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Abstract 

Purpose: Retinal toxicity is a common cause of drug development attrition. The 

aims of this research were therefore to develop the ex vivo human retina as a suitable 

model for the assessment of retinotoxicity, and to explore the methods in which this 

may be investigated. 

 

Methods: Post mortem and living donor human eyes were obtained, and the retinas 

dissected within 24h post mortem or 1h enucleation respectively. The ex vivo human 

retina was characterised using immunohistochemistry and QRT-PCR. The effect of 

multiple retintoxins was investigated on the human retinal cell lines MIO-M1 

(Müller cells) and ARPE19 (RPE cells), and CHQ on the human organotypic retinal 

culture (HORC) using the LDH and MTS assays. TUNEL, Western blotting and 

QRT-PCR were also used to investigate the effect of CHQ on the HORC, and CDK 

expression investigated by QRT-PCR. 

 

Results: Cell specific markers were investigated in the post mortem and living 

donor, both possessed similar immunohistochemical and mRNA properties. CHQ 

was the most potent retinotoxin investigated in the cell lines, and when applied to the 

HORC, measureable toxicity was found along with an increase in the expression of 

multiple cell specific mRNA’s. The expression profile of multiple CDK’s in the ex 

vivo retina was investigated in relation to a retinotoxic Pan-CDK inhibitor, where 

differential expression was found. When exposed to the retinotoxic pan-CDK 

inhibitor, the cell lines displayed differences in toxicity. 

 

Conclusion: The ex vivo human retina is an ideal tissue to investigate retinotoxicity. 

It possesses similar properties as the in vivo human retina, and displayed measureable 

toxicity when exposed to CHQ. The ex vivo human retina also proved its usefulness 

in the investigation genes associated to a novel retinotoxin. The ex vivo human retina 

could act as a bridge between animal and human studies, providing vital information 

about a drug’s potential retinotoxicity.  
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Chapter 1 

1.1 Anatomy and function of the eye 

1.1.1 Overview of the eye 

The eye (Figure 1.1) is a specialised organ the purpose of which is to receive light 

and convert this energy into a neural signal for the brain to process this information 

to create the sense that is “sight”. In order to receive light in an effective manner the 

eye has evolved so that light is first refracted by the cornea and lens and focussed 

onto the photosensitive cells of the retina which enable visual transduction. Within 

this chapter the main regions of the eye that enable visual transduction are described, 

starting with where light first enters the eye, the cornea, and ending where it is 

converted to a neural signal within the retina.  

 

 

Figure 1.1 - Schematic diagram of the human eye in the horizontal plane. Source: 

http://www.phys.ufl.edu/~avery/course/3400/vision/eye_human_detail.gif 
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1.1.2 The Cornea and Sclera 

The cornea is the most exposed part of the eye and is also the part with the highest 

curvature; it has a vertical diameter of 10.6mm which is smaller than the horizontal 

diameter of 11.7mm (Van Buskirk, 1989). The cornea forms around one sixth of the 

surface area of the eye (Martola and Baum, 1968), with the remainder being formed 

by the tough layer called the sclera (Figure 1.1). The cornea’s most important 

features are the high refractive index it provides (the majority of refraction within the 

eye is caused by the cornea) and its transparency. The transparency comes as a result 

of the avascularity, the smoothness of the surface and the unique properties of the 

five layers which form the cornea. The five layers of the cornea in order from the 

outermost layer inwards are; the corneal epithelium, Bowmans layer, stroma, 

Descemet’s membrane and the endothelium. 

On top of the corneal epithelium lies the tear film which consists of three main 

layers, the meibomian lipid layer (outer layer), aqueous layer (middle layer) and the 

hydrated mucus layer (inner layer). The tear layer is an important layer that is in 

contact with the air and functions to maintain a wet surface, create a smooth optical 

surface and supply nutrients to the cornea. 

The tear film also protects the cornea in two main ways, one is by providing 

antibacterial protection with lysoszyme, and the other is the delicate balance of 

proteinases and proteinase inhibitors which maintain cell turnover and aid repair 

within the cornea (Remington, 2012). 

The sclera forms the remaining five sixths of the eye and provides a tough tissue 

shell to the eye. It provides resistance to external and internal forces and maintains 

the eyes shape. The sclera provides attachment points for muscle to join to allow 

movement of the eye. It is continuous with the cornea but has different properties. 

The cornea has regularly arranged lamellae which allow the cornea to possess its 

transparent properties, the sclera however has irregularly arranged lamellae which 

provide stronger and more flexible properties than the cornea, but the result is that 

the sclera is opaque. 
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1.1.3 The Anterior and Posterior Chamber 

There are two chambers that lie behind the cornea, the anterior chamber and the 

posterior chamber (Figure 1.1) within which aqueous humour is produced, held and 

drained. 

Aqueous humour is a transparent fluid which serves two main functions. Firstly, it is 

the medium through which necessary metabolites are transported to the avascular 

lens and the cornea and it also serves to remove metabolic products. Secondly it 

enables maintenance of a stable intra-ocular pressure which results from a balance 

between rate of production, and drainage of aqueous humour. Aqueous humour is 

produced and secreted into the posterior chamber (located posterior to the iris and 

anterior to the lens (Figure1.1) and is the smaller of the two chambers) from the 

ciliary processes. Active secretion is responsible for around 80 – 90% of total 

aqueous humour production with the rest produced through diffusion and 

ultrafiltration. A total of approximately 2.5µl is produced per minute with a 50% 

decrease in production at night, following a circadian pattern. Aqueous humour is 

passed from the site of production through the posterior chamber into the anterior 

chamber via the pupil. 

The anterior chamber lies between the cornea and the iris (and the pupillary part of 

the lens) (Figure1.1). It is the larger of the two chambers hosting a total of around 

250µl of aqueous humour with a central depth of around 3mm. The anterior chamber 

is the chamber from which the drainage of aqueous humour occurs. Drainage is 

either via the “conventional pathway” or the “non-conventional pathway”. The 

conventional pathway is the main route of exit, responsible for 70-80% of drainage 

via Schlemm’s canal and the trabecular meshwork. The non-conventional pathway 

involves aqueous humour passing through intercellular spaces between ciliary 

muscle fibres and loose connective tissue (Forrester, 2007). 

 

1.1.4 The Ciliary Body 

The ciliary body is a ring shaped structure which anteriorly is present in the posterior 

chamber and posteriorly extends as far as the ora serrata where it terminates.  
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A large portion of the ciliary body is formed from smooth muscle, which is 

innervated by both the parasympathetic nervous system for contraction via 

acetylcholine on muscarinic receptors, and relaxation (inhibition) of the ciliary 

muscle via noradrenaline acting on α1 and β2-adrenoceptors allowing for lens 

focussing (accommodation) (Remington, 2012). The supraciliaris is the layer which 

lays between the ciliary muscle and the sclera. This layer is formed of loose 

connective tissue and posseses a ribbon like structure which allows the ciliary body 

to slide against the sclera to prevent tissue detachment from the sclera. The 

remainder of the ciliary body is taken up by the stroma. This tissue is highly 

vascularised and contains connective tissue, fibroblasts, melanocytes and some 

immune cells. 

The ciliary body has two main functions; the first is the aiding of lens 

accommodation via contraction and relaxation of the ciliary muscle, the second is the 

production of aqueous humour. Aqueous humour is produced by the highly 

vascularised stroma and ciliary processes. Plasma and macromolecules leak through 

the permeable capillaries of the stroma and pass through the pigmented epithelial 

layer (which are joined together by leaky junctions). The non-pigmented epithelial 

layer contains tight junctions which prevents passive movement into the posterior 

chamber. This enables this layer to filter unwanted macromolecules. The non-

pigmented epithelial layer contains high levels of mitochondria and actively 

transports ions to enable aqueous humour secretion into the posterior chamber. 

 

1.1.5 The Iris 

The iris is a circular structure responsible for controlling illumination levels of the 

retina. The iris achieves this by having the ability to alter the pupil size. In bright 

light conditions the pupil can contract to 1mm (miosis), in low light levels the pupil 

can dilate to 9mm (mydriasis). The iris is approximately 12mm in diameter and cone 

shaped with the pupillary part lying on the lens anterior to the root of the iris. The iris 

is thickest at a region called the collarette which is located roughly 1.5mm from the 

pupil margin (Remington, 2012). 

The iris has 4 layers. The outermost layer is the anterior border layer which consist 

of fibroblasts laying on top of a layer of pigmented melanocytes. The next layer 
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posterior to this is the stroma and sphincter muscle, which is composed of pigmented 

(melanocytes and clump cells) and non-pigmented fibroblasts, lymphocytes, 

macrophages and mast cells with smooth muscle forming the sphincter. The anterior 

epithelium and dilator muscle lay posterior to the stroma. This layer consists of 

myoepithelial cells and elongated smooth muscle fibres which form the dilator 

muscle. The most posterior layer is the posterior epithelium which is formed by a 

single layer of heavily pigmented columnar epithelial cells (Hogan et al., 1971). 

 

1.1.6 The Lens 

The lens is a transparent, avascular elliptic structure whose purpose is to help focus 

light on the retina. It is composed of two main cell types, lens epithelial cells and 

lens fibre cells (which differentiate from lens epithelial cells). The lens is biconvex 

with the posterior surface having a steeper radius of curvature of between 5 - 8µm in 

comparison to the anterior surface which has a radius of curvature of 8 - 14µm. The 

lens has a thickness of between 3.5 and 5mm (measured from the anterior pole to the 

posterior pole) and a diameter of around 9mm when mature (Remington, 2012). The 

thickness of the lens increases by around 0.02mm each year due to the formation of 

new fibres, however the diameter does not change (Dubbelman et al., 2001). 

Altering the dioptric power of the lens is achieved by the ciliary muscles which 

either contract or relax to alter the lens shape. When the eye needs to focus on a 

distant object, the ciliary muscle relaxes which pulls the zonular fibres tight, and in 

turn stretches the lens to decrease the refractive power. The opposite occurs when 

focussing on a near object; the lens accommodates by increasing its refractive power. 

This happens by the ciliary muscles contracting, loosening the zonular fibres and in 

turn the lens curvature increases, thus increasing the dioptric power to focus the near 

object on the retina (Johnson, 1976). Unaccommodated, the lens has a refractive 

power of 20 dioptres. This is due to a multitude of factors including the refractive 

index of the lens, change in index between the lens and the aqueous humour, length 

of the optical path and the surface curvature of the lens. 

The transparency of the lens is a key factor in its functioning; the lens needs to be 

able to refract light but not scatter it. The lens gains its transparency from an absence 

of blood vessels, minimal cell organelles and an orderly arrangement of fibres 
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(Remington, 2012). The lens is attached posteriorly to the anterior vitreous face by 

the hyaloid capsular ligament. 

 

1.1.7 The Vitreous Chamber 

The vitreous chamber is the largest section of the eye, occupying around 80% of the 

total eye volume. The purpose of the vitreous is to provide support for the retina and 

the eye along with storing essential metabolites for the lens and retina. 

It consists mainly of water (98.5 – 99.7%) with a dilute solution of salts, soluble 

proteins and hyaluronic acid within a meshwork of collagen. The vitreous can be 

divided into zones depending on its density. There are three main zones within the 

vitreous; the outer (vitreous cortex) which contains a large amount of tightly packed 

collagen fibrils, the intermediate zone which consists of fibers that run from the 

vitreous base to the posterior cortex and the center zone which is surrounded by the 

intermediate zone and is also known as the hyaloid canal (Figure 1.1). 

The vitreous is bound anteriorly to the posterior part of the lens and the ciliary body 

by the hyloideocapsular ligament. The most extensive attachment of the vitreous is to 

the basement membrane of the non-pigmented epithelium of the ciliary body and the 

internal limiting membrane of the peripheral retina. This is held by vitreous fibres 

which are embedded into the epithelium and membrane (Remington, 2012). 

 

1.2 The Retina 

1.2.1 Retinal Function and Anatomy 

The retina is the region of the eye responsible for transforming light energy into 

neuronal signals which are transmitted to the brain, which in turn processes the 

information enabling vision. This process means that the retina has a high metabolic 

demand, with the highest oxygen consumption per gram of any tissue within the 

human body. 

To meet this high metabolic demand, the retina has two different blood supplies. The 

outer retinal layers are supplied by the choroidal capillary bed. Through this path 

oxygen and metabolites have to diffuse across Bruch’s membrane and the RPE to 
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reach the outer retinal layers. The choroidal pathway has a high flow rate (150 mm/s) 

but a low oxygen exchange rate (Forrester, 2007) which provides about a third of the 

retina’s total metabolic requirement. 

The remainder of the retina is supplied through the central retinal vessels. This 

pathway starts with the ophthalmic artery passing through the optic disc (Figure 1.2) 

where it branches into the superior and inferior retinal artery each of which divide 

further. The vessels ultimately form two capillary networks; the deep capillary 

network (located in the inner nuclear layer) and the superficial capillary network 

(located in the nerve fiber layer / and or the ganglion cell layer). This network 

supplies the remainding two thirds of the retina’s total requirements; it has a lower 

flow rate (25mm/s) but a higher oxygen exchange rate (Forrester, 2007). 

The retina is protected by a barrier similar to that of the blood brain barrier known as 

the blood retinal barrier (BRB). The BRB allows the retina to support the specific 

environment which is optimal for function (Remington, 2012). The BRB is 

composed of two parts, the inner BRB (composed of microvascular endothelium 

cells) and the outer BRB (formed by the RPE) (Campbell and Humphries, 2012). 

Both the inner and outer BRB possess tight junctions which regulate solute and fluid 

permeability. The tight junctions are formed from a multitude of transmembrane 

proteins from the occludin, tricellulin and claudin families along with junctional 

adhesion molecules all of which are linked to the cell cytoskeleton via zonular 

occludens.(Runkle and Antonetti, 2011). The tight junctions mean that the 

permeability of substances across the BRB will vary; this depends on the nature of 

the substances and is required to allow the access of nutrients and the prevention of 

toxic substances to the neural retina. This also means that different drugs will possess 

variable permeability to the BRB which is a consideration to make when developing 

a drug aimed at targeting the retina. 

The retina can be divided into a topographical map of regions along the surface of 

the retina (Figure 1.2) and also individual layers that run through the retina (Figure 

1.3). 
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The central retina is the region surrounded by the superior temporal artery and the 

inferior temporal artery. 

At the centre of this area is the macula, an approximate 1.5mm region which is 3mm 

lateral to the optic disc (Forrester, 2007). It has a distinctive yellow colour in 

comparison to the rest of the retina due to the pigments zeaxanthin and lutein. The 

fovea lies at the centre of the macula and is approximately 0.35mm in diameter. It an 

avascular depression where light is focussed onto, it is also where cones are at their 

highest density. 

The optic disc is an area where retinal blood vessels pass in and out of the eye and 

where ganglion cell axons exit to the optic nerve. 

The remainder of the retina is named the peripheral retina. It is a region which 

consists mainly of rods and extends to the ora serrata (the boundry between the retina 

and the start of the ciliary body) (Forrester, 2007). 

 

Figure 1.2 - Topographical map of the central retina showing the main arteries 
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The layers in the retina can be seen in Figure 1.3 where a section through the retina is 

shown. The retina is anatomically divided into 10 layers described below, from the 

most anterior layer to the most posterior. Following this a description of the different 

retinal cell types will be given. 

1. The internal limiting membrane. 

This membrane separates the retina from the vitreous humour. It primarily 

consists of the endfeet of Müller cells which are covered anteriorly by a 

basement membrane, consisting of extracellular matrix proteins such as 

laminin and fibronectin (Russell et al., 1991). 

2. The nerve fiber layer. 

The nerve fiber layer is a layer mainly consisting of ganglion cell axons 

which project to the optic disc where they bundle and exit as the optic nerve. 

This layer also contains retinal vessels and capillaries. 

 

A       B 

Figure 1.3 - Cross Section of the Human Retina 

 A Light micrograph of the retinal layers. Source: 

http://webvision.med.utah.edu/imageswv/husect.jpeg  

B Diagram of retinal layers and cell types. Source: 

http://www.netterimages.com/images/vpv/000/000/029/29736-0550x0475.jpg 

http://webvision.med.utah.edu/imageswv/husect.jpeg
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3. The ganglion cell layer. 

The ganglion cell layer is a layer dominated by ganglion cells, however other 

cells and processes are also seen in this area such as some amacrine cells 

(termed displaced amacrine cells) and Müller cell processes (which separate 

ganglion cells). In the majority of the retina this layer is one cell thick, 

however in the macula the layer can become 8 to 10 cells thick (Remington, 

2012). 

4. The inner plexiform layer 

This layer is formed mainly from synaptic connections between bipolar cells 

and ganglion cells, with invaginating midget bipolar cells synapses being 

within the inner half and the flat midget bipolar cell synapses in the outer 

half. Other types of synapse are also present in this layer between amacrine 

and bipolar cells, amacrine and ganglion cells and also amacrine and 

interplexiform neurons. 

5. The inner nuclear layer. 

The inner nuclear layer is a layer consisting mainly of cell bodies from 

several retinal cells, primarily Müller cells, bipolar cells, horizontal cells, 

amacrine cells, interplexiform neurons and occasionally displaced ganglion 

cells. These cells tend to be in the order of amacrine cells, adjacent to the 

inner plexiform layer, then Müller and bipolar cells, then horizontal cells 

adjacent to the outer plexiform layer. This layer also contains some deep 

vascular capillary networks. 

6. The outer plexiform layer. 

This layer has two main bands within it, the thin band and the wide band. The 

thin band consists of synapses from rods and cones synapsing with bipolar 

cells and horizontal cells, and horizontal cells also forming synapses with 

bipolar cells. The wide band is made of inner fibres of the rods and cones. 

7. The outer nuclear layer. 

The outer nuclear layer consists of the cell bodies of the rod and cone 

photoreceptors. These themselves are arranged due to the length of the outer 

fibres of the photoreceptors. Cones have a short outer fibre which means the 

cone cell bodies lay very close to the external limiting membrane whereas rod 

outer fibres are longer and therefore the rods form multiple layers anterior to 

the cone cell body layer. The thickness of this layer also alters throughout the 
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retina, with 8 to 9 cell layers nasal to the optic disc and 4 layers temporal to 

the optic disc (Remington, 2012). 

8. The external limiting membrane. 

Contrary to its name this layer is not a membrane. This layer is in fact a chain 

of zonula adherens junctions between the inner layer of photoreceptors and 

Müller cells and photoreceptors themselves. This layer does have some 

membrane properties such as the restriction of passage of some large 

molecules (Remington, 2012). 

9. The photoreceptor layer 

This layer consists of photoreceptor inner and outer segments with Müller 

cell projections separating the inner photoreceptor segments. 

10. The retinal pigmented epithelium 

The retinal pigmented epithelium is a single layer of pigmented cells which 

interact with the outer segments of photoreceptors. 

 

This section described the different layers of the human retina, next a detailed 

description of the different cell types of the human retina will be given. 

 

1.2.2 Retinal Pigment Epithelium 

The retinal pigment epithelium (RPE) is a single layer of highly pigmented cells 

which exptend from the optic disc to the ora serrata. This layer is located adjacent to 

the photoreceptors as shown in Figure 1.3. The cells themselves are hexagon shaped 

and columnar within the centre of the retina (14µm tall, 10 µm wide) and flatter in 

the periphery (10 - 14µm tall, 60µm wide) (Forrester, 2007). 

The basal part of the RPE has numerous infolds and forms a part of Bruch’s 

membrane, with a strong attachment to the chorioid. The apical side of the RPE 

contains many microvilli which extend into the photoreceptor layer and envelop the 

rod and cone outer segments. Even though the microvilli envelop the outer segments 

of the photoreceptors, they do not share any intracellular junctions, which means this 

whole epithelium is separated from the photoreceptors by the inter-photoreceptor 

matrix. The RPE is part of the blood retinal barrier and is important in the 
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maintenance of the correct environment for the photoreceptors. This is achieved by 

the lateral side of the RPE cells being joined by zonula occludens (Remington, 

2012). 

The RPE has many roles to maintain correct and efficient retinal functioning. One 

such role is the absorption of light by melanin to prevent scattering or reflection of 

light back to the photoreceptors. Another major role of the RPE is the maintenance of 

the photoreceptors themselves. The RPE achieves this by phagocytosing outermost 

membranes of rod outer segments (and cone to a lesser extent) in order to turnover 

damaged photopigment. The RPE is also essential in recycling inactive 

photoisomerized visual pigment to synthesize an active isomer ready for production 

of rhodopsin (Sharma et al., 2005). This process known as the visual cycle of retinal 

involves trans-retinal being transported to the RPE, where it is reisomerized to 11-

cis-retinal and returned to the photoreceptors (Strauss, 2005). The RPE is responsible 

for the formation of the interphotoreceptor matrix, the layer of proteins and 

glycosaminoglycans present between the RPE and the photoreceptors. The RPE 

performs a vital role in pumping fluid from the sub-retinal space to the choroid. This 

creates a negative hydrostatic pressure which keeps the retina in contact with the 

RPE. The RPE also plays an important role in the protection of photoreceptors from 

oxidative stress. A reduction in RPE cells which can be caused by age related 

macular degeneration (AMD) or a build-up of toxic substances can lead to a decrease 

in important anti-oxidants such as α-tocopherol and therefore an increase in ROS 

(Strauss, 2005). 

 

1.2.3 Photoreceptors 

Photoreceptors are the cells responsible for the transduction of light into a neural 

signal. This is achieved via two types of photoreceptor cell which contain 

photopigments that absorb and become activated in response to light. Light results in 

inhibition of neurotransmitter (glutamate) release (in dark conditions glutamate is 

released). These two photoreceptors are called rods and cones both of which have a 

relatively similar structure (Figure 1.4). 
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The outermost region of the photoreceptor (the part closest to the RPE) contains 

stacks of membrane disks and is referred to as the outer segment. Each disk contains 

photopigment enclosed within a membrane sac, which is held within the cell by the 

plasmalemma (the outer membrane of the outer segment) and separated from each 

other by an extradisk space. There are major differences between rod and cone outer 

segments which are explained later. 

The cilium is the next part of the photoreceptor. This is a connecting stalk which 

joins the outer segment to the inner segment. The cilium has an axoneme which is 

formed from 9 pairs of microtubules. The role of the cilium is the trafficking of 

proteins for phototransduction from the inner segment into the outer segment ready 

for use. The cilium achieves this trafficking via a process called intraflagellar 

 

Figure 1.4 - Photoreceptor Structure. Source : http://2.bp.blogspot.com/-

PmNqGn4tmI8/Txw3Fh7ehKI/AAAAAAAAAQs/CEIUB7Pak6U/s1600/d_02_m_vis_1

a.jpg 
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transport (IFT). This method of transport is accomplished via IFT particles binding 

with motor proteins which transport the IFT (bound with its cargo) along the 

microtubules either towards the outer segment or towards the inner segment. For 

anterograde transport of, for example rhodopsin, the IFT particle bound with 

rhodopsin attaches to the motor protein heterotrimeric kinesin II which then travels 

along the microtubules of the axoneme. For retrograde transport to the inner segment 

the IFT particle binds to the motor protein dyenein (Ramamurthy and Cayouette, 

2009). 

The inner segment of the photoreceptors can be further subdivided into further parts. 

The ellipsoid is the subsection nearest the outer segment and contains high numbers 

of mitochondria. The myoid is the second subsection closest to the outer fiber and 

contains the protein synthesis and processing organelles such as the Golgi and the 

endoplasmic reticulum. 

The outer fiber is the section which links the myoid and the cell body together. The 

cell body is then linked to the inner fiber which is an axonal process with the 

synaptic terminal at the end. The neurotransmitter for both rods and cones is 

glutamate (Remington, 2012). 

There are many differences between rods and cones. Rods are taller than cones, at 

around 100 – 120µm long and the inner and outer segments are a similar shape 

(Forrester, 2007). Rods are specialised to work in darker conditions and use the 

photopigment rhodopsin which has a maximum sensitivity to blue-green light at 

496nm (Forrester, 2007). In the outer segment of rods, the plasmalemma (the outer 

membrane) is separate from the membrane disks and as new disks are formed at the 

base of the rod outer segment, older disks are pushed further up until eventually 

phagocytosed by the RPE. There are on average 1000 disks per outer segment in 

each rod with an average life span of 10 days for each disk before it is phagocytosed 

at the end of the outer segment. At its opposite end, the rod terminates to synapse 

forming a spherule (smaller than the cone synapse). 

Cones are shorter than rods (on average 60 - 75µm) and within the outer segment of 

cones, basal disks are often wider than the disks at the tip, giving them the conical 

shape (Forrester, 2007). This however is not always the case, with cones located 

around the fovea being long and slender and much more tightly packed. The disks 
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within cones are different to rods; they have a longer lifespan than rods and are not 

produced from the base up. The plasmalemma runs alongside the disks instead of 

being separate. Whereas rods are most efficient in dim light, cones work better in 

brightly lit conditions with each cone possessing one of three photopigments that 

work at different wavelengths. These are for blue light (420nm), green light (531nm) 

and red light (588nm) (Remington, 2012). The synaptic connection from the inner 

fiber of the cone (known as the pedicle) is also different to that of the rod: it is wider 

and contains more synaptic connections including gap junctions between other 

photoreceptors. 

 

1.2.4 Bipolar Cells 

Bipolar cells are the cells responsible for transmitting the neural signals from 

photoreceptors to ganglion cells.  

 

 

Figure 1.5 - Depolarization and hyperpolarization of ON and OFF bipolar cells 
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Bipolar cells play a large role in visual acuity, with some foveal bipolar cells 

synapsing with one cone, and further sending this information directly to one 

ganglion cell. Within the periphery, bipolar cells synapse with many photoreceptors 

where sensitivity, not acuity is the main priority. When described on a functional 

basis, there are two main types of bipolar cell, ON and OFF bipolar cells, both of 

which respond differently to the same stimulus (glutamate) within the centre of its 

receptive field. In light conditions when photoreceptors do not release glutamate, ON 

cells respond by depolarizing whereas OFF cells respond by hyperpolarizing (as 

shown in Figure 1.5). 

This difference in ON and OFF bipolar cell responses is due to different expression 

of glutamate receptors: ON cells express metabotropic glutamate receptors which 

initiate an intracellular pathway to increase conductance to depolarize, whereas OFF 

cells express more ionotropic glutamate receptors which in the absence of glutamate, 

conductance is decreased and the cells hyperpolarize (Nelson and Connaughton, 

1995). As with photoreceptors, the neurotransmitter used by bipolar cells is 

glutamate. When described morphologically, there are several types of bipolar cell, 

however only one type is associated with rod cells. 

Rod bipolar cells are the only bipolar cells that synapse with rod cells. They are 

present from approximately 1mm away from the fovea and continue into the 

periphery. Close to the fovea, each rod bipolar cell makes contact with around 15 – 

20 rods, further out into the periphery, each rod bipolar cell can contact up to as 

many as 80 rods (Kolb et al., 1992). 

There are two types of midget bipolar cells, flat and invaginating. Flat bipolar cells 

differ from invaginating in that they only contact the flat surface of the cone pedicle. 

Invaginating bipolar cells differ from flat cells because the dendrites are invaginated, 

surrounding the cone pedicle. Within these invaginations there are triads which 

consist of a single bipolar cell with two horizontal cell processes on either side which 

are surrounded by the invagination. 

Diffuse cone bipolar cells differ from other bipolar cells in that they are important in 

converging information from multiple cones with dendrites that span out as far as 

100µm and contact as many as 7 cone pedicles (Forrester, 2007).  
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Blue cone bipolar cells are named so because they appear to only contact cones 

specifically with pigment sensitive to blue light. There is also a giant cone bipolar 

cell which gains its name from the size of its dendrites. 

 

1.2.5 Ganglion Cells 

Ganglion cells are the last neural cell from the retina in the visual pathway. Ganglion 

cell axons exit the ganglion cell layer and run along the nerve fiber layer (parallel 

with the internal limiting membrane), the axons then come together at the optic disc 

and pass throughout the lamina cribrosa (a sieve like perforation at the posterior of 

the eye) to form the optic nerve. Beyond the laminar cribosa the axons become 

myelinated by oligodendrocytes. There are approximately 1.2 million ganglion cells 

within the human retina, with an average of around 100 rods and 6 cones to each 

ganglion cell (Forrester, 2007). Ganglion cells can be classified in two main ways. 

They can be classified depending on the area within the lateral geniculate nucleus 

where they terminate. Ganglion cells which terminate in the parvocellular layer are 

called P cells. There are two types of P cell, P1 and P2. P1 cells are also known as 

midget ganglion cells and are the most common retinal ganglion cell and only form 

connections with midget bipolar cells (flat or invaginating). P2 cells terminate within 

the same layer however their morphology is different with P2 cells having a dendritic 

tree that spreads horizontally (Remington, 2012). M type ganglion cells are present 

within the central retina and are named because they project to the magnocellular 

layer within the lateral geniculate nucleus. When classified morphologically there are 

18 types in the human retina 

 

1.2.6 Amacrine Cells 

There are many types of amacrine cell, which differ in shape, size and importantly 

neurotransmitter used. Amacrine cells release many types of neurotransmitter, 

however the main two are GABA or glycine, both of which are inhibitory 

neurotransmitters. Amacrine cells possess a single process that branches out and 

makes multiple connections with bipolar neurons, ganglion cells, interplexiform 

neurons and other amacrine cells. From this information it is believed that the main 
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role of these cells is the inhibitory modulation of information to the bipolar cells 

(Forrester, 2007). 

 

1.2.7 Horizontal Cells 

Horizontal cells possess processes that extend horizontally and run parallel with the 

retinal surface. They are present throughout the retina, but are much smaller in the 

foveal region (Kolb et al., 1994). The purpose of these cells is to provide inhibitory 

feedback to either photoreceptors or bipolar cells. There are three types of horizontal 

cell; HI, HII and HIII. They are differentiated depending on the contacts they make 

and their morphology. HI cells have dendritic processes that synapse with nearby 

cones (mainly green and red cones) and a large fan shaped axon that terminates in 

rod spherules. HII cell dendrites predominantly contact blue cones, whereas the HII 

cell axon exclusively contacts blue cones. HIII cells have a large dendritic field, 

however differ from HII cells in that they do not synapse with blue cones (Ahnelt 

and Kolb, 1994). 

 

1.2.8 Interplexiform Neurons 

Interplexiform neurons are found amongst amacrine cells and have processes which 

descend into the inner plexiform layer and ascend into the outer plexiform layer. The 

purpose of these cells is to provide “long range” feedback from inner retinal layers to 

outer retinal layers. Interplexiform neurons can also be divided depending on their 

neurotransmitters which include glycine, GABA, dopamine and somatostatin. The 

dopaminergic and glycine interplexiform neurons are believed to be involved in light 

adaptation. The connections that interplexiform neurons form are both pre-synaptic 

and post-synaptic to rod and cone cells, however input to the interplexiform cells is 

still unclear (Jiang and Shen, 2010). 
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1.2.9 Müller Cells 

Müller cells are the most abundant neuroglial cells in the retina, with approximately 

10 million present throughout the human retina. The cell bodies of Müller cells are 

located within the inner nuclear layer and they have extensive processes that span 

from the inner limiting membrane to the outer limiting membrane. Their primary role 

is a supportive one, both physically and metabolically. They occupy the majority of 

the space not occupied by neurons and Müller cell processes ensheath neuronal 

somata and processes as well as blood vessels, allowing the transport of nutrients, 

waste, ions, water to support neurones (Reichenbach and Bringmann, 2013). 

Müller cells importance in the support of the neural retina is shown by the variety of 

roles they play, such as the maintenance of the correct environment by, regulating 

ion and pH levels (Forrester, 2007). They are responsible for the metabolism of 

glucose to provide neurones with lactate / pyruvate for their oxidative metabolism as 

well as regulating retinal blood flow and contributing to the maintenance of the blood 

retinal barrier. Importantly Müller cells also play a role in the neuronal signalling. 

They achieve this by the rapid uptake of glutamate from the extracellular space and 

conversion to glutamine ready for neurones to produce glutamate (Bringmann et al., 

2006). 

Müller cells are also involved with most pathological alterations of the retina by 

becoming activated (known as Müller cell gliosis). They have the ability to produce 

proinflammatory cytokines in response to infection and upon activation can influence 

vasculature and immigration of blood-derived leukocytes (Bringmann et al., 2006). 

 

1.2.10 Retinal Astrocytes 

Retinal astrocytes are located within the nerve fiber layer, ganglion cell layer, inner 

plexiform layer and the inner nuclear layer. Within these layers they lay 

perpendicular to Müller cells, ensheathing nerve fibers and retinal capillaries. Their 

role in the retina is similar to Müller cells including isolating the receptive regions of 

the neurones to prevent interference from active neighbouring neurones (Forrester, 

2007). 
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1.2.11 Retinal Microglia 

Retinal microglia are phagocytic immune cells which are evenly distributed 

throughout the retina (except in the fovea where they are normally absent), but 

located in two main regions: between the nerve fiber layer and the ganglion cell 

layer, and between the inner nuclear layer and the outer plexiform layer. When 

inactive they have the characteristics of a resting macrophage, however when injury 

or inflammation occurs they then take on the appearance of an active phagocyte 

(Forrester, 2007). 
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1.3 Retinal Toxicity 

1.3.1 Introduction 

According to the Dictionary of Toxicology (2nd Edition Macmillan Reference Ltd, 

1998) toxicity is defined as the ability of a chemical to cause a deleterious effect 

when the organism is exposed to the chemical. Toxicity itself depends on many 

factors; this is shown by many chemicals / food / drugs that people are exposed to 

daily which are classed as toxic. A simple example is alcohol: too high a dose or 

extended periods of exposure can have toxic effects, however low doses have been 

found to be beneficial in some circumstances. This brings about questions of how to 

define the toxicity of a substance. The ‘Guide to Practical Toxicology, Evaluation, 

Prediction and Risk’ states that some of the determining factors of a compound’s 

toxicity are: dose (including frequency of dose), exposure, species, individuality, 

receptor presence, absorption, metabolism, protein binding (availability of site, 

competitive binding), presence of other chemicals which may enhance / inhibit the 

effect and the physical form of the toxin (Woolley, 2003). 

Toxicological studies span a wide variety of areas. Common areas of research 

include: the establishment of a dose response curve, safety assessment of new 

chemicals including pesticides, drugs and food additives (which must follow strict 

government and international guidelines), mechanistic toxicity studies, 

epidemiological studies and importantly, studies which investigate new methods to 

assess toxicity (Woolley, 2003). 

The need to investigate new methods for toxicity analysis stem from issues involving 

current testing. Investigation into cell lines is cheaper than investigation into animal 

models, however there are limitations to a single cell system. Organotypic models 

contain the multicellular property and the same structural integrity of the tissue of 

interest. Animal models are still considered the gold standard in that they provide a 

multi organ system which is currently impossible to replicate in cells, however 

species difference (if the investigation is about human health must be considered). 

This makes the development of models using human tissue very appealing since 

these can be directly related to toxicity in humans. 
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1.3.2 Drug Development Process 

In most industrialized countries any new drug under development must be assessed 

for its safety to use. The regulations for this testing are variable and depend on the 

country, however the general aim of these studies is to show that the benefits of the 

substance outweigh the risks of use (Timbrell, 1995). The research conducted to 

produce a new drug normally follows a set of common stages. 

These stages can be split into three main sections, these are drug discovery, 

preclinical development and clinical development (as shown in Figure 1.6). Drug 

discovery involves the selection of a drug candidate depending on the intended 

target. Preclinical development involves no live human investigations and involves 

toxicity and pharmacokinetic studies. Clinical development stages are when the 

compound is tested for its tolerability and side effects within healthy patients, and its 

effectivity within patients. If the drug is approved by the regulatory agencies, the 

drug is marketed and continuing surveillance is conducted (H. P. Rang, 2012). 

 

The process of drug development is time consuming and expensive. It is estimated 

by ‘The Association of the British Pharmaceutical Industry’ that the production of a 

new medicine to a high enough standard of quality, efficacy and safety will take 

approximately 12 years and 1.15 billion pounds (Industry, 2016). For this reason, 

models that have the capability to indicate any specific toxicity that may occur in the 

 

Figure 1.6 - Typical stages of drug development research. Source: (H. P. Rang, 2012). 
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early stages of drug development research (drug discovery or preclinical 

development) are of interest as they have the potential to save time and money. 

Retinal toxicity is a major reason of drug development termination. According to 

Pfizer’s internal drug development database, ocular toxicity is responsible for 7% of 

therapeutic candidate attrition of which 99% were related to retinal toxicity (Huang 

et al., 2015). 

For this reason it is important that available models and methods used to assess 

retinal toxicity are understood and utilised. 

 

1.3.2 Models and Methods Used to Assess Retinal Toxicity 

The assessment of ocular toxicity currently relies on in vitro and in vivo approaches 

which are applied mostly within the preclinical development stage of drug 

development research. in vitro toxicity screens may be conducted on cell lines and 

organotypic models, however in vivo models are still required as a pre-clinical safety 

evaluation step of drug development (Huang et al., 2015). 

In vivo approaches to assessing the safety of drugs produced for the treatment of 

retinal diseases involve a multitude of animal models. Mice and rats provide genetic 

models of disease for the drug to be tested on, whereas pigs, dogs and cats are used 

as large animal models. Rabbits are commonly used in retinal toxicity studies, 

however the gold standard for in vivo studies is still nonhuman primates (Penha et 

al., 2010). In order to assess ocular health within the in vivo approaches, common 

ophthalmologic methods used clinically are utilised in animal studies to assess 

changes in retinal function / morphology. Examples of these methods are 

ophthalmoscopic inspection, in which the fundus of the retina can be viewed and 

photographed (useful if changes over time wish to be observed). Fluorescein 

angiography, in which fluorescein dye is delivered intravascularly and traced 

throughout the eye to reveal any defects in vasculature can also be used. 

Electroretinography (ERG) may be used to assess retinal function by investigation of 

neuronal activity in response to specific light stimulus and Ocular Coherence 

Tomography (OCT), which is a non-invasive method of assessing retinal structure by 

composing a computed tomography of scattered near infrared light from a laser is 
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also a more recent and useful technique to assess retinal toxicity (W. M. Haschek, 

2013). 

There are two human retinal cell lines currently available which could be used to 

assess toxicity; the MIO-M1 cell line and the ARPE19 cell line. The MIO-M1 cell 

line is an immortalized cell line derived from human Müller cells. Müller cells are 

the principle glial cells of the retina which provide structural and metabolic support 

to neurones (Haberecht et al., 1997). The ARPE19 cell line is a human retinal 

pigmented epithelial cell line from a primary source of retinal pigmented epithelium 

(Dunn et al., 1996). 

Organotypic retinal cultures have been used from a multitude of species, for example 

rat organotypic cultures have been characterised and show a high degree of tissue 

viability for up to 17 days (Johnson and Martin, 2008). Rabbit organotypic cultures 

have also been used and show tissue viability of up to 4 days (Lye et al., 2007). 

However the problem in using tissue derived from animals is that the retina possesses 

different properties compared to the human retina. For example the rat retina has 

many differences compared to that of the human, being less vasculated, with many 

different retinal features such as no fovea and a high percentage of rods due to the 

nocturnal nature of the animals.  

 

1.3.4 Known Retinotoxins 

In order to develop a new model for the assessment of retinotoxicity, some known 

retinotoxins must firstly be used to characterise the model and to determine if the 

results match those found clinically. 

There are many different drugs / compounds which are known to cause retinopathy, 

in this section a number of known retinotoxic drugs and their potential toxic 

metabolic pathway are discussed. 
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1.3.4.1 Chloroquine 

Chloroquine has been used in the prevention and treatment of malaria since the early 

1950’s. It also has been used for the treatment of amoebic hepatitis, amoebic 

abscesses, systemic lupus erythematosus (SLE), discoid lupus erythematosus (DLE), 

protozoal infections, and most commonly rheumatoid arthritis (RA) (NHS, 2014c). 

Chloroquine is available as salts in three forms; chloroquine diphosphate, 

chloroquine sulphate and chloroquine hydrochloride (Verbeeck et al., 2005;Tzekov, 

2005). 

 

In the treatment of malaria chloroquine can be administered either orally, or via 

parenteral administration, although the oral route is most common. When 

administered orally patients are given a total dose of 25mg/kg over a period of 3 days 

according to the following protocol: 

Day 1: 10mg/kg, followed by 5mg/kg 6 – 8 hours later. 

Day 2 and 3: 5mg/kg in a single dose (WHO, 2014). 

 

Figure 1.7 - The chemical structure of (A) Chloroquine and (B) 

Hydroxychloroquine 

Source: (Tzekov, 2005) 
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Chloroquine is readily and rapidly absorbed by the gastro-intestinal tract and 

although inter-subject bioavailability varies widely, it has an average oral 

bioavailability of approximately 89% (Verbeeck et al., 2005). A study conducted by 

Zuluga-Idarraga (2014) revealed that chloroquine reaches its peak plasma 

concentration 2 hours after each oral dose, and that throughout the three day 

treatment of the normal dose described above (25mg/kg), the highest plasma 

concentration is reached on day 2, with an average plasma concentration of 

260.1ng/ml (0.31µM) (Zuluaga-Idarraga et al., 2014). 

The toxic effects of chloroquine are well documented. The most influential factors 

which affect the toxicity are dosage, the total amount of time the drug has been taken 

and the age of the patient. Chloroquine is rarely used now in the treatment of chronic 

disease due to the availability of the less toxic hydroxychloroquine (see below). 

However a report by Marks from 1982 states daily doses ranged from 100-1000mg 

per day (Marks, 1982). A study later summarised older literature and reported that 

chloroquine can cause retinal toxicity at ≥ 3mg/kg/day which is at the lower end of 

the dosage used (Marmor et al., 2002). The cumulative dose of the drug is also 

positively correlated with toxicity, which is why the total amount of time that the 

drug is given is important. A cumulative dose of ≥ 200g has been shown to give a 

high risk of toxicity (Peponis et al., 2010). Data relating to age is limited, however 

there is an indication that patients over 60 are more at risk to the toxic effects 

(Peponis et al., 2010).  

Chloroquine retinal toxicity symptoms include that of a loss of vision, either a partial 

paracentral or complete pericentral ring scotoma (blind spot). These symptoms are 

not normally noticed until the degeneration caused by chloroquine is advanced 

(Blomquist, 2011). On ophthalmological examination toxicity caused by the drug is 

seen on the fundus as granulated pigmentation within the macula region which is 

surrounded by a ring giving a “bull’s eye maculopathy”. Although not as common, 

there are also some cases of visual field loss without the bull’s eye maculopathy. 

This can progress further to give the fundus a spotted appearance (Gaynes et al., 

2008). 

A study into which cell types are affected by long term exposure to chloroquine was 

conducted in rhesus monkeys which revealed that ganglion cells were firstly 
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affected, displaying granulated cytoplasm’s, followed by photoreceptor degeneration 

and eventually RPE deterioration (Rosenthal et al., 1978). More recent studies have 

utilised OCT and other scanning techniques in the study of chloroquine toxicity in 

humans and have found that the nerve fibre layer was thinned due to chloroquine 

treatment, potentially due to a loss of ganglion cells (Pasadhika et al., 2010), 

(Bonanomi et al., 2006). This data suggesting an initial loss of ganglion cells was re-

enforced by data obtained from Costa et al (2007) in which a pair of eyes from a 

human donor who had received long term chloroquine treatment was obtained and 

investigated. No differences were found between a control retina and the long term 

chloroquine treated retina apart from a lack of large sized ganglion cells which may 

have degenerated due to chloroquine treatment (Costa et al., 2007). In contrast, a 

study on mice revealed that intraperitoneal administration of chloroquine caused the 

majority of toxicity to occur in the outer retinal layers, with a marked loss of 

photoreceptors, thinning of the outer plexiform layer and damage to the RPE 

(Gaynes et al., 2008). Long term exposure to chloroquine therefore has the potential 

to affect several cell types of the retina, including the ganglion cells, photoreceptors 

and the RPE, however the order in which these cells are affected first is still unclear. 

There are many theories relating to how chloroquine causes retinal toxicity. One 

early theory centres around binding to melanin, where it is hypothesised that the high 

affinity of the drug to melanin leads to accumulation causing toxic levels to be 

reached in the RPE. This in turn causes the RPE to become unable to phagocytose 

the photoreceptor outer segments and as a result loss of rods and cones occur (Potts, 

1964), (Bernstein et al., 1963). This theory has come under scrutiny, since there has 

been a lack of evidence to show that melanin binding causes ocular toxicity and 

chloroquine has been shown to cause retinopathy in albino rabbits, rats and cats 

(Leblanc et al., 1998). 

Another mechanism centres around oxidative stress. An experiment in which male 

albino rats were treated with chloroquine showed a reduction in retinal glucose-6-

phosphate dehydrogenase (G-6-PD) activity and glutathione (GSH) (Toler, 2004). 

This reduction in GSH concentrations may be due to the reduction in G-6-PD as G-6-

PD is involved at two points in the oxidative stage of the pentose phosphate sugar 

pathway which is important in the production of NADPH and ribulose-5-phosphate 

(Figure 1.8). A reduction in G-6-PD would inhibit the production of NADPH which 
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is essential in the reduction of glutathione disulphide (GSSG) to GSH in the 

glutathione redox cycle (Figure 1.9). This decrease in GSH would cause an increase 

in oxidative stress which could lead to cell death (Toler, 2004). 

 

 

Figure 1.8 - Oxidative stage of the pentose phosphate pathway 

Source: http://themedicalbiochemistrypage.org/pentose-phosphate-pathway.php 

 

http://themedicalbiochemistrypage.org/pentose-phosphate-pathway.php
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More recently it has been proposed that the cause of retinotoxicity is due to 

chloroquine’s lysosomotropic properties. This means that chloroquine accumulates in 

the lysosome, leading to the formation of vacuoles and eventually cell death. This 

has been extensively studied in RPE cells (Yoon et al., 2010; Chen et al., 2011b). 

 

Figure 1.9 - The Glutathione redox cycle. Showing the reduced form of glutathione 

(GSH) and the oxidized forms of glutathione; GS-R and GSSG. This figure also shows 

the pathway in which the oxidised forms of glutathione are reduced back to GSH via 

GSSG-Red or Trx-Red, both of which require NADPH. 

Key: 

GSH - reduced glutathione 

GS-R and GSSG – oxidized glutathione 

GSSG-Red - GSSG reductase 

Trx-Red – thioredoxin 

GSH-Px – Glutathione peroxidase 

Source: http://www.nature.com/cdd/journal/v12/n12/fig_tab/4401754f1.html 

http://www.nature.com/cdd/journal/v12/n12/fig_tab/4401754f1.html
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In an interesting paper, Yoon et al (2010) displayed that caspase dependent cell death 

appeared not to be the cause of chloroquine induced cell death, as no activation of 

caspase 3 was detected after chloroquine treatment and a broad range caspase 

inhibitor z-VAD-FMK did not reduce cell death. This paper also showed that 

oxidative stress was also unlikely to be the root cause of cell death since the 

antioxidants (NAC and trolox) failed to reduce cell death (Yoon et al., 2010). In this 

study, Yoon et al also investigated levels of autophagy and whether this could be 

responsible for the cell death induced by chloroquine. During autophagy (a process 

where cellular components are turned over) phagophores are produced (double 

membranes structure) and cellular components to be degraded are collected within 

them. Once the components have been sealed in the membrane the structure is 

known as an autophagosome. The autophagosome then binds with lysosomes to 

become the autolysosome where the internal components are degraded (Boya et al., 

2013). Levels of LC3 proteins are commonly used to assess levels of autophagy 

since LC3-I is converted to LC3-II in the formation of the autophagosomal 

membrane. LC3-II is then broken down once the autolysosome has formed (Tanida 

et al., 2008), (Mizushima and Yoshimori, 2007). Yoon et al (2010) found that LC3-II 

increased with chloroquine treatment along with p62 (a protein which interacts with 

LC-3II which is also degraded in the autolysosome) indicating an increase in 

autophagosome levels. This study also investigated if the increase in LC3-II / p62 

was due to inhibition of autophagosome and lysosome binding (to form the 

autolysosome), and therefore the build up of autophagosomes. This was achieved by 

looking at the overlap of immunohistochemically stained ARPE19 cells with LC3-II 

(present in autophagosome membranes) and LAMP1 (present in lysosome 

membranes). No overlap was found, indicating the build up of LC3-II was due to the 

inhibition of autophagosome and lysosome binding (Yoon et al., 2010). This occurs 

because chloroquine is a weak base which concentrates within acidic lysosomes, this 

in turn causes an increase in lysosomal pH and inhibits optimal functioning of the 

lysosomal enzymes and inhibits the binding of lysosomes to autophagosomes 

(Baltazar et al., 2012). This study also showed that when both chloroquine and low 

concentrations of Bafilomycin A1 were added together, chloroquine did not 

accumulate within lysosomes to cause lysosomal dysfunction and deformation into 

vacuoles. This is due to the increased pH caused by Bafilomycin A1, therefore 

inhibiting chloroquine accumulating in the lysosome. Bafilomycin A1 causes an 
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increase in lysosomal pH by inhibiting vaculolar-type ATPase and disrupting the 

vesicular proton gradient causing an increase within the pH of lysosomes (Shacka et 

al., 2006). Further to this, Yoon also showed that autophagic cellular death does not 

seem to be a likely cause of chloroquine induced toxicity since the autophagic 

inhibitor 3-MA (a potent inhibitor of autophagy) also failed to reduce chloroquine 

induced cellular death (Yoon et al., 2010). 

The experiments conducted by Yoon et al indicate the main cause of cell death to be 

due to a multitude of mechanisms which involve lysosomal dysfunction, whereby an 

increased accumulation of endocytosed proteins and lipids possess cytotoxic 

consequences (Yoon et al., 2010).  

 

1.3.4.2 Hydroxychloroquine 

Hydroxychloroquine (Figure 2.7) was synthesised in 1964 as a derivative of 

chloroquine. Since then, it has superseded the use of chloroquine due to a better 

toxicity profile (Tzekov, 2005). Chloroquine is known to cause retinal toxicity at ≥ 

3mg/kg/day, whereas this increased to ≥ 6.5mg/kg/day with hydroxychloroquine 

(Peponis et al., 2010). Hydroxychloroquine is used for the treatment of RA, SLE, 

DLE and some dermatological conditions caused by sunlight (NHS, 2014a). 

Hydroxychloroquine is available commercially as 200mg hydroxychloroquine 

sulphate tablets (Plaquenil), and due to the toxicity threshold, has a maximum 

recommended dose of 6.5mg/kg of lean body weight / day (Ophthalmologists, 2009). 

Standard doses used to treat RA are 200mg to 400mg daily (American College of 

Rheumatology). For malaria treatment and prevention, the dose of 

hydroxychloroquine recommended is 400mg as one weekly dose (CDC, 2014). 

Hydroxychloroquine is well absorbed within the gastrointestinal tract. After a single 

200mg dose of hydroxychloroquine peak plasma concentrations occurs at a mean 

time of 3.2h post treatment, with a maximum mean plasma concentration of 46ng/ml 

(0.1µM) (Tett et al., 1989). 

Patients using hydroxychloroquine are screened for ocular side effects in the same 

way as those who take chloroquine. Both drugs can cause the same clinical 
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symptoms of visual field defects such as scotomas and are known to cause a change 

in the appearance of the fundus, with granulated pigmentation and a bull’s eye 

maculopathy (Tzekov, 2005). The method of cell toxicity caused by 

hydroxychloroquine appears to be the same as that caused by chloroquine; via 

accumulation within lysosomes (Sundelin and Terman, 2002). 

 

1.3.4.3 Indomethacin 

Indomethacin was introduced in 1963 as a non-steroidal anti-inflammatory drug 

(NSAID) for the treatment of rheumatoid arthritis. It has also been used for other 

inflammatory conditions due to its anti-inflammatory properties (Graham and Blach, 

1988). Indomethacin dosage is variable depending on the degree of pain and 

inflammation and is available as 25mg and 50mg capsules to be taken orally or 

100mg as suppositories. Indomethacin can be used to treat many inflammatory 

disorders associated with pain including ankylosing spondylitis, bursitis, capsulitis, 

gout, menstrual problems, osteoarthritis, rheumatoid arthritis, spondylitis, synovitis, 

tendonitis and tenosynovitis (NHS, 2014b). 

Indomethacin is readily absorbed within the gastrointestinal tract. After a 75mg dose 

the mean peak plasma concentration (measured by HPLC) was at one hour post oral 

administration showing a concentration of 4.9µg/ml (13.7µM) (Bechgaard et al., 

1982). 

Although indomethacin retinopathy cases are rare, it is associated with other 

reactions such as neutropenia, hepatotoxicity and agranulocytosis (Toler, 2004). 

Retinopathy symptoms caused by indomethacin include difficulty with night vision, 

impaired colour vision, photophobia and reduced visual acuity (Peponis et al., 2010). 

Clinically, the changes seen with indomethacin retinal toxicity are changes in the 

RPE (granulation) along with occasional changes in electroretinogram (ERG) and 

electrooculogram (EOG). Graham and Blach (1988) also reported a bullseye 

maculopathy in a 33 year old patient who suffered arthritis and had been taking 

200mg of indomethacin daily for 8 years (in conjunction with no other medication). 

Indomethacin is thought to be toxic to the retina via the production of a reactive 

quinone. This mechanism is also thought to be the cause of toxicity to other tissues 
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including neutropenia and hepatotoxicity. Figure 1.10 shows the proposed pathway 

which involves indomethacin being O-dealkylated into O-des-methylindomethacin 

(DMI). This then undergoes N-deacetylation to produce 

desmethyldeschlorobenzoylindomethacin (DMBI) (Toler, 2004). DMBI is a major 

metabolite of indomethacin (Ju and Uetrecht, 1998) and it is DMBI that is believed 

to form the reactive quinone that can either react with GSH, leading to GSH 

depletion and consequent oxidative stress, or bind to other macromolecules to cause 

retinopathy (Toler, 2004). 

 

 

  

 

Figure 1.10 - The proposed metabolism of indomethacin to a toxic quinone 

Source: (Toler, 2004) 
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1.3.4.4 Tamoxifen 

Tamoxifen is a selective estrogen receptor modulator (SERM) which is used as 

hormone therapy in the treatment and prevention of hormone responsive breast 

cancer (Srikantia et al., 2010). 

Tamoxifen is available as tamoxifen citrate in 10mg, 20mg and 40mg tablets or a 

10mg/5ml oral solution (NHS, 2014d). It is taken as a single daily dose (normally 

between 20mg and 40mg) (Srikantia et al., 2010). 

Tamoxifen citrate is readily absorbed from the GI tract and quickly undergoes 

hepatic metabolism and excretion of its metabolites (Shin et al., 2006). Tamoxifen 

pharmacokinetics have been investigated humans and it was found that the drug 

reached an initial peak concentration of approximately 167nM in the blood 

approximately 4h after a single 30mg dose. It was also found that over time, the dose 

increased until it reached a continuous steady state of approximately 467nM after 

one month of single 30mg doses (Etienne et al., 1989). 

Retinal toxicity is rare from the use of tamoxifen alone (0.6%), but the use of 

tamoxifen alongside chemotherapy can increase the risk to 10.9% (Srikantia et al., 

2010). Although the risk is low, the numbers affected are high due to the large 

number of patients requiring the treatment. Patients who have tamoxifen induced 

retinal toxicity often have symptoms of decreased visual acuity and gradual 

diminution of vision. Clinically, cases of tamoxifen retinal toxicity can present with 

ocular abnormalities including pigmented retinopathy, macula edema, macula hole 

and yellow/white spots in the paramacular region (Watanabe et al., 2010; Lazzaroni 

et al., 1998). 

Retinal tamoxifen toxicity normally occurs in patients who have been prescribed the 

drug for an extended period of time. Early cases of tamoxifen induced retinopathy 

were seen in patients who took 240-320mg per day. Since then the dose has been 

reduced to 20-40mg per day (Srikantia et al., 2010). However extended use of the 

drug leading to a cumulative dose of higher than 16g has been known to induce 

toxicity (Lazzaroni et al., 1998). 

One proposed mechanism of toxicity caused by tamoxifen is implied due to its side 

effect of neutropenia which is similar to that seen with indomethacin, suggesting that 
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a similar mechanism may be responsible involving the production of a reactive 

quinone. The process is shown in Figure 1.11 with tamoxifen being metabolised to 4-

hydroxytamoxifen. From this point 4-hydroxytamoxifen can be metabolised through 

two main pathways, one direct metabolic pathway produces a relatively stable 

quinone methide. The other pathway can involve the enzyme tyrosinase which can 

metabolise 4-hydroxytamoxifen to 3,4-dihydroxytamoxifen. This can then be 

oxidized to produce a reactive ortho-quinone (Zhang et al., 2000) which can oxidise 

GSH, depleting GSH levels and causing oxidative stress and cell death (Fan and 

Bolton, 2001). The reactive ortho-quinone could also bind to important 

macromolecules causing cell disruption and eventually death (Toler, 2004). 
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Cho et al (2012) have investigated tamoxifen toxicity in RPE (ARPE19) and 

photoreceptor derived (661W) cell lines and suggested that multiple mechanisms 

may be responsible for the cell death found. Oxidative stress was found to be 

involved in tamoxifen induced death, with an increase in ROS and protection by the 

addition of the antioxidant N-acetyl cysteine (NAC). It was also found that zinc 

dyshomeostasis may be involved in the oxidative stress caused by tamoxifen, shown 

by a reduction in ROS and attenuation of cell death with zinc chelation. Cho et al 

 

Figure 1.11 - The proposed metabolism of Tamoxifen into a toxic quinone 

Source: (Toler, 2004) 
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(2012) also found that autophagic cell death may be involved in tamoxifen induced 

toxicity, with increased LC3-II levels, and attenuation of cell death with the addition 

of the autophagic activation inhibitor 3MA, and bafilomycin A1 which inhibits 

fusion of autophagosomes and lysosomes. Levels of p62 were also investigated (p62 

is present within the autophagosome, but is degraded in the autolysosome), showing 

that binding of the autophagosome and lysosome occurred indicating that tamoxifen 

upregulated autophagy. Finally it was also found that caspase-3 contributed to 

tamoxifen toxicity due to the attenuation of cell death with the caspase-3 selective 

inhibitor DEVD (Cho et al., 2012). A similar study was also carried out by Kim et al 

(2014) in which it was found that lysosomal destabilisation and cathepsin release 

occurred before caspase dependent and caspase independent death occurred (Kim et 

al., 2014). 

 

1.3.5 Aims of Research 

Organotypic cultures using human tissue are desirable models to assess 

retinotoxicity. Human ex vivo retinal explants possess the same structural 

architecture as the in vivo retina, allowing the investigation of toxicity to all retinal 

cell types. The ex vivo human retina has not previously been used to assess 

retinotoxicity and since the retina is known to be particularly susceptible to toxic 

insult, a model which can measure a drug’s potential toxicity to the human retina is 

of interest. This ex vivo human retina model could firstly be used to screen the 

potential retinotoxicity of a drug, and secondly as a tool, to investigate the cause of 

the toxicity. It is for this reason that the primary aim of this thesis was to assess 

human organotypic retinal cultures (HORCS) for the assessment of retinotoxicity. 

Previous work using HORCs has shown that they can be used to investigate retinal 

ganglion cell degeneration. Niyadurupola et al (2011) assessed ganglion cell viability 

within HORC’s over a course of 4 days in different media and no difference in 

THY1 expression was found when cultured in either DMEM/HamF12 medium or 

Neurobasal A medium. The study then assessed the effect of OGD (oxygen/glucose 

deprivation) and NMDA excitotoxicity on ganglion cells and found that a reduction 

in THY1 mRNA occurred as a result of both OGD and NMDA excitotoxicity, 
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showing that treatments expected to kill RGC’s caused a measurable loss of ganglion 

cells, indicating the validity of the system (Niyadurupola et al., 2011). 

It has also been shown that other markers of ganglion cells (NeuN and β-III Tubulin) 

that are used in rodents are suitable for the assessment of ganglion cells in the human 

retina, and that the age of the donor and the post mortem time (within 24h) did not 

affect ganglion cell number / density (Osborne et al., 2015b). 

The specific aims of this research are to firstly characterise the ex vivo human retina 

to gain an understanding of the structure of the retina, and the cell specific markers 

available to utilise within later research. Secondly a range of known retinotoxins will 

be applied to two retinal cell lines (ARPE19 and MIO-M1) and the potency of the 

drugs investigated, this will aid in establishing the retinal cell lines for future use in 

investigating retinotoxicity. Next one of the known retinotoxins investigated on the 

retinal cell lines will be applied to the HORC and the response investigated. Once the 

HORCS response to a known retinotoxin has been investigated, the HORC will then 

be used to investigate mRNA expression of genes relating to a novel retinotoxin. 
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Chapter 2 

2.0 Methods 

2.1 Donor Human Eyes 

Donor eyes were provided by the East Anglian Eye bank (Norfolk and Norwich 

University Hospital, UK) with written consent from the next of kin given for 

research. The eyes were donated for corneal transplant and following removal of the 

cornea the remainder of the eye was used for research. The tissue had full ethical 

approval under the tenets of the declaration of Helsinki, only donated eyes under 24 

hours post-mortem were used for research. In the case of living donor tissue, the eye 

was enucleated during surgery, transported to the lab and the retina dissected within 

1h. To ensure no personal information would identify the donor, a donor number was 

provided. Details of gender, a brief medical history, cause of death and age were 

provided and any eyes with known retina disease were not used for this research. A 

database of these details made for the donor eyes used. 

Donor eyes were transported from the eye bank in Eagles minimum essential 

medium (EMEM) (Sigma-Aldrich, Poole, UK) supplemented with the antibiotics 

gentamicin (50µg/ml), penicillin (10,000units/ml), streptomycin sulphate 

(10,000µg/ml), amphotericin B (an antimycotic, 25µg/ml) (Invitrogen, Paisley, UK). 

The lens was removed and used by the lens research group before the retina was 

dissected. 

In total 180 eyes human eyes were used in the research presented in this thesis from 

donors aged 41 to 92 years old. 

 

2.2 Retinal Dissection 

A 10mm incision was made through the sclera and the ciliary body. The sclera and 

anterior retina was then cut circumferentially below the ora serrata to remove the 

anterior sclera and all of the ciliary body. The remainder of the sclera was rotated to 

use the weight of the vitreous to detach the retina from the RPE. At this point the 

retina’s only attachment point to the sclera was the optic nerve, therefore a small cut 

around the optic nerve head was made. The retina and vitreous was transferred to a 
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60mm Petri dish (Fisher Scientific, Loughborough, UK). The vitreous was then 

carefully removed from the retina and discarded. The retina was then flattened by 

making small incisions from the outer edge of the retina, being careful to avoid areas 

of the retina needed for experimentation. The macula region was then removed using 

a 4mm diameter micro-dissecting trephine (Biomedical Research Instruments, MD, 

USA) and placed into a 35mm petri dish containing 1.5ml serum-free 

DMEM/HamF12 medium (Fisher Scientific). The remainder of the retina in the 

60mm petri dish (Fisher Scientific) was then placed over a template which allowed 

paramacula explants to be taken at a consistent distance and position from the macula 

explant (Figure 2.1). Five paramacula explants were taken and placed into one 35mm 

Petri dish (Fisher Scientific) containing 1.5ml serum-free DMEM/HamF12 medium 

(Fisher Scientific) to randomise the samples prior to experimentation. Explants were 

kept in a humidified incubator at 35°C in 95% air, 5% CO2. Explants were then 

placed into experimental conditions, or if untreated, prepared for further analysis. 

 

2.3 Cell Culture 

Cell lines were cultured in a humidified incubator at 35°C in 95% air, 5% CO2 in 

75cm2 culture flasks (Fisher Scientific). When approximately 90% confluent, cells 

were passaged. The cell medium was firstly aspirated and the cells washed in 5ml 

Dulbecco’s phosphate buffered saline (DPBS) (Invitrogen). The DPBS was aspirated 

and 5ml 0.05% Trypsin-EDTA (Life Technologies, Paisley, UK) was applied to the 

cells and for approximately 3 minutes until the cells were no longer adhered to the 

Figure 2.1 - Diagram of Macula and Paramacula Sample Extraction Technique 
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cell culture flask. The Trypsin-EDTA was neutralised through the addition of 10ml 

10% foetal bovine serum (FBS) (Invitrogen, Paisley, UK) supplemented medium. 

This was transferred to a 25ml universal tube (Fisher, UK) and a sample was taken to 

assess cell number. Cell number was calculated using a haemocytometer (Assistant, 

Sondheim- Rhön, Germany). 

The cell suspension was centrifuged at 90 x G for 10 minutes. The supernatant was 

aspirated and the cell pellet re-suspended in 5ml 10% FBS medium. The cells were 

then seeded into 96 well plates or 35mm dishes for experimental use. Another 75cm2 

culture flask was also seeded to maintain the cell culture. 

 

2.3.1 ARPE-19 

ARPE-19 cells are derived from a primary culture of human retinal pigmented 

epithelial cells (Dunn et al., 1996) and were obtained from the American Type Cell 

Culture (ATCC, Manassas, VA, USA). The cell line expresses immunohistochemical 

cell markers for native human RPE cells such as cellular retinaldehyde-binding 

protein (CRALBP). 

The cell line is grown in DMEM/HamF12 medium with 10% FBS, 2mM L-

glutamine and 50mg/l Pen-Strep (Invitrogen). Cells were seeded at a density of 4,000 

cells per well in a 96 well plate in a volume of 100µl. 

 

2.3.2 MIO-M1 

The MIO-M1 cell is a cell line obtained from Professor Astrid Limb (University 

College London, UK) and is derived from a primary culture of human retinal cells 

(Limb et al., 2002). The cell line expresses the immunohistochemical markers of 

native Human Müller cells such as cellular retinaldehyde-binding protein (CRALBP) 

and Glutamine Synthetase (GS). 

The cell line is grown in DMEM GLUTAMAX medium with 10% FBS, and 50mg/l 

Pen-Strep (Invitrogen). Cells were seeded at a density of 5,000 cells per well in a 96 

well plate in a volume of 100µl. 
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2.4 PCR 

2.4.1 Planar Sectioning 

Retinal explants were frozen in liquid nitrogen following dissection / 

experimentation and stored at -80°C until ready for RNA extraction. A frozen block 

was prepared on which to mount the retinal explant. This involved a chuck being 

prepared with a layer of frozen optimal cutting temperature (OCT, Sakura Finetek, 

Zoeterwoude, Nederlands) on top. The chuck had a line drawn down one side for 

referencing the position within the cryostat. The chuck was then placed in the 

cryosectioner so that the line from the chuck was directly in line with a mark on the 

mounting stage. This is performed so that when the sample is sectioned, the position 

and angle of the mount within the cryostat is the same allowing for level sectioning. 

The OCT was then cryosectioned so that a flat surface was obtained. This was then 

stored in the cryostat on the quickfreeze plate at -40°C. 

Once the retinal explant was dissected, it was placed into a 35mm Petri dish 

containing 1.5ml serum-free DMEM/HamF12. The explant was then floated onto a 

triangular piece of filter paper until directly in the centre of the paper. The paper and 

explant was then lifted out of the medium and the filter paper with the explant in the 

centre was placed on top of the cryosectioned OCT on the chuck. OCT was then 

placed on top of the explant so that the explant lays between two layers of OCT. This 

was then placed back onto the quickfreeze plate to allow the OCT on top of the 

explant to freeze. Once frozen, the explant could be cryosectioned (Figure 2.2). 

To section the explants, the chuck was placed into the cryostat ensuring the line with 

the chuck is in line with the mark on the cryostat. The block was then sectioned at 

30µm sections through the top layer of OCT until the explant was visable. The 

cryostat was then set to section at 20µm. As the sample was approaching each new 

section was placed onto a slide to see if any tissue was present. When the tissue was 

reached each section was placed into an Eppendorf labelled with sample number and 

other relevant information and snap frozen in liquid nitrogen. 
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2.4.2 RNA Extraction 

The Qiagen RNeasy mini kit (Qiagen, Crawley, UK) was used for RNA extraction of 

whole retinal explants, and the RNeasy micro kit (Qiagen, Crawley, UK) was used 

for RNA extraction of planar sections. The protocol provided by Qiagen was 

followed and is described below. Both protocols are similar, however where 

differences arise they are highlighted.  

To extract the RNA, buffer containing β-mercaptoethanol (Sigma-Aldrich, Poole, 

UK) was added and the tissue homogenised by passing through a 20-gauge needle 10 

times. The lysate was then centrifuged at 12,000g for 3 minutes to remove insoluble 

debris. The supernatant was then transferred to a separate Eppendorf containing 70% 

ethanol. Following mixing this was transferred to the RNeasy Minispin column 

(RNeasy Minielute for the Micro kit) and centrifuged at 12,000g for 15 seconds. 

Buffer RW1 was then added and centrifuged at 12,000g for a further 15 seconds. 

DNA was then digested by adding DNase diluted in RDD buffer (Qiagen, Crawley, 

UK) to the column and leaving for 15 minutes. The column was then washed in 

 

Figure 2.2 - Diagram of the Planar Sectioning Technique 
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buffer RW1 twice at 12,000g to remove the DNase. 

Following this Buffer RPE (mixed with 100% ethanol) was added to the column and 

centrifuged for another 15 seconds at 12,000g. Buffer RPE was then added to the 

column again and centrifuged for 2 minutes at 12,000g to dry the membrane. If using 

the Micro Kit, 80% ethanol was then added to the column and centrifuged at 12,000g 

for 2 minutes, before adding the column to a new collection tube and centrifuging at 

12,000g for 5 minutes to dry the column. To collect the RNA, 50µl of RNase free 

water (Qiagen, Crawley, UK) was then added to the Mini kit column, or 14µl to the 

Micro kit column and centrifuged for 1 minute at 12,000g. 

The concentration of RNA was measured in duplicate using a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies, Wilmington, USA). 260/280 and 

260/230 ratios were also measured and a ratio of ≥1.8 for each was suitable for use. 

 

2.4.4 RNA Clean-up 

RNA clean-up (sodium acetate precipitate method) was performed on RNA extracted 

samples with a either a 260/280 or a 260/230 value of <1.8. 

During the precipitate stage either 3M sodium acetate or 5M ammonium acetate at 

pH 4.5 was added at 1/10th of the RNA sample volume. 2.5 X the volume of pre 

chilled 100% ethanol was then added and precipitated overnight at -20°C. 

The recovery stage began with a 12,000g spin at 4°C for 15 minutes. The 

Supernatant was then discarded. 0.5ml of ice cold 75% Ethanol was then added and 

centrifuged at 12,000g at 4°C for 15 minutes. The supernatant was discarded and the 

RNA sample air dried before being re-suspended in RNase-free water. 

 

2.4.5 cDNA 

Before performing PCR, the RNA needs to be converted into complimentary DNA 

(cDNA) so that PCR can be conducted. Depending on the quantity of RNA extracted, 

RNA was diluted to either 5ng/µl or 10ng/µl in RNase free water. Random primers 

(Promega, Southampton, UK) were mixed with dNTP (Invitrogen, Paisley, UK) and 

added to each sample before being briefly centrifuged to mix the two. The samples 
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were then placed in a Peltier Thermal Cycler DNA engine (PTC-200, MJ Research, 

Minnesota, USA) and heated to 65°C for 5 minutes and then chilled on ice. 5x first 

strand buffer, dithiothreitol (DTT) (Invitrogen, Paisley) and RNase inhibitor 

(Promega, Southampton, UK) were mixed and added to the samples and incubated 

for 10 minutes at 25°C and then at 42°C for 2 minutes. Samples were then chilled on 

ice and Superscript II Reverse Transcriptase (Invitrogen, Paisley, UK) was added. 

The Eppendorf’s were then centrifuged for 15 seconds to mix the contents. The 

samples were then incubated at 42°C for 50 minutes and then at 70°C for 15 minutes 

before being stored at -20°C. 

 

2.4.6 PCR 

QRT-PCR was conducted using the Applied Biosystems 7500 fast real-time PCR 

System (Applied Biosystems, Warrington, UK). cDNA was diluted with nucleotide 

free water to 0.5ng/ml and duplicates of 5ng total cDNA added to each well of the 

microAmp Optical 96 well reaction plate (Applied Biosystems, Warrington, UK). 

Mastermix, primers / probes and nuclease free water were all prepared and mixed 

together so that a total volume of 15µl per well was obtained at a ratio of: Mastermix 

8.33µl, primers / probe 1.25µl and nuclease free water 5.42µl. This was then added 

to each well to bring the total volume of the well to 25µl. 

When the plate had been loaded, it was sealed with PCR film (Thermo Scientific, 

Surrey, UK). The first stage of the PCR reaction involved heating the plate to 50°C 

for 2 minutes, followed by heating the plate to 95°C for 10 minutes to reduce non-

specific amplification. The cDNA was then amplified (40 cycles of heating to 95°C 

for 15 seconds and cooling to 60°C for 60 seconds) with the heating stage denaturing 

double stranded DNA and the cooling process allowing new primers to bind to the 

single strand DNA template. 
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Table 2.1 – List of Primers / Probes Used 

Primer / Probe Number Reporter Source 

Topoisomerase 

(TOP1) 

 FAM Primer Design, 

Southampton, UK 

Cytochrome C1 

(CYC1) 

 FAM Primer Design, 

Southampton, UK 

THY1 Hs00174816_m1 FAM Applied 

Biosystems, 

Warrington, UK 

RBFOX3 Hs00876928_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

AHNAK2 

 

Hs00292832_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Protein Kinase C 

alpha  

 

Hs00925193_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Choline 

acetyltransferase 

Hs00252848_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Calbindin 

 

Hs01077197_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Retinaldehyde 

Binding Protein 1 

Hs00165632_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

GFAP 

 

Hs00909236_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Heat Shock Protein 

70 

 

Hs01040501_sh 

 

FAM Applied 

Biosystems, 

Warrington, UK 
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Recoverin Hs00610056_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Cyclin Dependent 

Kinase 5 

Hs00358991_g1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Cyclin Dependent 

Kinase 11A/B 

Hs02341397_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Cyclin Dependent 

Kinase 16 

Hs00178837_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Cyclin Dependent 

Kinase 17 

Hs00176839_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

Cyclin Dependent 

Kinase 18 

Hs00384387_m1 

 

FAM Applied 

Biosystems, 

Warrington, UK 

 

2.4.7 PCR Analysis 

Data obtained from PCR was analysed in one of three ways depending on the 

experiment conducted. 

For whole explant data looking at expression levels across the macula and 

paramacula explants, data obtained from the PCR was quantified based on standard 

curve values, and then normalised to the housekeeping genes. The housekeeping 

genes used were; topoisomerase 1 (TOP1) which is involved in the unwinding of 

DNA (Lodish, 2000) and cytochrome C-1 (CYC1) a mitochondrial transmembrane 

protein involved in the electron transfer chain (Kokhan et al., 2010). The 

housekeeping genes were chosen because they showed the least variation between 

explants and changed the least with time in culture (Sanderson lab, unpublished 

data). 
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The delta Ct method was adopted to assess changes in expression with CHQ 

treatment. This method calculates a fold change in expression by using the following 

equation (Qiagen, 2016): 

∆Ct1 = Ct (Target A‐treated) – Ct (Ref B‐treated) 

∆Ct2 = Ct (Target A‐control) – Ct (Ref B‐control) 

∆ ∆ Ct = ∆Ct1 (treated) – ∆Ct2 (control) 

2∆∆Ct Normalized target gene expression level = 2∆∆Ct 

 

In experiments using planar sectioned retina, the level of mRNA was assessed using 

a standard curve and plotted directly. The standard curve mRNA was prepared from 

a combination of whole macula and paramacula explants converted to cDNA. 20, 10, 

5, 2.5, 1.25 and 0.625ng of cDNA was then loaded into a PCR plate and expression 

of the gene of interest analysed and the standard curve plotted. The Ct value and ng 

of cDNA from the standard curve provided a line equation which could in turn be 

used to obtain a value of “ng cDNA” in future experiments. Data was not normalised 

to housekeeping genes as these vary in level across the retinal sections. 

 

2.5 Immunohistochemistry 

2.5.1 Cryosectioning 

Retinal explants were fixed in 4% formaldehyde for 24 hours. They were then 

dehydrated in 30% sucrose solution for a further 24 hours to prevent freeze damage 

to the tissue. After this, aluminium foil cups (1 – 2cm in height, 1.5cm in diameter) 

of OCT were prepared. The explants were then placed vertically into the OCT using 

forceps, placed onto dry ice to freeze and stored at -80°C. Blocks were mounted onto 

the chuck using OCT and placed into the cryostat (Bright OTF 5000 Cryostat, Bright 

Instruments, Huntingdon, UK) and sectioned at 30µm (maximum sectioning 

thickness) until the retinal sample was 4mm in diameter (middle of the sample), 

measured using a digital vernier calliper (Clarke, Essex, UK). When the centre of the 

samples was reached it was sectioned at 13µm and placed onto either Tespa (3-
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triethoxysilylpropylamine) coated slides (Sigma-Aldrich, Poole, UK), or superfrost 

plus slides (Fisher Scientific) with 4 sections placed onto each slide. Sections were 

not consecutive to make sure that different cells were imaged; after a section was 

placed onto the slide, the two subsequent sections were discarded before collection of 

the following section. Slides were stored at -20°C. 

 

2.5.2 Fluorescence Immunohistochemistry 

Slides were washed in PBS three times (10 minutes each) to remove the OCT. 

Retinal sections then had circles drawn around them using a wax pen. Sections were 

then incubated in blocking solution (5% normal goat serum, 0.2% TritonX-100 

(Sigma-Aldrich, Poole, UK) prepared in PBS) for 90 minutes at room temperature. 

The blocking solution was carefully wiped off avoiding damage to the samples or the 

wax ring and the primary antibody (Table 2.2), prepared in blocking solution, was 

added to the sections and incubated for 24 hours at 4°C in a square Petri dish (Fisher, 

UK)with a damp piece of tissue in the tray to prevent dehydration. 

 

Table 2.2 Primary antibody’s used for immunohistochemistry 

Target Antibody Source and 

Clonality 

Dilution Source 

Choline 

acetyltransferase 

Rabbit Polyclonal 1:200 Millipore, 

Watford, UK 

Recoverin Rabbit Polyclonal 1:500 Millipore, 

Watford, UK 

Calbindin D-28K Mouse Monoclonal 1:300 Sigma-Aldrich, 

Dorset, UK 

Protein Kinase C Mouse Monoclonal 1:200 Santa Cruz, 

Bergheimer, 

Germany 

Thy1 Mouse Monoclonal 1:200 Millipore, 

Watford, UK 
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Neuronal Nuclei 

(NeuN) 

Mouse Monoclonal 1:200 Millipore, 

Watford, UK 

Neuronal Enolase Rabbit Polyclonal Pre-

diluted 

Thermo Scientific, 

Northumberland, 

UK 

Tubulin Mouse Monoclonal 1:200 Promega, 

Southampton, UK 

Glutamine 

synthetase 

Rabbit Polyclonal 1:200 Millipore, 

Watford, UK 

AHNAK2 Mouse Polyclonal 1:500 Abcam, 

Cambridge, UK 

Glial Fibrillary 

Acidic Protein 

(GFAP) 

Rabbit Polyclonal 1:500 Dako, Cambridge, 

UK 

Active Caspase 3 Rabbit Polyclonal 1:3000 Abcam, 

Cambridge, UK 

 

After 24h the primary antibody was removed and three 10 minute washes with PBS 

performed. Secondary antibody (Table 2.3) prepared in blocking solution was then 

added to the samples and incubated at room temperature for 2 hours. After 

incubation the slides were washed in PBS three times (10 minutes each) and then 

DAPI (Molecular Probes, Leiden, Netherlands) at 0.5µg/ml in PBS for 10 minutes. 

Following this, slides were again washed three times (for 10 minutes each). The 

slides were then dried and a drop of hydromount added to each sample before sealing 

with a coverslip. Slides were then allowed to set in the dark for 12 hours before 

imaging. Fluorescence microscopy was conducted on a wide-field Zeiss Axiovert 

200M fluorescence microscope and the images analysed using Zeiss Axiovision 4.8 

software. 
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Table 2.3 – Secondary antibody list 

Target Antibody Source 

and Fluorophore 

Dilution Source 

Mouse IgG (H+L) Goat AlexaFluor 

488 

1:1000 Invitrogen, 

Paisley, UK 

Mouse IgG (H+L) Goat AlexaFluor 

568 

1:1000 Invitrogen, 

Paisley, UK 

Rabbit IgG (H+L) Goat AlexaFluor 

568 

1:1000 Invitrogen, 

Paisley, UK 

 

 

2.5.3 Colorimetric Immunohistochemistry 

2.5.3.1 Ventana Discovery 

The Ventana Discovery (Roche, Burgess Hill, UK) is an automated 

immunohistochemical and in situ hybridization platform which has the ability to 

perform multiple immunohistochemical assays at the same time. This platform was 

used for colorimetric immunohistochemistry with all reagents purchased from Roche 

(Burgess Hill, UK), the customised protocol input was: 

1. Rinse slide with reaction buffer 

2. Apply coverslip (DXT) 

3. Warm slide to 37°C and incubate for 4 minutes 

4. Disable slide heater, incubate for 8 minutes 

5. Rinse slide with reaction buffer 

6. Apply coverslip (DXT) 

7. Warm slide to 37°C and incubate for 4 minutes 

8. Rinse slide with reaction buffer 

9. Apply coverslip (DXT) 

10. Apply one drop of inhibitor CM, incubate for 4 minutes 

11. Rinse slide with reaction buffer 

12. Apply coverslip (DXT) 

13. Apply one drop of primary antibody, incubate for 32 minutes 
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14. Rinse slide with reaction buffer, then apply coverslip X 3 

15. Apply one drop of secondary antibody, incubate for 20 minutes 

16. Rinse slide with reaction buffer, then apply coverslip X 3 

17. Apply one drop of DAB CM and one drop of H2O2 CM, incubate for 8 

minutes 

18. Rinse slide with reaction buffer 

19. Apply coverslip (DXT) 

20. Apply one drop of copper CM, incubate for 4 minutes 

21. Rinse slide with reaction buffer 

22. Apply coverslip (DXT) 

 

2.5.3.2 TUNEL Assay 

Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labelling (TUNEL 

assay) (Roche, Burgess hill, UK) was used to detect cells undergoing apoptosis. 

Slides underwent the standard protocol for the Ventana Discovery (section 2.5.3.1), 

in which the primary antibody stage included application of TUNEL label (TUNEL-

enzyme 1: 9 TUNEL-label) and was incubated for 1 hour at 37°C. At the secondary 

antibody stage rabbit anti-FITC (Invitrogen, Paisley, UK) was applied. 

 

2.5.3.3 Colorimetric Imaging 

Slides were scanned using the Aperio Scanscope XT (Leica Biosystems, Milton 

Keynes, UK), and images analysed using Aperio Imagescope software (Leica 

Biosystems, Milton Keynes, UK). Image analysis involved the quantification of the 

number of positive pixels (positive pixel count), in which a threshold is set for both 

positive pixels (antibody of interest) and negative pixels (haematoxylin stain). The 

number positive pixels (antibody of interest) is expressed as a percentage of all 

positive and negative pixels (haematoxylin stain), and the result given as a % 

positive pixel count. 
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2.6 Western Blot 

2.6.1 Protein extraction. 

Following experimental conditions, mammalian protein extraction reagent M-PER 

(Thermo Scientific) with 1:100 of halt phosphatase inhibitor cocktail and 1:100 

protease inhibitor cocktail along with 1:100 (0.5M) EDTA (Thermo Scientific, 

Rockford, IL, USA) was added to the retinal explant. The tissue was lysed using an 

Eppendorf pestle and lysates spun at 16,000g for 10 minutes at 4°C. The supernatant 

was collected and transferred to a 0.5ml Eppendorf and stored at -80°C until ready to 

use. 

 

2.6.2 BCA Assay 

A bicinchoninic assay (BCA) was carried out on the tissue lysates to determine the 

quantity of protein. Protein standards ranging from 0-1000 µg/mL were prepared by 

diluting bovine serum albumin (BSA) (Sigma-Aldrich) in M-PER. Protein standards 

were applied to a 96 well plate in triplicate, along with each sample in duplicate. 

Each well then received ddH20 and BCA reagents A and B (Thermo Scientific) 

mixed at a ratio of 10:50:1. The plate was then covered and placed on a shaker for 1 

minute before being incubated at 37°C for 1 hour. A BMG Labtech plate reader was 

used to measure the absorbance at 550nm. The protein concentrations of the 

unknown samples were calculated from the standard curve. 

 

2.6.3 Sample Preparation 

Samples for Western blots were diluted with ddH20 to the concentration of the lowest 

sample. Loading Buffer (4%SDS (Melford Laboratories, Ipswich, UK), 0.01% 

bromophenol blue (Sigma-Aldrich), 30% glycerol (Sigma-Aldrich), 12.5% β-

mercaptoethanol (Sigma-Aldrich) and 160mM Tris (Sigma-Aldrich) pH 6.8) was 

added to each sample and centrifuged at 16,000g for 2 minutes before heating to 

100°C for 5 minutes. 
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2.6.4 SDS-PAGE 

10% acrylamide, sodium docecyl sulphate (SDS-PAGE) gels were made 24h before 

use. The upper gel consisted of 5% acrylamide (diluted from 40% acrylamide 

solution (BIO-Rad) in ddH20), 4X upper gel buffer (0.5M Tris (Sigma-aldrich), 0.4% 

w/v SDS (Sigma-Aldrich), pH 6.8), ammonium persulphate and TEMED (Sigma-

Aldrich). The lower running gel consisted of 10% acrylamide (via dilution of 40% 

Acrylamide solution (BIO-Rad) in ddH20), 4X lower gel buffer (1.5M Tris, 0.4% 

w/v SDS, pH 8.8), ammonium persulphate and TEMED. 

 

2.6.5 Gel Electrophoresis 

Gels were placed into the electrophoresis tank (Bio-Rad Laboratories, Hercules, CA, 

USA) filled with running buffer (250mM Tris, 1.92M glycine and 1% SDS (Sigma-

Aldrich)). ECL DualVue molecular weight marker (GE healthcare, 

Buckinghamshire, UK) was loaded into the first well, and samples with loading 

buffer into the subsequent wells. Electrophoresis was conducted at 4°C with 30 

milliamps per gel and was halted once the bromphenol blue dye reached the end of 

the gel. 

 

2.6.6 Protein Transfer 

The SDS-PAGE gels were incubated in transfer buffer (48mM Tris, 39mM glycine 

(Fisher), 4% w/v methanol (Fisher), 0.0375% w/v SDS, pH 8.3) for 30 minutes. A 

polyvinylidene difluoride (PVDF) membrane (Perkin Elmer Life Sciences) was 

activated via submersion in 100% methanol for 30 seconds. Proteins were transferred 

onto the membranes by sandwiching the gel and the PVDF membrane between thick 

blotting paper which was placed on a trans-blot semi-dry transfer cell (Bio-Rad) at a 

constant 15V and a current of 0.03 A per gel for 30 minutes. 
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2.6.7 Immunoblotting 

Post protein transfer the gels were discarded and PVDF membranes washed in PBS 

(3 times for 5 minutes). Membranes were blocked for 1 hour in PBS-T (5% w/v 

reduced fat milk powder (Marvel), 0.1% v/v Tween-20 (Fisher) in PBS). PBS-T was 

removed and membranes were placed into PBS-T containing the primary antibody 

(Table 2.4) overnight at 4°C. Membranes were then washed in PBS-T (6 times for 5 

minutes), and placed in PBS-T containing 1:1000 secondary antibody (Table 2.4) for 

1 hour at room temperature. Membranes were washed in PBS-T (6 times for 5 

minutes) and then PBS containing 0.1% w/v Tween-20 (once for 10 minutes). 

 

2.6.8 Development 

The membranes were immersed in ECL Plus solution (ECL Plus Western Blotting 

Detection System, GE Healthcare) and kept in the dark for 5 minutes at room 

temperature. The ECL Plus solution was removed and the membrane placed into a 

film cartridge and taken to a dark room. In the dark, Amersham Hyperfilm ECL 

photographic film (GE healthcare) was exposed to the membrane. The photographic 

film was then passed through Kodak GBX developing solution (Kodak, Rochester, 

NY, USA), Stop Solution (SB80 photosol, Basildon, UK) and fixing solution 

(Hypam fixer, Ilford, Cheshire, UK). Bands on the photographic film were scanned 

and the area of the band measured using Image J (Wayne Rasband, National 

Institutes of Health, USA). β-actin was used as the loading control. To view multiple 

antibodies, membranes were stripped by washing twice (15 minutes each) in 200mM 

NaOH (Sigma-Aldrich) before washing for 5 minutes in PBS. The membrane would 

then be blocked for one hour in PBS-T before application of the new primary 

antibody. 
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Table 2.4 – Antibodies Used for Western Blotting 

Antibody Clonality Target 

protein Mw 

(KDa) 

Dilution Company 

Primary 

antibodies 

    

Anti-PARP Rabbit 

Monoclonal 

116, 89 1:1000 Cell Signalling 

Technology 

(Danvers, MA, 

U.S.A) 

Anti-β-actin Rabbit 

Monoclonal 

45 1:1000 Cell Signalling 

Technology 

(Danvers, MA, 

U.S.A) 

Secondary 

antibodies 

    

Anti-Rabbit 

HRP 

Conjugate 

IgG Donkey - 1:1000 GE Healthcare 

(Buckinghamshire, 

UK) 

Anti-Mouse 

HRP 

Conjugate 

IgG Sheep - 1:1000 GE Healthcare 

(Buckinghamshire, 

UK) 

 

 

 

2.7 LDH Assay 

The cytotoxicity detection kit (Roche, Indianopolis, IN, USA) (LDH assay) was 

performed to detect levels of necrosis. It achieves this by assessing the levels of the 

cytosolic enzyme Lactate Dehydrogenase (LDH) released into the culture medium 

when cell membrane integrity is lost. For explants, tissue was first removed from the 

culture dish and fixed for immunohistochemical anlaysis. The medium was pipetted 
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into an Eppendorf and centrifuged for 5 minutes at 16,000g to remove any cell 

debris. It was then diluted 1:10 in the same medium before placing 100µl into a 96 

well plate (Fisher Scientific, Loughborough, UK). For cells, medium was removed 

from the culture (Fisher Scientific), and 100µl placed directly into a new 96 well 

plate (Fisher Scientific) for assessment. 

Alongside this, 100µl of fresh medium was added to three wells so that the 

absorbance of the background could be measured and subtracted from the absorbance 

of the samples. The reaction mixture was then prepared. This consisted of the 

catalyst (Diaphorase/NAD+) and dye solution (Iodotetrazolium chloride (INT) and 

sodium lactate) mixed at a ratio of 1:45 (catalyst : dye solution). This was added to 

the samples at a 1:1 ratio. The plate was incubated for 15 minutes at 37°C and 

readings taken at 490nm and 660nm at 5 minute intervals. The results used for 

analysis were from the 15 minute time point. 

The equation used to calculate total LDH release was: 

LDH absorbance = Sample absorbance (490nm) – background absorbance (660nm) – 

background medium absorbance (490, 660nm). 

LDH release data was expressed in one of two ways when analysing cell data. Either 

a standard curve was run and the data expressed as mU/mL LDH, or one row of cells 

was lysed using 2% Triton X (Sigma-Aldrich) and the LDH released expressed in 

comparison to this as % total LDH. Explant LDH release data was measured and 

expressed as % Control. 

 

2.8 MTS Assay 

An MTS assay (96 Aqueous one solution proliferation assay, (Promega, 

Southampton, UK)) was used to assess cell viability. The MTS assay contains a 

tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetra-zolium) and an electron coupling reagent (phenazine 

ethosulphate). Metabolically active cells can reduce the tetrazolium compound into a 

coloured formazan product (soluble in culture medium) causing a colour change. 

Therefore the level of colour change can be used to assess viability of the cells. 

The assay was run in triplicate and applied to cells at a 1:10 dilution (mixed in the 
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appropriate medium according to the cell type) for 1 hour at 35°C. Absorbance was 

measured at 490nm using a BMG Labtech plate reader and background readings of 

medium and MTS were taken. For retinal explants 1.5ml of MTS solution with 

DMEM/HamF12 medium at a 1:10 ratio was applied to the 35mm culture dish 

containing the explant and incubated at 35°C for 1 hour. The medium was then 

extracted and mixed well before being measured at 490nm. 

The viability was calculated as follows: 

% cell viability = ((absorbance treated –background) / (absorbance control – 

background)) * 100 
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Chapter 3 

3.0 Characterisation of retinal cell markers in the human retina 

3.1 Introduction 

The retina consists of 10 different layers with multiple cell types distributed at 

different densities throughout these layers. There are three nuclear layers: the outer 

nuclear layer consisting of the cell bodies of the photoreceptors (Rods and Cones), 

the inner nuclear layer consisting of the cell bodies of amacrine cells, horizontal 

cells, bipolar cells and the non-neuronal Müller cells and finally the ganglion cell 

layer, consisting of the cell bodies of retinal ganglion cells. 

To assess location and density of these cells, retinal cell markers may be utilised, and 

in order to establish the ex vivo human retina as a model to assess retinotoxicity, it is 

important to determine the validity of such markers in the human retina. A general 

marker of neuronal cells is neuronal specific enolase. Neuronal enolase is an enzyme 

involved in the glycolysis pathway (Bonner et al., 2000), immunohistochemically it 

has been studied in the human retina by Li et al (1995) where it was found that the 

highest density of staining was located within the inner segments of cone 

photoreceptors. Contrary to this another group which studied neuronal enolase in the 

retina found staining to be less specific, staining processes of all neurons within the 

human retina (Molnar et al., 1984). 

As a marker of photoreceptors, recoverin may be used. Recoverin is a calcium 

binding protein involved in the phototransduction of photoreceptors (Dizhoor et al., 

1991). Recoverin is known to be expressed in both rod and cone cells (Gunhan et al., 

2003) and is therefore a marker for all photoreceptors within the retina. 

Commonly used markers of the inner nuclear layer cells; horizontal, bipolar and 

amacrine are calbindin (a calcium binding protein), protein kinase C α (PKCα, an 

enzyme involved with the phosphorylation of proteins and cell signalling (Lameirao 

et al., 2009) and choline acetyltransferase (ChAT, an enzyme involved in the 

synthesis of acetyl choline) respectively. Chiquet (2005) showed that calbindin 

stained a multitude of cells in the human retina, with cone cells and horizontal cells 

being primarily stained and some bipolar cells and amacrine cells (Chiquet et al., 

2005), whereas PKCα has been used to immunostain rod bipolar cells (it does 
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however only mark rod ON bipolar cells) (Haverkamp et al., 2003), (Kolb et al., 

1993). ChAT has been used to immunolabel cholinergic amacrine cells and displaced 

amacrine cells previously (Hutchins and Hollyfield, 1987). 

Ganglion cell markers have been extensively investigated in the human retina by the 

Norwich eye research group, THY1 (a cell surface glycoprotein (Partida et al., 

2012)) and NeuN (a neuronal specific nuclear protein (Mullen et al., 1992)) have 

been used to provide information regarding changes in the number of ganglion cells 

with oxygen and glucose deprevation and changes with hydrostatic pressure 

(Osborne et al., 2015a), and NMDA excitotoxicity (Niyadurupola et al., 2011). 

Recent data published by Osborne et al (2015) has also shown that ganglion cell 

marker βIII Tubulin, a protein within microtubule used in rodent studies is also 

suitable for the assessment of ganglion cells in the human retina (Osborne et al., 

2015b). Ma (2014) has also found with use of a gene array that AHNAK (a scaffold 

protein (Marg et al., 2010)) and HSP1AB (HSP70, a protein which increases 

expression in response to elevated temperature (Kayama et al., 2011)) are also 

expressed at high levels in the human retinal ganglion cell layer, potentially 

indicating new markers of ganglion cells. 

Müller cells may be investigated with the use of glutamine synthetase (an enzyme 

responsible for the breakdown of excess glutamate), this has been shown in rat retina 

(Riepe and Norenburg, 1977), pig retina (Oh et al., 2011) as well as other species. 

For the ex vivo retina to be established as a suitable model for the assessment of 

retinotoxicity, it is important to compare the in vivo retina to the ex vivo retina to be 

aware of any changes which may occur during the post mortem period. In order to 

make such a comparison, human retina was obtained from eyes that had been 

removed during surgery. Allowing for the minimum time possible between the 

functioning retina in vivo, to experimental conditions. 

Another important factor when establishing a model is the ability to compare treated 

samples to a control, for this all samples must be equivalent at the start. QRT PCR 

can be used to investigate the expression levels of cell specific mRNA, if samples 

possess the same expression values across all samples, any change in expression 

during culture with a retinotoxin may be attributed to the treatment. 
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The aim of the research presented in this chapter is to build a cellular profile of the 

human retina, throughout the nuclear layers of the retina and across the macula and 

paramacula region, determining the mRNA expression profiles of cell specific 

marker genes of the major retinal cell types and localization of marker proteins by 

immunohistochemistry. A comparison between the post mortem donors and living 

donors will also be made to investigate any differences. This characterisation sets the 

baseline characteristics of the model prior to development of the model for 

investigation of retinotoxicity. 
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3.2 Results 

3.2.1 Immunohistochemical analysis of retinal cell marker proteins in the 

human retina 

In initial experiments the morphology of the retina was shown using antibodies to 

immune label specific cells within each layer, starting with the photoreceptor layer 

and ending with the ganglion cell layer. All retinal samples were processed directly 

following dissection. 

 

3.2.1.1 Neuronal Specific Enolase 

 

 

Neuron specific enolase was selected as a marker of neurons in the human retina. 

Figure 3.1 A-C show staining in the living human retina from neuron specific 

enolase. Staining can be found in the ganglion cell layer and the inner nuclear layer, 

 

Figure 3.1 - Neuronal Specific Enolase Presence in the Live and Post Mortem Human 

Paramacula Retina 

Cross section of the paramacula human retina immunostained for neuronal specific enolase (red). 

Fig 3.1 A - C shows immunostaining from a cross section of retina from a living donor. Fig 3.1 D 

- E shows the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 
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however the highest intensity of staining was seen in the photoreceptor layer. Figure 

3.1 D-E displays staining from a post mortem donor in which a similar pattern of 

staining was found. 

 

3.2.1.2 Recoverin 

 

 

Recoverin was used as an immunohistochemical marker of photoreceptor cells. 

Figure 3.2 showed recoverin to stain the photoreceptor layer, including cell bodies in 

the outer nuclear layer and photoreceptor outer segments. This was similar in both 

the living donor (Figure 3.2 A-C) and the post mortem donor (Figure 3.2 D-F), 

however more outer segments can be seen in the retina of the live donor. 

  

 

Figure 3.2 - Recoverin Presence in the Live and Post Mortem Human Paramacula Retina 

Cross section of the paramacular human retina immunostained for Recoverin (red). Fig 3.2 A - C 

shows the immunostaining from a cross section of retina from a living donor. Fig 3.2 D - E shows 

the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 
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3.2.1.3 Calbindin 

 

 

Calbindin was selected as a immunohistochemical marker of horizontal cells. 

Calbindin identified multiple cells in both the living donor and the post mortem 

human retina (Figure 3.3). Remnants of some photoreceptor outer segments were 

stained in the living donor as well as the post mortem donor, however interestingly, 

no cell bodies were stained in the outer nuclear layer. Both donors displayed staining 

of cell bodies in the inner nuclear layer, and to a lesser extent cell bodies in the 

ganglion cell layer, the nerve fibre layer also displayed staining in both. 

  

 

Figure 3.3 - Calbindin Presence in the Live and Post Mortem Human Paramacula Retina 

Cross section of the paramacular human retina immunostained for Calbindin D-28K (green). Fig 

3.3 A - C shows the immunostaining from a cross section of retina from a living donor. Fig 3.3 D 

- E shows the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 
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3.2.1.4 Protein Kinase C α 

 

 

PKCα was selected as a marker of bipolar cells within the inner nuclear layer (Figure 

3.4). It identified a specific subset of cells in the inner nuclear layer of both the living 

donor and the post mortem donor, processes which extend from the inner nuclear 

layer to the ganglion cell layer can also be seen. 

Supplementary data 1 (SPD 1) also shows PKCα staining across a macula explant, 

staining was found to be in the inner nuclear layer throughout the macula explant 

apart from the fovea where PKCα was absent. 

  

 

Figure 3.4 - Protein Kinase C α Presence in the Live and Post Mortem Human Paramacula 

Retina 

Cross section of the paramacular human retina immunostained for PKCα (green). Fig 3.4 A - C 

shows the immunostaining from a cross section of retina from a living donor. Fig 3.4 D - E shows 

the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 
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3.2.1.5 NeuN 

 

 

NeuN was selected to identify retinal ganglion cells in the ganglion cell layer. NeuN 

immunostained cell bodies within the ganglion cell layer of both the living donor and 

the post mortem donor. Some cell bodies were also stained in the inner nuclear layer, 

although these were infrequent. 

  

 

Figure 3.5 - NeuN Presence in the Live and Post Mortem Human Paramacula Retina 

Cross section of a paramacular human retina immunostained for NeuN (green). Fig 3.5 A - C 

shows the immunostaining from a cross section of retina from a living donor. Fig 3.5 D - E shows 

the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 
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3.2.1.6 THY1 

 

 

THY1 was also selected as a retinal ganglion cell marker. THY1 staining was seen in 

the retinal ganglion cell layer of both the living donor and the standard donor. 

  

 

Figure 3.6 - THY1 Presence in the Live and Post Mortem Human Paramacula Retina 

Section of a paramacular human retina immunostained for THY1 (green). Fig 3.6 A - C shows the 

immunostaining from a cross section of retina from a living donor. Fig 3.6 D - E shows the 

immunostaining from a cross section of retina from a post mortem donor (pre-24h). 

 

 

 

 

A B C

ED F

GCL

INL

ONL

GCL

INL

ONL

100μm



79 

 

3.2.1.7 βIII Tubulin 

 

 

βIII Tubulin was also selected as a retinal ganglion cell marker. Tubulin 

immunostaining was present within cell bodies of the ganglion cell layer, and within 

the nerve fibre layer. This was consistent between the living donor and the post 

mortem donor as shown in Figure 3.7. 

  

 

Figure 3.7 - βIII Tubulin Presence in the Live and Post Mortem Human Paramacula Retina 

Cross section of the paramacula human retina immunostained for Tubulin (green). Fig 3.7 A - C 

shows the immunostaining from a cross section of retina from a living donor. Fig 3.7 D - E shows 

the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 

A B C

ED F

GCL

INL

ONL

GCL

INL

ONL

100μm



80 

 

3.2.1.8 Glutamine Synthetase 

 

 

Glutamine synthetase was selected as a marker of Müller cell presence within the 

human retina. Throughout the retina of the living donor (Figure 3.8 A-C) a distinct 

staining was seen in the inner retina corresponding to the area where the Müller cell 

end feet would be found. Müller cell bodies were also stained within the inner 

nuclear layer and the processes from these can be seen extending into the outer 

nuclear layer. A similar staining pattern was found in the retina of the post mortem 

donor (Figure 3.8 D-E), however the staining appeared to be stronger in the outer 

nuclear layer. 

 

  

 

Figure 3.8 - Glutamine Synthetase Presence in the Live and Post Mortem Human 

Paramacula Retina 

Cross section of the paramacula human retina immunostained for Glutamine Synthetase (green). 

Fig 3.8 A - C shows the immunostaining from a cross section of retina from a living donor. Fig 

3.8 D - E shows the immunostaining from a cross section of retina from a post mortem donor 

(pre-24h).  
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3.2.1.9 AHNAK2 

 

 

AHNAK2 was selected as a marker of the inner retina. AHNAK2 was found to 

strongly stain the nerve fibre layer in both the post mortem donor and the living 

donor, ganglion cell bodies were also stained with both donors. A small amount of 

staining was also apparent in the outer plexiform layer of the living donor. 

 

 

  

 

Figure 3.9 - AHNAK2 Presence in the Live and Post Mortem Human Paramacula Retina 

Cross section of the paramacula human retina immunostained for AHNAK2 (green). Fig 3.9 A - 

C shows the immunostaining from a cross section of retina from a living donor. Fig 3.9 D - E 

shows the immunostaining from a cross section of retina from a post mortem donor (pre-24h). 

A B C

ED F

GCL
INL

ONL

GCL

INL

ONL

100μm



82 

 

3.2.1.10 Heat Shock Protein 70 

 

 

Heat Shock Protein 70 (HSP70) was also investigated due to data obtained by Ma et 

al (2012) which indicated high levels of HSP70 mRNA in the ganglion cell layer. 

The living donor (Figure 3.10 A-C) showed HSP70 to be present in all nuclear 

layers, however the strongest staining was found to be in the ganglion cell layer, 

whereas the post mortem donor (Figure 3.10 D-E) displayed widespread staining 

throughout the retina. 

  

 

Figure 3.10 - Heat Shock Protein 70 Presence in the Live and Post Mortem Human 

Paramacula Retina 

Cross section of the paramacula human retina immunostained for Heat Shock protein 70 (Red). 

Fig 3.10 A - C shows the immunostaining from a cross section of retina from a living donor. Fig 

3.10 D - E shows the immunostaining from a cross section of retina from a post mortem donor 

(pre-24h). 
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3.2.2 mRNA Expression of Cell Specific Markers Within Whole Macula and 

Paramacula Samples 

Distribution of the mRNA of key cell specific markers was investigated throughout 

the five paramacula samples and the macula sample in order to investigate the 

density and distribution of cell specific markers throughout the human retina. 

 

 

Figure 3.11 - Expression of Outer and Inner Nuclear Layer Markers in Whole 

Explants. Expression of outer nuclear layer cell marker RCVN and inner nuclear layer 

markers CALB1, PKC and CHAT within paramacula samples 1 -5 (mean + SEM n=5) and 

macula samples (mean + SEM n=4) relative to the housekeeping genes TOP1 and CYC1. * 

Indicates a significant difference between the sample and all other samples (P<0.05) (One-

way ANOVA with Tukeys post hoc test) 

A

C

B

D

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

*



84 

 

Expression of the outer nuclear layer cell marker RCVN and inner nuclear layer 

markers CALB1, PKCa and CHAT was investigated within the 5 paramacula and the 

macula samples (Figure 3.11) to investigate the distribution and density of 

photoreceptor cells, horizontal cells, bipolar cells and amacrine cells (respectively) 

within these regions. 

RCVN is a marker of photoreceptors. RCVN showed a trend of increasing expression 

from paramacula sample 1 to paramacula sample 5. A trend of lower expression 

within the macula compared to all paramacula samples was also seen, however 

variability was high and no significant differences were seen. 

CALB1 was used as a marker of horizontal cells. CALB1 showed even distribution 

throughout all 5 paramacula samples and the macula sample. 

PKCα is a marker of rod on bipolar cells. PKCα displayed even distribution 

throughout the 5 paramacula samples and significantly lower expression within the 

macula compared to the paramacula samples. 

CHAT is a marker for amacrine cells. CHAT showed similar levels of expression 

throughout the five paramacula and macula samples although it was noted that 

variation between samples for different donors was high. 
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Expression of the ganglion cell markers THY1, BRN3A, AHNAK2 and RBFOX3 

(NeuN) were investigated within the 5 paramacula samples and the macula sample 

(Figure 3.12) to explore the distribution and density of ganglion cells within these 

regions. It was interesting to compare different markers for one cell type to 

determine which might be the most appropriate for use in the human retina. 

 

THY1, AHNAK2 and RBFOX3 all showed a significantly higher level of expression 

in the macula compared to the paramacula as would be expected for markers of 

 

Figure 3.12 - Expression of Ganglion Cell Layer Markers in Whole Explants. 

Expression of known ganglion cell markers: RBFOX3, THY1, BRN3A and AHNAK2 within 

paramacula samples (mean + SEM n=5) and macula samples (mean + SEM n=4) relative 

to the housekeeping genes TOP1 and CYC1. * Indicates a significant difference between 

the sample and all other samples (P<0.05) (One-way ANOVA with Tukeys post hoc test) 

A

C

B

D

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

R
e

la
ti

ve
 e

xp
re

ss
io

n

* *

*



86 

 

retinal ganglion cells. BRN3A did not show typical ganglion cell expression, with 

variable expression throughout the paramacula and macula samples. 

 

 

Expression of the Müller cell markers GLUL, RLBP, GFAP and the cell stress 

marker HSP70 were also investigated in the 5 paramacula and the macula samples 

(Figure 3.13). 

 

Figure 3.13 - Expression of Müller Cell Markers in Whole Explants. Expression of 

known Müller cell markers: GLUL, RLBP and GFAP, and the cell stress marker HSP70 

within paramacula samples 1 -5 (mean + SEM n=5) and macula samples (n=4) relative to 

the housekeeping genes TOP1 and CYC1. * Indicates a significant difference between the 

sample and all other samples (P<0.05) (One-way ANOVA with Tukeys post hoc test) 
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The Müller cell markers GLUL, RLBP and GFAP displayed similar trends in 

expression, with lower expression in the macula compared to paramacula samples. 

This lower expression in the macula was significant for RLBP expression. 

HSP70 (a cell stress marker) differed to the other Müller cell markers in that 

expression was similar throughout all paramacula and macula sections. 

 

3.2.3 mRNA Profiling of Retinal Cell Markers in the Human Retina 

 

Planar sectioning allows the analysis of mRNA expression throughout the different 

layers of the retina to be conducted. The expression profile of cell specific markers 

throughout the different layers of the retina was investigated in the retina, comparing 

macula and paramacula regions and also retina from post mortem and living donors. 

This will provide information about the location and strength of expression of the 

cell specific markers throughout the retina in the macula and paramcula regions as 

well as any differences that may occur as a result of post mortem changes.  

 

3.2.3.1 mRNA Profiling of Retinal Cell Markers in the Post Mortem Macula 

 

The post mortem macula was first investigated to determine the expression profile of 

the cell specific markers THY1, AHNAK2, RBFOX3, CHAT, RLBP, PRKCA, CALB1 

and RCVRN (Figure 3.14). 
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Figure 3.14 - Planar Sectioned 

Macula Explant From a Post 

Mortem Donor 

Expression profile of THY1, 

AHNAK2, RBFOX3, CHAT, 

RLBP, PRKCA, CALB1, RCVRN 

mRNA in macula sections of 

post mortem human retina (mean 

+ SEM; n=4). 
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mRNA analysis of the planar sectioned macula samples revealed the location of peak 

expression of the cell specific marker being investigated. 

The outermost retina displayed peak expression of RCVRN. The highest level of 

expression was in sections 1 and 2, which was followed by small a decrease in 

expression at section 3. Expression plateaued from section 3 to section 5 which was 

followed by a gradual decrease in expression until baseline expression was reached 

at section 14. 

The mid-section, corresponding to the inner nuclear layer displayed peak expression 

of the markers CALB1 PRKCα, RLBP and ChAT. 

CALB1 expression displayed baseline expression in the outer retina until section 3, 

followed by an increase in expression until peak expression was reached at section 8. 

This was followed by a decrease in expression until baseline expression was reached 

again in the inner retina at section 16. 

PRKCα displayed low levels of expression in the outer retina at section 1, this was 

followed by a gradual increase in expression until peak expression occurred at 

section 7. This peak was followed by a gradual decrease in expression towards the 

inner retina at section 16. 

RLBP expression displayed low levels of expression in the outer retina until section 

3, this was followed by an increase in expression until peak expression was reached 

in section 9. This peak expression was followed by a decrease in expression until 

section 17 where baseline expression was reached in the inner retina. 

CHAT expression was baseline within the outer retina until section 6 where a gradual 

increase in expression followed until peak expression was reached at section 11. A 

decrease in expression then occurred until section 16. 

The inner retina displayed peak expression of the markers RBFOX, AHNAK2 and 

THY1. RBFOX3 expression was baseline in the outer retina until section 4 where a 

gradual increase in expression occurred until a plateau of peak expression was 

reached from section 12 -15. This was then followed by a slight decrease in 

expression in sections 16 – 18. 

AHNAK2 expression was baseline in the outer retina until section 4. This was 

followed by a gradual increase in expression until section 11 where there was a sharp 

increase in expression. Expression then remained high and peaked at section 17. 
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THY1 expression was baseline from section 1 – 4 followed by a gradual increase to 

peak expression at section 14. Expression then remained high until section 17 

followed by a slight reduction in expression at section 18. 

 

3.2.3.2 mRNA Profiling of Retinal Cell Markers in the Living Donor Macula 

 

The expression profile of the live donor Macula sample was then investigated 

(Figure 3.15), allowing a comparison between the expression profiles of the standard 

donor, and the live donor to be made.  
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Figure 3.15 - Planar Sectioned 

Macula Explant from a Living 

Donor 

Expression profile of THY1, 

AHNAK2, RBFOX3, CHAT, 

RLBP, PRKCA, CALB1, RCVRN 

mRNA in macula sections of a 

living donor (mean + SEM, n=2). 
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Planar PCR data from themacula region of a living donor (Figure 3.15) showed the 

same pattern of expression as the post mortem human retina (Figure 3.14). 

The outer retina displayed peak expression of RCVRN. This was shown by peak 

expression occurring in sections 1 – 4. A gradual decrease in expression then 

followed. 

The central region sections displayed peak expression of the following markers 

CALB1, PRKCα, RLBP and ChAT. CALB1 displayed peak expression in the inner 

nuclear layer in the macula of the post mortem donor (Figure 3.14), however within 

the macula of the live donor there were variable results. This is likely due to the 

small number of repeats available. 

PRKCα displayed peak expression within the inner nuclear layer between section 6 

and section 10. There was also some variability seen with PRKCα expression due to 

the small number of repeats. 

RLBP displayed a low level of expression at section 1. This was followed by a 

gradual increase in expression to section 3 where a sharp increase in expression 

occurred to display peak expression at section 6. There was a slight decrease in 

expression which was followed by another peak in expression at section 10 and then 

a decrease to basal expression at section 15. 

ChAT expression was baseline within the outer retina until section 3, this was 

followed by a gradual increase in expression until peak expression was reached at 

section 10. A decrease in expression was then found from section 12. 

The ganglion cell layer displayed peak expression of the ganglion cell markers 

RBFOX3, AHNAK2 and THY1. These all displayed a similar pattern of expression of 

baseline expression in the outer retina until section 3, followed by a gradual increase 

in expression until peak expression is reached at approximately section 9 until 

section 15. 
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3.2.3.3 mRNA Profiling of Retinal Cell Markers in the Post Mortem 

Paramacula 

 

Whole section analysis of cell specific mRNA displayed differences between 

paramacula sections and macula sections, reflecting a difference in cell density 

between the two regions. 

To build a comprehensive profile of cell specific mRNA, the potential differences 

that may also occur within the distribution of cells throughout the nuclear layers of 

the retina was investigated between planar sectioned macula and paramacula 

sections. 

For this reason the expression profile of cell specific mRNA was then investigated 

within standard donor paramacula sections (Figure 3.16).  
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Figure 3.16 - Planar Sectioned 

Paramacula Explant from a 

Post Mortem Donor  

Expression profile of THY1, 

AHNAK2, RBFOX3, CHAT, 

RLBP, PRKCα, CALB1 and 

RCVRN mRNA in paramacula 

sections of a post mortem human 

retina (mean + SEM n=4). 
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The expression profile of cell specific marker genes from planar sectioned 

paramacula samples was similar to the expression profile of planar sectioned macula 

samples. The main difference being the number of sections, there were more sections 

available from the macula due to the tissue being thicker at this region.  

The outer retina displayed peak expression of RCVRN. This peak expression 

occurred at section 2, and high levels of expression were maintained until section 4. 

A decrease in expression then occurred until basal expression levels were reached at 

section 8. 

The inner regions displayed peak expression of the following markers CALB1 

PRKCA, RLBP and CHAT. 

CALB1 expression was low in the outer retina, expression then increased from 

section 3 where peak expression was reached at section 7. A gradual decrease then 

followed this until section 12. 

PRKCA expression was low in the outer retina and gradually increased until peak 

expression was reached at section 6, this was followed by a gradual decrease in 

expression. 

RLBP expression was low in the outer retina. Expression gradually increased until 

section peak expression was reached at section 7. High expression levels were 

present until section 9 where a decrease in expression occurred to section 12. 

CHAT expression was baseline in the outer retina. Expression then gradually 

increased until section 8 where a large increase in expression occurred until section 

11. 

The ganglion cell layer displayed peak expression of the markers RBFOX3, AHNAK2 

and THY1. These markers followed a similar expression pattern of baseline 

expression in the outer retina, followed by a gradual increase until peak expression 

was reached from sections 9 – 12. 
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3.2.3.4 mRNA Profiling of Retinal Cell Markers in the Living Donor 

Paramacula 

 

Analysis of planar sectioned paramacula sample (Figure 3.17) was performed to 

ensure the pre-24 hour post mortem retina possesses the same expression properties 

as the live donor. 
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Figure 3.17 - Planar Sectioned 

Paramacula Explant from a 

Living Donor 

Expression profile of THY1, 

AHNAK2, RBFOX3, ChAT, 

RLBP, PRKCα, CALB1 and 

RCVRN mRNA in paramacula 

sections of a retina from a living 

human donor (mean + SEM, 

n=2). 
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As in the macula region, the paramacula retina from the living donors possessed very 

similar expression properties to the post mortem donor. 

The outer retina possessed peak expression of RCVRN. High expression began at 

section 1, however peak expression was not reached until section 4. A decrease in 

expression then followed through to section 12. 

The inner regions of the retina displayed peak expression of the markers CALB1 

PRKCα and RLBP 

CALB1 expression was low in the outer retina. Expression gradually increased and 

reached peak expression at section 7, this was followed by a gradual decrease until 

section 12. 

PRKCα expression was low in the outer retina, an increase in expression was seen 

from section 3 until peak expression was reached at section 9. The peak at section 9 

was found to possess some variability (due to the small number of repeats) and 

therefore may be a false peak, whereas the peak at section 6 displayed little 

variability. This peak was then followed by a gradual decrease in expression. 

RLBP expression was baseline in the outer retina. Expression gradually increased 

until peak expression was reached at section 6, this was followed by a decrease in 

expression. 

ChAT expression was baseline in the outer retina until section 6, expression then 

increased and reached peak expression at section 9 and remained high. 

The inner retina displayed peak expression of the markers RBFOX3, AHNAK2 and 

THY1. These markers displayed similar expression patterns of baseline expression in 

the outer retina, followed by an increase to peak expression at section 9, high 

expression levels remained until section 12. 
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3.3 Discussion 

Before any investigation into the toxicity of compounds on the human retina can be 

performed, three important factors must be considered. 

The first is the profile of the various cell types within the human retina. This profile 

will prove useful when investigating the effect of retinotoxins by helping identify the 

cell types affected by such compounds. This was investigated using both 

immunohistochemistry and QRT-PCR. 

The second is whether changes take place in terms of structure and expression as a 

result of the retina being taken from post mortem material. This is important as any 

changes that may occur due to the tissue being post mortem could have the potential 

to hide the effect of any retinotoxin being investigated. The immunohistochemical 

properties of the living donor retina and the post mortem retina were therefore 

investigated to find any differences that may occur. Alongside this, mRNA 

expression profiles of cell specific marker genes were investigated, again comparing 

the profile of the live retina to that of the standard retina. 

Finally, when investigating the distribution of mRNA expression, the equivalence of 

expression throughout the five paramacula samples needs to be considered. This will 

aid in the development of the ex vivo model to assess retinotoxicity in that if the 

samples are found to possess equivalent expression throughout the five paramacula 

samples, then one paramacula sample may be used as a control, whilst the effect of 

varying concentrations of a retinotoxin on expression of the other four paramacula 

samples can be analysed. 

Neuronal specific enolase is an enzyme which is involved in the glycolysis pathway 

in neurons (Kirino et al., 1983) (Bonner et al., 2000). The immunohistochemical 

results show staining was present throughout the retina, however it can be seen to 

mark the outer plexiform layer and the photoreceptor cell bodies most strongly 

(Figure 3.1). A slight difference was found between the live donor and the post 

mortem donor in that the outer plexiform layer was labelled more clearly in the post 

donor than in the live donor. Although this marker was interesting to use, it did not 

stain all neurons equally and therefore is not a good marker of all neuronal cells of 

the retina. 
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Recoverin binds specifically to a 23-kilodalton calcium binding protein which 

regulates the activation of guanylate cyclase, an enzyme which is stimulated during 

bright conditions via a decrease in cytosolic calcium in the photoreceptor outer 

segments (Dizhoor et al., 1991). It was seen to clearly immunostain photoreceptor 

cell bodies and the photoreceptor outer segments where this enzyme is most present 

(Figure 3.1). Whole explant mRNA analysis of recoverin showed equivalent 

expression throughout the five paramacula samples and a trend of lower expression 

in the macula sample (Figure 3.11A), and planar analysis revealed peak expression in 

the outer retina. Previous data has indicated that recoverin is expressed in both rods 

and cones (Gunhan et al., 2003), however data obtained here indicates that recoverin 

may be more highly expressed in rods than cones, with the higher density of cones in 

the macula causing the lower expression of recoverin compared to the paramacula 

regions. Overall recoverin was a good marker of photoreceptors and will prove to be 

useful in further studies involving photoreceptor investigations. 

Calbindin-28k is a protein consisting of six E-helix-loop-F-helix-hand motif’s (of 

which only four are active). This protein binds to Ca2+ to act as a calcium buffer to 

help maintain fluctuations with intracellular Ca2+ (Mojumder et al., 2008). The 

antibody for Calbindin-28k effectively marked the cone outer segments along with 

horizontal cells and to a lesser extent some amacrine cells (Figure 3.3). There is a 

slight difference between the live donor and the standard donor with calbindin in that 

more cone outer segments were immunostained within the photoreceptor layer of the 

live donor, however this is most likely due to the retinal extraction process. 

Photoreceptor outer segments are particularly delicate and can easily become 

detached during retinal dissection. During removal of the retina, the retina becomes 

detached from the RPE and due to the engulfed outer segments the outer segments 

can break off from the photoreceptor cell bodies at any point between the external 

limiting membrane and the end of the outer segments. Therefore variance in number 

of outer segments varies between donors. Whole sample mRNA analysis of calbindin 

revealed similar expression throughout the five paramacula sections and the macula 

sample, indicating even distribution of the cells which express calbindin. Planar 

sectioning revealed calbindin to be most highly expressed in the inner nuclear layer, 

with peak expression occurring in the outer parts of the INL, indicating that 

horizontal cells may be responsible for the high expression. Although calbindin 
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proved to be an effective marker of inner nuclear layer cells, it also stained other 

cells not in the inner nuclear layer, therefore is not a marker exclusive enough for 

further investigation of inner nuclear layer cells. 

PKC is a family of enzymes which are involved in cell signalling pathways 

downstream of second messengers (Lameirao et al., 2009). PKC-α specifically 

identified rod ON bipolar cells within the inner nuclear region of the retina (Figure 

3.4). Further to this, a whole macula image of a PKCα immunostained section was 

performed and is shown in supplementary data 1 (SPD1), in this image it can be seen 

that stained bipolar cells become less dense towards the fovea, where there are no 

stained bipolar cells. This is in line with other research which has shown that Rod 

ON bipolar cells only appear approximately 1mm away from the fovea (Lameirao et 

al., 2009). Whole explant mRNA analysis of PKCα showed expression equivalence 

throughout the five paramacula samples, and significantly lower expression within 

the macula. This significantly lower expression of PKCα in the macula re-enforces 

data showing that PKCα marks rod ON bipolar cells. Planar analysis also revealed 

that peak expression occurs within the inner nuclear layer. PKCα is therefore a good 

marker of the inner nuclear layer and may be used further to investigate rod on 

bipolar cells in the inner nuclear layer. 

ChAT has previously been used to immunolabel cholinergic amacrine cells and 

displaced amacrine cells in the human retina (Hutchins and Hollyfield, 1987). These 

experiments were attempted to be replicated, however the antibody showed no 

specificity towards any cells and therefore the images were not included. Whole 

explant analysis of ChAT mRNA expression showed that expression was equivalent 

throughout the paramacula sections and the macula, whereas planar sectioning 

revealed a difference between the expression pattern in paramacula and macula. 

Macula peak expression was found within the inner nuclear layer, whereas the 

paramacula was more associated with with the ganglion cell layer. This difference 

may be due to the higher presence of displaced amacrine cells within the ganglion 

cell layer in the paramacula region. This is re-enforced by previous studies which 

have shown that only 3% of central retinal cells are displaced amacrine cells, 

whereas ~80% of cells present within the peripheral retina are displaced amacrine 

cells (Curcio and Allen, 1990). Overall, ChAT would be useful for further 
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investigation of amacrine cells though mRNA, however investigation of amacrine 

cells through the ChAT antibody used in this research would not be viable. 

Neuronal nuclei (NeuN) is a neuron specific nuclear protein which is expressed in 

most neuronal cell types within vertebrates (Mullen et al., 1992). Within the retina, 

NeuN is an effective ganglion marker in the post mortem donor and the living donor 

(Figure 3.5). Whole section mRNA analysis of RBFOX3 (NeuN) displayed 

equivalent expression throughout the five paramacula sections and significantly 

increased expression in the macula. Planar sectioning analysis of NeuN revealed 

peak expression in the ganglion cell layer in both macula and paramacula samples. 

The significantly higher expression of NeuN in macula whole explants compared to 

paramacula explants can be explained by the macula’s thick ganglion cell layer. The 

thick ganglion cell layer contains high numbers of ganglion cells and provides a low 

photoreceptor to ganglion cell ratio. This (in particular the fovea where the majority 

of light is focussed) leads to a high visual acuity in the macula, whereas in the 

paramacula region there is a thinner ganglion cell layer, and therefore fewer ganglion 

cells. This increases the photoreceptor to ganglion cell ratio and decreases visual 

acuity, but increases sensitivity to light in the peripheral retina. Overall, NeuN is a 

good marker of ganglion cells and would prove to be a useful in future studies of 

ganglion cells. 

THY1 is a glycosylphosphatidylinositol anchored protein (Partida et al., 2012) which 

is expressed within approximately 80% of retinal ganglion cells (Chauhan et al., 

2012). Figure 3.6 showed THY1 stained the ganglion cell layer of the retina to a 

similar degree in both the living donor and the post mortem donor. Like NeuN, 

THY1 expression in whole explants showed equivalent expression through the five 

paramacula sections and significantly higher expression within the macula section. 

Planar analysis also showed THY1 expression peaked within the ganglion cell layer. 

THY1 is also a good marker of ganglion cells and could be useful for future studies 

of human retinal ganglion cells. 

Beta III tubulin is a core protein within microtubules. The antibody for tubulin 

marked the nerve fibre layer and the ganglion cell bodies (Figure 3.7), a region 

which has a high density of microtubules. Beta III tubulin expression was not 

investigated in whole explants due to the use of other ganglion cell markers, however 
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in a recent paper by Osborne it has been shown to be a suitable marker of ganglion 

cells (Osborne et al., 2015b). 

The AHNAK family is a family of scaffold PDZ proteins which have multiple 

cellular process functions such as membrane repair (Marg et al., 2010). AHNAK2 

possessed similar marking to beta III tubulin, it also marked the nerve fibre layer and 

some ganglion cells (Figure 3.8). Whole section analysis of AHNAK2 showed 

similar expression properties as the other ganglion cell markers NeuN and THY1, 

with equivalent expression throughout the five paramacula sections and significantly 

higher expression within the macula section. Planar sectioning also revealed peak 

expression of AHNAK2 to reside within the ganglion cell layer. AHNAK2 is not 

known as a marker of human retinal ganglion cells, however this research and 

previous research by Ma (2012) has shown that it is a good marker, it is however not 

as specific as NeuN or THY1 (shown by the incorporation of the nerve fibre layer in 

the immunohistochemical results).  

BRN3A has been shown to be a suitable marker of retinal ganglion cells in rats and 

mice (Nadal-Nicolas et al., 2009). Whole explant mRNA expression was analysed, 

and unlike the ganglion cell markers THY1, AHNAK, and RBFOX3, BRN3A did 

not show consistent expression throughout the five paramacula samples or 

significantly higher expression in the macula and therefore does not appear to be an 

appropriate ganglion cell marker to be used within the human retina. 

Glutamine synthetase is the primary enzyme responsible for the breakdown of 

excessive glutamate to prevent excitotoxicity from glutamate. It is normally present 

within Müller cells of the retina and is in high concentrations in regions which 

surround glutamergic synapses (Moreno et al., 2005). The immunohistochemical 

images obtained showed the antibody against glutamine synthetase marked Müller 

cell end feet to the highest degree and Müller cell bodies to a lesser extent (Figure 

3.8). 

Müller cell mRNA expression was also investigated using the known markers 

GLUL, RLBP and GFAP (Hollborn et al., 2011). All of the Müller cell markers 

displayed equivalent expression throughout the 5 paramacula samples and lower 

expression within the macula sample. This may be due to the lower number of 

Müller cells in the foveal region, which overall reduces the number of these cells in 
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the macula sample. Only RLBP expression was investigated using planar sectioning 

as this gave the clearest results in whole explant analysis. Peak expression of RLBP 

was found to reside in the inner nuclear layer, re-enforcing this as a useful marker of 

Müller cells. 

Heat shock protein 70 (Hsp70) is named so because of its molecular weight (70kDa) 

(Kayama et al., 2011), they are also named this because of their increase in 

expression with elevated temperature. The role of these proteins is the maintenance 

of the health of the cell, they aid in cellular processes such as the folding of proteins 

and the disposal of irreversibly damaged proteins (Urbak and Vorum, 2010). HSP is 

not only increased due to hyperthermia, it can also become increasingly expressed 

due to other stressors such as ischemia, osmotic and oxidative stress (Urbak and 

Vorum, 2010). Another vital role that HSP’s play is the prevention of apoptosis. 

Hsp70 can achieve this by interfering with; the translocation of Bax and the Apaf-1 

apoptosome (Urbak and Vorum, 2010). Hsp70 was stained to the highest extent in 

the nerve fibre layer of the live donor and to a lesser extent throughout the rest of the 

retina. Within the post mortem donor Hsp70 immunostaining was high throughout 

the retina (Figure 3.10). Since Hsp70 is increased due to stressors, this protein may 

naturally be at higher levels within post mortem tissue due to expression changes 

after death. Expression of HSP70 mRNA was also investigated and displayed similar 

levels of expression throughout macula and paramacula samples. As an mRNA 

investigator, Hsp70 may be useful as an indicator of stress, however 

immunohistochemically it would be hard to investigate any changes in Hsp70 levels 

due to the strong presence in post mortem tissue. 

The immunohistochemistry results provided by this research have given information 

regarding the location and density of cells within the retina. Importantly no major 

differences were found between the living donor and the pre-24 hour post mortem 

retina. This indicates that the in vivo human retina possesses the same structural and 

immunohistochemical properties as the post mortem retina, and therefore the pre-24 

hour post mortem retina is a useful tissue. This data will be helpful when using the 

retina as a model to assess retinotoxicity, allowing the investigation into specific cell 

sensitivities to retinotoxic compounds, for example, through the use of co-

localisation with cell death markers such as TUNEL or cleaved caspase 3. 
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Whole explant PCR analysis allowed investigation into the density and distribution 

of retinal cells throughout paramacula and macula samples. The differences in 

expression between the macula and paramacula samples shows that expression levels 

of cell specific markers can be used as a measure of cell density / population. 

Another important factor determined from whole explant analysis was the equivalent 

expression throughout the 5 paramacula sections. This enables the cell specific 

markers to be used within a toxicity study, by using one control paramacula sample, 

and applying varying concentrations of a retinotoxic compound to the remaining 4 

paramacula samples. Any changes in cell specific marker expression may reflect a 

decrease in that cell type, and the relative sensitivities of specific cell types to the 

retinotoxins to be determined. 

 

It should be noted that a different method of analysis was used when investigating 

mRNA expression throughout planar sections. Previously planar data had been 

normalised to the highest value, leading to the highest expression always being 1 

(Osborne et al., 2015b), however this would not allow for further investigation into 

the effect of retinotoxins on expression due to the fact the highest value will always 

be 1. This new method of analysis opens up opportunities to investigate the effect of 

retinotoxins on expression by looking into raw expression values. This new method 

of analysis does not distort the pattern of expression and each nuclear layer is still 

well represented by peaks of expression related to cell specific markers with little 

variability. 

 

3.4 Conclusion 

This chapter gives evidence supporting the use of this model in relation to three 

important areas. Firstly the similarity between the living donor and the post mortem 

donor as shown by the immunohistochemical and PCR results, providing good 

evidence on the suitability of the post mortem retina for use in subsequent 

experiments. 

Secondly, expression equivalence throughout the five whole paramacula samples 

enables this method of cell density / population analysis to be used when 
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investigating the retinotoxicity of compounds on the retina. For example one of the 

five paramacula samples can be used as a control and varying concentrations of a 

potential retinotoxic compound can be applied to the remaining four paramacula 

samples. Expression of the cell specific markers can then be investigated and the 

sensitivity of specific cell types to the retinotoxins determined. 

Finally, data from planar sectioned macula and paramacula samples provided 

confirmation of the location of expression and the cell type associated with 

expression. The new method of mRNA expression analysis of planar sections also 

opens opportunities to use this method for the investigation of cell sensitivities to 

retinotoxins and genes related to retinotoxins. 
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Chapter 4 

4.0 The Effect of Known Retinotoxins on Retinal Cell Lines 

4.1 Introduction 

 

Cell lines are commonly used in initial studies of drug development where lead 

compounds are sought. During this, many compounds can be screened on cell lines 

in search of a compound which matches the specific activity sought (Woolley, 2003). 

Cell lines may also be utilised in later toxicology studies for investigations of a 

single endpoint, such as; does compound x induce autophagy, and / or induce cell 

death via apoptosis. 

In this research two retinal cell lines were used: ARPE19 cells, a cell line derived 

from a primary culture of human RPE cells (retinal pigmented epithelium cells) 

which exhibit similar characteristics to native RPE cells (Dunn et al., 1996). And 

MIO-M1 cells, a cell line derived from a primary culture of human retinal cells 

which also exhibit similar characteristics to native Müller cells (Limb et al., 2002). 

These cell lines were exposed to a variety of retinotoxins to obtain information 

regarding the relative toxicity of the compounds. 

Chloroquine and hydroxychloroquine are known retinotoxins. They are anti-malarial 

agents which also possess therapeutic properties in the treatment of other diseases 

including systemic lupus erythematosus and rheumatoid arthritis. Cases of 

chloroquine retinotoxicity are well documented with clinical effects such as a “bulls 

eye maculopathy” (Gaynes et al., 2008). Hydroxychloroquine causes fewer side 

effects and is less toxic and therefore is used more commonly than chloroquine as an 

anti-malarial agent. 

Tamoxifen is a selective oestrogen receptor modulator (SERM) used in the treatment 

of hormone responsive breast cancer. It is also a known retinotoxin which can cause 

retinopathy and retinitis pigmentosa (Watanabe et al., 2010; Lazzaroni et al., 1998). 

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) which is 

commonly used within the treatment of rheumatoid arthritis. Indomethacin is not 
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commonly known for its retinotoxic properties, however it has been recorded in one 

patient (Graham and Blach, 1988). 

It is useful to compare the effects of the retinotoxins to a positive control which is 

known to cause cell death. The positive control used here is the reactive oxygen 

species (ROS) hydrogen peroxide (H2O2), a chemical compound which is a strong 

oxidizer and is created as a by-product of metabolism in mitochondria (Giorgio et al., 

2007). Cells possess defence mechanisms against ROS, such as antioxidants (e.g. 

glutathione) and the enzymatic conversion of ROS to a less reactive product. 

However damage occurs to cells when an imbalance in favour of pro oxidants (ROS) 

occurs which may eventually lead to cell death. Cell death induced by H2O2 has been 

studied in ARPE19 cells and it was found that low levels of H2O2 induced apoptosis 

whereas high concentrations of H2O2 induced necrosis (Kim et al., 2003). Many 

retinal diseases are associated with oxidative stress, where an imbalance between pro 

oxidants such as H2O2 and anti-oxidants occurs. One example of this is age related 

macular degeneration (AMD) in which necrosis occurs in RPE cells as a result of 

oxidative stress (Hanus et al., 2013). Diabetic retinopathy is also associated with 

oxidative stress, and it has been found that Lutein (an anti-oxidant) prevented the 

neurodegenerative effect of diabetes within mice (Sasaki et al., 2010).  

The aim of the research in this chapter is to establish retinal cell lines for use 

alongside an ex vivo retina as models to assess retinotoxicity. This will be achieved 

by firstly investigating the effect of specific retinotoxins on the two retinal cell lines 

ARPE19 cells and MIO-M1 cells.  
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4.2 Results 

4.2.1 ARPE19 Cells Response to Retinotoxins 

Initial experiments were conducted on ARPE19 cells. The effects of retinotoxins on 

the ARPE19 cell line were assessed with two assays, one to assess levels of cell 

death (the LDH assay), and the other to assess cell viability (the MTS assay). 

 

4.2.1.1 Hydrogen Peroxide 

The positive control was firstly investigated (H2O2) and Figure 4.1 displays the effect 

of increasing concentrations of H2O2 on levels of cell death (A) and cell viability (B) 

on ARPE19 cells. 

 

 

Hydrogen peroxide caused a dose dependent increase in cell death as measured by 

LDH release and decrease in cell viability. A significant increase in cell death was 

found from 1mM (A) and a significant decrease in cell viability found from 500µM 

(B).  

 

Figure 4.1 - ARPE19 cell death / viability in response to H2O2 - (A) Cell death (LDH 

release) and (B) cell viability (MTS assay) in response to varying concentrations of H2O2 

(10µM-2mM) in ARPE19 cells (n=4) ± SEM. * indicates significance (P<0.05) using one 

way ANOVA with Dunnets post-hoc test. 

A B

H2O2 (M) H2O2 (M)
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4.2.1.2 Indomethacin 

ARPE19 cells were exposed to varying concentrations of indomethacin to reveal the 

effect of a relatively unknown retinotoxin on levels of cell death (A) and cell 

viability (B) of the retinal pigmented epithelial cell line. 

 

 

 

Figure 4.2 shows a dose dependent increase in LDH release / decrease in cell 

viability with increasing concentrations of indomethacin. A significant increase in 

cell death was found at the highest concentration (2mM) (A) whereas a significant 

decrease in levels of cell viability was found at 50µM (B). 

  

 

Figure 4.2 - ARPE19 cell death / viability in response to Indomethacin - (A) Cell 

death (LDH release) and (B) cell viability (MTS assay) in response to varying 

concentrations of Indomethacin (10µM-2mM) in ARPE19 cells (n=4) ± SEM. * indicates 

significance (P<0.05) using one way ANOVA with Dunnets post-hoc test. 

 

A B
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4.2.1.3 Tamoxifen 

ARPE19 cells were exposed to varying concentrations of tamoxifen to reveal the 

RPE cells response to a well-documented retinotoxin.  

 

 

Figure 4.3 shows a dose dependent increase in LDH release (A), and a decrease in 

cell viability (B) with increasing concentrations of tamoxifen. A significant increase 

in levels of cell death was found from 500µM and a significant decrease in cell 

viability from 500µM. 

  

 

Figure 4.3 - ARPE19 cell death / viability in response to Tamoxifen - (A) Cell death 

(LDH release) and (B) cell viability (MTS assay) in response to varying concentrations of 

Tamoxifen (10µM-2mM) in ARPE19 cells (n=4) ± SEM. * indicates significance 

(P<0.05) using one way ANOVA with Dunnets post-hoc test. 

A B
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4.2.1.4 Chloroquine 

ARPE19 cells were exposed to varying concentrations of chloroquine to provide an 

understanding of the retinal cells response to a well-documented retinotoxin.  

 

 

 

Figure 4.4 shows a dose dependent increase in LDH release (A), and a decrease in 

cell viability (B) with increasing concentrations of chloroquine. A significant 

increase in cell death was found from 200µM (A) and a significant decrease in cell 

viability from 100µM (B). 

 

ARPE19 cells responded to all of the compounds in a dose dependent manner. The 

LD50 values and the concentration from which there is a significant difference from 

the control value are summarised in Table 4.1 

  

 

Figure 4.4 - ARPE19 cell death / viability in response to CHQ - (A) Cell death (LDH 

release) and (B) cell viability (MTS assay) in response to varying concentrations of 

chloroquine (10µM-2mM) in ARPE19 cells (n=4) ± SEM. * indicates significance 

(P<0.05) using one way ANOVA with Dunnets post-hoc test. 
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A - LD50 Values 

 LDH MTS Average LD50 

H202 439µM 257µM 348µM 

Indomethacin 900µM ~1mM $ 950µM 

Tamoxifen 335µM ~290µM $ 312.5µM 

Chloroquine ~150µM $ ~350mM $ 250µM 

 

B – Significant From Values 

 LDH MTS Average  

H202 ≥1mM ≥500µM ≥750µM 

Indomethacin ≥2mM ≥50µM ≥1.025mM 

Tamoxifen ≥500µM ≥500µM ≥500µM 

Chloroquine ≥200µM ≥100µM ≥150µM 

 

Table 4.1: Summary of data obtained from treated ARPE19 cells. A - LD50 values, B – 

significant from values. $ indicates value calculated by hand. 

The LD50 values were initially calculated by Graphpad Prism (A). However, some 

of the LD50 values calculated in this way did not correspond well with the dose 

response shown by the ARPE19 cells. For this reason LD50 values were also 

calculated by hand (indicated by $). If the LD50 calculated by hand was similar to 

that of the Graphpad calculation, the Graphpad value was used. The value from 

which the response became significant was also calculated for all drugs (B). 

This data revealed that chloroquine was the most potent retinotoxic drug assessed on 

the ARPE19 cell line, with an average LD50 of 250µM and a significant increase in 

LDH release occurring from ≥200µM and a significant decrease in cell viability 

occurring at ≥100µM (overall an average significant increase from 150µM). 

Tamoxifen appeared to be the second most potent drug on the ARPE19 cell line, with 

an average LD50 of 312.5µM and a consistent increase in cell death / decrease in cell 

viability at ≥500µM. 
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H202 was the third most potent compound assessed, producing an average LD50 of 

348µM and an average significant increase in cell death / decrease in cell viability of 

≥750µM. 

Indomethacin was the least potent drug assessed and displayed an average LD50 of 

≥950µM. Contradictory results were found regarding the significant increase in LDH 

release and significant decrease in cell viability, with a significant increase in LDH 

release occurring at 2mM, whereas a significant decrease in cell viability occurred 

much earlier at ≥50µM. This overall produced an average significant increase of 

≥1.025mM. 
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4.2.2 MIO-M1 Cells Response to Retinotoxins 

MIO-M1 cells were then exposed to the same retinotoxins as the ARPE19 cell line, 

to investigate the differences in the sensitivity of the two cell lines to the 

retinotoxins. 

 

4.2.2.1 Hydrogen Peroxide 

MIO-M1 cells were firstly exposed to varying concentrations of H2O2, to gain an 

understanding of the cells response to oxidative stress 

 

 

 

Figure 4.5 shows a dose dependent increase in LDH release (A), and a decrease in 

cell viability (B) with increasing concentrations of H2O2. No significant increase in 

levels of cell death were found, however a significant decrease in levels of cell 

viability was found from 1mM. 

  

 

Figure 4.5 - MIO-M1 cell death / viability in response to H2O2 - (A) Cell death (LDH 

release) and (B) cell viability (MTS assay) in response to varying concentrations of H2O2 

(10µM-2mM) in MIO-M1 cells(n=4) ± SEM. * indicates significance (P<0.05) using one 

way ANOVA with Dunnets post-hoc test. 

 

A B

H2O2 (M) H2O2 (M)
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4.2.2.2 Indomethacin 

MIO-M1 cells were exposed to varying concentrations of indomethacin to show the 

response of the Müller cell line to a relatively unknown retinotoxin.  

 

 

 

Figure 4.6 shows a significant increase in LDH release from 1mM, with a steep dose 

response curve (A). A dose dependent decrease in cell viability was found with 

increasing concentrations of indomethacin, and a significant decrease was found 

from 500µM (B). 

  

 

Figure 4.6 - MIO-M1 cell death / viability in response to Indomethacin - (A) Cell 

death (LDH release) and (B) cell viability (MTS assay) in response to varying 

concentrations of indomethacin (10µM-2mM) in MIO-M1 cells (n=4) ± SEM. * indicates 

significance (P<0.05) using one way ANOVA with Dunnets post-hoc test. 

 

A B
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4.2.2.3 Tamoxifen 

MIO-M1 cells were then exposed to varying concentrations of tamoxifen. 

 

 

 

Figure 4.7 shows a dose dependent increase in LDH release (A), and a decrease in 

cell viability with increasing concentrations of tamoxifen (B). A significant increase 

in LDH levels were found from 200µM (A) and a significant decrease in cell 

viability was found from 500µM (B). 

  

 

Figure 4.7 - MIO-M1 cell death / viability in response to Tamoxifen - (A) Cell 

death (LDH release) and (B) cell viability (MTS assay) in response to varying 

concentrations of tamoxifen (10µM-2mM) in MIO-M1 cells (n=4) ± SEM. * 

indicates significance (P<0.05) using one way ANOVA with Dunnets post-hoc 

test. 

 

A B
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4.2.2.4 Chloroquine 

MIO-M1 cells were exposed to varying concentrations of chloroquine to show the 

response of the Müller cell line to a well-documented retinotoxin.  

 

 

 

Figure 4.8 shows a dose dependent increase in LDH levels (A), and a decrease in cell 

viability (B) with increasing concentrations of chloroquine. A significant increase in 

LDH release and decrease in cell viability was found from 50µM. 

 

MIO-M1 cells responded to all compounds in a dose dependent manner, the LD50 

values of the compounds calculated from LDH and MTS results are shown in Table 

4.2 

  

 

Figure 4.8 - MIO-M1 cell death / viability in response to CHQ - (A) Cell death (LDH 

release) and (B) cell viability (MTS assay) in response to varying concentrations of 

chloroquine (10µM-2mM) in MIO-M1 cells (n=4) ± SEM. * indicates significance 

(P<0.05) using one way ANOVA with Dunnets post-hoc test. 

 

A B
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A - LD50 Values 

 LDH MTS Average LD50 

H202 591µM ~700µM $ 645.5µM 

Indomethacin N.A ~800µM $ 800µM 

Tamoxifen 183µM 204µM 193.5µM 

Chloroquine 35µM 40µM 37.5µM 

 

B – Significant From Values 

 LDH MTS Average 

H202 N.A ≥1mM ≥1mM 

Indomethacin ≥1mM ≥500µM ≥750µM 

Tamoxifen ≥200µM ≥500µM ≥350µM 

Chloroquine ≥50µM ≥50µM ≥50µM 

 

Table 4.2: Summary of data obtained from treated MIO-M1 cells. A - LD50 values, B - 

significant from values. $ indicates value calculated by hand. 

 

As with the data regarding the ARPE19 cells, the LD50 values were initially 

calculated by Graphpad Prism (A). However, some of the LD50 values calculated in 

this way did not correspond well with the dose response shown by the ARPE19 cells. 

For this reason LD50 values were also calculated by hand (indicated by $). If the 

LD50 calculated by hand was similar to that of the Graphpad calculation, the 

Graphpad value was used. The value from which the response became significant 

was also calculated for all drugs (B). 

The MIO-M1 cell line displayed a similar pattern of sensitivity as the ARPE19 cell 

line with chloroquine being the most toxic drug investigated. Chloroquine displayed 

an average LD50 of 37.5µM and a significant increase in LDH release / decrease in 

cell viability both occurring from 50µM. 

Tamoxifen was also the second most potent drug, with an average LD50 of 

193.5µM, and an average significant difference from 350µM. 
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Indomethacin and H202 required high concentrations to cause a significant difference 

in LDH release / decrease in cell viability which was matched by high LD50 values. 

 

4.2.3 ARPE19 Cells Response to 24, 48 and 72h Chloroquine and 

Hydroxychloroquine Exposure 

 

Results suggested that chloroquine was the most potent retinotoxic drug in both the 

RPE and the Müller cell lines (ARPE19 and MIO-M1). Chloroquine has been 

superseded by hydroxychloroquine on the basis that hydroxychloroquine is less 

toxic, therefore the difference in toxicity between CHQ and HCQ on ARPE19 cells 

was investigated. It was also interesting to determine toxicity at longer time points, 

therefore experiments were conducted at 24, 48 and 72h time points. 
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Exposure to chloroquine for 24 hours (Figure 4.9 A, B) caused a significant increase 

in cell death / decrease in cell viability from approximately 200µM. 

Hydroxychloroquine caused a gradual increase in LDH release from 200µM, with a 

significant increase occurring at 500µM. Hydroxychloroquine also caused a dose 

dependent decrease in cell viability, with a significant decrease occurring from 

100µM (Figure 4.9 C, D). 

  

 

Figure 4.9 - ARPE19 cell death / viability in response to 24h CHQ / HCQ. Cell death 

(LDH release) (A, C) and cell viability (B, D) in response to differing concentrations of 

CHQ and HCQ (10µM-2mM) in ARPE19 cells after 24h exposure (n=4) ± SEM, * 

indicates significance (P<0.05) using one way ANOVA with Dunnets post-hoc test. 
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Exposure to chloroquine for 48 hours (Figure 4.10 A, B) caused gradual increase in 

cell death (LDH) / decrease in cell viability from approximately 50µM. A significant 

increase in cell death was not found until 200µM and a significant decrease in cell 

viability at 100µM. 

48 hours of exposure to hydroxychloroquine (Figure 4.10 C, D) caused gradual 

increase in cell death from approximately 50µM and a gradual decrease in cell 

viability from 100µM. A significant difference in both cell death and cell viability 

occurred at 200µM treatment. 

  

 

Figure 4.10 - ARPE19 cell death / viability in response to 48h CHQ / HCQ. Cell 

death (LDH release) (A, C) and cell viability (B, D) in response to differing 

concentrations of CHQ and HCQ (10µM-2mM) in ARPE19 cells after 48h exposure 

(n=4) ± SEM * indicates significance (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 
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Exposure to chloroquine for 72 hours (Figure 4.11 A, B) caused a sudden increase in 

cell death (LDH) / decrease in cell viability with significant differences occurring 

with 100µM treatment. 

Hydroxychloroquine exposure for 72 hours (Figure 4.11 C, D) also caused a sudden 

increase in cell death (LDH) / decrease in cell viability again, with significant 

differences occurring with 100µM treatment. 

 

ARPE19 cells responded to chloroquine and hydroxychloroquine in a dose 

dependent manner, with increasing concentrations of both causing an increase in 

 

 

Figure 4.11 - ARPE19 cell death / viability in response to 72h CHQ / HCQ. Cell 

death (LDH release) (A, C) and cell viability (B, D) in response to differing 

concentrations of CHQ and HCQ (10µM-2mM) in ARPE19 cells after 72h exposure 

(n=4) ± SEM, * indicates significance (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 
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LDH release and a decrease in cell viability. ARPE19 cells also showed a difference 

in response with the length of time exposed to the toxins with LD50 values 

decreasing with increasing time (Table 4.3). 

 

A - LD50 values of 24, 48 and 72h CHQ and HCQ Treated ARPE19 cells 

Cell Line Exposure to 

Drug  

LDH LD50 (M) MTS LD50 (M) Average LD50 

ARPE 19 24h CHQ 181µM 170µM 175.5µM 

ARPE 19 48h CHQ ~90µM $ ~100µM $ 95µM 

ARPE 19 72h CHQ 71.3µM 80.4µM 75.85µM 

 

ARPE 19 24h HCQ 170µM ~350µM $ 188.5µM 

ARPE 19 48h HCQ 96µM 78.4µM 87.2µM 

ARPE 19 72h HCQ 97µM 110µM 103.5µM 

 

B - Significant Difference’s of 24, 48 and 72h CHQ and HCQ Treated ARPE19 

cells 

ARPE19 CHQ HCQ 

Time 

Exposed 

LDH MTS Average of 

LDH and 

MTS 

LDH MTS Average of 

LDH and 

MTS 

24h ≥200µM ≥200µM ≥200µM ≥500µM ≥100µM ≥300µM 

48h ≥200µM ≥100µM ≥150µM ≥200µM ≥200µM ≥200µM 

72h ≥100µM ≥100µM ≥100µM ≥100µM ≥100µM ≥100µM 

 

Table 4.3: Summary of data obtained from 24, 48 and 72h treated ARPE19 cells. A- 

LD50 values of CHQ and HCQ treated ARPE19 cells. B – Significant differences of CHQ 

and HCQ treated ARPE19 cells. $ indicates value calculated by hand. 
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ARPE19 cells displayed a time dependent response of increased LDH release and 

decreased cell viability with increasing time exposed to CHQ and HCQ. This is 

shown by the decreasing LD50 with increasing time exposed to both drugs. 

CHQ possessed a lower LD50 at the 24 and 72h time points, but not the 48h 

timepoint, displaying CHQ’s higher toxicological properties over HCQ. 

 

The data regarding the value from which there is a significant difference from the 

control also indicates that CHQ was slightly more toxic to the ARPE19 cells than 

HCQ, as shown by the lower concentration causing a significant difference in cell 

death / cell viability at 24 and 48h treatment. With 72h treatment, this data indicated 

that CHQ and HCQ were equally toxic as each other. 
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4.2.4 MIO-M1 cells response to 24, 48 and 72h Chloroquine and 

Hydroxychloroqine exposure 

 

The time course experiments investigating the toxicity of chloroquine and 

hydroxychloroquine in ARPE19 cells were repeated using MIO-M1 cells 

 

 

Exposure to CHQ for 24 hours (Figure 4.12) caused a trend of increased LDH release 

(cell death), however no significant difference was found compared to untreated 

cells. A gradual decrease in cell viability began from approximately 20µM CHQ, 

with a significant decrease occurring from 50µM. 

 

Figure 4.12 - MIO-M1 cell death / viability in response to 24h CHQ / HCQ. Cell 

death (LDH release) (A, C) and cell viability (B, D) in response to differing 

concentrations of CHQ and HCQ (10µM-2mM) in MIO-M1 cells after 24h exposure 

(n=4) ± SEM, * indicates significance (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 
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24 hours exposure to HCQ also caused an increase in LDH release, with a significant 

increase occurring at 2mM. A trend of decreased cell viability was found from 50µM 

HCQ, with a significant difference occurring from 100µM. 

 

 

Exposure to CHQ for 48 hours (Figure 4.13) caused an increase in LDH release (cell 

death) with a significant increase in LDH release found from 50µM. At higher 

concentrations there also appeared to be a small decrease in LDH release. A gradual 

decrease in cell viability begun from approximately 10µM, with a significant 

difference occurring at 20µM CHQ. 

48 hours of exposure to HCQ also caused an increase in LDH release, with a 

 

Figure 4.13 - MIO-M1 cell death / viability in response to 48h CHQ / HCQ. Cell 

death (LDH release) (A, C) and cell viability (B, D) in response to differing 

concentrations of CHQ and HCQ (10µM-2mM) in MIO-M1 cells after 48h exposure 

(n=4) ± SEM, * indicates significance (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 
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significant increase occurring at 50µM. A trend of decreased cell viability was seen 

from 10µM HCQ, with a significant decrease occurring at 20µM. 

 

 

72 hours exposure to CHQ (Figure 4.14) caused little change in LDH release with no 

significant difference found, however a significant decrease in cell viability was 

found from 10µM CHQ. 

72 hours exposure to HCQ caused an increase in LDH release, with a significant 

increase occurring from 50µM. The LDH release started to decrease from the peak 

release (at 200µM) to 2mM. A significant decrease in cell viability was also found 

from 10µM HCQ. 

 

Figure 4.14 - MIO-M1 cell death / viability in response to 72h CHQ / HCQ. Cell 

viability (LDH release) (A, C) and cell viability (B, D) in response to differing 

concentrations of CHQ and HCQ (10µM-2mM) in MIO-M1 cells after 72h exposure 

(n=4) ± SEM, * indicates significance (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 

 



129 

 

MIO-M1 cells responded to CHQ and HCQ in a dose dependent manner when 

assessed with the MTS assay, whereas the LDH assay provided variable results. 

MIO-M1 cells also displayed a correlation of decreasing cell viability with increasing 

time exposed to CHQ and HCQ, the results of which are summarised in Table 4.4. 

 

A – LD50 values for 24, 48 and 72h CHQ and HCQ Treated MIO-M1 cells 

Cell Line Exposure to 

Drug  

LDH LD50 (M) MTS LD50 (M) Average LD50 

MIO-M1 24h CHQ N.A ~150µM $ 150µM 

MIO-M1 48h CHQ N.A 43.7µM 43.7µM 

MIO-M1 72h CHQ N.A ~20µM $ 20µM 

MIO-M1 24h HCQ N.A ~200µM $ 200µM 

MIO-M1 48h HCQ N.A ~60µM $ 60µM 

MIO-M1 72h HCQ N.A ~40µM $ 40µM 

 

B – Significant Differences for 24, 48 and 72h CHQ and HCQ Treated MIO-M1 

cells 

MIO-M1 CHQ HCQ 

Time 

Exposed 

LDH MTS Average of 

LDH and 

MTS 

LDH MTS Average of 

LDH and 

MTS 

24h N.A ≥50µM ≥50µM ≥2mM ≥100µM ≥1.05mM 

48h ≥50µM ≥20µM ≥35µM ≥50µM ≥20µM ≥35µM 

72h N.A ≥10µM ≥10µM ≥50µM ≥10µM ≥30µM 

 

Table 4.4: Summary of data obtained from 24, 48 and 72h treated MIO-M1 cells. A- 

LD50 values of CHQ and HCQ treated MIO-M1 cells. B – Significant differences of CHQ 

and HCQ treated MIO-M1 cells. $ indicates value calculated by hand. 
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Assessment of LDH release in response to CHQ and HCQ gave complex data in that 

they did not give a standard dose response curve. This can be seen in Figures 4.12 – 

4.14 and in Table 4.4. The MTS assay however displayed a clear dose dependent 

decrease in viability and provided an LD50 and data regarding the dose causing 

significant changes. 

 

4.3 Discussion 

 

The aim of this chapter was to use two retinal cell lines to assess the toxicity of 

compounds with known retinotoxicity. These cell lines could then provide 

preliminary information about the relative toxicity of the drugs of interest, and the 

information gathered from this could be used to determine the concentration of 

retinotoxins to be applied to the ex vivo retina. 

The two retinal cell lines were firstly exposed to a variety of retinotoxins and H2O2 

as a positive control (section 4.2.1 and 4.2.2). The retinotoxins applied to the cell 

lines were indomethacin, tamoxifen and chloroquine. It was expected that due to the 

different nature of the cells, and the compounds, the sensitivity of both cell lines 

would differ for each of the compounds. 

The two retinal cell lines used were ARPE19 cells and MIO-M1 cells. The ARPE19 

cell line is a human retinal pigmented epithelial cell line from a primary source of 

retinal pigmented epithelium. Retinal pigmented cells are highly active cells which 

are responsible for phagocytosing outer segments of photoreceptors. The cells exhibit 

a similar physiology to RPE cells, and display similar RPE specific markers such as 

CRALBP and RPE65 (Dunn et al., 1996).  

The MIO-M1 cell line is an immortalized cell line derived from human Müller cells. 

They are the principle glial cells of the retina, providing structural and metabolic 

support to neurones and blood vessels. They play an important role in glutamate 

uptake in order to prevent neurotoxicity from excess glutamate (Haberecht et al., 

1997). The MIO-M1 cell line expresses known markers of Müller cells such as EGF-
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R (epidermal growth factor receptor), glutamine synthetase, αSMA and CRALBP 

(Limb et al., 2002).  

The cells were firstly exposed to the positive control H2O2. H2O2 is an oxidative 

stressor which has the ability to cause cell death via the apoptotic pathway with low 

concentrations of H2O2 and the necrotic pathway with high concentrations of H2O2 

(Kim et al., 2003; Li et al., 2010). When exposed to H2O2 ARPE19 cells and MIO-

M1 cells displayed a dose dependent increase in LDH release / decrease in cell 

viability. 

In ARPE19 cells, the increase in cell death and decrease in cell viability was seen to 

occur over a small concentration range from 200µM and 500µM in which cells 

responded in an all or nothing manner producing variability. This was followed by a 

significant increase in LDH release from ≥1mM and a significant decrease in cell 

viability from ≥500µM.  

MIO-M1 cells displayed large variability in LDH release which produced no 

significantly different data. The cell viability data represented the cells response to 

H2O2 better than the LDH release data, showing a dose dependent decrease in cell 

viability with increasing concentrations of H2O2 and a significant decrease in cell 

viability occurring from ≥1mM. 

Even though the LDH data was variable from MIO-M1 cells, the cell viability data 

and the LD50 data from both MIO-M1 and ARPE19 cell line indicated that the MIO-

M1 cells displayed a higher resilience to H2O2 than ARPE19 cells. This may indicate 

that MIO-M1 cells are more effective at processing oxidative stressors better than 

RPE cells. 

Indomethacin was the second drug investigated on the cell lines. It is an anti-

inflammatory agent with few reported cases of retinopathy (Graham and Blach, 

1988). On the basis of clinical data it would therefore be expected to cause the least 

toxicity of the drugs investigated. 

ARPE19 cells exposed to indomethacin showed no toxicity at lower concentrations 

with a trend of increased LDH release from ≥500µM. A significant increase in LDH 

release was not found until 2mM. However, surprisingly the LDH data showed a 

significant decrease in cell viability from ≥50µM. This concentration is very low, 

however what can be seen is little dose dependent decrease in viability until a 
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concentration of 1mM is reached. 

MIO-M1 cells displayed a significant increase in LDH release from ≥1mM. This was 

similar to the MTS data which displayed a significant decrease in cell viability from 

≥500µM treatment. Both cell lines displayed a high LD50 which may reflect the 

relatively non retinotoxic properties of indomethacin in vivo. There is little research 

investigating the specific method of toxicity which occurs in indomethacin induced 

retinopathy. It has been speculated that a reactive iminoquinone forms from the 

oxidation of DMBI (a major metabolite of Indomethacin) (Ju and Uetrecht, 1998) 

which could bind to GSH and cause GSH depletion. GSH depletion has been shown 

to cause unregulated oxidative stress and apoptosis in the mouse retina (Roh et al., 

2007). 

Tamoxifen is used in the treatment of hormone responsive breast cancer (Srikantia et 

al., 2010). It is known to possess retinotoxic properties and with prolonged use can 

lead to decreased visual acuity, pigmented retinopathy, macula oedema and macula 

holes (Watanabe et al., 2010), (Lazzaroni et al., 1998). 

ARPE19 cells displayed a dose dependent increase in cell death / decrease in cell 

viability with increasing concentrations of tamoxifen, and a significant increase in 

LDH release and a significant decrease in cell viability found from ≥500µM. 

MIO-M1 cells also displayed a dose dependent increase in cell death / reduction in 

cell viability with increasing concentrations of tamoxifen with a significant increase 

in LDH release occurring from ≥200µM and a significant decrease in cell viability 

occurring from ≥500µM. 

The data indicated that MIO-M1 cells may be slightly more sensitive to tamoxifen 

than ARPE19 cells. The LD50 values obtained in which MIO-M1 cells displayed an 

average LD50 of 193.5µM and ARPE19 cells displayed an average LD50 of 

312.5µM. It is commonly thought that RPE cells (and photoreceptors) are the 

primary target of tamoxifen induced retinopathy (Cho et al., 2012; Engelke et al., 

2002), with lysosomal disruption causing a release of hydrolases such as cathepsins 

which in turn can cause cell death via a multitude of pathways such as apoptosis, 

necrosis and pyroptosis (Kim et al., 2014). However data obtained here suggests that 

Müller cells sensitivity to tamoxifen may also influence the retinopathy associated 

with tamoxifen treatment. 
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Chloroquine is a lysomotropic agent which was commonly used as an anti-malarial 

agent, although due to widespread resistance it is now mainly used in the treatment 

of rheumatoid arthritis (NHS, 2014c). 

ARPE19 cells responded to chloroquine in a dose dependent manner, with an 

increase in LDH release and a decrease in cell viability with increasing 

concentrations of chloroquine. A significant increase in LDH release was found from 

≥200µM, and a significant decrease in cell viability from ≥100µM.  

MIO-M1 cells also responded to chloroquine in a dose dependent manner with a 

significant increase in LDH release and decrease in cell viability from ≥50µM. 

This data indicates that MIO-M1 cells are more susceptible to chloroquine toxicity 

than ARPE19 cells, with chloroquine causing a significantly higher LDH release / 

lower cell viability at a much lower dose in MIO-M1 cells. LD50 values in MIO-M1 

cells displayed an average LD50 of 37.5µM and ARPE19 cells displayed an average 

LD50 of 250µM 

Chloroquine retinopathy is commonly associated with long term use of the drug. 

Patients may present with visual defects such as central visual loss, night blindness 

and a loss of colour vision. Clinically, chloroquine retinopathy appears as pigmentary 

changes, with advanced retinopathy appearing as a bulls eye maculopathy (Pasadhika 

et al., 2010), (Nogueira and Gama, 2009). The method through which chloroquine is 

believed to cause retinopathy is due to lysosomal dysfunction. It is believed that the 

RPE is primarily affected due to its role of phagocytosing shed outer segments of 

photoreceptors, in turn affecting photoreceptors. However an early study by 

Rosenthal et al (1978) showed that in the rhesus monkey, ganglion cells are affected 

first, followed by the photoreceptors and RPE. The current data (Figure 4.4 and 4.8) 

suggests that Müller cells may be more sensitive to chloroquine toxicity than RPE 

cells, and this may also contribute to the retinopathy seen with CHQ treatment 

clinically. 

Chloroquine displayed the most retinotoxic properties in both ARPE19 and MIO-M1 

cells. The next most retinotoxic drug assessed was tamoxifen and finally 

indomethacin. This data relates to the clinical prevalence of retinopathy induced by 

the drugs, in which chloroquine has the highest prevalence of reported retinopathy of 

the drugs investigated. The actual value of prevalence of chloroquine induced 

retinopathy in chloroquine treated patients is variable across multiple studies, and 
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ranges from as high as 24.7% to as low as 0.1% (Browning, 2014). Tamoxifen is the 

next most reported retinotoxic drug investigated, with an incidence of 0.9% (in a 

study of 274 patients) (Tang et al., 1997) whereas for indomethacin, only one case of 

retinopathy has been reported (Graham and Blach, 1988). 

Hydroxychloroquine is also an anti-malarial agent that is used in the treatment of 

rheumatoid arthritis, which superseded the use of chloroquine in the treatment of 

rheumatoid arthritis and systemic lupus due to its better safety profile (Michaelides et 

al., 2011). For this reason the difference in toxicity between chloroquine and 

hydroxychloroquine was investigated on ARPE19 and MIO-M1 cells, to find out if 

the better safety profile of hydroxychloroquine was reflected in the retinal cell based 

toxicity assays. A time course was also conducted in order to establish the effect of 

longer exposure to the drugs.  

Both chloroquine and hydroxychloroquine caused a dose dependent decrease in cell 

viability / increase in LDH release at all-time points in ARPE19 cells, with longer 

exposure to the drugs causing increased cell death (Figure 4.9, 4.10 and 4.11). 

Chloroquine caused a significant decrease in cell viability / increase in LDH release 

at a slightly lower concentration than hydroxychloroquine at all time points, 

reflecting the better safety profile of hydroxychloroquine. The LD50 values also 

reflect this data apart from at the 48h time point in which HCQ possessed a lower 

LD50. 

 

Figures 4.12, 4.13 and 4.14 display the effect of 24, 48 and 72h exposure to CHQ 

and HCQ on MIO-M1 cells. CHQ and HCQ caused a dose and time dependent 

decrease in cell viability, however the LDH release data did not show expected 

patterns of release. Control cells showed release of 10% total LDH at 24h, 20% of 

total LDH at 48h and 30% at 72h. This indicates that culturing in serum free medium 

was having a detrimental effect on the MIO-M1 cell line. More surprisingly there 

was little change in LDH release with treatment of CHQ and HCQ, and interestingly, 

the LDH results from MIO-M1 cells at later time points displayed a decreasing trend 

of LDH release with high concentrations of treatment. This may be due to high 

concentrations of both drugs inducing rapid cell death at early stages, causing early 

release of LDH which then degraded over time. Whereas concentrations around the 
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100µM induced slower cell death with a prolonged LDH release, resulting in less 

LDH degredation and an apparent higher LDH release at the time assessed. This 

shows that for the MIO-M1 cell line, the LDH assay is not a suitable assessment for 

investigation of the effects of longer term culture in CHQ or HCQ. 

The MTS assay however (cell viability assay) worked in an expected manner, and for 

this reason the MTS assay was used to interpret the sensitivity of MIO-M1 cells to 

CHQ and HCQ. This data showed CHQ to be slightly more toxic to the MIO-M1 cell 

line at all time points than HCQ. 

This data reinforces the clinical evidence of HCQ’s better safety profile, with CHQ 

possessing more toxicological properties than that of HCQ in both ARPE19 cells and 

MIO-M1. The fact that the better safety profile of HCQ is reflected in the cell lines is 

important, it shows that the cell lines are suitable for the assessment of retinotoxicity 

and that results which are found clinically may be matched by those within the cell 

lines. 

 

4.4 Conclusion 

 

Experiments within this chapter investigated the sensitivity of human RPE and 

Müller cell line’s to multiple retinotoxins. 

The cell lines showed the predicted responses when assessing the various 

retinotoxins, with high concentrations of the least retinotoxic drug (Indomethacin) 

required to cause a significant increase in cell death, and lower concentrations of the 

known retinotoxins tamoxifen and chloroquine required to cause a significant 

increase in cell death. 

Importantly, both cell lines showed a high degree of sensitivity when determining the 

toxicity of hydroxychloroquine and chloroquine and the cells displayed a better 

safety profile for hydroxychloroquine compared to chloroquine. 

The Müller cell line was more sensitive to tamoxifen, chloroquine and 

hydroxychloroquine than the RPE cell line, potentially indicating that RPE cells 
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display a higher resilience to agents which effect lysosomal activity. A primary 

function of RPE cells is the degradation of shed photoreceptor outer segments by 

phagocytosis, and the breakdown of the phagosome through fusion with endosomes 

and lysosomes (Kevany and Palczewski, 2010). A proposed major mechanism of 

retinal toxicity is the disruption of lysosomal function which would affect the 

degradation of photoreceptor outer segments and would therefore cause disruption of 

the photoreceptor turnover. This research only investigated cell death in response to 

the retinotoxins, however it may also indicate that Müller cell toxicity also plays a 

role in retinotoxicity induced by CHQ, HCQ and tamoxifen. 

 

To summarise, this research indicates the usefulness of human retinal cell lines in the 

establishment of a model to assess retinotoxicity. It has provided information 

regarding the relative toxicity of the drugs investigated, which in the future could be 

used alongside the ex vivo retina and animal models to provide information about the 

toxicity of the drugs, and potentially the mechanisms involved with the associated 

toxicity.  
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Chapter 5 

5.0 Effect of Chloroquine on Human Organotypic Retina Cultures 

5.1 Introduction 

 

Organotypic models are a useful tool in the process of drug development. They 

possess the same cellular and structural properties as the tissue of interest and may 

provide an accurate insight into the effects of a drug on its target tissue. This makes 

the development of human organotypic retinal cultures (HORCs) as a model to 

assess retinotoxicity desirable. HORCs maintain comparable structural and cellular 

properties to the living retina (as shown in Chapter 3) and would enable a correlation 

to be made of a drug’s potential toxicity in the human retina. 

Non-human organotypic retinal cultures have previously been utilised to assess the 

toxicity of specific compounds. The mouse organotypic retinal culture has also been 

used for toxicity studies in which the effect of gold and silver nanoparticles were 

investigated (Soderstjerna et al., 2014). The porcine organotypic retina has also been 

utilised to investigate the effects of bevacizumab (Kaempf et al., 2008). Rat 

organotypic retinal cultures have been utilised to investigate the role of adenosine A3 

receptor activation in the protection of retinal cells from NMDA exitotoxicity 

(Galvao et al., 2015), as well as the protective effect of hydrogen against 

peroxynitrate (Yokota et al., 2015). Human organotypic retinal cultures (HORCS) 

have been utilised previously for a similar purpose in which Niyadurupola (2011) 

showed that THY1 expression (a ganglion cell marker) decreased in response to 

NMDA excitotoxicity and oxygen / glucose deprivation, representing a decrease in 

ganglion cell density and health (Osborne et al., 2015a; Niyadurupola et al., 2011). 

Such data demonstrated the possibilities of using HORCs to investigate degenerative 

effects on ganglion cells, and opened up the possibilities of investigating 

degeneration of other retinal cell types in response to stressors including retinotoxins. 

Research presented in the previous chapter demonstrated the effect of a variety of 

known retinotoxins on the RPE cell line ARPE19 and the Müller cell line MIO-M1. 

Chloroquine was found to be the most potent retinotoxin investigated on both cell 
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lines; for this reason the effect of chloroquine retinotoxicity on the HORC was 

investigated. 

Research presented in this chapter aims to explore methods to analyse the toxicity of 

chloroquine in human organotypic retinal cultures (HORCs). The first stage will 

involve investigating cell death and cell viability in response to chloroquine. The 

next stage involved investigation of the cells affected by chloroquine, carried out 

through the use of immunohistochemistry, and the assessment of levels of cell 

specific mRNA in response to differing concentrations of chloroquine. The 

mechanism of cell death induced by chloroquine was also investigated. 
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5.2 Results 

5.2.1 The Effect of Hydrogen Peroxide on Cell Death in the HORC 

 

Initial experiments used hydrogen peroxide was used as a positive control to find out 

if LDH was released from paramacula HORCs as a result of cell death. 

 

 

Paramacula sections showed a dose dependent increase of LDH release with 

increasing hydrogen peroxide concentrations, a significant increase in LDH release 

was found at 2mM. 

  

 

Figure 5.1 - LDH release in response to H2O2. Mean + SEM control, 1mM, 2mM, 

3mM (n=3). * indicates a significant difference compared to the control (P<0.05) using 

one way ANOVA with Dunnet’s post hoc test. 
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5.2.2 The Effect of Chloroquine on Cell Death / Cell Viability in the HORC 

 

LDH was used then to assess the extent of cell death caused by varying 

concentrations of CHQ in paramacula HORCS. The MTS assay was also used to 

assess any changes in cell viability that occur with 24h CHQ treatment. 

 

 

 

Exposure to CHQ caused LDH release from HORCs. A trend of increased LDH 

release was found from ≥ 200µM treatment, and a significant increase in LDH 

release occurred at 2mM. The MTS assay showed a decreased trend in expression at 

500µM, and a significant decrease in cell viability at 2mM. 

  

 

Figure 5.2 - HORC LDH release and cell viability in response to CHQ. A - Mean + 

SEM of cell death (LDH release) in response to 50µM CHQ (n=31), 200µM (n=31), 

500µM (n=4), 1mM (n=4) and 2mM (n=31). B – Mean + SEM of cell viability in 

response to 50µM CHQ (n=4), 200µM (n=4), 500µM (n=4), and 2mM (n=4) after 24h 

exposure. * indicates a significant difference from the control (P<0.05) using one way 

ANOVA with Dunnets post-hoc test.  
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5.2.3 Investigation of Chloroquine Induced Cell Death in the HORC 

 

HORCS were exposed to CHQ for 24h and cell death investigated using colormetric 

immunohistochemistry and analysed using ScanScope software in which the result is 

expressed as percent positive pixels relative to total pixel count (positive being 

antibody of interest and negative haematoxylin stain). Firstly a marker of cell death 

(TUNEL) was investigated (Figure 5.3). Note that in these experiments an antibody 

to FITC was used to allow the colorimetric analysis to be used. 

 

 

 

Figure 5.3 showed the TUNEL assay to be a sensitive method of cell death analysis 

in HORCS, displaying a significant increase in TUNEL positive cells from ≥200µM 

CHQ. This was a more sensitive assay than LDH or MTS assay, which only showed 

a significant increase in cell death from 2mM. 

  

 

Figure 5.3 - TUNEL % Positive Pixels in Response to CHQ Mean + SEM of cell death 

(% positive pixel) using the TUNEL assay in 24h CHQ treated HORCS (n=5). * indicates 

a significant difference to the control (P<0.05) using one way ANOVA with Dunnets 

post-hoc test. 

 



142 

 

Another marker of apoptotic cell death (active caspase 3) was then investigated using 

the same method. This was analysed as a positive pixel count and the results are 

shown in Figure 5.4. 

 

 

Figure 5.4 indicated that there was no change in the amount of active caspase 3 

positive cells with CHQ treatment. Figure 5.2 and 5.3 showed there was a gradual 

increase in cell death with increased CHQ treatment, indicating that assessment of 

active caspase 3 may not be a good method to assess CHQ induced cell death. 

  

 

Figure 5.4 - Active Caspase 3 % Positive Pixels in Response to CHQ Mean + SEM of 

cell death (% positive pixel of Active Caspase 3) in CHQ treated HORCS (n=5). * 

indicates a significant difference to the control (P<0.05) using one way ANOVA with 

Dunnets post-hoc test. 
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The positive pixel count method was then utilised to investigate any loss in ganglion 

cells that may occur (Figure 5.5). Ganglion cells were chosen due to previous 

research which had shown a decrease in NeuN labelled cells with NMDA 

excitotoxicity and oxygen glucose deprivation (Osborne et al., 2015a; Niyadurupola 

et al., 2011). For this experiment, the positive pixel count of the ganglion cell marker 

NeuN was investigated with varying concentrations of CHQ to determine if any loss 

of ganglion cells occurred due to CHQ toxicity. 

 

 

The NeuN positive pixel count did not change after 24h of CHQ treatment, either 

indicating no change in ganglion cell number occurred with CHQ treatment, or that 

this method of analysis may not be suitable for assessing changes in ganglion cell 

number. 

  

 

Figure 5.5 - NeuN % Positive Pixels in Response to CHQ Mean + SEM of NeuN (% 

positive pixel) in CHQ treated HORCS (n=5). * indicates a significant difference to the 

control (P<0.05) using one way ANOVA with Dunnets post-hoc test. 
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5.2.4 Effect of Chloroquine on mRNA Expression of Retinal Cell Markers in 

HORCs  

 

TUNEL analysis provided a sensitive means of assessing cell death in CHQ treated 

HORCS. However since the analysis was carried out using an automated system, this 

did not provide information regarding specific cell types affected by chloroquine 

toxicity. In order to investigate specific cell loss in the retina that may occur due to 

CHQ toxicity, paramacula samples were exposed to varying concentrations of CHQ 

and the expression of cell specific mRNA markers investigated. Previous research 

has shown that THY1 mRNA expression can be used a sensitive measurement of 

ganglion cell health / density (Nash and Osborne, 1999; Niyadurupola et al., 2011). 

THY1 expression was assessed to determine ganglion cell density, alongside CHAT 

(Amacrine cell), RLBP (Müller cell), PRKCA (Bipolar cell), CALB1 (Horizontal cell) 

and RCVRN (Photoreceptor cell).  

 

Figure 5.6 shows the mRNA expression of cell specific markers in response to 24h 

CHQ treatment. 
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Figure 5.6 - Fold Change in mRNA Expression in Response to CHQ (Delta CT 

method) (normalised to the housekeeping genes TOP1 and CYC1) in HORCs exposed to 

CHQ for 24h A THY1, B ChAT, C RLBP, D PKCA, E CALB1, F RCVRN expression. 

Control (n=8), 50µM (n=4), 200µM (n=8), 500µM (n=4), 1mM (n=4) and 2mM (n=8). * 

indicates a significant difference to the control (P<0.05) using one way ANOVA with 

Dunnets post-hoc test. 
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THY1 showed a decreased trend in expression after 50µM and 200µM CHQ 

treatment for 24h, however the decreased trend was not significant (Figure 5.6 A). 

This was followed by increased expression at higher concentrations of CHQ, with a 

significant increase at 1mM and 2mM. 

ChAT displayed a similar pattern of expression to THY1 after exposure to CHQ 

(Figure 5.6 B), with a trend of decreased expression with 50µM and 200µM CHQ 

followed by an increase in expression which became significant at 500µM, 1mM and 

2mM. 

Figure 5.6 C displayed RLBP expression in response to CHQ treatment. A trend of 

decreased expression at 200µM can be seen followed by an increase in expression at 

500µM and a significant increase in expression with 1mM and 2mM CHQ treatment. 

PKCA expression did not change in response to low concentrations of CHQ 

exposure, with no change in expression up to 200µM treatment (Figure 5.6 D). 

However there was a significant increase from ≥500µM. 

Changes in CALB1 expression were similar to THY1, ChAT and RLBP with 

significant increases see at 1mM and 2mM (Figure 5.6 E). Trends of CALB1 were 

also similar to RCVRN (Figure 5.6 F), however RCVRN expression displayed no 

significant change with any concentration of CHQ treatment. 
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5.2.5 Western Blot Analysis of Chloroquine Treated Samples 

 

The previous data provided evidence that cell death that occurred in HORCs with 

CHQ treatment. Subsequent experiments aimed to further investigate the method 

through which cell death occurred were carried out on HORCs exposed to CHQ for 

24h. It is known that levels of PARP cleavage can be used as a measure of apoptosis 

(Mullen, 2004), therefore protein extracted from HORCs was analysed by western 

blotting for PARP cleavage and active caspase 3 to help determine if apoptosis was 

the cause of cell death in the treated samples. 
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Levels of PARP cleavage were firstly assessed in hydrogen peroxide treated samples 

as a positive control (Figure5.7). 

 

The western blot for PARP (Figure 5.7 A) clearly shows a loss of whole PARP 

(116kDa) with H2O2. This appears to be dose-dependent, with very little whole 

PARP detected at the higher concentrations of H2O2. Cleaved PARP also decreased 

with H2O2, but not as quickly as whole PARP. When analysed using densitometry 

the ratio of whole PARP to cleaved PARP displayed a dose dependent decrease with 

increasing concentrations of H2O2. It should be noted that this was only n=2, 
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Figure 5.7 - PARP Cleavage in Response to H2O2 - A Representative western blot for 

PARP following 24h H2O2 treatment of HORCs (n=2) ± SEM. B Whole PARP to 

Cleaved PARP ratio. No significant difference was found with increasing concentrations 

of CHQ (P>0.05) (one way ANOVA with Dunnets post-hoc test). 

H2O2 Concentration 
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however the clear trend showed that this may be a useful method to investigate 

apoptosis. 

PARP cleavage was then investigated on CHQ treated samples. 

 

Figure 5.8 shows the effect of CHQ on PARP in the HORC. What can be seen is 

very little change in levels of β actin with increasing concentrations of CHQ (Figure 

5.8A). Whole PARP also changes very little until 2mM treatment where a decrease 

can be seen (Figure 5.8 B), this is matched by cleaved PARP (Figure 5.8 C) which 

 

D 

 

Figure 5.8 - Representative Western blot of PARP following 24h CHQ treatment. 

A – β-actin, B – Whole PARP, C – Cleaved PARP 

D - Whole PARP : Cleaved PARP ratio after normalisation of each to β actin (n=4). No 

significant difference was found with increasing concentrations of CHQ (P>0.05) (one way 

ANOVA with Dunnets post-hoc test). 
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also only shows a decrease with 2mM treatment. Overall this resulted in no change in 

the ratio of whole PARP to cleaved PARP (Figure 5.8 D). 

 

5.3 Discussion 

 

The aim of this research was to determine whether the HORC could be a suitable 

model for the assessment of retinotoxicity. This was investigated by assessing the 

effects of the known retinotoxin CHQ on the ex vivo retina. 

Levels of cell death were firstly assessed in the positive control treated HORCs 

(H2O2). Figure 5.1 showed that 2mM H2O2 was required to cause a significant 

increase in cell death as measured by the LDH and MTS assays in the HORC. This 

corresponded well with the cell line data in Chapter 4 in which H2O2 caused a 

significant increase in cell death / decrease in cell viability in ARPE19 cells with 

1mM and 500µM H2O2
 treatment respectively, and a significant decrease in cell 

viability was found with 1mM H2O2
 treatment in the MIO-M1 cell line. 

Since the LDH assay proved to be useful in measuring levels of cell death induced by 

H2O2 it was decided that this assay would also be used to assess CHQ induced cell 

death in HORCs. It was also decided that the MTS assay would be utilised to find out 

if the assays differed in sensitivity. It was found that CHQ caused a dose dependent 

increase in cell death in the HORCs (Figure 5.2), with a significant increase in cell 

death, and a significant decrease in cell viability found at a concentration of 2mM. 

LDH appeared to provide a more sensitive means of assessing cell death, displaying 

a gradual increase in cell death from low concentrations of CHQ, whereas the MTS 

assay did not show a decreased trend of cell viability until 500µM CHQ. 

Previous data from the ARPE19 and MIO-M1 cell lines indicated that CHQ caused a 

significant increase in cell death at concentrations of ≥200µM and ≥50µM 

respectively. It was therefore be expected that the concentrations of CHQ required to 

induce a significant level of cell death in the HORC would be lower than 2mM. This 

may indicate that either the LDH and MTS assay are not sensitive enough to assess 

changes in levels of cell death in the HORC, or that higher concentrations of toxins / 
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compounds are required to cause a significant increase in cell death in the HORC due 

to the detoxification of the compound by the retina. 

To further investigate CHQ induced toxicity, other methods of assessing cell death 

were used, specifically TUNEL activation, caspase 3 cleavage and ganglion cell 

number (levels of NeuN positive cells). 

This was accomplished through the use of the Ventana Discovery (Roche, Burgess 

Hill, UK), a high throughput immunohistochemical platform which allows for the 

efficient staining of multiple slides with multiple antibodies. The platform was used 

for colorimetric immunohistochemistry where samples were stained for either active 

Caspase 3, Anti-FITC (TUNEL) or NeuN. The slides were then scanned and a 

positive pixel count performed of antibody specific pixels, normalized to the number 

of haematoxylin pixels using the image analysis software Scanscope. The TUNEL 

anti-FITC colorimetric method had not been used before in HORCs and was 

developed for the purpose of assessing CHQ induced toxicity using a high 

throughput method.  

The TUNEL assay is designed to detect cells undergoing apoptosis, more specifically 

the late stages of apoptosis, in which DNA degradation from endonuclease activation 

occurs. The DNA degradation produces double stranded DNA fragments of 

approximately 180 – 200bp in length. The double stranded breaks are recognised by 

terminal deoxynucleotidyl transferase (TdT), which catalyses the addition of FITC 

labelled dUTP’s to the 3’-OH termini, which can then be visualised through 

fluorescence microscopy (Kyrylkova et al., 2012). In this method a HRP anti-FITC 

antibody was used to allow colorimetric assessment of the samples to be used. It 

should also be noted that TUNEL has also been found to detect cells undergoing 

necrosis (Kyrylkova et al., 2012), suggesting that DNA fragmentation is not 

specifically a feature of apoptosis, meaning that care must be taken when interpreting 

data using this assay (de Torres et al., 1997; Grasl-Kraupp et al., 1995). 

 

Figure 5.3 shows a dose dependent increase in % TUNEL positive pixels with CHQ 

treatment, with a significant increase from ≥200µM. This assay displayed much 

higher sensitivity compared to the LDH and MTS assay which only showed a 

significant increase in LDH with 2mM treatment.  
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Active caspase 3 was then investigated, as measuring levels of active caspase 3 is a 

well-established method of analysing apoptotic cells. When cells die they commonly 

follow two routes of cell death, apoptosis and necrosis. Apoptosis is programmed 

cell death that is controlled and does not create an inflammatory response, whereas 

necrosis is uncontrolled cell death which is predominantly due to disruption of the 

cell membrane or interference with the energy supply of the cell which induces an 

inflammatory response (Kim et al., 2003; Elmore, 2007). 

Apoptosis normally follows one of two main pathways, the extrinsic (death receptor) 

pathway and the intrinsic (mitochondrial) pathway. However there are other routes 

such as T-cell mediated cytotoxicity (Elmore, 2007). It is also possible for the 

extrinsic and intrinsic pathway to influence each other (Igney and Krammer, 2002). 

The extrinsic pathways initiation of apoptosis includes the activation of 

transmembrane receptor proteins. More specifically these are part of the tumour 

necrosis factor (TNF) receptor family which transmit the death signal into an 

intracellular signal. The T cell mediated cytotoxicity pathway mentioned earlier 

induces apoptosis via the extrinsic pathway (Brunner et al., 2003). 

The intrinsic pathway of apoptosis is activated by a range of intracellular signals 

which act on internal targets within the cell. There are two types of stimuli which 

have the ability to activate the intrinsic pathway; these are negative and positive 

signals. Negative signals are induced by a lack of certain hormones, cytokines and 

growth factors which normally inhibit the initiation of a death signal. Positive signals 

are stimulants which induce the apoptosis signal including toxins, temperature 

change and viral infections. The death signal starts with the loss of the mitochondrial 

transmembrane potential, the opening of the mitochondrial permeability transition 

pore and the release of apoptosis inducing proteins (Saelens et al., 2004; Elmore, 

2007).  

Once either one of these pathways are activated they follow the same termination 

pathway which starts with the cleavage of Caspase 3. Following a series of 

intracellular events including; breakdown of cytoskeletal and nuclear proteins, DNA 

fragmentation and expression of ligands of phagocytes, the death of the cell occurs 

(Elmore, 2007). 
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Cleavage of caspase 3 is a common step in apoptosis enables the use of an antibody 

against active caspase 3 to identify cells which are undergoing apoptosis. In the 

experiments performed no change in levels of active caspase 3 was detected. This 

data leaves the root cause of cell death open. The lack of change in active caspase 3, 

and the significant increase in TUNEL levels with CHQ treatment indicates that 

either apoptosis is not the cause of cell death and TUNEL is displaying another form 

of cell death such as necrosis. Or that the tissue is undergoing apoptosis which 

TUNEL is showing, and the assessment of active caspase 3 is not appropriate for 

assessing levels of cell death in the human retina. The latter is likely to be the case as 

others have tried to use caspase 3 cleavage to assess apoptosis in the human retina, 

but without success (Osborne, personal communication). 

Immunohistochemistry was also used to investigate ganglion cell susceptibility. It 

has been shown that CHQ treatment causes an initial loss of ganglion cells in the 

retina of rhesus monkeys, with other nuclear layers affected at later time points 

(Rosenthal et al., 1978). There is also clinical data from CHQ treated patients who 

are affected by CHQ induced retinopathy which indicates that there is a thinning of 

the nerve fibre layer in advanced stages of toxicity which may be due to ganglion cell 

damage / loss (Bonanomi et al., 2006; Korah and Kuriakose, 2008). 

The percentage positive pixel method was used to investigate NeuN 

immunohistochemistry in HORCs after exposure to CHQ to find out if ganglion cell 

numbers were effected by CHQ treatment. The results (Figure 5.5) displayed no 

change in NeuN positive pixels with any concentration of CHQ treatment. This may 

indicate that ganglion cells which express NeuN do not change in number with CHQ 

treatment, or that ganglion cells are not affected by CHQ. 

The next area of interest was to try and determine cell specific loss that occurred in 

the ex vivo retina as a result of CHQ toxicity. This was investigated through changes 

in expression levels of cell specific markers in response to CHQ induced toxicity. 

THY1 mRNA expression has previously been used to assess ganglion cell health / 

density (Nash and Osborne, 1999; Niyadurupola et al., 2011), however no other cell 

specific markers have been used for this purpose in the ex vivo retina. For this reason 

expression levels of THY1 (Ganglion cells), CHAT (Amacrine cells), RLBP (Müller 
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cells), PRKCA (Bipolar cells), CALB1 (Horizontal cells) and RCVRN (Photoreceptor 

cells) were assessed to investigate cell health / density of the respective cells. 

A common theme throughout these results is the decreased trend in expression with 

200µM treatment, followed by an increased trend / significant increase in expression 

with 500µM, 1mM and 2mM CHQ treatment. This decreased trend in expression at 

200µM could be indicative of cellular loss as a result of CHQ toxicity, however this 

is not matched by results from higher concentrations of CHQ treatment (1 and 

2mM), which consistently led to increased expression of the cell specific markers. 

This increased trend / significantly higher expression of cell specific markers with 

high concentrations of CHQ was not expected as previous work with THY1 as a 

marker of RGC survival showed a decreased expression correlating with RGC loss. It 

was possible that the increase in expression could be explained by alterations in 

expression of the housekeeping genes, however after reviewing the data, no changes 

in housekeeping gene expression was found, which indicates that CHQ was 

responsible for the upregulation of expression of multiple cell specific genes. 

The reason for the increase in expression of the cell specific markers is not clear, 

however it has shown that the method of looking at decreased expression of cell 

specific markers in response to CHQ toxicity is unsuitable for the analysis of cell 

death associated with CHQ induced cell death. 

It should be noted that even though the previous chapter showed that increased time 

exposed to CHQ induced higher levels of cell death in MIO-M1 and ARPE19 cells, 

the 24h time point was decided upon for HORC investigation. This time point was 

chosen because of previous research conducted into the expression of mRNA cell 

specific markers within the human retina over time. This research displayed a 50% 

decrease in the expression of the ganglion cell marker THY1 after 24h in culture, 

followed by a further 25% decrease after 48h and reaching basal levels after 72h 

(Niyadurupola et al., 2011). If a decrease in markers are to be used as an assessment 

of a specific cell types vulnerability to CHQ, there must be as little change in the 

initial levels of that marker itself. 

The next aim was to provide further information regarding the cause of cell death 

within the HORC. Protein from CHQ treated HORCs was extracted and analysed for 

PARP cleavage. 
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To help confirm whether CHQ toxicity causes apoptosis, PARP cleavage was 

investigated. Poly (ADP-ribose) polymerase (PARP) is a DNA repair enzyme which 

binds to DNA strand breaks and catalyses the formation of poly (ADP-ribose) 

polymers using NAD+ as a substrate. PARP then detaches from the DNA, and the 

poly (ADP-ribose) polymers are degraded by poly (ADP-ribose) glycohydrolase 

(PARG) allowing DNA repair complexes to repair the DNA (Herceg and Wang, 

2001). When a cell undergoes apoptosis, caspases cleave PARP from a single 116kD 

unit into two fragments (89kD and 24kD), to prevent DNA repair from occurring 

(Mullen, 2004). All caspases have the ability to cleave PARP, however caspase 3 and 

caspase 7 are the most efficient at this process (Ghayur et al., 1997). 

PARP cleavage may be quantified and used to measure of apoptosis (Mullen, 2004). 

Due to the nature of cleavage by caspases, the amount of cleaved PARP can be used 

as an indication of apoptosis within the tissue / cells investigated. This method of 

investigation was of interest as it would provide more information regarding the 

mechanism of cell death caused by CHQ. Previous data indicated that CHQ 

treatment caused no rise in active caspase 3, however this does not rule out 

apoptosis. Many other caspases are involved with apoptotic cell death, and since all 

caspases have the ability to cleave PARP, PARP cleavage should indicate if 

apoptosis occurs as a result of CHQ toxicity. 

In order to investigate if PARP cleavage is a suitable method to assess cell death in 

HORCs, a positive control was firstly investigated. PARP cleavage is known to be 

caused by caspases, therefore any inducer of apoptosis should act as a positive 

control. For this reason H2O2 was firstly investigated as it has been shown to induce 

apoptosis at low concentrations in ARPE19 cells (Kim et al., 2003). 

Figure 5.7 showed a decrease in whole PARP, cleaved PARP also decreased and 

when the whole PARP : cleaved PARP ratio was measured there was a decreased 

trend with increasing concentrations of H2O2. Although this decrease was not 

significant, due to the positive nature of the trend it was decided that PARP cleavage 

would be assessed in response to CHQ treatment. 

Figure 5.8 shows the effect of CHQ treatment on PARP cleavage. Figure 5.7 D 

displays the ratio of whole PARP : cleaved PARP normalised to β actin in response 

to differing concentrations of CHQ. Although a decrease could be seen in both whole 
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PARP and cleaved PARP, there was no significant difference in this ratio with CHQ 

treatment, indicating that apoptosis may not be the route of cell death caused by 

CHQ treatment. 

CHQ is a known inhibitor of autophagy, which is primarily linked with roles in pro-

survival; it has however also been linked with roles in cell death. It is known to aid 

with numerous roles such as adaptation to starvation, immunity and recycling of 

organelles. For the process to be termed autophagy, the targeted cell constituents 

must be delivered into lysosomes for degradation (Boya et al., 2013). There are 

currently three well described types of autophagy described below: 

Chaperone mediated autophagy is a form of autophagy in which a subset of soluble 

cytosolic proteins are recognised and transported into the lysosome for degradation. 

Chaperone mediated autophagy requires the protein to be degraded to contain a 

pentapeptide motif related to the amino acid sequence KFERQ. This motif is 

recognised by cytosolic chaperones which bring the protein to the surface of the 

lysosome where it docks with LAMP-2A. Once docked the protein unfolds and 

translocates into the lysosome (Kaushik et al., 2011). 

Microautophagy is a non-specific form of autophagy (induced via nitrogen 

starvation) in which cytoplasmic substances / organelles are engulfed by the 

lysosome and broken down into their components (Li et al., 2012). 

Macroautophagy involves a double membrane wrapping the targeted cytoplasmic 

region to form an autophagosome. The autophagosome then fuses with an endosome 

forming the amphisome. The amphisome then fuses with the lysosome forming the 

autolysosome which degrades the contained substances (Holt et al., 2011). 

The effect of inhibiting autophagy on ARPE19 cells (using CHQ) has been 

investigated by Yoon et al (2010). The results indicated that the main cause of cell 

death may be due to lysosomal dysfunction, where an increased accumulation of 

endocytosed proteins and lipids have cytotoxic consequences. Yoon et al (2010) also 

found that an increase in LC3-II occurred due to the inhibition of autophagosome and 

lysosome binding. Autophagic cell death however was not likely to be the cause of 

cell death found with CHQ treatment, since inhibition of autophagy using 3-MA 

failed to reduce levels of CHQ induced cell death, whereas co treatment with 

bafilomycin A1 (a lysosomal acidifier) attenuated cell death, indicating lysosomal 

dysfunction may be involved with the cell death found. Interestingly this study also 
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revealed that caspase dependent cell death was not the root cause of cell death, as the 

broad range caspase inhibitor z-VAD-FMK did not reduce CHQ induced cell death 

and no activation of caspase 3 was found. This could match research in this chapter 

which displayed a lack of caspase 3 activation with CHQ treatment, however 

contradictory to this TUNEL labelling did increase which could also indicate 

apoptosis may be involved. 

 

 

5.4 Conclusion 

 

This chapter aimed to investigate the best methods available to analyse cell death in 

the ex vivo human retina in order to assess the effects of the retinotoxin CHQ. 

Cell death was firstly assessed using the LDH and MTS assay, which revealed a 

significant increase in cell death and cell viability with 2mM CHQ treatment. The 

LDH assay showed an increased trend of LDH release at lower concentrations of 

CHQ treatment, indicating that the LDH assay is more sensitive at assessing levels of 

CHQ induced cell death. 

When immunohistochemical methods of analysing cell death were investigated, 

TUNEL positive cells displayed a significant increase from ≥200µM CHQ treatment. 

Active caspase 3 was also investigated, however no change in active caspase 3 

staining was found with any concentration of CHQ treatment. Finally, ganglion cell 

loss was investigated (levels of NeuN), however no change in NeuN was found with 

any concentration of CHQ treatment. This data showed that the most sensitive 

method utilised to assess cell death in respose to CHQ was the TUNEL assay.  

To explore specific cell sensitivities to CHQ, quantitative PCR was utilised to 

investigate expression of cell specific markers in response to CHQ treatment. This 

produced consistent increases in expression of all cell specific markers with 1 and 

2mM treatment, showing that measuring decreased expression of cell markers is 

unsuitable for the assessment of cell health / density in response to CHQ induced 

toxicity. 
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Further analysis was carried out to determine whether the route of cell death caused 

by CHQ toxicity could be investigated in HORCs. PARP cleavage was investigated 

as a measure of apoptosis, however no change in the ratio of whole PARP to cleaved 

PARP was found. 

Overall the research presented in this chapter has shown that cell death can be 

observed in the ex vivo retina through the use of medium assays such as LDH and 

MTS, with the most sensitive means of assessing cell death being TUNEL analysis. 
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Chapter 6 

6.0 Cyclin Dependent Kinase Expression in the Adult Human Retina 

6.1 Introduction 

Research presented in previous chapters has shown the effectiveness of both the 

extraction template (the five paramacula explants and the macula explant) and the 

planar sectioning technique in the process of identifying cell type and density 

through the investigation of mRNA expression. Whole explant analysis provided 

information about cell density within certain regions of the retina (paramacula and 

macula). Whereas analysis of planar sections showed the expression profile of cell 

specific mRNA was as would be expected in relation to positioning across the retinal 

layers. Using the latter technique the ganglion cell layer expressed peak levels of 

THY1 and other ganglion cell specific markers. The inner nuclear layer expressed 

peak levels of PKCA and other inner nuclear layer markers, and the outer nuclear 

layer expressed peak levels of RCVN compared to the rest of the retina. This shows 

that this technique could be used to assess the expression profile of specific genes of 

interest, including genes related to retinotoxic drugs. 

Cyclin Dependent Kinases (CDKs) are part of a family of heterodimeric serine / 

threonine protein kinases which are primarily involved in the cellular processes and 

signals which time the cell cycle (Malumbres and Barbacid, 2005). CDK’s are 

named so because of their dependence on cyclin subunits for activation. These 

cyclins are synthesized and degraded throughout the cell cycle in order regulate the 

activity of the CDK’s (Malumbres and Barbacid, 2005). There are 21 genes which 

encode for CDK’s and a further 5 genes which encode CDK-like proteins (Figure 

6.1) (Malumbres et al., 2009). 

Recent research has begun to show that the role of CDK’s are not strictly bound to 

the cell cycle. They also play roles within the regulation of RNA polymerase II 

(CDK7, 8 and 9) (Parry et al., 2010; Bregman et al., 2000) and, in the case of post 

mitotic neurons, cell migration and synaptogenesis (D.W. Rickman, 2005). Some 

CDK’s have also been shown to have important roles within photoreceptor activity, 

for example, CDK5 is involved in the recovery phase of phototransduction in frog 

and other vertebrate photoreceptors (Hayashi et al., 2000).  
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CDK inhibitors have been of interest recently due to their potential to be used as 

cancer therapeutics. This has stemmed from research which has found that CDK’s 

can be over expressed in many tumors (Nemunaitis et al., 2013). One such example 

of a successful CDK inhibitor is dinaciclib, a small molecule CDK inhibitor which 

has progressed through to human phase 1 clinical trials for patients with advanced 

malignancies (Nemunaitis et al., 2013) and has been used for early phase 2 trials for 

non-small cell lung cancer (Stephenson et al., 2014). Broad spectrum pan CDK 

inhibitors would be expected to have similar side effects as chemotherapy agents, 

 

Figure 6.1 - CDK family tree. CDKL = CDK like, for explanations of the genes 

highlighted in the red box, refer to the text (Malumbres et al., 2009) 
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with other rapidly dividing cells being affected such as those within the gut and bone 

marrow (Illanes et al., 2006). Interestingly it has been noted that the use of pan-CDK 

inhibitors can cause toxic side effects and cell death within non-rapidly dividing 

cells, and non-dividing cells. 

AG-012986 is a pan-CDK inhibitor which was found to cause photoreceptor toxicity 

in the mouse retina (Illanes et al., 2006). Since inhibition of CDK’s would normally 

prevail in toxicity related to dividing cells this was of interest, especially since 

photoreceptors are post-mitotic having an “arrested” cell cycle. This further 

demonstrates CDK’s potential involvement in non cell cycle roles. 

The research presented in this chapter investigates the expression profile of CDK 

isoforms in the retina. CDK mRNA expression was investigated in whole explants of 

the human retina to reveal firstly whether the CDK isoform was expressed and 

secondly whether any differences in regional expression throughout the retina 

(macula vs paramacula) were present. Following this, the mRNA expression profile 

of selected CDK isoforms was investigated throughout retina using the planar 

sectioning technique. CDK mRNA was analysed alongside three cell specific 

markers: THY1 to identify the ganglion cell layer, PKCA to identify the inner nuclear 

layer and RCVRN to identify the outer nuclear layer. 

The aims of this chapter are firstly to select CDK’s which might be potential 

mediators of retinotoxicity caused by the CDK inhibitor and to determine the 

expression profile of these genes in the human retina. Secondly, the effects of the pan 

CDK-inhibitor AG-012986 on the two retinal cell lines ARPE19 and MIO-M1 cells 

will be investigated. This research aims to aid in the future development of CDK 

inhibitors, providing information relating to which CDK’s may be the cause behind 

the toxicity of photoreceptors. 
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6.2 Results 

6.2.1 CDK Selection 

Due to large vast family of CDK’s and CDK-like proteins, the research was directed 

to a set of CDK’s agreed with AstraZeneca. In order to make a decision on which 

CDK’s to investigate, AstraZeneca provided data regarding the affinities of two pan-

CDK inhibitors with known neurotoxicity and one pan-CDK inhibitor and a selective 

CDK9 inhibitor which has no reported neurotoxicity. This data is shown in Figure 

6.2. 
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Figure 6.2 - Affinities of four CDK inhibitors towards different CDK isoforms. A 

and B (green dots) represent two CDK inhibitors with no recorded neurotoxic side 

effects. C and D (red dots) represent two CDK inhibitors with recorded neurotoxicity. 

Source: AstraZeneca. 
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The CDK’s agreed upon were CDK16, 17 and 18, and CDK11A and B. This was 

decided because both CDK inhibitors which cause retinotoxicity possessed higher 

affinity for CDK 16, 17 and 18 along with CDK11A and B, and it was believed that 

the combined effect of inhibiting these CDK’s may be the reason behind the 

retinotoxicity found. It was also agreed that CDK 5 would be investigated due to 

previous data suggesting the role CDK5 possesses in the retina. 

 

6.2.2 Whole Explant CDK analysis 

Whole explant analysis of CDK expression throughout the five paramacula explants 

and the macula explant was performed to investigate if CDK expression was present, 

and if any variation in regional expression occurred (Figure 6.3)  

 

 

 

 

Figure 6.3 - Expression of CDK’s throughout whole retinal explants. Relative 

expression of CDK 5 (A), 11 (B), 16 (C), 17 (D) and 18 (E) mRNA within paramacula 

and macula explants (n=5) ± SEM, * indicates significance (one way ANOVA with 

Tukeys multiple comparison test) (P<0.05). 
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CDK5 expression levels were consistent throughout the 5 paramacula explants, 

however the macula had significantly higher expression compared to paramacula 

explants (Figure 6.3 A). CDK11 expression levels were similar throughout the 

paramacula and macula explants (Figure 6.3 B). 

CDK16 and 17 expression levels were consistent throughout the paramacula and the 

macula explants. CDK18 displayed a reduced trend of expression in the macula 

compared to the paramacula explants, but no significant difference was seen (Figure 

6.3 C, D and E). 

This data indicates that each of the CDKs investigated are expressed within the 

human retina, and there is evidence to suggest that some of the CDKs may be more 

highly expressed in certain cell types, with CDK5 possessing significantly higher 

expression in the macula and CDK18 displaying a reduced trend of expression in the 

macula compared to the paramacula. Planar sectioning may be utilised to confirm 

any expression patterns that may occur throughout the nuclear layers of the retina. 

 

6.2.2 mRNA Profiling of the Macula and Paramacula Explants 

Planar sectioning allows assessment of mRNA expression in individual retinal layers. 

Expression of CDK5, 11, 16, 17 and 18 was assessed alongside cell specific markers 

to determine the expression profile. 
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Figure 6.4 - Expression of THY1, PKCA, RCVRN, CDK5, CDK11, CDK16, CDK17 and 

CDK18 mRNA throughout planar sectioned macula and paramacula samples. Mean ± 

SEM (n=4). The outer nuclear layer is represented by the purple bar, the inner nuclear layer by 

the blue bar and the ganglion cell layer by the green bar. 
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Figure 6.4 shows the mRNA profile of the cell specific markers and CDKs 

throughout the macula and paramacula explants. The cell specific markers THY1, 

PKCA and RCVN were located in their normal positions and helped identify the 

ganglion cell layer, the inner nuclear layer and the outer nuclear layer respectively.  

CDK5 expression was evenly distributed throughout the macula whereas in the 

paramacula, peak expression was found in the ganglion cell layer.  

CDK11 showed peak expression in the outer nuclear layer of both macula and 

paramacula samples, although this peak was more defined in the paramacula. 

CDK16 expression was low in the outer nuclear layer of both the macula and 

paramacula, before gradually increasing throughout the inner nuclear layer. 

Expression then remained high in the ganglion cell layer of the macula, whereas a 

decrease in expression was found in the ganglion cell layer of the paramacula. 

CDK17 displayed a similar expression pattern in both the macula and the 

paramacula, with low expression levels in the outer nuclear layer and the ganglion 

cell layer and peak expression in the inner nuclear layer. 

CDK18 expression was also very similar in both macula and paramacula samples, 

with a defined peak in the inner nuclear layer, no expression in the outer nuclear 

layer and little expression in the ganglion cell layer. 
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6.2.3 Effect of AG-012986 on ARPE19 and MIO-M1 Cells 

It is of interest to investigate the effect of AG-012986 on the retinal cell lines due to 

the toxicity found in vivo in mice by Illanes et al (2006). The photoreceptor 

degeneration found with AG-012986 may be caused as a side effect of RPE or 

Müller cell malfunction, therefore it is of interest to investigate the effect of the pan 

CDK inhibitor on the two cell lines ARPE19 and MIO-M1. 

 

The pan-CDK inhibitor AG-012986 was found to possess toxic effects on the MIO-

M1 cell line, but not the ARPE19 cell line. This was displayed by the significant 

 

Figure 6.5 - LDH release and Cell Viability of ARPE19 and MIO-M1 Cells in 

Response to AG-012986. A and B, LDH release in ARPE19 and MIO-M1 cells 

(respectively) in response to the pan CDK inhibitor AG-012986. C and D cell viability of 

ARPE19 and MIO-M1 cells (respectively) in response to differing concentrations of AG-

012986. * indicates a significant difference from the control (one way ANOVA with 

Dunnets post hoc test) (P<0.05) 
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increase in cell death found from 200nM treatment on MIO-M1 cells in both LDH 

and MTS assays. ARPE19 cells displayed a significant decrease in MTS with 60nM 

and 200nM treatment, however this is more than likely an anomaly as no other 

significant decrease in MTS followed and was not matched by an increase in LDH. 

 

6.3 Discussion 

Recent evidence has brought to light the role of CDKs outside of the cell cycle. The 

importance of this has been demonstrated by the development of drugs aimed at 

CDK inhibition which cause toxicity in post mitotic cells. An example of this is the 

pan CDK inhibitor AG-012986 which caused specific photoreceptor toxicity when 

applied to mice in vivo (Illanes et al., 2006).  

In order to investigate the distribution of CDKs within the human retina, mRNA 

expression levels were measured in whole paramacula and macula explants, 

providing an insight into firstly whether the CDKs were expressed, and secondly the 

expression pattern throughout the topographical regions of the retina. The CDK 

expression profile were then investigated throughout planar sectioned macula and 

paramacula explants. This provided a location of CDK expression within the nuclear 

layers of the retina, and details of the density of expression, all of which aid in the 

identification of the cell type expressing CDKs.  

Due to the large number of CDKs, it was decided that the research conducted would 

be focussed onto specific CDKs which were predicted to be the cause of the 

retintotoxicity found with AG-012986 (Illanes et al., 2006). In order to decide on the 

CDKs to investigate, AstraZeneca provided CDK affinity data from four CDK 

inhibitors. Two of these CDK inhibitors were known to cause retinotoxicity, and two 

had no reported retintoxicity. After review, the two CDK families that the retinotoxic 

CDK inhibitors possessed higher affinities for then the non-toxic inhibitors were the 

CDC2L family (CDK11A and 11B) which had higher affinities in the two neurotoxic 

CDK inhibitors, and the PCTK family (CDK16, 17 and 18) which also possessed 

high affinities in both neurotoxic CDK inhibitors (highlighted in Figure 6.2). It was 

also decided that CDK5 would be investigated, as previous data had suggested that 

CDK5 may possess a role in the RGC apoptosis in the rat retina (Chen et al., 2011a). 



170 

 

Each of the CDK’s investigated are discussed in turn, and any differences found 

interpreted. 

Whole explant CDK mRNA analysis (Figure 6.3) revealed that CDK5 had 

significantly higher expression within the macula explant compared to all 5 

paramacula explants (P<0.05). Referring back to chapter 3 it can be seen that the cell 

specific marker genes of ganglion cells (THY1, AHNAK2 and RBFOX3) all show 

significantly higher expression in macula samples compared to paramacula. This 

could indicate that CDK5 is expressed in ganglion cells. mRNA profiling revealed 

that in macula samples, expression was evenly distributed and showed no indication 

of peak expression within the ganglion cell layer (Figure 6.4). Interestingly however, 

within paramacula samples there was highest expression in the ganglion cell layer 

(Figure 6.4). This indicates that expression is not restricted to the ganglion cells, but 

that in the paramacula region, there is higher CDK5 expression in the GCL than in 

other layers of the retina. 

CDK5 has been found to play an important role within the CNS. It is expressed 

universally, however it has high activity within the CNS due to the distribution of its 

activators (P35 and P39). P35 and P39 are non-cyclins, with P35 being the main 

activator of CDK5. P39 possesses a 57% homology with P35 and can therefore also 

activate CDK5 (Dhariwala and Rajadhyaksha, 2008). CDK5 is known to play a role 

in neural development, aiding in neuronal migration and differentiation, axonal 

elongation and synaptogenesis. However it also plays a role in post mitotic neurones. 

This is because post mitotic neurones express P35 activity (Paglini and Caceres, 

2001; Chen et al., 2011a). CDK5 has also been linked with multiple neurological 

disorders such as Alzheimer’s Disease, Parkinson’s Disease, Amytrophic Lateral 

Sclerosis (ALS) and Huntington’s Disease (Dhariwala and Rajadhyaksha, 2008). 

Interestingly CDK5 has also been shown to play a role in rat RGC death within a 

model of glaucoma where it was found that CDK5 was upregulated significantly at 

day 21, which was matched by TUNEL positive cells. P35 expression was also 

elevated significantly on day 14 and day 21 of the glaucoma model, suggesting that 

the increase in P35 caused the increase in CDK5 expression. Intriguingly roscovine 

(a CDK5 inhibitor) significantly reduced levels of P35 and the number of apoptotic 

RGC’s, emphasising the importance of CDK5 in neuronal cell survival (Chen et al., 
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2011a). This is interesting in that roscovine (CDK5 inhibitor) possessed pro-survival 

properties for ganglion cells in a glaucoma model, whereas the pan-CDK inhibitor 

AG-012986 caused photoreceptor toxicity in healthy mice, potentially indicating that 

CDK5 inhibition may not be involved with the cell death found with AG-012986. 

Planar sectioning data showed that CDK5 was not expressed highly in the outer 

retina compared to the rest of the retina. 

CDK11 expression throughout whole paramacula explants was relatively consistent 

although the macula displayed a trend of slightly lower expression compared to 

paramacula explants. The cell specific markers that show a similar pattern of lower 

expression in macula vs paramacula are: the Müller cell marker; RLBP, the bipolar 

cell marker PKCA and the photoreceptor marker RCVRN (Chapter 3). Planar 

sectioning revealed higher expression of CDK11 in the photoreceptor layer of both 

macula and paramacula samples, although the difference was more noticeable in the 

paramacula. This indicates that CDK11 is more highly expressed in photoreceptors 

and that expression of CDK11 could be higher within rod photoreceptors, which 

become more densely populated as distance from the fovea increases.  

CDK11 has two isoforms p58 and p110, neither of which has been studied within the 

retina. The CDKp110 isoform is known to be expressed throughout the cell cycle and 

is involved in transcriptional regulation and RNA processing, whereas the CDKp58 

variant is specifically expressed at the G2/M phase (Rakkaa et al., 2014). Deletion of 

the CDK 11 gene in mice caused embryonic death at E3.5 and when further 

investigated, blastocysts showed proliferative defects and mitotic arrest (Hu et al., 

2007). As photoreceptors are terminally differentiated CDK11’s high presence 

within the photoreceptors is not likely to be due to its role within the cell cycle. 

Interestingly CDK11p58 has also been investigated for its role in apoptosis in PC12 

cells (rat neuronal cell line), in which a knockdown of CDK11 repressed neuronal 

apoptosis, and overexpression promoted neuronal apoptosis (Liu et al., 2013). This 

would imply that CDK11 found within photoreceptors might be involved in the 

regulation of apoptosis, however if effects were similar to that of the knockdown of 

CDK11 in the PC12 cell line, inhibiting CDK11 would repress apoptosis, not induce 

it. The literature combined with our data may indicate that photoreceptors possess 

higher levels of CDK11 to aid with transcription / pre-mRNA splicing of 

photoreceptor specific mRNA’s. 
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CDK16 expression showed no distinct pattern of expression between paramacula and 

macula explants. Interestingly mRNA profiling of macula sections revealed 

increasing expression within the inner nuclear layer before reaching peak expression 

in the ganglion cell layer, whereas in paramacula sections there was peak expression 

within the inner nuclear layer. This could indicate that CDK16 is expressed within a 

cell type which resides within both the inner nuclear layer and the ganglion cell 

layer, this may imply expression in amacrine cells. Interestingly, in howler monkeys 

(Alouatta caraya) displaced amacrine cell density reached its peak at 0.5mm from 

the fovea (Muniz et al., 2014). The macula sections in these experiments measures 

4mm in diameter and therefore would encompass this region of high displaced 

amacrine cells. This could explain the difference found between the macula and 

paramacula planar sections; with a high density of displaced amacrine cells in the 

macula, expression of CDK16 would display high levels in the inner nuclear layer 

and the ganglion cell layer, whereas the paramacula sections would show peak 

expression only in the inner nuclear layer. This, however, does not tie in with 

previous data regarding amacrine cells. When the mRNA profile of CHAT marker 

was assessed in Chapter 3, peak expression in macula sections was found in the inner 

nuclear layer, whereas peak expression in paramacula sections was found in the 

ganglion cell layer. This data could therefore indicate that CDK16 is expressed in 

amacrine cells which do not express CHAT. 

CDK16, also known as PCTAIR1 (PCTK1) is expressed in testes, skeletal muscle 

and terminally differentiated neurons (Shimizu et al., 2014). In the testes it is known 

to play a role in spermatogenesis (Mikolcevic et al., 2012) and the cell cycle. It is 

also thought to have interactions with p35 / CDK5. Cheng displayed CDK16’s ability 

to bind to p35 and that the two co-immunoprecipitated together and were found to be 

concentrated at neuromuscular junctions. The CDK5/p25 complex was also found to 

phosphorylate CDK16, this was re-enforced by CDK5 null mice which showed a 

significant reduction in CDK16 activity (Cheng et al., 2002) (Graeser et al., 2002). 

Interestingly CDK16 is important for melanoma cell proliferation, and it has been 

found in melanoma cell lines that high levels of CDK16 cause degradation of p27 (a 

tumor suppressor), whereas knockdown of CDK16 caused elevated p27 levels and in 

turn apoptosis (Yanagi et al., 2014). Whether inhibition of CDK16 could cause a 

similar effect and potentially apoptosis of photoreceptor cells such as that found with 

AG-012986 would need more research. 
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CDK 17 expression was evenly distributed throughout the whole sections (macula 

and paramacula). mRNA profiling of macula and paramacula samples showed low 

expression in the outer nuclear layer, with peak expression in the inner nuclear layer 

and very low expression in the ganglion cell layer. The higher expression within the 

inner nuclear layer is suggestive of expression in: horizontal cells, amacrine cells, 

bipolar cells or Müller cells. mRNA which showed similar distribution in planar 

sections and whole macula / paramacula explant expression were CHAT and CALB1. 

This data could indicate that the amacrine and / or horizontal cells possess high 

levels of CDK17, however, the cell specific mRNA for these cells (Chapter 3) shows 

a more defined peak, restricted to one nuclear layer, whereas the CDK17 peak is 

gradual. 

CDK17, also known as PCTAIR2 (PCTK2), is a poorly characterised protein which 

is expressed within terminally differentiated neurones, only appearing within the 

brain at development stages P-7 to P-15 upon neurones exiting the cell division cycle 

(Hirose et al., 1997). Hirose et al (1997) implied that due to the location of 

immunocytochemical analysis of PCTAIR2, it could be involved with cytoskeletal 

proteins of post mitotic neurones (Hirose et al., 1997). This would indicate that 

CDK17 may play a role in the cytoskeleton of amacrine and horizontal cells, 

however its potential link with the toxicity found with AG-012986 is still unclear. 

CDK18 mRNA showed even distribution throughout all 5 paramacula explants and 

lower expression in the macula explant. This is similar to the distribution of the inner 

nuclear layer markers PKCA (bipolar cells), RLBP and GLUL (Müller cells), and also 

the photoreceptor marker RCVRN. mRNA profiling of macula and paramacula 

explants showed no expression in the outer nuclear layer, high expression in the 

inner nuclear layer and very low expression within the ganglion cell layer. The peak 

of CDK18 expression within planar sectioned macula samples was seen at section 9, 

which matched RLBP expression (Figure 6.4). Planar sectioned paramacula samples 

also show CDK18 possesses a very similar expression profile as RLBP (Figure 6.4). 

Expression is most likely localised in Müller cells rather than bipolar cells because 

the peak of CDK18 expression lies closer to the ganglion cell layer than the peak of 

PKCA expression, as did the peak of RLBP expression (Chapter 3). 

CDK18, also known as PCTAIR3 (PCTK3) is another poorly described member of 

the CDK family. The activators of CDK18 are thought to be cyclin A2 (proposed to 
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aid in the transition from S to M phase) and phosphorylation by PKA (Matsuda et al., 

2014). Interestingly it is also believed that CDK18 plays a role in the progression of 

Alzheimer’s disease since it is found in high concentrations in pathological tissue, 

and is proposed to modulate Tau phosphorylation (Herskovits and Davies, 2006). 

Since CDK18’s peak expression matches that of Müller cells it is possible that 

inhibition of CDK18 by AG-012986 could have downstream effects in the support 

that Müller cells provide to the retina and in turn cause photoreceptor toxicity. 

 

Since AG-012986 is known to cause photoreceptor toxicity in vivo in mice, it is of 

interest to know if this may also occur in humans. When CHQ and the other 

retinotoxins were firstly investigated (chapter 4), the two cell lines ARPE19 and 

MIO-M1 cells were exposed to the retinotoxins and provided valuable information 

regarding the potency of the drugs. To utilise the cell lines further and provide 

information about the potency of the pan-CDK inhibitor, AG-012986 was applied to 

the two cell lines ARPE19 and MIO-M1 at various concentrations. The cell lines 

revealed an interesting feature about the toxicity of AG-012986, that the RPE cell 

line was not affected by AG-012986 whereas the Müller cell line was. This is 

interesting because photoreceptors rely on the RPE cells for maintenance and 

turnover of outer segments, therefore any damage to the RPE is likely to result in 

damage to the photoreceptors which could have explained the photoreceptor toxicity 

found with AG-012986.  

Müller cells are also known to play a crucial role in the support of photoreceptors as 

well as other neuronal cells of the retina. They provide anti-oxidative support to 

photoreceptors by the release of glutathione as well as providing photoreceptor 

protection by secreting neurotrophic factors, growth factors and cytokines 

(Reichenbach and Bringmann, 2013). The importance of the supportive role that 

Müller cells play for photoreceptors is emphasised by a study conducted by Shen et 

al (2012) in which Müller cell ablation caused photoreceptor apoptosis (Shen et al., 

2012). 

The data obtained from the ARPE19 and MIO-M1 cell lines suggests that the Müller 

cells are more sensitive to AG-012986 and therefore may also play a role with the 

photoreceptor toxicity found with AG-012986 treatment. 
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6.4 Conclusion 

 

The research presented in this chapter investigated CDK expression throughout the 

human retina. This could help identify the CDK which is inhibited by the CDK 

inhibitor AG-012986 that causes specific photoreceptor toxicity.  

One of the CDK’s investigated (CDK11) displayed higher expression in the 

photoreceptor layer. This occurred in both paramacula and macula samples, however 

the peak was more defined in paramacula samples. Whole explant analysis showed 

that CDK11 possessed lower expression in macula samples compared to paramacula 

samples, which was similar to the whole explant analysis of RCVRN. This indicates 

that CDK11 may be preferentially expressed within rod photoreceptors which are 

present at a much higher density within the peripheral retina, and at a lower density 

within the foveal region. 

Interestingly the pan-CDK inhibitor displayed a higher toxicity to the MIO-M1 cell 

line than the ARPE19 cell line, indicating that Müller cells may be more sensitive to 

the inhibitor than RPE cells. This may coincide with the planar sectioning data which 

showed CDK18 expression was high in Müller cells, and could indicate the cause of 

the photoreceptor toxicity may be downstream of damage to Müller cells through 

inhibition of CDK18 in Müller cells. 
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Chapter 7 

7.0 General Discussion 

7.1 Thesis summary 

The aim of this study was to develop the ex vivo human retina as a model to assess 

retinotoxicity. The need to develop this model comes from the high levels of ocular 

toxicity associated with drug development; data from Pfizer reported that 7% of 

therapeutic candidate attrition was due to ocular toxicity, of which 99% was due to 

retinal toxicity (Huang et al., 2015). 

Current models available for the assessment of retinotoxicity are in vitro models and 

in vivo models. The in vitro human models available for use are two human retinal 

cell lines, the MIO-M1 cell line (Müller cells) and the ARPE19 cell line (RPE cells). 

The cell lines are useful for early research stages such as drug discovery and 

preclinical development and provide a relatively easy way to perform investigative 

toxicology. However the toxicity of a potential drug cannot be based entirely on cell 

work and in vivo models are still required as a safety evaluation step in the 

preclinical development stage (Huang et al., 2015). 

Human organotypic models are desirable within drug development research as they 

provide a multicellular system which can be representative of the target tissue. They 

also possess advantages over in vivo work as they can be directly related to the 

species of interest and involve no animal studies. The disadvantage of these models 

is that human tissue is not always readily available, and they do not represent a multi 

organ system which may produce toxic metabolites. For this reason this human 

organotypic models are an ideal intermediate, bridging in vitro and in vivo studies to 

provide information regarding toxicity. This model has the potential to save the 

pharmaceutical industry vast amounts of money from investing further into a drug 

which may, or may not possess retinotoxic properties in humans. 

 

To investigate if the human ex vivo retina is a suitable model to assess retinotoxicity, 

multiple stages of research were conducted. Firstly, profiling of cell markers in the 

human retina, and the similarity between the living donor retina and the post mortem 
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retina was investigated. The profiling of cell markers showed which markers were 

suitable for the identification of specific cell types in the human retina. 

Immunohistochemically, it was shown that a suitable marker for the outer nuclear 

layer was recoverin as this stained photoreceptors within the outer retina. Suitable 

inner nuclear layer markers were calbindin and PKCα. Calbindin appeared to 

immunostain horizontal and amacrine cells within the inner nuclear layer, as well as 

cone photoreceptors outer segments, whereas PKCα solely identified rod ON bipolar 

cells, making PKCα a more suitable inner nuclear layer marker. Suitable ganglion 

cell layer markers were THY1, NeuN, β Tubulin III and AHNAK2. Further profiling 

of the retina was accomplished through the investigation of mRNA. It was shown 

that whole sample mRNA analysis could identify the density of specific cell 

populations, and that mRNA profiling of planar sections showed the cell markers 

were specific for the cell type accociated (shown with planar sectioning).  

This stage was important as it provided the basis for further research. The methods 

conducted to profile the human retina are able to be adapted for use as toxicological 

investigators. Immunohistochemical markers of specific cells could in future be co-

localised with cell death markers such as TUNEL to identify cell populations 

affected by retinotoxins. And whole sample mRNA could be used to identify changes 

in whole section cell populations. The assessment of changes in mRNA has been 

used before, and it was shown that decreases in THY1 expression occurred with 

NMDA excitotoxicity and preceded a decrease in NeuN immunohistochemistry 

(Niyadurupola et al., 2011), however this method has never been used to assess 

changes in other cell specific markers. This technique requires expression 

equivalence across the five paramacula samples in order for any changes compared 

to control samples to be assessed. For this reason expression equivalence throughout 

the five paramacula sections of cell specific markers was investigated. It was found 

that the photoreceptor specific marker RCVRN possessed expression equivalence 

throughout the five paramacula sections alongside the inner nuclear layer marker for 

horizontal cells (CALB1), bipolar cells (PKCA) and amacrine cells (CHAT). The 

ganglion cell markers THY1, RBFOX3 and AHNAK2 also showed expression 

equivalence through the five paramacula sections, allowing for investigation into the 

effect of retinotoxins on expression. 
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The next stage was to utilise the human retinal cell lines MIO-M1 and ARPE19 cells 

for the investigation of retinotoxicity with a variety of retinotoxins. The two cell 

lines were exposed to varying concentrations of hydrogen peroxide, indomethacin, 

tamoxifen and chloroquine. Both cell lines responded in a dose dependent matter to 

the retintotoxins and showed the usefulness of the LDH and MTS assay in the 

investigation of toxicity. Interestingly the cell lines displayed the highest sensitivity 

towards chloroquine which is also the most well documented of the retinotoxins. To 

further investigate the sensitivity of the cell lines and the cell death / viability assays, 

hydroxychloroquine and chloroquine were applied to ARPE19 and MIO-M1 cells 

and the responses measured over a 72h period. Data obtained from this displayed 

chloroquine’s more toxicological properties to the cell lines than 

hydroxychloroquine, reflecting three main points. Firstly, hydroxychloroquines 

better safety profile, secondly the sensitivity of the LDH and MTS assay in their 

ability to distinguish between the two drugs, and finally the usefulness of the cell 

lines in the investigation of retinotoxins. 

The effectiveness of HORCs in the assessment of retinotoxicity towards a known 

retinotoxin was then investigated. Out of the retinotoxins applied to the cell lines 

chloroquine proved to be the most potent. It is also a well-documented retinotoxin 

and therefore degenerative effects would be expected if applied to the ex vivo retina. 

For this reason chloroquine induced toxicity on the HORC was investigated. Medium 

based cell death assays (LDH and MTS) displayed a significant increase in cell death 

at 2mM concentrations. The immunohistochemical assay for TUNEL proved more 

sensitive, showing a significant increase in cell death at 200µM CHQ. The method 

with which this was analysed involved adapting the TUNEL assay for use with the 

Ventana Discovery (Roche, Burgess Hill, UK), an automated immunohistochemical 

platform. The TUNEL assay is normally analysed using fluorescence microscopy, 

with fluorescein-12-dUTP incorporated at fragmented 3’-OH ends through the use of 

rTdT. To convert this to the colormetric system used by the Ventana Discovery, HRP 

anti-FITC was applied to the samples post TUNEL assay completion. The 

advantages of using the colormetric system is that the analysis method of the slides is 

automated and has the potential to be used for rapid anlysis in toxicological 

investigations used throughout drug development. 
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After chloroquine had been shown to induce cell death, another method for analysing 

retinal cell health / density was also investigated. Previous data from Niyadurupola et 

al (2011) showed that NMDA excitotoxicity caused changes in THY1 expression 

levels which was related to changes in retinal ganglion cell population (Niyadurupola 

et al., 2011). However investigations into other cell specific markers has never been 

conducted. The mRNA markers investigated were THY1, CHAT, RLBP, PKCA, 

CALB1 and RCVRN. These markers were chosen for two reasons, firstly because 

they represent a marker of each one of the major cell groups of the retina, and 

secondly because they displayed expression equivalence across the five paramacula 

sections, allowing for changes in expression compared to a control to be assessed. 

The data obtained from this displayed that an increase in expression was common 

throughout the higher concentrations of chloroquine treatment, contrary to what was 

expected. The reason as to the increase in expression is unclear, however it has 

displayed that this method of analysis is not suitable for the assessment of 

chloroquine toxicity. 

The final area of research conducted in this project was into the expression of genes 

relating to a novel retinotoxin. Recently CDK inhibitors have come to light as 

potential cancer therapeutics, however when investigated in mice the pan CDK 

inhibitor AG-012986 displayed specific retinal toxicity localised to photoreceptors 

(Illanes et al., 2006). CDKs are normally associated with the cell cycle, and the 

intended target of this drug was rapidly dividing cells, therefore the reason as to why 

the drug is toxic to cells with an “arrested cell cycle” was of interest. With the help 

of AstraZeneca, the affinities of two CDK inhibitors that caused neurotoxicity, and 

two Pan CDK inhibitors which did not cause neurotoxicity towards CDKs were 

investigated. From this data it was decided that the CDKs to investigate further were 

CDK 5, 11, 16, 17 and 18. 

Investigation into mRNA expression from whole explants and planar sectioning of 

explants had been extremely valuable in confirming the position of peak expression 

of cell specific marker genes, therefore this method was adapted to show the position 

of peak expression of the CDK’s of interest. The data obtained from investigating 

CDK expression across the retina showed that CDK’s displayed differential 

expression across the retinal layers. One of the CDK’s investigated (CDK11) 

displayed higher expression in the photoreceptor layer of both paramacula and 
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macula samples, and the whole explant data showed lower expression in macula 

samples compared to paramacula samples. This was similar to the expression pattern 

of RCVRN, and as the higher expression was more pronounced in the paramacula 

regions, expression in rod photoreceptors is inferred. Further to this, if CDK11 is 

inhibited by AG-012986, this may play a role in the photoreceptor toxicity found in 

mice treated with AG-012986. CDK18 also displayed a defined peak of expression in 

the inner nuclear layer of both macula and paramacula samples, and a trend of lower 

expression in the whole macula explant compared to the paramacula explants. RLBP 

displayed a similar expression profile, indicating that CDK18 expression may be 

localised to Müller cells. 

The toxicity of AG-012986 was then investigated on the ARPE19 and MIO-M1 cell 

line. Interestingly the MIO-M1 cell line displayed a high level of sensitivity to AG-

012986 whereas the ARPE19 cell line showed no pattern of increased cell death with 

increasing concentrations of AG-012986. This is interesting because CDK18 

expression was high in Müller cells, therefore if AG-012986 can cause a detrimental 

effect on Müller cells through the inhibition of CDK18, a secondary effect of this 

may be photoreceptor toxicity such as that found in mice. 

 

7.2 Future work 

Research conducted throughout this thesis has the potential to be continued and 

opens a lot future work. Some of this work was planned and ready to be conducted, 

however due to unforeseen circumstances and the reformation of the transplantation 

service, the supply of donated human retinas was halted and the planned work was 

unable to be completed. 

One area of interest is the further development of whole section mRNA analysis in 

response to retinotoxicity. As described, this method of analysis was used to assess 

the effect of NMDA excitotoxicity on ganglion cell health / density (Niyadurupola et 

al., 2011). However when this method was utilised to assess the effect of CHQ on 

multiple cell specific markers, there was an increase in expression with high 

concentrations of CHQ treatment. The reason as to this increase in expression was 
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unclear, and it is of interest to perform further investigations, perhaps on other 

retinotoxins to investigate if this effect is similar. 

It would also be of interest to further investigate the mechanism of CHQ induced 

retinotoxicity. During this study PARP cleavage was assessed to measure levels of 

apoptosis, however there are many other mechanisms which would be interesting to 

investigate such as levels of autophagy. Levels of autophagy can be assessed via the 

relationship between two forms of microtubule associated protein 1 light chain 3 

(LC3-I and LC3-II). LC3-I is found diffusely throughout the cytoplasm (Rosenfeldt 

et al., 2012), however during autophagy LC3-I conjugates to 

phosphatidylethanolamine (a phospholipid found within membranes) forming LC3-II 

which is tightly bound to the membrane of the autophagosome. Upon the final stages 

of autophagy LC3-II is converted back to LC3-I via protease cleavage. The alteration 

in production of LC3-II throughout different stages of autophagy allows us to 

measurement of LC3-II to confirm that either; autophagy has been induced or that a 

build-up of autophagosomes has occurred (Holt et al., 2011), (Mizushima and 

Yoshimori, 2007). 

One major project which was planned, was a detailed investigation into the effect of 

two CDK inhibitors on HORCs. During this project, a selective array was planned in 

which whole sample and planar sectioned pan CDK inhibitor treated HORCS were 

going to be investigated for the effect on mRNA expression of multiple cell specific 

markers, CDK’s and cell death / stress markers. Unfortunately before this work was 

conducted the supply of donated tissue was halted. 

Another interesting project that has potential to be further developed is the analysis 

system of the colorimetric immunohistochemically stained slides using the Ventana 

Discovery platform. The analysis system (Image scope software) can be adapted to 

analyse certain areas, leaving the potential for the investigation of cell death levels 

(using the TUNEL assay) within specific nuclear layers. The TUNEL assay was 

shown to be the most sensitive means of assessing cell death within HORCS. This 

could be particularly useful if for example the CDK inhibitor was applied to the 

HORC, and a degenerative effect was found in the photoreceptor layer but not the 

other layers. This could then be quantified and expressed as percentage positive pixel 

within the specific nuclear layer. 
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7.3 Concluding remarks 

The work conducted within this thesis has displayed the suitability of the ex vivo 

human retina as a model to assess retinotoxicity. I have also shown the most effective 

methods of assessing and analysing the retinotoxicity. The most effective 

methodology appeared to come from TUNEL immunohistochemical staining, and 

the analysis through which this was completed. 

This research also showed that the model can be utilised for other research such as 

the investigation into genes associated with a retinotoxin. This was demonstrated 

with the investigation into the expression of multiple CDK’s throughout the human 

retina, and the association of CDK’s with specific cell types. The planar sectioning 

technique proved to be extremely useful within this research and opens up many 

possibilities of investigating other genes associated with retinotoxins. 

Overall this research has shown the effectivity of the HORC in the assessment of 

retinotoxicity, and the most suitable methods in which to determine cell death. It has 

the potential to be used as a bridge between in vitro and in vivo research, and 

potentially between animal and human studies to provide new information regarding 

the retinotoxicity of current drugs, and novel drugs under development. 
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Supplementary Data 

 

Supplementary data Figure 1 - Supplementary data (SPD) Figure 1 showing a 

whole macula section at 4mm across immunostained with PKC. This figure 

represents the starting point of the Rod ON bipolar cells and shows the density of the 

cells increasing as they progress further away from the fovea. 
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Abbreviations 

AHNAK2 AHNAK nucleoprotein 2 

AMD Age related macular degeneration 

ARPE19 Retinal pigmented epithelium cell line 

BCA Bicinchoninic acid assay 

BRB Blood retinal barrier 

BSA Bovine serum albumin 

CALB1 Calbindin 

ChAT Choline acetyl transferase 

CHQ Chloroquine 

CRALBP Cellular retinaldehyde binding protein 

CT Cycle threshold  

CYC1 Cytochrome c-1 

DLE Discoid lupus erythmatosus 

DMBI Desmethyldeschlorobenzoylindomethacin 

DMEM Dulbeccos modified eagles medium 

DMI Desmethylindomethacin 

DNA Deoxyribonucleic acid  

DPBS Dulbeccos phosphate buffered saline 

EOG Electrooculogram 

ERG Electroretinogram 

FBS Feotal bovine serum 

G-6-PD Glucose-6-phoshate dehydrogenase 

GCL Ganglion cell layer 

GFAP Glial fibrillary acidic protein  

GLUL Glutamate-Ammonia Ligase 

GS Glutamine synthetase 

GSH Glutathione 

GSH-PX Glutathione peroxidase 

GSSG Glutathione disulphide 

HCQ Hydroxychloroquine 

HORC Human organotypic retinal culture 

HPLC High performance liquid chromatoraphy 

HSP70 Heat shock protein 70 

IFT Intraflagellar transport 

INL Inner nuclear layer 

LAMP Lysosome associated membrane protein 

LC3 Microtubule associated protein light chain 3 

LDH Lactose dehydrodenase 

MIO-M1 Muller cell line 

M-PER Mammalian protein extraction reagent 

mRNA Messenger ribonucleic acid  

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4sulfophenyl)-2H-tetra-zolium  

NAC N-acetyleyteine 
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NeuN Neuronal nuclei 

NSAID Non steroidal anti inflammatory drug 

OCT Ocular coherence tomography 

OCT Optimal cutting temperature 

OGD Oxygen glucose deprevation 

ONL Outer nuclear layer 

PARP Poly (ADP-ribose) polymerase 

PBS Phospate buffered solution 

PCR Polymerase chain reaction 

PKCa Protein kinase C alpha 

PM Post mortem 

PVDF Polyvinylidene fluoride 

RA Rheumatoid arthritis 

RBFOX3 Neuronal nuclei (NeuN) 

RCVN Recoverin 

RGC Retinal ganglion cell 

RLBP Retinaldehyde binding protein 

RNA Ribonucleic acid  

ROS Reactive oxygen species 

RPE Retinal pigmented epithelium 

SDS Sodium docecyl sulphate 

SERM Selective estrogen receptor modulator 

SLE Systemic lupus erythmatosus 

TOP1 Topoisomerase I  

TRX-RED Thioredoxin 

TUNEL Terminal deoxynucleotidyl transferase-mediated 

biotindeoxyuridine triphosphate nick end-labelling 

U.S.A United States of America 

UK United Kingdom 
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