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Abstract

Fish otoliths have long played an important role in sustainable fisheries management.
Stock assessment models currently used rely on species specific age profiles obtained
from the seasonal patterns of growth marks that otoliths exhibit. We compare meth-
ods widely used in fisheries science (elliptical Fourier) with an industry standardised
encoding method (MPEG7 - Curvature-Scale-Space) and with a recent addition to
shape modelling techniques (time-series shapelets) to determine which performs best.

An investigation is carried out into transform methods that retain size-information,
and whether the boundary encoding method is impacted be otolith age, performing
tests over three 2-class otolith datasets across six discrete and concurrent age groups.
Impact of segmentation methods are assessed to determine whether automated or ex-
pert segmented methods of boundary extraction are more advantageous, and whether
constructed classifiers can be used at different institutions.

Tests show that neither time-series shaplets nor Curvature-Scale-Space methods
offer any real advantage over Fourier transform methods given mixed age datasets.
However, we show that size indices are most indicative of fisheries stock in younger
single-age datasets, with shape holding more discriminatory potential in older sam-
ples. Whilst commonly used Fourier transform methods generally return best results;
we show that classification of otolith boundaries is impacted by the method of bound-
ary segmentation. Hand traced boundaries produce classifiers more robust to test data
segmentation methods and are more suited to distributed classifiers.

Additionally we present a proof of concept study showing that high energy syn-
chrotron scans are a new, non-invasive method of modelling internal otolith structure,
allowing comparison of slices along near infinite numbers of virtual complex planes.
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Chapter 1

Introduction

Otoliths are the calcium carbonate structures forming the inner ear of many verte-

brates. Teleost fish have three otoliths in each ear-chamber (left and right ears) of

the fish: sagittae, lapilli and asterisci. However, the larger sagittal otoliths are the

most commonly used for classification studies as they are easier to prepare, observe

and measure [24]. Otolith morphology varies markedly between species (Figure 1.1),

however separate stocks of the same species, where fish are often physically similar

(Figure 1.3), can sometimes be discriminated through subtle differences in otolith

morphometrics.

Figure 1.1: Otoliths from Plaice (left) and Herring (right) showing interspecies vari-
ation in morphology.

1
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Figure 1.2 shows an otolith (sagittal) that is used during the studies presented in

this thesis, and was taken from the left ear-chamber of a North-Sea Herring. In some

species the left and right otoliths of individual fish are significantly different, a trait

common in flatfish such as Plaice. In these instances the larger otolith is often used

for study. However, for the species studied in this thesis the left and right sagittal

otoliths may be used for study.

Figure 1.2: Example of a otolith (sagittal) taken from the left ear of a North-Sea
Herring. Marked on the otolith are the ventral (1) and dorsal (2) edges, the rostrum
(3), excisura major (4), antirostrum (5), pararostrum (6), excisura minor (7) and
postrostrum (8). Dotted arcs annotate sections of three annuli; rings that show
yearly growth.

Expert otolith readers have drawn on otoliths to discriminate between: different

ages or cohorts [14, 21, 23]; sex [25]; diet [34] and of course stock [11, 12, 19, 31,

63]. Some of these distinctions are more complex and more important to fisheries

management [13], which requires accurate measurements of stock composition/mixing

or stock movement to inform decision making [90].
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Figure 1.3: Three North-Sea (top) and Thames (bottom) herring otoliths, showing
morphological similarity between two stocks of the same species.

Shape analysis forms a major part of otolith science, and many studies have anal-

ysed shape with a view to separating stocks. Methods include statistical analysis

of general shape parameters such as circularity, eccentricity, area, perimeter length,

form-factor, and annular growth increments [21, 22, 46, 76]. In some cases these

measurements are supplemented with, or normalised by, measures such as fish length

or weight [30, 63, 90].

Otolith boundaries are also extracted and represented or encoded in different ways

(transformed) prior to analysis with methods such as Fourier transforms [10, 11, 35];

or Elliptical Fourier transforms [22, 24, 31]. Other methods of otolith boundary

representation include Wavelets [73], Curvature-Scale-Space [13, 73] and the more

recent Shapelet transform method [40, 54].

Otoliths also bear patterns, in the form of concentric rings (annuli) around the

nucleus. Whilst these rings are commonly used to determine the age of the sample,

and can be used to age the otolith, and hence the individual, in years or even days

[19], these annuli are also used during stock discrimination tasks.

Stock discrimination using annuli can be carried out using microstructure analysis

[19] whereby measurements of daily growth increments are taken allowing spawning
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dates to be approximated, with spawning dates themselves suggesting the spawning

stock. In this process the otolith must (usually) first be sectioned, a process that

is time consuming and requires specialist methods and equipment. This process is

undertaken when annuli or daily annuli are not easily visible on the exterior surface of

the otolith and involves setting the specimen in a resin mount, sectioning it through

the core and polishing the surface with a fine-grit. Magnification levels needed to

clearly view/measure the daily increments vary by species and task, however whilst

daily increment measurements can sometimes be performed using optical microscopy,

magnification levels are often in excess of 100x magnification [19] or make use of

scanning electron microscopy.

Analysis of annuli (yearly increments) typically involves viewing the otolith under

magnification, although in some cases it is possible to analyse larger specimens with

the naked eye. Annuli may in some instances be used as an approximation of the

otolith shape at previous ages and have been used for stock discrimination [22].

Most studies focus on standard statistical methods to normalise or prepare data

(eg. Burke et al. [22]), and compare them using statistical software. Whilst a number

of differing techniques are used to formulate data from otolith boundaries a number

of common methods have emerged. Fourier transforms are often used for analysis;

usually derived using Fast Fourier Transforms (FFTs) or Elliptical Fourier Transforms

(EFTs) performed on perimeter data of the otolith, or on internal features such as

annual growth rings.

Additionally (or alternatively), shape indices are formulated from otolith morpho-

metrics such as major/minor axis lengths, increment lengths, circularity, eccentric-

ity, rectangularity, etc. These can either be manually derived, or obtained through
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computer-aided derivation using software such as OPTIMAS ([12, 27]) or MAT-

LAB [62]. These metrics are often used to supplement Fourier descriptors, but are

also used as stand-alone features.

Many studies center on stock classification as the primary goal, and use a number

of methods to distinguish between classes. However the aim of this study is not

focused on the absolute classification accuracy of stock identification per se. Rather

the objectives of this thesis are to critically compare the viability of morphometric

methods used to represent otoliths for stock classification in an attempt to assess

their potential efficacy for application in fish stock management.

To this end we perform a number of 2-class stock separation tasks using a num-

ber of pre-constructed otolith image sets (datasets) obtained from the Centre for

Environment, Fisheries and Aquaculture Science (Cefas) and the Galway-Mayo In-

stitute of Technology (GMIT), whereby individual samples are re-assigned to their

source stocks using classifiers constructed with remaining samples. The details of the

datasets obtained can be seen in Section 1.7) and details of how each dataset (or

portion of) was used to explore our research objectives can been seen in the research

chapters of this thesis (Chapters 3 to 6).

1.1 Motivation

Understanding the variance in otolith morphometrics is a basis for further under-

standing of population dynamics [11] and stock structure [11, 22] in that it can

give information through deduction about many aspects in individual, population or

species specific life-cycles. Fisheries management requires that stocks be accurately

determined and separated for management [91] so that decisions on their manage-

ment can be made. Whilst stocks may be managed as separate stocks as part of one



6

management group [20, 30], it is often the case that separating stocks into separate

management areas [23] does not reflect the underlaying population structure of the

fish.

Devries [30] discusses how management areas can be incorrectly separated due to

lack of understanding of eco-dynamics in the areas managed, which can lead to poor

management among several other issues. However, incorrect separation may also be

caused by traditional methods of otolith classification as they have certain levels of

ambiguity or human error [96] and may be reader-dependent in some cases. Whist

there are some common methodologies emerging for morphological landmark/metric

selection, there is little consensus on which methods are more successful for classifi-

cation [13, 19, 20].

Otolith analysis allows estimation of stock composition to determine whether the

samples obtained from an area or areas are all in fact from one stock, or from multiple

stocks mixed together [24, 30, 31]. The same methods may be used to determine

whether multiple known stocks are mixing [22, 23] in a specific area or areas and

if so the estimated composition ratios of the mixed stock. It can also be used to

determine stock movements or migration from one location to another [22, 35] or

gradual dispersal of a fish stock or nursery ground.

With increased accuracy in separation of stocks or populations, a better under-

standing of a number of key management factors can be achieved and where possible

stocks can be separated (on paper) so that they are each self-sustaining [90]. Where

separate stocks have been modelled using otolith analysis, it is possible to take otolith

sample(s) from a separate, un-modelled area, and compare them to the existing mod-

els. This could give an indication as to whether the samples taken from the separate
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area are of individuals of known stock or stocks [24], or if samples may include in-

dividuals from other (potentially unknown) stock(s). Conversely, samples could be

taken from modelled stock areas and composition checked for consistency with known

data. This could indicate shifts in individual spawning components or recruitment

index [11, 21], important considerations for many management decisions.

Understanding recruitment dynamics [19] assists management units in giving better

protection to specific spawning grounds [78] where recruitment has been hindered by

exploitation or environmental impact. Analysing samples from surveyed areas may be

used as a method for establishing the current state of fisheries resources [13]. In heav-

ily exploited areas, or in areas impacted by environmental catastrophes etc, methods

can be employed to assess stock recovery or how severely stocks have been impacted.

This may be beyond unit count, as otoliths allow discrimination of cohort or stock

and may show if stock replenishment is due to migration, or decreased mortality due

to reduced competition.

Over exploitation is an issue that can severely impact fisheries stocks of all sizes [31,

78] and can readily happen without correct management in place. Correct measure-

ment of stock composition or recruitment dynamics, and its correct comparison to

historical records is important to understand if and how a stock is being exploited

and how it responds to exploitation [11]. Maintaining genetic diversity [78] can be

an important factor to how well a stock can react to environmental change or other

impacts and whilst genetic diversity or population richness [35] at a genetic level may

not be discernible using otoliths alone. They only give indication of stock mixing or

lack of mixing which are important factors in maintaining diversity. Without proper

precautionary approaches, over exploitation through fishing or severe impact of en-

vironmental change/disaster due to decreased diversity can in the worst cases lead
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to severe stock depletion or resource collapse [11], to the point that stocks become

non-sustainable.

Fish stocks however hold high commercial value [31, 63, 78] and restricting the

fishing of stock areas is often met with objection from those that rely on those area

for both food or income and therefore a total ban of fishing in those areas are often

socially infeasible. Many now understand however the critical importance of sustain-

able exploitation [16] through correct management, so that total catches taken do

not exceed the maximum sustainable yield [36]. This ensures that stocks persist [35]

and can continue to benefit areas where the fishing industry holds high commercial

importance [96]. Fisheries management can make assessments based on current stock

level, diversity and recruitment dynamics to set conservative quotas [92] that ensure

stock persistence whilst at the same time allowing those communities that rely on

the stock to survive. This of course extends to sport-fishing or areas where additional

recreational value is placed on a stock. Additional management can be in place to

allow those activities to continue with limited impact to the stock itself, or where any

impact is taken into account when making management decisions.
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1.2 Project Objectives

Here we list the initial objectives of the research presented in this thesis, with a brief

justification for each, and methods by which they are performed.

1. To critically compare recent techniques taken from the fields of

computer vision and time-series analysis to methods traditionally used

for otolith classification.

We investigate methods of otolith analysis with a view to separation of fisheries stock.

Current tools from the field of image and time-series analysis are compared to methods

widely used in otolith analysis with a view to increasing accuracy. The initial task is

to determine whether recent methods from the field of shape (Curvature Scale Space,

[15]) and time-series analysis (Time-series Shapelets, [70]) compare favourably with

established methods of otolith boundary analysis (Fourier analysis, [48]) when used

to separate fish stocks.

2. To establish whether otolith age impacts classification accuracies

dependent on scale-invariance of transformed boundaries.

Studies have found that separation of samples into discrete age categories can impact

classification accuracies. Galley et al. [35] found that samples of different age are

classified with different accuracy. Likewise, Begg and Brown [11] found differences in

classification rates among ages when a multi-age model was used, additionally noting

that classification success is more variable when samples are analysed in separate age

tests. However, both studies combine Fourier descriptors with gross shape morpho-

logical metrics when analysing otoliths. We investigate shape and size metrics indi-

vidually with regard to separate otolith ages to determine whether age composition

of otolith datasets dictates choice of boundary representation for stock separation.
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3. To determine whether the methods used for otolith boundary deter-

mination impact classification accuracies.

There are two common methods of otolith segmentation used in boundary modelling

studies: Hand tracing of the boundary or internal annuli [11, 12, 22, 30], and auto-

matic detection through intensity thresholding and/or edge detection [18, 44, 63, 92].

We assess whether the distribution of pre-built classifiers is feasible, given the non-

standardised practice of otolith image capture and segmentation. We investigate

whether the two common methods of outline extraction, hand tracing and intensity

thresholding, affect the classification accuracies returned when these boundaries are

used for stock separation.

4. To establish whether the choice of machine learning algorithm af-

fects classification accuracies for otolith stock separation.

Whilst many of the studies use modern computing to process the complex statistical

tasks, many of them do not use, or at least do not mention the use of, computer aided

modelling techniques to process and classify samples. A range of learning algorithms

are explored during the study and appropriate statistical techniques are employed to

determine whether any particular algorithm or family of algorithms, available within

commonly used and freely available machine learning tool-kits, perform better than

others for otolith stock classification tasks.

5. To determine whether three dimensional modelling of otoliths is

possible using non-invasive methods, and whether complex plane slices

give clearer indication of internal otolith structure.

Currently methods of otolith sectioning are invasive and generally destructive. Pre-

vious attempts to produce three-dimensional models using x-ray scanning have been

unsuccessful [75]. We investigate whether modelling of internal otolith features is
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feasible using higher energy scanning methods employing the UK’s only synchrotron

particle accelerator.

6. To establish whether complex plane slices give clearer indication of

internal otolith structure than traditional flat plane slicing.

We investigate whether three-dimensional reconstructions could allow virtual slicing

along complex curves, such as estimated plane of maximal growth, and compare the

suggested technique to traditional flat-slicing methods.
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1.3 Publications

Here we list the publications that have been printed, submitted, or are in preparation

for submission. Each publication is listed with a shortened description and reference

to the thesis objectives.

As First Author

James Mapp, Mark Fisher, Anthony Bagnall, Jason Lines, Sally Warne, and

Joe Scutt Phillips. Clupea harengus: Intraspecies distinction using curvature

scale space and shapelets. In International Conference on Pattern Recognition

Applications and Methods (ICPRAM), pages 138–143, SciTePress, 2013

The publication presents a study comparing Curvature Scale Space (CSS)

representation with Shapelet transformed data with a view to discrim-

inating between sagittal otoliths of North-Sea and Thames Herring us-

ing otolith boundary and boundary metrics. CSS transformed boundaries

combined with measures of their circularity, eccentricity and aspect-ratio

are used to classify using nearest-neighbour selections with distance being

computed using CSS matching methods. Shapelet transformed data are

classified using a number of techniques (Nearest-Neighbour, Naive-Bayes,

C4.5, Support Vector Machines, Random and Rotation Forest) and com-

pared to CSS classification results. The work published was a portion

of our investigation into whether computer vision and time-series meth-

ods offered improvement on industry used otolith classification methods

(Objective 1), and whether choice of learning algorithm affects accuracies

(Objective 4). It was truncated (to remove Fourier analysis) on request of

the journal reviewers.
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James Mapp, Mark Fisher, Richard Atwood, Duncan Bell, Mark Greco, Sally

Songer, and Ewan Hunter. Three-dimensional analysis of otolith growth using

phase contrast synchrotron tomography. In Journal of Fish Biology. Wiley

Online Library, 2016

A three-dimensional computer reconstruction of a plaice Pleuronectes platessa

otolith is presented from data acquired by the Diamond Light synchrotron,

beamline I12, X-ray source, a high energy (53150 keV) source particularly

well suited to the study of dense objects. The data allowed non-destructive

rendering of otolith structure, and for the first time allows otolith annuli

(internal ring structures) to be analysed in X-ray tomographic images.

The publication is a short proof of concept that relates to our objective

of whether three dimensional modelling of otoliths is possible using non-

invasive methods (Objective 5).

James Mapp, Mark Fisher, and Ewan Hunter. Boundary based stock classifica-

tion: Expert otolith readers outperform automated outlining methods. In ICES

Annual Science Conference (submitted), 2016

Here we examine whether the method chosen for otolith boundary ex-

traction affects the accuracies of stock discrimination when using elliptical

Fourier based classification of otolith boundaries. We compare two meth-

ods of boundary extraction: Outlines derived by two expert readers, traced

by hand, and outlines derived by intensity thresholding of otolith images

using bottom-up and top-down approaches. Outlines from each method

are transformed using elliptical Fourier methods to create a set of harmon-

ics for each of the outlining methods, which are in turn used to construct

and test classifiers, each fully cross validated, using the WEKA machine
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learning suite. This work has been submitted to be presented at the ICES

Annual Science Conference 2016, and represents our investigation regard-

ing Objectives 3 and 4.

James Mapp, Ewan Hunter, Sally Songer, Jeroen Van Der Kooij, and Mark

Fisher. Operational viability of stock-separation using shape indices derived

from the otolith morphometric outline. an example using sprat and herring. In

In preparation, 2016

This publication presents a study concerning the viability of stock-separation

of sprat and herring using otolith morphometrics, within the context of

potential application in discrete stock management. Analysis focused on

three stock discrimination problems with the aim of reassigning individual

fish otoliths to source populations. Six feature sets encoding combinations

of size and shape together with nine learning algorithms were explored.

To assess saliency of size/shape features half of the feature sets included

size indices, the remainder encoded only shape. Otolith sample sets were

partitioned by age so that the impact on fish age on classification accuracy

could be assessed for each encoding method. This work is being prepared

for submission to a relevant machine learning journal, and was presented

at the 2014 International Otolith Symposium (IOS2014). Assessing the

impact of scale metrics, otolith age and learning algorithm, this work rep-

resents an intensive study, focused on Objectives 2 and 4.
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As Co-Author

J Hills, J Lines, E Baranauskas, J Mapp, and A Bagnall. Classification of time

series by shapelet transformation. Data Mining and Knowledge Discovery, 28

(4):851–881, 2014

This publication present a study comparing performance of time-series

shapelets over a range of classification tasks, including separation of North-

Sea and Thames herring stocks using sagittal otoliths. A number of learn-

ing algorithms availible though the WEKA machine learning suite were

employed by which to build shapelet based classifiers, and shapelet quality

measures are discussed and tested. This work was presented in the PhD

thesis of the primary author, and relates to Objectives 1 and 4 of this work.
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1.4 Contributions

Here we list the novel contributions of the work presented in this thesis. Contributions

are arranged with regards to location in the thesis where possible.

1. First study on the use of time-series shapelets for stock-separation

of otoliths In chapter 3 we propose the use of the MPEG7 boundary encoding

standard (Curvature-Scale-Space), and the recent Shapelet transform methods for use

in fisheries stock discrimination using boundary images derived from herring sagittal

otoliths. We compare results of classification using a suite of learning algorithms with

Elliptical Fourier encoding methods which are widely used within otolith boundary

classification.

We believe this to be the first study that has been carried out using time-series

shapelets as a method of otolith boundary representation, and the first to compare

shapelet and curvature scale space representations to elliptical Fourier methods with

regards to stock classification. We determine that neither of the newer methods

provide more accurate results that the current methods used within the industry,

regardless of the learning algorithms used for classifier construction. Results of this

study were published in shortened form in [61], and formed part of the study presented

in [40].

2. Most extensive investigation of otolith age impact on stock classi-

fication methods Chapter 4 presents an extensive investigation into whether size-

inclusive or size-exclusive boundary encoding methods hold more potential for stock

classification. We show using multiple discrete age classification tasks across three

separate mixed stock fisheries, that the methods of boundary transform (size-inclusive
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or size-exclusive) should be selected based on otolith age composition of the datasets

to be classified.

We show that for younger sample sets (age 0-1) encoding methods that retain

otolith size information return greater accuracies across tests than encoding methods

that remove size indices during the transform process. For older specimens (age

2+) methods that remove size indices return greater accuracies (than size inclusive

methods) although results are not statistically different. Whilst previous reports have

shown that separating classification accuracies by sample ages yields different result

ranges, we believe this to be the first study that shows clear differences between

transform methods to be used for differing dataset age compositions.

Findings of the study presented in chapter 4 were presented at the International

Otolith Symposium 2014, and are in preparation for publication.

3. First comparison of otolith outlining techniques and their impact of

classification Chapter 5 tests whether Fourier based boundary classification accura-

cies (of mixed stock herring otoliths) is impacted by choice of outlining methodology.

We compare four methods of boundary acquisition from digital images: two sets of

hand-traced outlines by different experts and two sets of boundaries determined us-

ing two different thresholding methods. Whilst there are many studies performing

boundary classification using hand-traced outlines, outlines obtained through inten-

sity thresholding, or a combination of both; we believe that this is the first study

that compares outlining methods and whether they impact classification accuracies.

The work has recently been submitted for presentation at the ICES Annual Science

Conference 2016.
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We show that hand traced boundaries return higher accuracies overall, and that

classifiers built using hand traced outlines are robust to changes in outlining meth-

ods of test data. We show in this work that classifiers constructed to discriminate

between two spawning stocks may be exported and used elsewhere with little regard

for outlining methods used at different facilities. Thresholded methods however, are

shown to be dependent on the outlining method used for testing data, and therefore,

whilst thresholding may remove the requirement for expert input, we show that the

resulting classifiers require industry standardisation for thresholding methods.

4. First successful Three-dimensional modelling of internal otolith

structures using non-invasive methods Chapter 6 presents a proof of concept

study regarding three-dimensional modelling of internal otolith structures using non

invasive methods, recently published by the Journal of Fish Biology. We show that

use of high-energy x-rays with propagation phase contrast are suitable for internal

imaging of plaice otoliths. All previous attempts to recover internal growth features

using micro-CT x-ray sources have failed. This study has successfully shown,for the

first time, that high-energy scans are capable of viewing internal structures and high-

lights many potential applications within otolith sciences.

We show detailed three-dimensional internal reconstructions of the otolith seg-

ment scanned, and perform virtual spline-plane slicing through the otolith along es-

timated plane of growth, neither of which were practically feasible using previous

industry techniques. Additionally we show significant differences between visible in-

ternal structures on flat-plane slices and on growth-plane slices of the reconstructed

model, which may have severe implications for shape based analysis of visible growth

structures using conventional sectioning methods.
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The methods of scanning presented in this concept work allows three-dimensional

modelling and classification techniques based on yearly accretion volume, a task not

previously possible. Internal structure modelling also has the potential to allow re-

moval of yearly growth increments without invasive procedures, which may assist

scale based classification, given findings of age-based tests presented in chapter 4 of

this work.
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1.5 Thesis Organisation

The following chapter (Chapter 2) gives details of methods used throughout this

thesis, including: details of outlining methods; the transform methods used (in order

of appearance) and learning algorithms used for classifier construction. Chapters 3

to 5 contain descriptions of research undertaken and results thereof.

Chapter 3 contains work that has previously been published in conference pro-

ceedings and was presented at the International Conference on Pattern Recognition

Applications and Methods 2013. The Study has been extended as part of this thesis.

We show in this chapter that established methods of otolith boundary classification

are not surpassed by classification of Shapelet or Curvature-Scale-Space transformed

data (Objectives 1 and 4).

Chapter 4 contains a study concerning viability of different boundary transform

methods where the encoded contours are used to classify otoliths in three stock clas-

sification tasks. Tests are carried out over discrete age categories to determine whether

age composition of datasets impacts accuracies using each particular method (Objec-

tives 2 and 4). The study was presented at the International Otolith Symposium 2015

(IOS 2015) and a section of the study is currently in preparation for submission.

Chapter 5 contains a study of segmentation methods with regards to otolith clas-

sification. We conduct classification tests given a restricted dataset to determine

whether classification accuracies are dependent on methods of otolith boundary ex-

traction when encoded using elliptical Fourier methods. Tests are conducted using

multiple learning algorithms and varying harmonic content to determine if classifi-

cation using these factors are dependent on outlining methods (Objectives 3 and 4).
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This work has recently been submitted for presentation at the ICES Annual Science

Conference.

Chapter 6 investigates whether high-energy x-ray scans are capable of determining

internal otolith structures using non-invasive methods and whether such scans can

be used to create three-dimensional models of otolith structures (Objective 5). This

work has recently been published in the Journal of Fish Biology.

In Chapter 7 we summarise discussions for each study before concluding the work

and suggesting further research goals relevant to the topics presented in this Thesis.
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1.6 Research Methodology

A number of datasets were obtained from external institutes for use in this project.

Details of the sets and their sources are given in Section 1.7. Datasets were obtained

as a collection of images, combined with information of individual samples. Ground

truthing of samples, including fisheries stock and otolith age, was carried out by

expert readers at the contributing institutes and were considered accurate for use in

this study.

The focus of this research is otolith boundary shape analysis, and so each otolith

is segmented using one of two previously used methods (or a combination of both):

Hand-tracing methods, and intensity thresholding. Both methods are described in

Chapter 2, and otoliths are segmented using a combination of the two methods in

research presented in Chapters 3 and 4. Chapter 5, which investigates differences

between segmentation methods, also details two different intensity thresholding ap-

proaches.

A number of different data transformations are used to transform the extracted

boundaries and are described in detail in Chapter 2, with Chapters 3 and 4 comparing

transform methods across datasets to establish which method returns best results

given a number of factors, including age of otolith samples. For the study presented

in Chapter 4 otoliths are separated by age using ground truth data provided by expert

readers prior to classification to investigate age effects on classification accuracies.

Each of the transforms used in this research require a different method of bound-

ary encoding, so prior to transformation the boundary must be extracted from the

segmented images using different processes. The processes used are described in

Chapter 2 and are referenced from the transform descriptions.
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Multiple learning algorithms, included in the WEKA machine learning suite, are

used to construct classifiers using transformed boundaries. The classifiers constructed

are used to assign further samples a predicted class, using leave one out cross vali-

dation procedures, and results are checked against existing ground truth information

provided with the datasets. The algorithms used in the research presented in this

thesis are described in Chapter 2, Section 2.6. Individual research chapters list algo-

rithms used for analysis, where the full selection has not been employed.

Results returned by cross-validated classifiers are shown in relevant chapters, and

assessed using N-way analysis of variance testing (ANOVAN) and, combined with,

associated post-hoc testing diagrams, are used to determine which factors impact

classification results, and which choice of method returns the better results. Results

are compared across: Boundary transform methods (Chapters 3 and 4); Age-classes

(Chapter 4); Boundary segmentation methods (Chapter 5) and learning algorithm

(Chapters 3 to 5.

Figure 1.4 shows the general flow of data through our research methods. This

process is modified for each of our studies shown in Chapters 3 to 5 so that comparing

of results between tests can be carried out. The relevant chapters of this thesis

describe the changes that are made to the generalised model.

In addition to our generalised model we carry out three dimensional reconstruction

of a single Plaice otolith. The sample was sent to the UK’s national synchrotron

science facility, Diamond Light synchrotron, and scanned using the beamline I12 X-

ray source. Images returned with the sample are modelled using techniques described

in Chapter 6.
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Figure 1.4: Showing the general flow of data through our research, from the acquired
otolith datasets, to return of classification results, testing of results, and post-hoc
testing.
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Complex plane slicing was carried out using double-spline methods described in

Chapter 6, and compared visually to virtual flat plane slices by expert otolith readers

to determine whether complex slices better describe internal otolith structure.

1.7 Materials

This Section gives details of the datasets collected for the studies presented in this

thesis. None of the samples were themselves captured by the thesis author, rather,

images of samples were obtained from other institutions that had previously captured

and processed the samples for use in other research or government reports.

We were able to source three matched datasets of Clupeid otolith images (one sprat,

and two herring), each representing discrete paired spawning stocks which cannot

easily be discriminated visually (e.g. by visual inspection of external morphology).

Clupeid is the name of a family of fishes which includes species such as Herring, Sprat,

Sardines etc., with the term itself the Latin name for ‘sardine’. The family forms a

large portion of the fishing industry and as such is of commercial interest.

The datasets obtained can be seen in Table 1.1. Herring set 1 was obtained from

the Centre for Environment, Fisheries and Aquaculture Science (cefas) in two parts,

the first used for our comparative study shown in Chapter 3. The remaining portion

(1b) was obtained later in the study, and used during research presented in Chapter 4.

Cefas also supplied our Sprat dataset, also used in Chapter 4. The remaining Dataset,

Herring 2, was provided by the Galway-Mayo Institute of Technology (GMIT) and

was used for two studies, shown in Chapters 4 and 5.

Each dataset obtained contains samples from two different fisheries stocks. These

are dependent on the dataset and can be seen, along with sample count for each class,
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in Table 1.1. The work presented in this thesis focusses on classification of fisheries

stock, by assigning individual samples to the correct class using classifiers constructed

using remaining samples. Ground truths were determined by expert otolith readers at

the donating institutions and supplied with the donated sets. The Herring 1b, Sprat

and Herring 2 sets were also separated into individual age categories using standard

industry methods. Herring 1a was not subject to age categorization as it was not

intended to be used in single age tests.

The full datasets are not used in any study presented in this thesis. Each chapter

describes how sets were sub-sampled for use in the relevant chapters. A number of

samples were not suitable for use, with a some images being of poor quality, otolith

boundaries being obstructed, or otoliths being broken prior to image capture.

Additionally, a small number of Plaice otoliths (not images) were supplied by Cefas,

given without any information on catchment area or potential fisheries stock. Whilst

not detailed in Table 1.1, we mention them here as one of these samples was used for

the tomographic reconstruction study seen in Chapter 6.

1.8 Summary

This Chapter has introduced the work presented in this thesis. We have discussed the

background and motivations for the research, and stated clear objectives to be ad-

dressed. The publications and submissions of work presented have been summarised

with shortened descriptions of the work, and the unique contributions that the work

represents have been stated. Finally, we have looked at how the remaining texts have

been organised, and the research methods and materials used throughout have been

detailed.
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Chapter 2

Review Of Methods

This Chapter gives details of methods used throughout this thesis. We describe in

detail, techniques previously used in the fields of otolith analysis, computer vision

and machine learning, and how each method is used throughout this work. The main

focus of this chapter are four boundary transformation methods used to encode closed-

curve boundaries: Elliptical Fourier Analysis (Section 2.2), Curvature Scale Space

(Section 2.3), Time-series Shapelets (Section 2.4), and Shape indices (Section 2.5).

We also describe the otolith segmentation techniques used, and the methods by which

the boundary is extracted and rotationally normalised in Section 2.1, and the machine

learning techniques used to build and test classifiers (Section 2.6)

2.1 Outlining Methods

The first stage in any boundary based classification is the extraction of the otolith

boundary itself. In previous work two predominant methods of image segmentation

are used: Image thresholding [11, 12, 22, 30] and hand tracing [25, 63, 74, 90, 92].

Both methods create a foreground (otolith) mask from which an outline/boundary

can be extracted. Due to the variability of otolith images across image-sets it was

28
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not possible to construct a uniform process that would perform adequately on all

sets without supervision. The sample sets used for these studies have been captured

and processed by different research groups, and stored/preserved in a variety of ways.

Image sets were captured under variable lighting conditions and using different equip-

ment, as this is currently not standardised between otolith laboratories. This resulted

in a significant variability in sample or image quality.

During the work presented in this thesis both thresholding and hand-tracing meth-

ods of boundary segmentation were used, with the method of segmentation dependent

on the underlying dataset to be segmented. Whilst thresholding methods appear more

frequently in the literature, it was found to be incompatible with a number of the sets

used in this work. Additionally, hand tracing is often employed where segmenting

samples at selected annuli is required [22].

2.1.1 Hand Tracing

Hand tracing was explicitly used in work presented in Chapter 3 as the archived

images used in the study presented in chapter 3 have large amounts of background

noise and lighting artefacts (example shown in figure 2.1). Chapter 4 used multiple

datasets from different sources, a number of which needed to be traced manually

due to severe artefacts present in the images (Figure 2.1). Additionally, hand-tracing

methods were used by different expert readers as part of the study presented in

chapter 5 where we investigate the impact of the outlining methodology on Fourier

based classification.
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Figure 2.1: Otoliths from Herring (left) and Sprat (right) showing lighting artefacts.

All hand tracing for these studies was undertaken in a custom built system con-

structed using MATLAB [62]. Images were, in turn, displayed to the user and outlined

by hand using a mouse. For the study presented in chapter 3 boundaries were traced

using a steelseries R©‘RIVAL’ mouse, a high performance/precision mouse paired with

precision mouse-mat; whilst for the study presented in chapter 5 one expert user

performed the outlining task with the high precision mouse, whilst the second expert

used a standard DELL R©mouse with no mouse-mat. Amendments to the segmenta-

tion were allowed, until the user was satisfied with their outlining accuracy. After

each amendment (or initial outline) the boundary of the segmentation was calculated

(discussed is Section 2.1.3) and overlayed on the original image so that the user may

assess the accuracy.

2.1.2 Image Thresholding

Image thresholding as a method of otolith segmentation was employed in Chap-

ters 4 and 5. As mentioned above, Chapter 4 presents a study comprising multiple

datasets, one of which was of high enough image quality to segment using intensity

thresholding (Figure 2.2).



31

Image segmentation using intensity thresholding was also carried out in MATLAB.

Before images were shown to the user, they were each converted to grayscale images

using existing MATLAB function ‘rgb2gray’. This method converts the images orig-

inal RGB values to grayscale values using a weighted sum of its individual colour

components (Equation 2.1.1). Where Pxy is a pixel at coordinates x,y in the image;

P i/r/g/b are the pixel values at the coordinate in the intensity/red/green/blue plane:

P i
xy = 0.2989(P r

xy) + 0.5870(P g
xy) + 0.1140(P b

xy) (2.1.1)

Figure 2.2: High image quality sample of (Celtic-sea) Herring, and resulting image
after converting to grayscale.

The intensity range of each pixel in the resulting image is 0 (black) to 255 (white).

Greyscale images are first binarised using an automatically chosen threshold [71]. Fur-

ther refinement is attempted using a form of histogram back-projection [93] with strict

confidence thresholds. The resulting mask is then displayed and the supervisor may

make interactive adjustments, eg: change the initial threshold; discard the histogram

refinement; or manually amend the mask. In extreme cases where the outline is poorly

defined, the supervisor may choose to outline the entire otolith manually.

In this instance (example shown in Figure 2.2) any pixel with intensity under the

selected threshold is assigned as foreground/otolith.
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As with hand tracing methods, after each modification or initial threshold selection

the boundary of the segmentation is calculated and overlayed on the original image

(not the grayscale image) and is shown to the user. Thresholding intensity in this

manner causes areas of foreground that have higher intensities than the selected

threshold to be designated background and vice-versa. This can be due to noise,

minor shading variance or lighting artefacts in the image. Therefore minor corrections

are made to the resulting segmentation before the boundary is calculated.

• Background noise - any foreground pixel that is not member of the largest group-

ing of foreground pixels, is converted to background. (Morphological Opening)

• Foreground noise - any background pixel (or group of) that are completely

surrounded by foreground pixels, are converted to foreground. (Morphological

Closing)

2.1.3 Boundary Extraction and Rotational Normalisation

To create a visual depiction of the boundary, morphological erosion [37] is used to re-

move interior pixels from the otolith mask. This visual depiction is used to create an

overlay image that is shown to the user during segmentation (as seen in Figure 2.3).

Boundaries are flipped and/or rotated so that the ventral edge is uppermost, the

otolith rostrum to the left of the image. The angle between the major axis of the

mask and the horizontal axis is calculated using MATLAB’s ‘regionprops’ function

and used to align images so that all are normalised for rotation. Whilst this is the

standard method of normalising outlines for Elliptical Fourier analysis, performing

the normalisation prior to boundary extraction ensured that the same boundary ori-

entation was used for each of the transform methods. This avoids any potential

transform bias based on orientation of the boundary. Once rotation normalisation is

complete the boundary pixels were recorded for further processing.
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The different transform methods used as part of this study require the boundary

to be encoded in different ways. Each boundary is therefore potentially (dependent

on the study) encoded multiple times using differing methods. In all instances the

first/initial boundary point was designated as the upper-leftmost foreground pixel,

and the boundary was encoded in counter-clockwise order. Three different encod-

ings were used, dependent on further transformation to be applied. Each method is

described in further detail in the remainder of this subsection:

• Chain Code - Used during elliptical Fourier transformation (Section 2.2).

• Point Coordinates - Used by Curvature Scale Space (CSS) methods (Section 2.3).

• Distance Vector - Used during Shapelet transformation. (Section 2.4).

Figure 2.3: L-R: Original image; Initial segmentation using thresholding; segmenta-
tion after corrections; boundary overlayed on original image (boundary exaggerated
for clarity)

Chain Code

The concept of a Chain Code was first described by Freeman [32] and is the boundary

encoding method used for Elliptical Fourier Analysis (Described in Section 2.2). To

encode the boundary we proceed from the upper-leftmost start pixel and proceed

counter-clockwise along the boundary of the image, recording the direction travelled

to the next boundary pixel, until we return to the initial pixel. Each pixel itself has

eight pixel neighbours, the direction to each of these pixels can therefore be described
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using digits 0-7. Zero is therefore designated as right, one as up-and-right etc. A

Simplified example of chain-coding can be seen in Figure 2.4.

Figure 2.4: Left: A simplified example boundary to be encoded, showing the start
point, next boundary pixel and direction. Right: Chart showing code for each possible
direction. Encoded example shown bottom-right.

Point Coordinates

Curvature Scale Space (Section 2.3) requires boundaries be encoded in matched-

length coordinate arrays; where one array holds pixel x -coordinates, and the other

array holds matched y-coordinates. To encode in this manner, boundary pixels are

followed the same as when chain-encoding. However, instead of returning ‘directions’

to the next pixel, the current pixels x and y coordinates are recorded in the two

arrays. A brief example of this method is shown in Figure 2.5. Note that in the

software used for processing, the vertical axis is indexed with zero at the top most

edge, rather than as a standard Cartesian coordinates system.
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Figure 2.5: Left: A simplified example boundary to be encoded, showing the start
point and next boundary pixel. Right: Paired arrays showing coordinate storage of
each pixel.

Distance Vector

The Shapelet method described in Section 2.4 requires boundary data-points to be

encoded as a univariate series. To achieve this we first calculate the centroid of each

boundary by taking the mean x and y coordinates from coordinate arrays X and Y

and compute distance to the centroid for each boundary point. We use the following

Pythagorean equation to create a new array D, holding the distance to centroid for

each boundary pixel. Where Di is the ith element in the new distance-to-centroid

array; k is the number of boundary points and X/Y are the coordinate arrays:

Di = 2

√√√√(Xi −
1

k

k∑
i=1

Xi)2 + (Yi −
1

k

k∑
i=1

Xi)2 (2.1.2)

2.2 Elliptical Fourier Analysis

Elliptical Fourier Analysis was first discussed in 1981 in a joint work between Fair-

leigh Dickinson University and the U.S. Army Research and Development Command

[48]. The work presents a method of accurately describing and reconstructing two-

dimensional closed curves using Fourier coefficients with a calculable degree of error.
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Kuhl and Giardina [48] outlines a procedure for calculating Fourier coefficients for

a closed curve encoded using a chain code representation (see Section 2.1.3). The

resulting descriptors are robust to rotation, scale, translation and initial boundary

point designation. Kuhl’s method is an extension of techniques that requires no

integration and therefore lends itself to an algorithmic approach. We therefore follow

Kuhl’s method closely in order to calculate elliptical Fourier coefficients.

Elliptical Fourier features/descriptors (EFDs) are widely used in the (otolith) in-

dustry, being used for many otolith classification studies [21, 22, 31, 63, 81, 90, 91, 92],

a number of which report elliptical Fourier based classification results at 90%+ accu-

racy. As such Elliptical Fourier analysis forms a starting point for the work presented

in this thesis.

The remainder of this section describes the methods used during the Fourier trans-

formation process. We build on an example of boundary encoding originally seen in

Section 2.1.3 (chain coding) and used throughout this section, to detail how Fourier

coefficients are calculated (Sections 2.2.1 to 2.2.4), Normalised for position (Sec-

tion 2.2.5) and scale (Section 2.2.6) and how, once Fourier harmonics have been

calculated, boundaries can be reconstructed (Section 2.2.7).

2.2.1 Boundary Traversal and Period

The period (T ) of the signal is equal to the time taken to traverse the boundary.

Whilst the length of the boundary (k) is simply equal to the number of pixels that

make up the boundary; the time taken to traverse the boundary is equal to the sum of

the distances between each pixel. As the direction to each pixel is recorded in a chain-

code series (a), direction is either orthogonal or on a 45◦ diagonal. The distance/time
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for each transition (i) can therefore be given by:

∆ti = 1 + (

√
2− 1

2
)(1− (−1)ai) (2.2.1)

The time to traverse the boundary up to point p can therefore be given by the

following equation. Note that the basic period (T ) of the chain-encoded boundary is

calculated using the same equation, where p = k:

tp =

p∑
i=1

∆ti

∴ T =
k∑
i=1

∆ti

(2.2.2)

Figure 2.6: Left: A simplified example boundary to be encoded, showing the start
point, next boundary pixel and direction. Right: Chart showing code for each possible
direction. Encoded example shown bottom-right.

Figure 2.6 shows the same chain code example as in Section 2.1.3. Given the

chain-encoded boundary in the example we may calculate arrays for both ∆t and t,

shown in Table 2.1. The basic period (T ) for the contour is equal to tk or in this

instance 16 + 10
√

2
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p
=

1

p
=

26

ap 7 0 7 5 ... 4 4 5

∆tp
√

2 1
√

2
√

2 ... 1 1
√

2

tp
√

2 1 +
√

2 1 + 2
√

2 1 + 3
√

2 ... 15 + 9
√

2 16 + 9
√

2 16 + 10
√

2

Table 2.1: Table showing chain code (a) from the simplified example, with calculated
transition times for each step (∆tp) and ‘time to tp’ (tp)

2.2.2 Point by Point Projection

We also calculate the position change as we move from one boundary point to another.

Given that it is not possible for the next pixel to be the same as the current pixel,

the next pixel must have a different x and/or y position. The change in x/y positions

for each transition is therefore given as:

∆xi = sign(6− ai) ∗ sign(2− ai)

∆yi = sign(4− ai) ∗ sign(0− ai)
(2.2.3)

Where:

sign(Z)


1 Z > 0

0 Z = 0

−1 Z < 0

(2.2.4)

This ensures that when ai is either 6 or 2, ∆xi is zero (no change in x-axis position).

Similarly, when ai is 4 or 0, the result shows no change in the y-axis. As when calcu-

lating the distance along the first p boundary pixels, we can calculate the projection

(from the initial boundary point) to any pixel (p) using the following summations:

xp =

p∑
i=1

∆xi

yp =

p∑
i=1

∆yi

(2.2.5)

Table 2.2 shows the calculated projections for our simplified example, given the

formulae shown (Formulae 2.2.3 – 2.2.5). It can be seen that the last transition (where
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p
=

1

p
=

26

ap 7 0 7 5 ... 4 4 5
∆xp +1 +1 +1 −1 ... −1 −1 −1
∆yp −1 0 −1 −1 ... 0 0 −1
xp +1 +2 +3 +2 ... +2 +1 0
yp −1 −1 −2 −3 ... +1 +1 0

Table 2.2: Table showing chain code (a) from the simplified example, with calculated
change in projections (∆xp and ∆yp) and ‘projections to p’

p = k) ensures that the projections from the initial point to the pth point (the starting

pixel) are both zero.

2.2.3 Fourier Expansion and Summation

It is important to note that elliptical Fourier methods require cosine and sine compo-

nents for both the x and y contour projections. In total the projections are calculated

using two DC components (positional components), plus four coefficients (an, bn, cn

and dn) for each harmonic [n]. DC is a term taken from electrical signal analysis,

referring to ‘Direct Current’. It represents the average coefficient (or position) along

the described axis.

x(t) = A0+

[
a1Cos

2πt

T
+ b1Sin

2πt

T

]
+

[
a2Cos

4πt

T
+ b2Sin

4πt

T

]
+ ...[

a3Cos
6πt

T
+ b3Sin

6πt

T

]
+

[
a4Cos

8πt

T
+ b4Sin

8πt

T

]
+ ...

y(t) = C0+

[
c1Cos

2πt

T
+ d1Sin

2πt

T

]
+

[
c2Cos

4πt

T
+ d2Sin

4πt

T

]
+ ...[

c3Cos
6πt

T
+ d3Sin

6πt

T

]
+

[
c4Cos

8πt

T
+ d4Sin

8πt

T

]
+ ...

(2.2.6)
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Both x and y projections can theoretically be written as summations of an infinite

number of harmonics, adjusted using DC components. This requires infinite series of

a,b,c and d coefficients, plus the DC terms.

x(t) = A0 +
∞∑
n=1

anCos
2nπt

T
+ bnSin

2nπt

T

y(t) = C0 +
∞∑
n=1

cnCos
2nπt

T
+ dnSin

2nπt

T

(2.2.7)

In real terms however, since the data is discretely sampled, the number of harmonics

that can be calculated is limited by the Nyquist frequency as chain-coded boundaries

are discretely sampled boundary points. Thus the maximum number of harmonics

that can be calculated is approximately equal to half the length of the chain encoded

boundary (k/2).

2.2.4 Coefficient Calculation

Methods described by Kuhl and Giardina [48] show that the four coefficients for each

harmonic can be calculated given the following four equations. Where an and bn are

the cosine and sine coefficients (respectively) of the nth harmonic of the x projection;

cn and dn are the cosine/sine coefficients of the y projection (nth harmonic):

an =
T

2n2π2

k∑
p=1

∆xp
∆tp

[
Cos

2nπtp
T
− Cos2nπtp−1

T

]

bn =
T

2n2π2

k∑
p=1

∆xp
∆tp

[
Sin

2nπtp
T
− Sin2nπtp−1

T

]

cn =
T

2n2π2

k∑
p=1

∆yp
∆tp

[
Cos

2nπtp
T
− Cos2nπtp−1

T

]

dn =
T

2n2π2

k∑
p=1

∆yp
∆tp

[
Sin

2nπtp
T
− Sin2nπtp−1

T

]
(2.2.8)

It is important to note that the tp where p = 1 is the first transition along the

boundary. Therefore for the first summation tp−1 is forced to zero.
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2.2.5 DC Terms

For the studies undertaken in this thesis, the position of the boundary in the image

is normalised. However we give the DC terms here as further studies may wish to

include them. Note that again tp−1 is forced to zero when performing the calculations.

To normalise for boundary translation we simply force both DC terms A0 and C0 to

zero.

A0 =
1

T

k∑
p=1

∆xp
2∆tp

(t2p − t2p−1) + εp(tp − tp−1)

C0 =
1

T

k∑
p=1

∆yp
2∆tp

(t2p − t2p−1) + δp(tp − tp−1)

(2.2.9)

Where:

εp =

p−1∑
j=1

∆xj −
∆xp
∆tp

p−1∑
j=1

∆tj

δp =

p−1∑
j=1

∆yj −
∆yp
∆tp

p−1∑
j=1

∆tj

(2.2.10)

2.2.6 Fourier Normalisation

There are three forms of normalisation that can be applied to Fourier descriptors:

Normalisation of Rotation; Translation; and Scale. Rotational normalisation is a

simple procedure described in Section 2.1.3 whereby the otolith boundary is rotated

until the semi-major axis runs horizontal. Translation is normalised simply by forcing

the DC Fourier components to zero which ensures the centroid of each reconstructed

boundary is at point [0,0].

The only normalisation that requires further discussion here is that for scale. This

ensures that the semi-major axis of the first Fourier ellipse is of length 2 for every

Fourier reconstruction (from -1 to 1 on the x -axis). Further harmonics may alter
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the total length of the reconstructed otolith through subsequent harmonics, but each

coefficient of the 2nd − nth harmonics are scaled by the same factor.

The first step in rotation normalisation of Fourier descriptors is to calculate the

angle between the first semi-major axis and the horizontal. Equation 2.2.11 calculates

this from the coefficients of the first Fourier harmonic (the first major ellipse):

θ1 =
1

2
arctan

[
2(a1b1 + c1d1

a2
1 + c21 − b21 − d2

1

]
(2.2.11)

Once θ has been calculated the terms a∗1 and c∗1, the coefficients correct for the

displaced (by rotation) starting point, and normally used during normalisation of

rotation, can be calculated using equation 2.2.12:[
a∗1 c∗1

b∗1 d∗1

]
=

[
cosθ1 sinθ1

−sinθ1 cosθ1

] [
a1 c1

b1 d1

]
(2.2.12)

However during scale normalisation the a∗1 and c∗1 terms are used to calculate a

scaling component ε (equation 2.2.13):

ε =(a∗1
2 + c∗1

2)
1
2

∴ ε =((a1cosθ1 + b1sinθ1)
2 + (c1cosθ1 + d1sinθ1)

2)
1
2

(2.2.13)

However, As we have already performed rotational normalisation θ, the angle

calculated between the semi-major axis and the horizontal, is already zero. Therefore,

as sin 0 = 0 and cos 0 = 1, ε is given by equation 2.2.14:

∴ ε = (a2
1 + c21)

1
2 (2.2.14)

Scale normalised Fourier descriptors are then calculated by division of each har-

monics coefficients by the scaling factor. Where ai
′ denotes the ith harmonic’s scale

normalised ‘a’ coefficient:
ai
′ =ai/ε

bi
′ =bi/ε

ci
′ =ci/ε

(2.2.15)
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After scale normalisation is complete the first three coefficients become redundant

as a′1 = 1, b′1 = 0, c′1 = 0, although in practice these values are approximate (±10−20)

. In order to remove influence of these coefficients we remove them from all instances

before training/testing classifiers.

2.2.7 Contour Reconstruction

Each boundary contour can be approximated using the coefficients calculated. The x

and y projections are calculated as a summation of projections using each harmonic.

Approximation allows us to reconstruct the contour using a differing number of ‘sam-

ple points’ to the contour that was transformed. The number of new points is given

as T , the t in each equation is an array of length T holding values equal to the cell

index [1,2,3,4,5,...,T]. Each element of the summation therefore equates to an array

also of length T . All arrays are summed and modified with the projections DC term.

The resulting arrays are the x and y (Xn/Yn) projections for the reconstructed

contour. The projections for x and y can be used to plot ellipses corresponding to

each individual harmonic, and the summed Xn and Yn can be used to plot a contour

using the first n harmonics. Where N is the number of harmonics to be used; n is

the specific harmonic used:

XN = A0 +
N∑
n=1

anCos
2nπt

T
+ bnSin

2nπt

T

YN = C0 +
N∑
n=1

cnCos
2nπt

T
+ dnSin

2nπt

T

(2.2.16)

Figure 2.7 shows reconstructions of the previous example using the first two harmon-

ics. The first ellipse reconstructed using only the first harmonic and 360 calculated

points (T = 360) is shown in black. Also shown is the ellipse reconstructed using

only the second harmonic (blue) with its centroid positioned at various points on the
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Figure 2.7: Showing first
projected ellipse (black),
second ellipse (blue), and
summation thereof. (see
text)

Figure 2.8: Showing three
harmonics being summed
to form the projection
of the first three projec-
tions. (see text)

Figure 2.9: Showing
first projected ellipse
(black), and summa-
tion of first two ellipses
(thin-red) and first three
(thick-red). (see text)

reconstructed first ellipse. The second ellipse, whilst reconstructed using 360 calcu-

lated points, has only 180 discrete points (T/2), as the sample frequency is twice

that of the first ellipse (the third ellipse will have T/3 discrete points etc). The Red

contour shown is the summation of the first and second reconstructed ellipses, and

blue ‘transitions’ show the vector summed with every third point on the first ellipse

(every third point shown for clarity).

Figure 2.8 shows how the harmonic projections are summed. Each of the projections

to be summed contains a vector of length T , with a series of T/n points repeated n

times. Shown in the figure are vectors calculated from the x and y projection arrays.

The point where t = 45 is shown in Figure 2.8, the projection for the second harmonic

is centred at point t along the first projection (thick black line) and its x/y projection

for point t is shown as the blue radial. The resulting point is at point t along the

summation of the two harmonics (thin red line). At this point we center the third

harmonic projection, find the projection at point t and this gives point t along the

third summation (thick red line). This process continues using projections for each

harmonic for each t value.
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Figure 2.9 shows the same example reconstructed using the firsts three harmonics.

Again the first ellipse is shown in black using 360 calculated points. The thinner of

the two red contours represents the summation of the first and second ellipses as in

Figure 2.7. The thicker of the red contours represents the summation of the first

three harmonic projections. Also marked are transition lines showing the addition of

the second harmonic (between black and thin-red contours) and addition of the third

harmonic (between thin-red and thick-red contours).

This process can be used to create projections using any number of the calculated

harmonic coefficients. Each additional harmonic (in theory) enables recreation of a

contour that is more similar to the original chain-coded contour. Figure 2.10 shows

reconstruction of our previous example using varying numbers of harmonics (n =

1ton = 13). Given the low resolution of our example contour (26 samples) only

thirteen harmonics could be accurately calculated. In this example the limited number

of harmonics available did not allow reconstruction to be overly accurate. Where the

original boundary has larger number of boundary points, the Nyquist frequency (the

maximum frequency at which boundary points can be sampled without introducing

error) is much larger. This allows much more ‘fine tuning’ of the reconstructed contour

for the samples used throughout this work.

2.3 Curvature Scale Space

Curvature Scale-Space (CSS) [65] forms the basis for contour-based shape descriptors

as part of the MPEG-7 standard [15, 101, 102]. CSS transforms a boundary from

its coordinate representation to one which encodes the position and magnitude of

the concavities on the boundary curve, producing an ordered set of maxima from a

boundary which are used as descriptors for the shape in question. These descriptors



46

Figure 2.10: Showing example boundary reconstruction overlayed on original chain
coded boundary, at (l-r) n = 1, 2, 3, 5, 13; reconstructed using 360 boundary points
(top row) and 26 points (bottom row).

may then be used to determine similarity or dissimilarity to another image. This in

turn may be used to find ‘most similar’ objects (or boundaries thereof) in a database.

Research has shown that CSS encoding and its attributed matching algorithm can

be an effective and robust (to noise, scale, rotation) method of matching query images

to database models when combined with global parameters such as Circularity and

Eccentricity [1, 5]. Bober [15] states that CSS is also robust to perspective transforms.

Given these strengths, CSS forms an ideal starting point for boundary based shape

classification of otoliths, and has been used for several other studies in the field of

marine biology [1, 2, 66, 67, 89, 98] including the analysis of otoliths [73]. As a

standard method it is also well documented in other studies of shape representation

[5, 49, 64, 85, 100].

This section details the process by which boundaries are transformed to curvature

scale space, including: The extraction of curvature descriptors by recursive smooth-

ing of the boundary curve (Section 2.3.1); The standard method of comparing CSS
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representations, and how to include mirrored images (Section 2.3.2), and how mea-

sures such as Circularity and Eccentricity may allow pre-indexing database images to

increase accuracy and reduce run-time of matching algorithms (Section 2.3.3).

2.3.1 Extraction of Descriptors

Descriptors (or maxima) are extracted from a boundary by iteratively smoothing

that boundary, until it becomes a convex curve. At each iteration of this process the

curvature of the boundary is calculated using the following formula [73], where the

boundary contour is represented by its coordinates Γ(u) = (x(u), y(u)).

Curvature(u) =
ẋ(u)ÿ(u)− ẍ(u)ẏ(u)

(ẋ(u)2 + ẏ(u)2)3/2
(2.3.1)

To smooth the boundary one filters the contour with a Gaussian function using a

linearly increasing scaling parameter σ.

g(u, σ) =
1√
2σ2

e−u/2σ
2

(2.3.2)

Therefore one can compute the curvature of a smoothed contour at each increment

using the formula:

Curvature(u, σ) =
ẋ(u, σ)ÿ(u, σ)− ẍ(u, σ)ẏ(u, σ)

(ẋ(u, σ)2 + ẏ(u, σ)2)3/2
(2.3.3)

Once curvature of the boundary is determined, inflection points (zero-crossings) are

determined and noted. As iterations progress and the scaling parameter increases the

boundary will approach a fully convex curve, and in the process inflection points will

converge as concavities are smoothed out of the boundary. It is these convergence

points that are recorded as descriptors for the boundary.

Figure 2.11 shows a CSS representation of the otolith boundary shown in Fig-

ure 2.12. The three largest structures on the image denote the three largest cur-

vature features of the boundary. For clarity Figure 2.13 shows the boundary part
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Figure 2.11: CSS representation image of a herring otolith. Horizontal axis represents
point along the boundary, Vertical axis represents an arbitrary smoothing increment.
The horizontal line across the image is the point at which the smoothed boundary
shown in figure 2.13 was produced.

way through the smoothing process. It can be seen that a shallow but long concav-

ity is still present on the boundary (structure three) whilst structure two, another

prominent concavity, has already been smoothed to convexity.

Once the smoothing process is complete and the boundary has been reduced to a

fully convex curve, we extract from the CSS image the maxima. These are extracted

as coordinate pairs for each concavity, where each pair consists of a point/distance

along the boundary, and number of smoothing increments to convergence (the point

at which the concavity disappears). Point along the boundary is a comparative figure

as CSS representations are invariant to rotation, or to start point on boundary. A

boundary can be rotated simply by performing a circular shift on all the boundary

points/distances simultaneously. Figure 2.14 shows four different rotations of the

same otolith boundary. Marked on each boundary is the start point from which

coordinates are extracted from the boundary (following a counter-clockwise direction).
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Figure 2.12: Initial boundary of a herring
otolith. Three major features/structures
are marked on the image: structures 1 and
2 are obvious large concavities, however
structure 3 is a long concavity that, despite
its shallow depth, takes a large number of
smoothing increments to remove.

Figure 2.13: The same boundary as in
figure 2.12 after several smoothing incre-
ments. Produced at the same point as
marked on figure 2.11 it shows that struc-
ture 3 (as well as structure 1) is still present
in the boundary.

Figure 2.14: Four (clockwise) rotations of the same otolith boundary. Left to Right:
0◦ rotation, 90◦, 180◦, 270◦. Under each is depicted the resulting CSS image given
the marked boundary start points (stars).



50

It can be seen that a clockwise rotation of the image results in a (circular) shift of the

CSS image to the left. It is also the case (not depicted) that designating a differing

boundary start position on the non-rotated otolith boundary results in a similar shift

of the CSS image.

2.3.2 Matching Algorithm

With each boundary stored as the locations of its curvature-crossing maxima, images

can be compared to one another by finding the Euclidean distance between respective

points. This results in a measure of similarity or dissimilarity between the two sets of

maxima and can be used to compare one image to a number of models in a database

and find the model with the greatest similarity (or lease dissimilarity) by finding the

error between respective points.

Alignment Points

The current literature (including Abbasi et al. [1]) suggests that the CSS images

should be aligned by their greatest (filter level) maximum to do this. It is also said

that maxima within a certain ratio of said maximum should also be considered as the

alignment point. This is to account for possible boundary variation where there may

be multiple points of similar significant curvature. Previous works [1, 2, 66] suggest

that this ratio be eighty percent of the greatest evolution (of the individual boundary),

and any maxima of greater magnitude than this be considered as an alignment point.

Each set of coordinates are shifted so that their greatest maxima are at the ‘start’

of the curve to make the first alignment complete. Further alignments are identified

by searching for any of the maxima with a filter level greater than the recommended

80% level. This is done for both image and model, and error must be calculated for

each possible alignment between the two sets of flagged maxima. Figure 2.15 shows
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two highly simplified sets of maxima, alongside the four alignments that would be

processed given an 80% alignment cut-off. From the figure it can be seen that, for

this simplified example, there are four possible alignments of maxima given the 80%

cut-off.

Figure 2.15: Two sets of maxima from hypothetical boundaries (top-left and bottom-
left) alongside four possible alignments of maxima greater than 80% of the maximum.

Matching Order

To calculate the error of an alignment we process each of the maxima in the im-

age, from greatest filter level to the smallest. We find the nearest of the maxima

in the model to each image point in turn and check whether it is within a pre-

defined (Euclidean) distance of our image point. This maximum distance is defined

as 20% [66, 73] of the maximum distance possible (remembering that the CSS image

itself wraps around). If the distance is within the 20% threshold then it (the Euclidean

distance) is added to a cumulative error score for that alignment and the ‘matching’

point is removed from the model so as to not match it to further image points. If it is

not within the threshold then the filter level (or evolution number) of the image point

is added to the error. Figure 2.16 shows the order in which maxima are matched with

this process, in a simplified theoretical image. Point 1 in the image is matched to

A from the model, Point 2 is matched to B. Note that no model maxima are within

the distance threshold from image point 3 (shown by the large circle) therefore its
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magnitude (2) is added as error. Once all points in the image are processed then the

filter levels of any remaining model maxima (point C in our example) are added to

the error for that alignment.

Figure 2.16: Second alignment of maxima from Figure 2.15 showing the order in
which image maxima (circles) are matched to model maxima (stars).

The process must then be repeated for the same alignment but with the roles of

image and model reversed (points are matched in order of model point magnitudes).

This is required as when matched in order of image magnitude, point matches may

occur where the model point is closer to a separate image point. Reversing the image

and model roles solves this issue. Figure 2.17 shows the differencing between matching

in order of image-maxima magnitude and model-maxima magnitude. It can be seen

that when matched in image order image point 1 is matched to model point B, which

itself is better matched to image point 2. However when image point 2 is processed

point B has already been matched and removed, so 2 is matched to the much further

away point A (outside the 20% limit). It can be seen that in this simplified example,

the model order match results in a lower error than the image order match.
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Figure 2.17: Showing difference in matching between image maxima order and model
maxima order.

Mirror Images

To account for reflected boundaries, when calculating alignments we simply flip the

CSS image that we are finding matches for. To ‘reflect’ the image we need only amend

the maxima array by subtracting the ‘non-reflected’ boundary point value from the

total boundary length plus one. The reflection array is then processed in the same

way as the non-reflected array. This ensures that were a query image to be in the

reverse position, it would still be accurately matched to models it is compared to.

Figure 2.18 shows a CSS image being flipped in this manner; marked are two maxima

in the image and mirrored image and the coordinate pairs for each are shown.

Once each possible alignment has been processed, the alignment with the least

error is selected and the error returned. The alignment itself is unimportant for the

process but the error is used as a measure of similarity/dissimilarity for that model

from the database. Once the image has been compared to all models in the database

and their respective errors logged, we are able to determine which boundaries in the

database (or reflection of) are most similar to the search image.
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Figure 2.18: Mirroring a CSS image of boundary length BL. Two maxima are marked
(stars) and their stored coordinate pairs shown. BL - image boundary length; L1/L2
and E1/E2 - respective point along boundary and evolution number for the marked
(unmirrored) maxima.

2.3.3 Pre-Indexing

Rather than searching the entire database for a model that best matches the query

image; it is possible to search a subset of those models by dismissing those that

are globally dissimilar. As suggested by Abbasi et al. [1] and Mokhtarian et al.

[66] we are able to dismiss models by comparing the CSS image aspect-ratios of the

image and model as well as the circularity and eccentricity metrics recorded for each

boundary [1]. If any of these metrics are ‘significantly’ different then it can be assumed

that the boundaries themselves are significantly different. We calculate the difference

between the eccentricity (e), circularity (c) and aspect-ratio (ar); of images (i) and

models (m) using equations 2.3.4 to 2.3.6:

αe =
|ie −me|

max(ie,me)
(2.3.4)

αc =
|ic −mc|

max(ic,mc)
(2.3.5)

αar =
|iar −mar|

max(iar,mar)
(2.3.6)

In this instance aspect-ratio is that of the CSS images rather than the boundaries.

This metric allows some measure of global curvature for the boundary. As aspect ratio

(max iteration/boundary length) increases it signifies more smoothing increments

needed to smooth the boundary to a convex arc.
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Using these metrics we can set a threshold T to determine which models in the

database should be checked against the query image. A lower threshold restricts the

number of models that are matched as the dissimilarity of the global metrics allowed

is reduced; and were T to be set to zero, all three metrics for the model must match

the image metrics exactly. At the opposite end of the scale, as T tends towards 1 the

number of models that are assessed increases to a point where all models are included

either before or as T reaches 1, and the indexing method becomes defunct.

Abbasi et al. [1] sets a threshold of 0.3 for all three metrics. This figure allows

αe, αc and αar to vary within that threshold and the model still be assessed for

similarity. All three metrics however are assigned the same T rather than each

being set individually. This is as testing of performance increase given each metric

individually shows large ranges of T where performance increase remains stable; for

example, a threshold between 0.28 and 0.42 for αc (equation 2.3.5) yields the same

10% performance enhancement. Were there to be a common value for each metric

within its peak performance range, that figure can be used as a static metric for all

three (in this instance 0.3).

The increase in performance is partially related to the dismissal of globally dissim-

ilar models (using the indexing system) whose CSS images may be similar to that

of the image. Figure 2.19 shows the CSS image similarity between two markedly

different silhouettes. Despite their difference the CSS images may be seen as similar

when matched without prior indexing. By using the metrics described above when

matching the database models, dissimilar boundaries like this may be skipped during

pre-indexing. Abbasi et al. [2] extends the indexing method by constructing a new

global parameter for shallow concavities, showing a modest increase in matching per-

formance when the threshold for that parameter is around 0.8. Note that whilst the
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Figure 2.19: Taken from [85]. Two simple silhouettes and their extracted boundaries.
Showing the similarity between their respective CSS images (right).

CSS images show a difference in width of the concavity, the maxima is stored only as

a distance/magnitude coordinate pair. Richter et al. [85] suggests that width of the

CSS curve also be used in calculations.

2.4 Time-Series Shapelets

A Shapelet is a time series data mining primitive that can be used to measure similar-

ity between series based on small common shapes that occur at any point in the series.

Shapelets provide interpretable results and can be used to notate which particular

features of a boundary are discriminatory of class. This is a significant advantage

over methods such as Fourier transforms when used to display results or ‘workings’

to human readers.

The original work on Shapelets was presented in Ye and Keogh [99], where shapelets

are used to classify leaves from two different (but similar looking) species using por-

tions of the boundary. In this method a recursive decision tree algorithm is formulated

with Shapelets at the branching criteria. The original work is influenced by Pierre [79]

where the most descriptive subsequence is extracted with which to classify. However,

advancements in digital computation speeds allow consideration of all sub-sequences

in a dataset; a method that was declared to be impossible at the time [79].
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Mueen et al. [70] extends this method by considering conjunctions and disjunctions

of Shapelets to construct multi-variate decision trees that are then used to classify

further signals. Both Ye and Keogh [99] and Mueen et al. [70] use information gain

as a method of assessing a shapelets quality (its ability to separate classes). Whilst

this method is adept at calculating this quality, Lines et al. [54] suggests that the

simplest approach for assessing quality is to use the F-statistic for the difference of

means (ANOVA testing). Whilst this method is itself not as robust as other methods

it is simple to compute; and as it is not being used to perform any hypothesis test is

sufficient for the task.

Further research on Shapelet quality measures is presented in Lines and Bagnall

[53]. In this work the author compares three methods of shapelet quality testing

(Information Gain, Kruskal-Wallis test and Mood’s Median) and tests them over

a number of classification problems. This methods of quality analysis are briefly

described in this section.

Of particular interest is the work in Lines et al. [54], where it is proposed that

Shapelets can be used to construct a filter for transforming time series data. Trans-

forming data in this manner moves away from the previous emphasis of tree-based

classification described by Lines et al. [54], allowing any traditional classification al-

gorithm to be used with Shapelets. The later data-transform approach forms the

basis for methods used in this thesis and is described in this section.

The remainder of this section details the shapelet transform method, from a set of

otolith boundaries stored as contour coordinates, to how boundaries are transformed

to their shapelet representation.
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2.4.1 Pre-processing of boundaries - Details how boundaries are trans-

formed from coordinate pairs to a one-dimensional time series.

2.4.2 Candidate extraction - Describes how shapelet candidates are ex-

tracted from each time series, how many candidates can be extracted, and how

closed boundaries are processed.

2.4.3 Distance Measurements - Explains how distances between candidates

and time-series are calculated, and how subsequent tests potentially employ part

of previous calculations.

2.4.4 Quality Measures - Lists possible measures for quality of shapelet can-

didates: Information gain, Kruskal-Wallis, F-statistic, and Mood’s median.

2.4.5 Estimating min and max shaplet lengths - Gives details of how

shapelet sizes can be pre-calculated, allowing pre-pruning of candidates.

2.4.6 Early Abandon Methods - Describes how certain measures can de-

crease potential run-time by abandoning certain calculations.

2.4.7 Shapelet Pruning - Explains how shapelets can be discarded based on

where they fall within single time-series.

2.4.8 Shapelet Clustering - Explains how shaplets can be clustered between

multiple time-series

2.4.9 Transforming Images - Finally, describes how a set of selected shapelets

can be used to transform further time series for use in classification tests.

2.4.1 Pre-processing of boundaries

Shapelets with which to transform series must first be extracted from the initial data.

Each shapelet is a contiguous sequence of points of any given length, taken from
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a time-series in the dataset. As such the first step in determining shapelets is to

transform the original set of boundary points to a set of one-dimensional time series.

To create the series the Euclidean distance from the centroid to each boundary point

is calculated in turn and recorded for use. Figure 2.20 shows such a series extracted

from the original boundary. Once all boundary points have been transformed in this

Figure 2.20: Showing a one-dimensional time-series (left) extracted from the original
boundary (right). The time series is shown as Euclidean distance to centroid against
point along boundary. Marked on the boundary image are the designated boundary
start point (star) and the approximate centroid of the boundary (cross). Both plot
and boundary are emphasized for clarity.

manner they must be normalised for length. This process ensures that the resulting

shapelets are invariant to the length of the original boundaries. In this section we

refer to the length of a series as m.

2.4.2 Candidate Extraction

Once all time-series have been transformed and normalised shapelet extraction can

begin. Every subsequence (S) in every time-series (T ) in the dataset (SET ) is a

potential shapelet and must be assessed. Each candidate (c) is extracted from the

dataset in turn and its quality (Q) calculated and stored. Whilst each subsequence of
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length 3 ≤ l ≤ Sm is a potential candidate, an exhaustive search of candidates of

length in this range is often impractical due to high time-complexity. Lines et al. [54]

suggests a method of reducing this range by setting minimum (min) and maximum

(max) shapelet lengths to be assessed; we discuss this method later in this chapter.

A generic algorithm for extracting the best shapelet can be seen in Lines et al.

[54], Ye and Keogh [99] and Hills et al. [40], the latter defines three main procedures

in the generic extraction method: extraction of each candidate from the dataset;

calculation of distance measurements between each shapelet and each time-series in

the set (DS); and a method of calculating class-separation or quality (Q) of each

shapelet. The algorithm, taken from Hills et al. [40] is presented as Algorithm 1.

Algorithm 1 ShapeletSelection( SET, min, max )

1: best← 0
2: bestShapelet← ∅
3: for l← min to max do
4: Cl ← generateCandidates(SET, l)
5: for all candidates c in Cl do
6: DS ← findDistances(S,SET)
7: Q← assessCandidate(c,DS)
8: if Q > best then
9: best← Q

10: bestShapelet← c
11: end if
12: end for
13: end for
14: return bestShapelet

Algorithm 1 generates candidates for each length (min to max) in turn, creating

a set of candidates of length l (Cl). All candidates in Cl are then assessed before

progressing to the next set of candidate lengths. The set of candidates of a length l
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in a single series Si is defined as Ci,l. Therefore the set of candidates of a given length

in a set containing n series is defined as:

Cl = {C1,l ∪ C2,l ∪ ... ∪ Cn,l} (2.4.1)

The set of candidates of all lengths in the set is defined as:

C = {Cmin ∪ Cmin+1 ∪ ... ∪ Cmax} (2.4.2)

It is states that each series contains (m − l) + 1 candidates of length l [40, 54, 99].

Using this method the set Cl contains n(m− l + 1) candidates of given length to be

assessed; and each length in the range min to max will produce differing numbers of

candidates. The total number of candidates to be assessed (|C|) where min ≥ 3

and max ≤ m is calculated using:

|C| =
max∑
l=min

n(m− l + 1) (2.4.3)

This declaration however does not allow for a closed curve series. When extracting

candidates from a series produced from a closed boundary, the number of candidates

of each length is simply equal to the size of the series itself. For this method the

series must be treated as being ‘circular’; treating the first element in the series

as immediately following the last. Figure 2.21 shows an example of such circular

candidate extraction. Using this method the set of candidates of length l for the

dataset contains nm candidates. Using the closed series method the total number of

candidates to be assessed is defined as:

|C| = nm(max−min+ 1) (2.4.4)



62

Figure 2.21: One-dimensional time-series created from a closed boundary. Marked on
the curve is a potential shapelet using circular candidate extraction; its start point is
noted on the curve.

In the generic method candidates are extracted from the entire set each size at

a time: Each candidate of length min being extracted from all images/series; then

each candidate of length min+1 extracted from all images/series, etc. In practice

however candidates of every size are extracted for each image/series in turn to allow

for candidate pruning by series (discussed later in this section). Each time-series

contains candidates (CS) of lengths min to max. For a non-circular series S of length

m there are a number of candidates for each series |CS| equal to:

|CS| =
max∑
l=min

(m− l) + 1 (2.4.5)

For circular series such as a one-dimensional ‘distance to centroid’ boundary shown

in figure 2.21 the number of candidates for a given series is:

|CS| = m(max−min+ 1) (2.4.6)

2.4.3 Distance Measurements

In order to assess each candidates quality we must measure its minimum distance

to all series in the dataset, including the series from which it has been extracted
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(although this is simply set as zero as an exact match will be found). With all

series normalised for length each candidate must only be normalised for ‘amplitude’

to remove distance from centroid as a matching factor. To normalise candidates a

standard z-normalisation method is used using the following formula:

ci
′ =

ci − µ
σ

(2.4.7)

Figure 2.22 shows a 1-D series from a hypothetical boundary. Marked on the curve

are two sub-sequences that may be identified as candidates. The sub-sequences them-

selves are identical in shape; however, given their difference in amplitude or difference

from the centroid (y-value on the figure) the two non-normalised sections would not

be seen as similar. However also marked in the figure are the two candidates after

z-normalisation. It can be seen from the figure that the candidates are indeed similar.

To compare a candidate to a series it is compared to each subsequence of the same

Figure 2.22: One-dimensional time-series created from a closed boundary. Marked in
two positions on the curve are two identically shaped sub-sequences. Below are the
two sub-sequences after z-normalisation

length from the target series. Each subsequence must be normalised in the same man-

ner that the one being assessed. The Euclidean distance between the candidate (c)
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and the subsequence (s) is then computed, where ci denotes the ith element/value of

the candidate:

dist(c, s) =
l∑

i=1

(ci − si)2 (2.4.8)

Using this formula the distance between a candidate and a time-series (Si) is calcu-

lated by taking the minimum distance between c and each of the sub-sequences in

S:

dc,i = min
sεCi,l

dist(c, s) (2.4.9)

We use this to calculate the distances between the candidate that we are assessing, and

each other time-series in our dataset to generate a set of distance for the candidate. It

is this list of distances that are used when calculating the quality (Q) of the candidate.

Dc = {dc,1, dc,2, dc,3, ..., dc,n} (2.4.10)

Calculating the distances between a candidate and each other series carries a high

time complexity O(nml) where n is the number of instances in the set; m is the

length of each series (uniform after length normalisation); and l is the length of the

shapelet. In order to minimise the impact of this order magnitude we may implement

early abandon techniques discussed later in this section.

Distance Pre-calculations

As each candidate is measured to each possible alignment of a series, distance mea-

surements between points are duplicated. Consider two time series: S1 and S2 of

length m and a designated shapelet length l = 5. Candidate c1 is extracted from

S1 and contains values {S1(1), S1(2), S1(3), S1(4), S1(5)}. This is then aligned with

each l = 5 sub-series of S2 and distance measurements between each aligned ele-

ment are cumulated. After c1 calculations are complete c2 is extracted and contains

elements S1(2 : 6), it is then aligned and calculated as c1. Figure 2.23 shows the
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first two candidates of l = 5 extracted from the first series, their alignments with

the second series are shown. It can be seen that on the second alignment of c2 the

distance between several of the elements were calculated during the first alignment

of c1: ((S1(2)− S2(2))2, (S1(3)− S2(3))2, etc).

Figure 2.23: Showing alignments of two candidates extracted from S1 and compared
with S2. Duplication of alignments can be seen; causing calculation redundancy.

2.4.4 Quality Measures

There are a number of quality assessment techniques discussed in recent literature.

The quality of a given candidate is described as how well the classes of the dataset are

separated by the distances from that candidate (Dc). Lines et al. [54] and Lines and

Bagnall [53] investigate several methods of quality assessment for shapelet extraction.

The later of these works compares additional methods to those used in previous work

and concludes that these methods can offer time saving between 14 and 18% whilst

maintaining classification accuracy. All four methods used are described in brief

below.
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Information Gain

The method first used by Ye and Keogh [99] and in further work [70] utilised infor-

mation gain [87] to assess quality. Information gain methods require that the set of

distances for the candidate be ordered by size, and the gain calculated given each

possible split point. The split giving the highest information gain is described as the

‘optimal split point’ for that candidate, and its information gain is returned as a mea-

sure of its quality. Information gain is described as the entropy of a set of instances

(I(SET )) minus the summed entropy of each subset after splitting (Î(SET )) [99].

Given that the proportion of class A in the original SET is p(A) and the proportion

of class B is p(B):

I(SET ) = −p(A)log(p(A))− p(B)log(p(B)) (2.4.11)

After splitting the set by each possible split point, each subsets’ entropy must be

calculated and weighted by its fraction of the set it was split from(f(A),f(B)). The

entropy of each subset are then summed and returned as the entropy of set after

splitting. Therefore the entropy of the set post split is shown as:

Î(SET ) = f(S1)I(S1) + f(S2)I(S2) (2.4.12)

Subtracting the entropy of the split from the original set gives us the information

gained from that split; where S1 and S2 are subsets of SET created by the split (sp):

InformationGain(c, sp) = I(SET )− (f(S1)I(S1) + f(S2)I(S2)) (2.4.13)

Figure 2.24 shows an example Dc after class instances are ordered by magnitude

of distance. The set contains five instances of class A (circles) and seven of class B

(squares). Also marked on the line are possible split points a to k. These are defined

as the average points between consecutive instances on the line. Theoretically every
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Figure 2.24: A set of class-headers in a theoretical two-class problem. Headers are
ordered by distance from a hypothetical candidate c.

value on the number-line is a possible split point; however as all possible figures

between two instance distances return the same gain, only one point between each

is necessary. The following is an example of information gain calculation given split

point d on Dc.

I(SET ) = −p(A) log(p(A))− p(B) log(p(B))

I(SET ) = −( 5
12

log( 5
12

))− ( 7
12

log( 7
12

))

I(SET ) = 0.1584 + 0.1365 = 0.2949

Î(SET ) = f(S1)I(S1) + f(S2)I(S2)

I(S1) = −(4
4

log(4
4
))− (0

4
log(0

4
))

I(S1) = 0 (0.log(0) set to zero)

I(S2) = −(1
8

log(1
8
))− (7

8
log(7

8
))

I(S2) = 0.1129 + 0.0507 = 0.1636

∴ Î(SET ) = ( 4
12
× 0) + ( 8

12
× 0.1636) = 0.1090

InformationGain(c, d) = I(SET )− Î(SET )

∴ InformationGain(c, d) = 0.2949− 0.1090 = 0.1859

To calculate the quality of any given candidate (c) we find the information gain by

each possible split point on the line. The split which returns the highest information

gain is the optimal split point, and the level of gain is returned as the quality of the

candidate Qc:

Qc = max
spεDc

InformationGain(c, sp) (2.4.14)
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The information gain method of candidate assessment adds additional complexity to

the shapelet extraction methods, of O(n log n). Hills et al. [40] states that whilst this

overhead is minor compared to the inherent complexity of the shapelet methods, other

methods of assessment can return comparable assessments whilst reducing complexity

(of the assessment methods).

Kruskal-Wallis

First discussed in 1952 the Kruskal-Wallis test [47] is a non-parametric test used to

determine whether multiple samples originate from the same distribution. It is an

extension of the Mann −Whitney U test [55] to allow testing with more than two

samples; and a non-parametric equivalent of a one-way analysis of variance (ANOV A)

that is used in many of the otolith studies referenced in this thesis.

As with the information gain method the distance measurements for the candidate

(Dc) must first be sorted by magnitude. Each distance measure is then assigned a

rank, and the ranks summed for each class in the set. However, unlike the informa-

tion gain method, we then need only make one calculation in order to measure the

candidates quality:

KWc =
12

|Dc| (|Dc|+ 1)

k∑
i=1

Ri

ni
− 3(|Dc|+ 1) (2.4.15)

Where KWc is the Kruskal-Wallis score for the candidate c; |Dc| is the cardinality of

Dc (in practice this is equal to the number of time-series in our set); k is the number

of samples being tested (number of classes in the shapelet method); Ri and ni are the

sum of ranks for class i and the number of instances in that class.
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It should be noted that whilst Kruskal-Wallis tests are normally used during hy-

pothesis testing; candidate quality testing does not require results to be tested using

critical value tables. Therefore this section has not discussed the use of α or degrees

of freedom.

F-Statistic

Recent work by Lines et al. [54] uses the f -statistic of one-way ANOVA as a measure

of quality. The f -stat measures the ratio of variance of within-class means to the

mean of within-class variances. For this method of candidate quality assessment we

need only sort the candidate distance measures Dc into separate sets (Di...DC) by

class label. We then compute the f -statistic (F ) using the following formula:

F =

∑C
i=1(D̄i − D̄)2/(C − 1)∑C

i=1(
∑

djεDi
(dj − D̄i)2/(ni − 1))/C

(2.4.16)

Where: C is the number of classes; D̄i is the mean distance to the candidate for

instances of class i; D̄ is the overall mean; and ni is the number of instances in class

i.

A higher result using the above formula in indicative of higher ratio of inter-class

variability to intra-class variability. A candidate of high quality shows smaller dis-

tances to instances of one class and larger distances to instances of other classes.

Figure 2.25 shows two sets of hypothetical candidate distances; marked on the figure

are each class’ means (vertical lines) and variances with respect to the mean (hor-

izontal). Marked at the crossing of these two descriptors is the class label (circle,

triangle or square). The thicker vertical line shows the overall mean of the distances;

two horizontal lines above the classes show variance of class means v(Mi→C) (top)
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and the the mean of within-class variances M(vi→C) (bottom) both with respect to

the overall mean. It can be seen that the right-hand set has a far higher ratio of

‘variance of means’ to ‘mean of variances’; it is therefore the higher quality shapelet

of the two.

Figure 2.25: Two sets of distances to hypothetical candidates. Marked on each are
three classes with associated means and variances (with respect to class mean). also
marked are the overall mean; variance of class means (top bar) and mean of class
variances (second from top)

Mood’s Median

Mood’s Median [68] is a non-parametric test to determine whether two sets of values

come from the same distribution. Mood’s Median requires only that we compute

the median of the combined set of distances Dc rather than sort the values as done

during Information-gain and Kruskal-Wallis test. Lines and Bagnall [53] and Hills

et al. [40] describe the construction of a contingency table from Dc by noting how

many instances from each class fall above and below (or equal to) the set median

(D̃c).

Figure 2.26 shows distances of series to a hypothetical candidate. Contingency

Table 2.3 is constructed by counting how many instance of each class fall above and

below (or equal to) the set median. Once the contingency table has been constructed
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Figure 2.26: Distances from a candidate for instances from three classes shown on a
distance line. Marked with a vertical line is the set median distance.

Table 2.3: Contingency table for Mood’s Median test: Showing how many instance
of each class in figure 2.26 fall above/below the set median

◦ 4 �
> D̃c 2 7 11

≤ D̃c 9 4 0

the Chi-squared statistic of the table is calculated using:

χ2 =
C∑
c=1

2∑
r=1

(ocr − ecr)2

ecr
(2.4.17)

Where c is the indices of table columns; r indices of rows; ocr is the observed count

for element cr; and ecr is the expected value of the element. The expected value is

defined as:

(sum of column c)(sum of row r)

total sum
(2.4.18)

The Chi-squared value is returned from the process as a measure of the candidates

quality. Lines and Bagnall [53] Found that using Mood’s median offered a potential

time-saving of around 18% over the original information-gain method. It was found

that this method returned the lowest classification results of the tested methods;

although the study did not find significant difference between the methods. It was a

combination of Mood’s Median and information-gain methods, however, that returned

the best overall results.

2.4.5 Estimating min and max Shapelet lengths

Whilst the methods of Mueen et al. [70] do not set a minimum and maximum can-

didate size during shapelet extraction, Ye and Keogh [99],Hills et al. [40] and Lines
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et al. [54] do set these parameters. Whilst Ye and Keogh [99] arbitrarily set min to

3 and max to the length of the series (m), the later studies implement a method of

determining the parameters based on extraction of shapelets from randomly selected

series in the dataset. In this method ten series are selected randomly and the top

ten shapelets that classify that set are extracted using algorithm 4. This process is

repeated tenfold and resulting shapelets from all ten folds are merged and sorted by

length. The length of the 25th and 75th shapelets are then used as the min and max

parameters for further shapelet extraction from the set. Algorithm 2 taken from Lines

et al. [54] outlines this method of parameter setting.

Algorithm 2 MinMaxEstimation( SET)

1: shapelets← ∅
2: for i← 1 to 10 do
3: randomiseOrder(SET)
4: SET ′ ← SET (1 : 10)
5: cShapelets = kShapeletSelection(SET ′, 1,m, 10)
6: shapelets← merge(shapelets, cShapelets)
7: end for
8: shapelets← sortByLength(shapelets)
9: min← min(shapelets25.length, shapelets75.length)

10: max← max(shapelets25.length, shapelets75.length)
11: return min,max

2.4.6 Early Abandon Methods

There are two methods of early abandon of distance calculation mentioned in prior

literature. These methods are concerned with halting calculations in order to reduce

computation time and are described in the distance calculation description below.

Additionally, Early entropy pruning allows candidates to be discarded during qual-

ity assessment using optimistic assumptions, and is described following the distance

calculation methods.
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Distance Calculations.

Already discussed in section 2.4.3 is the calculation of distance between a candidate

c and a time-series s noted again here for convenience:

dc,i = min
sεCi,l

dist(c, s) (2.4.19)

This method will indeed find the minimum distance; it potentially adds unneeded

calculations during assessment of a candidate. Whilst we are unable to reduce the

worst case complexity as each possible position along the series must be considered,

an early abandon method for rejecting positions that exceed a previously calculated

minimum are discussed in the literature [40, 99]. In addition to this distance abandon,

Hills et al. [40] implements reordering and online-normalisation methods proposed

previously [83] in order to reduce calculation times further. Algorithm 3 (taken

from Hills et al. [40]) outlines the process of calculating the minimum distance with

these measures included.

The early abandon methods add three time-saving measures: Firstly distance is

calculated by summing the distance between elements in turn. This allows calcu-

lations for an alignment to be abandoned if the distance up to that point exceeds

the current ‘best match’. Secondly, The aligned portion of the time-series (Si:i+l) is

normalised one value at a time as the distance is calculated; reducing time spent nor-

malising where alignments are abandoned. Finally the normalisation and subsequent

distance calculations for each element are performed in order of magnitude (of the

candidate). This final measure offers potential time savings as the element with the

greatest magnitude has greatest potential for larger distances to paired element in

the subsequence of the series.
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Algorithm 3 Distance Measure with early abandon(S(1:m), c(1:l))

1: c′ ← normalise(c, 1, l) {normalise the candidate}
2: A← sortIndexes(c′) {Ai is the index of the ith largest absolute value in c′}
3: s← normalise(S, 1, l)
4: p← 0, q ← l {p stores running sum, q the running sum of squares}
5: best← dist(c, s) {find initial distance}
6: for i← 1 : m do
7: p← p+ S(i+l) − Si {updating running sums}
8: q ← q + S2

(i+l) − S2
i

9: x̄← p/l
10: t← (q/l)− x̄2

11: j ← 1, dist← 0
12: while j ≤ l&dist < best do
13: dist← dist+ (cAj

− (S(i+Aj) − x̄)/t)2

14: j ← j + 1
15: end while
16: if j = l & dist < best then
17: best← dist
18: end if
19: return best
20: end for

Figure 2.27 shows an alignment between a candidate and a subsequence of a se-

ries. Shown on the figure are distances (vertical lines) between the two. These are

cumulated in order until the total exceeds the best distance so far (the point at which

distance lines cease). Figure 2.28 shows the same alignment, however in this figure

the order of calculations is indexed by the magnitude of the candidate (the black

line in the figures). Again these distances are marked on the figure up to the point

at which the cumulative distance exceeds the best so far. It can be seen that in

this simplified example, we calculate fewer than half the distances of the non-indexed

measurements.



75

Figure 2.27: Distance calculations between
a candidate and a subsequence of a series.
Noted are the matching distances up to the
point of abandonment.

Figure 2.28: Distance calculations after re-
indexing by magnitude of candidate ele-
ments. Fewer distances are calculated as
total distance exceeds current best fit far
sooner.

Early Entropy Pruning

In the original work by Ye and Keogh [99] information gain is used as the quality

measure of a candidate. As such the study implements a method of pruning entropy

calculations using optimistic prediction of information gain. After distance is calcu-

lated between a candidate and a series, its distance is then added to the distance

line (as shown in 2.29). At this stage the method optimistically predicts the posi-

tion/distances of the remaining series to the candidate and computes the information

gain. In short this is predicted as all members of each class being at opposite ends of

the distance line.

Placing unmeasured class instances at each end of the distance line allows the

calculation of the best possible information gain (the upper bound) given the distances

known. After each distance calculation, if maximum possible gain is lower that the

kth best candidate so far (where k is the number of shapelets to extract) then the

candidate can be discarded. If the upper bound is in excess of the kth best then
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measurements continue until either the bound drops below the kth (at which point we

abandon the candidate) or all distances are calculated and the final gain produced.

Figure 2.29: Distance line for instances of two classes from a candidate. Seven in-
stances have been calculated and placed on the line, the remaining seven have been
optimistically assumed to be at either end of the distance line.

In order to maximise the potential of this pruning, it is suggested that distances

are calculated to instances of each class alternately. If distances are measured to all

instances of one class then the next class etc., then the upper bound will remain at

maximum until (at least) the first instance of the second class is inserted. Using this

method it is possible to abandon calculations before the distance from the candidate

to every series in computed.

2.4.7 Shapelet Pruning

Lines et al. [54] suggests that a number of shapelets can be discarded during the

discovery stages, after assessment of all candidates from a time series. Once all can-

didates have been assessed they are ordered by quality. Shapelets are then discarded

if they share indices with any shapelet of higher quality than themselves. Figure 2.30

shows a set of shapelets extracted from a hypothetical series and ordered by quality;
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several of the shapelets are discarded due to lower quality than those they over-

lap. Once self-similar shapelets have been discarded in this manner the remaining

shapelets are merged with any shapelets extracted for series prior.

Figure 2.30: A time series and assessed shapelets from that series shown in order (top
to bottom) of quality. Shapelets discarded using the self-similar discarding method
are marked with a cross.

In theory the maximum number of shapelets that can be extracted from a set of

series and kept during this process is equal to:

MaxShapelets = floor(n(m/min)) (2.4.20)

Where n is the number of series; m is the length of each series and min is the minimum

candidate length. This can quickly lead to a vast number of shapelets with which to

transform series in the set by.

Whilst Hills et al. [40] limits the number of shapelets stored for use to m/2, Lines

et al. [54] describes an alternate method for setting the number of shapelets (k) to

store. This method estimates k by building classifiers (of which every type is to be

used on the finally transformed data) using series transformed by varying numbers of

shapelets (range 1-m) using 5-fold cross validation. The classifier that returns the best

classification accuracies indicates the number of shapelets to store and transform series
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by. This method attempts to limit shapelets in order to avoid over-fitting classifiers,

whilst not limiting the number (of shapelets) so much as to reduce classification

accuracies. Algorithm 4 describes the shapelet extraction process after the addition

of the shapelet pruning methods.

Algorithm 4 kShapeletSelection( SET, min, max, k)

1: kShapelets← ∅
2: for all time series S in SET do
3: shapelets← ∅
4: for l← min to max do
5: Cl ← generateCandidates(S, l)
6: for all candidates c in Cl do
7: DS ← findDistances(S,SET)
8: Q← assessCandidate(c,DS)
9: shapelets.add(c,Q)

10: end for
11: end for
12: shapelets← removeSelfSimilar(shapelets)
13: kShapelets← merge(kShapelets, shapelets)
14: kShapelets← sortByQuality(kShapelets)
15: kShapelets← kShapelets(1 : k)
16: end for
17: return kShapelets

2.4.8 Clustering of Shapelets

Hills et al. [40] outlines a method of clustering shapelets after extraction is complete.

This measure is introduced as, whilst we remove overlapping shapelets on a series

level, multiple series may hold shapelets that are very similar. Indeed this is indicative

of a ‘high-quality’ shapelet, as a good candidate is likely to be similar to points on

other time series, each of which may also have been selected as quality candidates. In

theory two series may hold the exact same shapelet, both of which may be selected

for the shapelet transform, so a method of clustering similar candidates is introduced.
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A k by k distance matrix is formed by computing each shapelets distance to every

other shapelet. This matrix is diagonally-reflective with diagonal holding zero-values

(as each shapelet is a perfect match to itself). The minimally distanced pairs (exclud-

ing self-matches) are then extracted and clustered together. Hills et al. [40] repeats

this process of matrix calculation until a ‘user-specified’ number of shapelets are

formed. With each iteration, the size of the matrix is reduced as pairs of shapelets

are removed and replaced by a cluster. The distance between two clusters is defined

as the average distance between each member of each cluster. Hills et al. [40] then

represents each cluster by the shapelet of highest quality within that cluster, others

being matches of that shapelet.

This method of clustering can reduce the number of shapelets with which to trans-

form further, and is likely to result in fewer than k shapelets. There is also no mention

of a maximal distance under which to cluster shapelets. Rather, the clustering algo-

rithm may cluster shapelets that, whilst the closest match in the set, are not similar

in shape. The addition of a threshold for clustering by distance may be an important

ammendment to this method.

2.4.9 Transforming Images

Once the final set of shapelets has been returned, they are used to transform the series

in the dataset (or another dataset if shapelet extraction was cross-folded). Each series

in the set is transformed by calculating its ‘distance’ from each of the k shapelets.

The transformed series (S) will be a set of ordered distances to the set of shapelets

(s); where n is the number of series transformed:

S ′1 = {dist(S1, s1), dist(S1, s2), ..., dist(S1, sk)}

S ′2 = {dist(S2, s1), dist(S2, s2), ..., dist(S2, sk)}
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...

S ′n = {dist(Sn, s1), dist(Sn, s2), ..., dist(Sn, sk)}

These transformed series can then be used to construct classifiers of choice. Each set

of series to be classified using the shapelet method must then be transformed using

the same shapelet set to be classified using this system.

2.5 Shape Indices

Perhaps the simplest methods used during this work are those regarding general shape

of otoliths [43, chap. 2]. A number of metrics can be calculated using Matlab [62] as

part of the ‘regionprops’ function, and a number of these are used in different stud-

ies either discretely or in addition to other measures. Burke et al. [22] for example

measures area, perimeter and otolith length and width and additionally calculates

further shape indices such as rectangularity, form-factor etc, used in addition to ellip-

tical Fourier descriptors; the CSS methods described in Section 2.3 are complimented

with circularity and eccentricity, used as pre-indexing metrics.

Whilst the orientation of each otolith is not to be considered as indicative of class

for any tests done throughout this study, orientation is nonetheless calculated and

used as a method of normalising each object for rotation. Each otolith mask has its

orientation calculated (as described below) and is rotated so that its new position

reduces the angle of orientation to zero, or as close as possible given the pixelation.

All other measurements are taken whilst in the normalised position. A number of the

measurements (solidity, extent, eccentricity, circularity) are scale-invariant.
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Figure 2.31: Showing the perime-
ter (darker shading) and area (to-
tal shaded area) of our previous
example. Also showing addition
of pixels (starred) to construct the
convex hull of the mask.

Figure 2.32: Showing the coordi-
nates calculated for the bounding
box (red), which is used to calcu-
late the height and width of the
segmented area.

Perimiter Length - Simple measurement of the length of the otolith boundary,

measured in pixels. Equal to the length of the chain code used for Fourier transforma-

tion, and to the length of x/y coordinate arrays and univariate series arrays described

in Section 2.1. Shown as darker grey pixels in Figure 2.31 (perimeter = 26).

Area - The area of the otolith mask, measured in pixels. Calculated using the mask

created during the segmentation process. Shown as total shaded area in Figure 2.31

(area = 60).

Convex Area - The area of the convex hull of the segmented mask. To construct

the convex hull, the boundary is extended so that there are no concavities around

the contour. Shown in Figure 2.31 as the addition of areas marked with a red star.

(convexArea = 62).
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Solidity - Calculated as the area of the segmented mask, divided by the resulting

convex area; Given as a scale invariant index. In our example shown this is solidity =

60/62 = 0.9677 (4dcp).

Height and Width - taken from the ‘bounding box’. The bounding box is calcu-

lated by the Matlab function as a box that will totally encompass the segmented area.

Recorded as the upper leftmost coordinate minus 1/2, and the height and width of the

box measured in pixels. Figure 2.32 shows our example with the vertex pixel shown

in red at coordinates (2,2). The height and width of the segmented area (in pixels)

is shown by the red bounded area in the image. In our example the top-left vertex is

given as (1.5, 1.5) the height as 7 and the width as 11. The bounding box therefore

encompasses any pixels with in both ranges 1.5 < x < 12.5 AND 1.5 < y < 8.5.

Extent - A scale invariant index calculated as the division of the segmented area

by the area of the bounding box (extent = area/(height∗width)). A measure of how

rectangular an area is; in our example extent = 60/77 = 0.7792 (4dcp).

Axis Lengths - Are calculated from the normalised second order moments of the

segmented area. The covariance matrix for the x and y coordinates of foreground

pixels is first calculated. Minor adjustments are made to the variances of x/y to

account for the pixelated nature of the mask. A modified Eigenvalue calculation is

used to return the major and minor axes lengths. Where Vx is the variance of x and

Cxy is the covariance of x, y:

2
√

2

√
Vx + Vy ±

√
(Vx − Vy)2 − 4Cxy (2.5.1)

or, where E is the Eigenvalue Matrix, axis lengths are calculated using:

AxisLengths = 2
√

4E (2.5.2)



83

Figure 2.33: Showing the major
and minor axis of the ellipse. Also
shown is the orientation given as
an angle of the major axis to the
horizontal.

Figure 2.34: Showing a circle
of equal area to the segmenta-
tion, with common centroid. Line
shows the measured diameter.

Figure 2.33 shows the calculated ellipse with major and minor axes marked. It is the

length of these axes that are recorded. Note that not all foreground points fall within

the ellipsoid. The methods used were described by Haralock and Shapiro [39] and

whilst the extensive proof in that work is not shown here, the Matlab functions used

to calculate axis lengths use the resulting formulae for axis lengths.

Orientation - While not recorded for use in classification (as object orientation

should not be indicative) the orientation of the segmented area is used to normalise

the mask. The angle of orientation is given as the angle between the major axis of

the foreground ellipse and the horizontal axis. After calculation each image is rotated

by the appropriate amount to align the major ellipse with the horizontal axis.

Eccentricity - scale invariant index calculated using the major and minor axis

lengths. Where LM and Lm are the major and minor axis lengths:

eccentricity = 2

√
(LM

2
)2 − (Lm

2
)2

LM
(2.5.3)
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Equivalent Diameter - Calculated as the diameter of a circle (in pixels) with the

same total area as the segmented area. EqDiameter = 2
√
area/π. In our example

where area = 60, the eqDiameter = 2
√

60/π = 8.74 (2dcp). Figure 2.34 shows our

original segmentation, with a circle with same total area overlayed, and aligned with

a common centroid.

Circularity - Whilst not calculated with the ‘regionprops’ function, circularity is

one of the metrics used for pre-indexing CSS classification. It is a similar metric to

‘extent’ in that it is the division of the object area by the area of a circle which could

encompass the object. Where LM is the major axis length calculated previously:

circularity = area/πL2
M

2.6 Classification

We anticipate that many readers will have read an introductory text (eg. Alpaydin

[4]) and have a broad understanding of the machine learning and transformation

principles we use. Nevertheless, in-depth knowledge of the methods is not required

with regards to learning algorithms used in this work. Each of the classification

algorithms we employ are used ‘off-the-shelf’ as part of the WEKA machine learning

suite. With the exception of cross validation parameters (to ensure validation is

uniform across tests), all parameters used remain as the default for each respective

learning algorithm.

2.6.1 WEKA

The Waikato Environment for Knowledge Analysis (WEKA, [38]) is a freely available

library of machine learning tools which are widely adopted by the machine learning

community, and has been used for otolith classification [40]. The library holds many

statistical and modelling tools together with learning algorithms. WEKA provides a
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framework allowing the construction of large numbers of classifiers or models, using

different learning algorithms that can be used alone or can be integrated into other

environments (or other software packages). Whilst WEKA has an application that

can be used on a stand-alone basis, during the entirety of this study we interface

WEKA with MATLAB in order to automate the procedure. For the studies in this

work we make extensive use of WEKA’s library to build multiple classifiers of otolith

shape, using the learning algorithms listed below:

2.6.2 Classification Algorithms

• NB → Näıve Bayes [51]

• BN → Bayesian Networks [33]

• Log → Logistic [50]

• HP → HyperPipes [97]

• J48 → J48/C4.5 [82]

• RaF → Random Forest [17]

• IBk → k-Nearest Neighbours [3]

• SMO → Support Vector machine [80]

• RoF → Rotation Forest [86]

• NNDTW → 1-Nearest Neighbour with dynamic time warping distance [84]

Classification algorithms are further grouped according to similarity of methods

used to construct classifiers. The algorithms above were chosen to cover a range of

the classifier groups: Both Näıve Bayes and Bayesian Networks algorithms belong



86

to the Bayesian group of classifiers, which construct classifiers by explicitly applying

Bayes’ Theorem. Logistic Regression belongs to the regression group which iteratively

refines the classifier measures of error in predictions made by the classifier. Hyper-

pipes and k-Nearest Neighbour algorithms are instance based methods, also called

memory-based as they compare new instances to those within the training data to

calculate similarities with ‘previous’ cases. J48, Random forest and Rotation Forest

are decision tree algorithms. Each constructs classifiers that make series of ‘decisions’

based on new instances’ variables (harmonic coefficients, CSS maxima etc.). Addi-

tionally, random and rotation forest algorithms also qualify as Ensemble Methods,

where multiple (potentially) weaker classifiers are used independently, and where a

further decision based on their predictions is used to classify the new instance. Finally

Support Vector Machines are a kernel method where input data is used to create a

higher dimensional information space which is then used to classify new instances.

2.7 Summary of Methods

A summary of the methods described in this chapter is shown here. A brief description

of each section is given, alongside the section number (in bold) where that topic can

be found.

• Otolith segmentation and boundary extraction methods commonly used in the

field of otolith analysis 2.1:

• Hand tracing methods carried out by expert readers to create binary

masks 2.1.1.

• How intensity thresholding can be used to create binary masks from otolith

images 2.1.2.

• Extraction and rotation of otolith boundaries from masks 2.1.3.
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• The focus of this chapter has been the methods by which extracted boundaries

may be transformed before use in building classifiers:

• Elliptical Fourier analysis; the method widely used in the otolith indus-

try 2.2,

• Curvature Scale Space; a computer vision method designed to describe the

shape of objects in images 2.3.

• Time-series Shapelets; a newer method from the field of time-series analysis

that has performed well in previous studies 2.4.

• How we use basic shape and scale measurements to form a feature-set

suitable for building and testing classifiers 2.5.

• The classification techniques used through this work and the commonly used

machine learning suite we employ 2.6.



Chapter 3

Comparison of Recent Boundary
Encoding Techniques to Common
Industry Methods

This chapter presents a study comparing three existing contour representation meth-

ods with a view to discriminating between two populations/stocks of Herring (Thames

and North-Sea) using boundary contours extracted from their sagittal otoliths. We

compare elliptical Fourier, Curvature scale space (CSS) and Shapelet transform meth-

ods in this chapter, to determine whether the commonly used method of otolith

boundary description (Fourier harmonics) can be surpassed by computer vision stan-

dards and recent additions to time-series analysis (Objective 1)

Specimens used in this study were prepared by the Centre for Environment, Fish-

eries and Aquaculture Science (Cefas) and donated for use in this study. The collec-

tion comprises 128 samples from two distinct populations of Herring: North-Sea (51)

and Thames (77) and have been hand labelled by experts at Cefas Lowestoft. The

images obtained for use in this study were received with only population information.

Both Shapelet and Fourier transformed contours are classified using a number of

algorithms provided by the Waikato Environment for Knowledge Analysis (WEKA):

88
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Bayesian networks, Näıve-Bayes, C4.5 (J48), Random and Rotation Forest. We eval-

uate all classification methods using leave-one-out cross validation (LOOCV) during

classification, with Shapelet parameter selection being performed within an additional

cross-fold (double-cross validation). Boundaries transformed using the Curvature

Scale Space method are combined with morphological measures of their boundaries

and CSS image: eccentricity, circularity and aspect-ratio. They are classified using

nearest-neighbour selections where distance is calculated using the CSS matching al-

gorithm described as part of the MPEG7 standard. Additionally we also classify

the maxima extracted from the CSS image using the cohort of WEKA learning algo-

rithms listed above, in order to compare to CCS own matching algorithm. During this

classification pairs are ordered both by boundary-point and by curvature intensity.

Boundary data are also transformed into individual univariate series (distance to

centroid) and classified using using nearest neighbour dynamic time warping. Use of

both univariate series and shapelets allows comparison of simple (univariate) and com-

plex (shaplets) transforms of the same boundary data. We show that while shapelets

are a new addition to contour classification methods, neither they nor MPEG7 stan-

dard CSS methods surpass Fourier based classification in this particular problem.

3.1 Materials and Methods

3.1.1 Sampling

With the exception of 1990 and 2007, Cefas has carried out trawl surveys in the

Thames estuary and Rivers Crouch, Blackwater, Roach and Medway every year since

1989. The study area is 51◦ 20’ N to 51◦ 48’ N; 0◦ 10’ W to 1◦ 06’ W in ICES (In-

ternational Centre for the Exploration of the Seas) division IVC. Surveys are carried

out with the primary aim of calculating the relative abundance and distribution of
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Herring in those areas. Surveys are always carried out in November, falling at the

beginning of the commercial fishing season (for Herring) and the same commercial

fishing vessel (MFV Ina K) has been used for every survey carried out during this

period. Surveys have all used trawl nets of a similar design, Larson sprat trawl with

steel doors and 16mm cod end towed at a speed of 3Kts. Herring otoliths are taken in

accordance with two tallies, inside and outside the drift area. The targets for each of

these areas is 480 fish, 2 per half cm up to a length of 14.5cm, 5 per half cm between

lengths 15cm and 19.5cm and 10 per half cm at lengths 20cm and over. The length,

sex and maturity stage of each fish is recorded, however this information was not

required during this study and so was withheld at the time. For the present study, we

used otoliths from fish caught on the survey in 2008 and 2009. Samples were chosen

from each year to provide as many numbers of Thames and North Sea individuals

from each age group 0-3 as possible (77 Thames, 51 North-Sea).

3.1.2 Image Capture

The otoliths were set whole in clear polyester resin, under a glass cover slip in black

trays. These were then read for the purpose of age-determination and stock discrim-

ination by expert readers at Cefas using a stereo microscope with reflected light so

the annuli of the otolith could be clearly observed. Samples were individually in-

spected under magnification to determine whether they were suitable for use in this

study. For the purpose of this research it was decided that only the left sagittal

otolith would be examined and that to be accepted the otolith must be undamaged

and have a boundary that was free from obstruction by debris or air-bubbles set in

the clear resin mount. Once an otolith was identified as a suitable candidate it was

imaged as 2.5x magnification using a Jenoptik C5 digital camera mounted on a Leica
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DM2000 microscope and connected to a PC. All images were captured using ProgRes

CapturePro 2.7 software and stored as uncompressed TIFF files for later processing.

Otoliths were imaged at the same approximate orientation and under the same

magnification through the image-capture process. Minor adjustments were made to

the microscope focus and the angle of reflected light in order to achieve the best

possible clarity of the otolith edge. Otolith images were capture at two levels of

exposure. A low exposure image of each was captured in order to allow the annuli

to be more easily examined for ageing; a high exposure image of each was captured

so that the boundary contour could be more easily determined by automatic image

analysis.

After Image capture the number of samples per class was unbalanced. Fifty samples

from each class were selected for further processing based on image quality and clarity

of the boundary. Table 3.1 shows the number of otoliths of each age class in this

set. Whilst age of sample was not a consideration when selecting otoliths for this

comparative study, the table shows that age distribution is reasonably balanced.

Approximate Age
Count

(North-Sea)
Count

(Thames)
0 4 13
1 22 17
2 15 15
3 8 5
4 1 0

Table 3.1: Showing approximate age distribution (by class) of otolith samples used
in this study.
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3.1.3 Outlining

The majority of images collected could be outlined using thresholding methods dis-

cussed in chapter 2 section 2.1. However, a number of otolith images contained

anomalies that, whilst not occluding the boundary, prohibited threshold based seg-

mentation. The set was initially segmented automatically and failed attempts were

detected by manual visual sweep of the results. Incorrect segmentation was corrected

by expert boundary tracing and all resulting images were additionally checked by a

second expert.

3.1.4 Fourier Transform

We use a modified version of MATLAB scripts available on the file exchange web-

site [56] that implement the Fourier methods described in chapter 2, section 2.2. The

implementation is used to calculate elliptical Fourier coefficients for n harmonics: an,

bn, cn, dn. For the study presented in this chapter we extract and record the first

one-hundred fourier harmonics from the boundary. Boundaries reconstructed using

the first fifty harmonics, when compared to the original boundary, shown a mean

pixel disparity < 1; reconstructions using all one-hundred harmonics have a maxi-

mum Hausdorff distance < 2. It was deemed that further harmonic extractions were

not required as reconstruction using up to one-thousand harmonics did not reduce the

Hausdorff distance to less than one. Classification accuracies are recorded using the

first 5, 10, 20, 30, 50 and 100 harmonics; both prior to and after scale normalisation.

All boundaries were normalised for rotation prior to harmonic calculation by calcu-

lating the angle between the major elliptical axis of the boundary and the horizontal

axis. The boundary images were then rotated so that their major axes were parallel
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with each other and with the horizontal axis. After extraction, all harmonics were

normalised for scale using the procedure laid out in chapter 2.2.

3.1.5 Curvature Scale Space

We follow the general procedure described in chapter 2 section 2.3 using a custom

built MATLAB implementation. In order to test our implementation of the CSS

algorithms we use the SHAPE dataset [69], which is available on-line and required no

image capture prior to use in this study. The SHAPE database comprises 70 classes of

shape with 20 images in each class, totalling 1400 binary shape images. The dataset

was constructed in order to test shape based recognition/classification systems and

is used to benchmark methods such as curvature scale space. It contains classes

such as: bird, chicken, dog, deer ; which are included specifically for their general

shape similarity. The set also includes simpler object shapes eg fork and a number of

abstract shapes. For use in this study we remove a small selection of classes: all device

classes are removed as they hold deliberate within class varience; we also remove the

spring class as the shape itself (a coil) takes a prohibitively long time to process using

CSS methods.

As in the work on fish contour classification by Abbasi et al. [1] we initialise the

smoothing kernal width (σ) at 1, increasing by 0.1 after each iteration or evolution.

After each boundary has been transformed to a set of CSS-maxima, we discard any

maxima with an evolution or magnitude of 1. This removes possible maxima noise

caused by pixel discretisation of a continuous curve.

For use in pre-indexing (Described in Section 2.3.3), we record each boundaries

eccentricity, circularity, and calculate the aspect-ratio of the constructed CSS image,
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which is a good indicator of the maximum concavity in the boundary. These global

parameters are recorded alongside each set of CSS maxima for each sample.

3.1.6 Shapelets

For this study we use the implementation of Lines et al. [54] to perform shapelet

transformation. This implementation utilises information gain to test the discrimina-

tory power of each shapelet between the lengths of twenty and forty, and selects the

best one-hundred shapelets for the transformation process.

Shapelet extraction is performed behind a second cross-validation ‘layer’ in order

to minimise over-fitting to the dataset. The data is split into five equal subsets (ten

instances of each class per set) and each fold in turn is used to calculate the shapelets

by which to transform the remaining (combined) sets.

3.1.7 Classification

We use Leave one out cross validation for classification using each of our transform

methods. Each transformed instance is withheld in turn to create a single sample test

‘set’, the remaining instances form the training set. Once all instances are classified

in this manner the average result is returned as the classification accuracy for each

process.

Curvature Scale Space

For curvature scale space we use the matching process detailed in chapter 2 to calcu-

late dissimilarities between each test boundary and each instance in the training set.

Alignments were carried out with maxima with magnitude > 80% of the maximum

as in previous literature. However, due to the variability of the maximum evolution



95

magnitude, the maximum search distance was defined at 40%, the maximum error

between primary maxima across all samples.

As recommended by Abbasi et al. [1] pre-indexing was carried out using the recorded

eccentricity, circularity and aspect-ratio. Multiple tests were carried out with the

threshold T set between 0-1 (inclusive) at intervals of 0.05. It was originally hoped

that T may be determined using the SHAPE dataset results and that peak-performance

T would be transferable to the Herring set. The results show however that peak-

performance threshold values are significantly different between the two test sets, and

use of the best threshold from one set would result in significant under-performance

when indexing the other.

Otolith images were all captured with the same side of the otolith uppermost,

therefore it was not necessary to perform maxima matching for mirror images when

processing the otolith dataset. Conversely the SHAPE set does contain deliberate

mirror images, and so the implementation used for both SHAPE and Herring testing

does perform mirror matching.

Once dissimilarity is measured between a test instance and each in the training

set; classification is carried out using Nearest-Neighbour (NN) selection. The result

is returned as a percentage of selections that resulted in the correct class. We show

results using 1, 3 and 5-NN classification.

Additionally, CSS maxima are classified using each of the classification algorithms

listed in section 3.1.7 in order to compare stock algorithms with the MPREG7 match-

ing algorithm. Four datasets are created for this testing; bou, bouG, evo and evoG.

bou has the maxima coordinates sorted by distance along the boundary; bouG is the
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maxima ordered as pairs in the same order as bou but prepended with eccentric-

ity, circularity and aspect-ratio (the global parameters). evo is sorted by evolution

magnitude and evoG is as evo prepended with the global parameters. A Simplified

example of this ordering can be seen in Figure 3.1. Where the CSS matching imple-

mentation processes all maxima in the CSS images, only the eighteen maxima with

greatest evolution are entered into the CSS datasets as this is the minimum number

of maxima in all images. This truncation of data causes on average 4.6 maxima to

be dropped from each transformed boundary, averaging 10.4 evolution magnitude per

cut maxima.

Set of maxima coordinates

(27,81), (57,271), (108,58), (169,139),
(218,121), (265,74), (323,68), (340,125),

(365,89), (401,159), (447,113)
(89,93)

method: bou
27, 81, 57, 271, 108, 58, 169, 139 ...

method: evo
57, 271, 401, 159, 169, 139, 340, 125...

Figure 3.1: Left: Image showing the CSS feature points extracted; marked as points
along boundary, and annotated with evolution (curvature) magnitude. Right: Show-
ing the CSS feature pairs (point along boundary, evolution magnitude) for the bound-
ary (top), and the ordering of the pairs using boundary order, and evolution magni-
tude order methods (bottom). Only the ten points with largest evolution magnitude
are shown in this example.
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Fourier, Shapelet and Univariate Boundaries

The Univariate Boundaries (UV-Bs) and Shapelet transform thereof, and the Fourier

transformed data are classified using a variety of available classifiers so that results

of transformed and non-transformed boundaries can be compared. Results of these

tests can be seen in Section 3.2. The classifiers used on these sets are implemented

in WEKA and are;

• BN - Bayesian networks

• NB - Näıve Bayes

• C4.5 - C4.5 Decision Tree

• RaF - Random Forest ensemble

• RoF - Rotation Forest ensemble

• NNDTW - 1-Nearest Neighbour with dynamic time warping distance, performed

on UV-B data only.

3.2 Results

3.2.1 CSS Matching Algorithm

Results of classification using MPEG7 CSS matching implementation can be seen in

Figures 3.2 and 3.3. Results shown are for eccentricity, circularity and aspect-ratio

thresholding in the range 0.00 to 0.40 only, as results in the range 0.50 to 1.00 show no

improvement on T = 0.40 in either test. The thresholds returning peak performance

in these cases are seen to be different to one another, and use of one problem’s peak

threshold value for the other would result in significant under-performance.
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Figure 3.2: Results of North-Sea/Thames
Herring classification using 1, 3 and 5-NN.
Showing classification accuracies (y-axis)
for varying over varying threshold values
(x-axis).

Figure 3.3: Results of SHAPE database
image classification using 1, 3 and 5-NN.
Showing classification accuracies (y-axis)
for varying over varying threshold values
(x-axis).

In all cases the inclusion of a threshold for the global parameters improve, or at

least does not hinder, accuracy. Table 3.2 shows results of the two classifications using

no threshold (i.e. T=1 ), and using the peak performance global threshold (value for

each case given in table).

1-NN 3-NN 5-NN
NSvTh T = 1 55% 56% 50%

peak T = 0.01 61% 61% 45%

SHAPE T = 1 87% 69% 59%
peak T = 0.25 91% 74% 67%

Table 3.2: The LOOCV classification accuracies using our CSS matching implementa-
tion on all three tests, North-Sea Vs Thames (NSvTh), and Classes from the SHAPE
database (SHAPE)
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Tables 3.3 and 3.4 show sensitivity and specificity (or Sensitivity to North-Sea and

Sensitivity to Thames) of the CSS matching algorithm. The figures show that the CSS

matching technique is generally more sensitive to Thames Herring instances than to

those from the North Sea. Table 3.3 shows results using peak performance threshold;

Table 3.4 shows those where no threshold of global parameters was used for pre-

indexing. The increase in accuracy, sensitivity (North-Sea classification accuracy) and

specificity (Thames classification accuracy) when global thresholds are used for CSS-

image pre-indexing, supports the idea that the two classes of boundary have significant

overlap in scale space, where boundaries that show differences while unprocessed may

have much the same representation after processing.

T = 0.10 North
Sea Thames

1-NN North-Sea 26 24 Sensitivity: 0.52
Thames 15 35 Specificity: 0.70

3-NN North-Sea 29 21 Sensitivity: 0.58
Thames 18 32 Specificity: 0.64

5-NN North-Sea 24 26 Sensitivity: 0.48
Thames 29 21 Specificity: 0.42

Table 3.3: Confusion matrices including sensitivity and specificity for NSvTh classi-
fication using 1,3 and 5-NN selection (Rows - Query, Columns - Result), using peak
T value T = 0.10

3.2.2 WEKA Classification

Table 3.5 shows the classification results for Thames/North-Sea Herring stock sepa-

ration using WEKA classification suite for shapelet and CSS transformed data (bou,

bouG, evo, evoG). Whilst it can be seen that the overall best performing classifica-

tion algorithm was Random Forest at 68% when classifying univariate boundaries,

significance testing using N-way analysis of variance tests (ANOVAN [7]) showed
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T = 1.00 North
Sea Thames

1-NN North-Sea 21 29 Sensitivity: 0.42
Thames 16 34 Specificity: 0.68

3-NN North-Sea 25 25 Sensitivity: 0.50
Thames 19 31 Specificity: 0.62

5-NN North-Sea 25 25 Sensitivity: 0.50
Thames 25 25 Specificity: 0.50

Table 3.4: Confusion matrices including sensitivity and Specificity for NSvTh clas-
sification using 1,3 and 5-NN selection (Rows - Query, Columns - Result), with no
preindexing using global parameters (T = 1.00)

no marked difference between transform methods (Table 3.6). Tests do show, how-

ever, that algorithm selection is an important consideration in this task. Post-hoc

ANOVAN testing (Figure 3.4) shows that, whilst not significantly different to Näıve

Bayes, Random Forest is the best performing algorithm in these tests. It is inter-

esting to note that whilst shapelet methods have been shown to be a promising tool

[40], in this application they afford results for the most part lower than classification

of the unprocessed boundary (UV-B) using the same classification suite. However,

post-hoc tests show no significant difference between boundary transform methods

(Figure 3.5).

Results from the Fourier classification can be seen in Tables 3.7 and 3.8. For nor-

malised and non-normalised transforms, results appear to peak where the first twenty

Fourier harmonics were used for classification, at 73% on average across algorithms

when using non-normalised harmonics. For scale normalised harmonics, however,

classification using higher harmonic content gave a general improvement of results.

Variance tests show no significant difference either for classification algorithm (Ta-

ble 3.9) or for the majority of harmonic tests. Note that whilst the standard variance

testing shows significant difference between harmonic content results (in Table 3.9),



101

Classifier UV-B Shapelet bou bouG evo evoG
BN 58% 62% 49% 53% 56% 60%
NB 63% 65% 67% 64% 59% 55%

C4.5 56% 55% 59% 50% 52% 51%
RaF 68% 58% 63% 54% 61% 64%
RoF 61% 58% 52% 62% 64% 59%

Average 61% 60% 58% 57% 58% 58%
NN - DTW 65% N/A N/A N/A N/A N/A

Table 3.5: The LOOCV classification accuracies of a range of algorithms using Uni-
variate Boundary data (UV-B), Shapelet transformed data (Shapelet) and four CSS
maxima sets: sorted by point along boundary (bou); as bou but including global pa-
rameters (bouG); sorted by evolution magnitude (evo); as evo but including global
parameters (evoG).

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 291.53 4.00 72.88 3.54 0.02
transform 64.00 5.00 12.80 0.62 0.68

Error 411.67 50.00 20.58
Total 767.20 29.00

Table 3.6: Results of N-way analysis of variance (ANOVAN) of algorithm and trans-
form selection results.

Figure 3.4: Results of post-hoc ANOVAN testing showing classification accuracies for
Herring stock separation given different classification algorithms.
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Figure 3.5: Results of post-hoc ANOVAN testing showing classification accuracies for
Herring stock separation given different boundary transform methods.

post-hoc testing (Figure 3.6) shows no significant difference between results other

than those for 30 harmonics.

Classifier Harmonic Content
5H 10H 20H 30H 50H 100H

BN 69% 74% 73% 61% 71% 67%
NB 72% 67% 73% 51% 68% 68%

C4.5 56% 69% 72% 64% 66% 72%
RaF 76% 68% 76% 53% 69% 70%
RoF 68% 68% 72% 60% 60% 62%

Average 66% 69% 73% 58% 67% 68%

Table 3.7: Table showing accuracy of size sensitive harmonic classification. Columns
represent harmonic content from 5 harmonics (5H) up to 100 harmonics (100H)

When tested alongside the previously shown methods, classification using the first

twenty Fourier harmonics (non-normalised) does show as a significant improvement

on all other boundary transform methods. shown in Table 3.10 and in post-hoc tests
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Classifier Harmonic Content
5H 10H 20H 30H 50H 100H

BN 45% 52% 44% 67% 63% 71%
NB 56% 52% 62% 50% 62% 69%

C4.5 57% 53% 60% 59% 58% 65%
RaF 59% 55% 57% 49% 62% 60%
RoF 64% 57% 56% 50% 49% 52%

Average 56% 54% 56% 55% 59% 63%

Table 3.8: Table showing results of size invariant harmonic classification. Columns
represent harmonic content from 5 harmonics (5H) up to 100 harmonics (100H)

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 70.00 4.00 17.75 0.80 0.54

content 649.37 5.00 129.87 5.83 0.00
Error 445.80 20 22.29
Total 1166.17 29.00

Table 3.9: Results of N-way analysis of variance (ANOVAN) of algorithm and size
invariant harmonic classification results.

Figure 3.6: Results of post-hoc ANOVAN testing showing classification accuracies for
Herring stock separation given different amounts of harmonic content.
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(Figure 3.7). As when performing variance tests for univariate boundaries, shapelets

and CSS results alone (Table 3.6), the Random Forest algorithm performs best in

tests, although again indistinct from Näıve Bayes results.

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 272.40 4.00 68.10 3.70 0.02
transform 977.54 6.00 162.92 8.85 0.00

Error 441.60 24 18.40
Total 1691.54 34.00

Table 3.10: Results of N-way analysis of variance (ANOVAN) of algorithm and bound-
ary transform method (including twenty non-normalised Fourier harmonics).

Figure 3.7: Results of post-hoc ANOVAN testing showing classification accuracies for
Herring stock separation given different transform methods (including twenty non-
normalised Fourier harmonics).

Confusion matrices for WEKA classification using all six transformed sets can be

seen in table 3.11. Shapelet and Fourier methods appear generally more sensitive
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to North-sea samples when using the classification suite. Classification of CSS max-

ima using Bayesian algorithms show more sensitivity to Thames than to North-sea

samples, as when using CSSs own matching methods (Tables 3.3 and 3.4). How-

ever when CSS maxima are classified using decision tree methods (C4.5/Random

Forest/Rotation Forest) classifiers are more sensitive to North-Sea samples.

3.3 Discussion

Curvature scale space, paired with the CSS matching algorithm, appears to work well

for the SHAPE dataset, where (in our view) inter-class differences are significantly

different. However, when the method was used for stock separation of the Herring

dataset the results returned were not outstanding. Results of classification of CSS

maxima using traditional classification algorithms show similar results. However in

contrast with the CSS own matching algorithm, the addition of global metrics show

no real impact on results when using the classification suite.

Whilst our shapelet implementation performed slightly better on average, results

were not significant for this task. Some improvement may be possible with a larger

dataset as the additional cross validation performed in order to extract shapelets

may have impacted the classification accuracy. However the results returned by our

study indicate that there are no areas of the boundary (within the size limits we have

imposed on our shapelet extraction) that are indicative of boundary class.

Fourier methods return classification accuracies comparable to our CSS/shapelet

results when using size invariant harmonics; it is interesting to note however that size

sensitive harmonics return significantly increased classification results. It could be

hypothesised that as all otoliths were imaged under the same magnification at the
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same distance from the imaging lens (ignoring minor focus adjustments), size may be

a useful discriminatory factor when separating herring for the sampled stocks.

Average Fourier results show little increase in classification accuracy when includ-

ing higher frequency size-sensitive harmonic content, and for some classifiers shows

reductions with higher content. When using size-invariant harmonics for classification

the addition of higher frequency harmonics does marginally increase accuracy but is

unable to compete with size sensitive methods. Given the increased results when

global metrics are included in the CSS method, this suggests that gross boundary

shape or otolith size may be more discriminatory than boundary complexity with re-

gards to herring otoliths. We investigate the viability of gross shape and scale metrics

as discriminatory factors in further chapters in this thesis.

Our results compare reasonably with previous studies of stock discrimination using

otoliths. Studies of dolphinfish otoliths [31] using Fourier descriptors of the boundary

show results in the region 57-70% which is comparable to each of our implementa-

tions. Campana and Casselman [24] produce results of 67% using otolith boundary

alone which is comparable to our Fourier implementation which also uses boundary

alone, however other results in the same study fall far below those discussed in this

work. Results from mackerel classification [30] show 80-86% accuracy which is sig-

nificantly above our implementations; However the same study reported application

study results (rather than feasibility results) nearer to our results (71.5-77.5%).

Likewise results from tests on the SHAPE database compare well with previous

work [1, 49]. Whilst our results have shown a moderate (15%) improvement on those

results it should be noted that we have excluded several classes from our SHAPE set,

and some previous results are given with restricted sets themselves.
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It is as yet unclear whether the poor performance of CSS/shapelet methods for

intra-species distinction is a general issue, or restricted to this one species. Previous

studies [30, 31] show that similar classification techniques used on different species

can have significantly different accuracies. Further work in this thesis looks at clas-

sification of different species of fish as well as different Herring stocks to determine

whether the issue is restricted to our classification specifically.

3.3.1 Summary

The study presented in this chapter shows that neither computer vision shape encod-

ing (CSS) nor time-series shapelets, methods that have proven successful for object

classification in other fields, offer any great advantage over methods that are already

widely used in the otolith shape industry (Objective 1).

We do find, however, that Fourier harmonics that have not been scale-normalised

perform considerably better than when scale normalised, suggesting that scale infor-

mation, when retained, may increase accuracies of stock classification systems (Ob-

jective 2).



Chapter 4

Viability Of Transform Methods
Over Discrete Age Categories

Chapter 4 presents a study concerning the viability of stock-separation of highly

mobile Clupeids (sprat Sprattus sprattus and herring Clupea harengus) using otolith

morphometrics. The aim of this study was not focused on overall classification ac-

curacy, but to determine whether otolith age determines which class of transform

methods have most potential for classification (Objective 2). This study also furthers

research from the previous chapter, aiming to determine whether choice of learning

algorithm impacts classification accuracies (Objective 4).

Analysis focuses on three 2-class stock discrimination problems (Chapter 1, Sec-

tion 1.7) with the aim of reassigning individuals to source populations: Herring 1b,

separated into North-Sea/Thames stocks; Herring 2, separated into Celtic/Irish-Sea

stocks; Sprat, separated into North-Sea/English Channel stocks. Not all samples de-

scribed in Chapter 1 were used in this study, however, the numbers of samples of

each age and class can be seen in Table 4.1. As in the previous chapter, experiments

are undertaken using MATLAB and employing learning algorithms from the WEKA

machine learning suite.

109
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Previous work suggests that the retention of scale information during Fourier trans-

formation may increase classification accuracies. We therefore compare the viability

of morphometric methods that include, and those that exclude, size information as

representations of the otolith. To do this we use three methods of otolith boundary

representation (or ‘data transforms’): Elliptical Fourier Descriptors; Curvature Scale

Space; and basic Shape Indices.

Burke et al. [22] reports accuracies for classification of herring stocks significantly

higher that our previous accuracies of the same species in Chapter 3. The dataset

used by Burke et al. [22] was obtained for use in this study. It was noted that the set

used in that study contained only age-0 and age-1 samples; whereas our previously

used set was comprised of samples aged 2+. Additionally, previous studies [11, 35]

have reported accuracies which fluctuate depending on age composition of tests. We

therefore also assess whether otolith age may affect classification accuracies by sepa-

rating datasets into single age subsets.

Within this framework 14 feature sets derived using the three ‘static’ transfor-

mations and encoding combinations of size and shape are explored. By applying 9

state-of-the-art learning algorithms, each fully cross validated, we assessed how each

system generalises to age-independent data sets, performing 1260 cross-validated ex-

periments on the sets. Each dataset was partitioned by age using expert reader

ground-truths, which were provided by Cefas for two of the datasets, and by the

Galway-Mayo Institute of Technology (GMIT). To assess the saliency of size/shape

features within each of the age partitions, half of the feature sets include size indices,

the remainder encode only shape.
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We find that for juveniles, feature sets that encode only shape perform well, but

those that retain size indices return higher classification accuracies. However as fish

approach maturity, transforms that exclude size indices appear more robust to ageing.

This study suggests that methods of stock discrimination based on early incremental

growth are likely to be effective, and that automated classification techniques will

show little benefit in supplementing early growth information with shape indices

derived from mature outlines.

4.1 Materials and Methods

This section details the datasets used for the study presented in this chapter, and

how the datasets were divided into single age subsets (Section 4.1.1). Section 4.1.2

describes the boundary transform methods used and clarifies why they have been

selected for this investigation, and gives specific details of the three boundary trans-

form methods used, with generic methods previously described in Chapter 2, Sec-

tions 2.2, 2.3 and 2.5. Section 4.1.3 lists the learning algorithms used to construct

classifiers using transformed data, selected from the WEKA machine learning suite.

Finally Section 4.1.4 gives details of how the results were statistically tested to deter-

mine which factors (age, boundary transform method or learning algorithm) impact

classification accuracies.

4.1.1 Datasets

For this study three pre-existing Clupeid datasets were used; each set containing

samples of multiple ages. The North-Sea/Thames herring set collected during the

ICES 2008/2009 survey, part of which was used in the previous chapter (3), contained

otoliths from herring aged 0 and up. Using age data provided by expert readers at

Cefas the set was subdivided into single age subsets. After division the sets deemed
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of suitable size for classification studies we ages 2, 3, 4 and 5; each holding eleven or

more samples per class.

Cefas supplied a further set for this study; sprat samples from the ICES 2013/2014

study in the North-sea and Western (English) channel. Details of the sample collection

are described in the ICES report and not repeated here; however, North-Sea/Western

channel division was carried out by Cefas expert readers before imaging, and the class

details supplied with the set. Imaging of the dataset was carried out using the same

equipment and under the same conditions as the previous herring set detailed in

chapter 3. After division into single age subsets the subsets deemed usable were

those for ages 0, 1, 2, and 3.

The Galway Marine institute supplied the final image set for this study; a portion

of the dataset used for a previous study [22]. The set comprises age-0 and age-1

samples of Celtic-Sea and Irish-Sea Atlantic herring. Samples were collected in the

Irish-Sea in 2006 using mid-water trawls as part of an AFBI (Agri-Food Biosciences

Institute) acoustic survey. The collection was carried out in eight areas, four both to

east and west of the Isle of Man. Images were captured at 20x magnification using

transmitted light. Expert classification was carried out using otolith microstructure

analysis for both age and stock, and class details were supplied for this study in

addition to sample images. Both age-0 and age-1 sets were deemed to be of suitable

size for use in this study.

Partitioned Image Sets

Table 4.1 shows the details of the sets used in the study and the number of instances

per class of each set. After divisions we have concurrent single age datasets in the

age-range 0 to 5 years with two sets for ages 0 through 3. Each age set is given a tag
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that is both descriptive of the original set of which it is a subdivision, and the age

of that subdivision, so that it can be referred to in this chapter. The number refers

to the age of the set (in years) and the preceding letters pertain to the dataset from

which the subdivision originates: ‘BB’ for Celtic/Irish Sea Herring originally used

in research by Burke et al. [22], ‘S’ for North-Sea/English Channel Sprat collected

during the 2013/14 ICES surveys [41, 42], and ‘H’ for North-Sea/Thames Herring

collected during during the 2008/09 ICES survey and previously used in Chapter 3.

4.1.2 Transform Selection and Methods

Three ‘static’ or ‘non-data-adaptive’ [8] transformation methods previously used for

otolith shape analysis were selected: Elliptical Fourier transforms, Curvature Scale-

Space transforms, and Shape Parameter transforms. By ‘static’ we mean that the

transformed version of each boundary is dependent only on that instance of transfor-

mation, and not on other samples in the dataset. For example, Principle Component

analysis (PCA [77]) and the more recent Shapelet transform [54, 99] (used in the

previous chapter) both rely on knowledge of other samples and their classes in order

to set parameters by which to transform each individual instance, and are therefore

‘data-adaptive’ or ‘non-static’.

In machine learning parameter calculations should be performed using a separate

training set [6, 26]. Failure to use separate training sets risks building a model

that only represents the training set itself, rather than building a generic model, a

phenomenon known as ‘over fitting’. For example; when constructing a model using

PCA, the principle components should be calculated using a single set of data; the

model is then built using a second set (using the calculated components) and model

testing is carried out using a third set; all of which must be cross validated.
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By using only static transform methods, we avoid the need to calculate how param-

eters should be set. This is an important factor in our study since our age partitioned

datasets are small. Further division required during validation of non-static methods

results in smaller sets with which to build models, and would therefore further reduce

robustness of classifiers.

The application of individual transform methods to the data creates multiple

‘train/test’ sets which are used to build classifiers using a selection of learning al-

gorithms. In total 140 train/test sets were created using these methods. This con-

stitutes fourteen sets for each of the ten single-age ‘age-sets’. Half of the train/test

sets hold size or size and shape data (size-inclusive sets); the remaining half contain

only shape data (size-exclusive sets); these sets are described in the remainder of this

section.

Figure 4.1 shows a graphical representation of data-flow through the transform

and classification system. This shows the flow from each dataset (image-set sources),

through boundary transformation, model construction and testing.

Curvature Scale Space

For the purpose of this study we use the built-in-house CSS transform system used in

previous work (Chapter 3). Boundaries are first sub-sampled to five-hundred points

and transformed by the system using methods described previously to produce the

maxima coordinate-pairs (distance along boundary, evolution magnitude) which are

fully invariant to scale (size-exclusive). We construct four datasets from the resulting

transformed boundaries using only the largest seventeen (by evolution magnitude)

maxima. As learning algorithms used in this study require an equal number of indices

per instance we only use the minimum number of CSS maxima (17) held by any
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Figure 4.1: Experimental data flow through, from normalised otolith outlines
(datasets) to classification results. Each age-set was transformed using each trans-
form method to create individual train/test sets for each age-set (140 in total). Each
train/test was used in turn with each of the algorithms to build and test classifiers
using leave one out cross validation (LOOCV).

transformed boundaries in that image-set. The methods of ordering the data in the

train/test sets are given below and an example of this ordering is seen in Figure 4.2,

shown again here for clarity:
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• bou → CSS maxima co-ordinate pairs; ordered according to point along the

boundary. (see Table 4.2)

• evo → CSS maxima co-ordinate pairs; ordered according to evolution magni-

tude.

• bouG/evoG → As bou/evo; prepended by shape metrics (Circularity, Eccen-

tricity and AspectRatio).

Set of maxima coordinates

(27,81), (57,271), (108,58), (169,139),
(218,121), (265,74), (323,68), (340,125),

(365,89), (401,159), (447,113)
(89,93)

method: bou
27, 81, 57, 271, 108, 58, 169, 139 ...

method: evo
57, 271, 401, 159, 169, 139, 340, 125...

Figure 4.2: Left: Image showing the CSS feature points extracted; marked as point
along boundary, and annotated with evolution (curvature) magnitude. Right: The
CSS feature pairs (point along boundary, evolution magnitude) for the boundary
(top), and the ordering of the pairs using boundary order, and evolution magnitude
order methods (bottom). Only the ten points with largest evolution magnitude are
shown in this example.

Elliptical Fourier Descriptors (EFDs)

Elliptical Fourier descriptors are commonly used for class-separation according to

otolith boundary and many studies use this method for stock discrimination. Burke

et al. [22] successfully discriminate two populations of herring using selected elliptical

Fourier coefficients. However, in contrast to Burke et al. [22] we do not perform any

statistical selection of harmonics/coefficients prior to training classifiers.
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To transform the boundaries we use the same implementation used in previous

work (Chapter 3) to generate fifty harmonics for each boundary. As before bound-

aries must be normalised first by rotation and translation to avoid building models

with orientation and location. As boundaries are pre-normalised for rotation at the

extraction phase we need only remove the DC components (to normalise for trans-

lation) and normalise coefficients for scale. We record the transformed boundaries

both before and after scale-normalisation so that we can assess both size-variant and

size-invariant harmonics. We use the generated harmonics to construct six train/test

sets (per age-set) for classification, denoted as:

• Fou10 → First ten Fourier Harmonics, non-normalised for scale (size-inclusive)

ordered H1C4, H2C1, H2C2, H2C3..., H10C4 where H = Harmonic; C = Coeffi-

cient.

• Fou20/Fou50 → First twenty/fifty non-normalised Harmonics (size-inclusive).

• Fou10n/Fou20n/Fou50n → First ten/twenty/fifty Fourier harmonics; ordered

as above but normalised for scale (size-exclusive).

Shape Parameter Transformation (SPa)

Each age-set was transformed using simple shape/size measurements of the boundary

and its enclosed region (SPa transform). The majority of this study is conducted

using MATLAB and so we use the built-in region properties function (‘regionprops’)

to generate the transformed ‘image’ from the otolith mask (the ‘filled’ boundary). We

discard any variables generated by the regionprops method not mentioned below, as

they are either unusable for classification or hold redundant data.

The transformed boundaries have the following metrics: Perimeter Length; Area

(of the enclosed region, inclusive of boundary pixels); Convex Area (the area of the
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convex hull); Solidity (Area/Convex Area); Height (of the calculated bounding box);

Width (of the calculated bounding box); Extent (Area/(Height*Width)); Major Axis

Length; Minor Axis Length; Eccentricity; Equivalent Diameter (of a circle with the

same area).

We create four train/test sets (per age set) using the transformed series; Each set

contains size information for the boundaries (size-inclusive) and are denoted:

• Box → Sub-selection of the SPa transform; keeping only Height and Width .

• Axes→ Sub-selection of the SPa transform; keeping only Major Axis Length/Minor

Axis Length.

• STAT → Full Statistic block: Perimeter, Area, ConvexArea, Solidity, Height,

Width, Extent, MajorAxisLength, MinorAxisLength, Eccentricity, EquivDiam-

eter.

• STAT+ → As STAT but appended with the aspect ratio of the CSS image.

4.1.3 Learning Algorithms

The Train/test sets were used to build and test classifiers using a number of available

algorithms to compare and assess the transformation methods. Whilst Curvature

Scale Space has a unique matching algorithm we proceeded to classify CSS trans-

formed otoliths using the same algorithms as for the other train/test sets (created

using EFDs/SPa) so that we directly compared transform methods and not the as-

sociated matching algorithm. The parameters: Circularity, Eccentricity and Aspect-

Ratio, which would be used for pre-indexing were we classifying using CSSs own

matching algorithm [1] are instead added to two CSS train/test sets.
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The train/test sets are used to train classifiers using algorithms selected from

WEKA [38] and implemented using MATLAB’s java interface. We build 1,260 classi-

fiers using each of the 140 datasets described in conjunction with each of the following

nine learning algorithms (using each algorithms default settings), the classifiers used

for this process (and annotation) are:

• NB → Näıve Bayes

• BN → Bayesian Networks

• Log → Logistic

• HP → HyperPipes

• J48 → J48/C4.5

• RaF → Random Forest

• IBk → k-Nearest Neighbours

• SMO → Support Vector machine

• RoF → Rotation Forest

4.1.4 Statistical Testing

To test whether otolith age, or retaining size information during transformation re-

turns distinct results, we performed statistical testing on our results using two meth-

ods.

Mann-Whitney U-tests were performed for results for each age-set (p>0.05). Size-

inclusive transform results are assigned to one group, and size-exclusive results to the

other group. Tests that reject the null hypothesis show significant difference between

size-inclusive and size-exclusive methods for that age-set.
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N-way analysis of variance tests (ANOVAN [7]) are performed to determine which

factors (learning algorithm, otolith age, boundary transformation) significantly im-

pact classification accuracies. Graphical representations of ANOVAN results are

shown using associated post-hoc testing.

4.2 Results

This section shows results of tests for the 1,260 classifiers constructed using combi-

nations of different otolith age-sets, boundary transform methods and learning algo-

rithms. Further Subsections 4.2.1–4.2.3 show results of further testing and post-hoc

testing, partitioned by factor: Relative performance of learning algorithms is shown

in Section 4.2.1; Impact of retention of scale information and interaction with sam-

ple age is addressed in Section 4.2.2; Otolith age effects, including partitioning by

dataset, are shown in Section 4.2.3.

Whilst the large number of classifiers built for this study preclude the full results

being shown here, full results are presented in Appendix A. Results from all tests were

combined and subjected to variance testing, results of which can be seen in Table 4.2,

which is discussed further in Subsections 4.2.1–4.2.3.

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 1910.30 8.00 238.80 1.58 0.13
transform 12765.0 13.00 982.00 6.50 0.00

age 149843.40 5.00 29968.70 198.27 0.00
Error 186371.70 1233.00 151.20
Total 350891.20 31258.00

Table 4.2: Results of N-way analysis of variance (ANOVAN) of all results across:
learning algorithm, boundary transform method, and otolith age.
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4.2.1 Relative Performance of Learning Algorithms

When comparing learning algorithms across ages, no recognisable patterns were found,

and results of variance testing (Table 4.2) show only minor statistical difference

between learning algorithms used for modelling the data using any of our age-sets

(p = 0.13). Figure 4.3 shows post-hoc testing for the learning algorithms across all

age categories, and the average result (across learning algorithms) for classification

of each train/test set is shown in Table 4.4. Variance testing including interaction

tests shows no interaction between algorithm selection and either transform method

(p = 0.96), or sample age (p = 0.32).

Figure 4.3: Results of post-hoc ANOVAN testing showing stock separation given
different learning algorithms.

Whilst there were statistical differences between learning algorithms when com-

paring across single ages, no obvious choice of algorithm emerges. Figure 4.4 shows
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the average rank of algorithms across results separated by age. The best performing

algorithm by each individual age set can be seen in Table 4.3.

Figure 4.4: Showing average rank of learning algorithms for each age category.

4.2.2 Size-inclusive Vs Size-exclusive Transforms

Table 4.2 shows that different boundary transform methods produce classifiers which

return significantly different stock separation accuracies (p = 0.00). Further vari-

ance testing of results shows that groupings of size-inclusive and size-exclusive trans-

form results are also statistically distinct across all age categories (p = 0.00). The

mean result (across learning algorithms) for each train/test set is shown in Table 4.4.

Check-marks in Table 4.4 show age-sets that reject the null hypothesis (p>0.05)
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Celtic/Irish Sea herring North-Sea/Channel sprat North-Sea/Thames herring
A

ge

0 RoF BN
1 N/A SMO
2 IBk N/A
3 SMO N/A
4 HP
5 N/A

Table 4.3: Peak performing learning algorithms for each age set. N/A denotes times
where no algorithms performs (statistically) better than others.

during Mann-Whitney U Tests, and therefore show significant difference between

size-inclusive and size-exclusive transform results when grouped by age. These sets

are plotted in Figures 4.6 and 4.7 using solid markers; whilst those that accept the

null hypothesis (that results between groups are indistinct) are shown using ‘hollow’

markers (both at p>0.05).

N-way analysis of variance including interaction tests between factors, shows strong

interaction between grouped (size inclusive/exclusive) transform methods and sample

age (p = 0.00). Results of post-hoc testing can be seen in Figure 4.5 (modified for

clarity) where it can be seen that as age increases, the relative positions of size-

inclusive and size-exclusive transforms reverse.

Figure 4.6 shows the average rank of size-inclusive and size-exclusive methods by

age, separated for each of the single-age image sets. As with post-hoc ANOVAN

testing, size-inclusive transform methods produce significantly better results than

size-exclusive for the younger age-sets. Again, as the age of the samples increases

the average rank of size-inclusive transforms increases while the rank of exclusive

methods decreases; this proceeds until exclusive (shape only) methods perform better

on average (have lower ranks) than size-inclusive methods.
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Age-Set
BB0 BB1 S0 S1 S2 S3 H2 H3 H4 H5

bou 64.3 46.2 56.9 57.3 49.5 47.9 49.0 49.0 54.2 54.4
bouG 83.8 47.0 55.1 64.0 47.5 50.9 46.5 47.5 52.4 54.1

evo 68.8 56.4 64.4 64.2 50.0 53.0 52.5 52.3 46.6 54.1
evoG 83.3 57.3 65.0 68.0 46.0 50.9 52.0 54.5 47.9 52.2

fou10 97.4 70.1 66.3 83.3 48.5 64.1 53.5 47.9 52.9 52.6
fou20 96.7 66.2 69.7 79.1 44.9 59.0 52.0 42.8 45.0 50.0
fou50 81.9 61.1 61.7 76.7 34.8 53.4 50.5 45.5 43.9 52.6
fou10n 81.8 53.4 63.1 74.4 42.4 64.1 47.0 48.4 49.2 57.0
fou20n 82.2 50.0 61.7 69.6 37.4 71.8 48.0 46.9 51.6 53.7
fou50n 81.5 54.7 60.1 68.0 47.5 63.2 42.9 49.0 54.2 53.3

Box 98.5 79.5 65.0 85.8 56.6 46.2 46.0 45.7 47.6 45.9
Axes 99.4 79.5 66.8 83.6 52.5 46.2 52.5 51.0 50.8 42.2

STAT 98.8 77.4 65.1 83.6 57.6 43.6 43.4 47.5 53.2 47.8
STAT+ 98.8 76.5 68.8 84.0 57.1 46.2 44.4 51.4 51.1 48.5

U-test (5%) X X X X X

Table 4.4: Table showing average classification results (averaged over algorithms) for
each train/test set. Check-marks show age-sets where size-inclusive and size-exclusive
methods were distinct from one another using U-tests (p>0.05). Transforms shown
in bold are size-inclusive

However, whilst at age-5 size-exclusive methods perform better than size-inclusive

ones, the results for size inclusive/exclusive methods are not significantly different,

which is supported by the post-hoc testing in Figure 4.5, where inclusive/exclusive

accuracies overlap. Figure 4.7 shows average classification accuracy by age for each

of the image sets. Whilst at higher ages size-exclusive methods do appear to perform

better (than size-inclusive methods) during ranking, the results are not as significant

as those for younger image sets and perform only marginally better than random

assignment of class.

4.2.3 Relative Performance by Otolith Age

Table 4.2 shows statistically different classification accuracies according to sample age

(p = 0.00). Figure 4.8 illustrates post-hoc ANOVAN testing by age. It shows that
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Figure 4.5: Results of post-hoc ANOVAN testing showing interaction between sample
age and transform grouping (size-inclusive/exclusive). Modified/coloured for clarity,
size-inclusive results (red), size-exclusive (blue).

classification of younger otoliths (ages 0/1) returns results statistically distinct from

each other and from results using older samples (age 2+). Results of age 2+ test are

indistinct (from each other).

Variance testing of results for individual datasets (BB, S and H ) showed statistical

difference between results for different sample ages for both BB, and S, where all ages

produce significantly different results. However, results for separate ages of the H

dataset are indistinct from one-another. It is clear from these tests that results for

younger samples are significantly better regardless of the dataset tested.

4.3 Discussion

Our results show significant differences between size-inclusive and size-exclusive trans-

form methods depending on the age-category of otoliths modelled, showing that type

of transform must be considered when modelling otolith boundaries. We also show
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Figure 4.6: Average rank of size-inclusive and size-exclusive transform methods for
each age-set. Tests where size-inclusive/exclusive results are statistically different
(5%) are shown using solid markers.

that the age of the sample otoliths impacts results when single-age sets are used

to construct and test classifiers regardless of the classification methods used in this

study. Analysis of our learning algorithms was limited given the difference in sizes

of our age-sets; however we demonstrate that no general difference exists between al-

gorithms for these particular problem sets. Further analysis using consistent dataset

sizes may yield better results in this area.

Results for the age-0 and age-1 sets show a significant difference between size-

inclusive and size-exclusive transformation methods. Specifically, size based methods

achieve up to 100% accuracy for age-0 herring (using individual classification algo-

rithms), and average as high as 98.8% across all learning algorithms for size-inclusive

transform methods. These results are far better than for size-exclusive transforms
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Figure 4.7: Average classification result of size-inclusive and size-exclusive transform
methods for each age-set. Tests where size-inclusive/exclusive results are statistically
different (5%) are shown using solid markers.

of the same sets which achieve up to 83.3%. This disparity in results between size-

inclusive and size-exclusive methods can be seen across all age-0 and age-1 sets;

indicating that for younger samples, size is perhaps a more useful metric for stock

discrimination.

The use of size may be an obvious method when distinguishing between stocks

that spawn at different times of the year, where we expect age-specific inter-class

sizes. However, even when metrics recorded using the SPa transform method were

normalised (by otolith length), we achieve similar result patterns and accuracies. For

the Burke et al. [22] sets, the larger (otoliths) of the two classes (Celtic-Sea herring)

are from fish that spawn later in the year than the smaller class (Irish-Sea) but

have a much faster initial growth rate. Further investigation is therefore required to
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Figure 4.8: Results of post-hoc ANOVAN testing showing sample age impact on
classification accuracies.

determine the age at which size-inclusive methods become incapable of separating

spawning components for this particular discrimination problem.

Whilst for age-0 and age-1 sets we return favourable results, both in terms of

classification accuracy and disparity between inclusive/exclusive methods; we find

that as sets increase in age, classification accuracies reduce, becoming comparable

to random assignment of class. However for the eldest of our age categories, size-

inclusive and size-exclusive transform methods do perform differently (rejecting the

Mann-Whitney U-test at p<0.05). Shape may therefore be the primary factor to

consider for stock classification using otolith outlines for older fish. However more

testing needs to be done in this area as once partitioned by age the datasets used

in our study were of small size and inconsistent in number across ages-categories.

Testing using larger sets may not show such a large drop in classification accuracies,
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and may clearly credit or discredit the change from size-inclusive to size-exclusive

methods, both for the stocks studied here, and for additional stocks and/or species.

In machine learning, parameter calculations should be performed using a separate

training set [6, 26]. By using only static transform methods in this study, the need

to calculate parameters was avoided. This was an important consideration as our age

partitioned datasets are small. Further division required during validation of non-

static methods would result in smaller sets with which to build and test classifiers,

thus reducing robustness.

Results achieved using EFDs for the age-0 partition of the Irish/Celtic Sea herring

set [22] did not match their published figure of 97%. However we feel that this is

largely down to two factors. First we used only a portion of the original dataset,

and we split the portion further into two single age-sets; whereas the results reported

by Burke et al. [22] were based on the larger age-0 set, boosted by age-0 ring traces

from the age-1 specimens. Second we remove test instances from the set prior to

parameter selection (regression analysis) and to building classifiers; whilst the original

work performs parameter selection on the full set (including test samples). The

validation in this work therefore reduces accuracy, but goes some distance to reduce

over fitting the classifiers to the training set, and would produce classifiers that are

more reliable when classifying further otolith samples. Our results are consistent with

those in the previous work however, showing that it is certainly possible to separate

stocks of juvenile herring using Fourier analysis.

When compared with previous classifications of the same dataset [61] Curvature

scale space methods performed to a similar degree when separated into single-age ex-

periments. However the otolith sets used in each of our experiments each represented
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a fraction of the sets used in previous work with no significant change in accuracy.

Further experiments using larger training sets may yield increased classification ac-

curacies, and may show curvature transform methods to be an important tool when

classifying datasets containing otoliths from older fish.

When comparing classification results for our younger otolith experiments we attain

accuracies in line with or higher than those in previous studies. Duarte-Neto et al. [31]

reports classification results of dolphinfish using analysis of Fourier harmonics in the

region 57-70% which is surpassed by our age 0-1 size-inclusive tests, while their lower

result limit (57%) is comparable to our size-exclusive tests of older samples (age 2+).

DeVries et al. [30] reports application accuracies of Atlantic mackerel classification at

71.5-77.5% which we match with our Fourier experiments. However the same report

also gives feasibility results up to 86%, a result that we surpass with size-inclusive

experiments using younger age-sets.

Results from the single age testing show a significant reduction in classification

accuracies as the age of otoliths used to build and test classifiers increases, regardless

of the methods used to transform the otolith data, indicating that otolith age may

inpact classification accuracies regardless of the methods used to encode their shape.

This suggestion is supported by statistical differences between age-1/2 and age-2+

tests, which are clearly visible in results and statistical testing regardless of the dataset

tested.

However, the class sizes of a number of age sets used in this study were relatively

small, and therefore classification accuracies may be impacted by insufficient training

set sizes. Further testing with larger datasets is required to establish whether either
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method is able to perform with adequate certainty to allow clear stock discrimination

in older fish, or whether clear results are the reserve of younger otoliths.

Whilst most of our results appear to be correlated with tests on other sets; our

age-0 sprat tests return much lower classification accuracies. This is despite the set

being the same size as BB0 (40 instances per class). This may be due to one class

of the set being comprised of age-0 ring traces from age-1 samples, in the absence of

available age-0 samples for that class.

The drop in accuracies may be down to several reasons in this instance: poor

accuracy of outlining; or visible rings being inconsistent or uncorrelated with age-0

growth. Furthermore, age-0 ring extraction has yet to be validated for this species

[95]. Further studies on the impact of outlining methods are presented in Chapter 5

of this thesis.

4.3.1 Summary

We conclude that otolith age dictates which class of boundary transformation (includ-

ing/excluding scale information) can be used to construct accurate classifiers. Whilst

scale retaining methods show superior results for young (age 0/1) otolith samples,

scale invariant transform methods perform better for older samples (age 2-5). How-

ever, we find that whilst scale invariant date performs better at higher ages, results

are inferior to those obtained using younger samples (Objective 2).

As with Chapter 3, we find that curvature scale space methods offer no improvement

on Fourier techniques (Objective 1), even given additional choice learning algorithms

used to construct classifiers (Objective 4). However, we note that there was no
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noticeable drop in classification accuracies when the datasets used (as single age sets)

were considerably smaller than in previous study (Chapter 3).



Chapter 5

Susceptibility Of Fourier Based
Classification To Outlining
Methods

This chapter examines whether the method chosen for otolith boundary extraction

affects stock discrimination accuracies using elliptical Fourier based classification.

The work presented here focuses mainly on our third objective (Chapter 1, Section 1.2)

and also pertains to Objective 4, whether learning algorithm affects extraction method

choice. Boundaries extracted by two experts using two outlining methods were used

to construct classifiers then used to assign further samples to their source populations.

Previous studies have used variable methods of boundary determination prior to

Fourier based morphological classification. In the studies reported by Begg and Brown

[11] and Begg et al. [12] otoliths were outlined by hand and transformed using Fourier

methods before discriminant analysis was used to predict further samples, with classi-

fication accuracies in the range 56-81% dependent on whether single-age or multi-age

tasks were undertaken. Results from DeVries et al. [30] also fell firmly within this ac-

curacy range for Atlantic mackerel stock classification at 77.5% using elliptical Fourier

descriptors and discriminant analysis.

134
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Whilst the study by Burke et al. [22] reported accuracies far above this range at

97%, we were unable to replicate this result using similar methods described in the

Chapter 4, with results consistently falling into the range above (56-81%) when using

size normalised Fourier descriptors. However, Burke et al. [22] details hand-tracing of

annuli in their study, whilst in the study presented in Chapter 4 samples are outlined

automatically using thresholding methods.

Methods of automatically extracting the boundary from the digitized otolith have

also been used with varying success. Atlantic cod was successfully separated using

Fourier methods built on outlines automatically outlined using a threshold deter-

mined with analysis of the grey-scale histogram [25], reporting accuracies of 85-96%

dependent on age class. In Stransky [90] classification of redfish returned mixed

results, however accuracies for certain tasks were reported as high as 76% overall

accuracy. However these results were for regional separation, and in the same study

mixed accuracies were reported for stock separation, depending on the species being

analysed.

We therefore compare two methods of boundary extraction in this study: Outlines

derived by two expert readers, traced by hand; and outlines derived by intensity

thresholding the otolith image using two different approaches. As in the chapter 4 our

goal is not to achieve high classification rates, rather we assess how outlines created

using each method differ when used to construct and test classifiers. To this end

outlines from each method are transformed using elliptical Fourier methods creating a

set of harmonics for each of the outlining methods. As in previous work we construct

classifiers, each fully cross validated, using varying harmonic content and multiple

learning algorithms available within the WEKA machine learning suite, allowing us

to determine whether algorithm selection is dependent on outlining methods used.
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We find that classifiers constructed using otolith boundaries traced by hand marginally

outperform those that use boundaries extracted using thresholding methods, and that

classifiers may be constructed by one expert and used to test further outlined sam-

ples (outlined by the alternative expert) with a statistically insignificant decrease in

accuracy. The choice of learning algorithm used to construct classifiers is also an im-

portant consideration, with three algorithms performing well regardless of the outline

methods used. However we also note that algorithm selection may significantly differ

given additional classification tasks.

5.1 Materials and Methods

Whilst most outlining, transform and classification methods used in this chapter are

detailed in Chapter 2, details of how the methods were used with regards to the study

presented in this chapter are given here.

Two expert readers were employed to perform otolith outlining on a small image

set (described in Section 5.1.1) using two different methods: hand outlining; and

user defined thresholding. These methods are used to compile four sets of image

outlines: Two for expert outlines (one set per expert) and two thresholded out-

lines (High and Low thresholds). The specific methods for these are detailed in

Sections 5.1.2 and 5.1.3. With the respective sections also providing information on

how each of the outline sets are used to build and test classifiers.

The choice of harmonic content, and the learning algorithms used for building

and testing classifiers are discussed in Sections 5.1.4 and 5.1.5, followed by details of

statistical tests used to analyse the results of tests in Section 5.1.6
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It should be noted that when we refer to an ‘expert’ we refer to both the expert

user, and that user’s computing set-up. For example, both experts used the same

software to perform the tasks, however, expert-1 used high precision hardware for the

tasks (high precision mouse/mouse-mat etc.), whilst expert-2 used altogether more

standard equipment to perform outlining tasks.

5.1.1 Image Set

We perform tests on a subset of the previously used Irish/Celtic Sea herring set

(Chapter 4). The subset comprises ten Celtic-Sea otolith images, and ten Irish-Sea

images. All images were selected from the age-0 portion of the original dataset and

all images were chosen at random. The Irish and Celtic Sea selections can be seen in

Figure 5.1 (Irish) and Figure 5.2 (Celtic).

Figure 5.1: Irish-Sea herring otoliths used for the study.

5.1.2 Hand Outlining

Each expert used the hand outlining procedure described in Chapter 2 Section 2.1 to

segment each otolith image four times. Each expert’s hand-drawn outlines are then

used to construct a mean outline for each otolith in the database, resulting in two

mean outlines for each image: an outline for expert-1 and an outline for expert-2.
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Figure 5.2: Celtic-Sea herring otoliths used for the study.

However, as the hand-drawn boundaries may be variable in length, and as coordinate

extraction may not begin at the exact same point each time, a simple point-by-point

average of pixels is not possible.

Each boundary outline traced by the expert is recorded as a binary image, the same

height/width as the original otolith images. The pixels selected as otolith boundary

during the hand tracing are set at value one, and background pixels set as zero.

Figure 5.3-left shows a binary image for a simple example, for clarity the boundary

drawn is shown as black.

For each of the four images we first invert the values (boundary becomes zero,

background becomes one) then set each pixel value to its Euclidean distance to the

nearest boundary pixel in the image (now zeros). Figure 5.3-center shows the result

of this step for the simple example. The pixels at which a boundary point is present

have distance zero, those orthogonally adjacent to a boundary point have a distance

of one pixel etc. Pixels that fall within the boundary then have their sign inverted, so

that those pixels have a negative distance, and those on the outside remain positive

distance, seen on the right in Figure 5.3.
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Figure 5.3: Simple example of boundary trace recording. Points set as boundary by
the expert reader have value one in the left-hand image. The central image shows
the calculated Euclidean distance to the nearest point on the boundary. Right-hand
image shows the final distance image after sign inversion of encompassed pixels. All
values show to 1 dcp.

Once all four of an experts hand-drawn outlines have been used to create a dis-

tance image in this manner we create a mean distance image. The mean image is

the same height/width as the previous images and each pixel is set as the mean

of the corresponding pixel values in each of the four distance images. Figure 5.4

shows four different (synthetic) traces of the same simple boundary (left and center

columns). The top-right image shows the mean distance image calculated from the

four boundaries (to 1 dcp).

New mean otolith masks can be created by thresholding the mean distance images at

value zero. Any pixels with value less than or equal to zero are designated foreground

(white in Figure 5.4) all other pixels are set as background. A mean boundary can

be extracted from the mask using methods previously discussed in Chapter 2. The

bottom right image in Figure 5.4 shows the resulting boundary (white) overlaying

the mean distance image. The boundary coordinates are recorded as discussed in

Chapter 2. The process is then repeated for the outlines from the second expert.
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Figure 5.4: Example of mean boundary calculation. Left and center columns show
distance images for four hand traced (synthesised) boundaries of a simple otolith
example (with traced boundaries shown in black). Top-right image shows mean values
for the four distance calculations and the resulting ‘mean mask’ shown in white. The
extracted boundary is shown in white in the bottom-right image. All values to 1
decimal place.

Expert Selection

To assess whether the expert that outlined the images impacts classification results

we construct classifiers using the Fourier harmonics of each expert, withholding each

instance in turn, then using the constructed classifier to predict the class of the with-

held instance (Leave one out cross validation). This returns two sets of classification

accuracies: one for classifiers built and tested using the mean boundaries of expert-

1 (E1vE1 ); and one set for those built and tested using expert-2 mean boundaries

(E2vE2 ).

During the procedure, each constructed classifiers is also used to predict the class of

the corresponding (withheld) otolith from the alternative expert’s mean boundaries.

By cross validating in this manner we ensure that the test instance is not included

in the training data, even when that otolith was outlined by another expert. This
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returns a further two sets of (cross-validated) accuracies: One for classifiers built

using expert-1 boundaries and tested with those of expert-2 (E1vE2 ); and one vice

versa (E2vE1). We therefore end with four sets of accuracies, each of which contain

accuracies of algorithm/harmonic content classification:

• E1vE1 → Cross validated accuracies for classifiers built using mean outlines of

expert-1 when classifying mean outlines of expert-1.

• E1vE2 → Cross validated accuracies for classifiers built using mean outlines of

expert-1 when classifying mean outlines of expert-2.

• E2vE1 → Cross validated accuracies for classifiers built using mean outlines of

expert-2 when classifying mean outlines of expert-1.

• E2vE2 → Cross validated accuracies for classifiers built using mean outlines of

expert-2 when classifying mean outlines of expert-2.

5.1.3 Thresholding

To outline the otoliths using thresholding, we use techniques similar to those described

in the methods chapter (Chapter 2, Section 2.1). Each otolith was shown to the

expert four times and the expert was asked to manually set an intensity threshold

that adequately segmented the image. Whilst no corrections of the segmentation

(by hand) were allowed, holes in the foreground were filled and background noise

was removed so that only one hole-free mask was constructed. The range of pixel

intensities in the grey-scale image to be thresholded was rescaled to range 0-100 for

these tests.

Otoliths in the dataset are imaged using transient light, therefore the otolith ap-

pears (generally) darker in colour than the background. Otoliths are segmented by
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determining pixels whose values fall below the threshold used. However, were images

to be captured using incidental light, the otolith would likely appear lighter than

the background, and segmentation would be performed by recording pixels which fall

above each threshold.

Inside-Out (Low) Thresholding

The first two times each image was shown to each expert, the initial threshold was

set at zero, so that no pixels in the image were shown as foreground (as no pixels have

lower value than zero). The expert was asked to iteratively increase the threshold by

one point at a time until the resulting mask and extracted boundary were deemed

sufficiently accurate. At this point the resulting otolith mask and threshold were

recorded, resulting in four otolith masks (two per expert) for the inside-out or Low

Thresholding.

Due to otolith segments being darker in general, this method ‘grows’ the segmen-

tation from within the otolith (as central pixels are darker than boundary pixels).

Hence we call this method inside-out thresholding.

Outside-In (High) Thresholding

The third and fourth time through the dataset, each image was shown using an initial

threshold of one-hundred, meaning that all pixels were set as foreground (as all pixels

have a value lower than one-hundred). Each expert was asked to iteratively reduce the

threshold by one point until the mask and boundary were sufficient, and the resulting

mask and threshold were recorded. This again creates four otolith masks (two per

expert) for the outside-in or High Thresholding. Due to otolith segments being darker

in general, this method appears to ‘shrink’ the segmentation from outside the otolith.
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Three example stages through the bottom-up method and two from the top-down

method can be seen in Figure 5.5. It can be seen from this example that the threshold

range deemed suitable for the shown otolith is 81-94. Thresholds below this range

return masks that do not fully cover the otolith; Thresholds above the range cover

the otolith but also classifies areas of the background as otolith.

Note that were the images captured while using incidental light, the otolith would

be lighter than the background and would be segmented by detecting pixels higher in

value than the threshold. Therefore the first method (where the threshold is gradually

raised) would result as outside-in thresholding, and gradually reducing the threshold

(second method) would result in inside-out thresholding.

Figure 5.5: Top row: Three stages during the bottom-up thresholding method. T =
60 and T = 70 return a mask that does not contain the full otolith and are rejected.
T = 97 also contains background pixels and is therefore rejected. T = 81 (during
bottom-up) and T = 94 (top-down) return masks deemed sufficient by the expert.

Once each expert has completed this process we have eight sets of otolith masks and

associated thresholds: Four high thresholded masks (two per expert), and four low

thresholded masks (two per expert). From these we construct two sets of boundaries,

a set using High-thresholds, and a Low-threshold set.
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To construct the High set we visit each image in the dataset in turn and keep

only the boundary constructed using the highest recorded acceptable threshold. The

boundary coordinates are then extracted and recorded as described (Chapter 2). For

the Low set we again visit each image in turn, keeping the boundary constructed

with the lowest recorded threshold. Table 5.1 shows a partial threshold table. Shown

are the eight segmentation thresholds deemed suitable by the experts as well as the

selected high and low thresholds used to construct the boundary sets.

Expert 1 Expert 2
High-1 High-2 Low-1 Low-2 High-1 High-2 Low-1 Low-2 High Low

Img-1 96 96 91 91 96 93 90 88 96 88
Img-2 94 94 81 81 94 94 81 79 94 79
Img-3 93 96 94 92 96 95 86 90 96 86
Img-4 92 92 86 86 92 92 85 85 92 85
Img-5 94 94 89 86 93 94 84 85 94 84

... ... ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ... ... ...
Img-20 91 91 70 71 89 91 70 71 91 70

Table 5.1: Showing partial table for the segmentation thresholds. Four thresholds
per expert are shown, two high and two low. High/Low columns show the selected
threshold for each of the shown images which are used to construct the high/low
boundary sets.

Threshold Selection

Threshold selection tests carried out to determine whether the thresholding method

used to determine otolith boundary impacts classification accuracies. Tests are carried

out in a similar manner to expert selection tests, however, rather than having two sets

of mean boundaries created from expert outlines, we test two outline sets constructed

using the peak High and Low thresholds determined by the experts.
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We construct and test classifiers using the high-threshold and low-threshold bound-

ary sets, withholding each instance in turn to form the test ‘set’. The constructed

classifier is then used to classify both the withheld instance, and the corresponding

instance from the set constructed using the other threshold method. Tests are carried

out using each combination of algorithm/harmonic content to determine whether the

method of threshold selection (top-down/bottom-up) shows any interaction there-

with. When including these classification methods we end with another four sets of

accuracies:

• HvH→ Cross validated accuracies for classifiers built and tested using outlines

determined with top-down (High) thresholding method.

• HvL→ Cross validated accuracies for classifiers built using outlines determined

with top-down thresholding method and tested using outlines from bottom-up

(Low) method.

• LvH→ Cross validated accuracies for classifiers built using outlines determined

with bottom-up thresholding method and tested using outlines from top-down

method.

• LvL → Cross validated accuracies for classifiers built and tested using outlines

determined with bottom-up thresholding method.

5.1.4 Fourier Transform

An in previous chapters we calculate the first fifty elliptical Fourier harmonics as

reconstructions of the boundary using this number of harmonics shown a mean pixel

distance between reconstructed and original boundaries less than one. It can be

clearly seen from Figures 5.2 and 5.1 that the two classes of otolith are significantly

different in scale.
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We therefore remove the scale component by size-normalising the extracted Fourier

harmonics using the scale normalisation methods described in Chapter 2. In addition

all otoliths are normalised for translation (by removing the Fourier DC components)

and are normalised for rotation by adjusting the image using the angle between the

horizontal axis and the major axis of the otolith (calculated using MATLAB region-

props function).

Harmonic Content

Chapter 3 found that when classifying herring otolith boundaries, best results were

obtained when using the first twenty elliptical Fourier harmonics. However, to assess

whether classification is dependent on harmonic content for different outlining meth-

ods, we conduct classification using differing harmonic content. For this study we

construct and test classifiers using the first 10, 20, 30, 40 and 50 Fourier harmonics.

5.1.5 Classification

As in Chapter 4 we perform multiple cross-validated classifications of the transformed

boundary sets to test whether algorithm selection, harmonic content or outlining

method has greatest impact on classification accuracies.

Algorithm Selection

Whilst the study conducted for Chapter 4 shows no overall difference between classifi-

cations using different learning algorithms, tests did show minor decrease in accuracy

when using increased harmonic content. We therefore again conduct tests using mul-

tiple classification algorithms to discern whether, for age-0 Celtic/Irish Sea herring,

choice of learning algorithm interacts with harmonic content. The algorithms used in

this study are as follows:
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• NB → Näıve Bayes

• BN → Bayesian Networks

• Log → Logistic

• HP → HyperPipes

• J48 → J48/C4.5

• RaF → Random Forest

• IBk → k-Nearest Neighbours

• SMO → Support Vector machine

When paired with harmonic content selection this produces forty classification re-

sults, one for each combination of harmonic content and classification algorithm. Each

of our eight experiments (four for expert selection and four for threshold) is carried

out using each of the forty combinations of algorithm and harmonic content.

5.1.6 Statistical Testing of Results

N-Way analysis of variance tests (ANOVAN) [7] are used to determine which factors

have a significant effect on classification accuracies. Our null Hypotheses are that

mean results are the same for each group selection for: algorithm selection; differing

harmonic content; training data outline method; and test data outline method.

We also test for interaction between selected groups to determine whether algorithm

selection, or harmonic content, differs in importance dependent on which outlining

methods are used for classifier construction/testing. Post-hoc testing of variance test

results are used to show (visually) differences between results.
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5.2 Results

The susceptibility to outlining methods results are shown in this section. Section 5.2.1

presents results of expert selection results, where otolith boundary contours were de-

termined by hand-tracing by expert readers (expert-1 and expert-2). Statistical tests

are performed on the results to determine whether the expert that traces the bound-

ary impact classification accuracies. Results for thresholding method tests can be

seen in Section 5.2.2, where we show classification accuracies obtained when otolith

boundaries are determined using the different thresholding methods described in Sec-

tion 5.1.3. Again, we perform analysis of variance tests on the results to determine

impact of thresholding methods on classification accuracies. Finally, Section 5.2.3

shows statistical testing of results to determine if overall outlining method (hand-

tracing or thresholding) impacts classification results.

5.2.1 Expert Selection Results

Full results of the expert selection tests are shown in Table 5.2.

Expert Selection Statistical Testing

Analysis of variance testing of hand outlined classification results can be seen in Ta-

ble 5.3, showing results of testing for learning algorithm, harmonic content, and choice

of outlines (by expert) used to construct classifiers. Testing showed that classifica-

tion accuracy was significantly (p < 0.05) impacted by which experts outlines were

used to construct the classifiers (training expert). From the table it can be seen that

algorithm selection and harmonic content are also shown to impact on classification

results, however there is significant interaction between algorithm selection and train-

ing data expert. The choice of expert outlines used for testing (=test expert) showed

as insignificant during tests (p=0.76).
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Learning Algorithm
HC NB BN Log HP J48 RaF IBk SMO

E
1
v
E

1

10 75% 65% 65% 65% 60% 70% 80% 90%
20 85% 55% 90% 65% 45% 85% 75% 85%
30 85% 55% 80% 60% 75% 70% 80% 85%
40 80% 75% 85% 60% 75% 80% 80% 85%
50 80% 70% 80% 60% 75% 65% 65% 70%

E
1
v
E

2

10 70% 70% 65% 60% 65% 65% 75% 80%
20 80% 70% 90% 65% 60% 85% 75% 85%
30 85% 70% 90% 80% 55% 75% 80% 90%
40 90% 75% 85% 85% 55% 65% 80% 90%
50 90% 75% 90% 75% 55% 75% 60% 90%

E
2
v
E

1

10 80% 70% 75% 65% 90% 80% 75% 80%
20 80% 85% 85% 60% 85% 85% 80% 85%
30 85% 90% 90% 70% 90% 75% 80% 80%
40 85% 90% 95% 75% 90% 70% 70% 80%
50 75% 90% 85% 65% 90% 80% 60% 85%

E
2
v
E

2

10 75% 65% 70% 70% 90% 85% 75% 85%
20 85% 90% 90% 80% 85% 90% 85% 90%
30 85% 85% 90% 75% 80% 70% 80% 95%
40 85% 95% 95% 70% 80% 75% 75% 95%
50 85% 90% 90% 75% 80% 80% 50% 80%

Table 5.2: Classification accuracies for expert selection tests. Showing cross-validated
accuracies for combinations of algorithm/harmonic content (HC) when: classifiers are
built and tested using mean outlines of expert-1 (E1vE1); classifiers are built using
expert-1 and tested with expert-2 outlines (E1vE2); classifiers are built using expert-2
and tested with expert-1 outlines (E2vE1); classifiers are built and tested using mean
outlines of expert-2 (E2vE2).
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Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 4499.84 7.00 642.83 15.80 0.00

content 1029.69 4.00 257.42 6.33 0.00
training expert 1722.66 1.00 1722.66 42.34 0.00

=test expert 3.91 1.00 3.91 0.10 0.76
algorithm*content 3247.81 28.00 115.99 2.85 0.00

algorithm*training expert 2921.09 7.00 417.30 10.26 0.00
algorithm*=test expert 139.84 7.00 19.98 0.49 0.84
content*training expert 82.81 4.00 20.70 0.51 0.73

content*=test expert 132.81 4.00 33.20 0.82 0.52
training expert*=test expert 150.16 1.00 150.16 3.69 0.06

Error 3865.47 95.00 40.69
Total 17796.09 159.00

Table 5.3: Results of N-way analysis of variance (ANOVAN) of expert selection re-
sults. All figures to 2 dcp.
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Figure 5.6 shows marginal means diagram for all combinations of expert used to

train and expert used to test. It highlights classifiers trained using outlines of expert-2

which (generally) return greater accuracies, regardless of the expert outlines that are

used for testing. Further, it reinforces the finding that training and testing experts

need not be the same as training experts in order to perform better.

Figure 5.6: Results of post-hoc ANOVAN testing showing classification accuracies for
combinations of training/testing experts. Expert-2 outlines used for training return
higher accuracies regardless of testing outlines, or whether training outlines were
produced by the same expert.
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5.2.2 Threshold Selection Results

Full results of the threshold selection tests are shown in Table 5.4.

Learning Algorithm
HC NB BN Log HP J48 RaF IBk SMO

H
v
H

10 80% 65% 85% 75% 60% 75% 80% 80%
20 85% 70% 85% 75% 50% 85% 90% 75%
30 85% 65% 90% 75% 45% 60% 85% 90%
40 90% 70% 90% 75% 45% 75% 90% 90%
50 85% 80% 90% 70% 45% 65% 70% 85%

H
v
L

10 80% 70% 85% 70% 65% 80% 75% 90%
20 90% 75% 85% 75% 55% 80% 75% 75%
30 80% 70% 85% 80% 50% 70% 80% 80%
40 80% 70% 85% 85% 50% 65% 80% 80%
50 85% 70% 85% 75% 50% 55% 70% 85%

L
v
H

10 90% 70% 90% 70% 60% 75% 80% 75%
20 90% 75% 85% 70% 65% 80% 80% 80%
30 85% 75% 85% 65% 65% 70% 75% 80%
40 80% 80% 80% 70% 65% 65% 70% 80%
50 80% 80% 75% 65% 65% 70% 75% 75%

L
v
L

10 90% 75% 90% 70% 55% 85% 85% 85%
20 85% 90% 85% 75% 70% 80% 85% 85%
30 85% 90% 90% 75% 70% 65% 80% 80%
40 80% 90% 90% 70% 70% 60% 70% 75%
50 80% 85% 85% 55% 70% 65% 70% 80%

Table 5.4: Classification accuracies for threshold selection tests. Showing cross-
validated accuracies for combinations of algorithm/harmonic content (HC) when:
classifiers are built and tested using outlined segmented with high thresholds (HvH);
classifiers are built using high threshold outlines and tested with low threshold out-
lines (HvL); classifiers are built using low threshold outlines and tested with high
threshold outlines (LvH); classifiers are built and tested using low threshold outlines
(LvL).

Threshold Selection Statistical Testing

Analysis of variance testing for the threshold selection tests can be seen in Table 5.5.

From the table it can be seen that algorithm selection and harmonic content (the
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number of Fourier harmonics used for classification) again significantly impact clas-

sification accuracies. However, in contrast to expert selection tests, the threshold

used to segment otoliths used for training classifiers appears to be far less significant,

although not entirely insignificant (p < 0.10). Also, expert selection results show

that the choice of expert used for training data need not be the same as the training

expert, while threshold selection tests show that accuracies for tests where the train-

ing and test threshold were the same are statistically distinct from those where the

thresholds differ.

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 10909.84 7.00 1558.55 57.36 0.00

content 464.69 4.00 116.17 4.28 0.00
training threshold 82.66 1.00 82.66 3.04 0.08

=test threshold 131.41 1.00 131.41 4.84 0.03
algorithm*content 1450.31 28.00 51.80 1.91 0.01

algorithm*training threshold 1793.59 7.00 256.23 9.43 0.00
algorithm*=test threshold 194.84 7.00 27.83 1.02 0.42
content*training threshold 125.94 4.00 31.48 1.16 0.33

content*=test threshold 24.06 4.00 6.02 0.22 0.93
training threshold*=test threshold 35.16 1.00 35.16 1.29 0.26

Error 2581.09 95.00 27.17
Total 17793.59 159.00

Table 5.5: Results of N-way analysis of variance (ANOVAN) of threshold selection
results for algorithm, harmonic content and threshold method selection. Including
whether the thresholding method used for testing is the same as for the training data
(= test threshold), and factor interactions (∗ factors). All figures to 2 decimal places.
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Figure 5.7 shows marginal means diagram for all combinations of threshold used to

train and test classifiers. Whilst accuracies are not significantly different for the dif-

ferent training thresholds, mean accuracies are clearly different depending on whether

the training/test thresholds are the same.

Figure 5.7: Results of post-hoc ANOVAN testing showing classification accuracies
for combinations of training/testing thresholding methods. Best results are returned
when low (inside-out) thresholding methods are used to outline both training and
testing instances.

5.2.3 Method Selection Results Statistical Testing

Results from variance testing of otolith outlining methods are shown in Figure 5.6.

The results show that while the selection of classification algorithm impacts classifi-

cation accuracies most, the choice of outlining method used for otolith segmentation
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is also significant (p=0.04), with mean accuracies of hand segmented outlines around

2% higher than those of threshold segmentation.

Whilst method itself is insignificant, interaction tests do show that algorithm choice

does interact with the segmentation methodology. Two post-hoc (multi-comparison)

tests were performed and the results are shown in figure 5.8. Mean accuracies for

the threshold tests are shown in red, expert tests are shown in blue, both with group

means denoted as a circle symbol and group interval as lines.

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 12484.7 7.00 1783.53 31.61 0.00

content 830.8 4.00 207.7 3.68 0.01
method 245 1.00 245 4.34 0.04

algorithm*content 3563 28.00 127.25 2.26 0.00
algorithm*method 2925 7.00 417.86 7.41 0.00

content*method 663.6 4.00 165.9 2.94 0.02
Error 15122.7 268.00 56.43
Total 35834.7 319.00

Table 5.6: Results ov N-way analysis of variance (ANOVAN) of outlining method
selection results, for learning algorithm, harmonic content, and outlining method
used (expert trace or thresholding). Including interaction testing (∗ factors). All
figures to 2 decimal places.

The J48/C4.5 algorithm does show interaction with outline method used. However

all other algorithms do not return statistically different results dependent on outline

method. A number of other algorithms are distinct from one another however, de-

pending on methods. For example: when expert outlines are used, Näıve Bayes and

Bayesian Networks are indistinct (margin lines overlap); when threshold methods are

used, the same two algorithms return distinct results.
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Figure 5.8: Results of post-hoc ANOVAN testing showing classification accuracies for
different classification algorithms. Accuracies for threshold tests are shown in red,
while expert tests are shown in blue.
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Post-hoc test results are show in Figure 5.9 for different amounts of harmonic

content for both expert and threshold tests. As before, threshold tests are shown in

red, expert tests are shown in blue. It can be seen in the results that expert tests

perform marginally better given larger harmonic content, whilst threshold tests show

peak accuracies at twenty Fourier harmonics used.

Figure 5.9: Results of post-hoc ANOVAN testing showing classification accuracies for
different amounts of harmonic content. Accuracies for threshold tests are shown in
red, while expert tests are shown in blue.
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When variance testing is performed on a restricted set of results we see similar

impact from the outlining method used. In this test we only compare the best per-

forming combination of expert train/test sets to the best performing combination

of thresholds. Classifiers built and tested using expert-2 were compared to classi-

fiers built and tested using inside-out (low) thresholding methods. The results of the

restricted variance testing are seen in Table 5.7

Sum Sq. d.f. Mean Sq. F Prob>F
algorithm 2613.75 7.00 373.39 10.02 0.00

content 601.88 4.00 150.47 4.04 0.01
method 281.25 1.00 281.25 7.55 0.01

algorithm*content 1908.13 28.00 68.15 1.83 0.06
algorithm*method 853.75 7.00 121.96 3.27 0.01

content*method 246.87 4.00 61.72 1.66 0.19
Error 1043.13 28.00 37.25
Total 7548.75 79.00

Table 5.7: Restricted testing of method selection. Only classifiers built/tested using
the Low threshold, and those built and tested using expert-2 outlines are compared
(‘method’ factor). All figures to 2 decimal places.

5.3 Discussion

Overall results of stock classification using the two outline methods, hand-outlines and

intensity thresholded, are similar to results obtained from scale normalised Fourier

based classification in previous work [11, 12, 22, 25, 63, 90], despite training classifiers

with small numbers of samples.

Testing of expert selection shows a substantial change in accuracies over the clas-

sification tests. Post-hoc testing shows that classifiers trained using the outlines

of expert-2 perform substantially better than classifiers trained using the outlines of
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expert-1, despite the use of standard, rather than high-precision computing hardware.

Mean accuracy for expert-2 falls at 81.94% whilst the mean accuracy for expert-1 is

roughly 7.57% lower, falling at 74.38%.

Whilst the choice of expert outlines used for testing data returns marginally lower

results overall, the drop in accuracies does not show as significant. This suggests

that the accuracies of classifiers pre-built using expert outlined data should not be

significantly impacted when used for further otolith classification, where the outlining

expert has changed. Further, additional otoliths may be classified using outlines

of multiple experts, enabling outline or Fourier data from multiple locations to be

combined and then classified using a single system.

Whilst variance testing of thresholding methods shows minor significance (p = 0.08),

post-hoc testing perhaps gives a clearer indication of the difference in results. Showing

only minor difference in accuracies, classifiers trained using inside-out (Low) thresh-

olding methods perform better overall, with best results returned when testing data

is also segmented using the inside-out method. This is supported by the variance

testing which shows statistical difference in result depending on whether the test

threshold is the same as the training threshold. Therefore further classification tests

using thresholded segmentation of otoliths should be performed using conservative

segmentation (inside-out methods).

Results suggest, however, that when training classifiers using thresholded outlines,

the choice of classification algorithm is the overriding consideration. Logistic (regres-

sion) and Näıve Bayes algorithms performed best in threshold based classification

tests, with both performing significantly better than most other algorithms. Support

vector machines also performed well in threshold selection tests.
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In both full and restricted method testing results we see that the selection of method

used for otolith segmentation can significantly impact results, although in practice the

difference is only minor at around 1.76% in favour of hand outlined boundaries over

all results, and 3.75% when comparing the best from each method (Low threshold Vs

expert-2).

Whilst there is some interaction between algorithm selection and outlining method,

the post-hoc testing shows that the top three performing algorithms (Näıve Bayes,

Logistic and Support Vector Machines) remain the top three performing algorithms

regardless of outline methods used. Of these three algorithms, the best performing

(given both outline methods) is the logistic algorithm. However, the support vector

machine algorithm is notable as it also performed well in the study presented in

Chapter 3.

The choice of harmonic content is far less clear, and interaction between outlining

method and harmonic content apparent. Thresholded methods perform best when

given restricted content (20 harmonics) whilst hand outlining classification favours

higher content, however, there is little difference between 30/40 harmonics for hand

lined tests. Therefore in further studies, where the method of outlining is unclear, or

mixed method outlines are used, the first 20-30 Fourier harmonics should be used for

best results.

With hand outlining and inside-out thresholding methods performing best from

the two methods, this suggests that mid resolution detail of the boundary is an

important feature for classification. Such fine concavities of the boundary contour

are retained during hand outlining, and are more likely to be retained during inside-

out thresholding methods.
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5.3.1 Summary

We find that, with regards to stock classifier construction, expertly hand traced

boundaries have the potential to return significantly higher accuracies than inten-

sity thresholded images, depending on the expert that performs the task (Objective

3).

Additionally, tests show that classifiers constructed using hand-traced images are

more robust to boundaries determined by a different segmentation method. While

trace-build classifiers show no marked drop in accuracy when testing another experts’

outlines, or thresholded boundaries, classifiers constructed using thresholded bound-

aries returned significantly reduced accuracies when separating samples segmented

using other methods, even testing other thresholding methods (Objective 3).

Whilst not significantly different from other front-runners (Näıve Bayes and Logis-

tic), the Support Vector Machine learning algorithm is of note as it was among the

top performers in previous research discussed in Chaper 3 (Objective 4).



Chapter 6

Three Dimensional Otolith
Reconstruction And Virtual Slicing
Using Synchrotron Tomography

This chapter presents a three dimensional reconstruction of a plaice (Pleuronectes

platessa) otolith using data acquired at the Diamond Light synchrotron, beamline

I12 X-ray source. We assess whether these methods of scanning can be used to

produce three-dimensional models of internal otolith structure, or to virtually slice

through otoliths without invasive procedures. The research presented relates to re-

search Objective 5, on whether internal otolith scans are possible, where previous

attempts to do so have failed. We also investigate whether complex slices along es-

timated growth planes offer improvement on the flat-slicing methods widely used in

the industry (Objective 6).

Whilst factors concerning otolith growth are the subject of many ongoing studies,

until recently, experiments were, for the most part, undertaken using whole or sec-

tioned otolith samples and examined using standard optical techniques. Previously, it

has only been possible to approximate three-dimensional otolith structure by stacking

series of flat-plane slices through the otolith [9]. However, flat plane slices are not

able to follow the complex growth patterns that otoliths exhibit. As otiliths grow
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they often curve to follow the shape of the ear chamber (towards or away from the

viewing angle of otolith images in this thesis). Therefore, a flat plane slice may not

give clear indication of where the growth rings lie. Additionally, such slicing methods

are destructive in nature, and once performed the otolith cannot be sectioned along

other planes.

Therefore x-ray tomography presents the possibility of recovering a complete three-

dimensional model of otolith shape, density or composition using non-invasive/non-

destructive procedures. Previous attempts to achieve this using conventional absorp-

tion x-ray micro-CT were unsuccessful [75] as only the outer surface of the otolith was

recovered from scans, despite the authors being hopeful that phase-contrast micro-

CT would be successful. We have recently repeated this experiment using a SkyScan

1172 desktop microCT with 5 micron spot size source operating at 60 kV. The de-

tector used for the experiment was a 12-bit CCD camera filled with Gallium Oxide

scintillator and fibre-optic connection. Results were consistent with previous studies

in that we were unable to resolve sufficient absorption contrast to determine annual

growth marks within the sample.

We investigate here whether higher energy x-rays are capable of recovering internal

growth features from a single otolith sample, and whether resulting scans can be used

to produce a complete three-dimensional model of the otolith. Further, we investigate

whether it is possible to construct virtual slices through the otolith along the plane of

growth, and compare results to a synthetic flat-plane slice through the same sample.
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6.1 Image Capture

Otolith images were captured at Diamond Light [52], the UK’s national synchrotron

science facility and one of only 23 such facilities worldwide. In this process electro-

magnetic radiation produced by a linear accelerator is harnessed as a light source

and split into multiple ‘beamlines’ which are used for different types of experiments.

The radiation used is vastly more intense than that produced by conventional x-ray

systems, often with a final energy in the order of Giga-electron-volts.

The facility’s physicists recommended beamline I12 for these experiments, the high

energy white-beam synchrotron beamline, known as the Joint Engineering, Environ-

mental and Processing (JEEP) beamline. This beamline has previously been used to

investigate a number of high density materials at high rates of precision/resolution

previously and as such is a good candidate for internal scans of otoliths.

A Single otolith was used for this proof of concept study and is shown in Figure 6.1.

The area ‘low-lighted’ in the image denotes the portion of the otolith that was scanned

by the facility for use in this study. The area was imaged using monochromatic x-rays

of wavelength λ = 0.0234nm (53 keV), and propagation phase contrast, inherent in

this type of monochromatic x-ray images [28, 88], was used to observe variations in

the sample. This process has been used with success when studying other specimens

exhibiting weak variations in contrast; such as in palaeontological studies, where non-

invasive studies were required [94].

The detector used in the I12 beamline for this study was a Cadmium Tungstate

(CdWO4) scintillator viewed through bespoke radiation-hard microscope optics (SILL,

Germany) by a PCO.EDGE camera (PCO, Germany) with a 2560x2150 pixel sensor

(roughly 5 Megapixel). To achieve the phase contrast effect the camera was positioned
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Figure 6.1: The plaice otolith used in this study. The area low-lighted shows the
approximate area scanned by the facility and reconstructed in further tests. Red
lines show approximate position of the scan images shown in Figure 6.2.

1,000mm beyond the sample. The resulting images have a resolution of approximately

5um per pixel.

Scan images were processed by the facility using methods described by Paganin

et al. [72] and reconstructed using filtered back-projection methods [45] creating 1,554

images with 153x160 pixel dimensions, each a virtual slice through the otolith. Ex-

amples of these can be seen in figure 6.2. The red arrow on the far left example shows

the approximate viewing angle of the camera for the image shown in figure 6.1. A

flick-book style animation of the sequential slices can be seen on-line [57].
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Figure 6.2: Four example images created by the process. Red arrow in the leftmost
image shows approximate viewing angle of the camera for the image in figure 6.1.

6.2 Tomographic Reconstruction

Each of the scan images is processed in turn to remove background detail. For each

slice we calculate the Otsu threshold [71] (where the threshold is determined from the

intensity histogram) which is then used to binarise the image using a simple thresh-

olding technique, so that the foreground (otolith) is shown as ones, and background as

zeros. The resulting mask array is multiplied with the original image array, resulting

in background pixels being forced to zero whilst otolith pixels remain their original

intensity. An example of the Otsu segmentation can be seen in figure 6.3. Whilst

background pixels in the original image are almost uniformly zero before processing,

this process removes any noise that may be present.

Figure 6.3: Example ‘slice’ created by the scanning process (left) and after Otsu based
segmentation (right).
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Once background Noise has been removed, the slice images are ‘stacked’ to create

a 153x160x1554 matrix. Matlab’s ‘isosurface’ function can be used to create a surface

around the non-zero portion of the matrix (the otolith). It is important to note that

the surface model created by this method does not show surface intensities of the

otolith, and so appears uniformly grey, and hollow, by default. In order to show the

otolith surface we create a virtual light source which casts shadow and highlights

areas of the surface, allowing ridge details etc to be seen. In addition, Figure 6.4

shows the reconstruction with the upper and bottom-most slices added to the ends

of the reconstruction to aid visualisation (only the uppermost visible in the figure).

Figure 6.4: Showing 3d reconstruction of the scanned segment of the plaice otolith.
The reconstruction does not show otolith image intensities (on the reconstructed
surface) any shading is due to a virtual light source highlighting/low-lighting the
surface due to texture.
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6.3 Virtual Slicing

Physical sections of the otolith are limited to flat-plane slices through the otolith and

are destructive in nature. Once an otolith has been sliced through one plane, it is

impractical to perform a further slice through a different plane at differing angles.

Creating a three dimensional model of the otolith from synchrotron scans allows

virtual slices to be taken through the otolith at any angle, and allows slicing the

model multiple times.

Additionally, we are able to slice through the otolith along complex, non-flat planes;

where we reconstruct a surface along a ‘spline-plane’, fitted to the approximated

maximum seasonal growth.

In the simplified example shown in this chapter(Figures 6.5–6.10), only four scan

images were used to calculate the plane by which to slice the otolith, those seen

previously in this chapter (Figure 6.4). Points of maximum growth (ring peaks) are

selected by an expert reader for each image using visible ring peaks in each image.

A bicubic spline is then fitted to these selected points, of equal length in each image.

Examples of these selections are seen in Figure 6.5 where the selected ring peaks are

shown in red, and the spline fitted is shown in green (two hundred interpolated points

per spline).

However, to ensure that all points are equally spaced along the spline, rather than

equally distributed between selected points, further processing is required before fit-

ting the spline. Experts are not required to mark the same growth rings in each

image, neither is there any requirement to mark the same number of points per im-

age. Where points are not equally spaced along each two-dimensional spline, the

spline-plane may not be constructed correctly. Figure 6.6 shows the first of our four
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Figure 6.5: The four previously seen scan images overlayed with calculated spline
(green) and expert designated growth peaks (red).
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scan images used for the example reconstruction, with selected points marked as red

circles and points joined by straight lines.

Figure 6.6: Expert selected points of maximum growth (red circles) joined by straight
lines.

When a bicubic spline is fit to the selected points using standard Matlab methods,

the interpolated points are distributed equally between line segments. Figure 6.7

shows an example of this issue, with a total of fifteen interpolated points (low number

for clarity) these are distributed with two points along each spline section, one on

each expert selected point, and one between each selected point, rather than spaced

equally along the whole spline.
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Figure 6.7: Bicubic spline shown in green given twenty interpolated points (green
triangles). Interpolated points are (incorrectly) distributed equally between expert
selected points, rather than distributed evenly along the length.

To overcome this issue each of the expert selected points is marked as its Euclidean

distance along the linear ‘curve’ for interpolation (shown as a red line in figure 6.6),

rather than as its point in the sequence of expert selections. Figure 6.8 shows the

selected points as sequence number along the curve (red), and as distance along the

curve (blue). Note that for clarity the distance along curve is rescaled to 1-8 in

this example, so that first an last points have the same distance along the curve

as their sequence number (distance/sequence shown on the x-axis). In practice the

distance is rescaled 0-n, where n is the number of interpolation points required. The

rescaled distances along the curve are then used in place of sequence numbers as the

interpolation landmarks.
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Figure 6.8: Showing landmark values for the spline interpolation. Black shows the
interpolation points to be created to ensure even distribution; red shows landmarks
as sequence numbers; blue shows landmarks as distance along curve (rescaled).

It can be seen from Figure 6.8 that interpolated points are evenly distributed be-

tween sequence number points (red) but not distributed between distance points

(blue). Indeed, when using this small number of interpolation points the first and

last line segments have no corresponding interpolated points (other than the selected

end points).

Interpolation is carried out in this manner for both x and y coordinate arrays

for the expert selected landmarks. This creates x/y coordinates for all interpolated

points. Figure 6.9 shows our simple example with 15 interpolated points. Whilst

these points were evenly distributed between line segments when using sequence num-

ber landmarks, using distance landmarks the points are distributed (approximately)

evenly along the length of the spline. Whilst this method does not space interpolated

points exactly evenly, due to difference between distance along the linear curve and

bicubic curve, the method is sufficient for this proof of concept.

Once each of the four scan images have been processed in this way, the resulting

splines are used to create a spline-plane. As the distance landmark method creates an

equal number of evenly spaced points, the corresponding points from each processed

scan image can be used to interpolate points on all other scan images. Figure 6.10

shows our example. Each of the four splines created from the four processed scan
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Figure 6.9: Correct bicubic spline shown in green given twenty interpolated points
(green triangles). Points are distributed (approximately) equally evenly along the
length of the spline.

images are shown in green, in our example fifteen interpolated points have been calcu-

lated along each spline. Each of these interpolated points is then used to interpolate

fifteen points between all 1,554 scan images. For example, the four spline points

marked with green circles are used to interpolate the points along the ‘vertical’ spline

shown in blue.

The calculated spline-plane is stored as three n-by-m coordinate grids, where n

is the number of interpolated points per spline, and m is the number of vertically

interpolated points. The three grids hold the x, y and z coordinates for each of the

spline-plane points. These grids can then be used to create a virtual slice through the

spline, and seen as the otolith scan intensity at those coordinates in the scan image

stack created during 3d reconstruction. A resulting model can be seen in figure 6.11
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Figure 6.10: Showing spline-plane interpolation points for our simplified example.
Expert marked and interpolated splines are shown in green. Green circles are corre-
sponding points on 2d splines that are used to interpolate points on the spline plane
along that ‘vertical’ blue line.

where n=m=200 created from ten expert landmarked scan images. An animation of

the spline-plane slice can be seen on-line [57]

6.3.1 Comparison of Virtual Slices to Flat-plane Slices

As the interpolated spline-plane is a collection of coordinates for an n-by-m slice, the

plane is easily flattened and shown as a square grid. Figure 6.11 shows a 200-by-

200 point slice interpolated from ten scan images, landmarked by an expert reader.

Shown in figure 6.12 is the same 200x200 plane, flattened and stretched into a square

grid, whilst keeping the intensities calculated using the complex plane. Figure 6.13

shows a flat virtual slice through approximately the same angle as the spline-plane.



175

Figure 6.11: Complex virtual slice through the plane of maximum seasonal growth of
a plaice otolith segment.

Clear differences can be seen between the flattened spline-plane and the flat slice

when compared in this manner. Not only are the growth rings much clearer in the

flattened spline-plane, but ring shape is also remarkably different.

6.4 Discussion

Previous synchrotron studies of otoliths have used Synchrotron Rapid Scanning X-ray

Fluorescence (SRS-XRF) to investigate trace elements (e.g. (Doubleday et al. 2014,

Limburg et al. 2007)). This technique is inherently limited to an examination of the
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Figure 6.12: Spline-plane after flatten-
ing/stretching to a square grid, retaining
intensities at spline-plane coordinates.

Figure 6.13: Image created by stretching a
flat-plane slice through the otolith at angle
approximately equal to the spline-plane.

otolith surface and so may require thin sections of material to be prepared, resulting

in damage to the specimen. The preliminary data from this virtual slicing study us-

ing the JEEP beamline are encouraging because they illustrate the potential for more

accurate measurement of total seasonal accreted volume (as opposed to an estimate

taken from a 2-D section). 3-D analysis is also potentially more robust to anomalous

secondary growth signatures that do not correspond to seasonal deposits. Such arte-

facts continue to challenge even the most experienced readers of 2-D otolith sections

thereby contributing to uncertainties in age estimates, and consequently stock assess-

ments [29]. Currently, synchrotron studies are very expensive but as the technology

becomes more accessible virtual otolith studies using computer graphics could provide

a historical perspective for each individual within their environmental context.

We hope to build on this preliminary study through funded access to the beamline

at DiamondLight to allow us to render whole otolith specimens, investigate species
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specific growth traits, and factors that affect the direction of maximal accretion,

which seems to change with age (Fig. 3). This may help in understanding why

certain species are particularly problematic for human otolith readers and provide

a valuable insight into how and why the accreted biomineralisation is related to

anatomy, physiology and life-cycle. Preliminary observations of the specimen suggest

the study was totally non-invasive and that the otolith in this study was undamaged

by the experimental process. This feature of tomographic analysis could be particu-

larly valuable, for example where the otoliths of individual fish have been recovered

accompanied by archival data storage tags which may have recorded ambient expe-

rience of the same fish for periods over seasons or sometimes years (Sturrock et al.

2012). Such otoliths with accompanying ‘ground-truth’ data represent a rich resource

of information concerning individual lifetime movements.

6.4.1 Summary

We successfully show for the first time that high energy scanning methods presented

in this chapter are able to render both the external and internal otoliths structures

using non-invasive methods (Objective 5).

Preliminary testing has shown that virtual plane slicing through otoliths rendered

using these scanning techniques offer increased clarity of ring structure. Additionally

we show discrepancies between actual growth ring position at point of maximal yearly

growth, and the visible location of the growth ring during flat plane slicing (Objective

6).



Chapter 7

Thesis Conclusions

This chapter summarises the work presented in this thesis. We give a summary of the

findings from Chapters 3 to 6, followed by our main findings in relation to our stated

research objectives. We close with some notes on potential future work, including

suggestions for methods used in the wider otolith sciences field.

7.1 Summary of findings

Whilst Shapelet based classification is showing to be a useful tool in other fields, our

studies show that classification of herring otoliths using shapelets methods returned

marginally inferior results to classification using the unprocessed boundary. Further,

no individual candidates extracted using the shapelet method showed to be partic-

ularly discriminatory of otolith class, as was the case with prior tests performed on

the SHAPE dataset.

The (double) cross-validation procedure used when extracting and testing shapelet

based methods reduced the size of training sets by approximately one-fifth compared

to tests conducted with other transform methods, while returning results similar to

other tests on the same dataset. Increasing the dataset may mitigate this reduction
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and return higher classification accuracies. However, given no candidates show as

particularly discriminatory, we find this eventuality unlikely.

Similarly, Curvature Scale Space methods (when used to separate herring stocks)

do not provide any significant improvement on Fourier based methods already in

widespread use, despite being an industry standard specifically established to encode

object shape. The improvements seen when pre-indexing methods are used based

on gross shape metrics (circularity, eccentricity and CSS aspect-ratio) implies that

otoliths of different stock overlap in scale-space. The difference in CSS pre-indexing

thresholds returning peak results during early tests suggests, however, those gross

shape differences between classes may vary depending on the task at hand. For

example, eccentricity of herring otoliths from different stocks may show high inter-

class variance, whilst variance may be high for convex area between sprat stocks.

Whilst we show that classification of juvenile otoliths is certainly possible using

complex transformations such as Fourier, Shapelets or Curvature Scale Space, the

addition of simple measurements such as otolith length, height or aspect-ratio, or

refraining from performing scale normalisation of Fourier harmonics, significantly in-

creases classification accuracies. The importance of early growth for classification

therefore supports methods whereby early incremental growth microstructure mea-

surements are used for stock separation.

The age of otoliths used for classification studies is likely to impact classification

accuracies. Experiments using mixed age otoliths may suffer due to the differing

defining feature (shape or size) depending on otolith age composition of the dataset.

This impact may be overcome by separating samples (by age) and applying separate
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classification methods, or potentially by performing size-inclusive tests using inner

ring traces for the older otoliths, where ring extraction has been validated.

The method of otolith segmentation has shown to be an important consideration

when boundaries are used to construct Fourier based classifiers. Where hand-outlining

is used for segmentation, the expert reader employed to trace the boundaries used

for training may significantly effect the accuracy of the resulting classifier. In con-

trast, the range of thresholds that can be employed for automatic extraction is large,

providing larger margin of error when segmenting training samples.

Whilst hand-trace based classifiers are less robust with regard to training set com-

position, the constructed classifiers are (statistically) more accurate than those built

using automatically extracted outlines. Additionally, classifiers constructed using

hand-traces show little sensitivity to the expert employed to outline test data. Clas-

sifiers constructed using automatic boundary extract return lower accuracies when

test data is segmented using alternate thresholding methods, with best results re-

turned using inside-out thresholding for both training and testing classifiers.

A number of factors indicate that low to mid resolution otolith detail may hold the

best potential for stock discrimination of younger specimens. Retaining scale informa-

tion during Fourier analysis increases classification accuracies, whilst during transform

studies the best performing classifiers were constructed using size-inclusive data. Peak

Fourier based classification results (both scale-normalised and non-normalised) are

returned when classifiers are constructed using restricted harmonic content (around

20-30 Fourier harmonics). In many cases inclusion of higher level harmonics, or ex-

clusion of the mid level harmonics, reduces classification accuracy.
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Differences in accuracy between classifiers constructed by experts may also be ex-

plained by variation in the mid level detail captured by each expert, where one expert

may retain more mid-level boundary detail than another. Inside-out thresholding

methods may also retain more detail, particularly fine concavities present along the

ventral edge of many herring otoliths.

Choice of learning algorithm used for constructing classifiers appears to be a much

more complex issue. Discrete age tests show little pattern in best performing algo-

rithms between ages, however when building classifiers for age-0 herring (from either of

the datasets used in these studies) choice of algorithm is seen as significant (p < 0.05)

with Support Vector Machines being among the top performing, regardless of outline

method used.

We have shown that three-dimensional reconstruction of internal otolith features is

indeed possible given correct scanning procedure and high energy x-ray sources, and

confirmed the feasibility of non-invasive tomographic analysis of internal features.

Such reconstructions suggest exciting new possibilities for otolith growth analysis,

and virtual slicing of otoliths reveals many potential possibilities for future analysis.

Differences seen between a flattened growth-plane spline and that of a virtual flat

slice may also go some way to explain the sprat anomaly encountered in chapter 4

whereby classification accuracies were significantly reduced when growth rings were

used as an approximation of age-0 growth. Growth vectors can be seen to be non-

linear as the scanned sample aged, and the true age-0 growth ring would clearly have

been occluded when examining otolith surface growth rings.
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7.2 Main Findings

The main findings of this thesis are given here. They are structured according to our

initial research objectives laid out in Chapter 1

1. To critically compare recent techniques taken from the fields of

computer vision and time-series analysis to methods traditionally used

for otolith classification.

Using comparison testing we have shown that, with regards to otolith based stock

classification, curvature scale space and time-series shapelet methods do not perform

as well as methods widely used in otolith shape analysis (Fourier analysis).

2. To establish whether otolith age impacts classification accuracies

dependent on scale-invariance of transformed boundaries.

We clearly show that age composition of otolith datasets significantly impacts clas-

sification accuracies depending on boundary encoding methods used. Size inclusive

methods, whether non-scale-normalised Fourier harmonics or simple morphometric in-

dices return statistically higher accuracies for younger samples, whilst size-exclusive

encoding methods are superior when building/testing classifiers using older otolith

samples.

3. To determine whether the methods used for otolith boundary deter-

mination impact classification accuracies.

Classifiers constructed using hand traced boundaries return significantly higher clas-

sification accuracies when used to separate fisheries stocks. Whilst automatically seg-

mented boundaries remove potential human error/bias, the resulting classifiers are

less robust to changes in segmentation method. Therefore until threshold segmen-

tation methods are standardised, hand-tracing outlines may generate more robust
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and distributable classifiers for stock-separation, regardless of segmentation methods

and/or learning algorithms.

4. To establish whether the choice of machine learning algorithm af-

fects classification accuracies for otolith stock separation.

Best Performing learning algorithms appear to be specific to the classification task at

hand. However Support Vector Machines do appear to be more robust to boundary

segmentation and encoding methods. Whilst this algorithm did not always return

peak results during tests, it was commonly found in the top results throughout this

work.

5. To establish whether three dimensional modelling of otoliths is pos-

sible using non-invasive methods, and whether complex plane slices give

clearer indication of internal otolith structure.

High energy x-ray synchrotron scans have shown to be able to penetrate beyond

the otolith surface and model internal structures that are easily reconstructed as a

three-dimensional virtual otolith. Although some imaging artefacts are evident in

the reconstruction (e.g. the corona around the air/otolith interface), the proof of

principle study provides a glimpse of the possibilities for otolith imaging using phase

contrast synchrotron radiation and also demonstrates the potential for further 3-D

rendered tomographic reconstructions using the JEEP beamline.

6. To establish whether complex plane slices give clearer indication of

internal otolith structure than traditional flat plane slicing.

Synchrotron scans enable us to perform complex slices through the otolith along

whichever plane we choose. Slicing through the plane of estimated growth has shown
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distinct differences between actual growth, and that seen when the otolith is sliced

using industry methods.

7.3 Future work

The study presented in this thesis on whether time-series shapelets can improve on

industry methods (Fourier based analysis) focus on a sole classification task. Further

research should be carried out to determine whether poor performance of shapelet

encoding methods is unanimous, or whether additional stock-separation tasks return

increased accuracies.

Our results suggest that mid resolution boundary detail may hold more potential

for otolith shape classification. Future work may be undertaken to determine which

elliptical Fourier harmonics offer higher stock separation capability. Our suggestion in

the absence of such research is to construct classifier using the first 20–30 harmonics.

Further classification tasks should take into consideration cohort age before select-

ing boundary transform methods used to encode boundaries prior to classification.

Whilst our research has suggested that younger samples hold more potential for stock-

separation, further research should investigate whether this is the case with all species,

and whether there may be an age at which shape based classification becomes futile.

In future studies, choice of outlining method used for classifier construction should

take into consideration whether further classification tasks are to be undertaken with

the constructed classifier. Those constructed using expertly hand-traced otoliths

appear to be more robust to difference in outlining method, perhaps allowing tests to

be carried out on data outlined using unknown or unpredicted methods.
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Chapter 6 presents reconstruction and complex-plane slicing of a single Plaice

otolith. However the work suggests that high-energy scanning could be a valuable

method for future research. When the affect of age on classification is considered,

scans of this type may facilitate the ‘stripping’ of otolith growth rings in three dimen-

sions, essentially returning the otolith to an earlier stage of fish development, allowing

the sample to be classified at a younger age.

The work presented here has only performed classification tasks using single clas-

sifiers. Ensemble methods, where samples are classified using a range of techniques

before using the results to determine the predicted class, are a potential avenue to

investigate.

It is our suggestion, that in future research where testing of individual learning

algorithms, or use of ensemble methods may not be possible, the Support Vector

Machine learning algorithm should be considered for use when training classifiers.



Abbreviations

AFBI Agri-Food Biosciences Institute
ANOVA Analysis Of Variance

ANOVAN Analysis of Variance, N-way
BL Boundary Length
BN Bayesian Networks

Cefas Center for Environment, Fisheries and Aquaculture Science
CSS Curvature Scale Space
DC Direct Current

EFD Elliptical Fourier Descriptor
EFT Eliptical Fourier Transform
FFT Fast Fourier Transform

GMIT Galway-Mayo Institute of Technology
HC Harmonic Content
HP HyperPipes
IBk k-Nearest Neighbour

ICES International Center for the Exploration of the Seas
IOS International Otolith Symposium

JEEP Joint Engineering, Environment and Processing
Log Logistic (learning algorithm)

LOOCV Leave One Out Cross Validation
MPEG7 Moving Picture Expert Group version 7

NB Näıve Bayes
NN Nearest-Neighbour

NNDTW Nearest Neighbour Dynamic Time Warping
PCA Principle Componant Analysis
RaF Random Forest
RoF Rotation Forest

SMO Support Vector Machines
SPa Shape Parameter transformation

UV-B Univariate Boundary
WEKA Waikato Environment for Knowledge Analysis
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NB BN Log HP J48 RaF IBk SMO RoF
bou 60.00 65.00 65.00 61.25 73.75 58.75 57.50 67.50 70.00
bouG 83.75 87.50 78.75 75.00 87.50 92.50 75.00 80.00 93.75
evo 68.75 61.25 70.00 61.25 70.00 67.50 75.00 72.50 72.50
evoG 90.00 86.25 73.75 67.50 86.25 90.00 86.25 78.75 91.25
fou10 97.50 97.50 95.00 93.75 98.75 100.00 98.75 96.25 98.75
fou20 97.50 97.50 95.00 91.25 98.75 96.25 98.75 95.00 100.00
fou50 96.25 96.50 96.25 73.75 98.75 97.50 78.75 97.50 98.75
fou10n 65.00 78.75 82.50 85.00 81.25 87.50 83.75 83.75 88.75
fou20n 71.25 85.00 73.75 83.75 81.25 87.50 81.25 85.00 91.25
fou50n 72.50 88.75 78.75 73.75 87.50 81.25 80.00 78.75 92.50
Box 98.75 98.75 98.75 98.75 97.50 96.25 98.75 100.00 98.75
Axes 98.75 100.00 100.00 98.75 98.75 100.00 100.00 100.00 98.75
STAT 98.75 100.00 98.75 98.75 97.50 98.75 97.50 100.00 98.75
STAT+ 98.75 100.00 97.50 98.75 97.50 100.00 97.50 100.00 98.75

Table A.1: Age-0 Celtic/Irish Sea herring: Full results table for transform
method/learning algorithm tests.

NB BN Log HP J48 RaF IBk SMO RoF
bou 34.62 50.00 46.15 46.15 50.00 46.15 53.85 53.85 34.62
bouG 34.62 46.15 42.31 57.69 53.85 46.15 61.54 46.15 34.62
evo 69.23 42.31 53.85 57.69 50.00 53.85 53.85 57.69 69.23
evoG 69.23 42.31 50.00 65.38 50.00 65.38 50.00 57.69 65.38
fou10 65.38 73.08 61.54 57.69 84.62 84.62 69.23 65.38 69.23
fou20 69.23 69.23 61.54 69.23 84.62 61.54 46.15 61.54 73.08
fou50 53.85 65.38 57.69 42.31 84.62 57.69 57.69 57.69 73.08
fou10n 50.00 38.46 50.00 53.85 57.69 61.54 57.69 53.85 57.69
fou20n 53.85 38.46 50.00 57.69 53.85 42.31 50.00 46.15 57.69
fou50n 61.54 57.69 46.15 61.54 46.15 65.38 50.00 50.00 53.85
Box 88.46 73.08 84.62 84.62 76.92 73.08 73.08 80.77 80.77
Axes 84.62 84.62 84.62 80.77 84.62 80.77 73.08 84.62 57.69
STAT 84.62 80.77 69.23 76.92 73.08 73.08 80.77 80.77 76.92
STAT+ 84.62 80.77 65.38 76.92 73.08 73.08 76.92 76.92 80.77

Table A.2: Age-1 Celtic/Irish Sea herring: Full results table for transform
method/learning algorithm tests.
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NB BN Log HP J48 RaF IBk SMO RoF
bou 62.50 47.50 63.75 45.00 56.25 62.50 50.00 67.50 57.50
bouG 62.50 47.50 62.50 45.00 52.50 55.00 50.00 63.75 57.50
evo 65.00 71.25 60.00 60.00 65.00 63.75 66.25 62.50 66.25
evoG 67.50 71.25 57.50 58.75 68.75 66.25 65.00 61.25 68.75
fou10 66.25 71.25 57.50 66.25 61.25 65.00 71.25 63.75 73.75
fou20 72.50 68.75 66.25 65.00 72.50 62.50 73.75 73.75 72.50
fou50 61.25 61.25 62.50 61.25 68.75 57.50 57.50 62.50 62.50
fou10n 57.50 71.25 60.00 50.00 58.75 57.50 71.25 73.75 67.50
fou20n 63.75 71.25 51.25 45.00 63.75 60.00 67.50 62.50 70.00
fou50n 56.25 70.00 51.25 57.50 71.25 57.50 60.00 58.75 58.75
Box 67.50 72.50 66.25 46.25 67.50 60.00 68.75 63.75 72.50
Axes 71.25 72.50 68.75 47.50 73.75 61.25 71.25 65.00 70.00
STAT 68.75 73.75 66.25 47.50 66.25 65.00 68.75 66.25 63.75
STAT+ 71.25 73.75 71.25 50.00 75.00 68.75 70.00 72.50 66.25

Table A.3: Age-0 North-Sea/Channel sprat: Full results table for transform
method/learning algorithm tests.

NB BN Log HP J48 RaF IBk SMO RoF
bou 58.00 50.00 56.00 44.00 66.00 66.00 64.00 58.00 54.00
bouG 60.00 72.00 56.00 48.00 78.00 78.00 50.00 66.00 68.00
evo 60.00 72.00 76.00 46.00 74.00 72.00 48.00 70.00 60.00
evoG 72.00 80.00 70.00 50.00 64.00 76.00 58.00 74.00 68.00
fou10 86.00 84.00 82.00 76.00 78.00 88.00 82.00 88.00 86.00
fou20 82.00 82.00 86.00 62.00 72.00 82.00 78.00 84.00 84.00
fou50 86.00 82.00 84.00 58.00 70.00 72.00 64.00 86.00 88.00
fou10n 68.00 70.00 80.00 74.00 62.00 78.00 78.00 82.00 78.00
fou20n 70.00 66.00 70.00 70.00 70.00 60.00 68.00 82.00 70.00
fou50n 70.00 62.00 64.00 68.00 58.00 72.00 64.00 70.00 84.00
Box 86.00 90.00 88.00 76.00 86.00 82.00 86.00 90.00 88.00
Axes 82.00 86.00 84.00 76.00 82.00 80.00 90.00 86.00 86.00
STAT 86.00 86.00 78.00 80.00 82.00 82.00 84.00 88.00 86.00
STAT+ 84.00 86.00 80.00 80.00 82.00 86.00 82.00 88.00 88.00

Table A.4: Age-1 North-Sea/Channel sprat: Full results table for transform
method/learning algorithm tests.
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NB BN Log HP J48 RaF IBk SMO RoF
bou 27.27 50.00 50.00 40.91 63.64 50.00 54.55 45.45 63.64
bouG 31.82 50.00 40.91 40.91 63.64 50.00 54.55 45.45 50.00
evo 54.55 45.45 45.45 40.91 27.27 50.00 77.27 45.45 63.64
evoG 50.00 45.45 40.91 45.45 27.27 54.55 45.45 45.45 59.09
fou10 50.00 36.36 36.36 59.09 54.55 59.09 50.00 45.45 45.45
fou20 45.45 36.36 31.82 45.45 45.45 45.45 68.18 40.91 45.45
fou50 27.27 27.27 31.82 40.91 36.36 54.55 36.36 27.27 31.82
fou10n 40.91 50.00 36.36 45.45 27.27 54.55 54.55 40.91 31.82
fou20n 31.82 45.45 36.36 54.55 18.18 36.36 59.09 31.82 22.73
fou50n 45.45 45.45 36.36 54.55 63.64 45.45 54.55 36.36 45.45
Box 54.55 45.45 45.45 45.45 54.55 68.18 54.55 72.73 68.18
Axes 50.00 40.91 45.45 50.00 59.09 40.91 63.64 63.64 59.09
STAT 59.09 40.91 54.55 50.00 54.55 63.64 59.09 68.18 68.18
STAT+ 54.55 40.91 50.00 50.00 59.09 77.27 50.00 68.18 63.64

Table A.5: Age-2 North-Sea/Channel sprat: Full results table for transform
method/learning algorithm tests.

NB BN Log HP J48 RaF IBk SMO RoF
bou 34.62 46.15 69.23 46.15 34.62 53.85 42.31 61.54 42.31
bouG 30.77 46.15 73.08 50.00 34.62 65.38 42.31 65.38 50.00
evo 42.31 46.15 57.69 61.54 53.85 57.69 46.15 53.85 57.69
evoG 42.31 46.15 53.85 57.69 53.85 53.85 46.15 53.85 50.00
fou10 53.85 69.23 76.92 42.31 61.54 73.08 53.85 76.92 69.23
fou20 61.54 57.69 69.23 50.00 53.85 46.15 53.85 73.08 65.38
fou50 53.85 30.77 61.54 53.85 50.00 53.85 46.15 73.08 57.69
fou10n 53.85 46.15 76.92 46.15 65.38 76.92 50.00 84.62 76.92
fou20n 69.23 57.69 73.08 53.85 84.62 84.62 61.54 84.62 76.92
fou50n 61.54 57.69 53.85 53.85 84.62 57.69 50.00 69.23 80.77
Box 42.31 50.00 50.00 46.15 50.00 38.46 42.31 53.85 42.31
Axes 38.46 50.00 46.15 46.15 42.31 53.85 46.15 42.31 50.00
STAT 30.77 50.00 57.69 34.62 38.46 34.62 38.46 50.00 57.69
STAT+ 34.62 50.00 61.54 38.46 42.31 50.00 30.77 53.85 53.85

Table A.6: Age-3 North-Sea/Channel sprat: Full results table for transform
method/learning algorithm tests.
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NB BN Log HP J48 RaF IBk SMO RoF
bou 50.00 81.82 36.36 59.09 59.09 36.36 31.82 36.36 50.00
bouG 50.00 81.82 27.27 50.00 59.09 59.09 27.27 27.27 36.36
evo 59.09 40.91 68.18 54.55 40.91 50.00 54.55 59.09 45.45
evoG 59.09 40.91 59.09 54.55 40.91 59.09 50.00 54.55 50.00
fou10 54.55 45.45 54.55 72.73 36.36 54.55 36.36 63.64 63.64
fou20 59.09 40.91 59.09 63.64 36.36 45.45 40.91 68.18 54.55
fou50 50.00 50.00 68.18 59.09 36.36 50.00 59.09 40.91 40.91
fou10n 50.00 40.91 40.91 45.45 45.45 54.55 36.36 54.55 54.55
fou20n 40.91 40.91 45.45 59.09 45.45 50.00 50.00 50.00 50.00
fou50n 31.82 59.09 31.82 40.91 50.00 45.45 45.45 36.36 45.45
Box 59.09 50.00 50.00 45.45 45.45 27.27 31.82 54.55 50.00
Axes 54.55 50.00 63.64 45.45 50.00 45.45 54.55 63.64 45.45
STAT 54.55 50.00 45.45 27.27 40.91 31.82 40.91 59.09 40.91
STAT+ 59.09 50.00 50.00 31.82 40.91 36.36 40.91 45.45 45.45

Table A.7: Age-2 North-Sea/Thames herring: Full results table for transform
method/learning algorithm tests.

NB BN Log HP J48 RaF IBk SMO RoF
bou 53.70 46.30 53.70 44.44 38.89 46.30 50.00 48.15 59.26
bouG 51.85 46.30 57.41 44.44 33.33 44.44 50.00 51.85 48.15
evo 57.41 70.37 42.59 51.85 55.56 50.00 46.30 44.44 51.85
evoG 57.41 70.37 44.44 57.41 59.26 55.56 42.59 48.15 55.56
fou10 50.00 44.44 42.59 61.11 48.15 61.11 33.33 42.59 48.15
fou20 50.00 44.44 37.04 57.41 42.59 37.04 40.74 38.89 37.04
fou50 46.30 35.19 46.30 53.70 40.74 44.44 53.70 44.44 44.44
fou10n 62.96 46.30 53.70 46.30 40.74 44.44 35.19 53.70 51.85
fou20n 62.96 46.30 48.15 57.41 29.63 40.74 44.44 44.44 48.15
fou50n 59.26 51.85 50.00 50.00 42.59 55.56 38.89 46.30 46.30
Box 44.44 50.00 44.44 46.30 50.00 46.30 29.63 50.00 50.00
Axes 48.15 50.00 46.30 48.15 50.00 59.26 61.11 46.30 50.00
STAT 50.00 50.00 57.41 46.30 50.00 53.70 35.19 33.33 51.85
STAT+ 48.15 50.00 53.70 48.15 61.11 53.70 50.00 46.30 51.85

Table A.8: Age-3 North-Sea/Thames herring: Full results table for transform
method/learning algorithm tests.
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NB BN Log HP J48 RaF IBk SMO RoF
bou 47.62 40.48 61.90 50.00 38.10 71.43 61.90 54.76 61.90
bouG 42.86 40.48 59.52 52.38 35.71 47.62 66.67 61.90 64.29
evo 42.86 50.00 50.00 52.38 47.62 47.62 54.76 42.86 30.95
evoG 40.48 50.00 45.24 54.76 47.62 45.24 61.90 42.86 42.86
fou10 52.38 50.00 54.76 57.14 73.81 54.76 35.71 45.24 52.38
fou20 47.62 47.62 38.10 47.62 54.76 54.76 30.95 42.86 40.48
fou50 50.00 52.38 33.33 50.00 52.38 50.00 28.57 40.48 38.10
fou10n 57.14 45.24 42.86 59.52 33.33 57.14 57.14 47.62 42.86
fou20n 57.14 52.38 35.71 59.52 66.67 52.38 52.38 47.62 40.48
fou50n 64.29 52.38 47.62 52.38 59.52 64.29 40.48 42.86 64.29
Box 50.00 50.00 50.00 52.38 42.86 50.00 47.62 38.10 47.62
Axes 54.76 50.00 57.14 57.14 45.24 52.38 40.48 50.00 50.00
STAT 50.00 50.00 47.62 61.90 40.48 54.76 66.67 47.62 59.52
STAT+ 47.62 50.00 45.24 57.14 40.48 52.38 71.43 40.48 54.76

Table A.9: Age-4 North-Sea/Thames herring: Full results table for transform
method/learning algorithm tests.

NB BN Log HP J48 RaF IBk SMO RoF
bou 63.33 50.00 60.00 56.67 56.67 46.67 56.67 56.67 43.33
bouG 63.33 50.00 56.67 53.33 56.67 56.67 46.67 53.33 50.00
evo 63.33 50.00 43.33 50.00 66.67 70.00 53.33 40.00 50.00
evoG 63.33 50.00 40.00 50.00 66.67 43.33 60.00 43.33 53.33
fou10 50.00 46.67 73.33 53.33 43.33 53.33 46.67 56.67 50.00
fou20 50.00 73.33 53.33 53.33 43.33 53.33 46.67 43.33 33.33
fou50 50.00 66.67 46.67 46.67 46.67 70.00 46.67 46.67 53.33
fou10n 40.00 50.00 73.33 53.33 80.00 43.33 53.33 73.33 46.67
fou20n 46.67 46.67 60.00 46.67 56.67 50.00 53.33 66.67 56.67
fou50n 30.00 60.00 53.33 46.67 60.00 50.00 53.33 66.67 60.00
Box 43.33 50.00 40.00 53.33 50.00 36.67 50.00 43.33 46.67
Axes 33.33 50.00 20.00 53.33 50.00 36.67 53.33 36.67 46.67
STAT 43.33 50.00 43.33 50.00 43.33 43.33 50.00 53.33 53.33
STAT+ 46.67 50.00 43.33 50.00 43.33 46.67 56.67 50.00 50.00

Table A.10: Age-5 North-Sea/Thames herring: Full results table for transform
method/learning algorithm tests.
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