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Abstract

We define tail interdependence as a situation where extreme outcomes for some variables

are informative about such outcomes for other variables. We extend the concept of multi-

information to quantify tail interdependence, decompose it into systemic and residual in-

terdependence and measure the contribution of a constituent to the interdependence of a

system. Further, we devise statistical procedures to test: a) tail independence, b) whether

an empirical interdependence structure is generated by a theoretical model and c) symme-

try of the interdependence structure in the tails. We outline some additional extensions

and illustrate this framework by applying it to several datasets.

Key words: co-exceedance, Kullback-Leibler divergence, multi-information, relative

entropy, risk contribution, risk interdependence

JEL: C12, C14, C52



1. Introduction

The recent intense interest in (tail) interdependence is driven by its importance in eco-

nomics, finance, insurance and in many other areas of appliedprobability and statistics.

Research has documented that dependence has a complex nature, is strongly non-normal,

with a time-varying strength and shape (e.g., Patton, 2009). Simultaneously capturing

these characteristics has proved to date difficult.

In economics and finance, dependence is paramount for many important applications

such as portfolio decisions (e.g., Ang and Bekaert, 2002), risk management (e.g., Em-

brechts et al., 2002), multidimensional options (e.g., Cherubini and Luciano, 2002), credit

derivatives, collateralised debt obligations and insurance (e.g., Hull and White 2006; Kale-

manova et al., 2007; Su and Spindler, 2013), contagion, spillovers and economiccrises

(Bae et al., 2003; Zheng, et al., 2012) and market integration (e.g., Bartram et al., 2006).

The literature contains several notions of dependence (e.g., Li, 2009; Colangelo et al.,

2005; Joe, 1997). The most widely applied dependence measure, thePearson’s correla-

tion coefficient, is an inadequate measure in many situations as it captures only the linear

dependence between pairs of random variables (see e.g., Embrechts et al., 2002, Longin

and Solnik, 2001). Alternatively, dependence has been captured by copulas (e.g., Patton,

2009; Giacomini et al., 2009). However, while copulas have usefulproperties such as

analytic measures of dependence and the invariance of dependence under increasing and

continuous transformations, they are still based on parametric assumptions that may not

hold in practice, e.g. imposing specific marginal probability density functions (PDFs) and

a copula on the data. (Multivariate) extreme value theory (EVT) has also been applied to

extreme interdependence (see, for example, Jansen and de Vries, 1991; Hartmann et al.,

2000). However, EVT only provides asymptotic results and itrelies heavily on parametric

models (see Longin and Solnik, 2001). Ledford and Tawn (1996) propose models char-

acterizing the asymptotic dependence of distributions while Coles et al (1999) propose

diagnostics for such dependence. Heffernan (2001) provides a directory of coefficients of

2



tail dependence. However, these studies are typically focused on bivariate distributions

and it is not clear whether they can be extended easily to higher dimensions.

A difficulty in measuring dependence in financial data is asymmetry. In the univariate

case, the leverage or feedback effects, where the magnitudeof a negative return following

bad news is larger than the magnitude of a positive return following good news of the same

nature, has motivated the asymmetric GARCH literature (seeEngle, 2002; Bollerslev,

2009, and the references therein). Similarly, in the multivariate case, the magnitude of

co-movement in negative returns following bad news is larger than the magnitude of co-

movement in positive returns following good news of the samenature. This phenomenon

has motivated the literature of asymmetric return dependence (see, for example, Longin

and Solnik, 2001; Ang and Bekaert, 2002; Bae et al., 2003). As Hong et al. (2007) point

out, accounting for asymmetries is important as otherwise they can cause severe problems

with hedging and portfolio diversification. In particular,the standard advice to hold a

well diversified portfolio might be questionable if all stocks tend to fall as the market

experiences an extreme drop. However, accounting for asymmetric dependence requires

care (see, for example, Boyer et al., 1999; Forbes and Rigobon, 2002). Formal tests to

assess the existence of asymmetric correlations have been developed by Ang and Chen

(2002) and Hong et al. (2007).

In this paper we focus on co-exceedances - counts of joint occurrences of extreme

outcomes. We compute for all subsets of variables their observed co-exceedances and

compare them to co-exceedances expected under a hypothesized model. Formally, we de-

fine thetail interdependenceas a situation where the tail events of some random variables

are informative about such events for other variables. Conversely, underindependence,

tail events in any subset of variables do not convey any information about tail events of

other variables. Further, while we often use the terms interdependence and dependence

interchangebly, we distinguish between the two concepts asfollows. Dependence refers to

the relationship between two random variables whereas interdependence refers to the rela-
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tionship amongn ≥ 2 variables. Hence, the latter nests the former concept of dependence

in that it is more general and encompassing. Similar to Longin and Solnik (2001), Ang and

Chen (2002), Bae et al. (2003) and Hong et al. (2007) among others, we treat positive co-

exceedances (upper tails) separately from the negative co-exceedances (lower tails). This

separation allows for testing whether the dependence in thelower and the dependence in

the upper tails are symmetric.

Our approach to measuring interdependence, similarly to Joe (1989), relies on the

concept of (relative) entropy or multi-information. Entropy is used in many areas of natural

sciences and has recently been productively employed in economics and finance (see, Van

Nieuwerburgh and Veldkamp, 2010; Backus et al., 2014).

We make the following contributions. We propose a non-parametric measure of tail

interdependence, the coefficient of tail interdependence (CTI). This measure follows nat-

urally from the concept of multi-information, is generic and can be applied to an array of

problems. Then, we decompose total interdependence into systemicand residual inter-

dependence and measure the contributions of constituents (e.g., assets) to the interdepen-

dence of a system (e.g., portfolio). Further, we provide a natural framework for statistical

tests of independence in the tails; a goodness-of-fit test assessing the compatibility of the

observed tail interdependence structure with the one generated by a hypothesized model;

and dependence symmetry between the lower and the upper tails (or any two tails). These

tests can be employed unconditionally and, importantly, conditionally to distinguish be-

tween different models of conditional dependence such as multivariate GARCH or time-

varying copulas. Moreover, this framework can easily be applied to generate synthetic data

with the same tail interdependence structure as that observed in an actual dataset. This is

particularly useful in applications, where the tail interdependence is the overriding concern

such as risk management. In the Appendix, drawing on the insights developed in infor-

mation theory and the related areas of natural sciences, we discuss additional interesting

extensions that arise naturally in the relative entropy/multi-information framework.
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To illustrate the potential and flexibility of this methodology for providing insights into

tail interdependence, we apply it (conditionally and unconditionally) to daily returns of

equity indices of G7 countries, high-frequency returns forsix European markets and daily

returns of Dow Jones Industrial Average (DJ30) index constituents. Our empirical findings

confirm some well-known and uncover a few new stylized facts on extreme returns. For

example, standard asset pricing factors account for most ofthe interdependence of the

DJ30 stock returns in the center but not in the tails of the distribution - a result of their own

high interdependence in the tails.

The paper proceeds as follows. In Section 2 we introduce the joint tails and the tail in-

terdependence structure as the fundamental tools of our framework. Using this concept, in

Section 3 we define the coefficient of tail interdependence and introduce statistical tests of

independence, goodness-of-fit and interdependence symmetry. We illustrate the flexibility

and potential of the framework in Section 4. Section 5 summarizes the paper and offers

some concluding remarks. In the Appendix, we prove some of the results presented in the

paper and discuss some extensions of the tail interdependence framework.

2. Joint tails and the tail interdependence structure

LetN = {1, ..., n} be a finite set andF = FN a continuous joint CDF (PDFf = fN )

of a vectorX = (X1, ..., Xn) of n random variables with the support on a convex and

full-dimensional setΩ ⊆ Rn. For the strictly increasing marginal CDFFi, i ∈ N , the

value at risk (VaR) at the nominal levelα ∈ (0, 1) is theα-quantileF−1
i (α). For i ∈ N ,

we define the (lower) univariate tailSi(α) = {x ∈ Ω : xi < F−1
i (α)} as a set of outcomes

in Ω with thei-th component below the quantileF−1
i (α). For the tail probabilities it holds

thatf(Si(α)) = α, where the notationf(S) stands for the probability of the setS under

the PDFf . We define the (lower) joint tail (JT) at the nominal levelα as follows: for a

subsetC ⊆ N , a JTTC(α) contains outcomesx ∈ Ω such thatxi exceedsF−1
i (α) for
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i ∈ C andxi does not exceedF−1
i (α) for i ∈ N\C,

TC(α) = {x ∈ Ω : xi < F−1
i (α) ∀i ∈ C & xi ≥ F−1

i (α) ∀i ∈ N\C}. (1)

Note that the univariate tailSi(α) is the union of all JTs whereXi exceeds its VaR,

Si(α) =
�

C⊆N :i∈C
TC(α).

Importantly for our purposes, the joint tailsTC(α) andTB(α) are disjoint ifC 	= B.

Therefore, the supersetT (α) = {TC(α) : C ⊆ N} partitions the outcome spaceΩ into 2n

(the number of all subsets ofN ) regions. In other words, the disjoint sets inT (α) cover

the entire outcome spaceΩ. Figure 1 illustrates the partition ofΩ into T (α).

Figure 1: The Partition of the Outcome Space into Joint Tails

Notes: The figure illustrates the partition of the outcome space into joint tailsTC(α) for n = 2.

The subsets inT (α) depicted in Figure 1 could be given interesting interpretations.

For example, for a lowα, the JTT∅ captures the dependence in returns in the spirit of

CAPM or APT - the dependence of the expected returns of an asset on the expected return

of the market or another asset. The JTT{1,2} could be interpreted as dependence in risk -

the dependence of an extreme event for asset 1 on the extreme events on asset 2 and vice

versa. Similarly, the JTsT{1} andT{2} could be interpreted as return-risk dependence -

the dependence of the return of asset 2 (1) on the extreme riskof asset 1 (2) respectively.
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Different users may only be interested in particular subsets of T (α) and overlook others.

For example, a properly hedged investor may only be interested inT∅ while a regulator

may only be interested inT{1,2}. Similarly, only T{1} andT{2} may be relevant for the

pricing of exotic securities or insurance products.

For a partitionT (α) of the outcome spaceΩ and a PDFf : Ω→ R+, we define thetail

interdependence structure(TIS) u(f, α) = {uC(f, α)}C⊆N as an2n-dimensional vector,

where

uC(f, α) = f(TC(α)) =
�
τ∈TC(α)

f(τ )dτ , (2)

is the probability mass of the JTTC(α) underf . When there is no risk of confusion, we

omit the reference tof andα in u(f, α) and writeu instead. Clearly,u is a (discrete)

PDF asT (α) is a partition of the sample space. Generally, the information content of the

discrete PDFp defined on the domainD, is measured by its entropy (Shannon, 1948),

H(p) := −
�

i∈D pi ln pi, (3)

whereln(.) is the natural logarithm and, by convention,0 ln 0 = 0. For example, when

the marginal probability distribution of VaR exceedances is given bypα := (α, 1 − α)

(i.e. VaR is exceeded with probabilityα and not exceeded with probability1 − α) then

H(pα) = − ln(αα(1 − α)1−α). The entropyH(pα) depends only onα and plays an

important role in the ensuing analysis.

The TISu contains all the relevant information regarding the joint exceedances in the

lower JTs, e.g., joint losses of some assets. In other cases,the focus of the investiga-

tion may be on joint gains or, more generally, on the tail interdependence of some linear

combinations (portfolios) of the random vectorX,

Yi = Ai1X1 + ...+AinXn, i = 1, ...,m.
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For anm × n real matrix1 A = (Aij), we can compute the density functiong(y) of the

random vectorY = (Y1, ..., Ym) and, hence, the TISu(g, α) by the change of variables

theorem,

Y = AX ⇒ g(y) =
1

|detA|
f(A−1y).

In particular, we can use the latter formula to compute the TISu(g, α) whenA is a rotation

matrix,

Y = AX ⇒ g(y) = f(ATy), as AT = A−1 & | detA| = 1.

For example, by settingA = −I, whereI is the identity matrix, we obtain the TIS for

the upper tails. Rotations will allow us to compute the TIS not only for the lower and

the upper tails but also for the mixed tails, i.e., among the lower univariate tails for some

variables and the upper univariate tails for others.

3. Measurement and statistical testing of tail interdependence

3.1. Coefficient of tail interdependence

The interdependence of the VaR exceedances ofn discrete random variables with the

joint PDFu and with marginalspa is fully defined by themulti-information(MI) (Cover

and Thomas, 2006),

I(u) = D(u||πα) =
�
C⊆N

uC ln
uC
παC

(4)

where the probability of the JTTC(α) under independence is

παC = Pr(TC(α)) =
�
i∈C Pr(Si)

�
i∈N\C(1− Pr(Si)) = α#C(1− α)n−#C ,

1The matrixA can be interpreted, for example, as the exposure of the investor or the financial system to
each of theX1...Xn assets or financial institutions.
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and#C is the cardinality of setC. MI is non-negative and equals zero in case of in-

dependence only, i.e., if and only ifu = πα. In statistics,D(u||πα) is known as the

Kullback-Leibler (KL) divergence between the PDFsu andπα. MI quantifies thetotal

amount of interdependence among random variables that arises from pairwise, triplet or

more complex interactions. It is widely used in, for example, physics (Schneidman et al.,

2003) and biosciences (Wennekers and Ay, 2003; Schneidman et al., 2006). In particular,

it allows for the study of the global statistical structure of a system as a whole, the total

dependence between subsystems, and the temporal statistical structure of each subsystem

(Chicharro and Ledberg, 2012). Importantly, MI can also be represented as the difference

between the sums of individual (marginal) entropies and thejoint entropy (Schneidman et

al., 2003),

I(u) = D(u||πα) =
�n

i=1H(p
a)−H(u). (5)

Intuitively, H(u) is a measure of uncertainty in the joint distributionu of the exceedances.

Thus, the lower the uncertaintyH(u) the higher the MII(u). This interpretation reveals

an important inverse relationship between interdependence and uncertainty (entropy).

We use the MI (4) to measure tail interdependence. Specifically, we define thecoeffi-

cient of tail interdependence(CTI) as,

κ(α, u) =
D(u||πα)

(n− 1)H(pa)
=

nH(pa)−H(u)

nH(pa)−H(pa)
. (6)

The CTI has many desirable properties. In the Appendix, we show that the CTI lies in the

unit interval. In particular,κ(α, u) = 0 when all exceedances are mutually independent

andκ(α, u) = 1 in case of perfect dependence, i.e., when alln variables always exceed

together their respective thresholds.2 Secondly, the CTI is scale invariant under strictly

increasing transformations of the underlying variables inX. Specifically, if eachξi(Xi)

2Perfect dependence occurs whenH(u) = H(pa), i.e., when the TISu carries the same information as
one marginalpa.
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is an increasing and continuous function, then the CTI computed from the transformed

variablesξ(X) = (ξi(Xi))i=1,...,n is the same as that computed fromX. This property

follows by the construction of the TIS from the quantiles of the variables inX as the same

events fall into a JTTC(α) underX and underξ(X). Further, by the construction of the

TIS (2), the CTI is robust to outliers and is invariant under the permutation of the random

variables inX. The CTI can also be decomposed into a systemic and a residualcomponent

(see subsection 3.2) and it can be used as a test statistic to test tail independence (see

subsections 3.3 and 3.4). It is important to note that the CTIdoes not measure the overall

interdependence among random variables. Instead, it quantifies the interdependence of

extreme events, where the parameterα defines the severity of the extreme events and a

rotation matrix specifies their directions. Although the probabilityu∅ of the no-exceedance

eventT∅ is used in the computation the CTI, this probability is fullydetermined by the

probabilities of the other joint tails (because all tail probabilities sum up to one). In this

sense,u∅ does not contain any independent information and the computation of the CTI

relies exclusively on the information in the probabilitiesof “genuine” joint tails with at

least one exceedance.

Interestingly, the CTI allows for interpreting joint exceedances of then variables inX

as joint exceedances of a smaller number of mutually independent "factors". Specifically,

writing (6) as

H(u) = (n− nκ+ κ)H(pa)

makes it obvious that the TISu conveys the same information asn− nκ+ κ independent

marginalspα = (α, 1 − α). In particular, forκ = 1 (κ = 0) the information inu is

equivalent to that in1 (n) marginal(s). We can think then of the exceedances in the data

generating processX as being driven byn − nκ + κ independent binary "factors", each

having the same distributionpα as the exceedances ofXi. Moreover, as the CTI effectively

relates the information in the TISu to the information in then marginalspa, it allows for

comparing the strength of interdependence for different levels ofα. An examination of
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the numbern− nκ+ κ of factors over time may be informative regarding the strength of

the interdependence of assets or financial institutions andhence, may shed light into the

dynamics of the diversification benefits or the financial fragility.

3.2. Interdependence Decomposition

MI (4) is equal to thetotal KL divergenceD(u||πα) between the TISu = {uC}C⊆N

and the PDFπα = {παC}C⊆N that holds under tail independence. In some applications

however, it is optimal to focus on the aggregate or systemic component ofD(u||πα).

Specifically, we define theaggregate TISas the(n+1)−dimensional vector�u = {�uk}nk=0
where,

�uk =
�

C⊆N :#C=k uC ,

and the corresponding(n+1)−dimensional vector of JT probabilities under independence

as�πα = {�παk}nk=0, where,

�παk =
�

C⊆N :#C=k π
α
C .

Hence,�u and �πα are discrete probability distributions of observingk = 0, ..., n ex-

ceedances under the PDFf and under the tail independence, respectively. From the

TIS u, we compute the conditional probabilityuk = (uC/�uk)C⊆N :#C=k given thatk

exceedances have ocurred.3 Similarly, we compute the conditional probabilityπα,k =

(παC/�παk )C⊆N :#C=k from the PDFπα for eachk = 0, ..., n. In the Appendix, we show that

the total KL divergenceD(u||πα) can be decomposed as follows,

D(u||πα) = D(�u||�πα) +
�n

k=0 �ukD(uk||πα,k). (7)

The measureD(�u||�πα) quantifies thesystemicor aggregatetail interdependence, i.e., the

divergence between the distributions of the observed and the expected (under tail inde-

3For example, in the bivariate caseu1{2} = u{2}/�u1 = u{2}/(u{1} + u{2}) is the conditional probability
ofX2 exceeding whenk = 1, i.e., when exactly one exceedance has occurred.
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pendence) number of exceedances. On the other hand, each KL divergenceD(uk||πα,k)

quantifies the conditional interdependence among subsets of variables, given thatk ex-

ceedances have occurred. Thus, whileD(�u||�πα) measures the dependence that is jointly

generated by all constituents, the weighted total on the r.h.s. of (7) sums up the intra-

systemic dependence among subsets of constituents. Due to the limited importance of the

latter to the interdependence of the system, we refer to it asresidual interdependence.

In analogy to the CTI (6), we define thesystemicandresidual CTIsas, respectively,

�κ(α, u) = D(�u||�πα)
(n− 1)H(pa)

, κk(α, u) =
D(uk||πα,k)

(n− 1)H(pa)
, (8)

and show in the Appendix that

κ(α, u) = �κ(α, u) +�n
k=0 �ukκk(α, u),

0 ≤ �κ(α, u) ≤ κ(α, u) ≤ 1,

with �κ(α, u) = κ(α, u) = 0 in the case of tail independence and�κ(α, u) = κ(α, u) = 1

for perfect dependence (i.e., when all exceedances always occur together).

In high dimensions, the total divergenceD(u||πα), and thus the aggregate CTIκ(α, u),

may not be estimated accurately when there are no sufficient observations in all joint tails.

However, this is not a problem for the systemic interdependence measureD(�u||�πα) and

the systemic CTI�κ(α, u), Therefore, a practical advantage of the decomposition (7)is

that it efficiently addresses the curse of dimensionality. Moreover, our extensive empirical

analysis suggests that conclusions drawn fromκ(α, u) and�κ(α, u) are almost identical in

most applications.

The left panel of Figure 2 shows the CTI (6) of a standardizedn = 6 dimensional

multinormalX with corr(Xi,Xk) = ρ for all i, k = 1, ..., 6, i 	= k. In particular, we

observe that forρ = 0.9 the joint exceedances inX are driven byn−nκ+κ = 6−6·0.52+

0.52 ≈ 3 independent binary "factors". In other words, they carry the same information as
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approximately3 marginal distributions ofXi-exceedances. Note the striking feature that

the tail interdependence from multinormal samples (with a fixed correlation for all pairs

of variables) is constant across the entire range ofα. Hence, the interdependence in this

case neither increases nor decreases as the tails become more extreme. Moreover, the total

and the systemic CTIs are identical for allα implying that the residual CTI is close to

zero in this case. The right panel of Figure 2 shows the results when the correlation is the

same for three pairs but zero for the remaining pairs (corr(X1, X2) = corr(X3, X4) =

corr(X5,X6) = 0.7 and zero for all other pairs). In this case, while the patterns of the

total and the systemic CTIs are similar for allα, κ(α, u) is about three times larger than

�κ(α, u) confirming that interdependence originates primarily in interactions within subsets

of variables.

Figure 2: Coefficient of Tail Interdependence
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Notes: The left panel of this figure shows the total (κ(α, u)) and systemic (�κ(α, u)) CTIs

computed for a sample of10, 000 obs. from a standardizedn = 6 dimensional multinormalX

with corr(Xi,Xk) = ρ for all i, k = 1, ..., 6, i 	= k. The right panel shows the totalκ(α, u)

and systemic�κ(α, u) CTIs computed for a sample of10, 000 obs. from a standardizedn = 6

dimensional multinormalX with corr(X1,X2) = corr(X3,X4) = corr(X5, X6) = ρ and all

other correlations equal to zero.
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3.3. Goodness-of-Fit and Independence Tests

Recall thatT (α) is a partition of the sample space of then−dimensional random

variableX = (X1, ..., Xn) into 2n joint tails. We compute the empirical TIS�u( �f, α) =

{�uC( �f, α)}C⊆N by formula (2), where the difference is that we employ an empirical PDF

�f rather than the theoretical PDFf . The vector�u( �f, α) contains, then, the relative fre-

quencies of observations that fall into the JTsTC(α) ∈ T (α). When there is no risk of

confusion, we omit the reference to�f andα in �u( �f, α). We use�uC to test whether the

observed interdependence structure comes from a hypothesized PDFf , which produces

uC. For this purpose, we compute the KL divergenceD(�u||u),

D(�u||u) =
�

C⊆N �uC ln
�uC
uC

. (9)

If exceedances are mutually independent underf , this procedure boils down to a test of

tail independence. In the case of independence, the hypothesized TIS isπα and (9) is

proportional to the CTI (6),

D(�u||πα;α) = (n− 1)H(pα)κ(α, �u). (10)

Our goodness-of-fit test with the mutual independence test as a special case, is condi-

tional on sufficient statistics estimated from the data (e.g., on the estimates of quantiles

in the sample). For the conditional test, the asymptotic distribution of the test statistic

2 · T ·D(�u||u), whereT is the sample size, follows theχ2-distribution withd degrees of

freedom (e.g., McCullagh, 1986). For the degrees of freedom, we observe that we have2n

outcomes (JTs) andn + 1 restrictions on probabilities or frequencies of these outcomes:

these probabilities must sum up to one and, moreover,

�
C⊆N :i∈C uC =

�
C⊆N :i∈C �uC = α, ∀i = 1, ..., n.
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Therefore, we applyd = 2n − n− 1 degrees of freedom in our goodness-of-fit tests.

Similarly, we can use the systemic CTI to compute the statistic,

�D(�u||πα;α) = (n− 1)H(pa)�κ(α, �u), (11)

for testing the systemic independence. In this case, the statistic 2 ·T · �D(�u||u;α) is distrib-

uted approximatly asχ2-variable withd degrees of freedom. As there aren+ 1 outcomes

(total number of exceedances) and two restrictions on probabilities or frequencies of these

outcomes,
�n

k=0 �uk = 1, and
�n

k=0 k�uk = nα,

we applyd = n− 1 degrees of freedom in tests based on the systemic CTI.

3.4. Interdependence Symmetry Test

Another interesting question is whether two tail interdependence structures (e.g., lower

and upper tails) are symmetric. Specifically, let�u+ and�u− be two empirical (aggregate)

TISs with the same cardinalityK ≤ 2n. Our objective is to test whether�u+ and�u− were

generated by a process with an identical tail interdependence structure. In order to test the

null u+ = u−, we apply the Kullback–Leibler test statistic,

KL± =
�K

k=1 T
+�u+k ln

�u+k
�uk
+
�K

k=1 T
−�u−k ln

�u−k
�uk

,

where, �uk =
(T+�u+k + T−�u−k )

T+ + T−
,

andT+ (T−) is the size of the sample from which�u+ (�u−) have been computed. The

asymptotic distribution of2 ·KL± follows theχ2-distribution withK− 1 degrees of free-

dom (e.g., Quine and Robinson, 1985). We refer to this procedure as the interdependence

symmetry test.
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3.5. Modeling an empirical TIS

Modeling multidimensional dependence of random variablesis inherently difficult. A

standard approach is the multivariate GARCH class of models(see Engle, 2002; Boller-

slev, 2009 and the references therein) or copulas (e.g., Chen, 2007;Giacomini et al., 2009;

Patton, 2009). Here, we address the simpler task of replicating the observed TIS. Clearly,

this approach is only appropriate when the overriding concern is the tail interdependence

and the user overlooks other characteristics such as co-moments. Specifically, we construct

a PDF that replicates the TIS�u estimated from a sample of multidimensional data. First,

we estimate from a given sample a multidimensional PDF�f with a simple yet flexible

parametric form (such as multinormal or multivariate-t). Then, the mixture,

m(x) =
�

C⊆N �uC · �f(x|TC(α)), x ∈ Ω, (12)

assigns the desired probability mass�uC to each JTTC(α). Intuitively, the mixture (12)

selects first the JTTC(α) with probability�uC and then, draws an observationx ∈ TC(α)

from the conditional PDF�f(x|TC(α)). Although (12) will have, in general, different co-

moments and marginals than those estimated from the sample,the fact that it draws (after

selecting the tail) each observation from�f(x|.) suggests that the synthetic data will be

close to the sample.4

4. Empirical Illustrations

There are many interesting issues on which the tail interdependence framework can

shed light. As an example and illustration of the ideas introduced above, we now present

an array of short empirical studies. In all statistical tests that follow, we say that the null

is strongly rejected (or rejected with a high significance) if the p-value of the relevant test

4We compared the performance of this technique relative to multivariate GARCH and copulas and find
that it performs significantly better than them in modeling tail dependence. To preserve space, we do not
present the results. They are available upon request.
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does not exceed0.01. A simple rejection occurs with a p-value below0.1. If we (do

not) reject the null for all tail probabilitiesα, this implies that we tested the null forα ∈

{0.1, 0.15, ..., 0.85, 0.9}.

4.1. Daily Returns in G7 Equity Markets

This subsection illustrates the tail interdependence framework in the context of the

daily returns of the equity indices for G7 countries (Italy,Canada, France, Germany,

Japan, UK and US). We compute the daily returns between 2 January 1973 and 26 July

2013 (N = 10, 584 synchronized observations obtained from Datastream). While a lower

frequency would account better for different opening timesacross G7 countries and for

microstructure effects, it would result in a dramatic loss of observations.5 Summary statis-

tics are reported in Table 1. In particular, we observe that the returns are highly leptokurtic

and negatively skewed.

Table 1: Summary Statistics for G7 Equity Index Daily Returns

Italy Canada France Germany Japan UK USA

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SD 1.357 0.984 1.187 1.069 1.129 1.086 1.09

Skewness -0.232 -0.824 -0.251 0.053 -0.404 -0.273 -1.045

Kurtosis 7.9 16.56 8.459 20.22 14.94 11.7 28.84

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the synchronized

daily log returns for G7 equity indices (Italy, Canada, France, Germany, Japan, UK and US) for the

sample period from 2 January 1973 to 26 July 2013. The sample was obtained from Datastream

and contains 10,584 synchronized daily observations.

5However, we conducted the analysis accounting for the different opening times of the G7 equity indices.
To preserve space, we do not present the results. They are available upon request.
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4.1.1. Goodness-of-fit test

Multivariate normal, or more generally, multivariate eliptical distributions are essential

assumptions in many financial applications such as portfolio allocations and risk manage-

ment. However, the empirical evidence in support of such assumptions is mixed and the

tail interdependence framework can easily be applied to examine whether such assump-

tions are appropriate for the application at hand. The left panel of Figure 3 shows the total

(κ(α)) and systemic (�κ(α)) CTIs computed in the lower and the upper JTs for the empir-

ical distribution. The results are shown forα ranging between0.1 and0.9. The values

α ∈ [0.1, 0.5] correspond to the lower joint tails inT (α) and the valuesα ∈ [0.5, 0.9]

to the upper joint tails inT (1 − α). For example, the CTI for the upper JTs inT (0.4)

is computed forα = 0.6. There is a strong asymmetry between the lower and the upper

tails in the sample. In particular, the interdependence in the lower tails is higher relative

to the upper tails for both CTIs. This is confirmed by our interdependence symmetry test

that strongly rejects the null of the same interdependence structure, at both the total and

systemic level, forα ≤ 0.35 but not for higherα. Therefore, negative extreme returns are

indeed more interdependent than their positive counterparts. Moreover, the total CTI is

clearly larger than the systemic CTI, which indicates a pronounced tail interdependence

among groups of countries.

Figure 3: Tail Interdependence for G7 Equity Index returns
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Notes: The left panel of the figure shows the total (κ(α, u)) and systemic (�κ(α, u)) CTIs com-

puted in the lower (T−(α)) and the upper (T+(α)) joint tails for the empirical distribution. The
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right panel shows the total CTI (κ(α, u)) computed in the lower (T−(α)) and the upper (T+(α))

joint tails for the empirical distribution, the simulated multinormal, the simulated multivariate-t

and the t-mixture (12) withα = 0.2 and parameters estimated from the sample. The results are

shown forα ranging between0.1 and0.9. The valuesα ∈ [0.1, 0.5] correspond to the lower joint

tails inT−(α) and the valuesα ∈ [0.5, 0.9] to the upper joint tails inT+(1− α).

The right panel of Figure 3 shows the total CTIκ(α) for the the empirical distribu-

tion, the simulated multinormal and the simulated multivariate-t with parameters estimated

from the sample. The panel depicts also the total CTI generated by the mixture (12) where

the estimated multivariate-t plays the role of the parametric PDF �f(x) and the empirical

TIS �u is computed from the data forα = 0.2 (lower tails). The figure shows that the

empirical interdependence exceeds the interdependence generated by the multinormal and

by the multivariate-t in the lower tails (forα < 0.35) while in the upper tails the empirical

CTI is below the multivariate-t and, for1 − α < 0.82, below the multinormal. Tests of

mutual independence and of compatibility of the observed interdependence structure with

the multinormal and multivariate-t are strongly rejected for all α. Identical inferences are

made from the systemic CTI. We observe the significantly improved fit of the mixture for

α ∈ (0.15, 0.5). The goodness-of-fit test does not reject the null that the sample has been

generated from this mixture forα’s in this interval. Therefore, the mixture successfully

replicates the TIS of the sample locally.

4.1.2. Integration of G7 equity markets

Christoffersen et al. (2012) find that the interdependence among the equity market

returns in G7 countries has increased substantially over the past. In this subsection, we

address questions pertaining to market integration by examining the evolution of their tail

interdependence over time. We compute the CTI (6) in the windows [t − 2500, t] for

t = 2501, 2601, ..., T andα ∈ {0.15, 0.5, 0.85}. The right panel of Figure 4 shows that

the tail interdependence among the G7 countries has increased significantly over time.
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Interestingly, the figure indicates that while the dependence of the extreme positive returns

(α = 0.85) has considerably increased, it remains consistently below the dependence of

the extreme negative returns (α = 0.15). Moreover, it appears that the gap between the

two CTIs has increased somewhat suggesting the asymmetry has got stronger. This is

further confirmed by the systemic interdependence�κ(α) for α = 0.15 which has got even

stronger over time relative to the dependence forα = 0.85 as shown in the left panel.

Figure 4: Evolution of the CTI in G7 Returns over Time
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Notes: The left and right panels of this figure show the evolution of the systemic (�κ(α, u)) and

total (κ(α, u)) CTIs respectively in G7 equity index returns from 2 January1973 to 26 July 2013

in the windows[t− 2500, t] for t = 2501, 2601, ..., N andα ∈ {0.15, 0.5, .85}.

4.1.3. Persistence of intertemporal dependence

There is a large literature that goes back to Mandelbrot (1963) documenting persistence

in volatility (see Bollerslev, 2009). It is therefore natural to enquire whether intertemporal

dependence displays any features of persistence. In the simple bivariate setting, we trans-

form T = 10, 584 unidimensional returns{rt}Tt=1 of the US equity index S&P500 into

T − d two-dimensional observations{rt−d, rt}Tt=d+1 and compute the CTI for the latter

series. The results are presented in Figure 5, where the lines mark the1% critical values

for the test statistic (10) in the test of intertemporal independence. All values ofκ(α)

above the line lead to the strong rejection of the null of independence. Ford = 1 in the left

panel, we note a stark asymmetry between the left and the right tail, which indicates that
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the violation of the intertemporal independence is more likely for (extreme) negative re-

turns. Hence, the intertemporal independence in the US market is rejected forα < 0.4 and

α ≥ 0.87. This finding is reminiscent of the well-documented volatility clustering as it re-

sults from the tendency of extreme (negative) returns to be followed by such returns in the

next period. It may be that the failure to reject intertemporal dependence is due to GARCH

effects but once these effects are taken into account, the returns are intertemporally inde-

pendent. To address this concern, we estimate the CTI for theGARCH(1,1)- and GJR-

GARCH(1,1)-standardized returns. Although GARCH effectsaccount for a large amount

of intertemporal dependence, the latter is not completely eliminated for the GARCH(1,1)

standardization in the negative tails. The intertemporal dependence for GARCH(1,1)- and

GJR-GARCH(1,1)-standardized returns is even more pronounced and strongly significant

for the other G7 indices.

The right panel in Figure 5 reports the CTI at levelα = 0.1 as a function of the

lag d. Specifically, we compute the CTI for each time series{rt−δ, rt}
T
t=δ+1, whereδ ∈

{d, ..., 20 + d}, and report the average of these CTIs for eachd = 1, ..., 400. As the

figure indicates, if we applied our test to these averages, itwould robustly reject the null of

intertemporal independence for roughlyd ≤ 180 days. Thus, the return generating process

appears to have a long memory for returns in the lowest decile.

Figure 5: Intertemporal dependence in S&P 500
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Notes: This figure shows the persistence of intertemporal dependence in S&P 500 index re-

turns. We transform theN = 10, 584 unidimensional daily returns{rt}Nt=1 of the S&P 500 index
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into N − d two-dimensional observations{rt−d, rt}
N
t=d+1 and compute the total CTI (κ(α)) for

the latter series. The lines mark the1% critical values for the test statistic (10) in the test of

intertemporal independence. Left panel (d = 1): The CTI as a function of the tailα. The intertem-

poral dependence is computed for returns as well as the returns standardized by GARCH(1,1) and

GJR-GARCH(1,1) models. Right panel (α = 0.1): The CTI as a function of the lagd. We

compute a CTI for each time series{rt−δ, rt}Nt=δ+1, whereδ ∈ {d, ..., 20 + d}, and report the

average of these CTIs for eachd = 1, ..., 400. Our test robustly rejects the null of intertemporal

independence for roughlyd ≤ 180 days.

4.2. High Frequency Returns in European Equity Markets

In this section, we illustrate the tail interdependence framework with a dataset of high

frequency returns on six European equity markets covering UK, Switzerland, Italy, Ger-

many, France and Spain. The sample contains returns at 5 minute frequency and spans the

period from 2 January 2004, 8:00 AM through 15 May 2006, 12:10(65, 532 synchronized

observations obtained from the Bank of America). Summary statistics are reported in Ta-

ble 2. For all six indices, 5-minute log returns are zero, negatively skewed and leptokurtic.

Table 2: Summary Statistics for 6 European Equity Index HighFrequency Returns

UK Switzerland Italy Germany France Spain

Mean 0.000 0.000 0.000 0.000 0.000 0.000

SD 0.055 0.065 0.063 0.085 0.073 0.065

Skewness -0.113 -0.504 -0.873 -0.737 -0.585 -2.199

Kurtosis 50.681 77.527 73.003 74.706 74.937 113.194

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the synchronized

5-minute log returns for 6 European equity indices (UK, Switzerland, Italy, Germany, France and

Spain) for the sample period from 2 January 2004 (08:00) to 15May 2006 (12:10). The sample

was obtained from Bank of America and contains 65,532 synchronized 5-minute observations.
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4.2.1. Interdependence dynamics across return measurement frequency

First, we illustrate how the tail interdependence framework could be employed to ex-

amine dependence dynamics across frequencies. Figure 6 shows the CTIs computed from

the returns at different frequencies and from the simulatedmultinormal, multivariate-t and

the t-mixture (12) withα = 0.3. The parameters of all three distributions are estimated

from the sample. The results are shown forα ranging between0.1 and0.9where, as before,

the valuesα ∈ [0.1, 0.5] correspond to the lower joint tails and the valuesα ∈ [0.5, 0.9] to

the upper joint tails.

In the left panel, we observe that the interdependence decreases in frequency. This

effect is particularly pronounced when the frequency increases from 30 to 5 minutes. Our

symmetry test rejects the null of the same interdependence structure for 30- and 60-minute

returns at10% confidence level, while the same null for 5- and 30-minute returns is re-

jected with1% confidence. We interpret this finding as a manifestation of the Epps effect

(Epps, 1979) that reflects the information aggregation process. At high frequencies, idio-

synchratic or market-specific news drive returns and there is a time lag before the informa-

tion spreads to related markets. As frequency decreases (i.e. the time available to gather

and process information increases), then returns are affected not only by their market-

specific news but also by news in other markets thereby increasing their interdependence.

In contrast to the daily returns of the G7 countries, we cannot reject the null of sym-

metry of the lower and upper tails for the frequencies 5, 30 and 60 minutes and for all

α. Thus, whereas low-frequency dependence is rotated J- or L-shaped, high frequency

dependence seems to be U-shaped. Further, the total and systemic CTIs have identical

patterns for all frequencies and allα but the latter is very marginally lower. Therefore, it

appears that the residual interdependence is insignificantand it does not vary withα for

high frequency returns.

Turning to the right panel, there is apparently a good fit of the multivariate-t in the

extreme tails of the data. Indeed, forα ≤ 0.15 andα ≥ 0.85 we cannot reject the null
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that the corresponding tails have been generated from this distribution. The good approx-

imation in both tails comes as a result of the symmetry of dependence in the tails for high

frequency returns. Thus, a user interested only in the tailssuch as a regulator or creditor

could overlook the failure of the multivariate-t distribution to approximate the central part

of the distribution and exploit the good fit in the tails. However, a user interested in mod-

eling the entire distribution may use the mixture (12) wherethe estimated multivariate-t

plays the role of the parametric PDF�f(x) and the empirical TIS�u is computed from the

data forα = 0.3. The mixture approximates the data well for allα. As high frequency

return interdependence is symmetric, good fit aroundα = 0.3 implies similarly good fit

aroundα = 0.7, thus leading to a good approximation overall.

Figure 6: CTI for Different Frequencies and Parametric Distributions
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Notes: The left panel of this figure shows the total (κ(α)) and systemic (�κ(α)) CTIs for returns

at different frequencies. The right panel shows the total CTI (κ(α)) computed from the sample,

the simulated multinormal, multivariate-t, and the mixture (12) withα = 0.3 and parameters

estimated from the sample. The results are shown forα ranging between0.1 and0.9 where the

valuesα ∈ [0.1, 0.5] correspond to the lower joint tails and the valuesα ∈ [0.5, 0.9] to the upper

joint tails.

4.2.2. Seasonality in interdependence

Andersen and Bollerslev (1998) find a strong seasonality effect in volatility and there-

fore it is natural to ask whether dependence is stronger during different times of the day or
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week. In Figure 7, we investigate the impact of the daytime and of the weekday employing

the systemic CTI. The left panel suggests that the interdependence is lowest between 10:00

and 14:00. Before 10:00 and after 14:00 it increases significantly for allα. A possible ex-

planation of this phenomenon could be related to the impact of Asian and US markets

on European markets. The latter start each trading day similarly influenced by the shared

information revealed in the Asian markets and, hence, display a relatively high level of

interdependence. Gradually, idiosyncratic shocks arriveduring the day pulling European

markets apart resulting in a lower interdependence. In the afternoon, the six European

markets react similarly to the shared information revealedby the opening of the focal US

markets, which again leads to a higher interdependence.

The right panel, on the other hand, suggests that the interdependence increases dur-

ing the week. A possible explanation could be related to the dissipation of information.

Since the interdependence of the six markets is the inverse of the information revealed in

these markets (cf. 5), we observe that the latter decreases as the week progresses. At the

beginning of each week, a relatively large amount of idiosyncratic news arrives which is

progressively (and partially) incorporated into the market prices resulting in more similar-

ities in market movements i.e., in less joint uncertainty or, equivalently, in higher interde-

pendence. Moreover, systemic CTIs in both time-of-the-dayand day-of-the-week cases

have identical U-shaped patterns to those of the total CTIs and are only marginally lower.

This implies that the size of the residual interdependence is quite small and flat for allα.

Therefore, seasonality affects only the systemic interdependence.

Figure 7: CTI across Different Trading Hours and Days
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Notes: This figure shows the systemic CTI (�κ(α)) of 5-minute returns across different trading

hours (left panel) and trading days (right panel). The results are shown forα ranging between

0.1 and0.9 where the valuesα ∈ [0.1, 0.5] correspond to the lower joint tails and the values

α ∈ [0.5, 0.9] to the upper joint tails.

4.2.3. Contribution to interdependence in European equitymarkets

It is important for the study of spillovers and contagion to isolate the impact or contri-

bution of an individual institution or country to the overall interdependence of the system

(see, Bank of England, 2013; Diebold and Yilmaz, 2014). The interdependence contribu-

tion may be computed by different measures such as the Shapley value, an idea which we

discuss further in the Appendix. However, here we simply compute the interdependence

contribution of a variable as the ratio of the CTIs that include and exclude that particular

variable. This measure is intuitively appealing and computationally efficient.

Figure 8 depicts the systemic interdependence contribution for UK, Switzerland, Italy

and Germany for 5- and 60-minute returns computed as�κE6/�κE6\i wherei ∈ {UK,CH,

I,GER}. We observe that Switzerland (Germany) has the lowest (highest) contribution

to interdependence. This would suggest that the Swiss equity index may be an effective

diversification asset in European equity portfolios.We canalso apply our interdependence

symmetry test to assess the significance of the exclusion of particular countries. For exam-

ple, the symmetry tests strongly reject for the 5-minute returns the null that the CTI after

excluding Germany is the same as the CTI after excluding Switzerland. For 60 minute re-
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turns the null is also rejected (except forα = 0.1) with a lower significance. Similar results

are obtained when testing for the exclusion of Germany and UK, respectively. Finally, the

contributions to the total CTIs are almost identical in bothshape and size suggesting that

the contributions to the residual interdependence are insignificant and flat for allα at the

high frequency (not shown but available upon request).

Figure 8: Interdependence Contribution
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Notes: The figure shows the percentage contributions to the systemic interdependence com-

puted for UK, Switzerland, Italy and Germany computed asκ̃E6/κ̃E6\i wherei ∈ {UK,CH,

I,GER} at the one-hour frequency.

4.3. Stock and Factor Interdependence

In this section, we illustrate the tail interdependence framework with a dataset of daily

frequency returns on 30 constituent stocks of Dow Jones Industrial Average (DJ30) equity

index and relate their returns to the Fama-French-Carhart (FFC) factors. The data spans

the period 1 January 1990 - 21 November 2012 (5770 synchronized observations obtained

from Datastream, while the FFC factors for the same period were obtained from Keneth

French’s website. Summary statistics are reported in Table3. For all four factors (and the

DJ index constituents, which are not shown) daily log returns are zero, negatively skewed

and leptokurtic.
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Table 3: Summary Statistics for the Fama-French-Carhart Factor Returns

RPm SMB HML MOM

Mean 0.000 0.000 0.000 0.000

SD 0.012 0.006 0.006 0.009

Skewness -0.105 -0.268 0.108 -0.956

Kurtosis 10.99 7.163 9.337 14.69

Notes: The table reports the mean, standard deviation, skewness, kurtosis for the Fama-French-

Carhart (Market Risk Premim, Small minus Big, High minus Low, Momentum) factor returns. The

data spans the period from 1 January 1990 through 21 November2012 (5770 observations obtained

from Keneth French’s website.

Due to the curse of dimensionality, total CTI is unreliable because of the high num-

ber of JTs containing no observations. Thus, in the ensuing discussion we focus on the

systemic CTI which is robust to the curse of dimensionality.The right panel of Figure 9

shows that the DJ30 returns are highly interdependent and asymmetric.While the FFC fac-

tors account for a high degree of this interdependence in thecentral part of the distribution,

the factors are unable to account for the strong dependence of the DJ30 returns in the tails

of the distribution. Moreover, comparing the interdependence of the residualsu(1) of a

regression of the DJ30 index constituent returns on the firstFFC factor returns (market risk

premium) with the interdependence of the residualsu(4) of the same dependent variables

on all four FFC factor returns, it appears that most of the interdependence is accounted

for by the market risk premium. This comparison makes it clear that the remaining three

FFC factors (SMB, HML and MOM) account for very little of the interdependence of the

residuals. The inability of the FFC factors to account for the inderdependence of the DJ30

returns in the tails is a direct manifestation of the interdependence of the factors them-

selves. The systemic CTI depicted in the left panel of Figure9 reveals that the FFC factors

are highly interdependent forα < 0.2 andα > 0.8 but not forα ∈ [0.2, 0.8].

Figure 9: Interdependence of Fama-French-Carhart factorsand DJ30 index constituent stocks
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Notes: The left panel of this figure shows the systemic interdependence for the Fama-French-

Carhart (FFC) factors. The line marks the1% critical values for the test statistic (10) in the test

of intertemporal independence. The right panel shows the systemic interdependence for the DJ30

index constituent returns as well as for the residualsu(1) of a regression of the DJ30 returns on the

first FFC factor (the market risk premium), the residualsu(4) of a regression of the DJ30 returns

on all FFC factors and the residualsu(5) of a regression of the DJ30 returns on all FFC factors

plus an additional multiplicative factor, the market dispersionFd.

As a potential additional factor that accounts for the strong interdependence of the

residuals in the tails, we exploremarket dispersionFd. We estimateFd by computing the

standard deviation of the DJ30 constituents for every day inthe sample. Then, we compute

the residualsu(5) by normalizingu(4) with these estimates,

ui(5) = ui(4)/Fd, i = 1, .., 30.

As the systemic CTI ofu(5) shows in the right panel of Figure 9,Fd accounts for a large

part of the interdependence in the JTs forα ≤ 0.3 andα ≥ 0.7. Although the residuals

ui(5) are not independent, their interdependence is overwhelmingly reduced.

5. Conclusion

In this paper, we present a new and flexible framework focusedon the interdependence

of extreme events. This framework aims to address several issues that have recently at-
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tracted significant attention such as the testing of the independence of extreme events, the

symmetry of (extreme) positive and negative outcomes and the modeling of the dynamics

of the tail interdependence. In particular, we develop a newdependence measure, which

captures the magnitude of the departure from independence and propose a technique to

generate synthetic data that exactly match the tail interdependence structure of a particular

dataset. The framework also allows for computing the contributions of individual vari-

ables to tail interdependence and can be adapted to examine other extreme event-related

questions.

A complementary consideration to our non-parameteric approach is the modelling of

the observed dependence structure in the data. The literature addresses this issue mainly

via VAR-(multivariate) GARCH models with the innovations following a particular dis-

tribution such as multivariate normal or t and, more recently, via copulas (see Boller-

slev, 2009; Chen, 2007; Patton, 2009 and the references therein). However, multivari-

ate models suffer from model misspecification, thus necessitating goodness-of-fit testing.

A number of tests exist for this purpose such as Cramer-von Mises, Anderson-Darling

and Kolmogorov-Smirnov tests which are based on comparing the cumulative distribution

function (CDF) of the hypothesized model to the empirical one while independence is

typically tested with Pearson’s chi-square test. We discuss the related issue of parameter

estimation uncertainty and its relevance for our study in the Appendix.

In the empirical part, we illustrate the tail interdependence framework with an array of

applications and confirm some known stylized facts and uncover a few new and intriguing

features of multidimensional extreme events. Our financialdata shows, in particular, that

the tail interdependence increases for more extreme eventsand is stronger in the lower

than in the upper tails (except at high frequencies). We think that these are important

findings with vital practical implications (e.g., for systemic risk monitoring and hedging).

The CTI captures these phenomena in a clear and precise way. It would be interesting to

investigate the potential of the CTI, e.g. in portfolio construction, hedging and derivative-
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based trading strategies. We intend to pursue these avenuesin future research.
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7. Appendix: Proofs

In order to prove the decomposition (7), we calculate,
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where the last equality follows from the fact that
�

C⊆N :#C=k uC/�uk = 1. We can write
now the last expression as,

�n
k=0 �uk

�
C⊆N :#C=k

�
uC
�uk
ln

uC/�uk
παC/�παk

�
=
�n

k=0 �ukD(uk||�π
α,k),

which completes the proof of (7). Dividing both sides of (7) by (n − 1)H(pa) > 0 for
0 < α < 1 yields the decomposition of the CTI,

κ(α, u) = �κ(α, u) +�n
k=0 �ukκk(α, u), (13)

We note thatκ(α, u) ≥ �κ(α, u) ≥ 0 follows from the non-negativity of�κ(α, u) and
κk(α, u) as the KL divergence and entropy are always non-negative (Cover and Thomas,
2006). Finally, Cover and Thomas (2006) show thatH(pa) ≤ H(u) ≤ nH(pa), which
implies that

nH(pa)−H(u)

(n− 1)H(pa)
=

D(u||πα)

(n− 1)H(pa)
= κ(α, u) ≤ 1.
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8. Appendix: Extensions of the TIS framework

In this section, we present some extensions and generalizations that arise naturally
from the tail interdependence framework.

8.1. Directional CTI

The CTI measures the strength of interdependence among the tails of random variables
but it does not specify its direction. The latter can be quantified by the expected number
of exceedances under the distributionu in excess of the expected number of exceedances
under mutual independence, given that at least an exceedance has occurred,

φ(α, u) =
�

C⊆N (#C) · (
uC

1− u∅
−

α#C(1− α)n−#C

1− (1− α)n
).

Generally speaking, whenφ(α, u) > 0 (positive interdependence) exceedances tend to
occur together and are more likely than under mutual independence whileφ(α, u) < 0
(negative interdependence) means that joint exceedances are less likely than under mutual
independence. It is important to note thatφ(α, u) itself is not a good measure of tail
interdependence as, for example, it can take the value of zero whenκ(α, u) > 0, i.e., when
variables are actually tail interdependent. Therefore, wedefinedirectional coefficients of
tail interdependenceas,

5κ(α, u) = sign(φ(α, u)) · κ(α, u), (14)

wheresign(x) = 1 whenx ≥ 0 andsign(x) = −1whenx < 0. In the context of financial
data, in particular the data in our empirical part, the tail interdependence turns out to be
strongly positive.

8.2. Interdependence Contribution Measure

For the TISu calculated from theoretical or empirical exceedances ofn random vari-
ables by (2), we can obtain the overall contributionϕi(u) of the variablei ∈ N =
{1, ..., n} to the JT interdependenceI(u) as a (weighted) average of marginal contribu-
tions of this variable to the interdependence in subsets of other variables. Specifically, we
computeϕi(u) by the game-theoretical concept of Shapley value (Shapley,1953),

ϕi(u) =
�

C⊆N\{i}

(#C)!(n−#C − 1)!

n!
{I(uC∪i)− I(uC)}, (15)

whereuC is the marginal of the TISu for random variables with indices in the setC ⊆ N .
The Shapley value has many desirable properties. For example, Young (1985) shows that
Shapley value is the unique efficient and symmetric measure that is a function of marginal
contributions only. Here, efficiency requires that allϕi(u) sum up to the total interdepen-
denceI(u)while symmetry demands thatϕi(u) = ϕk(u)whenever two variables, indexed
by i andk, make the same contribution toI(uC) for any subsetC ⊆ N\{i, k}. More-
over, each contributionϕi(u) is non-negative asI(uC∪i) ≥ I(uC) for eachC andi by the
properties of the MI (Chicharro and Ledberg, 2012). Estimating the contribution of an
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asset to the interdependence of a portfolio or a system can reveal the main contributor to
interdependence and risk. This is particularly useful in studies of crises and contagion as
well as market integration.

8.3. Measuring the direction of information flow

Multi-information (4) in its standard format cannot informon the direction of infor-
mation flow. However, a simple modification to the CTI framework can be employed to
reveal the dynamics in information flow between markets or institutions. For a stationary
Markov process of ordert, the probability of observing the processI in stateiη+1 at time
η + 1 is independent of statesiη−t, iη−t−1, ... Thus,

p(iη+1|iη, ..., iη−t+1, iη−t, iη−t−1, ...) = p(iη+1|iη, ..., iη−t+1) = p(iη+1|i
(t)
η ).

Schreiber (2000) proposes to measure the direction of information between processesI
andJ by the deviation from the Markov propertyp(iη+1|i

(t)
η ) = p(iη+1|i

(t)
η , j

(k)
η ) wherek

is the order of the stationary Markov processJ . When there is no information flow from
J to I, the previousk observations ofJ have no impact on the transition probabilities of
I, which can be measured with a modified KL divergence as

TJ−→I(t, k) =
	

p(iη+1, i
(t)
η , j(k)η ) · ln

p(iη+1|i
(t)
η , j

(k)
η )

p(iη+1|i
(t)
η )

, (16)

where natural choices fork arek = t ork = 1. Therefore,TJ−→I measures the information
flow from processJ to I. TI−→J , the information flow fromI to J , can be measured in
an analogue way. Note that measure (16) is asymmetric. Hence, by comparingTJ−→I
to TI−→J we can infer the dominant direction of the information flow - useful in studies
of price discovery and market linkages or in examining how contagion spreads through
markets.

8.4. A finer partition of the outcome space

In the discussion above, the TIS is defined for a partition of the outcome spaceΩ into
2n regions (i.e., for a bi-partition of the outcome space of each variableXi). This partition
may be particularly relevant for a regulator or a creditor who is interested in the downside
vulnerability of the system or debtor company but has littleinterest in its upside potential.
A typical investor, on the other hand, is not just interestedin the downside exposure of his
portfolio but its upside potential too. In this case, we could partition the outcome space
Ω into 3n regions, such that for each variableXi the two tail regions capture extreme
losses and gains while the central part captures the average, day-to-day performance when
little of importance happens. More generally, the partition could be made arbitrarily fine.
In particular, for an infinitely fine partition, the MI (4) would take the form of the total
correlation for continuous variables,

�
x∈Ωf(x) ln

f(x)

f(x1)...f(xn)
dx, x = (x1, ..., xn).
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For a finite partition, the construction of the CTI and the inference based on it would then
simply generalize the bi-partition case.

8.5. Parameter Estimation Uncertainty

The tail interdependence framework is particularly suitedto measure and test interde-
pendence by applying it directly to the data. In this case, the issue of parameter estimation
uncertainty would not arise. However, the flexibility of thetail interdependence frame-
work means that it can be applied to an estimated model. For example, the focus of the
investigation may be such that a researcher must impose a parametric density function e.g.
multivariate t-distribution for the purpose of forecasting or hypothesis testing. In this case,
the mean, variance and degrees of freedom parameters must beestimated. However, the
presence of estimated parameters may complicate test inference. For example, the Kol-
mogorov test can be difficult to apply in the presence of estimated parameters, particularly
for multivariate data with many parameters (see, for example, Bai and Chen, 2008).

Following other scholars (Diebold and Mariano, 1995; Christoffersen, 1998; Diebold
et al. 1998, 1999; Clements and Smith, 2000, 2002), when required to estimate parametric
densities, we consider them as primitives and ignore the method employed to obtain them.
In many situations this may be an acceptable practice. Firstly, many densities are not based
on estimated models. For example, the large-scale market risk models at many financial
institutions combine estimated parameters, calibrated parameters and ad-hoc modifica-
tions that reflect the judgment of management. Another example is the density forecasts
of inflation of the Survey of Professional Forecasters (see Diebold et al., 1998). Moreover,
previous research suggests that parameter estimation uncertainty is of second-order im-
portance when compared to other sources of inaccuracies such as model misspecification
(Chatfield, 1993). Further, Diebold et al. (1998) find that the effects of parameter esti-
mation uncertainty are immaterial in simulation studies geared toward the relatively large
sample sizes employed in financial studies such as the present one.

When parameter estimation cannot be ignored, the problem can be approached as fol-
lows. Firstly, for time-invariant multidimensional densities, suitable estimators can often
be found that lead to pivotal test statistics e.g., the "super-efficient" estimators (see Wat-
son, 1958; Birch, 1964). Secondly, an important class of models comprises a time-varying
hypothesised distribution with a well-defined structure onthe co-evolution of the variables
e.g. VAR and GARCH models. In this case, one way of accountingfor parameter estima-
tion uncertainty is to apply the K-transformation (Khmaladze, 1981), which allows for the
construction of a distribution-free test statistic. In principle, the K-transformation can be
applied in the tail interdependence framework along the lines of the V-test in Bai (2003)
and Bai and Chen (2008). Its computation, however, may be cumbersome for non-standard
multidimensional densities. Finally, in the case of arbitrary time-varying multidimensional
densities parameter estimation is infeasible as only one observation is drawn from the mul-
tidimensional density at each date. As such, the only practical solution is to assume that
the hypothesised model is correct under the null.
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