcation

we get phase portrait U1
C,16 for both cases (being one of them modulo limit cycles), by making

the finite saddle-node sn(2) disappear. Moreover, phase portrait U1
C,31 also has the impossible

phase portrait U
2,I
AC,5 as an evolution. By Theorem 2.11 such a phase portrait is impossible

because by splitting the original infinite saddle-node(1
1)SN into an infinite saddle and a finite

node we obtain the impossible phase portrait U
1,I
A,106 of codimension one∗, see Figure 4.35. We

observe that, in the set (C), U
2,I
AC,5 unfolds in U1

C,16 (modulo limit cycles).

U1
C,31 U

2,I
AC,5 U

1,I
A,106

Figure 4.35: Impossible unstable phase portrait U
2,I
AC,5.

4.2 The realization of the potential phase portraits

In the previous subsection we have produced all the 42 topologically potential phase portraits

for structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AC).
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And from them, we have already discarded two which are not realizable due to their respective

unfoldings of codimension one∗ being impossible.

In this subsection we aim to give specific examples for the 40 different topological classes

of structurally unstable quadratic systems of codimension two∗ belonging to the set ∑
2
2(AC)

and presented in Figures 1.4 and 1.5. As in the previous section (see page 61), we point out

that we have found examples with no evidence of limit cycles, but we have not proved the

absence of infinitesimal ones.

In [10] the authors classified, with respect to a specific normal form, the set of all real

quadratic polynomial differential systems with a finite semi-elemental saddle-node sn(2) lo-

cated at the origin of the plane and an infinite saddle-node of type (1
1)SN obtained by the

coalescence of a finite antisaddle (respectively, finite saddle) with an infinite saddle (respec-

tively, infinite node).

As we have discussed in the previous section, the study of a bifurcation diagram of a

certain family of quadratic systems, produces not only the class of phase portraits looked

for, but also all those of their closure according to the normal form used. Even though the

study is mainly algebraic, often, also analytic and numerical tools are required. This makes

that these studies may be not complete and subject to the existence of possible “islands”

which contain an undetected phase portrait. The border of that “island” could mean the

connection of two separatrices, and the interior contain a different phase portrait from the

ones stated in the theorem. The topological study that we do in this paper solves partially

this problem, since we prove that all the realizable phase portraits of class (AC) do really

exist, and no other topological possibility does. However, the possible existence of “islands”

in the bifurcation diagram still persists since they can be related with double limit cycles, as

discussed in Section 6 of [10].

By using the phase portraits of generic regions of the bifurcation diagram of the mentioned

paper we realize all the 40 unstable systems of codimension two∗ of the set (AC), i.e. we can

give concrete examples of all structurally unstable phase portraits from the set (AC).

Consider systems (2.4). Such a normal form was studied in [10] and it describes quadratic

polynomial differential systems which have a finite semi-elemental saddle-node sn(2), a finite

elemental singularity and an infinite saddle-node of type (1
1)SN.

In Tables 4.5 and 4.6 we present one representative from each generic region of the bifur-

cation diagram of [10] corresponding to each phase portrait of codimension two∗ from the set

(AC) and, therefore, we conclude the proof of Theorem 1.7.



82 J. C. Artés, M. C. Mota and A. C. Rezende

Cod 2∗ [10] c e h m

U2
AC,1 V38 −10 30 1 4

U2
AC,2 V1 6 81/2 1 4

U2
AC,3 V33 −7 5/2 1 4

U2
AC,4 V53 2 47/50 1 37/100

U2
AC,5 V13 −1 −10 1 4

U2
AC,6 V4 7 15 1 4

U2
AC,7 V21 −9/4 −10 1 4

U2
AC,8 V92 −3 7/2 1 −6/5

U2
AC,9 V10 1/2 −11/2 1 4

U2
AC,10 V63 −2/5 1/50 1 −1/4

U2
AC,11 V95 −3 31/10 1 −6/5

U2
AC,12 V73 −19/10 17/20 1 −3/4

U2
AC,13 V8 3/2 −9/2 1 4

U2
AC,14 V93 −1 11/10 1 −6/5

U2
AC,15 V6 24/5 −4/5 1 4

U2
AC,16 V68 −3 2/5 1 −1/4

U2
AC,17 V39 −25 30 1 4

U2
AC,18 V3 45/2 98 1 4

U2
AC,19 V62 −1/40 1/50 1 −1/4

U2
AC,20 V80 −6/5 1207/1000 1 −1

U2
AC,21 V81 29/50 −3/5 1 −6/5

U2
AC,22 V36 −1 4 1 4

U2
AC,23 V23 −9/2 −17 1 4

U2
AC,24 V112 1/2 42 1 −10

U2
AC,25 V77 −5/4 629/500 1 −49/50

U2
AC,26 V90 −9/5 881/400 1 −6/5

U2
AC,27 V2 1 7 1 4

U2
AC,28 V35 −1747/50 30 1 4

U2
AC,29 V49 10 5156/625 1 51/100

U2
AC,30 V65 −23/50 1151/10000 1 −1/4

U2
AC,31 V59 −1/50 1/40 1 −1/4

U2
AC,32 V29 −3/2 1/2 1 4

U2
AC,33 V82 1341/2000 −3/5 1 −6/5

U2
AC,34 V102 1/100 31/10 1 −5/2

Table 4.5: Correspondence between codimension two∗ phase portraits of the set

(AC) and phase portraits from Figures 1 and 2 in [10]. In the first column we

present the codimension two∗ phase portraits from the set (AC) in the present

paper, in the second column we show the corresponding phase portraits from

Figures 1 and 2 in [10] given by normal form (2.4), and in the other columns we

present the values of the parameters c, e, h, and m of (2.4) which realizes such

phase portrait.
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Cod 2∗ [10] c e h m

U2
AC,35 V26 −687/50 −17 1 4

U2
AC,36 V20 −21/10 −41/5 1 4

U2
AC,37 V51 10 151/20 1 3/4

U2
AC,38 V71 −1/10000 3/125 1 −1/4

U2
AC,39 V14 −3/2 −4 1 4

U2
AC,40 V55 1/100 1/100 1 −1/4

Table 4.6: Continuation of Table 4.5.

5 Graphics and limit cycles

Even though the goal of this paper deals little with graphics and limit cycles, there is no doubt

that these are two of the most important elements in qualitative theory of ordinary differential

equations.

Limit cycles are the most elusive phenomena in phase portraits. They may appear either

by a bifurcation of a weak focus (Hopf bifurcation), by a bifurcation of a graphic, or by a

bifurcation of a multiple limit cycle, and only the first case can be fully algebraically controlled.

The other cases are generically nonalgebraic. In fact, weak foci can be considered among

graphics, since they can be seen as graphics reduced to a single point.

Our goal to find all the topologically different phase portraits modulo limit cycles bypasses

this big problem, but it is not an irrelevant goal. Whenever the mathematical community

finally gets the complete set of phase portraits of quadratic systems (or whatever other family),

the subset of the phase portraits modulo limit cycles will be the base for such a classification.

It is expected to obtain more than one thousand (maybe even up to 2000) different phase

portraits of quadratic systems modulo limit cycles. For quite many of them it will be trivial to

determine that they will not have limit cycles (in the case they do not have a finite antisaddle).

But for all the others, it will be necessary to determine exactly how many different phase

portraits can be obtained from that skeleton by adding limit cycles. Up to now and up to our

knowledge, there are very few nontrivial skeletons of phase portraits which could theoretically

have limit cycles, and for which the absence of limit cycles has been proved. To be more

precise, we are only completely sure of one of them, namely the structurally stable phase

portrait S
2
7,1. This phase portrait was obtained in [2] and was conjectured by statistical tools

to be incompatible with limit cycles in [4] and this conjecture was proved in [5]. Also in [4]

some other phase portraits are conjectured (by statistical data) to be incompatible with limit

cycles, but no proof is available yet. Apart from these last ones, other candidates can be found

in Class I of [37]. In that paper the authors produce three normal forms (denoted by I, II and

III) and they prove that any system with limit cycle can be transformed in an element of them.

The three classes have no intersection since they deal with the number of finite singularities

that have gone to infinity (≥ 2, 1 and 0, respectively). And in [37] it is also proved that

systems from Class I have at most one limit cycle. There is still no conclusive study of phase

portraits from Class I, but some phase portraits of this class have already been found having

one limit cycle and some others with no limit cycle (see [15, 23, 34]). For the cases with limit

cycle, it is closed the fact that such phase portraits can have at most one limit cycle, and if a

conclusive study is done and results are confirmed, the cases with no limit cycle would add

to the phase portrait S
2
7,1 as skeletons of phase portraits without limit cycles. For all other

skeletons of phase portraits found up to now, there is not a single proof determining which is
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the maximum number of limit cycles that each one may have. There are many other papers

related to the maximum number of limit cycles, but they are mostly linked to a certain normal

form. Most of them simply prove that a specific normal form may have just one limit cycle.

But this does not imply that the skeletons of phase portraits obtained in that normal form may

have more limit cycles in the entire classification.

Up to now, it is known that there are examples of phase portraits of quadratic systems with

four limit cycles distributed into two nests around two foci, more precisely, three limit cycles

in one nest and the fourth limit cycle in the other nest. And even though it is conjectured that

the effective maximum is four with the distribution just mentioned, there is still no conclusive

proof. The phase portraits for which there are examples with four limit cycles belong to three

skeletons of phase portraits, namely, the structurally stables S
2
4,1 and S

2
11,2 from [2], and the

codimension one∗ U1
B,31 from [6]. The proof that they may have at least four limit cycles appears

in several papers since they appear in classifications with a weak focus of order three, already

having a limit cycle around a strong focus.

But not even if the maximum bound was four, we would not be close to obtain all the phase

portraits of quadratic systems. Any of the three skeletons mentioned before may have the

topologically different configurations (0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 1), and (3, 1). That is,

seven different configurations. But even that is not a criterion (that is, multiply the number of

skeletons by 7) to obtain a simple upper bound for the total number of phase portraits. There

are phase portraits like S
2
5,1 from [2] which has three finite antisaddles. One of them receives

(or emits) a single separatrix, the second one receives (or emits) exactly two separatrices, and

the third one receives (or emits) exactly three separatrices. So, the fact that a limit cycle could

be surrounding any of the three antisaddles would generate a topologically different phase

portrait. And in case there were two nests of limit cycles, and assuming that they could have

up to four limit cycles, the number of cases would increase up to 25 possibilities. But from

these 25 possibilities, up to now only six have been confirmed to exist. We are collecting a

large database and recording the maximum number of limit cycles found in each one of the

skeletons classified up to now.

With all these facts we want to remark that the topological classification of phase portraits

modulo limit cycles is important since it produces a complete set of skeletons from which all

the complete set of phase portraits must be located. For each particular skeleton, it must be

studied if it contains none, one, two or up to three antisaddles around which the limit cycles

may be located. If there is a complete collection of phase portraits modulo limit cycles, and

if an upper bound of limit cycles is found, it will give a quite rough upper bound for the

number of different phase portraits. But the real number will need a deeper study case by

case. Nowadays, the moment that we could have a complete topological classification is quite

far away. However, the topological classification modulo limit cycles is within reach, although

they are not easily reachable yet.

Let us now talk about graphics. Graphics are also very important because they can become

the bifurcation edge which leads to the birth of limit cycles. There has been a lot of literature

related to graphics, and one of the most relevant papers is [19] where the authors list a set of

121 different graphics whose finite cyclicity needs to be proved in order to prove the finiteness

part of Hilbert 16th problem for quadratic systems. The graphics in this list can be of different

types. Many of them imply the connection of one (or more) couple of separatrices, finite

or infinite. Other graphics are formed simply because a separatrix arrives to the nodal part

of a saddle-node (finite or infinite) or an even more degenerate singularity in coexistence

with other properties of the phase portrait. Unfortunately, most of these graphics cannot be



Topological classification of the sets (AB) and (AC) 85

detected by means of algebraic tools. In many studies of families of systems where a complete

bifurcation is given in the parameter space, after all the algebraic bifurcations are given, the

use of continuity and coherence arguments allows the detection of some other nonalgebraic

bifurcations where these graphics appear.

Our methodical study of phase portraits of quadratic systems modulo limit cycles started

with codimension zero (structurally stable) [2] and of course these phase portraits cannot have

any graphic at all. The second step was the classification of codimension-one phase portraits

(modulo limit cycles), and in that study we could start finding some graphics, but not too

many. Precisely, we found graphic (F1
2 ) from [19] in U1

A,37, U1
A,43, U1

A,64, and U1
A,70. This

graphic is formed simply by one finite saddle-node which sends its center manifold (separa-

trix of zero eigenvalue) to its own nodal part. We also have graphic (I2
19) from [19] in U1

B,29,

U1
B,30 (twice), U1

B,33, U1
B,36, and U1

B,38. This graphic is formed by one elemental infinite sad-

dle which sends one of its separatrices to the nodal part of an infinite adjacent saddle-node

formed by the coalescence of two infinite singularities. There are no graphics in the set (C) of

codimension-one phase portraits (modulo limit cycles, see page 4). Finally, in the set (D) (see

again page 4) we found the graphics (F1
1 ), (H1

1), and (I2
1) from [19]. The first one is just a loop

of a finite elemental saddle, the second one is a separatrix connection between opposite infi-

nite elemental saddles, and the third one is a separatrix connection between adjacent infinite

elemental saddles. The loop is present in U1
D,1, U1

D,6, U1
D,7, U1

D,8, U1
D,9, U1

D,12, U1
D,19, U1

D,20,

U1
D,22, U1

D,23, U1
D,30, U1

D,31, U1
D,32, U1

D,46, U1
D,47, U1

D,48, U1
D,49, U1

D,50, U1
D,51, U1

D,52, U1
D,53, and

U1
D,54. The second graphic appears in U1

D,10 and U1
D,11. And the third one can be seen in

U1
D,28, U1

D,29, U1
D,37, U1

D,38, and U1
D,39. No other graphic from these last five may appear, since

all the remaining 116 imply higher codimension.

Thus, in our current study of phase portraits of codimension two∗ with a finite saddle-node

and an infinite saddle-node, the only graphics that we can see will be those ones which are

inherited from the respective phase portraits of codimension one∗ already having a graphic.

No new graphic may appear from the consolidation of the two different instabilities we mix

here. In the studies of the sets (AD), (BD), and (CD) we will start incorporating more graphics

from [19], since we will find, for example, saddle-nodes forming a loop instead of an elemental

saddle. Also the set (DD) will provide graphics with two separatrix connections. Anyway, the

graphics will appear in larger numbers when codimension three∗ is studied.

There is another important fact, related to stability and graphics, to comment about the

classification that we are working with. As mentioned in Section 1, in [6] it is claimed that

there are at least 204 structurally unstable phase portraits of codimension one∗ and at most 211.

Two papers have found two mistakes in that book and the newly proved numbers are 202

and 209, respectively. The seven cases that have not been found correspond to cases which

are conjectured as impossible and some arguments are given to support that conjecture. We

point out that all the seven cases conjectured impossible contain a graphic, more precisely the

polycycles (F1
2 ) or (H1

1). These phase portraits consist in an skeleton of separatrices which

depending on the stability of the focus inside the polycycle (compared to other stabilities

outside it) may lead or not to a realizable phase portrait. That is, they lead to a phase portrait

which is already known to exist, or lead to a phase portrait which (up to our knowledge)

never appeared before in any paper. The normal techniques which have allowed us to prove

the impossibility of hundreds of phase portraits are useless in these seven cases. All we can

say about these seven phase portraits is that in case they exist, some perturbations from them

would produce phase portraits with a limit cycle that we have not found anywhere. Using the

tools of perturbations related to stability that we use in this paper, we may claim that if one of
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those phase portraits with a limit cycle could be proven impossible, then the related unstable

phase portrait with a polycycle would be also impossible. However, the opposite is not true.

If the phase portrait with a limit cycle does exist, it is not sure that the related unstable phase

portrait with a polycycle may exist. There is the possibility that by means of a rotated vector

field one could pass from one to the other, but it is not guaranteed.

So, we see once more the importance of graphics and limit cycles in the classification of

phase portraits. The fact that we talk so little about limit cycles is simply because we want

to do the classification modulo limit cycles in order to have a good base upon which we or

others may add the limit cycles. And the fact that we talk so little about graphics is because at

the level of codimension that we are in this stage, there appear very few of the 121 graphics

described in [19].
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Abstract. We consider an autonomous system admitting an invariant manifold M.
The following questions are discussed: (i) what are the conditions ensuring exponential
stability of the invariant manifold? (ii) does every motion attracting by M tend to some
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classical Lyapunov–Perron method of integral equations.
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1 Introduction

It is well known that, under quite general conditions, motions of dissipative dynamical system

evolve towards attracting invariant sets. One may reasonably expect that the behavior of sys-

tem on attracting set adequately displays main asymptotic properties of system motions in the

whole phase space. It is important to note that in many cases the dimension of attracting set

such as, e.g., fixed point, limit cycle, invariant torus, strange or chaotic attractor, is essentially

lower than the dimension of the total phase space. This circumstance can help us to simplify

the qualitative analysis of the system under consideration.

Nevertheless we should keep in mind that there are cases where no motion starting outside

the attracting invariant set exhibits the same long time behavior as a motion on the set. As an

BCorresponding author. Email: ioparasyuk@gmail.com
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example, consider the polynomial planar system

ẋ = x(1 − x2 − y2)3 − y(1 + x2 + y2),

ẏ = x(1 + x2 + y2) + y(1 − x2 − y2)3

which in polar coordinates
(

ϕ
∣

∣mod2π, r
)

takes the form

ϕ̇ = 1 + r2,

ṙ = r
(

1 − r2
)

3.

The limit cycle of the system given by r = 1 attracts all the orbits except the equilibrium

(0, 0). Let ϕ(t; ϕ0, r0) be the ϕ-coordinate of the motion starting at point (r0 cos ϕ0, r0 sin ϕ0).

Obviously, ϕ(t; ϕ∗, 1) = 2t + ϕ∗, but if r0 6∈ {0, 1}, then it is not hard to show that

lim
t→∞

|ϕ(t; ϕ0, r0)− ϕ(t; ϕ∗, 1)| = ∞ ∀ {ϕ0, ϕ∗} ⊂ [0, 2π),

meaning that there is no motion starting outside the cycle and asymptotic to a motion on

the cycle (for another examples with non-polynomial planar systems we refer the reader to

[11, 14]).

Let
{

χt(·) : M 7→ M
}

t∈R
(resp.

{

χt(·) : M 7→ M
}

t∈Z
) be a flow (resp. a cascade) on a met-

ric space M with metric ̺(·, ·), and let there exists a χt-invariant set A ⊂ M. It is said that a

motion t 7→ χt(x) attracted by A has an asymptotic phase if there exists z ∈ A such that

̺
(

χt(x), χt(z)
)

→ 0, t → ∞.

The following problem arises: what are the conditions ensuring the existence of asymptotic

phase? The answer to this problem is rather important, especially in the case where A is an

attractor with a basin B. In fact, the existence of asymptotic phase for every x ∈ B guarantees

that the flow restricted to attractor A faithfully describes the long-time behavior of the motions

starting in B.

The above problem was studied in a series of papers. The most complete examination

concerns the case where the attracting set is a closed orbit [7, 11, 12, 14, 19, 31]. For more

general situation, it is known that if A is an isolated compact invariant hyperbolic set of a

cascade, then every motion which is asymptotic to such a set has an asymptotic phase [21,26].

N. Fenichel [16] established the existence and uniqueness of asymptotic phase for a cascade

possessing exponentially stable overflowing invariant manifold with, so-called, expanding

structure. A. M. Samojlenko [28] and W. A. Coppel [13] studied the problem for the case of

exponentially stable invariant torus. B. Aulbach [4] proved the existence of asymptotic phase

for motions approaching a normally hyperbolic invariant manifold under assumption that the

latter carries a parallel flow. In [8], A. A. Bogolyubov and Yu. A. Il’in established the existence

of asymptotic phase for non-exponentially stable invariant torus under some quite restrictive

hypotheses concerning the corresponding system (however the authors do not use the notion

of asymptotic phase explicitly).

As was pointed out in [4, 10], standard conditions ensuring the existence of asymptotic

phases for motions approaching an invariant set A, involve the requirement that the expo-

nential rate of contraction in the normal to A direction is greater than that along A (see,

e.g., [6, 16, 28]). Analogous conditions usually appear in the perturbation theory of invariant

manifolds (see, e.g. [15, 17, 23, 27, 29] and references therein).
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One of the main goals of the present paper is to show that the aforementioned requirement

can be weakened in the presence of more accurate information about the character of the

flow within the invariant manifold. We consider an autonomous system in Rn admitting an

invariant manifold M satisfying the following condition of partial hyperbolicity in the broad

sense [9, 20]: the tangent co-cycle generated by the associated linearized system (system in

variations) splits the tangent bundle TM into a Whitney sum of two invariant sub-bundles

Vs and V⋆ such that the maximal Lyapunov exponent corresponding to Vs does not exceed

some negative number −ν, while the minimal Lyapunov exponent corresponding to V⋆ is

not less then −σ ∈ (−ν, 0). (In an important particular case, where the restriction of the

flow on M is an Anosov type dynamical system, the tangent bundle splits into Whitney sum

TM = Vs ⊕ Vc ⊕ Vu of invariant sub-bundles: stable Vs, center Vc, and unstable Vu. Then

V⋆ = Vc ⊕ Vu and one can consider that σ = 0.)

It should be stressed that a priori we do not require that M is a partially hyperbolic set

as a subset of the whole space Rn, in particular, the Whitney sum of Vs and normal bundle

of M need not be invariant. Nevertheless, we prove that if the decay rate of solutions of

linearized system in normal to M direction is characterized by a Lyapunov exponent −γ < 0,

then the inequality λ := min {ν, γ} > σ guarantees both the partial hyperbolicity of M and

the existence of asymptotic phase for all motions starting in a neighborhood of M. Thus, we

need not require any additional inequalities involving ν and γ, meaning that our result cover

the case ν > γ which, to our knowledge, was excluded in preceding papers concerning the

asymptotic phase.

If there holds the inequality ν ≥ γ, then in contrast to [16], we cannot be sure that the

asymptotic phase is unique. The reason lies in the geometrical structure of a neighborhood of

M. Namely, let W (z) be the stable manifold for a point z ∈ M [26, p. 88] (i.e. W (z) is the

set of points x ∈ Rn such that
∥

∥χt(x)− χt(z)
∥

∥ = O
(

e−λt
)

, t → ∞). In our case, we cannot

exclude that W (z1) = W (z2) for different points z1 6= z2. As a consequence, when proving

that every motion starting in a neighborhood of the invariant manifold M has an asymptotic

phase, we are not able to apply the theorem on invariance of domain as in [16] . Our proof is

based on the Brouwer fixed point theorem.

In contrast to the technique developed for cascades, e.g., in [16,21–23,26], our main results

concerning theory of asymptotic phase are obtained by exploiting the classical Lyapunov–

Perron method of integral equations. With this in mind, and targeting on the rather general

readers audience we intentionally provide independent proofs of some facts on the invariant

manifolds theory already known to specialists in the field. Hope that this will not cause

serious objection from experts on the issue.

The present paper is organized as follows. In Section 2, we consider an autonomous non-

linear system possessing invariant manifold M and in terms of Lyapunov functions establish

conditions ensuring that M is exponentially stable. In Section 3, we formulate the main con-

ditions concerning the co-cycle
{

Xt
}

generated by system in variations. These include the

aforementioned partial hyperbolicity condition of
{

Xt
}

on TM and decay rate condition for
{

Xt
}

in normal to M direction. Next we show that there do exists a Xt-invariant splitting

of TRn along M into a direct Whitney sum W ⊕ V∗ of tangent sub-bundle V⋆ ⊂ TM and

a complementary exponentially stable sub-bundle W. Thus, actually, under the conditions

imposed, M turns out to be a partially hyperbolic subset of Rn in the sense of [20, Definition

2.1, p. 8]. Due to this circumstance, for any orbit O(z) ⊂ M, there is a local stable invariant

manifold through O(z) tangent to W along this orbit. Each motion starting at this invariant

manifold exponentially approaches a motion on O(z) as t → ∞ (see Section 4). In Section 5,
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we prove the main theorem which states that the union of all local stable invariant manifolds

form an open neighborhood of M. The global geometrical aspects of the exposed theory and

some generalizations are discussed in Sections 6 and 7. Finally, in Section 8, we apply the

main theorem to a system defined on cotangent bundle of a compact homogeneous space

SL(2; R)/Γ.

2 Exponential stability of invariant manifold

Let v be a C2-vector field in a domain D of the space Rn endowed with the standard scalar

product 〈·, ·〉 and the associated norm ‖·‖ :=
√

〈·, ·〉. Assume that the vector field v is com-

plete, i.e.the corresponding autonomous system

ẋ = v(x) (2.1)

generates the flow
{

χt(·) : D 7→ D
}

t∈R
, and let this system possesses an m-dimensional com-

pact χt-invariant C2-sub-manifold M ι→֒ D, where ι(·) : M 7→ Rn stands for an isometric

inclusion map.

Introduce some notations. Denote by NzM the orthogonal complement of the tangent

space TzM at z ∈ M. For the sake of simplifying notations, it will be convenient for us to

identify TzRn with Rnand to treat both TzM and NzM as linear sub-spaces of Rn. Thus, for

any given z ∈ M, we have TzRn = TzM⊕ NzM, and the vector bundle ∐z∈M TzRn splits

into Whitney sum of the tangent and normal sub-bundles

∐
z∈M

TzR
n = TM⊕ NM, TM := ∐

z∈M
TzM, NM := ∐

z∈M
NzM.

Let π : TM⊕ NM 7→ M stands for the natural vector bundle projection. As is well known,

there exists sufficiently small r > 0 such that the set NMr = {ξ ∈ NM : ‖ξ‖ < r} can be

identified with a tubular neighborhood of M. Namely, the mapping NMr ∋ ξ 7→ z + ξ ∈ Rn,

where z = π (ξ), define a natural embedding NMr →֒ Rn. Let the vector bundle mappings

PN : TM⊕ NM 7→ NM and PT : TM⊕ NM 7→ TM stand for the orthogonal projections

onto NM and TM respectively.

There naturally arise problems concerning the behavior of the flow in a neighborhood of

M, in particular the stability problem of M. The first step in solving the latter is to study

the so-called normal co-cycle generated by the system in variations w.r.t. a given motion

t 7→ χt(x) of a point x ∈ D
ẏ = v′

(

χt(x)
)

y. (2.2)

As is well known, the group property of the flow, χt+τ(·) = χt ◦ χτ(·) for all t, τ ∈ R, implies

the co-cycle property of the the corresponding evolution operator

Xt(x) :=
∂χt(x)

∂x
,

namely

Xt+τ(x) = Xt (χτ(x)) Xτ(x), X−τ (χτ(x)) = [Xτ(x)]−1 ∀t, τ ∈ R, ∀x ∈ D, (2.3)

and the χt-invariance of M implies the Xt-equivariance of fibers of vector bundle TM⊕ NM
and its sub-bundle TM, meaning that for each z ∈ M and t ∈ R there hold

Xt (z) (TM⊕ NM) |z = (TM⊕ NM) |χt(z),

Xt (z) TzM = Tχt(z)M.
(2.4)
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In other words, the linear co-cycle
{

Xt
}

t∈R
over the flow

{

χt(·) : M 7→ M
}

t∈R
defines a

one-parameter family of automorphisms both of TM⊕ NM and TM. As a result, we obtain

XtPT = PTXtPT, PNXt = PNXt (PN + PT) = PNXtPN . (2.5)

Note that the fibers of NM need not be Xt-equivariant. At the same time, the one-parameter

family of mappings (the normal co-cycle)

Xt
N(z) := PNXt(z) : NzM 7→ Nχt(z)M, t ∈ R,

possesses the required property:

Xt+s
N (z) = PN(χ

t+s(z))Xt+s(z) = PN

(

χt ◦ χs(z)
)

Xt (χs(z)) Xs(z)

= PN

(

χt ◦ χs(z)
)

Xt (χs(z)) PN(χ
s(z))Xs(z) = Xt

N(χ
s(z))Xs

N(z).

One can expect that the invariant manifold M will be stable provided that
∥

∥Xt
N

∥

∥ tends to

zero as t → ∞ sufficiently fast. Following [25, 28, 29], to approve the correctness of such

a hypothesis, we shall exploit the apparatus of Lyapunov functions. Proposition 2.1 given

below is a direct generalization of results [25] obtained for the case where M is a torus with

trivial normal bundle.

Proposition 2.1. The following statements are equivalent:

(i) the integral
∫ ∞

0 ‖Xs
N(z)‖

2 ds is uniformly convergent w.r.t. z;

(ii) there exist positive constants γ and c0 such that

∥

∥Xt
N(z)

∥

∥ ≤ c0e−γt ∀t ≥ 0; (2.6)

(iii) there exists a continuous field of positive definite symmetric operators

{S(z) : NzM 7→ NzM}z∈M

such that

d

dt

∣

∣

∣

t=0

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

= −‖ξ‖2 ∀z ∈ M, ∀ξ ∈ NzM. (2.7)

Proof. To show that (i)⇒(ii) and (i)⇒(iii), define the continuous field of positive definite sym-

metric operators on fibers of NM by

〈S(z)ξ, ξ〉 :=
∫ ∞

0
‖Xs

N(z)ξ‖2 ds ∀z ∈ M, ∀ξ ∈ NzM. (2.8)

Due to the compactness of M there are positive constants a and A such that

a ‖ξ‖2 ≤ 〈S(z)ξ, ξ〉 ≤ A ‖ξ‖2 ∀z ∈ M, ∀ξ ∈ NzM. (2.9)

Since

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

=
∫ ∞

0

∥

∥Xs
N(χ

t(z))Xt
N(z)ξ

∥

∥

2
ds

=
∫ ∞

0

∥

∥Xt+s
N (z)ξ

∥

∥

2
ds =

∫ ∞

t
‖Xs

N(z)ξ‖2 ds,
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then

d

dt

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

= −
∥

∥Xt
N(z)ξ

∥

∥

2 ≤ − 1

A

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

. (2.10)

Hence,
〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

≤ e−t/A 〈S(z)ξ, ξ〉 ∀t ≥ 0,

and thus,
∥

∥Xt
N(z)ξ

∥

∥

2 ≤ A

a
e−t/A ‖ξ‖2 ∀t ≥ 0.

It is obvious, that (2.10) implies (2.7), and (ii)⇒(i).

It remains to show that (iii)⇒(ii). If (2.7) is satisfied, then

d

dt

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

=
d

ds

∣

∣

∣

s=0

〈

S(χt+s(z))Xt+s
N (z)ξ, Xt+s

N (z)ξ
〉

=
d

ds

∣

∣

∣

s=0

〈

S(χs ◦ χt(z))Xs
N

(

χt(z)
)

Xt
N(z)ξ, Xs

N

(

χt(z)
)

Xt
N(z)ξ

〉

= −
∥

∥Xt
N(z)ξ

∥

∥

2
.

This ensures inequality (2.10), which implies (2.6) with c0 = A/a and γ = 1/A.

As in the case where M is a torus with trivial normal bundle, the additional requirement

of continuous differentiability of S (·) together with (2.7) ensures exponential stability of M.

Proposition 2.2. Let there exist a continuously differentiable field of positive definite symmetric oper-

ators

{S(z) : NzM 7→ NzM}z∈M

satisfying (2.7). Then the invariant manifold M is exponentially stable.

Proof. Let x ∈ NMr. Then there is a unique representation x = z(x) + ξ(x) where z(x) ∈ M,

ξ(x) ∈ NzM. Define the function V(x) := 〈S(z(x))ξ(x), ξ(x)〉. To calculate the derivative

V̇v(x) of this function along the vector v(x), consider a finite open cover
⋃I

i=1 Ui of M with

the following properties: the restriction of normal bundle to every Ui is trivial, and there exist

compact subsets Ki ⊂ Ui, i = 1, . . . , I, such that
⋃I

i=1 Ki = M.

Let U stands for one of the sets U1, . . . ,UI and K ∈ {K1, . . . ,KI} be the corresponding

compact subset, thus K ⊂ U . Then there exist C1-mappings νk(·) : U 7→ NM, k = 1, . . . , n−m,

such that for any z ∈ U the vectors ν1(z), . . . , νn−m(z) form an orthonormal basis of NzM.

Compose the matrix N(z) of the vectors ν1(z), . . . , νn−m(z) as columns and denote by N⊤(z)
the transposed matrix. Then PN(z) := N(z)N⊤(z) and PT(z) := Id − PN(z) are matrices of

projections PN(z) and PT(z) respectively. Now by means of the diffeomorphism

U × Bn−m
r (0) ∋ (z, p) 7→ z + N(z)p ∈ NMr (2.11)

where p := (p1, . . . , pn−m), Bn−m
r (0) := {p : ‖p‖ < r} and r is sufficiently small, we obtain a

system on U × Bn−m
r induced by system (2.1). Namely, we have

(

Id + [N(z)p]′z
)

ż + N (z) ṗ = v (z + N(z)p) ,

and taking into account that v(z) ⊥ νi(z), i = 1, . . . , n − m, the induced system on U × Bn−m
r

takes the form

ż = v (z) + v1(z, p), ṗ = [A(z) + A1(z, p)] p, (2.12)
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where

A(z) := N⊤ (z)
[

J (z)N(z)− Ṅv(z)(z)
]

, (2.13)

v1(z, p) :=
(

Id + [N(z)p]′z
)−1

PT(z)v (z + N(z)p)− v(z),

A1(z, p)p := N⊤ (z)
(

v(z + N(z)p)− v(z)− J(z)N(z)p − [N(z)p]′z v1(z, p)
)

.

Here J (z) is the Jacobi matrix of the mapping x 7→ v(x) at the point x = z, and Ṅv(z)(z) :=
d
dt

∣

∣

s=0
N
(

χt(z)
)

. It is not hard to see that there exists a constant C > 0 such that

‖v1(z, p)‖ ≤ C ‖p‖ , ‖A1(z, p)‖ ≤ C ‖p‖ ∀z ∈ K, ∀p ∈ Bn−m
r (0). (2.14)

Obviously, since M is compact, one can choose a common constant C for all K1, . . . ,KI .

Note that locally the diffeomorphism (2.11) conjugates the system on NM generating the

normal co-cycle
{

Xt
N

}

with the system

ż = v (z) , ṗ = A(z)p.

Hence, for ξ = N(z)p, we obtain

d

dt

∣

∣

∣

t=0

〈

S(χt(z))Xt
N(z)ξ, Xt

N(z)ξ
〉

= (〈S(z)N(z)p, N(z)p〉)′p A(z)p + (〈S(z)N(z)p, N(z)p〉)′z v(z) = −‖ξ‖2 ,

and thus

V̇v(x) = −‖ξ‖2 + (〈S(z)N(z)p, N(z)p〉)′p A1(z, p)p + (〈S(z)N(z)p, N(z)p〉)′z v1(z, p).

Since ‖ξ‖ = ‖p‖ and there are positive constants A and a such that S(z) satisfies (2.9), then

on account of (2.14) there holds the inequality

V̇v(x) ≤ −1

2
‖ξ‖2 ≤ − 1

2A
V(x) ∀x ∈ NMr

provided that r is sufficiently small. By means of the last inequality one can show in a standard

way that there exists δ ∈ (0, r) such that
∥

∥χt(x)− π
(

χt(x)
)∥

∥ tends to zero with exponential

rate as t → ∞ provided that x ∈ NMδ.

3 Invariant splitting of vector bundle along invariant manifold

Let us agree on the following. Hereinafter, if ξ ∈ TM⊕ NM and z = π (ξ), then Xtξ :=

Xt (z) ξ, and XtXτξ := Xt (χτ(z)) Xτ(z)ξ for all t, τ ∈ R.

Assume that the following conditions are fulfilled:

H1 The tangent bundle TM splits into a continuous Whitney sum TM = Vs ⊕ V⋆ of Xt-

invariant vector sub-bundles Vs = ∐z∈M Vs
z , V⋆ = ∐z∈M V⋆

z (i.e. fibers of vector bun-

dles Vsand V⋆are Xt-equivariant), and there exist constants c0 ≥ 1, ν > 0, σ ∈ [0, ν) such

that

∥

∥Xtξ
∥

∥ ≤ c0e−νt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ Vs, (3.1)
∥

∥Xtξ
∥

∥ ≤ c0e−σt ‖ξ‖ ∀t ≤ 0, ∀ξ ∈ V⋆. (3.2)
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H2 There exists γ > σ such that

∥

∥PNXtPN

∥

∥ ≤ c0e−γt ∀t ≥ 0.

It should be noted that the last inequality actually matches (2.6) and on account of (2.5) implies

∥

∥PNXt
∥

∥ ≤ c0e−γt ∀t ≥ 0. (3.3)

Besides, (3.2) together with (2.3) implies

∥

∥Xtξ
∥

∥ ≥ c−1
0 e−σt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ V⋆. (3.4)

Note also that the sub-bundle V⋆ contains 1-D Xt-invariant sub-bundle Vc := {θv}θ∈R

generated by the vector field v. Each solution of (2.2) with initial value in Vc is bounded.

An important particular case is when M is hyperbolic, i.e. there is Xt-invariant splitting

V⋆ = Vc ⊕ Vu such that

∥

∥Xtξ
∥

∥ ≤ c0eνt ‖ξ‖ ∀t ≤ 0, ∀ξ ∈ Vu.

In this case we consider that σ = 0.

Define the natural projections

Ps : TM 7→ Vs, P⋆ : TM 7→ V⋆.

Since the splitting Vs ⊕ V⋆ is Xt-invariant, then

XtPs,⋆PT = Ps,⋆XtPT ∀t ∈ R. (3.5)

On account of (2.3) and (3.5), we get

Xt−τ (χτ(z)) = Xt(z)X−τ (χτ(z)) =
[

Xt(z)
]

[Xτ(z)]−1 (3.6)

and thus,

2XtPs,⋆ [X
τ]−1 PT =

[

Xt
]

[Xτ]−1 Ps,⋆PT = Xt−τPs,⋆PT. (3.7)

Now H1 yields that there exists a positive constant c1 such that

∥

∥

∥XtPs [X
τ]−1 PT

∥

∥

∥ ≤ c1e−ν(t−τ), 0 ≤ τ ≤ t,
∥

∥

∥XtP⋆ [X
τ]−1 PT

∥

∥

∥ ≤ c1e−σ(t−τ), 0 ≤ t < τ
(3.8)

In what follows, for any ξ ∈ TM⊕ NM, we will use the notations

ξT := PTξ, ξN := PNξ, ξs,⋆ := Ps,⋆PTξ.

Proposition 3.1. There exists a continuous Xt-invariant splitting of TM⊕ NM into a Whitney sum

W ⊕ V⋆ such that PNW = NM, and there is a positive constant c such that

∥

∥Xtξ
∥

∥ ≤ ce−λt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ W (3.9)

where λ := min {ν, γ}.
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Proof. Let us construct a sub-bundle of vectors ξ ∈ TM⊕ NM, such that
∥

∥Xtξ
∥

∥ has a Lya-

punov exponent not exceeding −λ. Since

Xtξ = PTXtξ + PNXtξ,

then, on account of (3.3), it remains to deal with PTXtξ. Derive an equation for PTXtξ. Since

PTXtξ = Xtξ − PNXtξ = Xtξ − PN PNXtξ

and the map M ∋ z 7→ PN (z) is continuously differentiable, then

d

dt
PTXtξ = v′Xtξ − d

dt

(

PN PNXtξ
)

=⇒
d

dt
PTXtξ = v′PTXtξ + v′PNXtξ −

(

P′
Nv
)

PNXtξ − PN
d

dt

(

PNXtξ
)

.

In view of (2.5), we get

PT
d

dt
PTXtξ = PTv′PTXtξ + PT

(

v′ − P′
Nv
)

PNXtξN .

Recall that, for a given vector field R ∋ t 7→ η (t) ∈ Tz(t)M along a curve z (·) : R 7→ M and

for any t ∈ R, the vector PT η̇ (t) is nothing else but the covariant derivative ∇żη (t) at point

z (t). Hence, for every ξ such that π (ξ) = z, the vector field η (t; ξ) := PTXtξ along the curve

t 7→ χt (z) is a unique solution of the initial problem

∇żη = PTv′
(

χt (z)
)

η + PTQ (t) ξN , η (0) = ξT, (3.10)

where the vector bundle homomorphism Q(t) is defined by

Q (t) ξ =
[

v′
(

χt (z)
)

− P′
N

(

χt (z)
)

v
(

χt (z)
)]

PNXt (z) ξ ∀ξ ∈ TzM⊕ NzM. (3.11)

It turns out that the set of solutions of problem (3.10), which we are interested in, is given by

η (t; ξ) = Xtξs +
∫ ∞

0
Γ (t, τ) PTQ (τ) ξNdτ (3.12)

where ξs ∈ Vs is taken at will and

Γ (t, τ) :=

{

XtPs [Xτ]−1 , 0 ≤ τ ≤ t

−XtP⋆ [Xτ]−1 , 0 ≤ t < τ.

In fact, taking into account (3.8), one can choose a constant c2 > 0 such that
∥

∥

∥XtPs [X
τ]−1 PTQ (τ)

∥

∥

∥ ≤ c2e−νt+(ν−γ)τ, 0 ≤ τ ≤ t,
∥

∥

∥
XtP⋆ [X

τ]−1 PTQ (τ)
∥

∥

∥
≤ c2e−σt+(σ−γ)τ, 0 ≤ t < τ.

Hence, there exists a positive constant c3 > 0 such that

‖η (t; ξ)‖ ≤
∥

∥Xtξs

∥

∥+
∫ ∞

0
‖Γ (t, τ) PTQ (τ) PN‖dτ ‖ξ‖ ≤ c3e−λt ‖ξ‖ , t ≥ 0.

By means of direct calculations, one can easily verify that η (·; ξ) is a unique solution of the

initial problem for linear inhomogeneous system

ẏ = v′
(

χt (z)
)

y + PTQ (t) ξN , y (0) = ξT ∈ TxM, (3.13)
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where

ξT = ξs + ΞξN , Ξξ := −
∫ ∞

0
P⋆ [X

s]−1 PTQ (s) PNξds. (3.14)

Since PTη (t; ξ) ≡ η (t; ξ), then η (·; ξ) satisfies both (3.13) and (3.10).

Hence, for arbitrary ξs, ξN , we have found ξ = ξs + ΞξN + ξN such that

Xtξ = PTXtξ + PNXtξN = η (t; ξ) + PNXtξN

and thus,
∥

∥Xtξ
∥

∥ ≤ (c3 + c0) e−λt ‖ξ‖ ∀t ≥ 0.

Now it is naturally to define the projection

Π := PsPT + Ξ + PN ,

and the corresponding sub-bundle

W := Π (TM⊕ NM) .

The uniform convergence of integral (3.14) ensures that the splitting W ⊕ V∗ is continuous.

One can easily verify that Π has the projection property Π2 = Π. Besides, PNW = PN NM =

NM.

It remains to verify that the splitting W ⊕ V⋆ is Xt-invariant. Note that if ξ 6∈ W, than on

account of (3.4) the Lyapunov exponent of
∥

∥Xtξ
∥

∥ exceeds −λ. Since,

∥

∥XtXτξ
∥

∥ =
∥

∥Xt+τξ
∥

∥ ≤ (c3 + c0) e−λ(t+τ) ‖ξ‖

for any ξ ∈ W, τ ∈ R and t ≥ −τ, then the Lyapunov exponent of
∥

∥XtXτξ
∥

∥ does not exceed

−λ. Hence, Xτξ ∈ W for all τ ∈ R, provided that ξ ∈ W. Thus XtW ⊆ W, and since Xt is

non-degenerate, then XtW = W. As a consequence, ΠXtξ = XtΠξ for any ξ ∈ W, but since

both W and V∗ are Xt-invariant, than the above equality holds true for any ξ ∈ TM⊕ NM.

This yields that Id−Π commutes with Xt as well:

(Id−Π) Xtξ = Xtξ − ΠXtξ = Xt (ξ − Πξ) = Xt (Id−Π) ξ ∀ξ ∈ TM⊕ NM.

Corollary 3.2. There is a constant K > 0 such that the following inequalities hold true:

∥

∥

∥XtΠ [Xτ]−1
∥

∥

∥ ≤ Ke−λ(t−τ), 0 ≤ τ ≤ t,
∥

∥

∥
Xt (Id−Π) [Xτ]−1

∥

∥

∥
≤ Ke−σ(t−τ), 0 ≤ t < τ.

4 Existence of local exponentially stable set for a given orbit

After introducing the new variable y by

x = χt(z) + y,

system (2.1) takes the form

ẏ = v′
(

χt(z)
)

y + w(t, z, y) (4.1)
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where

w(t, z, y) := v
(

χt(z) + y
)

− v
(

χt(z)
)

− v′
(

χt(z)
)

y,

and z ∈ M is considered as a parameter. From now on throughout this section, we do not

show explicitly the variable z among arguments of mappings whenever it does not cause a

confusion.

In order to apply the Lyapunov–Perron method of integral equations, introduce the Green

function

G(t, τ) :=

{

XtΠ [Xτ]−1 , 0 ≤ τ ≤ t,

Xt (Π- Id) [Xτ]−1 , 0 ≤ t < τ

and use the following standard statement.

Proposition 4.1. A mapping y(·) : R+ 7→ Rn with upper Lyapunov exponent not exceeding −λ is a

solution of (4.1) if and only if there is ζ ∈ W ∩ π−1 (z) such that y (·) = y (·, ζ) satisfies the integral

equation

y(t, ζ) = Xtζ +
∫ ∞

0
G(t, τ)w(τ, y(τ, ζ))dτ =: G[y](t, ζ), (4.2)

as well as the condition Πy(0, ζ) = ζ.

Proof. Note that Corollary 3.2 together with inequality λ > σ yields

∫ ∞

0
e−2λτ ‖G (t, τ)‖dτ ≤ Ke−λt

[

∫ t

0
e−λτdτ + e(λ−σ)t

∫ ∞

t
e(σ−λ)τe−λτdτ

]

≤ Ke−λt
∫ ∞

0
e−λτdτ ≤ K

λ
e−λt, (4.3)

and since v is C2-vector field, then ‖w(t, z, y)‖ = O
(

‖y‖2) as ‖y‖ → 0. If now y(·) : R+ 7→ Rn

is a solution of (4.1) with upper Lyapunov exponent not exceeding −λ, then by means of

direct calculations it is not hard to verify that

ỹ(t) :=
∫ ∞

0
G(t, τ)w(τ, y(τ))dτ = O

(

e−λt
)

, t → ∞,

is a solution of the linear non-homogeneous system

ẏ = v′
(

χt(z)
)

y + w(t, z, y (t)).

The last one has the solution t 7→ y (t) = O
(

e−λt
)

, t → ∞, as well. Hence, there exists

ζ ∈ W ∩ π−1 (z) such that y (t)− ỹ (t) = Xtζ. From Πỹ (0) = 0 it follows that Πy (0) = ζ.

Vice versa, by means of direct calculations one can easily verify that any solution t 7→
y (t, ζ) = O

(

e−λt
)

, t → ∞, of (4.2) is a solution of (4.1) such that Πy (0, ζ) = ζ.

By means of the mapping Id+Ξ (see (3.14)), we define an isomorphic image of NMr as

Ur := (Id+Ξ) (NMr) ≡
⋃

ξ∈NMr

{ξ + Ξξ} .

Note that PNUr = NMr, and if we introduce the set

Wr := {ζ ∈ W : ‖ζ‖ < r} ,
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then Ur = {ζ ∈ Wr : PsPTζ = 0} .

Let C (R+ × Wr 7→Rn; ‖·‖λ) stands for a Banach space of mappings endowed with the

norm

‖·‖λ := sup
(t,ζ)∈R+×Wr

eλt ‖·‖ .

For a constant C > 0, define the closed subset

Yr,C :=
{

y(·, ·) ∈ C (R+ × Wr 7→R
n; ‖·‖λ) :

∥

∥y (t, ζ)− Xtζ
∥

∥ ≤ Ce−λt ‖ζ‖2
}

.

Proposition 4.2. There exist positive numbers r and C such that:

(i) equation (4.1) has a unique solution y∗(·, ·) ∈ Yr,C;

(ii) the mapping y∗(·, ·) has a continuous derivative along every fiber W(z) := W ∩ π−1 (z),

z ∈ M.

Proof. One can prove assertion (i) in a standard way by means of the Banach contraction

principle. For the sake of completeness, we present here some essential details.

Firstly, impose conditions on r, C ensuring inclusion G[Yr,C] ⊂ Yr,C. Since v is C2-vector

field, then there is a constant Cw > 0 such that

‖w(t, y, z)‖ ≤ Cw

2
‖y‖2 ,

∥

∥

∥w′
y(t, y, z)

∥

∥

∥ ≤ Cw ‖y‖ ,
∥

∥

∥w′′
yy(t, y, z)

∥

∥

∥ ≤ Cw (4.4)

for all (t, z) ∈ R ×M, ‖y‖ ≤ 1. Now, on account of (4.3), for any y(·, ·) ∈ Yr,C, we obtain

ΠG[y](0, ζ) = Πζ = ζ,

∥

∥G[y](t, ζ)− Xtζ
∥

∥ ≤ KCw

2λ
(c + Cr)2 e−λt ‖ζ‖2 ≤ Ce−λt ‖ζ‖2

provided that

cr + Cr2
< 1,

KCw

2λ
(c + Cr)2 ≤ C.

If we set C := 2KCwc2/λ then it is sufficient to require that r is small enough to satisfy the

inequalities

2cr < 1, Cr ≤ c. (4.5)

Now let us find conditions under which G[·] is a contraction mapping in Yr,C. Since

‖w(t, y1)− w(t, y2)‖ ≤
∥

∥

∥

∥

∫ 1

0

[

v′
(

χt(z) + θy1 + (1 − θ)y2

)

− v′
(

χt(z)
)]

dθ

∥

∥

∥

∥

‖y1 − y2‖

≤ Cw

2
(‖y1‖+ ‖y2‖) ‖y1 − y2‖ ∀y1, y2 : ‖y1‖ , ‖y2‖ ≤ 1,

then for every y1 (·, ·) , y2 (·, ·) ∈ Yr,C we obtain

‖G[y1](t, ζ)− G[y2](t, ζ)‖λ ≤ KCw

λ

(

cr + Cr2
)

‖y1 (·, ·)− y2 (·, ·)‖λ . (4.6)

The inequality
KCw

λ

(

cr + Cr2
)

≤ 1

2
, (4.7)
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ensures that G[·] is a contraction in Yr,C and then, by the Banach contraction principle, equa-

tion (4.2) has a unique solution y∗(·, ·) ∈ Yr,C. Taking into account (4.5) and definition of

C, to satisfy (4.7) it is sufficient to replace the second inequality in (4.5) with 2Cr ≤ c. This

completes the proof of assertion (i).

To prove (ii), firstly observe that every point z0 ∈ M has a neighborhood N (z0) ⊂ M such

that π−1 (N (z0))∩Wr is homeomorphic to N (z0)×Bk
r (0) where k = dim W and Bk

r (0) ⊂ Rk

is a ball of radius r centered at the origin. So, we regard y∗(·, ·) as a mapping with domain

N (z0)×Bk
r (0). Now for ρ ∈ (0, r), δ ∈ (0, r − ρ) and unit vector e ∈ Rk, consider a family of

mappings
{

us (·, ·; e) : R+ ×N (z0)×Bk
ρ (0) 7→ Rn

}

s∈[−δ,δ]\{0} defined by

us (t, ζ; e) :=
1

s
[y∗ (t, ζ + se)− y∗ (t, ζ)]

(recall that we agreed not to show explicitly the dependence on z). We aim to establish the

existence of

∂ey∗ (t, ζ) := lim
s→0

us (t, ζ; e)

and show that ∂ey∗ (·, ζ) is a solution of the linear integral equation

u (t, ζ; e) = Xte +
∫ ∞

0
G (t, τ)w′

y (τ, y∗ (τ, ζ)) u (τ, ζ; e)dτ. (4.8)

Similarly to the previous reasoning, introduce the Banach space

B := C
(

R+ ×N (z0)×Bk
ρ (0) 7→R

n; ‖·‖λ

)

endowed with the norm

‖·‖λ := sup
{

eλt ‖·‖ : (t, z, ζ) ∈ R+ ×N (z0)×Bk
ρ (0)

}

.

On account of (4.4), (4.3) and (4.7), one can easily obtain the estimate

∫ ∞

0

∥

∥

∥G (t, τ)w′
y (τ, y∗ (τ, ζ))

∥

∥

∥ e−λτdτ ≤ e−λt KCw

λ

(

c ‖ζ‖+ C ‖ζ‖2
)

≤ 1

2
e−λt (4.9)

which allows us to apply the Banach contraction principle and prove that (4.8) has a unique

solution u∗ (·, ·; e) ∈ B satisfying

‖u∗ (·, ·; e)‖λ ≤ 2c.

Besides, by means of (4.6) and (4.7) we obtain

‖us (·, ·; e)‖λ ≤ c +
1

2
‖us (·, ·; e)‖λ =⇒ ‖us (·, ·; e)‖λ ≤ 2c.

Next, we have

‖us (t, ζ; e)− u∗ (t, ζ; e)‖ ≤
∫ ∞

0

∥

∥

∥G (t, τ)w′
y (τ, y∗ (τ, ζ))

∥

∥

∥ ‖us (τ, ζ; e)− u0 (τ, ζ; e)‖dτ

+
∫ ∞

0
‖G (t, τ) H (τ, ζ, s; e)‖ ‖us (τ, ζ; e)‖dτ

where

H (τ, ζ, s; e) :=
∫ 1

0

[

w′
y (θy∗ (τ, ζ + se) + (1 − θ)y∗ (τ, ζ))− w′

y (τ, y∗ (τ, ζ))
]

dθ.
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Since

‖H (τ, ζ, s; e)‖ ≤ Cw

2
‖y∗ (τ, ζ + se)− y∗ (τ, ζ)‖

and (4.9) yields

sup
t≥0

eλt
∫ ∞

0

∥

∥

∥
G (t, τ)w′

y (τ, y∗ (τ, ζ))
∥

∥

∥ ‖us (τ, ζ; e)− u0 (τ, ζ; e)‖dτ

≤ 1

2
sup
t≥0

eλt ‖us (τ, ζ; e)− u0 (τ, ζ; e)‖ ,

then, on account of (4.3), we obtain

lim
s→0

sup
t≥0

eλt ‖us (t, ζ; e)− u0 (t, ζ; e)‖

≤ cCw lim
s→0

sup
t≥0

∥

∥

∥

∥

eλt
∫ ∞

0
e−2λτ ‖G (t, τ)‖

[

eλτ ‖y∗ (τ, ζ + se)− y∗ (τ, ζ)‖
]

dτ

∥

∥

∥

∥

≤ cCwK lim
s→0

∫ ∞

0
e−λτ

[

eλτ ‖y∗ (τ, ζ + se)− y∗ (τ, ζ)‖
]

dτ

≤ cCwK lim
T→∞

lim
s→0

[

∫ T

0
‖y∗ (τ, ζ + se)− y∗ (τ, ζ)‖dτ +

4e−λT

λ
‖y∗ (·, ·)‖λ

]

= 0.

This completes the proof of assertion (ii).

Corollary 4.3. For all (t, ζ) ∈ R+ × Wr and every unite vector e ∈ Wr ∩ π−1 (z), where z := π (ζ),

the following inequalities hold:

‖∂ey∗ (t, ζ)‖ ≤ 2ce−λt,
∥

∥∂ey∗ (t, ζ)− Xte
∥

∥ ≤ e−λt 2cKCw

λ
‖ζ‖ .

Proposition 4.4. Let C, Cw and r be the constants specified according to Proposition 4.2. If y (·) :

R+ 7→ Rn is a solution of (4.1) such that supt∈R+
eλt ‖y (t)‖ ≤ min {λ/ (KCw) , 1} and ζ :=

Πy (0) ∈ Wr, then
∥

∥y (t)− Xtζ
∥

∥ ≤ Ce−λt ‖ζ‖2 ∀t ≥ 0,

and thus, y (t) ≡ y∗ (t, ζ).

Proof. By Proposition 4.1 y (·) satisfies integral equation (4.4) with ζ = Πy (0). Then on

account of (4.3) and (4.4) we have

sup
t∈R+

eλt ‖y (t)‖ ≤ c ‖ζ‖+ KCw

2λ
min {λ/ (KCw) , 1} sup

t∈R+

eλt ‖y (t)‖ ,

and thus

sup
t∈R+

eλt ‖y (t)‖ ≤ 2c ‖ζ‖ ≤ 2cr < 1.

This inequality, in its turn, implies

∥

∥y (t)− Xtζ
∥

∥ ≤ 2KCwc2

λ
e−λt ‖ζ‖2 = C ‖ζ‖2 ∀t ≥ 0.

To end the proof it remains only to refer to assertion (i) from Proposition 4.2 which ensures

the uniqueness of y∗(·, ·).
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Define the sets

Wr(z) := Wr ∩ π−1 (z) , Wr (z) := z + y∗ (0, Wr(z))

Ur(z) := Ur ∩ π−1 (z) , Ur(z) := z + y∗ (0, Ur(z)) .

Corollary 4.3 yields the following

Proposition 4.5. There is a sufficiently small positive r such that the sets Wr (z) and Ur (z) are

differentiable manifolds diffeomorphic to Wr(z) and PNUr(z) respectively. Besides, TzWr(z) = Wr(z),

TzUr(z) = Ur(z).

Let z0 ∈ M be a given point and O (z0) :=
⋃

τ∈R {χτ (z0)} stands for its orbit.

Definition 4.6. We say that the set Wr (O (z0)) =
⋃

z∈O(z0) Wr (z) is a local λ-stable set of the

orbit O (z0).

Theorem 4.7. Let system (2.1) satisfy conditions H1, H2. Then there exist positive constants r, C, T

and ρ ∈ (0, r] such that for every z0 ∈ M, the set Wr (O (z0)) has the following properties:

(a) for every x ∈ Wr (O (z0)), there exist z ∈ O (z0) and ζ ∈ Wr(z) such that
∥

∥χt (x)− χt (z)− Xtζ
∥

∥ ≤ Ce−λt ‖ζ‖2 ∀t ≥ 0,

and thus, the motion t 7→ χt (x) has an asymptotic phase;

(b) there hold the inclusions

χt
(

Wρ (z)
)

⊂ Wr

(

χt (z)
)

∀t ≥ 0, and χt (Wr (z)) ⊂ Wr

(

χt (z)
)

∀t ≥ T;

(c) if in addition the vector field v has no singular points on M, then for every z ∈ O (z0), there

is a sufficiently small arc Oδ(z) :=
⋃

|τ|<δ {χτ (z)}, 0 < δ ≪ 1, such that that Wr (z1) ∩
Wr (z2) = ∅ for any z1, z2 ∈ Oδ(z), and the set Wr (O (z0)) is an immersed into Rn topological

manifold.

Proof. Let r and C be specified via Proposition 4.2, and let x ∈ Wr (z) for some z ∈ O (z0).

Then there is ζ ∈ Wr(z) such that x = z + y∗ (0, ζ) is an initial value for the solution t 7→
χt(z) + y∗ (t, ζ) of system (2.1). Hence, χt (x) ≡ χt(z) + y∗ (t, ζ), and now (a) is a direct

consequence of Proposition 4.2.

Now we proceed to (b). Let ρ ∈ (0, r] and x ∈ Wρ(z). Then there is ζ ∈ Wρ (z) such that

x = z + y∗ (0, ζ), Πy∗(0, ζ) = ζ and

χs (x)=χs (z) + y∗ (s, ζ) = χs (z) + Πy∗ (s, ζ) + (Id−Π) y∗ (s, ζ) .

Put ζs := Πy∗ (s, ζ). By the definition of Π, we have ζs ∈ W (χs (z)), and by means of estimates

from the proof of Proposition 4.2 we obtain,

‖ζs‖ =

∥

∥

∥

∥

Xsζ +
∫ s

0
XsΠ [Xτ]−1 w (τ, y∗ (τ, ζ))dτ

∥

∥

∥

∥

≤ e−λs
(

cρ + Cρ2
)

.

Hence, if ρ ∈ (0, ρ0), where ρ0 is small enough to satisfy cρ0 + Cρ2
0 ≤ r, then ζs ∈ Wr (χs (z))

for all s ≥ 0. And if ρ = r, then ζs ∈ Wr (χs (z)) for all s ≥ T, provided that T is large enough

to satisfy e−λT
(

cr + Cr2
)

≤ r. Besides, property (a) implies
∥

∥χt ◦ χs (x)− χt ◦ χs (z)
∥

∥ ≤
∥

∥χt+s (x)− χt+s (z)− Xt+sζ
∥

∥+
∥

∥Xt+sζ
∥

∥

≤ e−λ(t+s)
(

C ‖ζ‖2 + c ‖ζ‖
)

.
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Hence, if ρ ∈ (0, ρ0) , whereρ0 is small enough to satisfy additional condition cρ0 + Cρ2
0 ≤

λ/KCw , then

∥

∥χt ◦ χs (x)− χt ◦ χs (z)
∥

∥ ≤ e−λt λ

KCω
∀t ≥ 0, ∀s ≥ 0;

and if ρ = r then

∥

∥χt ◦ χs (x)− χt ◦ χs (z)
∥

∥ ≤ e−λt λ

KCω
∀t ≥ 0, ∀s ≥ T,

provided that T is large enough to ensure e−λT
(

cr + Cr2
)

≤ λ/ (KCω). Now the mapping

t 7→ χt ◦ χs (x)− χt ◦ χs (z), as a solution of (4.1), satisfies conditions of Proposition 4.4 where

z and ζ should be replaced with χs(z) and ζs respectively. Hence,

χt ◦ χs (x)− χt ◦ χs (z) = y∗ (t, ζs) ,

and thus, χs (x) = χs (z) + y∗ (0, ζs). As a consequence,

χs (x) ∈
{

Wr (χs (z)) ∀s ≥ 0 if x ∈ Wρ (z) and ρ ∈ (0, ρ0);

Wr (χs (z)) ∀s ≥ T if x ∈ Wr (z) .

Finally, let us prove (c) by reasoning ad absurdum. Suppose that for every z ∈ O (z0) there

is no δ > 0 such that Wr (z1) ∩Wr (z2) = ∅ for any pair of different points z1, z2 ∈ Oδ (z).

Then there exist sequences {t1,k}k∈N
, {t2,k}k∈N

such that ti,k → 0, k → ∞, i ∈ {1, 2}, t1,k > t2,k,

as well as the sequence

{

xk ∈ Wr

(

χt1,k (z)
)

∩Wr

(

χt2,k (z)
)}

k∈N
.

Now, for any k ∈ N, we obtain

∥

∥χt+t1,k (z)− χt+t2,k (z)
∥

∥ ≤
∥

∥χt (xk)− χt ◦ χt1,k (z)
∥

∥+
∥

∥χt (xk)− χt ◦ χt2,k (z)
∥

∥→ 0, t → ∞,

and thus,

lim
t→∞

∥

∥

∥χTk ◦ χt (z)− χt (z)
∥

∥

∥ = 0 (4.10)

where Tk = t1,k − t2,k 6= 0. Since M is compact, then ω-limit set of O (z) contains at least one

point, e.g. z∗ ∈ M, and (4.10) implies that z∗ is Tk -periodic for all k ∈ N. But, as is easily

seen, from Tk → 0 it follows that v (z∗) = 0, and we arrive at contradiction.

Now we see that the continuous mapping O (z0) ∋ z 7→ Wr (z) is locally one-to-one.

Since each Wr (z) is diffeomorphic to an open d-dimensional ball of Euclidean space (Propo-

sition (4.5)), and Wr (O (z0)) is given by the equation

x = χt (z0) + y∗ (0, ζ) , ζ ∈ Wr

(

χt (z0)
)

, t ∈ R,

then Wr (O (z0)) is an immersed (d + 1)-dimensional topological manifold.

Remark 4.8. On contrary to [16], Theorem 4.7 do not guarantee that Wr (z1) ∩Wr (z2) = ∅

for any pair of different points z1, z2 ∈ M.

Corollary 4.9. If there exist z1, z2 ∈ O(z0) such that Wr(z1) ∩Wr(z2) 6= ∅, then ω-limit set of

O(z0) contains at least one closed orbit.
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5 Existence of asymptotic phase

Now we are in position to prove the following theorem on the existence of asymptotic phase.

Theorem 5.1. Let system (2.1) satisfy conditions H1, H2. Then there exists ε > 0 such that a motion

t 7→χt (x) has the asymptotic phase, provided that O (x) ∩ NMε 6= ∅.

Proof. Let x0 be a point in the tubular neighborhood NMε ⊂ NMr, where r is specified in

Theorem 4.7. Then x0 = z0 + ξ0, where z0 ∈ M, ξ0 ∈ Nz0M, ‖ξ0‖ < ε. We have to show that

if ε ∈ (0, r) is sufficiently small, then there exists z (x0) ∈ M such that x0 ∈ Ur (z (x0)) (see

Proposition 4.5 concerning Ur (z)). Since Ur (z (x0)) ⊂ Wr (z (x0)), then by Theorem 4.7 the

above inclusion implies

∥

∥χt (x0)− χt (z (x0))
∥

∥→ 0, t → ∞,

meaning that the motion t 7→ χt(x0) has the asymptotic phase.

Let us prove the existence of z(x0). Note that if r is sufficiently small, then there are local

coordinates in NMr

(q1, . . . , qm, p1, . . . , pn−m) = (q, p), m := dimM,

with the following properties: (i) the coordinates of z0 are (0, 0); (ii) the manifold M is given

by a local equation x = z(q), where z(·) is a C1-mapping defined in a neighborhood of q = 0;

(iii) the columns of the matrix T(0), where T(q) :=
[ ∂zi(q)

∂qj

]n, m

i=1,j=1
, are pairwise orthogonal unit

vectors; (iv) if (q, p) are local coordinates of a point x ∈ NMr, then

x = z (q) + N(q)p,

in particular x0 = z (0) + N(0)p0, where N(q) is n × (n − m)-matrix whose columns are unit

vectors pairwise mutually orthogonal, and orthogonal to M at z(q) as well, thus N⊤(q)T(q) =
0*; (v) both mappings q 7→ N(q) and q 7→ T(q) are continuous in a neighborhood of 0.

Having analyzed the mapping y∗(0, ·), one can make a conclusion that the manifold Ur(z)

is given by the equation

x = z(q) + N (q) p + T (q) [L (q) + M (q, p)] p,

where L(q) and M (q, p) are m× (n−m)-matrices with continuous elements, and ‖M(q, p)‖ →
0 as ‖p‖ → 0. Now for a given p0 such that ‖p0‖ < ε ≪ 1, we have to solve the equation

z(q) + N (q) p + T (q) [L (q) + M (q, p)] p = z(0) + N(0)p0.

Since z(q)− z(0) = [T(0) + T1(q)]q, where ‖T1(q)‖ = o (1), ‖q‖ → 0, then the above equation

can be represented in the form

T(0) [q + L(0)p] + N(0)p = F (q, p) + N(0)p0

where

F (q, p) := [T (0)L(0)− T (q)L(q) + N(0)− N(q)− M(q, p)] p − T1(q)q.

*Here we use the notation N(q) instead of N(z(q)) where N(z) is the matrix defined in Section 2.
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Note, that ‖F(q, p)‖ = o (‖q‖+ ‖p‖), ‖q‖ + ‖p‖ → 0. After the change of variables q =

u − L(0)p, on account that the matrix [T(0); N(0)] is orthogonal, we arrive at the equation

(

u

p

)

= H (u, p) +

(

0

p0

)

, (5.1)

where H (u, p) = [T(0); N(0)]⊤F (q, p)
∣

∣

q=u−L(0)p
. It is obvious that ‖H(u, p)‖ = o (‖u‖+ ‖p‖),

‖u‖+ ‖p‖ → 0. Now we are in position to apply the Brouwer fixed point theorem. Namely, let

Dε :=
{

(u, p)⊤ : ‖u‖2 + ‖p‖2 ≤ ε2
}

. If 0 < ε ≪ 1 and ‖p0‖ ≤ ε, then max(u,p)∈D2ε
‖H (u, p)‖ ≤

ε. Hence,

D2ε ∋
(

u

p

)

7→ H (u, p) +

(

0

p0

)

∈ D2ε,

and by the Brouwer fixed point theorem equation (5.1) has at least one solution.

6 Global λ-stable sets of orbits on M

In this section we analyze the geometrical structure of sets formed by motions approaching a

given orbit with exponential rate and having asymptotic phases.

Definition 6.1. For a given z ∈ M the set

W (z) :=
{

x ∈ D :
∥

∥χt (x)− χt (z)
∥

∥ = O
(

e−λt
)

, t → 0
}

is said to be (a global) λ-stable set of the point z. For a given z0 ∈ M, the set W (O(z0)) :=
⋃

z∈O(z0) W (z) is said to be (a global) λ-stable set of the orbit O(z0).

Theorem 6.2. Let system (2.1) satisfy conditions H1, H2, and let r and T be specified according to

Theorem 4.7. Then for every z0 ∈ M the λ-stable set for the orbit O(z0) has the following properties:

(a) the λ-stable set of any z ∈ O(z0) is an immersed into Rn differentiable manifold admitting the

representation W (z) =
⋃

k∈Z+
χ−kT

(

Wr

(

χkT (z)
))

;

(b) the foliation of W (O(z0)) by the family of manifolds {W (z)}z∈O(z0)
is χt-invariant, meaning

that

χt (W(z)) = W
(

χt(z)
)

∀t ∈ R;

(c) if the vector field v does not have singular points on M, then for every z ∈ O(z0) there is a

sufficiently small arc Oδ(z), 0 < δ ≪ 1, such that W (z1) ∩W (z2) = ∅ for any z1, z2 ∈
Oδ(z), and W (O(z0)) is an immersed into Rn topological manifold.

Proof. Let z ∈ O(z0) and x ∈ W (z). By the definition of W(z),

R = R (x, z) := sup
t≥0

eλt
∥

∥χt (x)− χt (z)
∥

∥ < ∞.

For a k ∈ Z+, define

xk := χkT (x) , zk := χkT (z) , ζk := Π(xk − zk), yk (t) := χt (xk)− χt (zk) .
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Then

‖ζk‖ ≤ sup
z∈O(z0)

‖Π‖ e−kTR ≤ max
z∈M

‖Π‖ e−kTR,

‖yk (t)‖ =
∥

∥

∥χt+kT (x)− χt+kT
∥

∥

∥ ≤ Re−λ(t+kT) ∀t ≥ 0,

and by Proposition 4.1 we have

ζk ∈ Wr(zk), yk (t) = y∗ (t, ζk) ,

provided that k is sufficiently large. Hence,

xk = zk + y∗ (0, ζk) ∈ Wr (zk) =⇒ x ∈ χ−kTWr

(

χkT(z)
)

,

and the last inclusion implies the required representation for W (z).

By Theorem 4.7, for any z ∈ O(z0), the set Wr (z) is a differentiable manifold and Wr (z) ⊂
χ−TWr

(

χT(z)
)

. Hence,

χ−kTWr

(

χkT(z)
)

⊂ χ−kT ◦ χ−TWr

(

χT ◦ χkT(z)
)

= χ−(k+1)TWr

(

χ(k+1)T(z)
)

,

and thus,

Wr (z) ⊂ · · · χ−kTWr

(

χkT(z)
)

⊂ χ−(k+1)TWr

(

χ(k+1)T(z)
)

⊂ · · ·= W (z) .

Now it is obvious that W (z) is a differentiable manifold. The proof of (a) is complete.

We proceed to assertion (b). Let x ∈ W (z) and t ∈ R. Then there are i, k ∈ Z+ such that

x ∈ χ−kTWr

(

χkT (z)
)

and iT + t ≥ T. Now we obtain

χt(x) ∈ χt−kT
(

Wr

(

χkT (z)
))

= χ−(k+i)T ◦ χiT+t
(

Wr

(

χkT (z)
))

⊂ χ−(k+i)T
(

Wr

(

χ(k+i)T ◦ χt (z)
))

⊂ W
(

χt(z)
)

.

Hence, χt (W (z)) ⊂ W
(

χt (z)
)

for all t ∈ R. But then W
(

χ−t(z)
)

⊂ χ−t (W (z)) for all

−t ∈ R. This completes the proof of (b).

The proof of assertion (c) is the same as in Theorem 4.7.

Corollary 6.3. A λ-stable set of O(z0) is generated by λ-stable set of z0, i.e.

W (O(z0)) =
⋃

t∈R

χt (W(z0)) .

7 Asymptotic phase for motions attracting by semi-invariant do-

mains

Let us consider a more general case where the system under consideration satisfies conditions

like H1, H2 not on the whole invariant manifold, but on some forward χt-semi-invariant

domain M+ ⊂ M. Namely,
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H1+ The tangent bundle TM+ splits into a continuous Whitney sum TM+ = Vs ⊕ V⋆ of

forward Xt-semi-invariant vector sub-bundles Vs = ∐z∈M+ Vs
z , V⋆ = ∐z∈M+ V⋆

z , and

there exist constants c0 ≥ 1, ν > 0, σ ∈ [0, ν) such that

∥

∥Xtξ
∥

∥ ≤ c0e−νt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ Vs, (7.1)
∥

∥Xtξ
∥

∥ ≥ c−1
0 e−σt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ V⋆. (7.2)

H2+ The natural projections

Ps : TM+ 7→ Vs, P⋆ : TM+ 7→ V⋆

are uniformly bounded.

H3+ There exists γ > σ such that

∥

∥PNXtPNξ
∥

∥ ≤ c0e−γt ‖ξ‖ ∀t ≥ 0, ∀ξ ∈ TM+.

It turns out that conditions H1+,H2+ imply a counterpart of inequalities (3.8), namely, there

exists a constant c+1 such that

∥

∥

∥
XtPs [X

τ]−1 PT

∣

∣

Tχτ(M+)

∥

∥

∥
≤ c+1 e−ν(t−τ), 0 ≤ τ ≤ t,

∥

∥

∥XtP⋆ [X
τ]−1 PT

∣

∣

Tχτ(M+)

∥

∥

∥ ≤ c+1 e−σ(t−τ), 0 ≤ t < τ.

E.g., derive the last inequality. Let 0 ≤ t < τ. For any ζ ∈ V⋆
∣

∣

χτ(M+)
define ξ = X−tζ. Then

(3.2) implies
∥

∥X−tζ
∥

∥ ≤ c0eσt ‖ζ‖ . Hence,

∥

∥Xt−τζ
∥

∥ ≤ c0e−σ(t−τ) ‖ζ‖ ∀ζ ∈ V⋆
∣

∣

χτ−t(M+)
, 0 ≤ t ≤ τ.

But V⋆
∣

∣

χτ(M+)
⊂ V⋆

∣

∣

χτ−t(M+)
, and thus, for any η ∈ Tχτ (M+), we obtain

∥

∥

∥XtP⋆[X
τ]−1η

∥

∥

∥ =
∥

∥XtX−τP⋆η
∥

∥ =
∥

∥Xt−τP∗η
∥

∥ ≤ c0e−σ(t−τ) ‖P∗η‖
≤ c+1 e−σ(t−τ) ‖η‖ , 0 ≤ t ≤ τ.

Now in our case, one can perform all steps analogous to those of Sections 3, 4. We first

observe that the projections Ps and P⋆ are uniformly bounded in M+ and satisfy counterparts

of inequalities (3.8) with constant c+1 instead of c1. Everywhere in what follows the mapping

[Xτ(z)]−1 will act on Tχτ(z)M+ with τ ≥ 0, z ∈ M+. In view of this fact and since

PTQ(τ)ξ ∈ Tχτ(z)M+ ∀z ∈ M+, ξ ∈ TzM+, τ ≥ 0,

then, for all t ≥ 0, η(t; ξ) is correctly defined via (3.12) and satisfies the inequality

‖η(t; ξ)‖ ≤ c3e−λt ‖ξ‖

with an appropriately redefined constant c3 > 0. Then, in the same way as in the proof of

Proposition 3.1, we define the mapping Ξ via (3.14), the projection Π and the corresponding

sub-bundle

W+ := Π
(

TM+ ⊕ NM+
)

.
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Note that Π is uniformly bounded in M+. To prove that W+ is forward semi-invariant, it

is sufficient to take into account that the Lyapunov exponent of
∥

∥XtXτ
∥

∥ does not exceed −λ

for any ξ ∈ W+ and t, τ ∈ R+ (but, in general case, not for all τ ∈ R and t ≥ −τ as in

Proposition 3.1). Now, as in Corollary 3.2, we obtain the estimates for
∥

∥XtΠ[Xτ]−1
∥

∥ and
∥

∥Xt (Id − Π) [Xτ]−1
∥

∥ with appropriately redefined constant K.

Next, in Section 4, up to Proposition 4.2 we need to replace M, W,Mr with M+, W+,M+
r

respectively. As a consequence, Wr, Ur will be replaced by W+
r , U+

r . The proofs of counterparts

to Propositions 4.1–4.4 need no changes, except that starting from Proposition 4.2 the constants

C and r should be found via the relevant inequalities, e.g. (4.5), (4.7), involving redefined

constant K. As a result, for any z ∈ M+, we are able to define the sets

W+
r (z) := z + y∗

(

0, W+
r (z)

)

, U+
r (z) := z + y∗

(

0, U+
r (z)

)

,

where

W+
r (z) := W+

r ∩ π−1(z), U+
r (z) := U+

r ∩ π−1(z).

Since M+ is forward semi-invariant, then for any z0 ∈ M+, it is natural to define the

phase curve

O+(z0) := O(z0) ∩M+

which includes all points of orbit O(z0) containing in M+. And since M+ is open, then there

exists ǫ(z0) > 0 such that

⋃

−ǫ(z0)<t<∞

{

χt(z0)
}

⊂ O+(z0) ⊂ M+.

Finally, we define the local λ-stable set of the phase curve O+ (z0) as

Wr

(

O+ (z0)
)

:=
⋃

z∈O+(z0)

W+
r (z) .

Now the assertions (a), (b), (c) of Theorem 4.7 as well as their proofs remain correct for every

z0 ∈ M+ after we replace M,O (z0) , W,W with M+,O+ (z0) , W+,W+ respectively. As a

consequence, we obtain the following counterpart of Theorem 5.1.

Theorem 7.1. Let system (2.1) satisfy conditions H1+ – H3+ in a forward χt-semi-invariant domain

M+ ⊂ M. Then there exists ε > 0 such that a motion t 7→χt (x) has an asymptotic phase, provided

that O (x) ∩ NM+
ε 6= ∅, where NM+

ε is a portion of the tubular neighborhood NMε over M+.

Now let us apply Theorem 7.1 to each forward semi-invariant domain χ−k (M+). Then we

obtain a sequence of positive numbers {εk} and the corresponding sequence of sets
{

NM+
εk

}

.

Next define χt-invariant domains in M and Rn respectively

M′ :=
⋃

k∈N

χ−k
(

M+
)

, D′ =
⋃

t≥0

χ−t

(

⋃

k∈N

NM+
εk

)

.

Finally we arrive at the following result

Theorem 7.2. Let system (2.1) satisfy conditions H1+–H3+ in a forward χt-semi-invariant domain

M+ ⊂ M. Then for any x ∈ D′ the motion t 7→ χt (x) has an asymptotic phase in M′.
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8 A system on cotangent bundle of a compact homogeneous space

SL(2; R)/Γ

Consider a (right) homogeneous space Q =: G/Γ := {q = GΓ : G ∈ G} where G := SL(2; R)

and Γ is a discrete subgroup of G such that Q is compact. As is well known, homogeneous

spaces of such a kind are naturally associated with compact Riemannian surfaces of constant

negative curvature, and the geodesic flows on such surfaces are classical examples of Anosov

dynamical systems [1, 2, 5, 30]. We aims to apply the results of previous sections to a specific

system defined on cotangent bundle T∗Q. To obtain such a system, we first construct an

appropriate right-invariant system on cotangent bundle T∗G and then factorize it by the right

action of the lattice Γ.

Recall that the group G generates a Poissonian action on T∗G (see [3]). Namely, let Λ be

the Liouville 1-form (“pdq”-form) on T∗G. The exact 2-form ω2 := dΛ defines a standard

symplectic structure on T∗G. For any A ∈ g := sl(2, R), denote by AG := d
dt

∣

∣

t=0
eAtG the

right-invariant vector field generating the left action of one-parameter subgroup
{

eAt
}

on G.

There is a natural lift of this action to T∗G as the flow of Hamiltonian system with right

invariant Hamiltonian function

ha(x) = Λ (Aπ (x)) , x ∈ T∗G,

where π : T∗G 7→ G is the natural projection. For any A, B ∈ g, the Poisson bracket of

Hamiltonians hA(·), hB(·) satisfies

{hA, hB} (x) := ω (Aπ(x), Aπ(x)) = h[A,B](x), x ∈ T∗G,

meaning that G-action on T∗G is Poissonian. Let m(·) : T∗G 7→ g∗ be the corresponding

momentum map, thus m(x)A := hA(x). Choose a standard base in g represented, respectively,

by the matrices

A1 :=

(

0 1

−1 0

)

, A2 :=

(

1 0

0 −1

)

, A3 :=

(

0 1

1 0

)

,

and define the corresponding components of co-vector m(x) by setting

mk(x) := m(x)Ak, k ∈ {1, 2, 3} .

Since

[A1, A2] = −2A3, [A1, A3] = 2A2, [A2, A3] = 2A1,

then

{m1, m2} = −2m3, {m1, m3} = 2m2, {m2, m3} = 2m1 (8.1)

The diffeomorphism

T∗G ∋ x 7→ (m(x), π(x)) ∈ g∗ ×G

induces a Poissonian structure on g∗ × G such that the brackets
{

mi, mj

}

satisfy (8.1), the

bracket of any pair of functions fi(·), f j(·) : G 7→ R equals zero, and

{G, mk} = AkG, (8.2)

meaning that G-component of Hamiltonian vector field with Hamiltonian function mk is the

right-invariant vector field AkG.
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Now introduce a Hamiltonian of the form

H(m) :=
1

2

3

∑
k=1

λkm2
k

where λ1, λ2, λ3, are given positive numbers. The corresponding Hamiltonian system on g∗ ×
G reads

ṁ = {m, H(m)} , (8.3)

Ġ =
3

∑
k=1

λkmk AkG. (8.4)

Here

{m, H(m)} :=





{m1, H(m)}
{m2, H(m)}
{m3, H(m)}



 ≡




2 (λ3 − λ2)m2m3

2 (λ1 + λ3)m1m3

−2 (λ1 + λ2)m1m2



 .

Note that H(m) in a standard way defines a right-invariant metrics 〈·, ·〉 on G, and thus, one

can consider system (8.3)–(8.4) as the Hamiltonian form of Lagrangian system for geodesics

on G.

It is easily seen that, except H(m), system (8.3) has an additional first integral (the Casimir

function for the Poisson bracket on g∗)

J(m) = m2
1 − m2

2 − m2
3.

If we consider sub-system (8.3) in g∗, then for any constants c1 and c2 satisfying

min {c1 − λ1c2, c1 + λ2c2, c1 + λ3c2} > 0

the set H−1(c1) ∩ J−1(c2) is a union of two closed phase curves. Let C be one of such curves,

and c0
1, c0

2 be the corresponding values of the constants. There is a tubular neighborhood W
of C that is diffeomorphic to a direct product D × S1 where D ⊂ R2 is a disc centered at the

origin and S1 = R/Z. The set W is foliated by closed phase curves of system (8.3). By means

of an appropriate diffeomorphism µ (·) : S1 × D 7→ W one can introduce an action-angular-

type coordinates (y1, y2, θ| mod 1) in D × S1 in such a way that the following relations are

satisfied

y1 = H(m)− c0
1, y2 = J(m)− c0

2,

H ◦ µ(θ, y) = y1 + c0
1, J ◦ µ(θ, y) = y2 + c0

2,

{θ, y1} = ω(c0 + y), {θ, y2} = 0.

Here ω(c) > 0 is a frequency of periodic motion over the closed phase curve given by the

equation m = µ (θ, c), and thus, being a component of H−1(c1) ∩ J−1(c2).

Now, instead of (8.3), consider a system

ṁ = {m, H(m)}+ F (m) (8.5)

with a perturbation term F (m) under the impact of which the cycle C becomes asymptotically

stable. For example, if we set

F (m) :=− ε
[

(H(m)− c0
1) ‖∇J(m)‖2 − (J(m)− c0

2) 〈∇H(m),∇J(m)〉
]

∇H(m)

− ε
[

(J(m)− c0
2) ‖∇H(m)‖2 − (H(m)− c0

1) 〈∇H(m),∇J(m)〉
]

∇J(m) (8.6)
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where ε is a (small) positive parameter, then the derivative of the Lyapunov function

U(m) :=
(

H(m)− c0
1

)

2 +
(

J(m)− c0
2

)

2

by virtue of system (8.5) is

U̇(m) = −εU(m)
[

‖∇H(m)‖2 ‖∇J(m)‖2 − 〈∇H(m),∇J(m)〉2
]

.

Hence, both U(·) and U̇(·) vanish along C. Furthermore, since

min
m∈C

{

‖∇H(m)‖2 ‖∇J(m)‖2 − 〈∇H(m),∇J(m)〉2
}

> 0,

then there is κ > 0 such that the inequality

U̇(m) ≤ −εκU(m) (8.7)

is satisfied in W , provided that this tubular neighborhood is sufficiently small. This inequality

ensures the exponential stability of C as a limit cycle of perturbed system (8.5). In fact, note

that in the coordinates (y, θ) system (8.5) can be presented in the form

ẏ = P(θ)y + O(‖y‖2), θ̇ = ω
(

c0
)

+
〈

∇ω
(

c0
)

+ b(θ), y
〉

+ O(‖y‖2) (8.8)

with a 1-periodic (2 × 2)-matrix P(·) and 2-vector b(·), and on account of (8.7) the derivative

of the function U ◦ µ
(

θ, c0 + y
)

= ‖y‖2 by virtue of this system does not exceed −εκ ‖y‖2.

Furthermore, the derivative of ‖y‖2 by virtue of linearized system

ẏ = P(θ)y, θ̇ = ω
(

c0
)

(8.9)

is 2 〈P(θ)y, y〉, and thus, does not exceed −εκ ‖y‖2 /2, provided W is small enough. (Note

that that the last system generates the normal co-cycle associated with the flow on C.) The

obtained inequalities imply that y- components of solutions starting in W of both systems (8.8)

and (8.9) vanish with exponential rate as t → ∞.

To find stable limit cycles of system (8.5) in the case where F is a small vector field of

general kind one can apply the well developed perturbation theory of periodic solutions (see

e.g. [18]).

Now, after we have established that C is exponentially stable limit cycle of system (8.5),

we proceed to analyze the structure of the flow generated by system (8.5) – (8.4) (or, what is

the same, of system (8.3) – (8.4)) on its invariant manifold C ×G. Since the motion of a point

m0 = µ(θ) := µ
(

c0, θ
)

on C is given by t 7→ µ (ωt + θ), ω := ω
(

c0
)

, we arrive at the linear

system with 1
ω -periodic coefficients

Ġ = A(ωt + θ)G (8.10)

where

A(θ) :=

[

3

∑
k=1

λkµk (θ) Ak

]

(8.11)

Let G t(θ) stands for a fundamental matrix of (8.10) such that G0(θ) = Id. Thus, the motion of

arbitrary point (µ(θ), G) ∈ C ×G in virtue of system (8.3)–(8.4) is governed by the mapping

t 7→
(

µ(ωt + θ),G t(θ)G
)

.
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Then for any a ∈ R and B ∈ sl(2; R), the motion of tangent vector (aµ′(θ), BG) under the

action of the corresponding tangent co-cycle is governed by the mapping

t 7→
(

aµ′(ωt + θ), a
[

G t(θ)
]′

θ
G + G t(θ)BG

)

. (8.12)

The co-cycle property of G t(θ) yields

G t+s(θ) = G t(ωs + θ)Gs(θ) =⇒ G t(θ) = G t+θ/ω(0)
[

Gθ/ω(0)
]−1

, (8.13)

∂

∂s

∣

∣

∣

s=0
G t+s(θ) =

∂

∂s

∣

∣

∣

s=0
G t(ωs + θ)Gs(θ) =⇒ ∂

∂t
G t(θ) = ω

[

G t(θ)
]′

θ
+ G t(θ)A(θ). (8.14)

Now we see that the tangent bundle of C ×G splits into two invariant sub-bundles: the first

one is spanned by the vector field of the flow (ωµ′(θ), A(θ)G) (on account of (8.12), (8.14) this

fact is also the consequence of (8.12) and (8.14) for a = ω, B = A(θ)), and the second one is

naturally identified with the tangent bundle TG by the correspondence (µ(θ), G) 7→ (0, TGG).

Thus, it remains to analyze properties of the tangent co-cycle action on TGG.

In what follows, we will focus on the hyperbolic case where the monodromy matrix M :=

G1/ω(0) has real eigenvalues (the Floquet multipliers) ρ1 = ρ and ρ2 = ρ−1, |ρ| > 1. Numerical

experiments show that this case actually takes place for an appropriate range of parameters

λ1, λ2, λ3 and c0, c1. E.g., in particular case where λ1 = 3/2; λ2 = 3; λ3 = 3/2, m1(0) ≡ 4/5,

m2(0) = 1, m3(0) = 0, and thus, c0
1 = 3.96, c0

2 = −0.36, we obtain

M ≈
(−6.84081991830724 2.57720475804614

−2.57720426780894 0.82475266189202

)

, ρ ≈ −5.84498051556855.

By the Floquet theorem, there exists a mapping Φ(·) : R 7→ SL(2; R) such that

Φ(θ + 1) = sign ρΦ(θ), G t(0) = Φ(ωt)eLt

where L := ω ln (sign ρM) ∈ sl(2; R). Now (8.13) implies

G t(θ)BG = Φ(ωt + θ)eLtΦ−1(θ)BG

= Φ(ωt + θ)
[

eLtΦ−1(θ)BΦ (θ) e−Lt
]

eLtΦ−1(θ)G.

We see that the properties of the tangent co-cycle action on TGG are completely determined

by the adjoint action of the one-parameter sub-group
{

eLt
}

on g, and thus, by the spectrum

of the corresponding operator adL : g 7→ g, adL A := LA − AL. It is not hard to calculate

σ (adL) =
{

0, 2
√
−det L,−2

√
−det L

}

=
{

0, ln ρ2,− ln ρ2
}

.

Now consider a system on T∗Q obtained by factorization of system (8.5)–(8.4)

ṁ = {m, H(m)}+ F (m) , q̇ = Q(m, q), (8.15)

where q ∈ Q, and Q(m, q) = d
dt

∣

∣

t=0
exp

(

∑
3
k=1 λkmk Ak

)

q. The above reasoning implies that

this system has 4-D compact exponentially stable invariant manifold M = C ×Q. The tangent

bundle TM admits invariant splitting into a Whitney sum Vs ⊕Vc ⊕Vu of three sub-bundles:

1-D stable Vs, 1-D unstable Vu, and 2-D center Vc (every co-cycle orbit on Vc is bounded).

To show that any motion starting close to M has an asymptotic phase we are going to apply

Theorem 5.1. It should be noted that the mentioned theorem concerns systems situated in



26 A. Luchko and I. Parasyuk

Euclidean spaces. Hence, we have to embed system (8.15) into an auxiliary system possessing

the same exponentially stable invariant manifold M and defined in a domain of Euclidean

space.

Since Q is parallelizable, then it is a π-manifold [24], and thus, Q can be embedded in a

Euclidean space Rd of a sufficiently high dimension d with trivial normal bundle NQ ∼ Q×
Rd−3. Hence, for sufficiently small δ > 0, there exists a diffeomorphism ψ(·) of Q×Bd−3

δ (0)**

onto a tubular neighborhood of Q in Rd such that ψ
(

{q} × Bd−3
δ (0)

)

⊂ NqQ for any q ∈ Q.

Finally, to obtain the required auxiliary system we embed the system

ṁ = {m, H(m)}+ F (m) , q̇ = Q(m, q), y = −y

into R3 × Rd by means of the diffeomorphism id (·)× ψ(·) :R3 ×Q×Bd−3
δ (0) 7→ R3 × Rd.

9 Conclusion

In order to simplify our exposition we restrict ourselves to the case where the invariant man-

ifold is situated in Euclidean space. Actually, this is not a serious restriction. If we deal with

a system defined on a manifold M and M is an attracting invariant submanifold, than we

can apply the same trick as in Section 8. Namely, we have to embed the manifold M into Eu-

clidean space of sufficiently high dimension d and to extend the initial system to an auxiliary

d-dimensional system such that its domain is a neighborhood of M in Rd and its motions are

attracted by M.

It would be interesting to consider the case where the attracting invariant manifold admits

a partition into subsets with different types of partial hyperbolicity. Just this case can happen

when, for an appropriate perturbation F(·), the attracting manifold of system (8.5) is some

level set of the Hamiltonian. We expect that in such a situation, to tackle the problem on the

existence of asymptotic phase, the results of Section 7 might be useful.
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Abstract. In this paper, we study the existence of ground state sign-changing solutions
for the following fourth-order elliptic equations of Kirchhoff type with critical exponent.
More precisely, we consider







∆2u −
(

1 + b
∫

Ω
|∇u|2dx

)

∆u = λ f (x, u) + |u|2∗∗−2u in Ω,

u = ∆u = 0 on ∂Ω,

where ∆2 is the biharmonic operator, N = {5, 6, 7}, 2∗∗ = 2N/(N − 4) is the Sobolev
critical exponent and Ω ⊂ R

N is an open bounded domain with smooth boundary and
b, λ are some positive parameters. By using constraint variational method, topologi-
cal degree theory and the quantitative deformation lemma, we prove the existence of
ground state sign-changing solutions with precisely two nodal domains.

Keywords: Kirchhoff type problem, fourth-order elliptic equation, critical growth, sign-
changing solution.
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1 Introduction and main results

In this paper, we are interested in the existence of least energy nodal solutions for the following

Kirchhoff-type fourth-order Laplacian equations with critical growth:






∆2u −
(

1 + b
∫

Ω
|∇u|2dx

)

∆u = λ f (x, u) + |u|2∗∗−2u in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where ∆2 is the biharmonic operator, N = {5, 6, 7}, 2∗∗ = 2N/(N − 4) is the Sobolev critical

exponent, Ω ⊂ R
N is an open bounded domain with smooth boundary, and b, λ are some

positive parameters.
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Emails: liangsihua@163.com (S. Liang), zhangbinlin2012@163.com (B. Zhang).
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Now we introduce the assumptions on the function f that will in full force throughout the

paper. More precisely, we suppose that f ∈ C1(R, R) satisfies the following conditions:

( f1) limt→0
f (x,t)
|t|3 = 0;

( f2) There exist θ ∈ (4, 2∗∗) and C > 0 such that | f (x, t)| ≤ C(1 + |t|θ−1) for all t ∈ R;

( f3)
f (x,t)
|t|3 is a strictly increasing function of t ∈ R \ {0}.

A simple example of function satisfying the above assumptions ( f1)–( f3) is f (t) = t|t|θ−2 for

any t ∈ R, where θ ∈ (4, 2∗∗).
Our motivation for studying problem (1.1) is two-fold. On the one hand, there is a vast

literature concerning the existence and multiplicity of solutions for the following Dirichlet

problem of Kirchhoff type







−
(

a + b
∫

Ω
|∇u|2dx

)

∆u = f (x, u) x ∈ Ω,

u = 0 x ∈ ∂Ω.
(1.2)

Problem (1.2) is a generalization of a model introduced by Kirchhoff. More precisely, Kirchhoff

proposed a model given by the equation

ρ
∂2u

∂t2
−
(

ρ0

h
+

E

2L

∫ L

0

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dx

)

∂2u

∂x2
= 0, (1.3)

where ρ, ρ0, h, E, L are constants, which extends the classical d’Alembert’s wave equation, by

considering the effects of the changes in the length of the strings during the vibrations. The

problem (1.2) is related to the stationary analogue of problem (1.3). Problem (1.2) received

much attention only after Lions [17] proposed an abstract framework to the problem. For

example, some important and interesting results can be found in [5, 9, 10, 12–14, 16, 25, 26, 39].

We note that the results dealing with the problem (1.2) with critical nonlinearity are relatively

scarce. The main difficulty in the study of these problems is due to the lack of compactness

caused by the presence of the critical Sobolev exponent.

Recently, many researchers devoted themselves to the following fourth-order elliptic equa-

tions of Kirchhoff type







∆2u −
(

a + b
∫

Ω
|∇u|2dx

)

∆u = f (x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.
(1.4)

In fact, this is related to the following stationary analogue of the Kirchhoff-type equation:

utt + ∆
2u −

(

a + b
∫

Ω

|∇u|2dx

)

∆u = f (x, u), x ∈ Ω, (1.5)

where a, b > 0. In [2,4], Eq. (1.5) was used to describe some phenomena appearing in different

physical, engineering and other sciences for dimension N ∈ {1, 2}, as a good approximation

for describing nonlinear vibrations of beams or plates. Different approaches have been taken

to deal with this problem under various hypotheses on the nonlinearity. For example, Ma

in [21] considered the existence and multiplicity of positive solutions for the fourth-order
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equation by using the fixed point theorems in cones of ordered Banach spaces. By variational

methods, Wang and An in [34] studied the following fourth-order equation of Kirchhoff type






∆2u − M
(∫

Ω
|∇u|2dx

)

∆u = f (x, u), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(1.6)

and obtained the existence and multiplicity of solutions, see [19, 20, 34] for more results. For

M(t) = λ(a + bt), Wang et al. in [35] proved the existence of solutions for problem (1.6) as λ

small, by employing the mountain pass theorem and the truncation method. In [30], Song and

Shi obtained the existence and multiplicity of solutions for problem (1.6) critical exponent in

bounded domains by using the concentration-compactness principle and variational method.

In [41], by variational methods together with the concentration-compactness principle, Zhao

et al. investigated the existence and multiplicity of solutions for problem (1.6) with critical

nonlinearity. In [15], by using the same method as in [41], Liang and Zhang obtained the

existence and multiplicity of solutions for perturbed biharmonic equation of Kirchhoff type

with critical nonlinearity in the whole space.

On the other hand, many authors paid attention to finding sign-changing solutions for

problem (1.2) or similar Kirchhoff-type equations, and consequently some interesting results

have been obtained recently. For example, Zhang and Perera in [40] and Mao and Zhang

in [23] used the method of invariant sets of descent flow to obtain the existence of a sign-

changing solution of problem (1.2). In [7], Figueiredo and Nascimento studied the following

Kirchhoff equation of type:






−M
(∫

Ω
|∇u|2dx

)

∆u = f (u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.7)

where Ω is a bounded domain in R
3, M is a general C1 class function, and f is a superlinear C1

class function with subcritical growth. By using the minimization argument and a quantitative

deformation lemma, the existence of a sign-changing solution for this Kirchhoff equation

was obtained. In unbounded domains, Figueiredo and Santos Júnior in [8] studied a class

of nonlocal Schrödinger–Kirchhoff problems involving only continuous functions. Using a

minimization argument and a quantitative deformation lemma, they got a least energy sign-

changing solution to Schrödinger–Kirchhoff problems. Moreover, the authors obtained that

the problem has infinitely many nontrivial solutions when it presents symmetry.

It is worth mentioning that combining constraint variational methods and quantitative de-

formation lemma, Shuai in [29] proved that problem (1.2) has one least energy sign-changing

solution ub and the energy of ub strictly larger than the ground state energy. Moreover, the

author investigated the asymptotic behavior of ub as the parameter b ց 0. Later, under some

more weak assumptions on f (especially, Nehari type monotonicity condition been removed),

with the aid of some new analytical skills and Non-Nehari manifold method, Tang and Cheng

in [32] improved and generalized some results obtained in [29]. In [6], Deng et al. studied the

following Kirchhoff-type problem:

−
(

a + b
∫

R3
|∇u|2dx

)

∆u + V(x)u = f (x, u), x ∈ R
3. (1.8)

The authors obtained the existence of radial sign-changing solutions with prescribed numbers

of nodal domains for Kirchhoff problem (1.8), by using a Nehari manifold and gluing solu-

tion pieces together, when V(x) = V(|x|), f (x, u) = f (|x|, u) and satisfies some assumtions.
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Precisely, they proved the existence of a sign-changing solution, which changes signs exactly

k times for any k ∈ N. Moreover, they investigated the energy property and the asymptotic

behavior of the sign-changing solution. By using a combination of the invariant set method

and the Ljusternik-Schnirelman type minimax method, Sun et al. in [31] obtained infinitely

many sign-changing solutions for Kirchhoff problem (1.8) when f (x, u) = f (u) and f is odd in

u. It is worth noticing that, in [31], the nonlinear term may not be 4-superlinear at infinity; In

particular, it encloses the power-type nonlinearity |u|p−2u with p ∈ (2, 4]. In [33], the authors

obtained the existence of least energy sign-changing solutions of Kirchhoff-type equation with

critical growth by using the constraint variational method and the quantitative deformation

lemma. For more results on sign-changing solutions for Kirchhoff-type equations, we refer

the reader to [6, 11, 18, 22, 36] and the references therein.

However, concerning the existence of sign-changing solutions for fourth-order elliptic

equations of Kirchhoff type with critical exponent, to the best of our knowledge, so far there

has been no paper in the literature where existence of sign-changing solutions to problem

(1.1). Hence, a natural question is whether or not there exists sign-changing solutions of

problem (1.1)? The goal of the present paper is to give an affirmative answer.

Let Ω ⊂ R
N be a bounded smooth open domain, E = H2(Ω)∩ H1

0(Ω) be the Hilbert space

equipped with the inner product

〈u, v〉E =
∫

Ω

(∆u∆v +∇u∇v)dx

and the deduced norm

‖u‖2
E =

∫

Ω

(|∆u|2 + |∇u|2)dx.

It is well know that ‖u‖E is equivalent to

‖u‖ :=

(

∫

Ω

|∆u|2dx

)
1
2

.

And there exists τ > 0 such that

‖u‖ ≤ ‖u‖E ≤ τ‖u‖.

For the weak solution, we mean the one satisfies the following definition.

Definition 1.1. We say that u ∈ E is a (weak) solution of problem (1.1) if

∫

Ω

(∆u · ∆v +∇u∇v) dx + b

(

∫

Ω

|∇u|2dx

)

∫

Ω

∇u · ∇vdx

=
∫

Ω

(

|u|2∗∗−2uv + λ f (x, u)v
)

dx (1.9)

for any v ∈ E.

The corresponding energy functional Iλ
b : E → R to problem (1.1) is defined by

Iλ
b (u) =

1

2

∫

Ω

(

|∆u|2 + |∇u|2
)

dx +
b

4

(

∫

Ω

|∇u|2dx

)2

− λ
∫

Ω

F(x, u)dx − 1

2∗∗

∫

Ω

|u|2∗∗dx.

(1.10)
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It is easy to see that Iλ
b belongs to C1(E, R) and the critical points of Iλ

b are the solutions of

(1.1). Furthermore, if we write u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0} for u ∈ E,

then every solution u ∈ E of problem (1.1) with the property that u± 6= 0 is a sign-changing

solution of problem (1.1).

Our goal in this paper is then to seek for the least energy sign-changing solutions of

problem (1.1). As well known, there are some very interesting studies, which studied the

existence and multiplicity of sign-changing solutions for the following problem:

− ∆u + V(x)u = f (x, u), x ∈ Ω, (1.11)

where Ω is an open subset of R
N . However, these methods of seeking sign-changing solutions

heavily rely on the following decompositions:

J(u) = J(u+) + J(u−), (1.12)

〈J′(u), u+〉 = 〈J′(u+), u+〉, 〈J′(u), u−〉 = 〈J′(u−), u−〉, (1.13)

where J is the energy functional of (1.11) given by

J(u) =
1

2

∫

Ω

(|∇u|2 + V(x)u2)dx −
∫

Ω

F(x, u)dx.

However, if b > 0, the energy functional Iλ
b does not possess the same decompositions as (1.12)

and (1.13). In fact, a straightforward computation yields that

Iλ
b (u) > Iλ

b (u
+) + Iλ

b (u
−),

〈(Iλ
b )

′(u), u+〉 > 〈(Iλ
b )

′(u+), u+〉 and 〈(Iλ
b )

′(u), u−〉 > 〈(Iλ
b )

′(u−), u−〉
for u± 6= 0. Therefore, the classical methods to obtain sign-changing solutions for the local

problem (1.11) do not seem applicable to problem (1.1). In this paper, we follow the approach

in [3] by defining the following constrained set

Mλ
b =

{

u ∈ E, u± 6= 0 and 〈(Iλ
b )

′(u), u+〉 = 〈(Iλ
b )

′(u), u−〉 = 0
}

(1.14)

and considering a minimization problem of Iλ
b on Mλ

b . Indeed, by using the parametric

method and implicit theorem, Shuai in [29] proved Mλ
b 6= ∅ in the absence of the nonlocal

term. However, the nonlocal term in problem (1.1), consisting of the biharmonic operator and

the nonlocal term will cause some difficulties. Roughly speaking, compared to the general

Kirchhoff type problem (1.2), decompositions (1.12) and (1.13) corresponding to Iλ
b are much

more complicated. This results in some technical difficulties during the proof of the nonempty

of Mλ
b . Moreover, we find that the parametric method and implicit theorem are not applicable

for problem (1.1) due to the complexity of the nonlocal term there. Therefore, our proof is

based on a different approach which is inspired by [1], namely, we make use of a modified

Miranda’s theorem (cf. [24]). In addition, we are also able to prove that the minimizer of the

constrained problem is also a sign-changing solution via the quantitative deformation lemma

and degree theory.

Now we can present our first main result.

Theorem 1.2. Assume that ( f1)–( f3) hold. Then, there exists λ∗
> 0 such that for all λ ≥ λ∗,

problem (1.1) has a least energy sign-changing solution ub.
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Another goal of this paper is to establish the so-called energy doubling property (cf. [37]),

i.e., the energy of any sign-changing solution of problem (1.1) is strictly larger than twice

the ground state energy. For the semilinear equation problem (1.13), the conclusion is trivial.

Indeed, if we denote the Nehari manifold associated to problem (1.13) by

N =
{

u ∈ E \ {0} | 〈J′(u), u〉 = 0
}

and define

c = inf
u∈N

J(u) (1.15)

then it is easy to verify that u± ∈ N for any sign-changing solution u ∈ E for problem (1.13).

Moreover, if the nonlinearity f (x, t) satisfies some conditions (see [3]) which is analogous to

( f1)–( f3), we can deduce that

J(w) = J(w+) + J(w−) ≥ 2c. (1.16)

We point out that the minimizer of (1.14) is indeed a ground state solution of problem (1.11)

and c > 0 is the least energy of all weak solutions of problem (1.11). Therefore, by (1.15), it

follows that the energy of any sign-changing solution of problem (1.11) is larger than twice the

least energy. When b > 0, a similar result was obtained by Shuai [29] in a bounded domain Ω.

We are also interested in that whether property (1.15) is still true for problem (1.1). To answer

this question, we have the following result:

Theorem 1.3. Assume that ( f1)–( f3) hold. Then, there exists λ∗∗
> 0 such that for all λ ≥ λ∗∗, the

c∗ := infu∈N λ
b

Iλ
b (u)> 0 is achieved and Iλ

b (u)> 2c∗, where N λ
b = {u ∈ E \ {0} | 〈(Iλ

b )
′(u), u〉 = 0}

and u is the least energy sign-changing solution obtained in Theorem 1.2. In particular, c∗ > 0 is

achieved either by a positive or a negative function.

The plan of this paper is as follows: Section 2 covers the proof of the achievement of least

energy for the constraint problem (1.1), Section 3 is devoted to the proof of our main theorems.

Throughout this paper, we use standard notations. For simplicity, we use ” → ” and

” ⇀ ” to denote the strong and weak convergence in the related function space respectively.

Various positive constants are denoted by C and Ci. We use “:=” to denote definitions and

Br(x) := {y ∈ R
N | |x − y| < r}. We denote a subsequence of a sequence {un} as {un} to

simplify the notation unless specified.

2 Some technical lemmas

Now, fixed u ∈ E with u± 6= 0, we define function ψu : [0, ∞) × [0, ∞) → R and mapping

Tu : [0, ∞)× [0, ∞) → R
2 by

ψu(α, β) = Iλ
b (αu+ + βu−) (2.1)

and

Tu(α, β) =
(

〈(Iλ
b )

′(αu+ + βu−), αu+〉, 〈(Iλ
b )

′(αu+ + βu−), βu−〉
)

. (2.2)

Lemma 2.1. Assume that ( f1)–( f3) hold, if u ∈ E with u± 6= 0, then there is the unique maximum

point pair (αu, βu) of the function ψ such that αuu+ + βuu− ∈ Mλ
b .
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Proof. Our proof will be divided into three steps.

Step 1. For any u ∈ E with u± 6= 0, in the following, we will prove the existence of αu and βu.

From ( f1) and ( f2), for any ε > 0, there is Cε > 0 such that

| f (x, t)| ≤ ε|t|+ Cε|t|θ−1 for all t ∈ R. (2.3)

Then, by the Sobolev embedding theorem, we have that

〈(Iλ
b )

′(αu+ + βu−), αu+〉
≥ α2‖u+‖2 + bα4‖u+‖4 + bα2β2‖u+‖2‖u−‖2

− λα2ε
∫

Ω

|u+|2dx − λCεα
θ
∫

Ω

|u+|θdx − α2∗∗
∫

Ω

|u|2∗∗dx

≥ α2‖u+‖2 + bα4‖u+‖4 − λα2εC1‖u+‖2 − λCεα
θC2‖u+‖θ − C3α2∗∗‖u+‖2∗∗

= (1 − λεC1) α2‖u+‖2 + bα4‖u+‖4 − λCεα
θC2‖u+‖θ − C3α2∗∗‖u+‖2∗∗ .

Choose ε > 0 such that (1 − λεC1) > 0. Since 2∗∗, θ > 4, we have that 〈(Iλ
b )

′(αu+ +

βu−), αu+〉 > 0 for α small enough and all β ≥ 0.

Similarly, we obtain that 〈(Iλ
b )

′(αu+ + βu−), βu−〉 > 0 for β small enough and all α ≥ 0.

Therefore, there exists δ1 > 0 such that

〈(Iλ
b )

′(δ1u+ + βu−), δ1u+〉 > 0, 〈(Iλ
b )

′(αu+ + δ1u−), δ1u−〉 > 0 (2.4)

for all α, β ≥ 0.

On the other hand, by ( f2) and ( f3), we have that

f (x, t)t > 0, t 6= 0; F(x, t) ≥ 0, t ∈ R. (2.5)

In fact, by ( f2) and ( f3), we obtain that f (x, t) > 0(< 0) for t > 0(< 0) and almost every

x ∈ Ω. Moreover, by ( f2) and continuity of f , it follows that f (x, 0) = 0 for almost every

x ∈ Ω. Therefore, F(x, t) ≥ 0 for t ≥ 0 and almost every x ∈ Ω.

If t < 0, by ( f3), we have

F(x, t) =
∫ t

0

f (x, s)

s3
s3ds ≥ f (x, t)

t3

∫ t

0
s3ds =

1

4
f (x, t)t > 0, a.e. x ∈ Ω,

since t ≤ s < 0 and f (x, t) < 0 for a.e. x ∈ Ω.

From the above arguments, we conclude that (2.5) holds.

Therefore, choose α = δ∗2 > δ1, if β ∈ [δ1, δ∗2 ] and δ∗2 is large enough, it follows that

〈(Iλ
b )

′(δ∗2 u+ + βu−), δ∗2 u+〉
≤ τ(δ∗2 )

2‖u+‖2 + b(δ∗2 )
4‖u+‖4 + b(δ∗2 )

4‖u+‖2‖u−‖2 − (δ∗2 )
2∗∗
∫

Ω

|u+|2∗∗dx ≤ 0.

Similarly, we have that

〈(Iλ
b )

′(αu+ + δ∗2 u−), δ∗2 u−〉
≤ τ(δ∗2 )

2‖u−‖2 + b(δ∗2 )
4‖u+‖4 + b(δ∗2 )

4‖u+‖2‖u−‖2 − (δ∗2 )
2∗∗
∫

Ω

|u−|2∗∗dx ≤ 0.

Let δ2 > δ∗2 be large enough, we obtain that

〈(Iλ
b )

′(δ∗2 u+ + βu−), δ∗2 u+〉 < 0 and 〈(Iλ
b )

′(αu+ + δ∗2 u−), δ∗2 u−〉 < 0 (2.6)
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for all α, β ∈ [δ1, δ2].

Combining (2.4) and (2.6) with Miranda’s theorem [24], there exists (αu, βu) ∈ (0,+∞)×
(0,+∞) such that Tu(α, β) = (0, 0), i.e., αu+ + βu− ∈ Mλ

b .

Step 2. In this step, we prove the uniqueness of the pair (αu, βu).

• Case u ∈ Mλ
b .

If u ∈ Mλ
b , we have that

‖u+‖2
E + b‖u+‖4 + b‖u+‖2‖u−‖2 = λ

∫

Ω

f (x, u+)u+dx +
∫

Ω

|u+|2∗∗dx (2.7)

and

‖u−‖2
E + b‖u−‖4 + b‖u+‖2‖u−‖2 = λ

∫

Ω

f (x, u−)u−dx +
∫

Ω

|u−|2∗∗dx. (2.8)

We show that (αu, βu) = (1, 1) is the unique pair of numbers such that αuu+ + βuu− ∈ Mλ
b .

Let (α0, β0) be a pair of numbers such that α0u+ + β0u− ∈ Mλ
b with 0 < α0 ≤ β0. Hence,

one has that

α2
0‖u+‖2

E + bα4
0‖u+‖4 + bα2

0β2
0‖u+‖2‖u−‖2 = λ

∫

Ω

f (x, α0u+)α0u+dx + α2∗∗
0

∫

Ω

|u+|2∗∗dx (2.9)

and

β2
0‖u−‖2

E + bβ4
0‖u−‖4 + bα2

0β2
0‖u+‖2‖u−‖2

= λ
∫

Ω

f (x, β0u−)β0u−dx + β2∗∗
0

∫

Ω

|u−|2∗∗dx. (2.10)

According to 0 < α0 ≤ β0 and (2.10), we have that

‖u−‖2
E

β2
0

+ b‖u−‖4 + b‖u+‖2‖u−‖2 ≥ λ
∫

Ω

f (x, β0u−)
(β0u−)3

(u−)4dx + β2∗∗−4
0

∫

Ω

|u−|2∗∗dx. (2.11)

If β0 > 1, by (2.8) and (2.11), one has that

(

1

β2
0

− 1

)

‖u−‖2
E ≥ λ

∫

Ω

[

f (x, β0u−)
(β0u−)3

− f (x, u−)
(u−)3

]

(u−)4dx + (β2∗∗−4
0 − 1)

∫

Ω

|u−|2∗∗dx.

Thus, for any β0 > 1, the left side of the above inequality is negative, the right-hand side

above is greater than zero by condition ( f3), which is a contradiction. Therefore, we conclude

that 0 < α0 ≤ β0 ≤ 1.

Similarly, by (2.9) and 0 < α0 ≤ β0, we have that

(

1

α2
0

− 1

)

‖u+‖2
E ≤ λ

∫

Ω

[

f (x, α0u+)

(α0u+)3
− f (x, u−)

(u+)3

]

(u+)4dx + (α2∗∗−4
0 − 1)

∫

Ω

|u+|2∗∗dx.

According to condition ( f3), we obtain that α0 ≥ 1.

Consequently, α0 = β0 = 1.

• Case u 6∈ Mλ
b .

Suppose that there exist (α1, β1), (α2, β2) such that

ω1 = α1u+ + β1u− ∈ Mλ
b and ω2 = α2u+ + β2u− ∈ Mλ

b .

Hence

ω2 =

(

α2

α1

)

α1u+ +

(

β2

β1

)

β1u− =

(

α2

α1

)

ω+ +

(

β2

β1

)

ω− ∈ Mλ
b .
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By ω1 ∈ Mλ
b , one has that

α2

α1
=

β2

β1
= 1.

Hence, α1 = α2, β1 = β2.

Step 3. In this step, we will prove that (αu, βu) is the unique maximum point of ψu on

[0, ∞)× [0, ∞).

In fact, by (2.3), we have that

ψu(α, β) = Iλ
b (αu+ + βu−)

=
1

2
‖αu+ + βu−‖2

E +
b

4
‖αu+ + βu−‖4

−λ
∫

Ω

F(x, αu+ + βu−)dx − 1

2∗∗

∫

Ω

|αu+ + βu−|2∗∗dx

=
α2

2
‖u+‖2

E +
β2

2
‖u−‖2

E +
bα4

4
‖u+‖4 +

bβ4

4
‖u−‖4 +

bα2β2

2
‖u+‖2‖u−‖2

−λ
∫

Ω

F(x, αu+)dx − λ
∫

Ω

F(x, βu−)dx − α2∗∗

2∗∗

∫

Ω

|u+|2∗∗dx − β2∗∗

2∗∗

∫

Ω

|u−|2∗∗dx

≤ τα2

2
‖u+‖2 +

τβ2

2
‖u−‖2 +

bα4

4
‖u+‖4 +

bβ4

4
‖u−‖4 +

bα2β2

2
‖u+‖2‖u−‖2

−α2∗∗

2∗∗

∫

Ω

|u+|2∗∗dx − β2∗∗

2∗∗

∫

Ω

|u−|2∗∗dx,

which implies that lim|(α,β)|→∞ ψ(α, β) = −∞ thanks to 2∗∗ > 4.

Hence, (αu, βu) is the unique critical point of ψu in [0, ∞) × [0, ∞). So it is sufficient to

check that a maximum point cannot be achieved on the boundary of [0, ∞) × [0, ∞). By

contradiction, we suppose that (0, β0) is a maximum point of ψu with β0 ≥ 0. Then, we have

that

ψu(α, β0) =
α2

2
‖u+‖2

E +
bα4

4
‖u+‖4 − λ

∫

Ω

F(x, αu+)dx − α2∗∗

2∗∗

∫

Ω

|u+|2∗∗dx

+
β2

0

2
‖u−‖2

E +
bβ4

0

4
‖u−‖4 − λ

∫

Ω

F(x, β0u−)dx − β2∗∗

2∗∗

∫

Ω

|u−|2∗∗dx

+
bα2β2

0

2
‖u+‖2‖u−‖2.

Therefore, it is obvious that

(ψu)
′
α(α, β0) = α‖u+‖2

E + bα3‖u+‖4 + bαβ2
0‖u+‖2‖u−‖2

−λ
∫

Ω

f (x, αu+)u+dx − α2∗∗−1
∫

Ω

|u+|2∗∗dx

≥ α‖u+‖2 + bα3‖u+‖4 + bαβ2
0‖u+‖2‖u−‖2

−λ
∫

Ω

f (x, αu+)u+dx − α2∗∗−1
∫

Ω

|u+|2∗∗dx

> 0,

if α is small enough. That is, ψu is an increasing function with respect to α if α is small enough.

This yields the contradiction. Similarly, ψu can not achieve its global maximum on (α, 0) with

α ≥ 0.
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Lemma 2.2. Assume that ( f1)–( f3) hold, if u ∈ E with u± 6= 0 such that 〈(Iλ
b )

′(u), u±〉 ≤ 0. Then,

the unique maximum point of ψu on [0, ∞)× [0, ∞) satisfies 0 < αu, βu ≤ 1.

Proof. In fact, if αu ≥ βu > 0. On the one hand, by αuu+ + βuu− ∈ Mλ
b , we have

α2
u‖u+‖2

E + bα4
u‖u+‖4 + bα4

u‖u+‖2‖u−‖2

≥ α2
u‖u+‖2

E + bα4
u‖u+‖4 + bα2

uβ2
u‖u+‖2‖u−‖2

= λ
∫

Ω

f (x, αuu+)αuu+dx + α2∗∗
∫

Ω

|u+|2∗∗dx. (2.12)

On the other hand, by 〈(Iλ
b )

′(u), u+〉 ≤ 0, we have

‖u+‖2
E + b‖u+‖4 + b‖u+‖2‖u−‖2 ≤ λ

∫

Ω

f (x, u+)u+dx +
∫

Ω

|u+|2∗∗dx. (2.13)

So, according to (2.12) and (2.13), we have that

(

1

α2
u

− 1

)

‖u+‖2
E ≥ λ

∫

Ω

[

f (x, αuu+)

(αuu+)3
− f (x, u+)

(u+)3

]

(u+)4dx + (α2∗∗−2
u − 1)

∫

Ω

|u+|2∗∗dx.

Thanks to condition ( f3), we conclude that αu ≤ 1. Thus, we have that 0 < αu, βu ≤ 1.

Lemma 2.3. Let cλ
b = infu∈Mλ

b
Iλ
b (u), then we have that limλ→∞ cλ

b = 0.

Proof. For any u ∈ Mλ
b , we have

‖u±‖2
E + b‖u±‖4 + b‖u+‖2‖u−‖2 = λ

∫

Ω

f (x, u±)u±dx +
∫

Ω

|u±|2∗∗dx.

Then, by (2.3) and Sobolev inequalities, we have that

‖u±‖2 ≤ λ
∫

Ω

f (x, u±)u±dx +
∫

Ω

|u±|2∗∗dx ≤ λεC1‖u±‖2 + λCεC2‖u±‖θ + C3‖u±‖2∗∗ .

Thus, we get

(1 − λεC1)‖u±‖2 ≤ λCεC2‖u±‖θ + C3‖u±‖2∗∗ .

Choosing ε small enough such that 1 − λεC1 > 0, since 2∗∗ > 4, there exists ρ > 0 such that

‖u±‖ ≥ ρ for all u ∈ Mλ
b . (2.14)

On the other hand, for any u ∈ Mλ
b , it is obvious that 〈(Iλ

b )
′(u), u〉 = 0. Thanks to ( f2) and

( f3), we obtain that

Θ(x, t) := f (x, t)t − 4F(x, t) ≥ 0 (2.15)

and is increasing when t > 0 and decreasing when t < 0 for almost every x ∈ Ω. Then, we

have

Iλ
b (u) = Iλ

b (u)−
1

4
〈(Iλ

b )
′(u), u〉 ≥ 1

4
‖u‖2.

From above discussions, we have that Iλ
b (u) > 0 for all u ∈ Mλ

b . Therefore, Iλ
b is bounded

below on Mλ
b , that is cλ

b = infu∈Mλ
b

Iλ
b (u) is well defined.
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Let u ∈ E with u± 6= 0 be fixed. By Lemma 2.1, for each λ > 0, there exist αλ, βλ > 0 such

that αλu+ + βλu− ∈ Mλ
b . By using Lemma 2.1 again, we have that

0 ≤ cλ
b = inf

u∈Mλ
b

Iλ
b (u) ≤ Iλ

b (αλu+ + βλu−)

≤ 1

2
‖αλu+ + βλu−‖2

E +
b

4
‖αλu+ + βλu−‖4

≤ α2
λ‖u+‖2

E + β2
λ‖u−‖2

E + 2bα4
λ‖u+‖4 + 2bβ4

λ‖u−‖4.

To the end, we just prove that αλ → 0 and βλ → 0 as λ → ∞.

Let

Tu = {(αλ, βλ) ∈ [0, ∞)× [0, ∞) : Tu(αλ, βλ) = (0, 0), λ > 0} ,

where Tu is defined as (2.2). By (2.3), we have that

α2∗∗
λ

∫

Ω

|u+|2∗∗dx + β2∗∗
λ

∫

Ω

|u−|2∗∗dx

≤ α2∗∗
λ

∫

Ω

|u+|2∗∗dx + β2∗∗
λ

∫

Ω

|u−|2∗∗dx

+λ
∫

Ω

f (x, αλu+)αλu+dx + λ
∫

Ω

f (x, βλu−)βλu−dx

= ‖αλu+ + βλu−‖2
E + b‖αλu+ + βλu−‖4

≤ 2τ2α2
λ‖u+‖2 + 2τ2β2

λ‖u−‖2 + 4bα4
λ‖u+‖4 + 4bβ4

λ‖u−‖4.

Hence, Tu is bounded. Let {λn} ⊂ (0, ∞) be such that λn → ∞ as n → ∞. Then, there exist α0

and β0 such that (αλn
, βλn

) → (α0, β0) as n → ∞.

Now, we claim α0 = β0 = 0. Suppose, by contradiction, that α0 > 0 or β0 > 0. By

αλn
u+ + βλn

u− ∈ Mλn

b , for any n ∈ N, we have

‖αλn
u+ + βλn

u−‖2
E + b‖αλn

u+ + βλn
u−‖4

= λn

∫

Ω

f (x, αλn
u+ + βλn

u−)(αλn
u+ + βλn

u−)dx +
∫

Ω

|αλn
u+ + βλn

u−|2∗∗dx. (2.16)

Thanks to αλn
u+ → α0u+ and βλn

u− → β0u+ in E, (2.3) and (2.4), we have that

∫

Ω

f (x, αλn
u+ + βλn

u−)(αλn
u+ + βλn

u−)dx →
∫

Ω

f (x, α0u+ + β0u−)(α0u+ + β0u−)dx > 0

as n → ∞.

It follows from λn → ∞ as n → ∞ and {αλn
u++ βλn

u−} is bounded in E, which contradicts

equality (2.16). Hence, α0 = β0 = 0.

Hence, we conclude that limλ→∞ cλ
b = 0.

Lemma 2.4. There exists λ∗
> 0 such that for all λ ≥ λ∗, the infimum cλ

b is achieved.

Proof. By the definition of cλ
b , there exists a sequence {un} ⊂ Mλ

b such that

lim
n→∞

Iλ
b (un) = cλ

b .

Obviously, {un} is bounded in E. Then, up to a subsequence, still denoted by {un}, there

exists u ∈ E such that un ⇀ u. Since the embedding E →֒ Lt(Ω) is compact for all t ∈ (2, 2∗∗)
(see [27]), we have

un → u in Lt(Ω), un → u a.e. x ∈ Ω.
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Hence

u±
n ⇀ u± in E,

u±
n → u± in Lt(Ω),

u±
n → u± a.e. x ∈ Ω.

By Lemma 2.1, we have

Iλ
b (αu+

n + βu−
n ) ≤ Iλ

b (un)

for all α, β ≥ 0.

Then, by the Brézis–Lieb lemma and Fatou’s lemma, we have that

lim inf
n→∞

Iλ
b (αu+

n + βu−
n ) ≥

α2

2
lim
n→∞

(‖u+
n − u+‖2

E + ‖u+‖2
E)

+
β2

2
lim
n→∞

(‖u−
n − u−‖2

E + ‖u−‖2
E)

+
bα4

4

[

lim
n→∞

(‖u+
n − u+‖2 + ‖u+‖2)

]2

+
bβ4

4

[

lim
n→∞

(‖u−
n − u−‖2 + ‖u−‖2)

]2

− α2∗∗

2∗∗

[

lim
n→∞

∫

Ω

|u+
n − u+|2∗∗dx + lim

n→∞

∫

Ω

|u+|2∗∗dx

]

− β2∗∗

2∗∗
lim
n→∞

[

∫

Ω

|u−
n − u−|2∗∗dx +

∫

Ω

|u−|2∗∗dx

]

− λ
∫

Ω

F(x, αu+)dx − λ
∫

Ω

F(x, βu−)dx +
bα2β2

2
lim inf

n→∞
(‖u+

n ‖2‖u−
n ‖2)

≥ Iλ
b (αu+ + βu−) +

α2

2
lim
n→∞

‖u+
n − u+‖2

E +
β2

2
lim
n→∞

‖u−
n − u−‖2

E

+
bα4

2
lim
n→∞

‖u+
n − u+‖2‖u+‖2 +

bβ4

2
lim
n→∞

‖u−
n − u−‖2‖u−‖2

+
bα4

4
( lim

n→∞
‖u+

n − u+‖2)2 +
bt4

4
( lim

n→∞
‖u−

n − u−‖2)2

− α2∗∗

2∗∗

∫

Ω

|u+
n − u+|2∗∗dx − β2∗∗

2∗∗

∫

Ω

|u−
n − u−|2∗∗dx

≥ Iλ
b (αu+ + βu−) +

α2

2
A1 +

bα4

2
A1‖u+‖2 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1

+
β2

2
A2 +

bβ4

2
A2‖u−‖2 +

bβ4

4
A2

2 −
β2∗∗

2∗∗
B2,

where

A1 = lim
n→∞

‖u+
n − u+‖2, A2 = lim

n→∞
‖u−

n − u−‖2,

B1 = lim
n→∞

|u+
n − u+|2∗∗2∗∗ , B2 = lim

n→∞
|u−

n − u−|2∗∗2∗∗ .

That is, one has that

Iλ
b (αu+ + βu−) +

α2

2
A1 +

bα4

2
A1‖u+‖2 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1

+
β2

2
A2 +

bβ4

2
A2‖u−‖2 +

bβ4

4
A2

2 −
β2∗∗

2∗∗
B2 ≤ cλ

b (2.17)
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for all α ≥ 0 and all β ≥ 0.

Now, we claim that u± 6= 0.

In fact, since the situation u− 6= 0 is analogous, we just prove u+ 6= 0. By contradiction,

we suppose u+ = 0. Hence, let β = 0 in (2.17) and we have that

α2

2
A1 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1 ≤ cλ

b (2.18)

for all α ≥ 0.

Case 1: B1 = 0.

If A1 = 0, that is, u+
n → u+ in E. In view of Lemma (2.14), we obtain ‖u+‖ > 0, which

contradicts our supposition. If A1 > 0, by (2.18), we have that

α2

2
A1 +

bα4

4
A2

1 ≤ cλ
b

for all α ≥ 0, which is absurd by Lemma 2.3. Anyway, we have a contradiction.

Case 2: B1 > 0.

One one hand, by Lemma 2.3, there exists λ∗
> 0 such that

cλ
b <

2

N
S−2/N for all λ ≥ λ∗, (2.19)

where S := inf
{∫

Ω
|∆u|2dx :

∫

Ω
|u|2∗∗dx = 1

}

.

On the other hand, since B1 > 0, we obtain A1 > 0. Hence, in view of (2.18), we have that

2

N
S−2/N ≤ 2

N





A
2∗∗

2
1

B1





2
2∗∗−2

≤ max
α≥0

{

α2

2
A1 −

α2∗∗

2∗∗
B1

}

≤ max
α≥0

{

α2

2
A1 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1

}

≤ cλ
b ,

which is a contradiction. That is, we deduce that u± 6= 0.

Next we prove B1 = B2 = 0.

Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction, we

suppose that B1 > 0.

Case 1: B2 > 0.

According to B1, B2 > 0 and Sobolev embedding, we obtain that A1, A2 > 0. Let

ϕ(α) =
α2

2
A1 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1 for all α ≥ 0.

It is easy to see that ϕ(α) > 0 for α > 0 small enough and ϕ(α) < 0 for α < 0 large enough.

Hence, by continuous of ϕ(α), there exists α̂ > 0 such that

α̂2

2
A1 +

bα̂4

4
A2

1 −
α̂2∗∗

2∗∗
B1 = max

α≥0

{

α2

2
A1 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1

}

.

Similarly, there exists β̂ > 0 such that

β̂2

2
A2 +

bβ̂4

4
A2

2 −
β̂2∗∗

2∗∗
B2 = max

α≥0

{

β2

2
A2 +

bβ4

4
A2

2 −
β2∗∗

2∗∗
B2

}

.
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Since [0, α̂]× [0, β̂] is compact and ψ is continuous, there exists (αu, βu) ∈ [0, α̂]× [0, β̂] such

that

ψ(αu, βu) = max
(α,β)∈[0,α̂]×[0,β̂]

ψ(α, β).

Now, we prove that (αu, βu) ∈ (0, α̂)× (0, β̂).

Note that, if β is small enough, we have that

ψ(α, 0) = Iλ
b (αu+) < Iλ

b (αu+) + Iλ
b (βu−) ≤ Iλ

b (αu+ + βu−) = ψ(α, β)

for all α ∈ [0, α̂].

Hence, there exists β0 ∈ [0, β̂] such that

ψ(α, 0) ≤ ψ(α, β0) for all α ∈ [0, α̂].

That is, any point of (α, 0) with 0 ≤ α ≤ α̂ is not the maximizer of ψ. Hence, (αu, βu) /∈
[0, α̂]× {0}. Similarly, we obtain (αu, βu) /∈ {0} × [0, α̂].

On the other hand, it is easy to see that

α2

2
A1 +

bα4

2
A1‖u+‖2 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1 > 0 (2.20)

and
β2

2
A2 +

bβ4

2
A2‖u−‖2 +

bβ4

4
A2

2 −
β2∗∗

2∗∗
B2 > 0 (2.21)

for α ∈ (0, α̂], β ∈ (0, β̂].

Then, we have that

2

N
S−2/N ≤ α̂2

2
A1 +

bα̂4

4
A2

1 −
α̂2∗∗

2∗∗
B1 +

bα̂4

2
A1‖u+‖2

+
β2

2
A2 +

bβ4

2
A2‖u−‖2 +

bβ4

4
A2

2 −
β2∗∗

2∗∗
B2

and

2

N
S−2/N ≤ β̃2

2
A2 +

bβ̃4

4
A2

2 −
β̃2∗∗

2∗∗
B2 +

bβ̃4

2
A2‖u−‖2

+
α2

2
A1 +

bα4

2
A1‖u+‖2 +

bα4

4
A2

1 −
α2∗∗

2∗∗
B1

for all α ∈ [0, α̃] and all β ∈ [0, β̃].

Therefore, according to (2.17), we conclude that

ψ(α, β̂) ≤ 0, ψ(α̂, β) ≤ 0

for all α ∈ [0, α̂] and all β ∈ [0, β̂].

Hence,(αu, βu) /∈ {α̃} × [0, β̃] and (αu, βu) /∈ [0, α̃]× {β̃}.

Finally, we get that (αu, βu) ∈ (0, α̂) × (0, β̂). Hence, it follows that (αu, βu) is a critical

point of ψ.

Hence, αuu+ + βuu− ∈ Mλ
b . From (2.17), (2.20), and (2.21), we have that

cλ
b ≥ Iλ

b (αuu+ + βuu−) +
α2

u

2
A1 +

bα4
u

2
A1‖u+‖2 +

bα4
u

4
A2

1 −
α2∗∗

2∗∗
B1

+
β2

u

2
A2 +

bβ4
u

2
A2‖u−‖2 +

bβ4
u

4
A2

2 −
β2∗∗

2∗∗
B2

> Iλ
b (αuu+ + βuu−) ≥ cλ

b ,
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which is a contradiction.

Case 2: B2 = 0.

In this case, we can maximize in [0, α̂]× [0, ∞). Indeed, it is possible to show that there

exist β0 ∈ [0, ∞) such that

Iλ
b (αuu+ + βuu−) ≤ 0 for all (α, β) ∈ [0, α̂]× [β0, ∞).

Hence, there is (αu, βu) ∈ [0, α̂]× [0, ∞) such that

ψ(αu, βu) = max
(α,β)∈[0,α̂]×[0,∞)

ψ(α, β).

In the following, we prove that (αu, βu) ∈ (0, α̂)× (0, ∞).

It is noted that ψ(α, 0) < ψ(α, β) for α ∈ [0, α̂] and β small enough, so we have (αu, βu) /∈
[0, α̂]× {0}.

Meanwhile, ψ(0, β) < ψ(α, β) for β ∈ [0, ∞) and α small enough, then we have (αu, βu) /∈
{0} × [0, ∞).

On the other hand, it is obvious that

2

N
S−2/N ≤ α̂2

2
A1 +

bα̂4

4
A2

1 −
α2∗∗

2∗∗
B1 +

bα̂4

2
A2‖u+‖2 +

β2

2
A2 +

bβ4

2
A2‖u−‖2 +

bβ4

4
A2

2

for all β ∈ [0, ∞).

Hence, we have that ψ(α̂, β) ≤ 0 for all β ∈ [0, ∞). Thus, (αu, βu) /∈ {α̂} × [0, ∞). Hence,

(αu, βu) ∈ (0, α̂)× (0, ∞). That is, (αu, βu) is an inner maximizer of ψ in [0, α̂)× [0, ∞). Hence,

αuu+ + βuu− ∈ Mλ
b .

Hence, in view of (2.20), we have that

cλ
b ≥ Iλ

b (αuu+ + βuu−) +
α2

u

2
A1 +

bα4
u

2
A1‖u+‖2 +

bα4
u

4
A2

1 −
α2∗∗

2∗∗
B1

+
β2

u

2
A2 +

bβ4
u

2
A2‖u−‖2 +

bβ4
u

4
A2

2

> Iλ
b (αuu+ + βuu−) ≥ cλ

b ,

which is a contradiction.

Therefore, from the above arguments, we have that B1 = B2 = 0.

Finally, we prove cλ
b is achieved.

Since u± 6= 0, by Lemma 2.1, there exist αu, βu > 0 such that

ū := αuu+ + βuu− ∈ Mλ
b .

Furthermore, it is easy to see that

〈(Iλ
b )

′(u), u±〉 ≤ 0.

By Lemma 2.2, we obtain 0 < αu, βu < 1.

Since un ∈ Mλ
b , according to Lemma 2.3, we get

Iλ
b (αuu+

n + βuu−
n ) ≤ Iλ

b (u
+
n + u−

n ) = Iλ
b (un).
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Thanks to ( f3), B1 = B2 = 0 and that the norm in E is lower semicontinuous, we have that

cλ
b ≤ Iλ

b (ū)−
1

4
〈(Iλ

b )
′(ū), ū〉

≤ 1

4
‖ū‖2

E +

(

1

4
− 1

2∗∗

)

∫

Ω

|ū|2∗∗dx +
λ

4

∫

Ω

[ f (x, ū)ū − 4F(x, ū)]dx

=
1

4
(‖αuu+‖2

E + ‖βuu−‖2
E) +

(

1

4
− 1

2∗∗

) [

∫

Ω

|αuu+|2∗∗dx +
∫

Ω

|βuu−|2∗∗dx

]

+
λ

4

∫

Ω

[ f (x, αuu+)(αuu+)− 4F(x, αuu+)]dx +
λ

4

∫

Ω

[ f (x, βuu−)(βuu−)− 4F(x, βuu−)]dx

≤ 1

4
‖u‖2

E +

(

1

4
− 1

2∗∗

)

∫

Ω

|u|2∗∗dx +
λ

4

∫

Ω

[ f (x, u)u − 4F(x, u)]dx

≤ lim inf
n→∞

[

Iλ
b (un)−

1

4
〈(Iλ

b )
′(un), un〉

]

≤ cλ
b .

Therefore, αu = βu = 1, and cλ
b is achieved by ub := u+ + u− ∈ Mλ

b .

3 Proof of Theorems 1.2–1.3

In this section, we prove our main results. First, we prove Theorem 1.2. In fact, by means of

Lemma 2.4, we just prove that the minimizer ub for cλ
b is indeed a sign-changing solution of

problem (1.1).

Proof of Theorem 1.2. Since ub ∈ Mλ
b , we have 〈(Iλ

b )
′(ub), u+

b 〉 = 〈(Iλ
b )

′(ub), u−
b 〉 = 0. By

Lemma 2.4, for (α, β) ∈ (R+ × R+)\(1, 1), we have

Iλ
b (αu+

b + βu−
b ) < Iλ

b (u
+
b + u−

b ) = cλ
b . (3.1)

If (Iλ
b )

′(ub) 6= 0 , then there exist δ > 0 and θ > 0 such that

‖(Iλ
b )

′(v)‖ ≥ θ for all ‖v − ub‖ ≥ 3δ.

Choose τ ∈ (0, min{1/2, δ√
2‖ub‖

}). Let

D := (1 − τ, 1 + τ)× (1 − τ, 1 + τ)

and

g(α, β) = αu+
b + βu−

b for all (α, β) ∈ D.

In view of (3.1), it is easy to see that

c̄λ := max
∂Ω

Iλ
b ◦ g < cb,λ. (3.2)

Let ε := min{(cλ
b − c̄λ)/2, θδ/8} and Sδ := B(ub, δ), according to Lemma 2.3 in [38], there

exists a deformation η ∈ C([0, 1]× D, D) such that

(a) η(1, v) = v if v /∈ (Iλ
b )

−1([cλ
b − 2ε, cλ

b + 2ε] ∩ S2δ),

(b) η(1, (Iλ
b )

cλ
b +ε ∩ Sδ) ⊂ (Iλ

b )
cb,λ−ε,

(c) Iλ
b (η(1, v)) ≤ Iλ

b )(v) for all v ∈ E.
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First, we need to prove that

max
(α,β)∈D̄

Iλ
b (η(1, g(α, β))) < cλ

b . (3.3)

In fact, it follows from Lemma 2.1 that Iλ
b (g(α, β)) ≤ cλ

b < cλ
b + ε. That is,

g(α, β) ∈ (Iλ
b )

cλ
b +ε.

On the other hand, we have

‖g(α, β)− ub‖2 = ‖(α − 1)u+
b + (β − 1)u−

b ‖
≤ 2((α − 1)2‖u+

b ‖2 + (β − 1)2‖u−
b ‖2)

≤ 2τ‖ub‖2
< δ2,

which shows that g(α, β) ∈ Sδ for all (α, β) ∈ D̄.

Therefore, by (b), we have Iλ
b (η(1, g(s, t))) < cλ

b − ε. Hence, (3.3) holds.

In the following, we prove that η(1, g(D)) ∩Mλ
b 6= ∅ , which contradicts the definition

of cλ
b .

Let h(α, β) := η(1, g(α, β)) and

Ψ0(α, β) := (〈(Iλ
b )

′(g(α, β)), u+
b 〉, 〈(Iλ

b )
′(g(α, β)), u−

b 〉)
= (〈(Iλ

b )
′(αu+

b + βu−
b ), u+

b 〉, 〈(Iλ
b )

′(αu+
b + βu−

b ), u−
b 〉)

=: (ϕ1
u(α, β), ϕ2

u(α, β))

and

Ψ1(α, β) :=

(

1

α
〈(Iλ

b )
′(h(α, β)), (g(α, β))+〉, 1

β
〈(Iλ

b )
′(h(α, β)), (h(α, β))−〉

)

.

By the direct calculation, we have

ϕ1
u(α, β)

∂α

∣

∣

∣

∣

(1,1)

= ‖u+
b ‖2

E + 3b‖u+
b ‖4 + b‖u+

b ‖2‖u−
b ‖2

− (2∗∗ − 1)
∫

Ω

|u+
b |2

∗∗
dx

−λ
∫

Ω

∂α f (x, u+
b )(u

+
b )

2dx,
ϕ1

u(α, β)

∂β

∣

∣

∣

∣

(1,1)

= 2b‖u+
b ‖2‖u−

b ‖2,
ϕ2

u(α, β)

∂α
|(1,1)= 2b‖u+

b ‖2‖u−
b ‖2,

ϕ2
u(α, β)

∂β

∣

∣

∣

∣

(1,1)

= ‖u−
b ‖2 + 3b‖u−

b ‖4 + b‖u+
b ‖2‖u−

b ‖2

− (2∗∗ − 1)
∫

Ω

|u−
b |2

∗∗
dx − λ

∫

Ω

∂β f (x, u−
b )(u

−
b )

2dx.

Let

M =







ϕ1
u(α,β)

∂α

∣

∣

∣

(1,1)

ϕ2
u(α,β)

∂α

∣

∣

∣

(1,1)
ϕ1

u(α,β)
∂β

∣

∣

∣

(1,1)

ϕ2
u(α,β)
∂β

∣

∣

∣

(1,1)






.

By ( f3), for t 6= 0, we have

∂t f (x, t)t2 − 3 f (x, t)t > 0



18 S. Liang and B. Zhang

for almost every x ∈ Ω. Then, since ub ∈ Mb,λ , we have

det M

=
ϕ1

u(α, β)

∂α

∣

∣

∣

∣

(1,1)

× ϕ2
u(α, β)

∂β

∣

∣

∣

∣

(1,1)

− ϕ1
u(α, β)

∂β

∣

∣

∣

∣

(1,1)

× ϕ2
u(α, β)

∂α

∣

∣

∣

∣

(1,1)

=

[

2‖u+
b ‖2+(2∗∗−4)

∫

Ω

|u+
b |2

∗∗
dx+2b‖u+

b ‖2‖u−
b ‖2+λ

∫

Ω

(∂α f (x, u+
b )(u

+
b )

2−3 f (x, u+
b )(u

+
b )dx

]

×
[

2‖u−
b ‖2+(2∗∗−4)

∫

Ω

|u−
b |2

∗∗
dx+2b‖u+

b ‖2‖u−
b ‖2+λ

∫

Ω

(∂β f (x, u−
b )(u

−
b )

2−3 f (x, u−
b )(u

−
b )dx

]

−4b2‖u+
b ‖4‖u−

b ‖4

> 0.

Since Ψ0(α, β) is a C1 function and (1, 1) is the unique isolated zero point of Ψ0, by using

the degree theory, we deduce that deg(Ψ0, D, 0) = 1.

Hence, combining (3.3) with (a), we obtain

g(α, β) = h(α, β) on ∂D.

Consequently, we obtain deg(Ψ1, D, 0) = 1. Therefore, Ψ1(α0, β0) = 0 for some (α0, β0) ∈ D

so that

η(1, g(α0, β0)) = h(α0, β0) ∈ Mλ
b ,

which is contradicted to (3.3).

From the above discussions, we deduce that ub is a sign-changing solution for prob-

lem (1.1).

Finally, we prove that u has exactly two nodal domains. To this end, we assume by con-

tradiction that

ub = u1 + u2 + u3

with

ui 6= 0, u1 ≥ 0, u2 ≤ 0

and

suppt(ui) ∩ suppt(uj) = ∅ for i 6= j, i, j = 1, 2, 3

and

〈(Iλ
b )

′(u), ui〉 = 0 for i = 1, 2, 3.

Setting v := u1 + u2 , we see that v+ = u1 and v− = u2, i.e., v± 6= 0. Then, there exist a

unique pair (αv, βv) of positive numbers such that

αvu1 + βvu2 ∈ Mλ
b .

Hence

Iλ
b (αvu1 + βvu2) ≥ cλ

b .

Moreover, using the fact that 〈(Iλ
b )

′(u), ui〉 = 0, we obtain 〈(Iλ
b )

′(v), v±〉 < 0.

From Lemma 2.1 (ii), we have that

(αv, βv) ∈ (0, 1]× (0, 1].
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On the other hand, we have that

0 =
1

4
〈(Iλ

b )
′(u), u3〉 =

1

4
‖u3‖2 +

b

4
‖u1‖2‖u3‖2 +

b

4
‖u2‖2‖u3‖2 +

b

4
‖u3‖4

− 1

2∗∗

∫

Ω

|u3|2
∗∗

dx − λ

4

∫

Ω

f (x, u3)u3dx

< Iλ
b (u3) +

b

4
‖u1‖2‖u3‖2 +

b

4
‖u2‖2‖u3‖2.

Hence, by (2.15), we can obtain that

cλ
b ≤ Iλ

b (αvu1 + βvu2) = Iλ
b (αvu1 + βvu2)−

1

4
〈(Iλ

b )
′(αvu1 + βvu2), (αvu1 + βvu2)〉

=
1

4
(‖αvu1‖2

E + ‖βvu2‖2
E) +

λ

4

∫

Ω

[ f (x, αvu1)(αvu1)− 4F(x, αvu1)]dx

+
λ

4

∫

Ω

[ f (x, βvu2)(βvu2)− 4F(x, βvu2)]dx

+

(

1

4
− 1

2∗∗

)

∫

Ω

α2∗∗
v |u1|2

∗∗
dx +

(

1

4
− 1

2∗∗

)

∫

Ω

β2∗∗
v |u2|2

∗∗
dx

≤ 1

4
(‖u1‖2

E + ‖u2‖2
E) +

λ

4

∫

Ω

[ f (x, u1)u1 − 4F(x, u1)]dx

+
λ

4

∫

Ω

[ f (x, u2)u2 − 4F(x, u2)]dx +

(

1

4
− 1

2∗∗

)

∫

Ω

|u1|2
∗∗

dx +

(

1

4
− 1

2∗∗

)

∫

Ω

|u2|2
∗∗

dx

= Iλ
b (u1 + u2)−

1

4
〈(Iλ

b )
′(u1 + u2), (u1 + u2)〉

= Iλ
b (u1 + u2) +

1

4
〈(Iλ

b )
′(u), u3〉+

b

4
‖u1‖2‖u3‖2 +

b

4
‖u2‖2‖u3‖2

< Iλ
b (u1) + Iλ

b (u2) + Iλ
b (u3) +

b

4
(‖u2‖2 + ‖u3‖2)‖u1‖2

+
b

4
(‖u1‖2 + ‖u3‖2)‖u2‖2 +

b

4
(‖u1‖2 + ‖u2‖2)‖u3‖2

= Iλ
b (u) = cλ

b ,

which is a contradiction, that is, u3 = 0 and ub has exactly two nodal domains.

By Theorem 1.2, we obtain a least energy sign-changing solution ub of problem (1.1). Next

we prove that the energy of ub is strictly more than twice the ground state energy.

Proof of Theorem 1.3. Similar to the proof of Lemma 2.3, there exists λ∗
1 > 0 such that for all

λ ≥ λ∗
1 , and for each b > 0, there exists vb ∈ N λ

b such that Iλ
b (vb) = c∗ > 0. By standard

arguments (see Corollary 2.13 in [9]), the critical points of the functional Iλ
b on N λ

b are critical

points of Iλ
b in E, and we obtain (Iλ

b )
′(vb) = 0. That is, vb is a ground state solution of (1.1).

According to Theorem 1.2, we know that the problem (1.1) has a least energy sign-changing

solution ub, which changes sign only once when λ ≥ λ∗.

Let

λ∗∗ = max{λ∗, λ∗
1}.

Suppose that ub = u+
b + u−

b . As in the proof of Lemma 2.1, there exist αu+
b
> 0 and βu−

b
> 0

such that

αu+
b

u+
b ∈ N λ

b , βu−
b

u−
b ∈ Nb,λ.
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Furthermore, Lemma 2.1 implies that αu+
b

, βu−
b
∈ (0, 1).

Therefore, in view of Lemma 2.1, we have that

2c∗ ≤ Iλ
b (αu+

b
u+

b ) + Iλ
b (βu−

b
u−

b ) ≤ Iλ
b (αu+

b
u+

b + βu−
b

u−
b ) < Iλ

b (u
+
b + u−

b ) = cλ
b .

Hence, it follows that c∗ > 0 cannot be achieved by a sign-changing function.
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1 Introduction

Let Ω ⊂ R
N (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. We consider the

family of problems






−div
(

ϕn(|∇v|)
|∇v|

∇v
)

= λev in Ω,

v = 0 on ∂Ω,
(1.1)

where for each positive integer n, the mappings ϕn : R → R are odd, increasing homeomor-

phisms of class C1 satisfying Lieberman-type condition

N − 1 < ϕ−
n − 1 ≤

tϕ′
n(t)

ϕn(t)
≤ ϕ+

n − 1 < ∞, ∀ t ≥ 0 (1.2)

for some constants ϕ−
n and ϕ+

n with 1 < ϕ−
n ≤ ϕ+

n < ∞,

ϕ−
n → ∞ as n → ∞, (1.3)

BCorresponding author.
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and such that

there exists a real constant β > 1 with the property that ϕ+
n ≤ βϕ−

n , ∀ n ≥ 1 (1.4)

and

lim
n→∞

ϕn(1)
1/ϕ−

n = 1. (1.5)

For some examples of functions satisfying conditions (1.2)–(1.5) the reader is referred to [5,

p. 4398]. Here we just point out the fact that in the particular case when ϕn(t) = |t|n−2t, n ≥ 2,

the differential operator involved in problem (1.1) is the n-Laplacian, which for sufficiently

smooth functions v is defined as ∆nv := div(|∇v|n−2∇v). In this particular case problem (1.1)

becomes
{

−∆nv = λev in Ω,

v = 0 on ∂Ω,
(1.6)

which has been extensively studied in the literature (see, e.g. [3, 7, 12, 14, 15, 18, 19, 32]). An

existence result concerning problem (1.6) for each given n > N and λ > 0 sufficiently small

was proved by Aguilar Crespo & Peral Alonso in [3] by using a fixed-point argument while

Mihăilescu et al. [32] showed a similar result by using variational techniques. Moreover, in

[32] was studied the asymptotic behavoir of solutions as n → ∞. More precisely, it was proved

that there exists λ⋆
> 0 (which does not depend on n) such that for each n > N and each

λ ∈ (0, λ⋆) problem (1.6) possesses a nonnegative solution un ∈ W1,n
0 (Ω) and the sequence of

solutions {un} converges uniformly in Ω , as n → ∞, to the unique viscosity solution of the

problem
{

min{|∇u| − 1,−∆∞u} = 0 in Ω,

u = 0 on ∂Ω ,
(1.7)

which is precisely the distance function to the boundary of the domain dist(·, ∂Ω) (see [26,

Lemma 6.10]). The result from [32] was extended to the case of equations involving variable

exponent growth conditions by Mihăilescu & Fărcăs, eanu in [14]. Motivated by these results

the goal of this paper is to investigate the asymptotic behaviour of the solutions of the family

of problems (1.1), as n → ∞, for λ > 0 sufficiently small. We will show that the results from

[32] and [14] continue to hold true in the case of the family of problems (1.1). In particular,

our results generalise the results from [32] and complement the results from [14].

The paper is organized as follows. In Section 2 we give the definitions of the Orlicz and

Orlicz–Sobolev spaces which represent the natural functional framework where the problems

of type (1.1) should be investigated. Section 3 is devoted to the proof of the existence of weak

solutions for problem (1.1) when λ is sufficiently small. Finally, in Section 4 we analyse the

asymptotic behavior of the sequence of solutions found in the previous section, as n → ∞,

and we prove its uniform convergence to the distance function to the boundary of the domain.

2 Orlicz and Orlicz–Sobolev spaces

In this section we provide a brief overview on the Orlicz and Orlicz–Sobolev spaces and we

recall the definitions and some of their main properties. For more details about these spaces

the reader can consult the books [2, 22, 33, 34] and papers [4, 9, 10, 20, 21].
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First, we will introduce the Orlicz spaces. We assume that the function ϕ is an odd,

increasing homeomorphism from R onto R of class C1. We define Φ : [0, ∞) → R by

Φ(t) =
∫ t

0
ϕ(s) ds.

Note that Φ is a Young function, that is Φ vanishes when t = 0, Φ is continuous, Φ is convex

and limt→∞ Φ(t) = ∞. Moreover, since Φ(0) = 0 if and only if t = 0, limt→0
Φ(t)

t = 0 and

limt→∞
Φ(t)

t = ∞, then Φ is called a N-function (see [1, 2]). Next, we define the function

Φ⋆ : [0, ∞) → R given by

Φ⋆(t) =
∫ t

0
ϕ−1(s) ds .

Φ⋆ is called the complementary function of Φ. The functions Φ and Φ⋆ satisfy

Φ⋆(t) = sup
s≥0

(st − Φ(s)) for any t ≥ 0.

We note that Φ⋆ is also a N-function, too.

Throughout this paper, we will assume that

0 < ϕ− − 1 ≤
tϕ

′
(t)

ϕ(t)
≤ ϕ+ − 1 < ∞, for all t > 0 (2.1)

for some positive constants ϕ− and ϕ+. By [28, Lemma 1.1] (see also [31, Lemma 2.1]) we

deduce that

1 < ϕ− ≤
tϕ(t)

Φ(t)
≤ ϕ+

< ∞, for all t > 0. (2.2)

By relation (2.2) it follows that for each t > 0 and s ∈ (0, 1] we have

− ln sϕ−
=
∫ t

st

ϕ−

τ
dτ ≤

∫ t

st

ϕ(τ)

Φ(τ)
dτ = ln Φ(t)− ln Φ(st) ≤

∫ t

st

ϕ+

τ
dτ = − ln sϕ+

or

sϕ+
Φ(t) ≤ Φ(st) ≤ sϕ−

Φ(t), ∀ t > 0, s ∈ (0, 1] . (2.3)

Similarly, for each t > 0 and s > 1 we have

ln sϕ−
=
∫ st

t

ϕ−

τ
dτ ≤

∫ st

t

ϕ(τ)

Φ(τ)
dτ = ln Φ(st)− ln Φ(t) ≤

∫ st

t

ϕ+

τ
dτ = ln sϕ+

or

sϕ−
Φ(t) ≤ Φ(st) ≤ sϕ+

Φ(t), ∀ t > 0, s > 1 . (2.4)

Inequalities (2.3) and (2.4) can be reformulated as follows

min{sϕ−
, sϕ+

}Φ(t) ≤ Φ(st) ≤ max{sϕ−
, sϕ+

}Φ(t) for any s, t > 0 . (2.5)

Similarly, by [31, Lemma 2.1] we deduce that

min{sϕ−−1, sϕ+−1}ϕ(t) ≤ ϕ(st) ≤ max{sϕ−−1, sϕ+−1}ϕ(t), ∀ s, t > 0. (2.6)

Next, if we let s = ϕ−1(t) then we have

t(ϕ−1)
′
(t)

ϕ−1(t)
=

ϕ(s)

ϕ′(s)s
.
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By (2.1) we deduce that

1

ϕ+ − 1
≤

t(ϕ−1)
′
(t)

ϕ−1(t)
≤

1

ϕ− − 1
, ∀ t > 0 .

The above relation implies that

1 <
ϕ+

ϕ+ − 1
≤

tϕ−1(t)

Φ⋆(t)
≤

ϕ−

ϕ− − 1
< ∞ for all t > 0. (2.7)

Examples. We point out some example of functions ϕ which are odd, increasing homeomor-

phism from R onto R, and ϕ and the corresponding primitive Φ satisfy condition (2.2) (see

[10, Examples 1–3, p. 243]):

1. ϕ(t) = |t|p−2t, Φ(t) = |t|p

p with p > 1 and ϕ− = ϕ+ = p.

2. ϕ(t) = log(1 + |t|r)|t|p−2t, Φ(t) = log(1 + |t|r) |t|
p

p − r
p

∫ |t|
0

sp+r−1

1+sr ds with p, r > 1 and

ϕ− = p, ϕ+ = p + r.

3. ϕ(t) = |t|p−2t
log(1+|t|)

for t 6= 0, ϕ(0) = 0, Φ(t) = |t|p

p log(1+|t|)
+ 1

p

∫ |t|
0

sp

(1+s)(log(1+s))2 ds with

p > 2 and ϕ− = p − 1, ϕ+ = p = lim inft→∞
log Φ(t)

log t .

For each bounded domain Ω ⊂ R
N , the Orlicz space LΦ(Ω) defined by the N-function Φ

(see [1, 2, 9]) is the set of real-valued measurable functions u : Ω → R such that

‖u‖LΦ(Ω) := sup

{

∫

Ω
u(x)v(x) dx;

∫

Ω
Φ⋆(|v(x)|) dx ≤ 1

}

< ∞.

Then, the Orlicz space LΦ(Ω) endowed with the Orlicz norm ‖ · ‖LΦ(Ω) is a Banach space and

its Orlicz norm ‖ · ‖LΦ(Ω) is equivalent to the so-called Luxemburg norm defined by

‖u‖Φ := inf

{

µ > 0 ;
∫

Ω
Φ

(

u(x)

µ

)

dx ≤ 1

}

. (2.8)

In the case of Orlicz spaces, the following relations hold true (see, e.g. [17, Lemma 2.1]):

‖u‖
ϕ+

Φ ≤
∫

Ω
Φ(|u(x)|) dx ≤ ‖u‖

ϕ−

Φ ∀ u ∈ LΦ(Ω) with ‖u‖Φ < 1, (2.9)

‖u‖
ϕ−

Φ ≤
∫

Ω
Φ(|u(x)|) dx ≤ ‖u‖

ϕ+

Φ ∀ u ∈ LΦ(Ω) with ‖u‖Φ > 1 (2.10)

and
∫

Ω
Φ(|u(x)|) dx = 1 ⇐⇒ ‖u‖Φ = 1, ∀ u ∈ LΦ(Ω). (2.11)

Next, we recall that for each bounded domain Ω ⊂ R
N , the Orlicz–Sobolev space W1,Φ(Ω)

defined by the N-function Φ is the set of all functions u such that u and its distributional

derivatives of order 1 lie in Orlicz space LΦ(Ω). More exactly, W1,Φ(Ω) is the space given by

W1,Φ(Ω) =

{

u ∈ LΦ(Ω);
∂u

∂xj
∈ LΦ(Ω), j ∈ {1, . . . , N}

}

.
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It is a Banach space with respect to the following norm

‖u‖1,Φ := ‖u‖Φ + ‖ |∇u| ‖Φ.

By W1,Φ
0 (Ω) we denoted the closure of all functions of class C∞ with compact support over Ω

with respect to norm of W1,Φ(Ω), i.e.

W1,Φ
0 (Ω) := C∞

0 (Ω)
‖·‖1,Φ

.

Note that the norms ‖ · ‖1,Φ and ‖ · ‖
W1,Φ

0
:= ‖ |∇ · | ‖Φ are equivalent on the Orlicz–Sobolev

space W1,Φ
0 (Ω) (see [21, Lemma 5.7]).

Under conditions (2.2) and (2.7), Φ and Φ⋆ satisfy the ∆2-condition, i.e.

Φ(2t) ≤ CΦ(t), ∀ t ≥ 0, (2.12)

for some constant C > 0 (see [2, p. 232]). Therefore, LΦ(Ω), W1,Φ(Ω) and W1,Φ
0 (Ω) are

reflexive Banach spaces (see [2, Theorem 8.19] and [2, p. 232]).

Remark 2.1. For each real number p > 1 let ϕ(t) = |t|p−2t, t ∈ R. It can be shown that

ϕ− = ϕ+ = p as mentioned above in Example 1 and the corresponding Orlicz space LΦ(Ω)

reduces to the classical Lebesgue space Lp(Ω) while the Orlicz–Sobolev spaces W1,Φ(Ω) and

W1,Φ
0 (Ω) become the classical Sobolev spaces W1,p(Ω) and W

1,p
0 (Ω), respectively. Note also that

by [2, Theorem 8.12] the Orlicz space LΦ(Ω) is continuously embedded in the Lebesgue spaces

Lq(Ω) for each q ∈ (1, ϕ−].

3 Variational solutions for problem (1.1)

In this section we will show that there exists a certain constant λ⋆
> 0 (independent of n) such

that for each λ ∈ (0, λ⋆) problem (1.1) possesses a nonnegative weak solution for each integer

n ≥ 1.

We start by introducing the following notations: for each positive integer n we denote by

Φn a primitive of the function ϕn. More precisely, we define Φn : [0, ∞) → R by

Φn(t) :=
∫ t

0
ϕn(s) ds .

Definition 3.1. We say that vn is a weak solution of problem (1.1) if vn ∈ W1,Φn
0 (Ω) and the

following relation holds true

∫

Ω

ϕn(|∇vn|)

|∇vn|
∇vn∇w dx = λ

∫

Ω
evn w dx, ∀ w ∈ W1,Φn

0 (Ω). (3.1)

Note that the integral from the right-hand side of relation (3.1) is well-defined since

the Orlicz–Sobolev space W1,Φn
0 (Ω) is continuously embedded in the classical Sobolev space

W
1,ϕ−

n
0 (Ω) (see, e.g. [2, Theorem 8.12]) and for ϕ−

n > N we have W
1,ϕ−

n
0 (Ω) ⊂ L∞(Ω). Moreover,

we recall that Morrey’s inequality holds true, i.e. there exists a positive constant Cn such that

‖v‖L∞(Ω) ≤ Cn‖ |∇v| ‖
Lϕ−n (Ω)

, ∀ v ∈ W
1,ϕ−

n
0 (Ω) . (3.2)
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By [8, Proposition 3.1] we know that we can choose Cn as follows

Cn := ϕ−
n |B(0, 1)|

− 1

ϕ−n N
−

N(ϕ−n +1)

(ϕ−n )2 (ϕ−
n − 1)

N(ϕ−n −1)

(ϕ−n )2 (ϕ−
n − N)

N−(ϕ−n )2

(ϕ−n )2 [λ1(ϕ−
n )]

N−ϕ−n
(ϕ−n )2 , (3.3)

where |B(0, 1)| is the volume of the unit ball in R
N and for each real number p ∈ (1, ∞), λ1(p)

denotes the first eigenvalue for the p-Laplace operator with homogeneous Dirichlet boundary

conditions, i.e.

λ1(p) := inf
u∈C∞

0 (Ω)\{0}

∫

Ω
|∇u|p dx

∫

Ω
|u|p dx

, ∀ p ∈ (1, ∞).

By [8, Proposition 3.1] (see also [13, Theorem 3.2] for a similar result) it is well known that

lim
n→∞

Cn = ‖dist(·, ∂Ω)‖L∞(Ω) , (3.4)

where dist(x, ∂Ω) := infy∈∂Ω |x − y|, ∀ x ∈ Ω, stands for the distance function to the boundary

of Ω.

For each positive integer n and each positive real number λ we introduce the Euler–

Lagrange functional associated to problem (1.1) as Jn,λ : W1,Φn
0 (Ω) → R defined by

Jn,λ(v) :=
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx, ∀ v ∈ W1,Φn

0 (Ω) .

Standard arguments can be used in order to show that Jn,λ ∈ C1(W1,Φn
0 (Ω), R) and

〈J
′

n,λ(v), w〉 =
∫

Ω

ϕn(|∇v|)

|∇v|
∇v∇w dx − λ

∫

Ω
evw dx, ∀ v, w ∈ W1,Φn

0 (Ω) .

Thus, it is clear that vn is a weak solution of (1.1) if and only if vn is a critical point of

functional Jn,λ.

We point out that we cannot find critical points of Jn,λ by using the Direct Method in the

Calculus of Variations since in the case of our problem Jn,λ is not coercive. For that reason we

propose an analysis of problem (1.1) based on Ekeland’s Variational Principle in order to find

critical points of Jn,λ.

For each positive integer n we denote

λ⋆

n :=
1

2|Ω|
e
−Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

, (3.5)

where Cn is the constant given by relation (3.3) and |Ω| stands for the N-dimensional Lebesgue

measure of Ω. The starting point of our approach is the following lemma.

Lemma 3.2. For each positive integer n let λ⋆

n be given by relation (3.5). Then for each λ ∈ (0, λ⋆

n)

we have

Jn,λ(v) ≥
1

2
, ∀ v ∈ W1,Φn

0 (Ω) with ‖v‖
W1,Φn

0
= 1 .

Proof. Let n be a positive integer arbitrary fixed. By relation (2.5) we get that Φn(s) ≥

Φn(1)sϕ−
n , for all s > 1 and thus,

sϕ−
n ≤ 1 +

Φn(s)

Φn(1)
, ∀ s ≥ 0.
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Using this fact we deduce that

∫

Ω
|∇v|ϕ

−
n dx ≤ |Ω|+

1

Φn(1)

∫

Ω
Φn(|∇v|) dx, ∀ v ∈ W1,Φn

0 (Ω). (3.6)

By the above inequality, and since for each v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

:= ‖ |∇v| ‖Φn = 1 we

have
∫

Ω
Φn(|∇v|) dx = 1 (via relation (2.11)), it results

‖ |∇v| ‖
Lϕ−n (Ω)

≤

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

, ∀ v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1. (3.7)

Next, taking into account that W1,Φn
0 (Ω) is continuously embedded in W

1,ϕ−
n

0 (Ω) and using

the fact that ϕ−
n > N and Morrey’s inequality (3.2) we obtain

Jn,λ(v) =
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx

≥ 1 − λ|Ω|e‖v‖L∞(Ω)

≥ 1 − λ|Ω|e
Cn‖ |∇v| ‖

Lϕ−n (Ω) , ∀ v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1.

Then for each λ ∈ (0, λ⋆

n), combining the above estimates with relation (3.7) we get

Jn,λ(v) ≥ 1 − λ|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

≥ 1 − λ⋆

n|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

=
1

2
,

for all v ∈ W1,Φn
0 (Ω) with ‖v‖

W1,Φn
0

= 1. The proof of the lemma is complete.

Lemma 3.3. For each positive integer n let λ⋆

n be given by relation (3.5). Define

λ⋆ := inf
n∈N∗

λ⋆

n . (3.8)

Then λ⋆
> 0.

Proof. First, we show that there exists a positive constant K > 0 such that

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

< K, ∀ n ≥ 1 . (3.9)

Indeed, since by (1.5) we have

lim
n→∞

ϕn(1)
1/ϕ−

n = 1 ,

it yields that for each positive integer n large enough we get

1

2
≤ ϕn(1)

1/ϕ−
n ,

which implies that
1

ϕn(1)
≤ 2ϕ−

n .

By (1.2) (via (2.1) and (2.2)) we find that for each positive integer n large enough the following

inequalities hold true
1

Φn(1)
≤

ϕ+
n

ϕn(1)
≤ ϕ+

n 2ϕ−
n ≤ βϕ−

n 2ϕ−
n .
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Using the above relations we deduce that for each positive integer n large enough we obtain

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

≤
[

|Ω|+ βϕ−
n 2ϕ−

n

]1/ϕ−
n
≤
(

βϕ−
n 2ϕ−

n +1
)1/ϕ−

n
.

Now, taking into account the fact that limn→∞

(

βϕ−
n 2ϕ−

n +1
)1/ϕ−

n = 2, the above approximations

imply that relation (3.9) holds true.

Next, using (3.9) and the expression of λ⋆

n we infer that

λ⋆

n =
1

2|Ω|
e
−Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

>
1

2|Ω|
e−KCn , ∀ n ≥ 1 .

Recalling that limn→∞ Cn = ‖dist(·, ∂Ω)‖L∞(Ω) (by (3.4)) and taking into account that function

(1, ∞) ∋ p −→ λ1(p) is continuous (see, Lindqvist [29] or Huang [23]) we conclude from the

above estimates that λ⋆ = infn∈N∗ λ⋆

n > 0. The proof of Lemma 3.3 is complete.

The main goal of this section is to prove the existence of weak solutions of problem (1.1)

for each positive integer n. This result is the core of the following theorem.

Theorem 3.4. Let λ⋆
> 0 be given by (3.8). Then for each λ ∈ (0, λ⋆) and each n ∈ N

⋆, problem

(1.1) has a nonnegative solution vn ∈ B1(0) ⊂ W1,Φn
0 (Ω) identified by Jn,λ(vn) = inf

B1(0)
Jn,λ, where

B1(0) is the unit ball centered at the origin in the Orlicz–Sobolev space W1,Φn
0 (Ω).

Proof. We consider λ ∈ (0, λ⋆) and n ∈ N
⋆ arbitary fixed. For each v ∈ W1,Φn

0 (Ω) with

‖v‖
W1,Φn

0
≤ 1, in view of relations (2.9) and (2.11), we have

‖v‖
ϕ−

n

W1,Φn
0

≥
∫

Ω
Φn(|∇v|) dx ≥ ‖v‖

ϕ+
n

W1,Φn
0

. (3.10)

Thus, taking into account (3.10), Morrey’s inequality (3.2) and relation (3.6), for each v ∈

B1(0) ⊂ W1,Φn
0 (Ω) we obtain

Jn,λ(v) =
∫

Ω
Φn(|∇v|) dx − λ

∫

Ω
ev dx

≥ ‖v‖
ϕ+

n

W1,Φn
0

− λ|Ω|e‖v‖L∞(Ω)

≥ −λ|Ω|e
Cn‖ |∇v| ‖

Lϕ−n (Ω)

≥ −λ|Ω|e
Cn

[

|Ω|+ 1
Φn(1)

]1/ϕ−n

.

Computing Jn,λ(0) = −λ|Ω| we deduce that

Jn,λ(0) < 0

while by Lemma 3.2 we get

inf
∂B1(0)

Jn,λ ≥
1

2
> 0,

which imply that

γn := inf
B1(0)

Jn,λ ∈ (−∞, 0) .
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We consider ǫ > 0 such that

ǫ < inf
∂B1(0)

Jn,λ − inf
B1(0)

Jn,λ. (3.11)

Ekeland’s variational principle applied to Jn,λ restricted to B1(0) provides the existence of

vǫ ∈ B1(0) having the properties

i) Jn,λ(vǫ) < inf
B1(0)

Jn,λ + ǫ,

ii) Jn,λ(vǫ) < Jn,λ(v) + ǫ ‖v − vǫ‖W1,Φn
0

for all v 6= vǫ .

Since inf
B1(0)

Jn,λ ≤ infB1(0) Jn,λ and ǫ is chosen small such that (3.11) holds true, using relation

i) above we arrive at

Jn,λ(vǫ) < inf
B1(0)

Jn,λ + ǫ ≤ inf
B1(0)

Jn,λ + ǫ < inf
∂B1(0)

Jn,λ ,

from which we deduce that vǫ is not an element on the boundary of the unit ball of space

W1,Φn
0 (Ω), vǫ /∈ ∂B1(0), and consequently, vǫ is an element in the interior of this ball, that

means vǫ ∈ B1(0).

Next, we focus on the functional Fn,λ : B1(0) → R defined by Fn,λ(v) = Jn,λ(v) +

ǫ ‖v − vǫ‖W1,Φn
0

. Obviously, vǫ is a minimum point of Fn,λ (via ii)) that infers

Fn,λ(vǫ + tw)− Fn,λ(vǫ)

t
≥ 0

for small t > 0 and any w ∈ B1(0). Computing the above relation we find

Jn,λ(vǫ + tw)− Jn,λ(vǫ)

t
+ ǫ ‖w‖

W1,Φn
0

≥ 0

and then passing to the limit as t → 0+ it yields that 〈J
′

n,λ(vǫ), w〉+ ǫ ‖w‖
W1,Φn

0
≥ 0 that implies

‖J
′

n,λ(vǫ)‖(W1,Φn
0 (Ω))⋆ ≤ ǫ, where (W1,Φn

0 (Ω))⋆ is the dual space of W1,Φn
0 (Ω).

In consideration of that, we draw to the conclusion that there exists a sequence {vm}m ⊂

B1(0) such that

lim
m→∞

Jn,λ(vm) = γn and lim
m→∞

J
′

n,λ(vm) = 0 . (3.12)

The sequence {vm}m is certainly bounded in W1,Φn
0 (Ω) since vm ∈ B1(0) for all m ∈ N

⋆ and

this fact induces the existence of vn ∈ W1,Φn
0 (Ω) such that, up to a subsequence, {vm}m con-

verges weakly to vn in W1,Φn
0 (Ω) and uniformly in Ω, since ϕ−

n > N, as m → ∞. Furthermore,

we infer that

lim
m→∞

∫

Ω
evm(vm − vn) dx = 0

and

lim
m→∞

〈J
′

n,λ(vm), vm − vn〉 = 0 ,

which imply that

lim
m→∞

∫

Ω

ϕn(|∇vm|)

|∇vm|
∇vm∇(vm − vn) dx = 0. (3.13)

Owing to the weak convergence of sequence {vm}m to vn in W1,Φn
0 (Ω), as m → ∞, we have

that

lim
m→∞

〈J
′

n,λ(vn), vm − vn〉 = 0
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and it follows that

lim
m→∞

∫

Ω

ϕn(|∇vn|)

|∇vn|
∇vn∇(vm − vn) dx = 0. (3.14)

Assembling relations (3.13) and (3.14), we conclude that

lim
m→∞

∫

Ω

[

ϕn(|∇vm|)

|∇vm|
∇vm −

ϕn(|∇vn|)

|∇vn|
∇vn

]

∇(vm − vn) dx = 0. (3.15)

By [16, Lemma 3.2] we know that there exists a positive constant kn such that

[

ϕn(|ξ|)

|ξ|
ξ −

ϕn(|η|)

|η|
η

]

· (ξ − η) ≥ kn
[Φn(|ξ − η|)]

ϕ−n +2

ϕ−n +1

[Φn(|ξ|) + Φn(|η|)]
1/(ϕ−

n +1)
, ∀ ξ, η ∈ R

N , ξ 6= η.

In our case, we established that there exist constant kn > 0 so that

∫

Ω

[

ϕn(|∇vm|)

|∇vm|
∇vm −

ϕn(|∇vn|)

|∇vn|
∇vn

]

(∇vm −∇vn) dx

≥ kn

∫

Ω

[Φn(|∇vm −∇vn|)]
ϕ−n +2

ϕ−n +1

[Φn(|∇vm|) + Φn(|∇vn|)]
1/(ϕ−

n +1)
dx.

Due to relation (3.15) we deduce that

lim
m→∞

∫

Ω
Φn(|∇(vm − vn)|)

[

Φn(|∇(vm − vn)|)

Φn(|∇vm|) + Φn(|∇vn|)

]1/(ϕ−
n +1)

dx = 0.

Since Φn is a convex function we obtain by relation (2.5) that

Φn(|∇(vm − vn)|) ≤
Φn(2|∇vm|) + Φn(2|∇vn|)

2
≤ 2ϕ+

n −1 [Φn(|∇vm|) + Φn(|∇vn|)] .

Using assumption (1.4), the last two relations require

lim
m→∞

∫

Ω
Φn(|∇(vm − vn)|) dx = 0 ,

and (2.9) generates

lim
m→∞

‖vm − vn‖W1,Φn
0

= 0 .

That being the case, {vm}m converges strongly to vn in W1,Φn
0 (Ω) as m → ∞. Hence, relation

(3.12) contribute to

Jn,λ(vn) = γn < 0 and J
′

n,λ(vn) = 0 . (3.16)

As a result, vn is the minimizer of Jn,λ on B1(0), and also vn is a critical point of the functional

Jn,λ. Of course, vn is really a weak solution of (1.1). Finally, note that Jn,λ(|v|) ≤ Jn,λ(v) for

any v ∈ W1,Φn
0 (Ω) and for this reason vn is a nonnegative function on Ω.

The proof of Theorem 3.4 is complete.
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4 The asymptotic behavior of the sequence of solutions {vn}n of

problem (1.1) given by Theorem 3.4 as n → ∞

The goal of this section is to prove the following result.

Theorem 4.1. Let λ⋆
> 0 be given by (3.8). For each λ ∈ (0, λ⋆) and each n ∈ N

⋆ we denote by

vn the nonnegative weak solution of problem (1.1) given by Theorem 3.4. The sequence {vn} converges

uniformly in Ω to dist(·, ∂Ω), the distance function to the boundary of Ω.

In order to prove Theorem 4.1 we first establish the uniform Hölder estimates for the weak

solutions of (1.1).

Lemma 4.2. Let λ⋆
> 0 be given by (3.8). Fix λ ∈ (0, λ⋆) and let vn be the nonnegative solution of

problem (1.1) given by Theorem 3.4. Then there is a subsequence {vn} which converges uniformly in

Ω, as n → ∞, to a continuous function v∞ ∈ C(Ω) with v∞ ≥ 0 in Ω and v∞ = 0 on ∂Ω.

Proof. Let q ≥ N be an arbitrary real number. By (1.3) we can choose q < ϕ−
n for sufficiently

large positive integer n. Using Hölder’s inequality, relation (3.6), recalling that vn ∈ B1(0) ⊂

W1,Φn
0 (Ω) and taking into account (2.9) we have

(

∫

Ω
|∇vn|

q dx

)1/q

≤

(

∫

Ω
|∇vn|

ϕ−
n dx

)1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)

∫

Ω
Φn(|∇vn|) dx

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)
‖vn‖

ϕ−
n

W1,Φn
0

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n

≤

[

|Ω|+
1

Φn(1)

]1/ϕ−
n

|Ω|1/q−1/ϕ−
n .

Thereupon, using (3.9) we find that sequence {|∇vn|} is uniformly bounded in Lq(Ω). It

is clear that q > N ensures that the embedding of W
1,q
0 (Ω) into C(Ω) is compact. Keeping in

mind the reflexivity of the Sobolev space W
1,q
0 (Ω) we deduce that there exists a subsequence

(not relabelled) of {vn} and a function v∞ ∈ C(Ω) such that vn ⇀ v∞ weakly in W
1,q
0 (Ω) and

vn → v∞ uniformly in Ω as n → ∞. In addition, the facts that vn ≥ 0 in Ω and vn = 0 on

∂Ω for each ϕ−
n > N hint that v∞ ≥ 0 in Ω and v∞ = 0 on ∂Ω. The proof of Lemma 4.2 is

complete.

In Theorem 4.5 below we show that function v∞ given by Lemma 4.2 is the solution in the

viscosity sense (see, Crandall, Ishii & Lions [11]) of a certain limiting problem. Accordingly,

we adopt the usual strategy of first proving that continuous weak solutions of problem (1.1) at

level n are indeed solutions in the viscosity sense. Before recalling the definition of viscosity

solutions for this type of problems, let us note that if we assume for a moment that the

solutions vn of problem (1.1) are sufficiently smooth so that we can perform the differentiation

in the PDE

−div

(

ϕn(|∇vn|)

|∇vn|
∇vn

)

= λevn , in Ω,

we get

−
ϕn(|∇vn|)

|∇vn|
∆vn −

|∇vn|ϕ′
n(|∇vn|)− ϕn(|∇vn|)

|∇vn|3
∆∞vn = λevn , in Ω, (4.1)
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where ∆ stands for the Laplace operator, ∆v := Trace(D2v) = ∑
N
i=1

∂2v
∂x2

i

and ∆∞ stands for the

∞-Laplace operator,

∆∞v := 〈D2v∇v,∇v〉 =
N

∑
i,j=1

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
,

while D2v denotes the Hessian matrix of v.

Remark that (4.1) can be reformulated as

Hn(vn,∇vn, D2vn) = 0, in Ω

with function Hn defined as follows

Hn(y, z, S) := −
ϕn(|z|)

|z|
Trace S −

|z|ϕ′
n(|z|)− ϕn(|z|)

|z|3
〈Sz, z〉 − λey,

where y ∈ R, z is a vector in R
N and S stands for a real symmetric matrix in M

N×N .

Since our main objective in this section is the asymptotic analysis of solutions {vn} as

n → ∞, we are now ready to give the definition of viscosity solutions for the homogeneous

Dirichlet boundary value problem associated to degenerate elliptic PDE of the type

{

Hn(v,∇v, D2v) = 0 in Ω,

v = 0 on ∂Ω.
(4.2)

Definition 4.3.

i) An upper semicontinuous function v is a viscosity subsolution of problem (4.2) if v ≤ 0 on

∂Ω and, whenever x0 ∈ Ω and Ψ ∈ C2(Ω) are such that v(x0) = Ψ(x0) and v(x) < Ψ(x)

if x ∈ B(x0, r) \ {x0} for some r > 0, we have Hn(Ψ(x0),∇Ψ(x0), D2Ψ(x0)) ≤ 0.

ii) A lower semicontinuous function v is a viscosity supersolution of problem (4.2) if v ≥ 0 on

∂Ω and, whenever x0 ∈ Ω and Υ ∈ C2(Ω) are such that v(x0) = Υ(x0) and v(x) > Υ(x)

if x ∈ B(x0, r) \ {x0} for some r > 0, we have Hn(Υ(x0),∇Υ(x0), D2Υ(x0)) ≥ 0.

iii) A continuous function v is a viscosity solution of problem (4.2) if it is both viscosity

supersolution and viscosity subsolution of problem (4.2).

In the sequel, functions Ψ and Υ stand for test functions touching the graph of v from

above and below, respectively.

Our goal now is to prove that any continuous weak solution of (1.1) is also viscosity

solution of (1.1) and in order to establish this result we follow the approach by Juutinen,

Lindqvist & Manfredi in [27, Lemma 1.8] (see also [35, Lemma 1] for a similar approach but

in the framework of inhomogeneous differential operators).

Lemma 4.4. A continuous weak solution of problem (1.1) is also a viscosity solution of (1.1).

Proof. Firstly, we prove that if vn is a continuous weak solution of problem (1.1) for a fixed

positive integer n, then it is a viscosity subsolution of problem (1.1). We begin by considering

x0
n ∈ Ω and a test function Ψn ∈ C2(Ω) such that vn(x0

n) = Ψn(x0
n) and vn − Ψn has a strict

local maximum at x0
n, that is vn(y) < Ψn(y) if y ∈ B(x0

n, ρ) \ {x0
n} for some ρ > 0.
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Next, we have to show that

−div

(

ϕn(|∇Ψn(x0
n)|)

|∇Ψn(x0
n)|

∇Ψn(x0
n)

)

≤ λeΨn(x0
n)

or

−
ϕn(|∇Ψn(x0

n)|)

|∇Ψn(x0
n)|

∆Ψn(x0
n)−

|∇Ψn(x0
n)|ϕ

′
n(|∇Ψn(x0

n)|)− ϕn(|∇Ψn(x0
n)|)

|∇Ψn(x0
n)|

3
∆∞Ψn(x0

n)≤ λeΨn(x0
n).

Arguing ad contrarium, suppose that this is not the case of the above assertion. In other words,

we admit that there exists a radius ρn > 0 such that B(x0
n, ρn) ⊂ Ω from the Euclidean space

R
N such that

−
ϕn(|∇Ψn(y)|)

|∇Ψn(y)|
∆Ψn(y)−

|∇Ψn(y)|ϕ′
n(|∇Ψn(y)|)− ϕn(|∇Ψn(y)|)

|∇Ψn(y)|3
∆∞Ψn(y) > λeΨn(y)

for all y ∈ B(x0
n, ρn). For ρn small enough, we may presume that vn − Ψn has a strict local

maximum at x0
n, that is vn(y) < Ψn(y) if y ∈ B(x0

n, ρn) \ {x0
n}. This fact implies that actually

sup
∂B(x0

n,ρn)

(vn − Ψn) < 0.

Thus, we may consider a perturbation of the test function Ψn defined as

wn(y) := Ψn(y) +
1

2
sup

y∈∂B(x0
n,ρn)

[vn − Ψn](y)

that has the properties

• wn(x0
n) < vn(x0

n);

• wn > vn on ∂B(x0
n, ρn) ;

• −div
( ϕn(|∇wn|)

|∇wn|
∇wn

)

> λeΨn in B(x0
n, ρn).

Multiplying the above inequality by the positive part of the function vn − wn, i.e.

(vn − wn)+, that vanishes on the boundary of the ball B(x0
n, ρn), and integrating on B(x0

n, ρn),

we get

∫

Mn

ϕn(|∇wn(x)|)

|∇wn(x)|
∇wn(x) [∇vn(x)−∇wn(x)] dx > λ

∫

Mn

eΨn(x) [vn(x)− wn(x)] dx, (4.3)

where the set Mn := {x ∈ B(x0
n, ρn); wn(x) < vn(x)}.

On the other hand, taking the test function in relation (3.1) to be

w : Ω → R, w(x) =

{

(vn − wn)+(x), if x ∈ B(x0
n, ρn),

0, if x ∈ Ω \ B(x0
n, ρn),

we obtain
∫

B(x0
n,ρn)

ϕn(|∇vn(x)|)

|∇vn(x)|
∇vn(x) ∇(vn − wn)

+(x) dx = λ
∫

B(x0
n,ρn)

evn(x)(vn − wn)
+(x) dx

or
∫

Mn

ϕn(|∇vn(x)|)

|∇vn(x)|
∇vn(x) ∇(vn − wn)(x) dx = λ

∫

Mn

evn(x)(vn − wn)(x) dx
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since vn ≤ wn in the ball B(x0
n, ρn) outside Mn.

Applying the subtraction of the above equality from inequality (4.3) it produces

∫

Mn

[

ϕn(|∇wn|)

|∇wn|
∇wn −

ϕn(|∇vn|)

|∇vn|
∇vn

]

(∇vn −∇wn) dx

> λ
∫

Mn

(

eΨn − evn

)

(vn − wn) dx ≥ 0 (4.4)

with the aid of the facts that vn < Ψn on B(x0
n, ρn) \ {x0

n} and wn < vn on Mn ⊂ B(x0
n, ρn).

Cauchy–Schwarz inequality implies

∫

Mn

[

ϕn(|∇vn|)− ϕn(|∇wn|)
]

(|∇vn| − |∇wn|)dx

≤
∫

Mn

[

ϕn(|∇vn|)

|∇vn|
∇vn −

ϕn(|∇wn|)

|∇wn|
∇wn

]

∇(vn − wn)dx

and combined with relation (4.4) leads to

∫

Mn

[

ϕn(|∇wn|)− ϕn(|∇vn|)
]

(|∇wn| − |∇vn|)dx < 0

which is a contradiction with the statement that ϕn is an increasing function on R. Actually,

it follows that vn is a viscosity subsolution of problem (1.1).

On the other hand, vn is a viscosity supersolution of problem (1.1) with similar arguments

as above adapted for this case and therefore, these details will be omitted. The proof of

Lemma 4.4 is complete.

By Lemma 4.2 we may select a subsequence {vn} that converges uniformly to v∞ in Ω

as n → ∞. Next, we will focus to identify the limit equation verified by v∞. The following

theorem encloses the main result regarding the asymptotic behavior of the solutions {vn} of

problem (1.1).

Theorem 4.5. Let v∞ be the function achieved as the uniform limit of a subsequence of {vn} in Lemma

4.2. Then v∞ is a solution in the viscosity sense of problem

{

min{−∆∞v, |∇v| − 1} = 0 in Ω,

v = 0 on ∂Ω .
(4.5)

Proof. First, we investigate if v∞ is a viscosity supersolution of (4.5). We consider y0 ∈ Ω

and a test function Υ ∈ C2(Ω) such that v∞ − Υ has a strict local minimum point at y0. We

claim that the uniform convergence of {vn} shown in Lemma 4.2 allows us to extract, up to

a subsequence, {yn} ⊂ Ω such that yn converges to y0 and moreover vn − Υ achieves a strict

local minimum point at yn. Indeed, since y0 is a strict minimum point of v∞ − Υ it follows

that v∞(y0) = Υ(y0) and v∞(y) > Υ(y) for every y in a punctured neighborhood of y0, let’s

say B(y0, r) \ {y0} with r > 0 fixed in such a manner that B(y0, 2r) ⊂ Ω. For any positive ρ

with ρ < r we get

inf
B(y0,r)\B(y0,ρ)

(v∞ − Υ) > 0.

By the uniform convergence of {vn} to v∞ in Ω and in particular in B(y0, r), for any positive

integer n sufficiently large, the function vn − Υ attains its zero minimum value in B(y0, ρ) and
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thus, the minimum point of vn − Υ will be represented by yn ∈ B(y0, ρ). Considering a

sequence ρk → 0+ as k → ∞, we can construct a subsequence {nk} such that ynk
converges to

y0 as k → ∞. The claim now holds true after an appropriate relabelling of the indices. In other

words, taking into account that vn, v∞ ∈ C(Ω) for any positive integer n sufficiently large, the

uniform convergence of sequence {vn} to v∞ in Ω implies that since Υ touches v∞ from below

at y0, then there are points yn → y0 such that

vn(y)− Υ(y) > 0 = vn(yn)− Υ(yn) for all y ∈ B(y0, ρ) \ {y0}

for some subsequence (see [6, Theorem 3.1] or [30, Lemma 11]).

Keeping in mind that in view of Lemma 4.4, vn is a continuous viscosity solution of (1.1)

we have

−
ϕn(|∇Υ(yn)|)

|∇Υ(yn)|
∆Υ(yn)−

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

|∇Υ(yn)|3
∆∞Υ(yn) ≥ λeΥ(yn) .

(4.6)

Since λeΥ(yn) > 0 for any λ ∈ (0, λ∗), it follows that |∇Υ(yn)| > 0 for each positive integer n.

Recalling inequality (2.6) states

min{sϕ−
n −1, sϕ+

n −1}ϕn(t) ≤ ϕn(st) ≤ max{sϕ−
n −1, sϕ+

n −1}ϕn(t), ∀ s, t ≥ 0 (4.7)

and keeping in mind (1.3), for each positive integer n sufficiently large, the functions An, Bn :

[0, ∞) → R,

An(t) :=







tϕ′
n(t)− ϕn(t)

t3
, if t > 0,

0, if t = 0,

Bn(t) :=







ϕn(t)

t
, if t > 0,

0, if t = 0

are continuous. Moreover, function Bn is of class C1 since An(t) = t−1B′
n(t) for t > 0. Accord-

ing to (1.2) and (1.3), we deduce that

|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

> 0.

Inequality (4.6) multiplied with the above positive quantity in both sides becomes

−
ϕn(|∇Υ(yn)|)|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

∆Υ(yn)− ∆∞Υ(yn)

≥
λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

. (4.8)

On the other hand, we obtain

ϕn(|∇Υ(yn)|)|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

=
|∇Υ(yn)|2

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)

ϕn(|∇Υ(yn)|)
− 1

≤
|∇Υ(yn)|2

ϕ−
n − 2

, (4.9)

where in the latter inequality we use Lieberman-type condition (1.2).

In relation (4.8) we pass to the limit as n → ∞ and then using (1.3) we infer by relation

(4.9) that

− ∆∞Υ(y0) ≥ lim sup
n→∞

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

(4.10)
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which hints that

− ∆∞Υ(y0) ≥ 0. (4.11)

In the following we will show that

|∇Υ(y0)| − 1 ≥ 0. (4.12)

If we assume by contradiction that is not the case of the above claim, we get |∇Υ(y0)| −

1 < 0, that implies |∇Υ(yn)| < 1 for any positive integer n sufficiently large. Taking into

consideration (1.2) and then inequality (4.7) we arrive at

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

=
|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)

ϕn(|∇Υ(yn)|)
− 1

·
λeΥ(yn)

ϕn(|∇Υ(yn)|)

≥
|∇Υ(yn)|3

ϕ+
n − 2

·
λeΥ(yn)

ϕn(|∇Υ(yn)|)

≥
|∇Υ(yn)|3

ϕ+
n − 2

·
λeΥ(yn)

ϕn(1)|∇Υ(yn)|ϕ
−
n −1

=





(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|





ϕ−
n −4

.

Since by (1.5) we have limn→∞ ϕn(1)1/ϕ−
n = 1 we get using (1.4) that

lim
n→∞

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

= 1.

Next, taking into account that limn→∞

1

|∇Υ(yn)|
=

1

|∇Υ(y0)|
> 1 we obtain

lim
n→∞

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|
=

1

|∇Υ((y0)|
> 1

and then, we deduce that there exists ǫ0 > 0 such that

(

λeΥ(yn)

(ϕ+
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Υ(yn)|
≥ 1 + ǫ0 for all positive integer n sufficiently large,

which yields to

lim sup
n→∞

λeΥ(yn)|∇Υ(yn)|3

|∇Υ(yn)|ϕ′
n(|∇Υ(yn)|)− ϕn(|∇Υ(yn)|)

≥ lim
n→∞

(1 + ǫ0)
ϕ−

n −4 = +∞,

a contradiction with (4.10). Thus, inequality (4.12) holds true.

Assembling relations (4.11) and (4.12) we have min{−∆∞Υ(y0), |∇Υ(y0)| − 1} ≥ 0 which

leads to the fact that v∞ is a viscosity supersolution of (4.5).

Now, it remains to see that in fact v∞ is a viscosity subsolution of (4.5). We take a test

function Ψ ∈ C2(Ω) that touches the graph of v∞ from above in a point x0 ∈ Ω, that means

v∞(x0) = Ψ(x0) and v∞(x) < Ψ(x) for every x in a punctured neighborhood of x0 and we have
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to establish that min{−∆∞Ψ(x0), |∇Ψ(x0)| − 1} ≤ 0. We notice that if |∇Ψ(x0)| = 0 then we

have ∆∞Ψ(x0) = 0 and everything is clear. Then, it is sufficient to check that if |∇Ψ(x0)| > 0

and also

|∇Ψ(x0)| − 1 > 0, (4.13)

we get −∆∞Ψ(x0) ≤ 0. Actually, the uniform convergence of subsequence of {vn} ensures

again, as in the first part of this proof, the existence of a sequence xn → x0 as n → ∞ such

that vn − Ψ has a strict local maximum point at xn and

−
ϕn(|∇Ψ(xn)|)|∇Ψ(xn)|2

|∇Ψ(xn)|ϕ′
n(|∇Ψ(xn)|)− ϕn(|∇Ψ(xn)|)

∆Ψ(xn)− ∆∞Ψ(xn)

≤
λeΨ(xn)|∇Ψ(xn)|3

|∇Ψ(xn)|ϕ′
n(|∇Ψ(xn)|)− ϕn(|∇Ψ(xn)|)

. (4.14)

Passing to the limit as n → ∞ in the above relation and using (4.13), inequality (4.7), and

assumptions (1.3) and (1.5), we deduce that

−∆∞Ψ(x0) ≤ lim inf
n→∞





(

λeΨ(xn)

(ϕ−
n − 2)ϕn(1)

)1/(ϕ−
n −4)

1

|∇Ψ(xn)|





ϕ−
n −4

= 0

which implies that −∆∞Ψ(x0) ≤ 0. Thus, we conclude that v∞ is a viscosity solution of

problem (4.5). The proof of Theorem 4.5 is complete.

Next, we identify the limit of the entire sequence of weak solutions {vn} of problem (1.1).

Proof of Theorem 4.1 (concluded). It is well-known that problem (4.5) has as unique viscosity

solution dist(·, ∂Ω), namely the distance function to the boundary of Ω (see Jensen [25], or

Juutinen [26, Lemma 6.10], or Ishibashi & Koike [24, p. 546]). As a consequence, Lemma 4.2

and Theorem 4.5 allow us to reach to the conclusion that the entire sequence {vn} converges

uniformly to dist(·, ∂Ω) in Ω, as n → ∞.
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