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Abstract

This thesis is concerned with the modeling of financial time series data.

It introduces to the economics literature a set of techniques for this pur-

pose that are rooted in engineering and physics, but almost unheard of in

economics. The key feature of these techniques is that they combine the

available information in the time and frequency domains simultaneously,

making it possible to enjoy the advantages of both forms of analysis. The

thesis is divided into three sections. First, after brifely outlining the Fourier

methods, a more flexible technique that allows for the study of time-scale

dependent phenomena (motivated from a discussion on Heisenberg’s uncer-

tainty principle) namely Wavelet method is defined. A complete account of

discrete and continuous wavelet transformations, and wavelet variation is

provided and the advantages of wavelet-multiresolution analysis over Fourier

methods are demonstrated. In the second section, the statistical properties

of financial returns at 1-day, 5-day and 10-day sampling intervals are stud-

ied using S&P500 index for over a decade, and the links between dependence

properties of financial returns at lower sampling frequencies are explored.

The concepts of temporal aggregation and skip sampling are discussed and

the effects of temporal aggregation on long range dependent time series are

theoretically outlined and then tested through simulations and empirically

via S&P500. In the third section, the variation of two years of five-minute

GBP/USD exchange rate is analysed and the notion of realised variation is

explored. The characteristics of the intraday data at different sampling

frequencies (5-minute, 30-minute, 60-minute, 10-hour, 1-day, and 5-day)

are compared with each other and filtered out from seasonalities using the

wavelet multiscaling technique. We find that temporal aggregation does not

change the decay rate of autocorrelation functions of long-memory data of

certain frequencies, however the level at which the autocorrelation functions



start from move upward for daily data. This thesis adds to the literature

by outlining and comparing the effects of aggregation between daily and

intra-daily frequencies for the realised variances, which to our knowledge is

a first. The effect temporal aggregation has on daily data is different from

intra-daily data, and we provide three reasons why this might be. First, at

higher frequencies strong periodocities distort the autocorrelation functions

which could bring down the decay rate and mask the long memory feature

of the data. Second, the choice of realised variance is crucial in this matter

and different functions can result in contadictory outcomes. Third, as the

order of aggregation increases the decay rate does not depend on the order

of the aggregation.
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1

Introduction

1.1 Background

The research on the variation of financial time series has attracted different groups of

audience, ranging from hedge fund mangers to macro-economists and econo-physicists.

Over the past 3 decades, appealing properties of financial asset returns have been

uncovered and have assisted to build appropriate models. At the heart of investment

finance, there is the concept of the Efficient Market Hypothesis (EMH). No other

concept in finance, has been discussed and scrutinised as much as EMH. The history

of EMH spans more than a century 1 and the building blocks of the past 50 years of

research depend on whether EMH is accepted, half accepted or rejected.

The Efficient Market Hypothesis (EMH) proposes that future prices cannot be pre-

dicted based on past information and one cannot achieve excessive returns using past

information. Even if EMH holds, a vast majority of financial economists and risk man-

agers are not interested in predicting the future price but they are rather interested in

forecasting the future volatility, and have used for this purpose a variety of parametric

and nonparametric econometric models such as generalised autoregressive conditional

heteroscedasticity (GARCH) or stochastic regime switching models. Volatility mea-

surement is of particular value to option traders as they are essentially trading in

volatility.

1George Gibson in 1889 in his book ”The Stock Markets of London, Paris and New York” explains
the idea behind efficient markets: ”When shares become publicly known in an open market, the value
which they acquire may be regarded as the judgment of the best intelligence concerning them”.

1



1.1 Background

The need for discovering and better understanding the dynamics of financial markets

reaches its peak every time the world faces a financial crisis. The recent financial crises

over the past 30 years, 1987’s Black Monday, 1997’s Asian Financial Crisis, early 2000’s

recession, and the very recent 2008’s Global Financial Crisis, have brought further

attention to the characteristics of financial time series. These events which are often

known as ”fat tail” events when do happen have catasrophic consequences which often

last a long time and that is why they are some times given the ”Black Swans” title1.

It has been argued that nobody (with a few exceptions such as Janet Yellen and

Nouriel Roubini)2 saw the most recent crisis coming (Annunziata, 2011).

Economists have been widely criticised for ruling out the possibility of sudden vari-

ations such as the one on 19 October 1987 when the Dow Jones Industrial Average

plunged 22.61% in one day, or the one on 29 September 2008 when the same index saw

a 6.98% drop in just a few hours. Assuming that returns are normally distributed, the

probability of the 6.98% loss is approximately 10−12 which is expected to happen once

every billion years. And the probability of the 20−standard deviation loss that hap-

pened on 19 October 1987, is less than one in 1050, which is expected to happen once

every 1086 years, a number so big that is very hard to imagine 3. Of course it is now

widely accepted that the fundamental cause of the global financial crash was purely

human: over-optimism4. But under conventional financial theory, the likes of 6.98%

and 22.61% daily losses in the history of financial markets were not even supposed to

happen. Yet they did.

Perhaps, the assumption of a manageable risk central to all financial models oper-

ating at all scales is to be blamed. What is clear is that these models are not capable

of justifying a natural concept in financial time series which is the notion of multi-scale

features. There was a time when only daily returns were available, and a risk manager

was expected to estimate a measure for the volatility (as volatility is an unobserved

1The term ”Black Swan” is used by Nassim Taleb in capitalized form to refer an event with three
attributes: rarity, extreme impact, and retrospective predictability. Please see (Taleb, 2008) and (Taleb
et al., 2009) for more details.

2Nouriel Roubini is the Yale economics Professor who has been widely known as Dr. Doom as
a consequence of predicting the recession. To read an article in New York times about his lecture
at International Monetary Fund on 7 September 2006 please see (Mihm, 2008). Janet Yellen is an
economist who is now the head of Federal Reserve. The Fed’s December 2007 transcripts reveal that
she thought the possibilities of a credit crunch developing seem too real.

3Remember that the universe is only 1010 years old.
4Interested readers are referred to: (Stanton et al., 2010) and (Annunziata, 2011)
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1.2 Time, Frequency, Time-Frequency, and Time-Scale

variable) using daily data. However nowadays intraday data has become widely avail-

able and we are now bound to utilise the more dense observations to maximise the

efficiency of our estimations. It would be possible to have an even more precise esti-

mate of daily volatility and to virtually treat daily volatility as an observed variable.

With data being available at different frequencies what has become clear is that, finan-

cial data contain several structures, each occurring on a different time scale. Clearly,

a new model needs to be flexible enough to justify abrupt changes and should capture

the multi-scale behaviour of the data and should also be compatible with the statistical

properties of high frequency data.

The study of high-frequency data has shed lights into the field of finance. The

availability of such data has made the unobservable process of volatility, observable.

Modelling the second moment of returns has suddenly changed from parametric mea-

sures to simple nonparametric models.

1.2 Time, Frequency, Time-Frequency, and Time-Scale

One of the motivations behind the analysis of a time series in the frequency domain is

to find out any periodic features of the data. If there is only one cycle in the time series,

then the autocorrelation function reveals this cycle. However, if a series contains several

cycles, the autocorrelation function is not capable of separating out such periodicities.

The ideal situation is to be able to determine how many cycles exist in the data and how

important each cycle is with respect to each other. The frequency domain approach

has the power to reveal the information from the data that is not readily available from

the data in the time domain.

A time series is a variable that changes successively in time. Electromagnetic waves,

speech or audio signals, temperature readings, or stock prices are all examples of time

varying signals. One way to represent the signal is to show how the amplitude of a

signal changes over time (which is the common way in economics). But it is not the

only way. In fact, in many other fields (such as in physics, engineering, astrophysics,

geophysics, psychology, language, biology and music) the frequency representation of

a signal is the one that matters most. In these areas statistical analysis in the time

domain do not play a major role but it is rather in the frequency domain that the

characteristics of a signal are analysed.

3



1.2 Time, Frequency, Time-Frequency, and Time-Scale

Region Frequency

Radio < 3× 109

Microwave 3× 109 − 3× 1012

Infrared 3× 1012 − 4.3× 1014

Visible (Red-Violet) 4.3× 1014 − 7.5× 1014

Ultraviolet 7.5× 1014 − 3× 1017

X− rays 3× 1017 − 3× 1019

Gamma rays > 3× 1019

Table 1.1: Electromagnetic waves

To realise how different the frequency domain environment can be, consider visible

light as an example. Visible light is an electromagnetic wave and its frequency can vary

between 4.3× 1014 to 7.5× 1014 and it is the frequency of the wave that determines the

colour of the wave (Someda, 2006). The frequencies inbetween form the colours in the

rainbow. Table 1.1 summarises the frequencies for visible and invisible waves.

In the time domain a variable Yt at time t is analysed in models in which the focus

is on the properties of the variable dependent on time t, such as covariance between Yr

and Ys at distinct dates r and s. In the frequency domain variable Yt is analysed as a

weighted sum of periodic functions of the form cos(νt) and sin(νt):

Yt = µ+

∫ π

0
α(ν) · cos(νt) dν +

∫ π

0
β(ν) · sin(νt) dν (1.1)

The goal in the frequency domain is to find out how important cycles of different

frequencies are. This thesis is not trying to explain the techniques in the frequency

domain but it is rather suggesting that analysing a variable in both frequency and time

domains could lead to insightful findings. This thesis is proposing that the statistical

analysis of time series in economics and finance would be explored better in both two

domains.

Fourier transformations are the most common way to transform the information

of a variable from time domain to frequency domain, but they are not widely used in

standard econometrics. If the variable is observed originally in the time domain then

Fourier transform, summarises the information of the time series in an alternative way

rather than in time. It summarises the content of the variable as a function of frequency

and does not involve with any time information. Short Time Fourier Transform (here-
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1.2 Time, Frequency, Time-Frequency, and Time-Scale

after abbreviated to STFT) was developed for bringing a balance between time and

frequency by sliding a window across the time series and taking the Fourier transform

of the windowed series. Perhaps one of the reasons Fourier transforms are not very pop-

ular among economists is because Fourier transforms look only for sinusoids globally

and therefore are not suitable for evolving behavior of stock markets, as complete sinu-

soid patterns are rarely encountered in empirical finance. The time information is lost

completely in Fourier analysis, whereas, time information is very critical in economics

and finance. STFT in only applicable for covariance stationary processes and once the

window function is chosen, the frequency and time resolution of the window are fixed

for all frequency bands and all times. So for a signal observed throughout a length

of time, which has different frequency components which might appear, disappear, or

re-appear at different times, STFT might not be the most suitable technique to work

with.

This thesis provides a solution to overcome the shortcomings of STFT by using

Wavelet Transformations. Wavelet analysis is a non-parametric method that allows

for the study of time-scale dependent phenomena. Wavelet Transformations are akin

to Fourier Transforms but do not lose the time dimension in the transformation. The

wavelet transform differs from the STFT by using an entirely different set of basis

functions (not sinusoids) which adaptively partition the time-frequency plane to better

capture the range of low-frequency to high-frequency events.

The power of wavelets is their ability to analyze (decompose) features of a signal

which vary over both time and scale. A natural concept in financial time series is the

notion of multi-scale features. That is, an observed time series may contain several

structures, each occurring on a different time scale. For instance, stock market consists

of multiple layers of investment horizons (time-scales) varying from milliseconds to

years. Wavelet techniques possess an inherent ability to decompose time series into

several sub-series which may be associated with a particular time scale. In other words,

wavelet methods present a lens to the researcher, which can be used to zoom in on the

details and draw an overall picture of a time series at the same time. Unlike Fourier

transforms, they have the capability to decompose processes on different time scales,

but still preserve time localization.

The main motivation in this thesis is to uncover the characteristics of volatility

measures at different scales ranging from intraday to more than a day sampling in-
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tervals. The activities in financial markets involve dealers in different geographical

locations who have different time horizons, home currencies, information access, trans-

action costs, and risk attitudes. The time horizons vary from computer traders trading

at nanoseconds to intraday dealers, who close their positions every evening, to long

term investors and central banks who make decisions depending on much longer hori-

zons (months, quarters or even years). In such a complex structure, market participants

follow different strategies to reach their goals. The development of computer technol-

ogy, has eased the paths for academic researchers to have access to intraday data. With

more information available, there has been a rapidly growing body of empirical studies

on the behavior of the intra-daily volatility measures.

For decades historical volatility has been an unobserved variable but as with the

advancement in technologies intraday data have become available, and time horizons

such as secondly and minutely can now be used, volatility could ”virtually” be treated

as an observed variable. Using intra-day observations for estimating volatility, has

replaced ”historical” volatility with ”realised” volatility. The use of intra-day data

and notion of realised variance has given birth to the ongoing new research course of

volatility modeling using intra-day data. This thesis utilises Wavelet methodologies

and apply them on intraday data to further uncover the characteristics of the data.

1.3 Plan of the thesis

This thesis is divided into four parts. The second chapter of the thesis after the in-

troduction starts by investigating the drawbacks of STFT. In doing so, the concepts

of time and frequency localisation with regards to Heisenberg’s Uncertainty Principle

are explored: it is impossible to achieve an optimal resolution simultaneously in the

time and frequency domains. This obvious fact then motivates the need for a more

flexible environment. Wavelet transforms are defined as mathematical transformations

that intelligently overcome the Heisenberg’s principle without violating the theorem.

Continuous and discrete wavelet functions, filters, and coefficients are then defined. Dif-

ferent examples of wavelet family are provided which are used for comparisons against

Fourier transforms. The perception of multiresolution analysis using wavelet decompo-

sitions is expounded, which leads into the definition of wavelet variance and covariance.
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1.3 Plan of the thesis

The third chapter used 10 years of daily observations of S&P500 and starts with

describing the data and giving the definitions of the asset returns. The dependence

properties of financial returns are discussed and concepts such as long-memory pro-

cesses, Autoregressive Fractional Moving Average (ARFIMA) are explained in details.

Different methods for testing and estimating ARFIMA models are expounded, namely

the R/S test statistic, the GPH estimator, and the Wavelet Maximum Likelihood Esti-

mator. Section 3.5 explores other properties of financial returns and the famous ques-

tion ”What is the relevant horizon for risk management?” is proposed and answered.

This chapter then continues by exploring concepts of skip sampling and temporal aggre-

gation followed by identifying the effects of temporal aggregation on ARFIMA(0,d,0)

theoretically and through simulations. This section ends by analysing the S&P500

daily, 5-day and 10-day returns. Some of the proofs are provided in the appendix.

The third chapter starts by studying the properties of intraday data and it used

the tick-by-tick and also 5-minute GBP/USD exchange rates for different periods of

time, one month and two years respectively. The concept of realised variance and

different ways of approaching the estimator are discussed. The effects of temporal

aggregation are dealt with and the chapter ends with considering two different scenarios

for forecasting the realised variance.

The fourth chapter is the conclusion which brings the results of chapters two and

three together and gives suggestions for future research.

This thesis has used a selection of widely available software: R version 3.0.1 for

some of the estimations and diagrams. Whenever a package is used, corresponding

authors are referenced. R is an object oriented General Public License software which

is written in C, Fortran and R languages1. Matlab version 2010b (mainly the Wavelet

toolbox for showing pictures of different wavelet functions)2, and Stata version 13.1 3

for some of the statistics and diagrams in chapter four. Most of the R codes used for

plotting figures and estimating models are available in appendix.

1Available at: http://www.r-project.org/
2Available at: http://www.mathworks.co.uk/products/wavelet/
3http://www.stata.com/
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2

Wavelet Methods for

Multi-Resolution Analysis

2.1 Introduction

Wavelets are a relatively new technique for representing the levels of details present in

the function. Wavelets are mathematical tools for hierarchically decomposing functions

which could resemble anything; time series, images, or even curves (see (Stollnitz et al.,

1996) for other applications). This decomposition will make it possible to describe

an object in terms of a coarse shape and a range of details. The birth of the formal

subject of wavelets in time series analysis and digital signal processing goes back to

1980s, however it has only been over the last decade that wavelets have started to

find their ways into economics. From a more general perspective, wavelet analysis has

rather completed the existing analysing techniques in some areas such as in spectral

analysis, but in some areas it has been capable of shedding lights on matters where

little progress has been made such as in de-noising.

Most of the existing literature of wavelets in time series analysis require extensive

knowledge of Fourier and Windowed Fourier Transforms (with the exceptions of (Ram-

sey, 1999),(Ramsey, 2002), and (Rua, 2012)). This chapter of the thesis is trying to

familiarise the readers with wavelet techniques without going through all the exten-

sive mathematical proofs. References are given for interested readers to seek the full

proofs. However, before defining wavelet techniques, one needs to go on a quick journey
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2.2 Spectral Analysis

from time domain to the frequency domain, and then from time-frequency domain to

time-scale domain. This will help to understand the intuition behind the reasons why

wavelet approach is the preferred (and complementary) method compared to existing

methods for analysing financial time series in domains other than the time domain.

Wherever needed, examples have been given to ease the flow of the discussions.

This chapter starts with giving brief definitions of spectral analysis and Fourier

transform. After familirising the reader with spectral tools, the chapter extrapolates

the shortcomings of (Short Time) Fourier Transforms, defines two dimensional time-

frequency plane and discusses the limitations of time-frequency space using Heisenberg

uncertainty principle. By building up the motivation for a new platform in which time

series can be analysed more precisely, wavelet functions, continuous and discrete wavelet

transforms are defined. Examples of the wavelet family are provided, the concept of

multiresolution analysis is explained and wavelet variance are defined.

2.2 Spectral Analysis

A time series is a set of observations made sequentially in time and it is a process that

is varying in time. Often a graph of its value plotted against time is referred to as

the variable itself. A time domain analysis is aimed to reveal the sequence of events

within the data. That is, the value of a variable (Yt) at time t is described in terms of

a sequence of innovations [εt]
t=+∞
t=−∞ in models of similar form:

Yt = µ+
i=∞∑
i=0

Ψiεt−i (2.1)

where the focus is on analysing the properties of [Yt]
t=+∞
t=−∞ in the time domain and

how different functions of the return series of Yt are inter-connected. However, this is

not the only way to describe, analyse and study a time series, signal, variable, or a

function. There are two approaches in time series analysis: time domain analysis and

frequency domain analysis. A frequency domain analysis describes the data in terms of

sinusoidal functions to reveal its component sequences whenever they exist in separate

frequency bands. Concepts that emerge frequently in frequency domain are: phase(a),

amplitude(A), frequency(ν), and bandwidth (see figure (2.1)). Phase is the location of
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2.2 Spectral Analysis

the peak and the trough of the oscillation, amplitude shows the size and power of the

signal.

Yt = Asin(a+ νt) (2.2)

Figure (2.1) shows a simple sinusoidal function for ν = 1, a = 0, A = 1, t = 1, ..., 20.

Figure 2.1: The distance between the two dotted vertical lines (blue line and the green
line) is the bandwidth.The R codes for plotting the graph is given in appendix.

However, time series in real world do not always look like figure (2.1) and possibly

have several sinusoidal components, with different amplitudes, different phases, and

different frequencies. In the frequency domain variable Yt is analysed as a weighted

sum of periodic functions of the form cos(νt) and sin(νt):

Yt = µ+

∫ π

0
α(ν1) · cos(ν1t) dν1 +

∫ π

0
β(ν2) · sin(ν2t) dν2 (2.3)

One of the similarities in between the time and the frequency domains is that, the

analyses are based on the assumption of covariance stationarity. The process Yt is said

to be covariance stationary if neither the mean µt nor the autocovariances κt depend

on time t. That is, E(Yt) = µ for all t and cov(Yt, Yt+τ ) = κ(τ) for all t and for all τ .

Standard time series text books that have included spectral analysis are: (Priest-

ley, 1981), (Harvey, 1991), (Hamilton, 1994) (799 pages, with only 61 pages on spectral

analysis and the Kalman Filter), (Koopmans, 1995), (Bloomfield, 2000), (Osborn and

Ghysels, 2001). In economics and finance, the interest in studying business cycles in

1940s led to a new line of research dealing with seasonal fluctuations of macro variables

such as GDP (Burns and Mitchell, 1946). However, research on seasonal fluctuations

seemed not to have received a reasonable interest and economists were relatively reluc-

tant to use a new approach (Miron, 1996). In finance, analysis in frequency domain

didn’t catch on with the econometric analysis in the time domain, even though there

have been several attempts towards bringing the two empirical analyses together. On

one hand, ... the time and frequency domain approaches should not be considered as

competitors and they should rather complete each other(Harvey, 1975). On the other

hand, ... applications of spectral analysis to econometric time series will be less useful
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... periodicity of most econometric time series, such as business cycles or quarterly

effects, can easily be identified, spectral analysis in these areas will be of only marginal

value (Chan, 2010). It is worth noting that, ”time series” might not necessarily mean

that one is limited in using methods in the time domain but rather it means the original

series is a variable that changes successively in time, hence time series.

The most common transformation that translates the information of a time series

from the time domain to the frequency domain is Fourier transform. During the past

two decades there has been a gradual increase in the application of Fourier methods

in standard econometric text books [for example: (Wang, 2009) and (Belsley and Kon-

toghiorghes, 2009)], and analysis in frequency domain is now regarded as an alternative

approach that helps capturing cyclical behaviour of the data series.

This thesis shall not explain Fourier methods in details but since spectral analysis

using Fourier series act as prerequisites for the rest of the thesis, this chapter starts by

Fourier transforms.

2.2.1 Fourier Transform

f(x) is said to have finite energy if:

∫ ∞
−∞
|f(x)|2dx <∞ (2.4)

And if f ∈ L2(R), then its Fourier transform f̂ is defined as:

f̂(ν) =

∫ ∞
−∞

f(x)e−iνxdx, ν ∈ R (2.5)

where ν is the frequency measured in radians per unit time, i is the square root of

−1, and f̂(ν) is the function of frequency. If scalar product is defined as:

〈f(x), g(x)〉 =

∫ ∞
−∞

f(x)g(x)dx (2.6)

Then equation 2.5 can be re-written as:

f̂(ν) = 〈eiνx, f(x)〉 (2.7)
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Fourier transform preserves the energy in f(x). That is, if the inverse Fourier

transform is defined as:

f(x) =

∫ ∞
−∞

f̂(ν)eiνxdν = 〈e−iνx, f̂(ν)〉 (2.8)

Then:

∫ ∞
−∞
|f̂(ν)|2dν =

∫ ∞
−∞
|f(x)|2dx (2.9)

Equation (2.9) is a very important property of Fourier transforms and is known as

Parseval’s identity and is often stated more generally as:

〈f(x), g(x)〉 = 〈f̂(ν), ĝ(ν)〉 (2.10)

It basically states that the integral of the square of the Fourier transform of a

function is equal to the integral of the square of the function itself.

Technically, the right-hand side of (2.5) defines a function f̂ only when the original

f is absolutely integrable. In practice, one uses:

f̂n(ν) =

∫ n

−n
f(x)e−iνxdx, ν ∈ R (2.11)

Under certain conditions,

lim
n→∞

||f̂ − f̂n||2 = lim
n→∞

∫ ∞
−∞
|(f̂(ν)− f̂n(ν)|2dν = 0 (2.12)

Equation (2.12) is the mathematical definition of the Fourier transform. However,

the data used in this thesis (and mostly in finance and economics) are inherently discrete

signals of finite length and energy. Hence, it is more practical to use:

f̂(ν) =
1

2π

n∑
−n

f(∆x)e−iν∆x,−π ≤ ν ≤ π (2.13)

Equation (2.13) can be used to provide the link between time domain analysis and

frequency domain analysis. If κτ , the autocovariance functions is defined as: κτ =

cov(Xt, Xt+k) = E[(Xt − µt)(Xt+k − µt+k)] and if replaced as f(∆x) in 2.13, then:
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2.2 Spectral Analysis

f̂(ν) =
1

2π

n∑
−n

κ−iντ ,−π≤ν≤π(2.14)

where, ν is frequency measured in radians per unit time, and f(ν) is a function of

ν called power spectrum. Equation (2.14) is used in this thesis for calculating power

spectrum using Fourier transforms. Since the data used in this thesis (and generally in

finance) do not have any imaginary parts and are all real observations1, using:

e−iντ = cos(ντ)− i sin(ντ) (2.15)

equation 2.14 can be re-written as:

f̂(ν) =
1

2π
[Γ(0) + 2

∞∑
τ=1

Γ(τ) cos(ντ)], 0 ≤ ν ≤ π (2.16)

which is basically the Fourier transform of the autocovariance function (κτ ). An

interesting case is the power spectrum of a white noise. Yt = εt, with E(εr, εs) = σ2 for

r 6= s then γ(τ) = σ2 and it follows from equation (2.14) that f̂(ν) for a white noise is

a flat line ( 1
2π ). It is worth mentioning that white noise is called white noise because it

contains equal power across frequency axis which is parallel with white light which is

an equally weighted average of all colours.

Instead of plotting τ (a function depending on time) against τ , one can plot f̂(ν)

(a function depending on frequency) defined in equation (2.16) against ν. The autoco-

variance function (κτ ) and spectral density are very close, since:

κτ =

∫ π

−π
f(ν)eiντdν (2.17)

which results in:

(0) =

∫ π

−π
f(ν)eiν0dν =

∫ π

−π
f(ν)dν (2.18)

which means that the area under the spectral density function of Xt between −π
and π gives the variance of XT . Worth remembering that the long-run variance is

1A complex number such as z, is written as z = a + ib, where a and b are both real numbers. a
is known as the real part of z and b is known as the imaginary part of z. The conjugate of z which is
often shown by z is: z = a− ib
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equivalent to the spectral density at the zero frequency.

To observe how Fourier transforms can be useful in adding to the results of time

domain analysis, two examples are given. Two simulated series: yt and wt which are

AR(2) and AR(3) processes respectively, are defined as follows:

yt = 0.5yt−1 − 0.7yt−2 + εt, t = 1, ..., 512 (2.19)

and

wt = 0.6wt−1 − 0.5wt−2 − 0.2wt−3 + εt, t = 1, ..., 512 (2.20)

In order to look at the roots of the characteristic function, equations (2.19) and (2.20)

can be written in lag polynomial notations:

(1− 0.5L+ 0.7L2)yt = εt, t = 1, ..., 512 (2.21)

and

(1− 0.6L+ 0.5L2 + 0.2L3)wt = εt, t = 1, ..., 512 (2.22)

yt has roots, 0.357± 1.141i and wt has roots 0.592± 1.004i and −3.683.
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Figure 2.2: From top to bottom: Plots of simulated AR(2), yt (t=512) against time [2.19],
partial autocorrelation functions against lag, and power spectrum against frequency.
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Figure (2.2) provides full information about yt. From top, a plot of the variable

against time, sample autocorrelation functions up to 90 lags, and power spectrum

against frequency. Figure (2.3) shows the same for wt. The Fourier transformation

has transformed the information of yt and wt from the time domain to the frequency

domain which have been plotted at the bottom of both figures against frequency. This

extra information added, helps to identify any cyclical behaviour in the time series.

What this thesis is concerned with is how the information from the time domain

has been transferred to the frequency domain. To illustrate this: figure (2.5) shows

how originally information of the signal was observed in the first place and figure (2.6)

shows how Fourier transformation has translated the information.
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Figure 2.3: From top to bottom: Plots of simulated AR(3), wt (t=512) against time [2.20],
partial autocorrelation functions against lag, and power spectrum against frequency.

From figure (2.6), one cannot extract any information about the content of the

signal in the time domain and from figure (2.5), the frequency content of the signal is

not readily available. That is not surprising since, on one hand all the formulae used to

analyse time series in the time domain do not have a place for frequency (ν) and on the

other hand, equation (2.16) gives information about the frequency content of the time

series and does not give any information regarding the location of these frequencies

in the time domain. But could the fact that equation (2.16) does not provide any

information regarding the time dimension of the signal, be a problem? Yes, we explain

with an example.
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Figure 2.4: The first signal (top) consists of superposition of two frequencies sin(10t)
and sin(20t), and the second (bottom) consists of the same two frequencies each applied
separately over half of the signal duration.
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Figure 2.5: The time domain representation of the observed time series. Perfect time
resolution and no frequency resolution!
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Figure 2.6: The frequency domain after computing the Fourier transform. Perfect fre-
quency resolution and no time resolution!

For example, figure (2.4) shows two time series: the first one consisting of two

frequencies (sin10t and sin20t) for the entire duration of the signal (t = 60), and the

second one consisting of the same frequencies (sin10t and sin20t), but each is applied

separately for half of the signal duration: for the first half (sin10t) and for the second

half (sin20t)1. As can be seen, the spectrum is quite incapable of realising the difference

between the two signals, even though they are totally two different series in the time

domain.

2.3 The Short Time Fourier Transform (STFT), or Gabor

Transform

As discussed Fourier transforms exhibit the spectral content of the time series in fre-

quency domain, but does not give any information regarding where in time those spec-

tral components actually appear, as seen in figure (2.4). This is simply because of the

fact that the sine and cosine functions are not local but global functions and cannot

cope with disappearing or re-appearing a feature of the data. Hence, Fourier transform

on its own is not a suitable technique for time evolving time series such as the ones in

1please see appendix for the R codes to generate figure (2.4)
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high frequency data in finance. Fourier transforms are useful when one is interested in

knowing what spectral components have appeared in the time series but not interested

when ”in time” (the example in the introduction), which is not the case in financial

economics.

What is often done to overcome this problem is to divide the whole time interval into

several shorter time intervals. Then take the Fourier transform for each interval, which

is actually what most of the engineers and physicists do. Because the time interval is

divided into shorter time intervals, this method is called Short Time Fourier Transform

(STFT) or Gabor transform1. If f ∈ L2(R), then its Fourier transform f̂ was defined

as:

f̂(ν) =

∫ ∞
−∞

f(x)e−iνxdx, ν ∈ R (2.23)

So what needs to be explained is how to modify the Fourier transform which can

be achieved by multiplying f(x) by a window function ϕ:

Suppose that ϕ also ∈ L2(R), for any ν ∈ R and b ∈ R:

Φb(f)(ν) =

∫
f(x)ϕ(x− b)e−iνxdx = 〈f(x), Ob,ν〉 (2.24)

where Ob,ν = ϕ(x− b)e−iνx. Φb(f)(ν) is called the Short Time Fourier Transform

(STFT) of f(x).

The resulting expansion is a function of two parameters: frequency and time shift.

Equation (2.24) appears to be very ideal since (roughly speaking), there are two element

in the equation, location or time shift(b) and frequency (ν). The main property is

that the window size is fixed with respect to frequency which produces a rectangular

partitioning of the time-frequency plane, as shown in figure 2.7

In order to grasp how stable equation (2.24) is, one needs to know the concept

of time and frequency localisation, which is what next subsection tries to do in the

simplest possible form.

2.3.1 Time and Frequency Localization

Recall the definition of f(x) with finite energy from equation (2.4):

1Named after Dennis Gabor, the famous physicist who won the Nobel Prize in Physics in 1971.
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Figure 2.7: The balanced resolution between time and frequency by using the Short Time
Fourier transform.

∫ ∞
−∞
|f(x)|2dx <∞ (2.25)

If f(x) has finite energy then it is well localised in the time domain if it satisfies

some decay properties away from a fixed value. For example, f(x) is polynomially

localised near x = x0 if (examples are all from (Carmona et al., 1998)):

|f(x)| < K
1

(1 + (x− x0)2)k/2
, x ∈ R (2.26)

for some positive constants K and k. Or f(x) is exponentially localised if:

|f(x)| < Ke−α|x−x0|, x ∈ R (2.27)

for some positive constants K and α. In equations (2.26) and (2.27) x can be

replaced by ν to be regarded as exponential and polynomial frequency localisations.

2.3.2 Heisenberg’s Inequality Principle

Now that the concepts of time and frequency localisations are defined, the stability

of equation (2.24) can be explained through the bridge between time and frequency
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2.3 The Short Time Fourier Transform (STFT), or Gabor Transform

localisation which is what Heisenberg’s Inequality Principle is about. According to

Heisenberg (Heisenberg, 1930), it is not possible to achieve optimal localisation simul-

taneously in time and in the frequency domain (look at equation (2.24)). Improving a

function’s time localisation will end up weakening its frequency localisation. This fact

is a consequence of the well known Heisenberg Uncertainty Principle.

Consider f ∈ L2(R), and assume that its derivatives f ′ and its Fourier transform

are also in L2(R). If the time and frequency averages are defined as:

x =
1

||f ||2

∫
x|f(x)|2dx, (2.28)

and

ν =
1

||f̂ ||2

∫
ν|f̂(ν)|2dν, (2.29)

where the corresponding time and frequency variances are:

∆x =
1

||f ||

√∫
(x− (x))2|f(x)|2dx (2.30)

and

∆ν =
1

||(f̂)||

√∫
(ν − (ν))2|f̂(ν)|2dν (2.31)

The Heisenberg uncertainty principle states that:

∆x∆ν ≥
1

2
(2.32)

Equation 2.32 shows that an improvement of the time localisation (a decrease of ∆x)

will result in a deterioration in the frequency localisation (an increase of ∆ν). 1. It is

crucial to point out that achieving an infinitely precise description of the time-frequency

content of a time series/signal is impossible because of the Heisenberg uncertainty prin-

ciple [(Carmona et al., 1998), (Reed and Simon, 1976)] and there is always a compromise

between time localisation and frequency localisation. Mathematicians, engineers, and

physicists have all been concerned with finding an ideal (suited for their application)

1The proof of equation 2.32 is not central to the discussion of this thesis and is not provided here,
a complete proof can be found in (Reed and Simon, 1976).
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2.4 Wavelet Analysis

time-frequency representation of signals/time series in terms of a time variable and a

frequency (or scale) variable simultaneously.

It should be now obvious that time-frequency representations are not unique. There

are different ways of describing the information content of a signal in time and frequency

domain. Depending on the application, this can change.

2.3.3 Shortcomings of STFT

Equation (2.24) which is the windowed Fourier transform means that at every point in

the time-frequency domain, a window is chosen which is in accordance with a specific

time and frequency. The duration and bandwidth of the window and thus the resolution

do not change. Hence, the accuracy of STFT is limited by the size and the shape of the

window. If one uses many time intervals will end up with good time resolution but the

very short time of each window would not give good frequency resolution, hence loosing

frequency information. The resolution in the time and frequency domains depends only

on the form of the window and, by the Heisenberg uncertainty principle, it is impossible

to achieve an optimal resolution simultaneously in the time and frequency domains.

Also another drawback of the STFT is that it is applying the Fourier transform to bits

of the observed time series and it will not be able to capture the events that fall outside

the width of the window.

For a more extensive and detailed studies on the drawbacks of Short Time Fourier

Transform please see: (Carmona et al., 1998), (Ramsey, 2002), and (Gao and Yan,

2011).

2.4 Wavelet Analysis

The wavelet transform is a powerful mathematical tool that is receiving more and more

attention in the statistical and financial communities. The power of wavelets is their

ability to analyse (decompose) features which vary over both time and scale. Wavelet

transform instead of partitioning the time-frequency plane into a square grid like STFT,

adaptively partitions the time-frequency plane so that it better captures the range of

low-frequency to high-frequency events. Figure 2.8 shows how the time-frequency plane

is partitioned (in comparison to figures (2.6), (2.5), and (2.7)).
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2.4 Wavelet Analysis

To overcome the fixed time-frequency partitioning in STFT, wavelet transform ex-

ploits a basic function by (often in the literature called analysing or mother wavelet),

shifting (translating) and scaling (dilating) so that it captures all the features local in

time and frequency. Wavelet transform does not violate the Heisenberg’s principle, it

rather gets round it intelligently. The time-frequency partition analyses high-frequency

events with good time resolution and low-frequency features with good frequency res-

olution which, is in contrast to figure (2.7) where all frequencies were analysed with

the same fixed-width window. As frequency increases, the number of partitions in the

time domain also increases. This enables a balanced resolution in time and frequency

simultaneously. Recall that in STFT, if the focus is on high frequency characteristics

then the time resolution is lost and vice versa. However, in wavelet transform one

is enabled to have both. This is how wavelet transform overcomes the limitations in

STFT and also does not contradict Heisenberg’s principle.

Figure 2.8: The partitioning of the time-frequency plane according to a wavelet transform.

To be precise, Fourier transform and STFT deal with frequency, however, wavelet

transform deals with scaling. Roughly speaking, scale is inversely proportional to the

frequency interval.

If the scale parameter in wavelet transform increases, then it increases the time

support, drops off in frequency domain, hence capturing lower frequencies (figure (2.9,

a)). On the other hand if the scale parameter decreases, then the wavelet basis decreases

the time support and covers high frequencies (figure (2.9, d)). Figure (2.9) shows the

Haar wavelet function, shifted towards time axis and scaled towards the frequency axis.

For an introduction to wavelet analysis that does not go through the rigorous maths
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Figure 2.9: Haar Wavelets, shifted and dilated across time and scale.

(Hubbard, 1998) gives a non-technical introduction to wavelets. For good sources with

moderate levels of technicality (Ramsey, 1999), (Schleicher, 2002), (Crowley, 2007), and

(Gallegati, 2008) are some easy-to-follow sources to start with. For a more extensive

and thorough introduction to the theory of wavelets and wavelet transforms, see (Chui,

1992), (Daubechies, 1992), (Carmona et al., 1998) (Mallat, 1998) and (Percival and

Walden, 2000) (specifically for time series analysis) which are mostly used as main

references.

Recently, there have been a growing number of applications of wavelets in areas

from theoretical econometrics to Capital Asset Pricing Model. (Zhang and Benveniste,

1992) applies wavelets to Artificial Neural Networks (ANN), (Nason, 2008) discusses

the applications of wavelet in statistics using R. (Ramsey and Lampart, 1998) analyse

the scale by scale relationship between expenditure and income for upper middle income

countries, while (Gencay et al., 2002) apply wavelets on a much wider scale and multiple

empirical applications in finance. (Vuorenmaa, 2004) uses wavelets for a volatility

analysis of 5-minute Helsinki Stock Exchange, and (Fan and Wang, 2007) apply wavelets

for removing the noise from high frequency data when calculating realised variance.

While (Power and Turvey, 2010) apply wavelets for analysing the volatility of energy

markets, (Vacha and Barunik, 2012) employs wavelets for studying the co-movement of

energy commodities. Overall, the use of wavelets have started to appear more frequently

in empirical analysis of high frequency quadratic variations.
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2.4 Wavelet Analysis

2.4.1 Wavelet Functions

Figure 2.10: Examples of different types of wavelets. Pictures are drawn in Matlab,
Wavelet Toolbox.

A wavelet as the name suggests, is a small wave. A small wave can decay and grow

in a limited time period which is in contrast with sinwave which keeps on oscillates up

and down.

A wavelet ψ(t) is simply a function of time t if it satisfies two basic rules (the

integral of ψ is zero):

∫ ∞
−∞

ψ(t)dt = 0 (2.33)

A secondary condition imposed on a wavelet condition is unit energy1; that is

∫ ∞
−∞
|ψ(t)|2dt = 1 (2.34)

Just for the sake of comparison, a sinwave is not an appropriate candidate as

1 The energy of a function is defined to be the squared function integrated over its domain. This
condition should hold so that the inverse of wavelet transforms exists.
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2.4 Wavelet Analysis

∫∞
−∞ | sin(t)|2dt, diverges.

Haar wavelet function is the oldest, the most famous, and the simplest wavelet

basis, named after Alfred Haar:

ψHaar(t) =


1 on[0,1/2]

−1 on[1/2,1]

0 Otherwise

It is straightforward to check whether equations (2.33) and (2.34) hold.

Figure 2.11: Haar Basis (mother) Function.

s = 2−jandu = k2−j (2.35)

Equations (2.33) and (2.34) are two very basic rules of wavelets and guarantee that

wavelet function will have nonzero entries, but all departures from zero must cancel

out. This means that the function ψ has to wiggle up and down the time axis, i.e. it

must behave like a wave; this, together with the assumed decaying property, justifies

the choice of the term wavelet (in French, ondelette). For wavelets to be of practical

use, they should obey a basic rule, known as the wavelet admissibility condition. A

wavelet ψ is admissible if its Fourier transform satisfies:

ψ(ν) =

∫ ∞
−∞

−i2πνtdt (2.36)

This condition ensures that ψ(ν) (where ψ̂(ν) is the Fourier transform, of ψ(t)) goes

to zero quickly as ν → 0 Mallat (1998)), that is:
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2.4 Wavelet Analysis

Figure 2.12: Two Morlet wavelets. The first one at given scale 50, and location 356. The
second one at given scale 100, and location 100. Please see the appendix for the codes.

Figure 2.13: A complete version of figure (2.4). Plots of two signals against time, Spec-
trum against frequency, Gabor Transform (STFT) and CWT transforms. Signal (top, left)
consists of superposition of two frequencies sin(10t) and sin(20t), and the second (top,
right) consists of the same two frequencies each applied separately over half of the signal
duration. Codes are given in appendix.
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2.4 Wavelet Analysis

0 < Cψ =

∫ ∞
0

ψ(f)

f
df <∞ (2.37)

Daubechies wavelets (another type of wavelets commonly used) which are a family

of compactly supported wavelets satisfy an additional condition which is based on

vanishing moments, that is:

∫
tmψ(t)dt = 0 (2.38)

where where m = 0, 1, ...,M − 1, (Daubechies, 1992). Another classical example of

wavelet family is Morlet wavelet, a continuous-time wavelet:

ψMorlet(t) =
1

2π
e−iν0te− t

2

2
(2.39)

where i =
√
−1 and is an imaginary number and ν0 is the central frequency of the

wavelet. Figure (2.12) shows two Morlet wavelets, with different ν. Strictly speaking,

the Morlet wavelet is not an admissible wavelet, since it is not of integral zero. However,

for ν large enough, the integral of ψ is small enough to ensure that for all practical

purposes, it could be used numerically as if it were a wavelet.

Some of other examples of continuous-time wavelet functions (some which are shown

in figure (2.10)) are related to derivatives of Gaussian probability density function. The

normalised wavelet which is the first derivative of Gaussian PDF, and also Mexican hat

wavelet which is the second derivative of Gaussian PDF.

2.4.2 Continuous Transform or Discrete Transform

The continuous wavelet transform (CWT ) is a function of translation (shift) and scale

(dilation) Wu,s which is obtained by developing the function onto a particular wavelet

via:

Wu,s =≺ x, ψu,s �=

+∞∫
−∞

x(t)ψu,s(t)dt (2.40)

where
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2.4 Wavelet Analysis

ψu,s(t) =
1√
s
ψ(
t− u
s

), s ∈ R+, u ∈ R, s 6= 0 (2.41)

is the shifted by u (the position of the wavelet in the time domain), and scaled

by s (the position of the wavelet in the frequency domain) compared to the original

wavelet function. Compare figure (2.9) (which shows dilations and translation of the

original Haar basis function), with figure (2.11) (which shows the Haar basis function).

The translation of a wavelet function ψ(t − u) simply shifts its u range units to the

right(depending on the sign of u), while a dilation of the function ψ( ts) expands its

range by a multiplicative factor s (if |s| > 1 stretching and if |s| < 1 compressing,

remember that s has to be positive). The concepts of translation and dilations might

seem unfamiliar to the world of conventional econometrics. In the literature u is a

factor of translation and s is the factor for dilation. Translation means shifting and

dilation means scaling and it is just a matter of using different terminologies.

The resulting wavelet coefficients (ψu,s(t)) are a function of these two parameters,

location (u) and scale(s)1. The original function is a function of one parameter (t here)

but the wavelet coefficients are a function of two parameters s and u. In equation

(2.41), the term 1√
s

guarantees that equation (2.34) holds (in other words it makes sure

that the transform is invertible).

Applying shifted and scaled wavelets to a function, breaks down the complicated

structure of the function into simpler components. This is what is called analysing or

decomposing a function into sub-functions of simpler dynamics. If a wavelet satisfies

the admissibility condition (equation (2.37)), then an inverse wavelet transform can

re-produce the original function (same as it was in Fourier Transform):

x(t) =
1

cψ

∫ s=+∞

s=0

∫ u=+∞

u=−∞
ψs,u(t)W (u, s)duds

1

s2
(2.42)

Continuous Wavelet Transform (CWT) is a function of two parameters and there-

fore maps the original series into a function of u and s. CWT is often use in image

processing/denoising where the original information of the object is observed in two

dimensions, time and space. For the sake of comparison, recall figure (2.4), which

shows two time series: the first one consisting of two frequencies (sin10t and sin20t)

1 In the literature some times ψ is called the ”mother wavelet” and a family of ψu,s are called
”wavelet daughters”! (Hubbard, 1998)
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for the entire duration of the signal (t = 60), and the second one consisting of the same

frequencies (sin10t and sin20t), but each is applied separately for half of the signal

duration: for the first half (sin10t) and for the second half (sin20t). The spectrum was

quite incapable of realising the difference between the two signals. Figure 2.13, re-plots

the figures adding, Short Time Fourier Transform (Gabor) and Continuous Wavelet

Transform (CWT). It is obvious that even though these two signals are fairly simple,

Gabor transform still is not capable to verify where in time the second signal changes

its frequency. On the other hand, CWT clearly is capable of realising the differences.

Morlet wavelet has been used to produce the CWT.

CWT is obtained by continuously shifting a continuously scalable function and

then calculates the correlation between the the signal and the shifted, scaled functions.

Therefore lots of correlations are built in. In economics and finance all objects are

observed in one dimension : time, and thus CWT (if applies on one dimensional signals)

gives information simultaneously on time and frequency which result in containing a

high amount of extra (redundant) information. CWT transfers a one-dimensional signal

to a two-dimensional time-scale representation and at all points in the time frequency

plane, the wavelet coefficients contain more information than necessary for the perfect

reconstruction property to hold. A smaller number of scales with a varying number of

wavelet coefficients at each scale can be used, instead of using continuous parameters

u and s in order to avoid redundancy. For example, in figure (2.13), the change in

frequency is observed to some degree at every scale, enough information would have

been capable to detect the change in the dynamics of the signal. And that is how the

concept of Discrete Wavelet Transform (DWT ) enters the picture. one can think of

DWT as a discretization of the CWT throughout sampling specific wavelet coefficients.

A critical sampling of the CWT is obtained via (Vidakovic, 1999), and (Percival and

Walden, 2000):

where j and k are integers representing the set of discrete shifts and scales. The term

”critical sampling” is used to represent the minimum number of coefficients sampled

from CWT to ensure that all information present in the original function is retained

by the wavelet coefficients. If x(t) is a signal with finite energy:

∫
x2(t)dt <∞ (2.43)
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then can be analysed by projecting it with the wavelet coefficients. The wavelet

coefficient is equal to:

wu,s =≺ x, ψu,s �=

+∞∫
−∞

x(t)ψu,s(t)dt = 2
j
2

+∞∫
−∞

x(t)ψ(2jt− k)dt (2.44)

The wavelet coefficient wu,s is both localized in time (location) and scale, that is:

each basis function depends on two parameters, the scale s and locations u, whereas

the Fourier basis functions only depend on a single parameter f frequency which is 1
s

(recall that it was mentioned scale is inversely proportional to frequency of an interval).

The wavelet coefficient wu,s in equation (2.44) is sometimes written as wk,j . However,

in this thesis wu,s means (Discrete Wavelet Transforms) DWT unless otherwise stated.

Without going into to extensive mathematics, it is worth mentioning that, if the

frequency-domain support of ws,u at time u is [−2−s,−2−s−1) ∪ (2−s−1, s−s] , then

the time-domain support of ws,u is [u2−s, (u + 1)2−s]. Thus the wavelet function has

the ability to zoom in and out according to scale (s) (please see (Daubechies, 1992),

(Mallat, 1998), (Percival and Walden, 2000) and (Nason, 2008)).

Signal x(t) can be expanded via orthogonal wavelet basis:

x(t) =
s=+∞∑
s=0

u=+∞∑
u=−∞

ws,uψs,u(t) (2.45)

And equation (2.45) can be interpreted as an aggregation of details across all scales

which will be used in chapter four.

2.4.3 The Discrete Wavelet Coefficients

In most of cases, there are no functions to represent the wavelets details and the scaling

functions in the time domain. Therefore, iterative procedures are used for generate

them. Let hl = {h0, ..., hL−1} denote the wavelet basis (high-pass) filter and let gl =

{g0, ..., gL−1} be the scaling (low-pass) filter, defined via1:

gm = (−1)m+1hL−1−m (2.46)

1A high-pass filter passes high-frequency dynamics but reduces the amplitude of low dynamics.
Low pass filter passes low-frequency dynamics but reduces the amplitude of high frequency dynamics
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This relationship which is often known as a quadrature mirror filter is a filter used

for splitting an input signal into two bands. The resulting high-pass and low-pass

signals are often reduced by a factor of 2, giving a critically sampled two-channel

representation of the original signal. Orthogonal wavelets satisfy a quadrature mirror

filter relationship. In the literature mostly the low-pass filter coefficients are obtained

through equation 2.46 (Daubechies, 1992) and (Mallat, 1998).

The condition in equation 2.34 should also be satisfied for the wavelet filters {hl}:∑l=L−1
l=0 h2

l = 1 (has unit energy). Also following equation 2.33 (
∫
ψ(t)dt = 0)),∑l=L−1

l=0 hl = 0 (it integrates to zero) and
∑l=L−1

l=0 hlhl+2n = 0 (is orthogonal to its

even shifts).

If x(t) is a signal with a dyadic length (N = 2J) of observations. The vector of

discrete wavelet coefficients ω is obtained via

ω = Wx (2.47)

Where W is an N ×N orthonormal matrix defining the DWT . The matrix W is

formed of the wavelet and scaling filter coefficients. Equation 2.47 becomes more clear

if written as:

w =



w1

w2

...

wJ

vJ


(2.48)

and

W =



W1

W2

...

WJ

VJ


(2.49)

where wj is a column vector of wavelet coefficients with length N
2j

which is associated

with changes on a scale of length sj = 2j−1 and vj is a column vector of scaling
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coefficient which is associated with averages on a scale of length sj = 2J−1, hence Wj

and Vj are sub-matrices of size (N
2j
×N). To further simplify equation 2.49, let:

h1 = [h1,N−1, h1,N−2, ..., h1,1, h1,0]T (2.50)

be the vector of zero padded unit scale wavelet filter coefficients in reverse or-

der. That is, the coefficients h1,0, ..., h1,L−1 are taken from an appropriate orthonormal

wavelet family of length L, and all values that L < t < N are defined to be zero. Now

if shift h1 shifts by factors of two:

h
(2)
1 = [h1,1, h1,0, h1,N−1, h1,N−2, ..., h1,3, h1,2]T

h
(4)
1 = [h1,3, h1,2, h1,1, h1,0, h1,N−1, h1,N−2, ..., h1,5, h1,4]T

and so on. And then W1 in equation 2.49 is the collection of N/2 shifted versions

of h1 :

W1 = [h
(2)
1 , h

(4)
1 , ..., h

(N/2−1)
1 , h1]T (2.51)

Let h2 be the vector of zero padded scale 2 wavelet filter coefficients defined similarly

to the process above, then sub-matrix W2 is constructed by shifting the vector h2 by

factors of 4. This way of construction is repeated to form the matrices Wj by shifting

the vector hj by factors of 2j . The matrix VJ is simply a column vector whose elements

are all equal to 1/
√
N , (see (McCoy and Walden, 1996) and (Percival and Walden,

2000)).

Finally the N ×N dimensional matrix W is structured by the sub-matrices

W1,W2, ...,WJ and VJ in equation 2.49. A vector of wavelet coefficients is associated

with changes at a particular scale. Level j wavelet coefficients wj,t are associated

with the scale = 2j . This means that each wavelet coefficient is constructed using

a difference of two weighted averages, each one of length j . Applying the DWT to

a stochastic process produces a decomposition on a scale by scale basis which is the

unique characteristic of wavelets and becomes very useful in chapter four.

Haar wavelet is nearly identical to the familiar first difference operator. Applying

the Haar DWT to the random walk xt will produce stationary wavelet coefficients at

all levels. If xt is formed by a double sum of a Gaussian white noise process, then
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xt =
t∑

u=1

u∑
v=1

εv, t ≥ 1, (2.52)

The first difference of xt is a random walk and the second difference is a Gaussian

noise. D(4) wavelet filter is closely related to the second difference operator. In this

thesis apart from DWT, another type of discrete wavelets are used, known as Maxi-

mal Overlap Discrete Wavelet Transform (MODWT) which has a different sampling

algorithm and is more redundant compared to DWT.

2.4.4 The Maximal Overlap Discrete Wavelet Transform

An alternative wavelet transform to DWT is the maximal overlap discrete wavelet

transform (MODWT)(the term maximal overlap comes from the relationship of the

MODWT with estimators of the Allan variance (Percival and Guttorp, 1994)). MODWT

is seen in the literature by different names, such as the Stationary DWT in (Nason,

2008) or Translation Invariant DWT in (Coifman and Donoho, 1995). MODWT gives

up orthogonality in DWT but gains features that DWT does not have. Briefly the im-

portant differences between these DWT and MODWT can be summarised as (Percival

and Guttorp, 1994):

• MODWT can handle signals of any length, while DWT is restricted to signals of

dyadic length. Although often in DWT, if the length of the original series is not

far from a dyadic number, 0 s are added to the signal.

• MODWT is invariant to circularly shifting the original time series. When the

signal is shifted by an integer, the MODWT basis and scaling coefficients will be

shifted by the same amount. This property does not hold for DWT.

• MODWT variance estimator is asymptotically more efficient than the same DWT

variance estimator (more on this here: (Percival and Walden, 2000)).

• MODWT multiresolution analysis can be aligned with the features in the time

series (Which will be used in chapter four) (Percival and Walden, 2000).

If x(t) is a signal of any length N (not necessarily dyadic), the length (J + 1)N

vector of MODWT coefficients (W̃ ) is obtained via:
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ω̃ = W̃x (2.53)

where W̃ is a (J+1)N×N matrix and similar to DWT, the matrix W̃ can be made

up of J + 1 submatrices, each of them N ×N :

w̃ =



w̃1

w̃2

...

w̃J

ṽJ


(2.54)

and

W̃ =



W̃1

W̃2

...

W̃J

ṼJ


(2.55)

where ω̃j is a vector of wavelet coefficients of length N/2j−1 associated with changes

on a scale of length s = 2j−1 and ṽJ is a length N/2J vector of scaling coefficients with

averages on a scale of length s = 2J−1. MODWT uses the rescaled filters and does not

use wavelet and scaling filters like DWT does [(Gencay et al., 2002), (Mallat, 1998),

and (Percival and Walden, 2000) have slightly different approach towards MODWT

scaling and detail filters].

h̃j = hj/2
j (2.56)

and

g̃J = gJ/2
J (2.57)

The N×N dimensional submatrix W̃1 is constructed by shifting the rescaled wavelet

filter by integer units to the right:
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W̃1 = [h̃
(1)
1 , h̃

(2)
1 , ..., h̃

(N−1)
1 , h̃1]T (2.58)

The remaining submatrices W̃2, ..., W̃J are formed similarly to the ones in DWT

except that h̃1 is replaced by h̃j .

2.4.5 Multiresolution Analysis

A multiresolution of L2(R) is defined as a sequence of subspaces (closed subspaces) Vj

of L2(R) [(Daubechies, 1992), (Mallat, 1998), and (Pollock, 2012)] with the following

properties:

• Vj ⊃ Vj+1,

• v(x) ∈ Vj ⇐⇒ v(2x) ∈ Vj+1,

• v(x) ∈ V0 ⇐⇒ v(x+ 1) ∈ V0,

•
⋃+∞
j=−∞ Vj is dense in L2(R) and

⋂+∞
j=−∞ Vj = 0,

That is:

V0 ⊃ V1 ⊃ ... ⊃ Vn (2.59)

The jth stage of the process, which generates Vj , also generates the accompanying

space Wj of wavelet functions, which is its orthogonal complement within Vj−1. The

complete process can be summarised by displaying the successive decompositions of V0:

V0 = W1 ⊕ V1

= W1 ⊕W2 ⊕ V2

...

= W1 ⊕W2⊕ ... ⊕Wn ⊕ Vn

(2.61)
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2.4 Wavelet Analysis

Using MODWT (or DWT), an additive decomposition of a series of observations

can be formed:

xt =

J+1∑
j=1

d̃j,t, t = 0, ..., N − 1 (2.62)

where d̃j,t is the t − th element of d̃j = W̃T
j w̃j for j = 0, ..., N − 1. That is, each

signal is a linear combination of wavelet detail coefficients. Let s̃J,t =
∑J+1

k=j+1 d̃k,t

define the j − th level wavelet smooth for 0 ≤ j ≤ J , where s̃J+1,t is defined to be a

vector of zeros. While wavelet detail d̃k,t is associated with variations at a particular

scale, s̃J+1,t is a cumulative sum of these variations. Wavelet detail r̃j,t =
∑j+1

k=1 d̃k,t

shows the lower scale details (high frequency features). A signal can be decomposed

through a wavelet smooth and rough via:

xt = s̃J,t + r̃j,t (2.63)

Multiresolution analysis (MRA) is used for filtering out the seasonalities and it is

used in chapter four to decompose the series into different sub-signals each showing the

original signal at different scales. The use of MRA has proved to be very popular in

economics and finance, since it breaks the complication of observed information into

simpler building blocks [to name a few: Gencay et al. (2001b), Gencay et al. (2003),

Kim and In (2010)]

2.4.6 The Wavelet Variance

The orthonormality of the matrix W (in equation 2.47) implies that the DWT is an

energy (variance) preserving transform (recall that, the term ”energy” means the sum

of squared coefficients of a vector). That is, the variance of the original time series

is perfectly captured by the variance of the coefficients from the Discrete Wavelet

Transform:

||w||2 =
∑J

j=1

∑N/2j−1
t=0 w2

j,t + v2
J,0 =

∑N−1
t=0 x2

t = ||x||2

which means that ||x||2 can be decomposed on a scale by scale basis via:

||x||2 =
∑J

j=1 ‖wj‖2 + ‖vJ‖2
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2.4 Wavelet Analysis

where ‖wj‖2 is the energy (proportional to variance) of x due to changes at scale

sj and ‖vJ‖2 is the information due to changes at scale sJ and higher.

(Percival and Walden, 2000) proved that the MODWT is an energy preserving

transform too. However while a variance decomposition using the wavelet details and

smooth is valid for DWT but it is not the case for MODWT, but MODWT can still

be used providing MODWT coefficients are used and not the wavelet details. Let w̃ be

the MODWT coefficient vectors, respectively of series x (a mean zero series), we can

then decompose the variance of the original time series using MODWT and have the

following relationship:

‖x‖2 =
∑J

j=1
‖w̃j‖2 + ‖ṽJ‖2 (2.64)

Equation (2.64) provides a decomposition of variance of the original series and

MODWT wavelet coefficients and will be used in chapter four.

Applying the DWT on to a stochastic process produces a decomposition of the

process on a scale-by-scale basis. Following (Percival and Walden, 2000), suppose that

yt is a stochastic process that is not necessarily a stationary process. The time-varying

wavelet variance for for yt is defined as:

σ2
y,t(Sj) =

1

2Sj
V ar(wj,t) (2.65)

which is the variance of the scale Sj wavelet coefficient wj,t. If the stochastic process

is covariance stationary , then:

σ2
y(Sj) =

1

2Sj
V ar(wj,t) (2.66)

For the sake of comparison, recall that Fourier transform decomposes the variance of

a process on a frequency-by-frequency basis. Wavelet variance decomposes the variance

of the process on a scale-by-scale basis:

∞∑
j=1

σ2
y(Sj) = V ar(yt) (2.67)

The scale Sj is associated with the frequency interval [ 1
2j+1 ,

1
2j

], using this property

an approximate relation between the wavelet variance and the spectral density function:
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2.4 Wavelet Analysis

σ2
y(Sj) ≈ 2

∫ 1

2j

1

2j+1

Sy(ν)dν (2.68)

In order to estimate the wavelet variance, (using (Percival and Walden, 2000)’s

approach) suppose yt which is a stochastic process of any arbitrary length N and the

partial MODWT of order JP < log2(N) to produce the length (Jp + 1)N vector of

wavelet coefficients w̃. An unbiased estimator of the wavelet variance is based on the

MODWT using:

σ2
y(Sj) =

1

Ñj

N−1∑
t=Lj−1

˜2wj,t(2.69)

where Lj = (2j − 1)(L − 1) + 1 is the length of the scale Sj wavelet filter and

Ñj = N−Lj+1 is the number of coefficients unaffected by the boundary. (Gencay et al.,

2002) and (Percival and Walden, 2000) show that the estimator σ̃2
y(Sj) is asymptotically

Gaussian distributed with mean σ2
y(Sj) and variance Sw,t = w2

j,t evaluated at frequency

zero and is given by:

SGw,0 = 2

∫ 1/2

−1/2
S2
j (ν)dν (2.70)

(Percival and Walden, 2000) and (Gencay et al., 2002) use equation (2.70) to com-

pute confidence intervals under both Gaussian and non-Gaussian assumption for yt

which is not mentioned here.

38



3

Volatility Modeling: Using Daily

Observations

3.1 Introduction

In the history of humankind, financial markets are to be known as one of the most

exclusive and complicated systems. Financial markets are combinations of interactions

of thousands of individuals in different geographical locations who have different time

horizons, risk attitudes, currencies, information access, and different utility functions.

Each of these factors map heterogeneities of their own natures onto financial markets.

The transactions happen at different time scales. On the one hand traders have

access to ultra-high frequency data with time stamps at nanosecond resolutions in

which placing orders are controlled by computer algorithms. On the other hand, day

traders or trading desks of banks calculate the profit and loss daily and their positions

are fairly liquid, it therefore makes sense to calculate the risk over a time horizon of

one trading day. For an investment portfolio held by a pension fund, a time horizon

of one month may be chosen as the portfolio is traded less actively, some of the assets

in the portfolio are less liquid and also the performance of pension fund portfolios is

often monitored monthly. An appropriate choice for the time horizon depends on the

application and there is no ”golden” horizon that works for everyone.

To add to the complication, the valuation of financial assets are driven from news

as diverse as short-run weather forecasts (Roll, 1984) which are only relevant for a few
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3.1 Introduction

hours, and macroeconomic technological revolutions that may take years to come in to

effect (Pastor and Veronesi, 2009). These complexities cause the future cash flow to

evolve in an uncertain and chaotic environment and that is why managing risk is one

of the main topics in finance.

An important class of time series models are the so-called long-memory processes

which were first introduced by

An important class of time series models are the so-called long memory processes

which were first introduced by (Mandelbrot, 1963), (Granger and Joyeux, 1980) and

(Hosking, 1981). Long-memory processes have a very useful property which is that

their autocorrelations decrease at a slow rate. They are stationary processes that are

not quite I(0) and have useful information in them, but are not non-stationary and I(1)

series. Their past no matter how far still matter.

Since 1990s with the advancement in technology, data at higher frequencies have

become available. Yet, some of the empirical studies use lower frequencies (yearly,

monthly) data and test for the long memory process and some use higher frequencies.

This availability of the data brings the important question of temporal aggregation and

long-memory.

The effects of temporal aggregation on Box and Jenkins’ ARIMA models have

been extensively studied in the time series literature. Established results such as

(Amemiya and Wu, 1972) are mostly in agreement with the fact that the aggregates

of an ARIMA(p, d, q) process have a limiting ARIMA(0, d, d) structure which only

depend on the parameter d.

With the works of (Chambers, 1998) and (Souza, 2005), the interest to study the

effect of systematic sampling (skip sampling) and temporal aggregation on long-memory

ARFIMA processes has increased recently. The literature is more focused on the effects

of temporal aggregation since it is more relevant for the financial returns with the

exceptions of (Chambers, 1998), (HWANG, 2000) and (Souza and Smith, 2002) where

they study the effects of systematic sampling on long-memory processes. Through

Monte-Carlo studies (Souza and Smith, 2004) and (Man and Tiao, 2006) investigate

the effects of temporal aggregation on different ARFIMA(p,d,q) models, while (Souza,

2008) and (Hassler, 2011) consider the spectral properties of temporally aggregated

ARFIMA.
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3.2 Data

There are several estimators used for estimating the long-memory characteristics of

the temporally aggregated data, such as the GPH estimator (Geweke and Porter-Hudak,

1983), the Whittle estimator (Whittle, 1953) and other log-periodogram methods. The

choices might seem somewhat limited considering there are other available methods

for estimating the long-memory characteristics of the data, that are not used in the

context of temporal aggregation.

The ultimate goal of this chapter is to establish a framework for modeling the dy-

namic distribution of financial returns at different risk horizons and to use and compare

a more recent estimator, Wavelet Maximum Likelihood Estimator (WMLE) first intro-

duced by (Whitcher, 2000) and compare its performance with those more frequently

used, namely the GPH and Whittle estimators. We are the first to use the Wavelet

Maximum Likelihood estimator in the context of temporal aggregation.

Chapter 3 is organised as follows. Sections 3.2 and 3.3 describe the data used in this

chapter and give the definitions of the asset returns respectively. The dependence prop-

erties of financial returns are discussed in section 3.4 and concepts such as long-memory

processes, Autoregressive Fractional Moving Average (ARFIMA) are explained and dis-

cussed in details. Different methods for testing and estimating ARFIMA models are

expounded, namely the R/S test statistic, the GPH estimator, and the Wavelet Max-

imum Likelihood Estimator. Section 3.5 explores other properties of financial returns

and the famous question ”What is the relevant horizon for risk management?” is pro-

posed and answered. Section 3.6 starts by exploring concepts of systematic sampling

and temporal aggregation followed by identifying the effects of temporal aggregation on

ARFIMA(0,d,0) theoretically and through simulations. This section ends by applying

the techniques on S&P500 daily, 5-day and 10-day returns.

3.2 Data

The data used in this chapter are the daily closing prices of S&P500 from 1 January

2001 through 31 December 2010 which is obtained from DataStream. The weekend

quotes from Friday 21:05 GMT to Sunday 21:00 GMT were removed. Apart from this,

there are not any other filterings to the data set nor any other exclusions of the data

points. The daily closing prices of S&P500 are then sampled at 5-day and 10-day

frequencies and table (3.1) lists a summary of the data used in this chapter.
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3.3 Asset Return Definitions

Symbol Observations Start End

Daily S&P500 2,514 01/01/2001 31/12/2010

5-day S&P500 502 01/01/2001 31/12/2010

10-day S&P500 251 01/01/2001 31/12/2010

Table 3.1: Total number of observation, starting point and the ending point for the closing
prices of S&P500 from 1 January 2001 through 31 December 2010 observed ever 1-Day,
5-Day and 10-Day.

3.3 Asset Return Definitions

It is widely known that daily price movements do not show any significant correlations

and look like random walks (Malkiel, 2003), (Malkiel and Fama, 1970) and (Pagan,

1996). Because returns have much better statistical properties than price levels, risk

modeling focuses on describing the dynamics of returns rather than prices.

The simple rate of return (rt) from the closing prices of the asset is defined as:

rt =
Pt − Pt−1

Pt−1
(3.1)

Where Pt is the daily closing price at time t and Pt−1 is the daily closing price at

time t− 1. The continously compounded rate of return on an asset is defined as1:

Rt = ln(Pt)− ln(Pt−1) (3.2)

where ln(∗) is the natural logarithm of ∗. The two rates of return are fairly similar,

as re-writing equations (3.1) and (3.2) arrive at:

Rt = ln(Pt)− ln(Pt−1) = ln

(
Pt
Pt−1

)
= ln(rt + 1) ≈ rt (3.3)

The approximation holds because using the Taylor series expansion of ln(1 + rt)

when rt is close to 0:

Rt = ln(1 + rt) = rt −
rt

2

2
+
rt

3

3
− rt

4

4
+ . . . (3.4)

The two definitions of return carry the same information but for our purpose log

returns are preferred. Most assets have a lower bound of zero on the price. Log returns

1To prove why the continously compounded rate of return can be written as in equation (3.2),
please see Appendix A
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3.4 Dependence Properties of Daily Returns

are more convenient for keeping this lower bound in the risk model as a negative log

return tomorrow will still mean a positive price at the end of tomorrow. When using

log returns (Rt) from equation (3.2), tomorrow’s closing price can be calculated from:

Pt+1 = exp(Rt+1)Pt (3.5)

Estimating the mean of returns using a sample of daily observations:

µ̂ =
1

T

T∑
t=0

((ln(Pt)− ln(Pt−1)) (3.6)

µ̂ = 1
T [(ln(P1)− ln(P0)) + (ln(P2)− ln(P1)) + . . .+ (ln(PT−2 − ln(PT−1)) + (ln(PT )− ln(PT ))]

µ̂ =
1

T
(ln(PT )− ln(P0)) (3.7)

When estimating the mean of returns only the first and the last observations matter

and all the intermediate terms cancel out. To estimate the variance using a sample of

daily returns we have:

σ̂2 =
1

T

T∑
t=0

((ln(Pt)− ln(Pt−1))− µ̂)2 (3.8)

An obvious difference between the sample mean and the sample variance estimators

is that the intermediate prices do not cancel out in the variance estimator. Since all

the return observations are squared before they are summed in the average, the returns

are now important. At short horizons (such as daily) the mean of the returns µ is

considerably smaller than the standard deviation σ and can be safely assumed to be

zero in comparison to the standard deviation. Equation (3.8) can be written as:

σ̂2 =
1

T

T∑
t=0

(ln(Pt)− ln(Pt−1))2 =
1

T

T∑
t=0

(Rt)
2(3.9)

3.4 Dependence Properties of Daily Returns
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The following tendencies or the so-called stylised facts apply to most financial asset

returns. The daily closing prices of S&P500 for the period of 1 January 2001 through

31 December 2010 are used to illustrate each of the features.

Daily returns have very little autocorrelation. That is:

γ(τ) = Corr(Rt, Rt−τ ) ≈ 0, τ = 0, 1, 2, 3, . . . , T (3.10)

In other words, returns are almost impossible to predict from their own past. Cor-

relation measures the linear dependence between two variables and autocorrelation

measures the linear dependence between the current value of a time series variable and

the past value of the same variable. Autocorrelation is a crucial tool for detecting linear

dynamics in time series analysis and it captures the linear relationship between today’s

value and the value τ days ago1. The top part of figure (3.1) shows the daily S&P500

returns accompanied with their autocorreltion functions with returns lagged from 1 to

252 days (roughly a year).

Equation (3.10) is only capable of finding linear dependence between lags of the

returns and if there are any non-linear dependence patterns between the present and the

past values of the variable, one way to look for them is to use nonlinear transformations

of the returns such as squared returns and absolute returns. Variance measured for

instance by squared returns, displays positive correlation with its own past. This is

obvious from the middle part of figure (3.1) which shows the autocorreltion in daily

squared returns, that is:

Γ2(τ) = Corr(R2
t , R

2
t−τ ) > 0, for some τ (3.11)

It is discussed heavily in the literature (going back to at least (Mandelbrot, 1971),

and more recently in (Bollerslev and Wright, 2000), (Cont, 2001)), that linear filter-

ing statistical tools, such as autocorrelation analysis in the time domain analysis, are

not capable of distinguishing between asset returns and white noise. Roughly speak-

ing, the absence of autocorrelation in the returns only gives some empirical evidence

for random walk models of prices, but it does not mean that the increments (εt) are

1The correlation between the return in the periods of r and s is given by: corr(Rr, Rs) = κR(r,s)
σrσs

.
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also independent. If the increments were to be independent, then any nonlinear func-

tions (e.g. absolute returns, squared returns) of returns should also show no signs of

autocorrelation.

If the autocorrelation function of absolute return is defined as:

γ||(τ) = corr(|R(t)|, |R(t+ τ)|) (3.12)

which is shown in the bottom part of figure (3.1), one can observe that autocor-

relation of absolute returns exhibit significant positive autocorrelations. As explained

in (Mandelbrot, 1963), ”large price changes are not isolated between periods of slow

change but large changes tend to be followed by large changes of either positive or neg-

ative signs” . . . ”small changes tend to be followed by small changes”. This is why the

autocorrelations of absolute returns are significantly positive. This is also in line with

the findings of (Bollerslev and Wright, 2000) and (Cont, 2001) and shows that price

increments (εt) are not independently distributed. What is useful here is that, the mag-

nitude (the absolute value) of future returns can be predicted (to some extent) based

on past returns, even though the sign of price changes (returns) cannot be forecasted.

This result is well known as clustered volatility and has been verified in many financial

markets [to name a few: Cont et al. (1997), Bollerslev and Wright (2000), Cont (2001)].

Equation (3.12) gives the autocorrelation for absolute return, however, technically

one can study autocorrelations of any nonlinear functions of returns, for example various

powers of returns:

γα(τ) = corr(|R(t)|α, |R(t+ τ)|α) (3.13)

Or, logarithm of absolute returns, which is rooted in multifractal stochastic volatility

models:

γln(τ) = corr(ln|R(t)|, ln|R(t+ τ)|) (3.14)
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Figure 3.1: The top row of graphs show the daily returns and autocorrelations of the
daily returns. The middle rows shows the squared daily returns and their autocorrelations.
The bottom row shows the absolute returns and their autocorrelation. The lag order on the
horizontal axis refers to the number of days between the return and the lagged return for a
particular autocorrelation. It is clear that as we move from top to bottom, autocorrelation
becomes more significant and visible. It is obvious that the autocorrelation for the absolute
daily returns are the most predictable among these three.
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What matters regarding these formulae is that these nonlinear functions of the

returns give more insight into the dependence properties of returns1. These nonlinear

functions of returns which form different volatility models show signs of predictability

in contrast with return that does not show any signs of predictability, i.e., there is hope

in predicting volatility rather than the returns themselves. To what extent or how far

into the future these non-linear transformations of returns are predictable is of great

importance to risk managers.

Comparing the top and the bottom parts of figure (3.1), it is easy to see that the

degree of predictability of these variables are different. As we move from top to bottom,

there are more significant positive autocorrelations. In other words, what has happened

far into the past (100 days ago) matters to the current positions of squared and absolute

daily returns, whereas, for the current values of the return series only few lagged returns

are useful. In the literature if a series has only few significant autocorrelations is called

a short memory process, whereas, if what has happened far into the past matter today

it is a long memory process.

3.4.1 Long-Memory Processes

Short-memory processes are stationary processes whose autocorrelation functions

converges to zero after few lags. Long-memory processes are stationary processes whose

autocorrelation functions decays much more slowly than short-memory processes, but

unlike nonstationary processes the autocorrelation functions seem to converge at some

point. Since the autocorrelations die out so slowly, long-memory processes are also

called long-range dependent or long-run dependent processes.

It might seem to the naked eye that since these autocorrelation functions are all very

small numbers, maybe there is no need to be concerned about the ways these variables

are treated. To check this hypothesis, it would help to look deeper into the statistical

properties of var(X) (the variance of the sample mean) and observe consequences of

not treating a long-memory variable correctly (see (Beran, 1994)).

1(Ding et al., 1993) show empirically and (Forsberg and Ghysels, 2007) explain theoretically that
γα(τ) is highest when α = 1, meaning that γ||(τ) outperforms other powers of returns Γα(τ), α > 1.
That is, absolute returns are more predictable than any other powers of returns.
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If X1, ..., Xn are observations with the same mean µ = E(Xi) and the variance

σ2 = var(Xi) = E[(Xi − µ)2], then the variance of X =
Σi=ni=1Xi

n is:

var(X) =
σ2

n
(3.15)

There are three conditions under which equation (3.15) holds, which are:

• The population mean µ = E(Xi) exists and is finite.

• The population variance σ2 = var(Xi) exists and is finite.

• X1, ..., Xn are uncorrelated, that is: (Γ(r, s) = 0, for r 6= s, where Γ(r, s) = γ(r,s)
σ2 ,

where γ(r, s) is the autocovariance between Xr and Xs.

The last assumption is the one that determines whether a variable is short-memory

or a long-memory process as it is what matters the most to economists as it makes the

future (not) predictable. If observations are correlated, assuming that µ = E(Xi) is a

constant, the variance of (X =
Σni=1
X i

n) is:

var(X) =

∑n
r,s=1 γ(r, s)

n2
=
σ2Σn

r,s=1Γ(r, s)

n2
(3.16)

Consider Xt to be an AR(1) process (short-memory):

Xt = αXt−1 + εt, α ∈ (−1, 1) (3.17)

where εt are normally distributed with zero mean and constant variance. Then:

var(X) =
σ2
∑n

r,s=1 Γ(r, s)

n2
(3.18)

Assuming a covariance stationary process, then:

Γ(r, s) = α|r−s| = α|s−r| = αk (3.19)

Which then simplifies to:

var(X) =
σ2
[∑n

i=1 1 +
∑

r 6=s α
|r−s|

]
n2

(3.20)
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Using the rule of geometric sums:

n−1∑
k=1

αk =
α− αn

1− α
(3.21)

Equation (3.20) can be written as:

var(X) =
σ2

n

[
1 +

[
2α

1− α
(1− 1

n(1− α)
+

αn

n(1− α)
)

]]
(3.22)

and for large enough n:

var(X) =
σ2

n

[
1 +

[
2α

1− α

]]
=
σ2

n
× 1 + α

1− α
(3.23)

Now, consider the case when α is close to ±1. If α → 1, then var(X) → ∞
and if α → −1, then var(X) → 0. In such cases the equation (3.15) is not a good

approximation of the variance of X. Equation (3.23) can be re-written as:

var(X) =
σ2

n
A(α) (3.24)

Equation (3.24) is different from equation (3.15) in the sense that it allows A(α)

to differ from 1. One might think that equation (3.24) is general enough and is able

to capture the characteristics of all data types. It turns out that for some data sets

in economics, finance,. . . , etc, that is not the case and the variance of X is different

from equation 3.15 not just by A(α) but by the speed at which it converges to zero

(look at the top and the bottom part of figure (3.1). If the variance of X converges to

zero slower than 1
n , then A(α) is not a constant function of α but it is a function that

increases with n. Fitting the best ARMA model will then lead to an ARMA model

with many parameters. As sample size increases, the number of parameters will tend

to infinity. Using an excessive number of parameters is not desirable, since it increases

the uncertainty of the statistical power, and the parameters will be difficult to interpret

(Sowell, 1992b). That is why long-memory processes will not be best analysed using

the models that work for short-memory processes.

The detection of long-range dependence is not very easy and can’t be done by

only looking at one or a few selected correlations. We rather have to judge the way

the correlations converge to zero with increasing lag. It is the statistical power of all
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correlations combined that determines whether dependence is rejected or accepted at

a reasonable statistical power. The literature on long-memory time series suggests to

treat the slow decaying process as being proportional to n−a for a ∈ (0, 1), rather than

to 1
n . This makes equation (3.26):

var(X) ≈ σ2

na
A(α) (3.25)

where, a ∈ (0, 1) is a constant and A(α) is defined as:

A(α) = lim
n→∞

nα−2
∑
r 6=s

Γ(r, s) (3.26)

where
∑

r 6=s Γ(r, s) is not summable as (Beran, 1994) prove that Γτ ≈ C1× τ−a for

a ∈ (0, 1) and a constant C1
1. A process is said to have long memory if the dependence

between events that are still far apart from each other lessens very slowly as distance

increases, that is Γτ ≈ |τ |−a. It is not important whether some Γτ s are smal for some

τ s to start with, but it matters if the rate at which the correlations decrease is very

slow. Recall from chapter two that power spectrum f̂(ν) is defined as:

f̂(ν) =
1

2π

n∑
−n

Γ(τ)e−iντ (3.28)

Assuming Γτ ≈ C1 × |τ |−a if ν → 0, then:

f̂(ν) ≈ 1

2π

n∑
−n

Γ(τ)e0 (3.29)

And hence:

f̂(ν) ≈ C2|τ |a−1 (3.30)

Which means f̂ goes to infinity, near the origin (when frequency (ν → 0)) if d−1 < 0

or d < 1. Hence another way to spot long-memory processes, is to look at their spectral

representations. If the spectrum goes to∞ near the origin (ν → 0) then there is definite

1

∞∑
k=−∞

Γτ =

∞∑
k=−∞

C1

|τ |d =∞ (3.27)

Equation 3.27 is a result of the fact that,
∑∞
x=1

1
xy

diverges if y ≤ 1.
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AR(1), alpha=0.9
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Figure 3.2: Plot of simulated AR(1) with α = 0.9, against time, partial autocorrelation
functions against lag, and power spectrum against frequency.
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doubt that the series has long-run dependence. Figure (3.2) represent AR(1) with

α = 0.9 as an example for a short memory process. It is clear from the power spectrum

that this is a short-memory process since near the origin, the spectrum doesn’t go to

infinity. It goes quite high but then levels off which is because of the choice of α = 0.9.

Defining Long-Memory

Let γ(k) be the autocovariance function at lag k of the stationary process xt. A

usual definition of long memory is that:

∞∑
k=−∞

|γ(k)| =∞ (3.31)

However, there are other alternative definitions used in the literature. Using the

slow hyperbolic decay rate of the autcovariances:

γ(k) ≈ k2d−1f(k) (3.32)

as k → ∞, where d is the so-called long-memory parameter and f(∗) is a slowly

varying function. Making use of the spectral representation another definition is:

g(ν) ≈ |ν|−2dh

(
1

|ν|

)
(3.33)

as ν → 0 and h(∗) is slowly varying function. There are other alternative definitions

of long-memory processes which are not necessarily equivalent to each other. In this

thesis the two definitions in equations (3.32) and (3.33) are frequently used.

3.4.2 Autoregressive Fractional Integrated Moving Average (ARFIMA)

A well known class of short-memory models is the Autoregressive Integrated Moving

Average (hereafter abbreviated to ARIMA(p,d,q)) model is a linear univariate time

series model which depends on three parameters:

φ(L)(1− L)dxt = δ(L)εt (3.34)
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Where the first set of p parameters in φ(L) define the autoregressive polynomial in

the lag operator L and the second q parameters in ε(L) represent the moving average

polynomial in the disturbance process:

φ(L) = 1− φ1L− ...− φpLp

δ(L) = 1− δ1L− ...− δqLq

The third parameter d, expresses the integer order of differencing that should be

applied to the series before estimation. For an ARIMA(p, d, q) model, there are p+ q

parameters that need to be estimated. When estimating an ARIMA model, the integer

order of differencing d is chosen to ensure that (1−L)dxt is a stationary process, hence

often given the name I(d) processes.

ARIMA(p,d,q) with an integer d is widely used for modeling short memory processes

where the autocorrelation functions dampens after few lags. Many time series happen

to exhibit too much long-range dependence to be classified as I(0) but also they are

not I(1), simply the memories of the past stay with the process for much longer than in

stationary ARMA processes (see the middle and bottom panels of figure (3.1))1. The

family of ARIMA processes can be generalized by permitting the degree of differencing

to take fractional values. The fractional differencing operator is defined as an infinite

binomial series expansion in powers of the backward-shift operator. (Hosking, 1981)

and (Granger and Joyeux, 1980) suggested that non-integer values of d can be use-

ful, and introduced Autoregressive Fractionally Integrated Moving-Average (hereafter

abbreviated to ARFIMA) models, which can be thought of as a generalization of the

standard ARIMA(p, d, q) models defined by Box and Jenkins (1994).

Among others (Granger and Joyeux, 1980) and (Box et al., 2008) show that the

autocorrelations from an ARMA model decay exponentially, whereas, the autocorre-

lations from an ARFIMA model decay at much slower hyperbolic rate. A number

of studies argue that the long-run dependence in financial market volatility can be

1To be precise: (Granger and Joyeux, 1980) argue that if a series does need differencing, it means
that strictly the original, undifferenced series has infinite variance. . . . This has led time series ana-
lysts to suggest that econometricians should at least consider differencing their variables when building
models. However, econometricians have been somewhat reluctant to accept this advice, believing that
they may lose something of importance. Phrases such as differencing ”zapping out the low frequency
components” are used. They clearly are arguing that taking the first difference of a time series may not
necessarily be the best remedy when the series is between I(0) and I(1). (Palma, 2007) and (Robin-
son, 2003) also point out the fact that over-reliance on Dickey-Fuller tests which have I(1) as the null
hypothesis and I(0) as the alternative, can result in disappointing verdicts.
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conveniently modeled by a fractionally-integrated process, so that although volatility

shocks are highly persistent, they eventually dissipate at a slow hyperbolic rate [Hosk-

ing (1981), Pong et al. (2004), Lux and Kaizoji (2007), Corsi (2009)]. ARFIMA models

are designed to be flexible enough to represent series that are between I(0) and I(1)

and to accommodate the representation of long-memory processes. Any ARMA sta-

tionary time series is classified as short-memory time series. All the past memories of an

ARIMA(p, d, q) model are embedded in xt and εt, but the effect of past values damp-

ens off exponentially to near-zero values quickly. ARFIMA models are used for when

the the time series has a long memory. Long-memory processes were first introduced

by (Hurst, 1951) and (Hosking, 1981) in hydrology, and (Granger and Joyeux, 1980)

in economics independently discovered the ARFIMA representation of long-run depen-

dence. (Beran, 1994), (Baillie, 1996), (Palma, 2007) and (Robinson, 2003) provide good

introductions to long-memory processes and ARFIMA models.

The usual differencing procedure consists of using the operator (1 − L), where L

is the backward-shift operator. For example (1 − L)2 = 1 − 2L + L2 or (1 − L)3 =

1 − 3L + 3L2 − L3, where Lxt = xt−1, L2xt = xt−2, and L3xt = xt−3. In fractional

model, the power is allowed to be fractional, such as in the binomial series:

(1-L)d =
∑∞

i=0

(
d
i

)
(−L)i

(1-L)d = 1− dL+ d(d−1)
2! L2 − . . .

Therefore

(1-L)dxt = xt − dxt−1 + d(d−1)
2! xt−2 + . . .

Suppose there is a filter F (L) such that when used twice, one gets the usual dif-

ference, i.e., F 2(L) = (1 − L). According to Granger (1980) such a filter exists and if

this filter is used once, it can be thought of as ”half differencing”, which is an example

of fractional differencing with d = 1/2. A fractional ARIMA(p, d, q) with nonnegative

integers p and q and real d is a time stochastic process which can be represented as:

φ(L)(1− L)dxt = δ(L)εt (3.35)

φ(L) = 1− φ1L− ...− φpLp

δ(L) = 1− δ1L− ...− δqLq
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Where E(xt) = 0 and the {εt} are independent and identically distributed random

variables with mean 0 and variance σ2
ε . An ARFIMA(p, d, q) process is both stationary

and invertible if all roots of φ(L) and δ(L) lie outside the unit circle and |d| < 1/2.

(Hosking, 1981) explains that the effect of the d parameter on distant observations

decays hyperbolically as the lag increases, while the effects of the φ and δ parame-

ters decay exponentially. Thus d may be chosen to describe the high-lag correlation

structure of a time series while φ and δ parameters are chosen to describe the low-lag

correlation structure. Indeed the long term behavior of an ARIMA(p, d, q) process

may be expected to be similar to that of an ARIMA(0, d, 0) process with the same

value of d, since for very distant observations the effects of the φ and δ parameters will

be negligible. An ARFIMA process defined by equation (3.35) is stationary for values

of −0.5 < d > 0.5 (Granger and Joyeux, 1980).

The autocovariance (κ), autocorrelation (γ) and spectral density functions (f̂(ν))

of ARFIMA(0,d,0) for τ ≥ 0 and 0 < ν ≤ π are:

κτ =
Γ(1− 2d)Γ(τ + d)

Γ(d)Γ(1− d)Γ(τ + 1− d)
σ2
ε

∼ Γ(1− 2d)

Γ(d)Γ(1− d)
τ2d− 1σ2

ε, as τ −→∞ (3.36)

γτ =
Γ(1− d)Γ(τ + d)
Γ(d)Γ(τ + 1− d)

∼ Γ(1− d)

Γ(d)
τ2d−1, as τ −→∞ (3.37)

f̂(ν) =
σ2
ε

2π (2sin(ν2 )−2d

∼ σ2
ε

2π
ν−2d, as ν −→ 0 (3.38)

Where d ∈ (−1/2, 1/2), Γ is the gamma function and Stirling’s approximation

(Γ(τ+a)
Γ(τ+b) ∼ τ

a−b) has been used.

Proof: See the Appendix.
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Figure 3.3: Autocorrelation coefficients for an ARFIMA(0,d,0) for different values of d,
positive values of d in the top graph and negative values of d in the bottom graph.
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Figure (3.3) represents the slow decaying rates of autocorrelation functions (equa-

tion (3.37)) of ARFIMA(0,d,0) processes for different values of d. (Hosking, 1981)

show that f̂ν, the spectral density function and γτ , the autocorrelation function for

ARFIMA(p,d,q) processes also have these properties:

lim ν2df̂(ν) exists, as ν −→ 0, and is finite, i.e. f̂(ν) ∝ ν−2d approximately as

ν −→ 0.

lim τ1−2dγτ exists, as τ −→ ∞, and is finite, i.e. the correlation function of an

ARFIMA process is proportional to τ2d−1 as τ →∞.

The d in the above theorems is exactly analogous to a in equations 3.30 and 3.26;

2d = a. If d ∈ (−1/2, 0) the process is said to exhibit intermediate memory (anti-

persistence), or long-range negative dependence (Baum et al., 1999). The process

exhibits short memory for d = 0, corresponding to stationary ARIMA modeling and if

d ∈ [1/2, 1) the process is mean reverting but it is not stationary. If d ∈ (0, 1/2) the

ARFIMA process is said to exhibit long memory or long-run positive dependence.

3.4.2.1 ARFIMA Models, Testing and Estimating

There are different approaches to the estimation of an ARFIMA(p,d,q) model which

can be classified into two groups; parametric and semiparametric methods. The most

popular methods within the first group are (Sowell, 1992a) and (Fox and Taqqu, 1986)

which involve the likelihood function. In the latter group, the most commonly used

methods are the GPH method which was proposed by (Geweke and Porter-Hudak,

1983) and the modified rescaled range R/S test proposed by (Lo, 1991) which was

a modification of the classical R/S statistic initially proposed by (Hurst, 1951) and

(Mandelbrot, 1972). In semiparametric methods, it is assumed that the short-memory

components of the time series are relatively less important and the focus is on estimating

the parameter d, whereas, in the parametric approaches choosing an appropriate ARMA

representation is always a challenge. To model the long-run feature of the daily S&P500

returns, a combination of methods are used and explained as each is complementary to

the other.

The Modified Rescaled Range R/S, (Lo, 1991)
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This semiparametric test is rooted from the original R/S test ((Hurst, 1951)), is

the range of the partial sums of deviations of a time series from its mean, then rescaled

by its standard deviation. For example for a sample of n values X1, ..., Xn, the test

statistic is:

Qn =
1

Sn
[Max1≤k≤n

k∑
j=1

(xj − x̄n)−Min1≤k≤n

k∑
j=1

(xj − x̄n)] (3.39)

where Sn is the maximum likelihood estimator of the standard deviation of x.

Max1≤k≤n
∑k

j=1(xj − x̄n) is the maximum of the partial sums of the first k deviations

from the mean, which is non-negative. Min1≤k≤n
∑k

j=1(xj − x̄n) is the minimum of

the partial sums of the first k deviations from the mean, which is non-positive. The

difference of the two quantities will be such that Qn > 0. (Hurst, 1951) and (Lo,

1991) demonstrated that the R/S statistic is able to detect long-range dependence

in the data. Like all the other long-range dependence estimators, the R/S statistic is

excessively sensitive to short-term dependence. (Lo, 1991) shows that an AR(1) process

with large sample size can seriously bias the R/S statistic. He then modified the test

to account for the short-term effect by applying a ”Newey-West” correction (using a

Bartlett window) to derive a consistent estimate of the long-range variance of the time

series. S is replaced by Ŝ:

Ŝ =

√√√√S2 + 2

r∑
τ=1

(1− τ

r + 1
)Γ(τ) (3.40)

wher r is the maximum lag over which short-term autocorrelation might be sub-

stantial and Γ(τ) is the autocorrelation at lag τ . If the maximum lag r is set to zero

the, the statistic falls back to what was first proposed by (Hurst, 1951). We can test

whether daily S&P500 returns are predictable and have long memory (i.e., to test if

EMH holds) using the original Hurst Statistics (Hurst, 1951). Setting r = 0 in equation

(3.40) will result in the original Hurst statistic:

. lomodrs dayreturn, max(0)

Hurst Classical R/S test for dayreturn

Critical values for H0: dayreturn is not long-range dependent
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Return Squared Return Absolute Return

1-Day S&P500 1.19 2.94 3.83

Table 3.2: The summary of the Modified R/S test statistic for the return, squared return
and absolute return at 1-Day, 5-Day and 10-Day frequencies. The Critical Values are as
follows: 90% : [0.861, 1.747], 95% : [0.809, 1.862], 99% : [0.721, 2.098]

90%: [ 0.861, 1.747 ]

95%: [ 0.809, 1.862 ]

99%: [ 0.721, 2.098 ]

Test statistic: 1.19 N = 2513

Which gives a statistic of 1.19. The H0: the variable is not long-range dependent

and H1: the variable is long-range dependent. If the test statistic is within the critical

values boundaries, then H0 is not rejected. In this case 1.19 falls withing all three

intervals and hence H0 is accepted and there is no evidence that the daily returns are

long-range dependent. Using the modifies version of (Lo, 1991) statistic, assuming that

the last 10 days contains the short-term dependence1:

. lomodrs dayreturn, max(10)

Lo Modified R/S test for dayreturn

Critical values for H0: dayreturn is not long-range dependent

90%: [ 0.861, 1.747 ]

95%: [ 0.809, 1.862 ]

99%: [ 0.721, 2.098 ]

Test statistic: 1.38 (10 lags) N = 2503

As the test statistic (1.38) is between the critical values at 90%, 95% and 99% ,

there is no evidence to reject the H0. Table (3.2) summarises the Modified R/S test

for squared returns and absolute returns which shows evidence that H0 is rejected at

1Without specifying what the maximum lag is the test statistic is 1.19 which still accepts the H0.
Critical values are taken from (Lo, 1991), Table II
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all levels and there is evidence of long-run dependence in the daily squared and daily

absolute returns.

The Geweke-Porter-Hudak Log Periodogram Regression Estimator(Geweke

and Porter-Hudak, 1983)

The Geweke and Porter-Hudak method often known as GPH method, uses a spec-

tral regression estimator to estimate d without any specifications of the short-memory

parameters of the series. The proposed semiparametric method obtains an estimate of

the memory parameter d for xt in (1 − L)dxt = εt. If the periodogram for xt which is

the squared modulus of the discrete Fourier transform is defined as:

Ix(νs) =
1

2πN
|
N∑
t=1

Xtexp(itνs)|2, νs =
2πs

n
, s = 1, ...m,m < n (3.41)

Which after taking logs from both sides of the equation 3.41 and some algebra it

simplifies to:

log(Ix(νs)) = ĉ− d̂log |1− exp(itνs)|2 + et (3.42)

Where et is the residual and d̂ can be estimated by applying an ordinary least

squares regression to equation (3.42) which gives:

d̂ = 0.5

∑m
s=1 xslog(Ix(νs)∑m

s=1 x
2
s

(3.43)

The choice of m, the number of Fourier frequencies included in the regression is

very crucial to the estimate of parameter d and there are different suggestions in the

literature. Basically the slope in equation (3.42) is an estimate of the slope of the

series’ power spectrum in the neighborhood of the zero frequency. If m is small, then

the slope is estimated from a small sample size and if a large m is chosen then, the

medium and high-frequency components of the spectrum will also be included in the

regression which could corrupt the estimate. The long memory parameter d can be

estimated with s = 1, 2, . . . , g(N), where limN→∞ = ∞ and lim
N→∞ g(N)

N
=0

. That is,

g(N) has to be reasonably small enough compared to N. Often as the default m = 0.5

(g(N) = N0.5) is chosen. To overcome this problem a range of different m (different
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fractions of the original sample size) is often used. The GPH method as it stands does

not consider the case d = 1 (unit root) and (Phillips, 1999) modified the GPH estimator

to be able to accommodate the d = 1 case.

(Robinson, 1995) proposed an alternative log-periodogram regression estimator in

which the estimator is not restricted to using a small fraction of the sample size and it

is more flexible. Robinson’s method uses the average of the periodogram over adjacent

frequencies rather than using the peridogram of only one frequency. The Robinson’s

method can be used to test whether the daily S&P500 returns have long memory

(another EMH test) or whether they are stationary (d = 0):

roblpr dayreturn , j(2) power(0.1 0.15:0.9)

Robinson estimates of fractional differencing parameter for dayreturn

Averaging = 2

-------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t|

-------------------------------------------------------

.1 2 -.952711 0 . .

.15 2 -.952711 0 . .

.2 3 -.4989558 .4072273 -1.2253 0.266

.25 4 -.2839519 .30003 -0.9464 0.372

.3 6 -.1704466 .1907618 -0.8935 0.389

.35 8 -.0776705 .1473404 -0.5272 0.605

.4 12 .0190295 .1002669 0.1898 0.851

.45 17 -.0890828 .0831622 -1.0712 0.292

.5 26 -.0185011 .0812664 -0.2277 0.821

.55 38 .0595285 .0753749 0.7898 0.432

.6 55 .0025476 .0587598 0.0434 0.965

.65 82 .0323456 .0475755 0.6799 0.498

.7 120 -.019882 .0368126 -0.5401 0.590

.75 178 -.0420046 .0297958 -1.4098 0.159

.8 263 -.0233877 .025285 -0.9250 0.355

.85 389 -.0429392 .0216752 -1.9810 0.048

.9 575 -.0655842 .0177768 -3.6893 0.000

For different m (powers) starting from 0.1 through 0.9 with a 0.15 gap, the hy-

pothesis that H0 : d = 0 is tested against different estimates of d, averaging the log

periodogram of the two adjacent frequencies (j = 2). It should be noted that ”power”

in the GPH test refers to the parameter in g(N) and shouldn’t be mistaken with power
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(sensitivity) of a test. For all powers (except 0.85 and 0.9) H0 is accepted that the series

is stationary and there is no evidence of long-memory (d = 0). As mentioned before a

large m shouldn’t be considered (like 0.85 and 0.9) as the medium and high-frequency

components of the spectrum will also be included in the regression, whereas, what we

are interested in is the spectrum at low frequencies. If m = 0.9 is considered then

the H0 is rejected in favour of d = −0.066, which could be interpreted that the daily

S&P500 returns are over differenced since d is statistically negative. Testing whether

the squared S&P500 daily returns are stationary or not:

roblpr squareddayreturn , j(2) power(0.1 0.15:0.9)

Robinson estimates of fractional differencing parameter for squareddayreturn

Averaging = 2

-------------------------------------------------------

Power Ords Est d Std Err t(H0: d=0) P>|t|

-------------------------------------------------------

.1 2 .5915132 0 . .

.15 2 .5915132 0 . .

.2 3 .5707397 .0186434 30.6135 0.000

.25 4 .5755442 .0112922 50.9682 0.000

.3 6 .5393668 .0400483 13.4679 0.000

.35 8 .560821 .0488907 11.4709 0.000

.4 12 .5307021 .0381782 13.9007 0.000

.45 17 .5130171 .0336406 15.2499 0.000

.5 26 .756326 .0795921 9.5025 0.000

.55 38 .6677927 .0616839 10.8260 0.000

.6 55 .6500147 .0454737 14.2943 0.000

.65 82 .7399583 .0465813 15.8853 0.000

.7 120 .5959565 .0433011 13.7631 0.000

.75 178 .4699798 .0394147 11.9240 0.000

.8 263 .3104313 .0363845 8.5320 0.000

.85 389 .2606585 .0276445 9.4290 0.000

.9 575 .1336727 .0230774 5.7924 0.000

The results from Robinson’s method are in agreement with the modified rescaled

test of (Lo, 1991) that the daily squared returns are not stationary, short-memory

processes as H0 : d = 0 is rejected at all powers. The semi-parametric methods ignore

the short-memory feature of the time series and hence give estimates of d that are biased

upwards. But they are powerful tests for checking whether time series are stationary
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short-memory processes or not. If there is evidence of long-memory then the next

natural step would be to estimate d more precisely.

Maximum Likelihood Estimators of ARFIMA

The interpretation of ARFIMA models will be facilitated if the short-run and long-

run parameters are individually estimated. For ARFIMA models:

(1-φ1L− ...− φpLp)(1− L)dxN = (1− δ1L− ...− δqLq)εN

εN ∼ NID[0, σ2
ε ] (3.44)

For equation (3.44), the likelihood function is:

L =
1

(2π)N/2|
∑
|1/2

exp

(
−X ′NΣ−1X

2

)
(3.45)

where if κN is the autocovariance, then the variance matrix of x = (x1, . . . , xN )′ is:

∑
= V AR(x) =


κ0 κ1 . . . κN−1

κ1 κ0
. . .

...
...

. . .
. . . κ1

κN−1 . . . κ1 κ0


which is a symmetric Toeplitz matrix. The log-likelihood function is:

log(L, δ, φ, σ2
ε ) = −N

2
log(2π)− 1

2
log|

∑
| − 1

2
x′Σ−1x (3.46)

Notably, there are two areas of concerns regarding equation 3.46. First is the

evaluation of the autocovariance function and second is handling the
∑

matrix which

is of dimension N ×N .

There are various techniques to compute the autocovariance function of ARFIMA

processes. (Bloomfield, 2000) and (Hosking, 1996) used the frequency representation of

the autocovariance, and (Chan and Palma, 1998), (Ravishanker, 1997) used an MA(∞)

representation of the time series but the drawback is that there are many parameters

that need to be estimated. Among others (Palma, 2007), (Golub, 1996), (Hosking,

1981) and (Sowell, 1992b) expressed γi as a function of the autocovariances of yt ∼
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ARFIMA(0, d, 0) and zt(p, q) processes. That is, γi =
∑N

j=1 γ
z
j γ

y
i−j . (Sowell, 1992b)

was successful in speeding up the algorithm for calculation the autocovariance functions

by evaluation the hypergeometric functions recursively1.

If R is defined as the matrix of the autocovariances scaled by the error variance:

R=


κ0/σ

2
ε κ1/σ

2
ε . . . κN−1/σ

2
ε

κ1/σ
2
ε κ0/σ

2
ε

. . .
...

...
. . .

. . . κ1/σ
2
ε

κN−1/σ
2
ε . . . κ1/σ

2
ε κ0/σ

2
ε


Then R = Σ/σ2

ε and replacing
∑

in equation 3.46 we have:

log(L, δ, φ, σ2
ε ) = −N

2
log(2π)− 1

2
log|R| − N

2
logσ2

ε −
1

2σ2
ε

x′R−1x (3.47)

Differentiating with respect to σ2
ε , setting to zero and solving yields:

σ2
ε = N−1x′R−1x (3.48)

and replacing 3.48 in 3.47:

log(L,δ, φ) =

-N/2 (log(2π))− N
2 −

1
2 log|R| −

N
2 (log(N−1x′R−1x) =

-N/2(1+log2π)− 1
2 log|R| −

N
2 log(N−1x′R−1x)

And finally what is left for the maximisation is:

− 1

2
(log|R|+ T−1logσ2

ε ) (3.49)

which is then maximised using numerical derivatives. Using the same method first

introduced in (Sowell, 1992b) and then used for example in (Palma, 2007) and (Golub,

1996), we estimate the parameters of an ARFIMA(0,d,0) for the daily S&P500 squared

returns2:

1for the details in calculating the autocovariances see(Sowell, 1992b) and (Doornik and Ooms,
2003a)

2Recall that the daily S&P500 returns did not show any signs of positive persistence.
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3.4 Dependence Properties of Daily Returns

Return Squared Return Absolute Return

Daily S&P500 -0.0735(−5.04∗∗∗) 0.1952(17.31∗∗∗) 0.2068(18.82∗∗∗)

Table 3.3: The summary of the estimated coefficient for d for the daily returns, daily
squared returns and daily absolute returns in ARFIMA(0,d,0). The numbers in the brackets
are the z statistics. *** significant at 99% level.

(1− L)0.1952r2
t = εt, εt ∼ NID[0, 4.02× e−9] (3.50)

Table (3.3) summarises the estimated d for the daily, squared and absolute returns

in ARFIMA(0,d,0). Equation 3.50 is ARFIMA(0,0.3565,0) estimated for the daily

S&P500 squared returns. The estimated parameter is highly significant, different from

zero and since it is 0.1952, there is evidence of positive persistence in the time series (see

figure (3.3)). As discussed before, the spectral density at frequencies close to zero for

a long-run processes diverges. Figure (3.4) shows the spectral density for the long-run

and the short-run parameters implied by ARFIMA(0,0.3565,0). The difference in the

spectral densities in the top graph reflects the ability of ARFIMA models to capture

long-run effects.

The Approximate Maximum Likelihood Estimator

The calculation of the exact maximum likelihood estimator in the way proposed

by (Sowell, 1992b), when the length of the time series is a large number, is compu-

tationally inefficient since it has a numerical order of O(n3). It is possible to use

algorithms such as the Levinsons or the Durbin’s algorithm and bring the cost down to

O(n2). Among others, (Doornik and Ooms, 2003b) list and compare the effectiveness

of different algorithms for calculating the maximum likelihood, and after extensive sim-

ulations they find the combination of Durbin’s and Levinson’s algorithms to be very

efficient. There are however other approaches that are computationally more efficient

among which the semiparametric Whittle estimation (Whittle, 1953) is a well-known

and widely used methodology for approximating the maximum likelihood (numerical

order of O(n× logn) .

Another solution for approximating the maximum likelihood which has recently

become popular is the Wavelet-based maximum likelihood estimator introduced by

(Ramsey, 1999), (Whitcher, 2000) and (Percival and Walden, 2000) and different mod-

ifications of it have been made popular by (Dacorogna et al., 2001) and (Nason, 2008).
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3.4 Dependence Properties of Daily Returns

Figure 3.4: Spectral densities implied by ARFIMA parameters. The top graph contains a
plot of the spectral density implied by the long-run ARFIMA parameter estimates and the
ARMA(1,0) parameters. The two models imply different spectral densities for frequencies
close to zero when d > 0. The spectral density implied by the ARFIMA estimates diverges
to infinity, whereas, the spectral density implied by ARMA estimates remains finite. The
bottom panel contains a graph for the short-run parameter estimates which remain finite
at frequency 0. The bottom graph contains a plot of the spectral densities implied by the
ARMA parameter estimates and by the short-run ARFIMA parameter estimates, which
here only consists of εt.
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3.4 Dependence Properties of Daily Returns

By looking at the spectrum of the output of Discrete Wavelet Transform decomposi-

tions, and formulating the likelihood in terms of the DWT the difficulty of computing

the exact likelihood is solved. We borrow from (Whitcher, 2000):

Assume, xt is a zero mean realization from a fractional difference process with length

N = 2j with spectrum given by SX(f) = σ2
ε

|2 sin(πν)|2d
and covariance matrix given by∑

X , The likelihood can be written as:

L(d, σ2
ε |x) = (2π)

−N
2 |
∑
|−1/2 exp

[
−1

2
XT

∑−1
X

]
(3.51)

And suppose that the quantity |
∑

X | is the determinant of
∑

X . The maximum

likelihood estimates of the parameters d and σ2
ε are those quantities which maximize

equation 3.51.

The difficulties in computing the exact MLEs are avoided by using the approximate

decorrelation of the DWT. If the DWT is applied on fractional difference process, then:

The dependence of the likelihood function on d and σ2
ε is only through

∑
X alone.

The above likelihood function for any particular parameters values can in principle be

evaluated. There are however, two practical problems with exact MLEs (Beran (1994),

section 5.4 ). First, their determination can be very time consuming to calculate because

L(d, σ2
ε |x) is computationally expensive to evaluate, even for a moderate N . Second,

there can be potential numerical instabilities in computing the likelihood function when

d is close to 1/2.

Consider an approximate maximum likelihood scheme that exploits the fact that∑
X can be approximated by

∑̂
= WTzNW, that is:

∑
X

≈
∑̂
X

= WTzNW (3.52)

where W is the orthonormal matrix defining the DWT (equation 2.49) and zN is a

diagonal matrix containing the variances of DWT coefficients computed from Fractional

Difference processes:

zN = diag(N/2S1, ..., S1︸ ︷︷ ︸, N/4S2, ..., S2︸ ︷︷ ︸, ......, N/2jSj , ..., Sj︸ ︷︷ ︸, ..., SJ , SJ+1)

where Sj = var(Wj,t) for j = 1, ..., J . It is very convenient to show how Sj exactly

depends on d and σ2
ε :
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3.4 Dependence Properties of Daily Returns

Sj = σ2
εS
′
J(d), whereSj = 2j+1

∫ 1/2j

1/2j+1

SX(ν)dν = 2j+1

∫ 1/2j

1/2j+1

σ2
ε

|2 sin(πν)|2d
dν (3.53)

The approximate likelihood function is now

L̂(d, σ2
ε |x) = (2π)

−N
2 |
∑̂

X |−1/2 exp

[
−1

2XT
∑̂−1

X X

]
Hence, the task is now to find the values of d and σ2

ε that minimize the log-likelihood

function:

l̂(d, σ2
ε |x) = −2(log(L̂(d, σ2

ε |x))−N log(2π)

= log(|
∑̂
X

|) + XT
∑̂−1

X
X (3.54)

(Whitcher, 2000) finds that equation 3.51 can be re-written as:

l̂(d, σ2
ε |X) = N log(σ2

ε) + log(S
′
J+1(d)) +

J∑
j=1

Nj log(S
′
J(d)) + (3.55)

1
σ2
ε
(

V 2
J,0

S
′
J+1(d)

+
∑J

j=1
1

S
′
J (d)

∑Nj−1

t=0 W 2
j,t)

We can obtain an expression for the approximate MLE σ̂2
ε of σ2

ε by differentiating the

right hand side of equation 3.55 with respect to σ2
ε and setting the resulting expression

to zero. Solving for σ2
ε yields the estimator σ̂2

ε , which can be regarded as a function of

d given by:

σ̂2
ε(d) =

1

N
(

V 2
J,0

S
′
J+1(d)

+
∑J

j=1

1

S
′
J(d)

∑Nj−1

t=0
W 2
j,t) (3.56)

Using the above expression, the parameter σ2
ε can now be eliminated from equation

3.55. The reduced log likelihood:

l̂(d|X) = N log(σ̂2
ε) + log(S

′
J+1(d)) +

J∑
j=1

Nj log(S
′
J(d)) (3.57)
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3.4 Dependence Properties of Daily Returns

d MODWT Haar MODWT LA(8) (WMLE)

0.2 mean 0.186 0.192

0.2 SD 0.065 0.068

0.4 mean 0.346 0.384

0.4 SD 0.051 0.064

Table 3.4: Wavelet-based maximum likelihood estimator of d for N = 27.

Once equation 3.56 is subsitted into equation 3.57, the reduced likelihood depends

on just the single parameter d and the MLE is obtained via d̂ = arg[maxl̂(d|X)]. Quite

often, one is interested in long memory parameters which are strictly positive. Luckily

wavelet coefficients only enter l̂(d|X) through quadratic forms, such as W T
j Wj and can

be interpreted as estimates of the true Spectral Density Power (SDF) over the interval

Bj . These estimates are then compared with the true SDF over Bj .

The process explained above is similar to the Whittle likelihood. In Whittle likeli-

hood the true SDF is compared with an estimate of the SDF (using Fourier methods) at

different frequencies. Now let v̂2
j = W T

j Wj/N denote the biased DWT-based estimator

of the wavelet variance and rewrite equation 3.56, then:

σ̂2
ε =

V̂ 2
J+1,

S
′
J+1(d)

+
∑J

j=1

1

S
′
J(d)

v̂2
j (3.58)

where V̂J+1 = V T
J VJ/N . Instead of using DWT, one can also use MODWT. (Per-

cival and Walden, 2000) prove that using MODWT leads to a more asymptotically

efficient estimator. Therefore for the estimates of this chapter the following estimator

is used:

σ̃2
ε =

Ṽ 2
J+1,

S
′
J+1(d)

+
∑J

j=1

1

S
′
J(d)

ṽ2
j (3.59)

The simulation results provided in table 3.4 summarises the results for estimating

d using MODWT, Haar wavelet and Least Asymmetric wavelets of order 8 have been

considered. It is clear that MODWT with LA(8) which is called WMLE gives closer

estimates to the true values of d. Fractional Difference processes have been generated

using (Fraley et al., 2006). The results in table 3.4 are in the same line with the

simulation results of (Whitcher, 2000) and (Percival and Walden, 2000).
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3.5 Other Empirical Properties of Daily Returns

Simulation of ARFIMA models

Recall that an ARFIMA(0,d,0) is presented as:

(1− L)dxt = εt (3.60)

Using binomial series expansion:

(1− L)d =

∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
(3.61)

where Γ(∗) is the gamma function. The infinite moving average representation of

xt can be denoted as:

xt = (1− L)−dεt = δ(L)εt =

∞∑
j=0

δjεt−j =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j (3.62)

Which can be used to simulate an ARFIMA(0,d,0) process. They can be also

simulated using their spectral density function. Another way to simulate an ARFIMA

(0,d,0) in the time domain which was first mentioned in (Granger and Joyeux, 1980)

is to simulate sufficient (j) AR(1) processes with coefficients αj for the AR(1) having

a beta distribution in first step and in the second step calculate the cross-aggregate of

all these AR(1) processes. To simulate an ARFIMA(p,d,q), one can use the simulated

ARFIMA(0,d,0) series as the innovations for the simulation of an ARMA(p,q) process.

3.5 Other Empirical Properties of Daily Returns

The standard deviation of returns completely dominates the mean of returns at hori-

zons such as daily. It is not possible to statistically reject a zero mean return. The

daily S&P500 returns have a daily mean of 0.01791% and a daily standard deviation of

0.63272%. The mean of the returns seems to be much smaller than the standard devi-

ation of returns. This result has important implications for the approach of modeling

and measuring variation as the mean of daily returns is often replaced with zero.

The unconditional distribution of daily returns does not follow the normal distribu-

tion. Figure (3.5) shows a histogram of the daily S&P500 return data with the normal
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3.5 Other Empirical Properties of Daily Returns

Figure 3.5: The daily S&P500 returns from 1/1/2001 through 31/12/2010 are used to
construct a histogram shown in golden bars. A normal distribution with the same mean
and standard deviation is shown in the blue line.

Mean Standard Deviation Skewness Kurtosis

S&P500 1-Day return 0.0000559 0.0137714 -0.1214442 11.1451

S&P500 5-day return 0.0002806 0.025602 -0.8310671 7.398657

S&P500 10-Day Return 0.0005613 0.0377041 -0.7963029 6.621245

Table 3.5: Full summary statistics of S&P500 from 1/1/2001 through 31/12/2010 at
1-Day, 5-Day and 10-Day horizons..

distribution superimposed. The histogram shows that the distribution of daily returns

is more peaked around zero than the normal distribution and as expected the kurtosis

is 3.765362 (see table (3.5)). Extreme returns are also more common in daily returns

than in the normal distribution, a feature which is often known as ”fat tails”. Fat tails

mean a higher probability of large losses (and gains) than the normal distribution would

suggest. The skewness is negative which resembles the fact that there are very large

drops but not equally large increases. The return distribution is negatively skewed and

it is asymmetric. Foreign exchange markets do not show much evidence of skewness as

much as stock markets do.

The means and standard deviations increase as horizon increases. On the other

hand, excess kurtosis decreases. The distributions of returns change as horizon changes,

perhaps at longer horizons they look more like the normal distribution.
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3.5 Other Empirical Properties of Daily Returns

One of the most critical decisions in the risk management industry is the importance

and the difficulties in choosing the suitable time scale. (Lo and Mueller, 2010) consider

the situation in which the timescales of the strategy (model) do not match the time

scales of the observations (which is sometimes called a timescale mismatch). There

is no ”golden” timescale and the appropriate choice for the time horizon depends on

the application. Day traders calculate the profit and loss daily and therefore it makes

sense to calculate the risk over a time horizon of one trading day. For an investment

portfolio held by a pension fund, a time horizon of one month may be chosen as the

portfolio is traded less actively, some of the assets in the portfolio are less liquid and

also the performance of pension fund portfolios is often monitored monthly1. There

are two familiar ways to deal with calculating the risk at different horizons and then

translating it into the desired horizon.

The question ”What is the relevant horizon for risk management ?” has no obvious

answer. There is no ”natural” or ”received” horizon in risk management industry

[Christoffersen et al. (1998) Diebold et al. (1998) Christoffersen and Diebold (2000)].

One cannot talk of a ”golden” risk horizon! Horizons can vary from very small intervals

(nanoseconds, milliseconds, 5 minutes) to longer ones (1-day, 5-day, 15-days, weeks,

months, quarters, or even years) depending on the motivation of trading, re-balancing

the portfolio, or the asset class, industry (banking vs. insurance), position in the firm

(trading desk or CFO), ... , etc.

The most common and practical rule in the risk management industry to calculate

the risk at shorter horizons and then modify it into longer horizons is by scaling (Lo and

Mueller, 2010). For instance, if standard deviation is calculated at a 1-hour frequency,

it is transformed to a 30-day risk measure by multiplying the 1-hour standard deviation

by
√

720 (there are 720 hours in 30 days). Sometimes, a single measure of volatility

is required. For example, if Rt is daily return, then assuming financial markets are

active for 252 days per year, the standard measure of annual volatility is given by

s.d.(Rt) ×
√

252. However, this type of scaling is only valid if the underlying data

is identically and independently distributed, which is not the case for financial time

series at all and has been widely explored in the literature [Peter (1973), Mantegna and

Stanley (1995), Diebold et al. (1998), Gencay et al. (2001b), Dacorogna et al. (2001)].

130-day horizons for interest rate instruments, 7 to 10 days for equity and foreign exchange are the
timescales that are very popular.

72



3.6 Aggregation

An alternative way to modify the risk to a desired horizon is via temporal aggrega-

tion.

3.6 Aggregation

In general, in economics the ways variables aggregate could take three different forms.

These are i) aggregation for a stock variable through time or systematic sampling, ii)

aggregation for a flow variable or temporal aggregation, and iii) cross-section aggrega-

tion or contemporaneous,.

Systematic (skip) sampling (temporal aggregation through interval sampling), is the

aggregation in which the aggregated variable is observed every h periods from the high

frequency variable. For example, weekly observations may be obtained by sampling

every 5 periods of daily observations. In the diagram below, if xi is a stock variable

that has a value at every i periods, zi is a new variable observed at a different frequency:

x0 z0

x1 .

x2 .

x3 .

x4 .

x5 z1

x6 .

x7 .

x8 .

x9 .

x10 z2

Temporal aggregation, refers to aggregation in which the aggregated variable is a

flow variable and by summing the variable, at every h period, a new variable at a

different frequency is formed. In the diagram below, if xi is a flow variable, then yi is

a temporally aggregated variable:

x0, x1, x2, x3, x4, x5︸ ︷︷ ︸
y1=

∑
xi

, x6, x7, x8, x9, x10︸ ︷︷ ︸
y2=

∑
xi
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3.6 Aggregation

Contemporaneous aggregation, is the aggregation in which individual series are

aggregated and form a new time series. For example, to model the risk of a portfolio

the risk models of each assets are cross aggregated.

The literature on aggregation deals with all three types of aggregation, while this

chapter is only concerned about the first two types of aggregation. Aggregation has

been the subject of econometric literature for at least 4 decades since (Amemiya and

Wu, 1972) where they show that, if the original variable is generated by an AR model

of order p, the aggregate variable follows an AR model of order p with MA residuals

structure. (Granger and Joyeux, 1980) shows that under certain conditions a linear

combination of an infinite set of AR(1) processes is a fractionally integrated process

which exhibit long memory. (Beran, 1994) uses this technique to simulate long-memory

processes. (Drost and Nijman, 1993) derive the order of conditions for temporally

aggregated univariate GARCH models. (Chambers, 1998) considers the cross-section

and temporal aggregation of macroeconomic time series in which he compares the

spectral densities of aggregated series with that of individuals. (Granger, 1980) looks

into contemporaneous aggregations of more general long-memory and short-memory

processes. (Marcellino, 1999) reviews several consequences of temporal aggregation for

the class of ARMA processes. (Zaffaroni, 2007a) and (Zaffaroni, 2007b) study the effect

of Contemporaneous aggregation of GARCH processes with both cases of dependent

and independent individuals. (Silvestrini and Veredas, 2008) provide a complete survey

of temporal aggregation of univariate and multivariate series however, they only focus

on ARMA and GARCH models and they do not consider ARFIMA models. They do

not study how the autocorrelation functions change over temporal aggregation and they

limit the study to stationary short-memory processes, but still the survey sums up the

literature on temporal aggregation of ARMA and GARCH models. Most of the studies

(either in finance or macroeconometrics) focus on cross-aggregation of short-memory

processes rather than on temporal aggregation, with the exception of (Chambers, 1998),

(HWANG, 2000), (Silvestrini and Veredas, 2008) and a series of studies followed up from

(Souza and Smith, 2002).

There are however few studies that compare the properties of long-memory pro-

cesses at different frequencies. (HWANG, 2000) follows the steps of (Chambers, 1998)

and find that in short lags the autocorrelation functions are affected as an outcome
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of aggregation, whereas, in large lags the autocorrelation functions remian unaffected.

(Andersen et al., 2001b) compare the properties of volatility and autocorrelation func-

tions of Deutschemark and Yen returns against the dollar for 10 years and find a series of

scaling laws across different requencies. (Ohanissian et al., 2008) propose a test statistic

to distinguish between the true long-memory processes and spurious long memory pro-

cesses comparing the statistical properties of long-memory time series before and after

sampling. (Ahmad and Paya, 2013) study the effects of time averaging and interval

sampling for the case of random walk.

A natural question to ask is since there are different risk horizons used in the risk

industry, and since scaling is not the appropriate method to use, what will happen

if simply one chooses the corresponding sampling frequency? If the original variable

shows signs of long-memory with d = d1, will the time series sampled at a different

frequency also be the case of long-memory with d = d1 or will it be a different d?

3.6.1 Temporal aggregation or skip sampling?

Recall from equation 4.3 that Rt = ln(Pt)− ln(Pt−1 = ln( Pt
Pt−1

) is the log return for

the t− th day if Pt is the closing price at day t and Pt−1 is the closing price at dat t−1.

The log return series for a 5-day non-overlapping holding period can be constructed by:

R5t = ln( Pt
Pt−5

)

R5t = ln[(
pt
pt−1

)(
pt − 1
pt−2

)(
pt − 2
pt−3

)(
pt − 3
pt−4

)(
pt − 4
pt−5

)]

R5t = ln(
pt
pt−1

) + ln(
pt − 1
pt−2

) + ln(
pt − 2
pt−3

) + ln(
pt − 3
pt−4

) + ln(
pt − 4
pt−5

)

R5t =
∑5

t=1Rt

Which shows that in fact when calculating the return at different horizons, it is by

temporal aggregation that we find the return series at different frequencies.
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3.6 Aggregation

3.6.2 The Effects of Temporal Aggregation on the Properties of ARFIMA

(0,d,0) Models

In risk management there are studies that use different frequencies to calculate the

risk, from monthly observations such as (Jacobsen and Dannenburg, 2003) to ultra

high frequency data in (Martens, 2002).

The effects of skip sampling on the properties of ARFIMA models (a downward bias

on d̂) have been discussed in details for example in (Souza and Smith, 2002) and are not

discussed here, but the effects of temporal aggregation is dealt with in much details.

Equation (3.37) plays an important role for long-memory processes as it shows that

the rate at which the autocorrelation functions decrease is slower than short-memory

processes. In this section we calculate the autocorrelation functions of a temporally

aggregated ARFIMA(0,d,0) and compare it with that of not aggregated series. Then

the 5-day and the 10-day S&P500 returns are calculated and tested against the results

of temporal aggregation.

We assume that the sampling interval is longer than the true interval. More precisely

we assume that the original time series shown as xt happens at every unit of time and

the time series yt is observed at every h unit of time. For example in the case of 5-day

returns, h = 5, the true variable happens at every day (h = 1) unit of time but we

observe the variable every 5 days, so h = 5. The temporally aggregated variable yt is

constructed as:

yht = yT = xt + xt−1 + xt−2 + . . .+ x
t−(h−1)=

∑h−1
i=o xt−i(3.63)

where h is the numbers aggregated together. Here t represents units of fundamental

time and T = ht units of aggregate time. For example, if xt is is the daily returns, and

h = 5, then one unit of T goes through 5 units of t time. The τ lag of yT is given be:

YT−τ = xt−hτ + xt−(hτ+1) + . . .+ x(t−(h+1)τ−1) =

(h+1)τ−1∑
i=hτ

xt−i (3.64)

For the 5-day return:

xt, xt−1, xt−2, xt−3, xt−4︸ ︷︷ ︸
yT

, xt−5, xt−6, xt−7, xt−8, xt−9︸ ︷︷ ︸
yT−1
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Hence, L.yT = yT−1 = xt−5 +xt−6 +xt−7 +xt−8 +xt−9. To give an intuition behind

the idea of finding autocorrelation functions of an aggregated process, we begin with

the case d = 0 (short-memory processes) and summarise the results of (Tiao, 1972).

The autocorrelation between yT and yT−1 is:

γy1 =
cov(yT , yT−1)

var(yT )
=
E[(xt + . . .+ xt−(h−1))(xt−h + . . .+ xt−(2h−1))]

E(xt + . . .+ xt−(h−1))2
(3.65)

The terms in the numerator and the denominator both consist of products of lagged

xt. However, the numerator involves observations of x that are on average further

distant from each other compared to the denominator. For γτ as τ increases, this

distance increases. Since d = 0, the expectation of the terms in the numerator converges

to zero faster, on average, than those in the denominator, bringing the autocorrelation

to zero as τ increases. Therefore the autocorrelations of the temporally aggregated

short-memory processes approach zero as h increases as the numerator converges to

zero faster.

If d = 1, that is xt is the first difference stationary, because temporal aggregation is

a linear filter it preserves the number of unit roots and hence yT is also a first difference

stationary. If z = (1− L)y, then the autocorrelation between zT and z − T − 2 is:

γz1 =
cov(zT , zT−2)

var(zT )
=
E[(yT − yT−1)(yT−2 − yT−3)]

E(yT − yT−1)2
(3.66)

Using a similar reasoning leads to a fast coverging to zero autocorrelation functions

which further summs up the matter for aggregation when d = 0 and d = 1. What

we are interested in what changes (if any) when a long-memory process is aggregated.

Recall from equation 3.62 that an ARFIMA process can be denoted as:

xt = (1− L)−dεt =
∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εt−j (3.67)

And if an aggregated process yht is constructed through yT = xt + xt−1 + xt−2 +

. . .+ xt−(h−1), then:
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yht =
∑i=h−1

i=0 (1− L)−dεt−i

yT = (1− L)−dεt + (1− L)−dεt−1 + (1− L)−dεt−2 + . . .+ (1− L)−dεt−(h−1)

yT = (1− L)−d[εt + εt−1 + εt−2 + . . .+ εt−(h−1)]

yT = (1− L)−d[1 + L+ L2 + . . .+ Lh−1]εt

yT = (1− L)−d[1 + L+ L2 + . . .+ Lh−1]εt ×
(1− L)
(1− L)

yT = (1− L)(−d−1)[1− Lh]εt

And hence the aggregated series yT has the form of:

yT =
h−1∑
j=0

(1− L)−dεt−j = (1− L)(−d−1)[1− Lh]εt (3.68)

In ARFIMA processes the most important part of the model is the parameter ”d”,

which shows how persistent the memory of the variable is. The most important and

natural step would be to compare the persistence of the aggregated process with that of

the original series and check if aggregation causes an increase or a decrease in the decay

rate of the autocorrelation functions. To see whether aggregation has any effect on

ARFIMA processes, the autocovariance, autocorrelation and spectral density functions

of the aggregated process is compared with that of the original one, i.e., properties of

xt are compared against yT .

The autocovariance (κy(τ, h)), autocorrelation (γy(τ, h), and spectral density (fy(ν, h))

functions of yT are given by:

κy(τ, h) =
σ2Γ(1− 2d)

Γ(d+ 1)Γ(1− d)2(1 + 2d)
×[

Γ(1 + hτ + d− h)

Γ(hτ − d− h)
+

Γ(1 + hτ + d+ h)

Γ(hτ − d+ h)
−2

Γ(1 + hτ + d)

Γ(hτ − d)
]

(3.69)

γy(τ, h) =

[
Γ(1 + hτ + d− h)

Γ(hτ − d− h)
+

Γ(1 + hτ + d+ h)

Γ(hτ − d+ h)
− 2

Γ(1 + hτ + d)

Γ(hτ − d)
]

[2
Γ(1 + d− h)

Γ(−d− h)
− 2

Γ(1 + d)

Γ(−d)
]

(3.70)

fy(ν, h) =
σ2

2π

(
2sin(

ν

2h
)
)−2(d+1)

(2sin(
ν

2
)2 (3.71)
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Where h is a sampling interval, τ is the lag between observations, and ν is the

frequency.

Proof: See the Appendix.

If h is relatively large using Stirling’s approximation, equation (3.70) can be re-

written as1:

γy(τ, h) ∼ (hτ + h)2d+1 + (hτ − h)2d+1 − 2hτ2d+1

2h2d+1−2
Γ(1 + d)
Γ(−d)

γy(τ, h) ∼ h2d+1[(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1]

2h2d+1 − 2
Γ(1 + d)

Γ(−d)

(3.72)

Equation limτ−→∞ γ
y(τ, h) when τ −→ ∞, is a fraction that has a numerator of a

∞ +∞−∞ case for which the common factor with the greatest exponent should be

removed from the polynomial. Using, (x + y)n =
∑n

k=0

(
n
k

)
xn−kyk and diving up the

numerator:

(τ + 1)2d+1 =(
2d+1

0

)
τ2d+110 +

(
2d+1

1

)
τ2d11 +

(
2d+1

2

)
τ2d−112 +

(
2d+1

3

)
τ2d−213 + . . .+

(
2d+1
2d+1

)
τ012d+1 =

τ2d+1

[
1 + (2d+ 1)1

τ + d(2d+ 1) 1
τ2 +

(2d+ 1)d(2d− 1)
3

1
τ3 + . . .+ 1

τ2d+1 12d+1

]

And

(τ − 1)2d+1 =
(

2d+1
0

)
τ2d+1(−1)0 +

(
2d+1

1

)
τ2d(−1)1 +

(
2d+1

2

)
τ2d−1(−1)2 +(

2d+1
3

)
τ2d−2(−1)3 + . . .+

(
2d+1
2d+1

)
τ0(−1)2d+1 =

τ2d+1

[
1− (2d+ 1)1

τ + d(2d+ 1) 1
τ2 −

(2d+ 1)d(2d− 1)
3

1
τ3 + . . .+ 1

τ2d+1 (−1)2d+1

]
1Stirling’s approximation is Γ(z) ∼ zz−

1
2 e−z

√
2π which is used for Γ(z+a)

Γ(z+b)
∼ za−b for large z.

79



3.6 Aggregation

And so (τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1 can be written as:

(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1 =

τ2d+1

[
1 + (2d+ 1)1

τ + d(2d+ 1) 1
τ2 +

(2d+ 1)d(2d− 1)
3

1
τ3

+. . . +τ012d+1+1−(2d+1)1
τ +d(2d+1) 1

τ2−
(2d+ 1)d(2d− 1)

3
1
τ3 +. . .+τ0(−1)2d+1−2

=τ2d+1
[
2d(2d+ 1) 1

τ2 + . . .
]

=2d(2d+1)τ2d−1

And so:

limτ−→∞
h2d+1[(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1]

2h2d+1 − 2
Γ(1 + d)

Γ(−d)

=τ2d−1 × h2d+1 [2d(2d+ 1)]

h2d+1 − 2
Γ(1 + d)

Γ(−d)

=τ2d−1 × h2d+1 [d(2d+ 1)]

h2d+1 − Γ(1 + d)

Γ(−d)

If τ −→∞, lim γy(τ, h) will be:

lim γy(τ, h) = τ2d−1 × h2d+1d(1 + 2d)

h2d+1 − Γ(1 + d)
Γ(−d)

(3.73)

For when ν −→ 0, lim fy(ν, h) is:

limν−→0
σ2

2π

(
2sin( ν2h)

)−2(d+1)
(2sin(ν2 ))2 =
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If x −→ 0, then sin(x) ∼ x. If ν −→ 0:

limν−→0
σ2

2π

(
2sin( ν2h)

)−2(d+1) (
2sin(ν2

)2
= σ2

2π

(
2 ν

2h

)−2d−2 ×
(
2ν2
)

=

σ2

2π (h)2d+2ν−2d−2ν2 = σ2

2π (h)2d+2ν−2d

lim fy(ν, h) =
σ2

2π
h2d+2ν−2d (3.74)

Equations (3.73) and (3.74) in comparison with equations (3.37) and (3.38) show

that the decay rates of the aggregated ARFIMA(0,d,0) and ARFIMA(0,d,0) are the

same, τ2d−1 (similar to the results in (Chambers, 1998), and inline with (Souza and

Smith, 2004), (Souza, 2005) and (Hassler, 2011)) but the level at which they start from

are different. Since:

F =
F1

F2
=

τ2d−1 × h2d+1d(1 + 2d)

h2d+1 − Γ(1 + d)
Γ(−d)

τ2d−1 × Γ(1− d)

Γ(d)

(3.75)

=

h2d+1d(1 + 2d)

h2d+1 − Γ(1 + d)
Γ(−d)

Γ(1− d)

Γ(d)

(3.76)

In equation (3.37),
Γ(1− d)

Γ(d)
is always smaller than

h2d+1d(1 + 2d)

h2d+1 − Γ(1 + d)

Γ(−d)

in equation

(3.73) for positive d. Table (3.6) summarises the values of F1 and F2 for different

(positive) values of d and h:

Even though the limiting autocorrelation functions have the same decay rate, the

level of autocorrelation function is biased upwards, hence making the observed (at

different sampling frequency) aggregated ARFIMA(0,d,0) processes more persistent in

comparison to the true underlying process. There are two immediate outcomes from

table (3.6) and comparing equations (3.37) and (3.73). First, F1 is greater F2 for all
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F1 F2 F1 F2

d=0.4, h=5 d=0.4, h=10

0.717466 0.601479 0.717105 0.601479

d=0.3, h=5 d=0.3, h=10

0.477092 0.348327 0.477587 0.348327

d=0.2, h=5 d=0.2, h=10

0.277908 0.182454 0.278740 0.182454

d=0.1, h=5 d=0.1, h=10

0.119208 0.072424 0.119654 0.072424

Table 3.6: Different values of F1 and F2 depending on different values of d and h from
equations ( 3.37) and (3.73).

values of d, i.e., the aggregated process is biased upwards compared to the true process.

Second, as h increases, F1 also increases, i.e., as sampling frequency increases the degree

of persistence in the aggregated process seem to have increased.

3.6.2.1 Monte Carlo Replications

Four different series (all following an ARFIMA(0,d,0) process) each with a sample size

of N = 2000 are generated. Since the autocorrelation functions of the aggregated

processes depend on the values of d and h, the 4 simulated series each correspond to

a different value of d (d=0.4, 0.3, 0.2, 0.1). The original series are then aggregated

via yht =
∑h−1

i=o xt−i for sampling frequencies of h=1, 5, 10 and 20 with sample sizes

of 2000, 400, 200 and 100 respectively. For each combination of d and h, d̂ has been

estimated using the following three methods (1) GPH for m = 0.5, (2) WMLE and

(3) Whittle1. This procedure was carried out 2000 times and d̂ was calculated in each

repetition. Tables (3.7) and (3.8) summarises the averages and the standard deviations

of d̂ in 2000 repetition.

As can be seen from tables (3.7) and (3.8), the aggregated ARFIMA(0,d,0) processes

show the upward bias as the effect of aggregation. The value of d of the aggregated

ARFIMA(0,d,0) process is greater than the value of d of the actual ARFIMA(0,d,0)

process for all values of d. Out of the three estimators, GPH seems to be the one

that gives estimates closer to the true value of d, however it has the highest standard

deviation among the Whittle and WMLE estimators. The Whittle estimator and the

1The method introduced by (Sowell, 1992a) is very computationally expensive for a sample size of
1000, and has not been used here.
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3.6 Aggregation

True d Sampling Interval Sampling Interval

GPH WMLE

1 5 10 20 1 5 10 20

0.4 0.4017 0.4038 0.4029 0.4125 0.4021 0.4216 0.4641 0.4578
0.3 0.2985 0.2962 0.2937 0.2964 0.2971 0.3375 0.3767 0.3698
0.2 0.1983 0.2020 0.2076 0.2052 0.2019 0.2494 0.2656 0.2646
0.1 0.1009 0.1267 0.1307 0.1262 0.0880 0.1023 0.1466 0.1361

True d Sampling Interval
Whittle

1 5 10 20
0.4 0.4068 0.4398 0.4663 0.4515
0.3 0.3033 0.3347 0.3890 0.3757
0.2 0.2068 0.2213 0.2398 0.2554
0.1 0.1017 0.1145 0.1290 0.1461

Table 3.7: The average value of d̂ by three estimation methods (N=2000, 400, 200 and
100). The results are based on 2000 replications.

WMLE have much lower standard deviations (as discussed in (Gonzaga and Hauser,

2011)) and although they have given good estimations but they are still worse than

GPH. It is very interesting that WMLE has standard deviations between the Whit-

tle estimator and the GPH estimator, and even though WMLE estimator has given

estimations worse than the GPH estimator, it is still doing better than the Whittle

estimator.

Recall from equation (3.43) that GPH only concentrates on low frequencies (by

choosing the appropriate g(N)) and since d is obtained by the spectral density near zero

frequencies, perhaps GPH is a more suitable method for estimating the long memory

parameter d in an aggregated ARFIMA process (as temporal aggregation does not

affect the decay rate of the true long memory process). The estimation in GPH is very

close to the true values of d, however the standard deviation is very high when the

sampling interval is 20. Since the number of periodograms used in GPH estimation is

only N0.5, this was expected.

Based on the three estimators, how close the estimations are to the true values of d

(bias) depends on the sampling intervals. The estimations become more distant from

the true values of d as h increases from 1 to 10. However, as h reaches 20, in several

occasions (for instance: GPH, 0.4 and WMLE, 0.4), the estimations either show little

increase or even a decrease. It seems there is no relationship between the sampling
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True d Sampling Interval Sampling Interval

GPH WMLE

1 5 10 20 1 5 10 20

0.4 0.089 0.278 0.314 0.412 0.052 0.165 0.235 0.349
0.3 0.089 0.277 0.313 0.414 0.053 0.164 0.236 0.348
0.2 0.088 0.276 0.314 0.413 0.053 0.165 0.236 0.351
0.1 0.089 0.277 0.314 0.415 0.050 0.165 0.236 0.361

True d Sampling Interval
Whittle

1 5 10 20
0.4 0.035 0.098 0.214 0.314
0.3 0.038 0.096 0.212 0.316
0.2 0.049 0.112 0.213 0.349
0.1 0.039 0.099 0.214 0.317

Table 3.8: The Standard Deviation of d̂ by three estimation methods (N=2000, 400, 200
and 100). The results are based on 2000 replications.

interval and d̂. Recall from equation (3.73) that:

lim γy(τ, h) = τ2d−1 × h2d+1d(1 + 2d)

h2d+1 − Γ(1 + d)

Γ(−d)

As h→∞ then (a ∞∞ case):

γy(τ, h) = d(1 + 2d)× τ2d−1 (3.77)

Which then does not depend on h and only depends on the values of d and τ .

Since for long memory stationary time series 0 < d < 0.5, 0 < 2d < 1, and hence

−1 < 2d− 1 < 0. If τ →∞ and −a = 2d− 1 then:

limτ→∞d(1 + 2d)× τ2d−1 = lim∞→∞
d(1 + 2d)

τa
→ 0 (3.78)

Equation 3.78 ”slowly” reaches zero as τ →∞ since 0 < a < 1. ARFIMA processes

are models that are well suited the class of time series that have a slow decaying rate

in their autocorrelation functions.
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Return Squared Return Absolute Return

1-Day S&P500 1.19 2.94 3.83

5-Day S&P500 2.22 2.86 2.44

10-Day S&P500 1.62 2.43 2.22

Table 3.9: The summary of the Modified R/S test statistic for the return, squared
return and absolute return at 1-Day, 5-Day and 10-Day frequencies of S&P500 from
1/1/2001 through 31/12/2010. The Critical Values are as follows: 90% : [0.861, 1.747],
95% : [0.809, 1.862], 99% : [0.721, 2.098]

3.6.3 S&P500 returns, 1-Day, 5-Day and 10-Day

The S&P500 daily returns are sampled at 5-day and 10-day intervals. Table 3.9 sum-

marises the R/S test statistics for the return, squared returns and absolute returns at

1-Day, 5-Day, and 10-Day intervals. The squared and absolute returns at all sampling

intervals reveal signs of long-range dependence. The daily returns and 10-Day returns

do not show any signs of long-range dependence, however 5-Day returns seems to reject

the H0 of no long-range dependence.

The descriptive statistics of the data are presented in table (3.5) as well as at

table (3.10) to ease the comparison. The last two columns in table (3.10) are d̂s in

ARFIMA(0,d,0) and ARFIMA(0,d,1) respectively.

n Mean Stan. Dev. Skew. Kurt. Q(40)a Q2(40)b d̂c d̂d

1-Day Return

2513 0.000056 0.013771 -0.121444 11.1451 147.9939 5784.3449
0.1952
(0.0113)

0.4932
0.0094

5-Day Return

502 0.000281 0.025602 -0.831067 7.398657 102.4842 677.6419
0.2358
0.0418

0.4601
0.0049

10-Day Return

251 0.000561 0.037704 -0.796303 6.621245 99.2318 493.9623
0.4984
0.0022

0.4973
0.0020

Table 3.10: Full summary statistics of S&P500 returns from 1/1/2001 through
31/12/2010 at three different frequencies. a: Ljung-Box test statistics for up to forti-
eth order serial correlation in returns. b: Ljung-Box test statistic for up to fortieth order
serial correlation in squared returns. c: d̂ in ARFIMA(0,d,0) for R2, the numbers in the

brackets are the standard errors. d: d̂ in ARFIMA(0,d,1) for R2, the numbers in the
brackets are the standard errors.

As sampling frequency increases the mean and standard deviations of return in-
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crease, while the kurtosis decreases. The 5-day returns seem to be the most negatively

skewed one, while the 1-day return has a skewness closest to zero. The properties

of unconditional returns are all in line with the numerous empirical evidence in the

literature. The GPH estimator was used for estimating the long memory parame-

ter d in ARFIMA(0,d,0) since it was the one giving closer estimations to the true

values of d in table (3.7). The upward bias in d̂ is obvious as the sampling inter-

val increases which was expected. A useful route to take (suggested by (Man and

Tiao, 2006)) when it comes to estimating the long memory parameter in temporally

aggregated processes is (1) make sure that the short-memory parameters at the first

sampling interval are estimated correctly (2) if ARFIMA(0,d,0) is the correct model

for non-aggregated data but ARFIMA(0,d,0) prove to be very sensitive to the sampling

intervals use ARFIMA(0, d, d1) where d1 = bd+ 1c. (Man and Tiao, 2006) also found

that ARFIMA(0,d,1) seems to be the most suitable and reasonable model for tempo-

rally aggregated data. Indeed this is further confirmed as in the last column of table

3.10, d̂ s have relatively smaller standard errors. It seems that the upward bias caused

by temporal aggregation can be explained by increasing the parameters in the MA

part of the model. Overall, temporal aggregation does not change the long-memory

characteristics of the data and if the actual data is classified as long range dependent,

then there is a very good chance that observed data any sampling frequencies will also

be able to reveal this characteristic of the data as long as there is enough data points

left.

The effects of temporal aggregation on intraday data will be considered in the next

chapter, which is in-line with the results of this chapter.
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4

Volatility Modeling: Using

Intra-day Observations

4.1 Introduction

With the advent of high frequency data, there have been questions raised regarding em-

pirical findings specific to tick-by-tick data and whether conventional volatility models

are capable of capturing these features. There have been several studies documenting

shortcomings of GARCH models in the context of high frequency data. Andersen and

Bollerslev (1998a), (Andersen et al., 2001a), (Cont, 2001), (Fleming et al., 2003), (Ma-

heu, 2005), and (Andersen et al., 2005) emphatically raise criticisms of GARCH-type

models. In particular (Andersen and Bollerslev, 1998b) and several others following

them, explore the shortcomings of GARCH models when frequency of the data switches

between high and low.

With the advancements in technology, high frequency data which are the building

blocks of financial markets, have become increasingly available. Market prices are

completely described by tick-by-tick data. Each ”tick” is one unit of information that

shows somewhere, someone has made a quote/transaction. High frequency data are

now available due to advancement in technology and as a consequence, academics tend

to use the newly available data. There are compelling reasons why one should consider

using high frequency data, out of which the following reasons are those that this thesis

believes are worth mentioning.
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• Statistically, the higher the number of observations, the higher the degrees of

freedom which will then result in more precise estimators.

• Tick-by-tick data are the building blocks of financial markets. If the aim is to

analyse and explore financial time series data to the possible level of accuracy,

then one should be using higher frequencies data rather than lower frequencies

(daily or monthly) data.

• High frequency data make it possible to study financial markets at different time

scales, from nanoseconds and minutes to years and decades which makes it pos-

sible to observe the previous latent and unobservable variables such as volatility.

• The analysis of high frequency data helps to clarify the behaviour of intraday

traders which own a great share of the volume of the market. According to

Reuters in 2013, high frequency trading accounts for about 40% of spot trading

in currencies, up to 70% in U.S. equities and 45% in stocks globally.

All the reasons above point out to the fact that studying intraday data can be very

rewarding and could possibly unravel the previous unknown relationships between sev-

eral financial concepts. However widely approved empirical regularities of daily/weekly

data do not hold up at data analysis of higher frequencies. One of the major differences

is that the heterogeneity of market agents in high frequency data has a much higher de-

grees of freedom in comparison with daily/monthly data. The models which are based

on the assumption of homogeneity do not work in the context of high frequency data

which have been mentioned at numerous occasions for example: [Andersen and Boller-

slev (1997a), Goodhart and O Hara (1997), Bollerslev and Wright (2000), Dacorogna

et al. (2001), Russell et al. (2009), Lo and Mueller (2010)].

The goal of this chapter of the thesis is to explore the properties of intraday re-

turns, to achieve a better understanding of volatility modeling using intraday data and

to build up a framework for computing daily volatility, using the information in in-

traday returns. In doing so, the concept of realised volatility using intraday data is

defined and contrasted with that of volatility using daily data. The novel part of this

chapter investigates in details another feature of the data in which, intraday (higher

frequencies) and daily (lower frequencies) data behave contradictory. While chapter

three has discussed the effects of temporal aggregation on long memory processes at
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daily and lower frequencies, chapter four argues the case for long memory processes of

higher frequencies at intraday levels and provides alternative explanations for what is

puzzling in the literature. Using intraday GBP/USD exchange rates for over two years,

a comparison between available models for realised volatilities are made.

4.2 Data

The foreign exchange rate market is the largest financial market worldwide and it is

very unique since it is 24 hours active and the 5-minute GBP/USD exchange rates have

been used.

Tick-by-tick data are the building blocks of financial markets which are considered

to be of ultra-high frequency. There was a time that perhaps 5-minute and 1-minute

observations were called high frequency but not any more. This thesis however often

calls intraday data high frequency simply because it is at a frequency higher than daily

data. Consider tick-by-tick 1 observations of GBP/USD for the month of May 2010

that has a sample size of 5, 436, 255. Table (4.1) shows the bid-ask spreads on 1 May

2010, within 00:00:01 (within the first second of 1 May 2010) where all the 15 rows

show the changes occurring during that 1-second interval. The data is measured to the

nearest millisecond (has the timestamp of millisecond)2.

If price Pt is defined as the average of logarithmic bid and ask quotes3:

Pt =
log(Pt,bid) + log(Pt,ask)

2
(4.1)

Equation (4.1) has the advantage of behaving symmetrically when the price is in-

verted, i.e., $1 expressed in GBP instead of 1 expressed in USD. Tick-by tick Price

movements of GBP/USD is plotted in figure (4.7)

Using the definition of autocorrelation in equation (3.10) for the tick-by-tick GBP/USD

return series, the autocorrelation functions are plotted in figure (4.2) which shows that

the autocorrelation function of the returns converges to zero in a few lags. The nega-

tive autocorrelations at the very short lags in the tick-by-tick return series have been

1Tick-by-tick data is often known as ultra-high frequency data in the literature.
2Data is available at: http://www.truefx.com
3The definition of the price as the average of logarithmic bid and ask quotes is very similar to

defining the price as the logarithm of the average, and the numerical difference between these two
definitions is insignificant as explained in (Ulrich et al., 1990)
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Date Time Bid Ask

20100501 00:00:00.250 1.55315 1.55413

20100501 00:00:00.251 1.55322 1.55418

20100501 00:00:00.469 1.55313 1.55413

20100501 00:00:00.470 1.55313 1.55410

20100501 00:00:00.472 1.55342 1.55378

20100501 00:00:00.474 1.55310 1.55410

20100501 00:00:00.476 1.55319 1.55415

20100501 00:00:00.477 1.55335 1.55385

20100501 00:00:00.562 1.55340 1.55378

20100501 00:00:00.790 1.55308 1.55406

20100501 00:00:00.791 1.55333 1.55381

20100501 00:00:00.987 1.55340 1.55374

20100501 00:00:00.996 1.55338 1.55374

20100501 00:00:00.998 1.55306 1.55406

2010 0501 00:00:00.999 1.55314 1.55411
...

...
...

...

Table 4.1: The first 15 rows of GBP/USD Bid-Ask spread, 1 May 2010. Time is measured
to the nearest millisecond.

Figure 4.1: Price movements of tick by tick GBP/USD exchange rate for the whole month
of May 2010.
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widely observed in the literature. The negative autocorrelation at the first lag suggests

a fast mean reversion of the price at the tick level which is due to the action of market

makers [(Goodhart and O Hara, 1997), (Cont et al., 1997), (Cont, 2001)]. The justifica-

tion behind the convergence in figure (4.2) is quite simple. If returns reveal significant

correlations, then these correlations can be used to form a simple trading strategy with

positive returns. However, such strategies reduce the correlations, except in very short

time scales which represents the time the market takes to react to new information.

This correlation time is typically several minutes and could be even shorter for foreign

exchange markets that have a high volume of trading everyday. In figure (4.2), it is

safe to assume that for τ > 68 the correlations are zero which means it roughly takes

4 seconds for the market to incorporate new piece of information.

Figure 4.2: Autocorrelation Function (γ(τ)) of tick data. The confidence intervals are
the dashed blue lines.

Using all the available information at tick-by-tick level seems to lead to efficient

estimators, unfortunately the returns at the very highest frequencies (tick-by-tick) can

be influenced by quoting intensity. In order to minimize the effects related to the

process of price formation and to avoid micro-structure noise, the literature suggests

subsampling at intraday levels, i.e., using frequencies that are still within a day as long

as these subsamples series are noise free. Some parts of this chapter follow the norm

of using 5-minute data which is widely used in the literature [(Ulrich et al., 1990),
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4.2 Data

(Dacorogna et al., 1993),(Andersen et al., 2001c), (Gencay et al., 2001a), (Gencay

et al., 2001b)] except in section (4.4.2) where it is explained why 5-minute intervals

are preferred to other frequencies. Section (4.4.2) also gives a remedy for how to

overcome the problem of micro-structure noise while keeping most of the available data.

Subsampling throws away most of the available data. For example, at the sampling

frequency of 5 minutes per data point, there are only about 288 data points per day,

while sampling at frequency of 1 minute per day there are about 1,440 data points, and

sampling at frequency of 1 second per day there are about 86,400 data points.

The data used in this part of the chapter is five-minute GBP/USD closing prices

for the period of 1 April 2009 - 1 April 2011 (in Greenwich Meantime) in their raw

formats. The 1-minute observations are purchased from Olsen and Associates1 and are

further sampled at lower (5-minute and 1-day) frequencies.

Foreign exchange market is very unique in finance. First, it is a worldwide market

with no business hour limitations, therefore each day has 24 hours worth of data and

it is only inactive during weekends and national holidays. The first observation of the

week arrives at 22:30 Greenwich Mean Time (GMT) on Sunday with the opening of the

Asian markets and the last observation comes from the West Coast of the USA at about

22:30 (GMT) on Friday. Second, it is geographically diversified and spreads around the

world and specifically this characteristic of the FX market has been the subject of

several studies in which the effects of geographical locations on the autocorrelation

functions of FX returns has been investigated [(Dacorogna et al., 1993), (Guillaume,

2000)]. Third, it has a significant high trading volume which shows it is one of the most

liquid asset classes in the world and the bid-ask spreads are virtually zero and any new

information is reflected in the price immediately. According to Bank of International

Settlements, its volume on 5 September 2013 reached $5.3 trillion 2 which is equivalent

to more than $757 for every single person on earth on that day3. Table (4.2) lists a

summary of the data.

1Available at: http://www.olsendata.com. Person to contact with: Rakhal Dave, rakhal@olsen.ch
2In September 2013, the volume was on average $4 trillion. Available at:

http://www.bis.org/publ/rpfx13fx.pdf
3Assuming that the population of earth is 7 billion.

92



4.3 Intra-day Return

Symbol Observations Start End

1-minute GBP/USD 728,630 01/04/2009,00:01:00 01/04/2011,00:00:00

5-minute GBP/USD 145,750 01/04/2009,00:05:00 01/04/2011,00:00:00

Daily GBP/USD 625 01/04/2009 01/04/2011

Table 4.2: Each day has 24 hours. There are 60 1-minute intervals and 12 5-minute
intervals in an hour which leads to 1440 1-minute intervals and 288 5-minute intervals
within a day.

4.3 Intra-day Return

Similar to chapter 3, the simple rate of return (rt) and the continuously compounded

rate of return (Rt) on an asset are defined as:

rt =
Pt − Pt−1

Pt−1
(4.2)

Rt = ln(Pt)− ln(Pt−1) = ln(rt + 1) ≈ rt (4.3)

Also recall from chapter 3 that estimating the mean and the variance of returns

using a sample of daily observations:

µ̂ =
1

T
(ln(PT )− ln(P0)) (4.4)

σ̂2 =
1

T

T∑
t=0

((ln(Pt)− ln(Pt−1))− µ̂)2 (4.5)

If using daily observations, there are T observations that can be used to give us

an estimate for σ2. Imagine now instead of having price observations at the end of

the day, prices are observed at the end of every minute and the market for an asset

that is open all day long (for example an FX rate like GBP/USD). There are now

(24×60 =)1440×T observations for estimating the variance, σ2. If prices were observed

at 5-minute intervals, there would be (1440
5 =)288 × T observations and if prices were

observed at the end of every hour, there would be 24×T observations available. Having

more observations within a day (intra-day) at hand gives us more precise estimate than

when using daily returns.
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Since for estimating a monthly volatility 21 daily observations and for estimating

an annual volatility 252 daily prices are used, similarly intra-day observations can also

be used to give an estimate for daily volatility. Historical volatility is an unobserved

variable but as the time horizon shortens volatility could ”virtually” be treated as an

observed variable and that is why when intra-day observations are used for estimating

the daily variance, ”realised” volatility replaces ”historical” volatility. The idea behind

using model-free measures of volatility based on realised returns goes back to (French

et al., 1987) where daily observations are used for computing monthly realised variances.

With the availability of intra-day data, it has become possible to improve the measure

of the historical variance with the concept of realised variance, a concept which has

been frequently used in the literature since (Andersen et al., 2001a). The use of intra-

day data and notion of realised variance has given birth to the ongoing new research

course of volatility modeling using intra-day data.

4.4 Realised Variance, RV

Assume that for an asset that is active 24 hours a day, there are m observations within

a day. For 1-minute observations and a 24-hour trading window, m = 1440 and for 5-

minute observations m = 288. The ith observation on day t can be denoted as St+ i
m
−1

and the closing price on day t is St+m
m
−1 = St. The ith 5-minute return is:

Rt+ i
m
−1 = ln(St+ i

m
−1)− ln(St+ i−1

m
−1) (4.6)

Having m return values, an estimate of the daily variance from the intra-day squared

returns can simply be defined as:

R̂Vm,t =

m∑
i=1

R2
t+ i

m
−1

(4.7)

There is a very important difference between equations (4.7) and (4.5) which is to

do with not dividing the sum of squared returns by m in equation (4.7). If the sums

in equation (4.7) is divided my m, then R̂Vm,t would be an estimate for a 5-minute

variance, whereas, the aim is to estimate the daily variance. Deleting the m gives a

total variance for the 24-hour window.
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Mean Stand. Dev. Skew. Kurt. Q(40)a Q2(40)b

5-minute R 7.69e-07 0.0004486 -0.3065196 16.64147 304.0244 12422.2008

1-Day R 0.0001637 0.0061924 -0.0687485 3.759824 36.6128 94.8903

Table 4.3: Full summary statistics of GBP/USD returns from 01/04/2009, 00:05:000
through 1/04/2011, 00:00:00 at two different frequencies. a: Ljung-Box test statistics for
up to fortieth order serial correlation in returns. b : Ljung-Box test statistics for up to
fortieth order serial correlation in squared returns. χ2

40;0.1 = 51.805 and χ2
40;0.01 = 63.691

and χ2
40;0.005 = 66.756

In equation (4.7), the mean of 5-minute returns is not subtracted since it is so small

that it will not impact the variance estimate. The summary statistics of the data is

presented in table (4.3).

The mean of the 5-minute GBP/USD is considerably smaller than its standard

deviation. It is also interesting to note that the daily GBP/USD returns compared

to the daily S&P500 returns show much less evidence of negative skewness (compare

tables (3.5) and (4.3) which is typical of foreign exchange rates.

4.4.1 Properties of Realised Variance

Figure (4.3) illustrates two important stylised facts about realised variance which have

been documented widely in the literature. The classic references on realised volatility

include (Andersen et al., 2001b) and (Andersen et al., 2001a) with (Andersen et al.,

2009) giving a thorough comparison between historical volatility and realised volatility.

Under suitable conditions (high liquidity and no microstructure noise), realised

volatility is an unbiased and highly efficient estimator of return volatility as discussed

in (Andersen et al., 2001b) followed by (Barndorff-Nielsen and Neil, 2002). The top-

left panel of figure (4.3) shows the time series of daily realised GBP/USD variance

calculated from intra-day squared returns using equation (4.7), whereas, the bottom-

left part shows the daily close-to-close squared returns GBP/USD. Notice how much

more irregular and noisy the bottom panel of the figure is in comparison with the

realised variance which stems from the fact that realised variances are much more

precise indicators (less noisy) for the daily variance than are daily squared returns.

This is the first classified property of realised variance as an estimator for the volatility.

Figure (4.3) shows the GBP/USD realised variance series and the daily squared

return series with their corresponding autocorrelation functions, in which the lag order
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4.4 Realised Variance, RV

Figure 4.3: The top row of graphs show the daily realised variance and the autocorrela-
tions of the daily realised variance. The bottom row of graphs show the daily close-to-close
squared returns and their autocorrelation functions from the GBP/USD exchange rate

on the horizontal axis refers to the number of days. The difference in the degree of

persistence in the top-right and the bottom-right parts of figure (4.3) is striking. This

comparison resembles another important stylised fact of realised volatility: realised

volatility is extremely persistent which indicates that volatility could be predictable for

horizons longer than a month as long as intra-day data is used. This fact has been

documented widely in the literature such as (Andersen et al., 2003), (Andersen et al.,

2005) and (Corsi, 2009) where a simple framework for forecasting realised volatility is

set up.

The top panel of figure (4.4) shows a histogram of the realised variance series and

the bottom panel of figure (4.4) exhibits the histogram of the natural logarithm of

realised variance. It can be seen that the level of realised variance series is strongly

positively skewed with a right tail (leptokurtic), whereas, the logarithm of realised

variance is much more closer to a normal distribution. Since realised variance is a sum

of squared returns, it is understandable why the histogram of the realised variance is

not close to a normal distribution and very useful that a natural logarithm function
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4.4 Realised Variance, RV

Figure 4.4: The histogram of the daily realised variance in the top panel and the histogram
of the daily close-to-close squared returns in the bottom panel from the GBP/USD exchange
rate.

Mean Stand. Dev. Skew. Kurt. Q(40)c

RV a 0.0000469 0.0000352 2.521707 16.36266 1289.8305

Ln RV b -10.34129 1.082329 -1.545135 5.103155 2501.0507

Table 4.4: The sample covers April 1, 2009 through April 1, 2011. a: The distribution
of realised variance RVt b: The distribution of logarithmic realised variance, ln(RVt). c:
Ljung-Box test statistics for up to fortieth order serial correlation. χ2

40;0.1 = 51.805 and
χ2
40;0.01 = 63.691 and χ2

40;0.005 = 66.756

of the realised variance results in a distribution that is close to a normal distribution.

The approximate log normal property of realised variance is another stylised fact:

ln(RVm,t) ∼ N
(
µRV , σ

2
RV

)
(4.8)

The statistics in the top panel of table (4.4) summarises the distribution of the

realised variance, it is right-skewed and leptokurtic. In contrast, the skewness and

kurtosis for the logarithmic realised variance, ln(RVt) shown in the bottom panel of

the table, are much closer to the Gaussian distribution. The kurtosis has decreased

by a factor of 3.2 and the skewness has decreased in absolute value by a factor of

1.63. The Ljung-Box statistics indicate strong serial correlation in the realised daily

variances, which is in line with the significant Ljung-Box statistics for the squared (non-

standardised) returns in the top panel of table (4.3). However, the Q2(40) statistic for
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Mean Stand. Dev. Skew. Kurt. Q(40)c Q2(40)d

Ra 0.0001637 0.0061924 -0.0687485 3.759824 36.6128 94.8903

Standardised Rb 0.0155267 0.8742985 0.0354926 2.703293 28.6123 44.4142

Table 4.5: a: The daily returns cover April 1, 2009 through April 1, 2011. b: The
distribution of daily returns standardised by realised volatility. c: Ljung-Box test statistics
for up to fortieth order serial correlation in returns. d: Ljung-Box test statistics for up to
fortieth order serial correlation in squared returns. χ2

40;0.1 = 51.805 and χ2
40;0.01 = 63.691

and χ2
40;0.005 = 66.756

the 1-Day return in table (4.3) (94.8903) is much smaller than the Q(40) statistics in

table (4.4). This reflects the fact that, relative to the daily realised variances, the daily

squared returns are very noisy proxies for the variance (and hence for the volatility),

since this noise brings down the persistence in the underlying volatility framework.

The fourth stylised fact is that the daily returns divided by the square root of

realised variance are very close to an independently and identically distributed standard

normal distribution:

Rt√
RVm,t

∼i.i.d N(0, 1) (4.9)

The statistics in table (4.5) refer to the two daily returns Rt (raw-return) from

equation (4.3) in the top row and Rt√
RVm,t

from equation (4.9) in the bottom row.

The return series is approximately symmetric (slightly left-skewed) with a mean that

compared to the standard deviation is negligible. The sample kurtosis shows more

probability mass in the center and in the tails of the distribution relative to the normal

(leptokurtic). The Ljung-Box test statistic indicates no serial correlation in returns, but

strong serial correlation in squared returns. These results are consistent with section 3.4

and the extensive literature documenting fat tails and volatility clustering in returns,

going back to at least (Mandelbrot, 1963).

The difference in the statistics of the standardised return is striking compared to

results of the raw-return. First, the sample kurtosis and skewness indicate that the

standardised returns are better approximated by a Gaussian distribution. Second, in

contrast to the raw returns, the standardised return displays no evidence of volatility

clustering. The Ljung-Box statistics for the standardised return squared is 44.4142

which is much smaller than the χ2 critical value even at α = 10%.
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Since RVm,t can only be computed at the end of day t, the result from equation

(4.9) is not immediately functional for forecasting purposes. For instance if at 8:00

am on a Monday, a measure for the realised variance of that day is required, only

the information from 22:30 GMT on Sunday with the opening of the Asian markets

is available. There are two possible solutions to this problem. First, it is possible to

forecast the quadratic variations of the return series at the preferred frequency and use

these predicted values to calculate the realised variance. Recall from table (4.3) that

the Ljung-Box statistics for the 5-minute return squared series is 12422.2008 which is

186 times greater than χ2
40;0.005 = 66.756 and indicates strong persistence. The other

solution would be to forecast the realised variance itself since from table (4.4), it is clear

that ln(RV ) is also highly persistent. Section (4.5) is devoted to modeling the intraday

return squared series and section (4.6) consider these two solutions for forecasting the

realised variance.

4.4.2 Microstructure Noise

In an ideal situation, the daily variance for day t+ 1 can be calculated from:

RVm,t+1 =

m∑
i=1

R2
t+ i

m

=

m∑
i=1

(
ln(Pt+im)− ln(Pt+(i−1)m)

)2
(4.10)

However when dealing with intraday and high frequency data observed price series

PObservedt is different from the actual underlying price series PUnobservedt due to the

process of price formation and market microstructure noise such as bid-ask bounces

and discreteness of price changes. If POt is the observed price series and PUt is the

unobserved price series, then:

POt = PUt + et (4.11)

and if ROt is the observed return series and RUt is the unobserved return series then:

ROt = RUt + e′t (4.12)

where et and e′t are assumed to be the microstructure noise series in the price and

the return series. Inserting equation (4.12) back into equation (4.10), for the observed

return series:
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RVm,t+1 =
∑m

i=1(RO
t+ i

m

)2

RVm,t+1 =

m∑
i=1

(
RU
t+ i

m

+ e′
t+ i

m

)2
(4.13)

And for the unobserved return series:

RVm,t+1 =
m∑
i=1

(RU
t+ i

m

)2 (4.14)

Clearly the realised variance computed from equation (4.13) is higher than the

realised variance estimated from equation (4.14) and hence the realised variance com-

puted by using sum of return squared series is noisy and different from actual realised

variance.

The presence of microstructure noise in high-frequency financial data makes the

realised variance estimator unreliable. Among others, (Ulrich et al., 1990), (Dacorogna

et al., 1993) provide good surveys on the issues one faces when dealing with intraday

observations. One of the first articles in the literature that dealt with estimating the

volatility in the presence of microstructure noise goes back to (Zhou, 1996). Others

include (Andersen et al., 2003) and (Hansen and Lunde, 2006) offer a more general and

thorough frameworks for understanding the dynamics of microstructure noise. This

area of research is very much active and there are different solutions for computing

realised variance while dealing with the microstructure noise. The following sections

will provide two widely used solutions.

4.4.2.1 Subsampling, RVSUB

Since the presence of microsutructure noise increases as the sampling frequency for

intraday returns increases, perhaps the simplest way to overcome the microstructure

noise problem is to construct a grid of intraday returns that are sampled less frequently.

For instance instead of using 1-minute intervals, larger intervals could be used, maybe

5-minute intervals or 20-minute intervals which are the two most frequently used in

the literature. There is a trade off between using larger intervals and useful data, so

one shouldn’t use larger intervals without optimising (minimising) the microstructure

noise. Here we show how this is done.
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Assume that the unobserved price series and hence the unobserved return series have

become observable, the higher the sampling frequency (smaller intervals), the more pre-

cise the estimation of the realised variance (and hence volatility) will be. However, in

practice the unobserved return series are not observable, and as sampling frequency

increases, the noise also increases and it decreases the chance of achieving an unbiased

estimator. This is the typical variance-bias trade-off problem cited in the literature

[(Hansen and Lunde, 2006) and (Bandi and Russell, 2008)]. So to overcome this prob-

lem, lower frequencies could be used at the expense of throwing away information. The

choice of sampling frequency depends on the asset and even the optimal sampling fre-

quency for an asset changes over time. For very liquid assets with high trending volumes

usually sampling frequencies are between 1-minute and 5-minute intervals, whereas, for

less liquid assets sampling intervals are much larger.

To choose the correct sampling interval, a graphical tool called the variance signa-

ture plot has become very popular since (Andersen et al., 2000). The process consists

of three steps. First computing RVm,t for different sampling frequencies (m) from the

finest grid available to 60 minutes (m often going from 1 to 60 minutes, for liquid as-

sets). Second, the average of RV across days are plotted on the vertical axis against

all the sampling frequencies on the horizontal axis. Finally, the smallest sampling fre-

quency at which the average RV stabilises and does not change much for larger values

than this number, is chosen as the optimal sampling frequency.

Figure (4.5) presents the variance signature plots for GBP/USD for two years, the

top plot uses information from 01/04/2009 to 01/04/2010 (hence year1) for averaging

realised variances and the bottom plot uses information from 01/04/2010 to 01/04/2011

(hence year2). For m = 1, the average realised variance is calculated using 1-minute

returns and it is averaged across 01/04/2009-01/04/2010 for the top row graph and

averaged across 01/04/2010-01/04/2011 for the bottom row graph in figure (4.5). For

m = 2, 2-minute returns are used for constructing the average realised variance, and so

forth. There is little difference between the top row and the bottom row graphs as to

which sampling frequency (m) is the optimal. 5-minute sampling frequency is chosen

the optimal sampling frequency at which the balance between variance and bias is met

and this is the reason in figure (4.3), 5-minute return have been used.

From figure (4.5), realised variances based on moderate frequencies appear to be

somewhat unbiased, however at higher frequencies realised variances are not reliable and
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4.4 Realised Variance, RV

Figure 4.5: Volatility signature plots for GBP/USD from 01/04/2009 to 01/04/2011
divided over two years. Average realised variance on the vertical axis and sampling fre-
quencies on the horizontal axis.

transfer the microstructure noise. For example at the 1-minute frequencies, the realised

variance is about 1.7 times larger that the realised variance at 5-minute frequencies.

4.4.2.2 The Average Realised Variance Estimator, RVAV E

When using RVSUB considerable amount of information is thrown away, which is waste-

ful. Another simple way which has proved to be performing well among other realised

variance estimators is proposed by (Zhang et al., 2005) and is called the ”average re-

alised variance” estimator.

The process is as follows. Having used the variance signature plot to find the optimal

sampling frequency leads to m = 5, hence 5-minute returns are chosen to compute the

realised variance. Since the original data is in 1-minute intervals, it is possible to

calculate 5 different (overlapping) RVSUB estimators. The first RV1,SUB estimator

starts the 5-minute interval at midnight. The second RV2,SUB estimators starts from

one minute past midnight, the third RV3,SUB estimators starts from the two minutes

past the midnight and so on until RV5,SUB estimators starts from 4 minutes past

midnight. Therefore, 1-minute returns have been used to calculate 5 RVSUB estimators
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Figure 4.6

Mean Stand. Dev. Skew. Kurt. Q(40) Q2(40)d

ln(RVAV E)a -12.96577 1.093 0.251 3.29 5983.2

Standardised Rb 0.0027 0.993 0.032 2.9032 19.4213 23.3204

Table 4.6: a: The distribution of logarithmic average realised variance, ln(RVt). b:
The distribution of daily returns standardised by average realised volatility, Rt√

RVAV E,t

. c:

Ljung-Box test statistics for up to fortieth order for serial correlation. d: Ljung-Box test
statistics for up to fortieth order serial correlation in squared returns. χ2

40;0.1 = 51.805 and
χ2
40;0.01 = 63.691 and χ2

40;0.005 = 66.756

at the 5-minute frequency. By averaging the 5 RVi,SUB estimators the so-called Average

RV estimator is defined as:

RVAV E,t =
1

m

m∑
i=1

RVi,SUB,t (4.15)

Figure (4.6) represents the RVAV E,t in the top row and the daily close-to-close

squared returns in the bottom row for GBP/USD. The top panel of figure (4.6) com-

pared with the top panel of figure (4.3), shows that RVAV E,t is a much less noisier

estimator that RVSUB,t.
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It is obvious from comparing table (4.6) with tables (4.5) and (4.4) that ln(RVAV E)

is much more persistent than ln(RVSUB) based on 5-minute returns. Also the standard-

ised returns appear remarkably Gaussian. These results are all in line with (Andersen

et al., 2000), (Zhang et al., 2005), (Hansen and Lunde, 2006) and (Bandi and Russell,

2008).

4.5 Modeling Intra-Day Quadratic Returns

As discussed before, RVm,t (either RVAV E,t or RVSUB,t) can only be computed at the

end of day t, i.e., at the early minutes after the midnight, a measure for the realised

variance for that day is not available. However, there are two possible ways to forecast

the persistent realised variance. The first one is to forecast the realised variance directly,

which seems very likely given how persistent RVAV E,t and RVSUB,t are. The second

way would be to forecast of the quadratic return series at the finest grid and then use

the forecasted intraday return squared series to calculate the realised variance. Recall

from table (4.3) that the Ljung-Box statistics for the 5-minute return squared series is

12422.2008 which is 186 times greater than χ2
40;0.005 = 66.756 and indicates the strong

persistence in squared returns. The two scenarios are both considered here, but first a

framework for forecasting intraday return squared series needs to be set up.

Figure (4.7) plots the price series of GBP/USD for over two years, while figure (4.8)

represents the 5-minute returns, 5-minute squared returns and their autocorrelation

functions. The autocorrelation function for GBP/USD 5-minute returns for up to 24

hours is plotted in top-right part of figure (4.8). Negative autocorrelation is observed

for up to 10 minutes and for few longer lags which could be because, traders might

have different opinions about the impact of news on the direction of price (and hence

the sign of the return). The summary statistics of 5-minute GBP/USD returns are

presented in table (4.3).

Looking at the bottom-right part of figure (4.8), one can see periods of ”
⋃

” shapes

which appear at every 288 lags. There are 288 5-minutes in one day and what this

graph shows, is the important and established evidence of intraday seasonality. This

phenomenon has been reported widely in the literature going back to (Ulrich et al.,
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Figure 4.7: The price series of GBP/USD spot exchange is plotted against time, from
April 2009 till March 2011.

1990), (Dacorogna et al., 1993), (Olsen et al., 1997), (Andersen and Bollerslev, 1997b)

and (Goodhart and O Hara, 1997).

As mentioned, FX markets do not close and are open 24 hours and hence the

intraday patterns reflect the ebb and flow of trading activity across the world. The

squared returns which are the building blocks of volatility fluctuate dramatically over

day. The average squared returns over the 5-minute intervals are presented in figure

(4.9) which reveals a pronounced difference in the values of squared returns over the

day1. The squared returns values reach lows such as 2.4 × 10−5 at 22:55:00 GMT

(interval 276), and highs of around 8.2 × 10−4 at 14:30 GMT (interval 174). This

pattern is closely linked to the cycle of market activity in the various financial centers

around the globe. Table (4.7) summarises the important trading intervals.

1The average squared returns over 5-minute intervals are calculated as follows: The squared return
at 00:05:00 for each day over two years are averaged, then the squared return at 00:10:00 for each day
for two years are averaged, and so forth.
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Figure 4.8: The top part: 5-minute GBP/USD returns and the autocorrelation coeffi-
cients up to lags 288 (24 hours). Negative autocorrelation is observed up to a time lag of
10 minutes for the return series. The bottom part: 5-minute GBP/USD squared returns
up to lag 2880 (10 days).
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Figure 4.9: Intraday squared returns averaged over 5-minute intervals for GBP/USD.

The activity starts at a relatively high level followed by a slow decay between

intervals 45 and 60 which corresponds to the lunch hour in the Asian markets. By

opening European markets around 07:00 GMT squared returns increase followed by

a decrease at around 11:30 GMT. However, it increases significantly by opening of

the US markets at around 13:00 GMT. The squared returns reach their maximum at

14:30 while the European and the US markets overlap. By closing hour of the European

market, around 17:00 GMT, the activity declines until it goes up slightly at 22:00 GMT

with opening hours of Sydney. The robustness of these intraday ups and downs are

confirmed in similar studies such as Dacorogna et al. (1993), Andersen and Bollerslev

(1997b), (Andersen and Bollerslev, 1997a) and Andersen and Bollerslev (1998b).

The behavior of a time series is called seasonal if it shows a periodic structure in

addition to less regular movements. The pronounced systematic ups and downs in

figure 4.8 is an indication that usual modeling of intraday quadratic variation would

dangerous since they simply cannot accommodate strong regular cyclical patterns. One

of the most frequent situations that arises from analysing high frequency financial data

is the fact that, long memory and seasonality are both evident in the dynamics of intra-
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4.5 Modeling Intra-Day Quadratic Returns

Trading Event Time (GMT) Interval

Tokyo, open midnight 0

Hong Kong, open 1:00 am 12

Asia lunch hour 3:55 am-5:10 am 45-60

Frankfurt, open 7:00 am 84

London, open 8:00 am 96

European lunch hour 11:30 138

New York, open 1:00 pm 156

Chicago, open 2:00 pm 168

Maximum reached 2:30 pm 174

London, close 5:00 pm 204

Sydney, open 10:00 pm 268

Minimum reached 10:55 276

Table 4.7: Trading sessions and events according to GMT time.

day data. The presence of seasonality and long memory at intraday levels could be

problematic since, the presence of seasonalities in a long memory process may obscure

the underlying low-frequency dynamics. The periodic component pulls the calculated

autocorrelations down, giving the impression that there is no persistence other than

particular periodicities and hides the long memory feature of the data. Also, strong

intraday seasonalities (like the ones observed in figure 4.8) may induce distortions in

the estimation of volatility models which are based on the dynamics of squared returns,

such as realised volatility.

In order to extract intraday seasonality a model of intraday returns which are widely

used in the literature since (Andersen and Bollerslev, 1997a) and (Gencay et al., 2001a),

is used:

rt = vtstεt (4.16)

where rt is the raw return, vt is the long term volatility, st is the seasonal volatility

and εt is the identically and independently distributed innovations 1. Squaring both

sides of equation 2, taking in natural logarithm and dividing both sides by two leads

to:

1On the left hand side of equation 4.16 rt can have positive or negative values. On the right hand
side of the equation vt and st can only have positive values and εt can have positive or negative values.
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4.5 Modeling Intra-Day Quadratic Returns

log|rt| = log|vt|+ log|st|+ log|εt| (4.17)

An obvious route would be to set up a framework that deals with filtering out the

underlying intraday seasonalities first. Modeling intraday seasonalities began by the

works of (Ulrich et al., 1990) and (Dacorogna et al., 1993) in which the sum of three

polynomials corresponding to the distinct geographical locations of the market are

used. However, this method didn’t become very popular as depending on the asset the

effects of the geographical locations change. There are other averaging and smoothing

methods ((Taylor, 2010)) in the literature but the most dominant one has been the

Fast Fourier Transform (FFT) widely used in the literature starting from (Andersen

and Bollerslev, 1997a), (Andersen and Bollerslev, 1998b) and (Phillips, 1999). Among

others (Martens et al., 2002) give a comparison between available methods for filtering.

They specifically compare how much filtering the squared returns help in improving the

forecast performance. They use different combinations of FFT and GARCH models and

conclude that filtering the intraday data with FFT first and then using an estimator

to forecast the volatility seems to be the most reasonable framework.

The estimation of the FFT (similar to the one used in(Dacorogna et al., 1993)) is

dependent on several decisions (selecting the interaction terms conditional on the shape

of the periodic trends) which are based on the researcher’s view of the data. Also, in

order to remove the short-term intraday periodicities more parameters are required

which is then not desirable.

A simple wavelet method similar to the one used in (Gencay et al., 2002) can

be utilised for extracting intraday seasonality that does not depend on a particular

model selection criterion or parameter choices and can be used on any high-frequency

data. This method is based on a wavelet multi-scaling approach which decomposes the

data into low and high frequency components of data by applying a discrete wavelet

transform. This method was explained in section 2.4.5.

Equation 4.17 provides an additive decomposition of log|rt|. In order to break log|rt|
into log|vt| and log|st| we have applied wavelets (similar to the ones used in (Gencay

et al., 2001a) (Nason, 2008)) on log|rt|. The type of the wavelet transform used is

a Maximal Overlap Discrete Wavelet Transform (MODWT) which is used mostly for

extracting seasonalities from high frequency data. A nine level MODWT is utilized to
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4.5 Modeling Intra-Day Quadratic Returns

Return Squared Return Absolute Return

5-minute filtered GBP/USD 1.48 9.46 9.33

5-minute GBP/USD 1.3 7.94 9.13

1-Day GBP/USD 1.39 2.15 1.9

Table 4.8: The summary of the Modified R/S test statistic for the 5-minute return, 5-
minute filtered return, daily return and their squared and absolute terms. The Critical
Values are as follows: 90% : [0.861, 1.747], 95% : [0.809, 1.862], 99% : [0.721, 2.098]

decompose the log|rt| at the 5−minute frequency. The Daubechies least asymmetric

family of wavelets (LA(8)) was utilized in maximal overlap discrete wavelet transfor-

mation.

The filtered returns are defined as:

log(ft) = logft,1 + logft,2 + logft,3 + ...+ logft,9. (4.18)

where logft corresponds to intra-day seasonal volatility (st) and high frequency

components of the innovations (εt) obtained from MODWT details. As a result of this

decomposition the series left corresponds to log|vt|.
To explain the right hand side of Equation (4.18) and using the jargons used in

chapter 2: logft,1 is the first detail in MODWT and it associated with 5 × 20 = 5−
minute changes which shows the highest frequency part of the innovations. Similarly,

logft,2 is the detail 2 and deals with 5 × 21 = 10− minute periodicities and is the

second highest frequency part of the innovations. The highest detail logft,9 contains

1280 minutes (approximately 21 hours) periodicities and since there are 1440 minutes

in a day, it corresponds to intraday dynamics. The filtered absolute returns, therefore,

are free from any intra-day periodicities and innovations.

In the bottom part of figure 4.10 the autocorrelations of the filtered 5−minute

absolute returns are presented. Now that the intraday seasonalities have been removed

the slow decaying rate of the autocorrelations have become more clear. It is clear from

table 4.8 that the 5-minute squared returns and the 5-minuted filtered squared returns

show signs of long range dependence. The Ljung-Box for the filtered return squared is

9.955× 106 which is much larger than the Ljung-Box for the 5-minutes return squared

which is 94.8903.

Using the three estimators described in chapter 3, the GPH, the Whittle and the
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4.5 Modeling Intra-Day Quadratic Returns

WMLE estimators parameter d is estimated for the 5-minute filtered return squared in

ARFIMA(0,d,1) and the results are presented in table (4.9):

GPH Whittle WMLE

5-minute Filtered Return Squared
0.3390

(0.0019)
0.3759

(0.0051)
0.3816

(0.0025)

Table 4.9: d̂ and their standard errors in brackets for the 5-minute absolute filtered
returns using the GPH, the Whittle and the WMLE estimators in ARFIMA(0,d,1).

The autocorrelations of the filtered 5-minute absolute returns for GBP/USD is

plotted in figure 4.10 which exhibit the autocorrelation coefficients of the unfiltered

and filtered squared returns. The comparison between the periodic and hyperbolic

decay rates are clear between the two series.

Figure 4.10: Sample autocorrelation of the 5-minute GBP/USD return and the MODWT
filtered 5-minute absolute returns of GBP/USD spot exchange rate from 1, April 2009 to
March 2011
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4.5 Modeling Intra-Day Quadratic Returns

4.5.1 Temporal Aggregation at Intraday level

Similar to section (3.6) a natural question arises whether some sampling intervals are

superior relative to others in terms of estimating the persistence parameter and whether

temporal aggregation changes the degree of long-range dependence. The comparison

between equations (3.73) and (3.37) and also the results from the simulations show

that the decay rates of the aggregated ARFIMA(0,d,0) and ARFIMA(0,d,0) are the

same (τ2d−1) but whether seasonality can cause a problem or whether intra-day data

inherently do not fall into this category is an important question. As widely noted by

(Zhou, 1996), (Olsen et al., 1997), (Andersen and Bollerslev, 1998b) and (Dacorogna

et al., 2001) the results regarding the degree of persistence in the return squared or the

volatility of intra-day data can be puzzling and often contradicts the works of (Drost

and Nijman, 1993) in terms of the aggregation results of the volatility models. There

have been some contradictory evidence in the literature regarding the estimates of the

long-memory parameter when working with intraday data. For example (Mcmillan

and Speight, 2008) document results through estimating d for different currencies at

30-minute, 1-hour, 2-hour and 4-hour frequencies and find that temporal aggregation

apart from the upward bias discussed in section (3.6) does not contaminate the esti-

mations. While (Bollerslev and Wright, 2000) find different volatility measures to be

performing differently when they are temporally aggregated, for example return squared

and absolute return as volatility measures have shown signs of being noisy estimators

hence leading to a downward bias when temporally aggregated.

There could be three possible explanations that help solving the puzzle. Perhaps

the most basic explanation that often gets ignored is that the theoretical explanation in

section (3.6.2) is not valid when strong intraday periodocities are present. After all xt

in equation (3.67) is assumed to follow an ARFIMA model, and not an ARFIMA model

contaminated with strong periodocities which is the case for almost all intraday financial

time series, either exchange rate or indexes. That is why, the filtered GBP/USD 5-

minuted squared returns have been sampled at 30-minute, 60-minute, 10-hour, 1-day

and 5-day intervals and the long-memory parameter d has been estimated using the

two GPH and WMLE estimators in ARFIMA(0,d,1). The results are presented in table

(4.10):
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4.5 Modeling Intra-Day Quadratic Returns

GPH WMLE n

5-minute
0.3390

(0.0019)
0.3759

(0.0051)
145750

30-minute
0.3516

(0.0089)
0.3815

(0.0067)
24291

60-minute
0.3418

(0.0127)
0.3560

(0.0076)
12145

10-hour
0.3476

(0.0467)
0.3634

(0.0260)
1214

1-Day
0.3269

(0.0508)
0.3345

(0.0307)
627

5-Day
0.2582

(0.1375)
0.2612

(0.0982)
125

Table 4.10: d for the filtered 5-minute, 30-minute, 60-minute, 10-hours, 1-day and 5-day
sampling intervals using the GPH and the WMLE estimators in ARFIMA(0,d,1).

Starting with 5-minute intervals, there is clear sign of long-rage dependence both

with GPH and WMLE estimators. The d̂ increases at 30-minute intervals which was

expected due to the upward bias from aggregation. However at 1-hour sampling inter-

val there is a decrease followed by a slight increase at the 10-hour sampling interval.

It maybe that somewhere between 30-minute and 60-minute sampling intervals d̂ de-

creases. From table (4.10), it is clear that at 30-minute sampling interval temporal

aggregation has led to an upward bias in the estimation of d, however at 10-hour

and 1-day sampling interval d̂ has decreased. This has two explanations either the

MRA (Multi-Resolution Analysis) filtering hasn’t been powerful enough to filter out

all seasonalities and there is still some periodocities left in the data that distort the

autocorrelations, or recall from equation (3.78), that as h→∞ d̂ doesn’t depend on h

(sampling interval). Since 10−hours has 120 5−minute and 1-day has 288 5−minute
intervals the latter explanation seems logical. Furthermore, the bottom part of figure

(4.10) doesn’t show any signs of seasonalities so it is more likely that seasonalities have

been removed from the data. At 5-day sampling interval, there is only 125 data points

left which explains why it has such a high standard error. These results are consistent

with the results from (Mcmillan and Speight, 2008).

The other two possible explanations out of the three that might help solving the

puzzle of temporal aggregation at intraday data are as follow. First, the discussion

by (Bollerslev and Wright, 2000) that not not all volatility estimators follow the same
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4.6 Modeling Realised Variance: Scenarios A & B

rule when it comes to temporal aggregation. Second, perhaps the reason why there are

contradictory results in the literature is because not all the studies use exactly similar

sampling intervals and do not start from exactly the same sampling interval. This

rather basic decision as to what the smallest sampling frequency is, can be crucial. As

discussed above from equation (3.78), as h → ∞ d̂ s do not depend on the sampling

frequency. So how long this effect will take to happen, depends on what the first

sampling frequency is, what sampling frequencies are used in temporal aggregation and

how low the last sampling frequency is. It is obvious that even if for a single time series,

different combinations of aggregation could result in different outcomes in terms of the

direction of d̂ s.

4.6 Modeling Realised Variance: Scenarios A & B

Since ln(RVAV E) proved to be more persistent than ln(RVSUB), an ARFIMA(0,d,2)

is chosen for modeling ln(RVAV E). The one-day-ahead return variation forecast, is of

huge interest for practitioners. As discussed earlier, a practitioner in the morning might

need a volatility forecast for that day. Two scenarios have been considered here. First

is using ln(RVAV E) for yesterday and forecast a volatility estimation for today and the

second is to use the intraday returns of past days to forecast the intraday returns for

today and then calculate the realised variance based on these forecasted returns. We

call this RVR.

The standard approach to study the forecast performance of volatility models is by

regressing the true integrated variance on day t+1, on a constant and various estimator

forecasts, the so-called Mincer-Zarnowitz regression (Mincer and Zarnowitz, 1969). For

example, for ln(RVAV E), forecasting performance is evaluated by running the following

regression:

IVt+1 = α+ β ×RVAV E,t+1|t + ε (4.19)

Where RVAV E,t+1|t is the one-day ahead forecast of integrated variance from day

t to day t + 1 using the AR(1) prediction. Equation (4.19) regresses the true realised

variance IVt+1 from day t = 1 on a constant and the variance forecast using RVAV E

estimator. If the RVAV E estimator performs well, the forecast should be unbiased and
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the forecast error small. In other words, α = 0 and β = 1 and the R2 of the regression

is close to 1. Thus, the null hypothesis of H0 : α = 0 and H0 : β = 1 against the

alternatives H1 : α 6= 0 and H1 : β 6= 1. The results are presented in the table below:

Constant RVAV E RVR Rˆ2

RVAV E
-0.55

(0.003)
1.268

(0.089)
0.941

RVR
-0.063
(0.003)

1.567
(0.013)

0.895

Table 4.11: Out-of sample Mincer-Zarnowitz regression results for RVAV E and RVR

It can be seen from the table above that RVAV E is a better performance, although

RVR is only marginally worse.
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Conclusion

This thesis is concerned about estimating and measuring the volatility and quadratic

variation at diffeent scales. The long-memory feature of financial returns is of a relavant

theme that is dealt with under temporal aggregation at both intra-day and daily levels.

This thesis is divided into three sections.

Chapter two of the thesis, documents the wavelet multiresolution analysis as an

alternative method to the Short Time Fourier Transform that does not contradict with

the Heisenberg’s Uncertainty Principle. This chapter defines wavelet function, filters

and coefficients. It explores the usefulness of multiresolution analysis for decomposing

the time series into several sub-series which is used in chapter 4, and the concept of

wavelet variance is defined which is used in chapter 3.

Chapter three with the use of daily S&P500 return for a decade, lists important

empirical properties of the daily returns. Long memory processes are defined, and

Autoregressive Fractional Integrated Moving Average (ARFIMA) models as a good

candidate for modelling the data are proposed. Several testing and estimating methods

are explored, such as the modified rescaled range (R/S) test, the Geweke-Porter-Hudak

log periodogram regression (GPH). The maximum likelihood estimation for estimating

d and the computational aspect of it gives its place to the approximate versions such as

the Wavelet Maximum Likelihood Estimator. With the use of simulation the power of

the three tests are compared. These are the GPH test, the Whittle estimator (another

method for the approximate maximum likelihood estimation), and the WMLE. GPH

tests seems to be the one that gives closer estimates to the true values of d but with

higher standard errors.
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The dillema of calculating risks at different horizons is explored and as a conse-

quence temporal aggregation and its effects on estimating the parameters in ARFIMA

processes are studied. We show theoretically and by simulations that temporal ag-

gregation does not change the decay rate of a long-range dependent process for when

0 < d < 1/2 but it will result in an upward bias in estimating the parameter d in

ARFIMA(0,d,0). One way to avoid this is to increase the short memory parameters

of an aggregated ARFIMA(0,d,0). This chapter ends with calculating d̂ for squared

daily returns, squared 5-day returns, and squared 10-day returns in ARFIMA(0,d,0)

and ARFIMA(0,d,1) using the GPH method.

Chapter four of the thesis, analyses the five-minute Foreign Exchange (GBP/USD) re-

turns for two years. With the use of intraday data, after listing the empirical properties

of the returns, the concept of realised variation (RV) is defined and it is contrasted with

the unobserved estimation of the volatility. With the existence of microstructure noise,

two ways of calculating the realised variance is proposed, these are the RVSUB (sub-

sampling realised variance) and the RVAV E (the averaging realised variance). RVAV E

proves to be more capable to minimise the microstructure noise effect when calculating

the realised variance. Both measures of realised variation and the 5-minute squared

returns show signs of long-range dependence and ARFIMA models prove to be good

model choices.

Similar to chapter three, the effects of temporal aggregation at intra-day levels are

also monitored. There have been some contradictory evidence in the literature regard-

ing the estimates of the long-memory parameter when working with intraday data.

The direction of the decrease or the increase of long-range dependence (d) seems to be

different among intraday studies. Claims about whether d̂ increases or decreases when

the sampling frequency increases have been made and most of them are contradictory.

We propose three possible explanations. First, since at intraday levels strong intraday

periodocities are present, estimating long-memory parameters can result in misleading

outcomes. Only after removing the seasonality, d̂ s can be reliable. Second, because of

the existence of microstructire noise at intraday levels, different volatility measures per-

form differently when they are temporally aggregated (first proved in Bollerslev200081)

and since absolute returns or squared returns have been used as estimators for volatility,

the results will be different. The third explanation, which according to our knowledge

has not been mentioned anywhere else, goes back to when h → ∞ d̂ s do not depend
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on the sampling frequency as discussed in (3.78) and since not all studies use exactly

similar sampling intervals and do not start from exactly the same sampling interval,

getting different results are not avoidable.

The main contribution of this thesis lies in its approach to the effects of temporal

aggregation when the original data follows an ARFIMA process. This is an active area

of research and as for future research, we intend to focus our attention on mature and

emerging indexes and study the effects of temporal aggregation at these two different

environments.
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Appendix A

Proof for equation 4.3:

We know that:

rt =
Pt − Pt−1

Pt−1
(1)

And we need to prove that continously compounded return:

Rt = ln(Pt)− ln(Pt−1) (2)

Since it is the continously compounded return (Rt) that we are concerned, these

are our assumptions:

1. There is an initial amount; A invested.

2. The rate of return is R; could be annual interest rate.

3. Units of time t; could be years.

4. Amount remaining after t units of time, B.

5. Number of times interest is paid within t units of time, n.

For example if the interest is paid twice a year, n = 2 and t = 1 year.

What we are interested in is to simplify r = B−A
A .

First we need to find what B is. For simplicity we first assume that the interest is

paid once a year, so n = 1 (interest is paid annualy).

At t = 0, B=A
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At t = 1, AR is the profit added to A, hence:

B = A+AR = A(1 +R) (3)

At t = 2, R(A+AR) is the profit added to A+AR, hence:

B = A+AR+AR+AR2 = A+ 2AR+AR2 = A(1 + 2R+R2) = A(1 +R)2 (4)

At t = 3, R(A+ 2AR+AR2) is the profit added to A(1 +R)2, hence:

B = A+2AR+AR2+AR+2AR2+AR3 = A+3AR+3AR2+AR3 = A(1+3R+3R2+R3) = A(1+R)3

(5)

For t = T :

B = A(1 +R)T (6)

If n = 2 (interest paid twice a year) then at t = T :

B = A(1 +
R

2
)2T (7)

If n = 12 (interest paid every month) at t = T :

B = A(1 +
R

12
)12T (8)

If interest is paid n times a year then:

B = A(1 +
R

n
)nT (9)

If the interest is paid continously, then n is a large number. In mathematics this

translates to ”n →∞”. What we need to find out is what B is when n →∞, i.e., we

want to find limn→∞B = limn→∞A(1 + R
n )nT .

We first assume that the limit exists and it is L:
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L = limn→∞A(1 +
R

n
)nT (10)

Taking the natural logarithm from both sides:

lnL = ln[limn→∞A(1 +
R

n
)nT ] (11)

lnL = limn→∞ln[A(1 +
R

n
)nT ] (12)

lnL = limn→∞ln[A] + ln[(1 +
R

n
)nT ] (13)

lnL = limn→∞ln[A] + (nT )ln[(1 +
R

n
)] (14)

Since n is a large number, R
n will be a very small number close to zero. Hence

1 + R
n will be close to one. Using the taylor series of expansion and the rule that,

ln(1 + x)→ x for x close to zero:

lnL = limn→∞ln[A] + (nT )
R

n
(15)

Canceling n:

lnL = limn→∞ln[A] + TR (16)

There is no n left in the equation so we could get rid of ”limn→∞”. We are left

with:

lnL = ln(A) + TR (17)

Taking exponential from both sides:

lnL = exp(lnA+ TR) = elnAeTR = AeTR (18)

Now that we have B = AeTR, we come back to what the rate of return is, rt =
St−St−1

St−1
:
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rt =
Bt −Bt−1

Bt−1
=
AeTR −Ae(T−1)R

Ae(T−1)R
(19)

rt =
AeTR −Ae(T−1)R

Ae(T−1)R
=
AeR(T−1)

AeR(T−1)

eR − 1

1
(20)

rt = eR − 1 (21)

Hence:

eR = rt + 1 (22)

Taking exponential from both sides:

R = ln(rt + 1) (23)

Replacing rt with equation(1):

R = ln(
Pt − Pt−1

Pt−1
+ 1) (24)

R = ln(
Pt
Pt−1

) (25)

R = ln(Pt)− ln(Pt−1) (26)

Proof for the equation 3.38, spectral density of ARFIMA(0,d,0):

Recall that xt = (1 − L)−1εt = G(L)εt for an ARFIMA (0,d,0) model. (Priestley,

1981) in section 4.12.3 on page 280 of his book states that if two stationary processes

are linearly related then:

σ2
xfx(ν) = σ2

ε |G(e−iν |2fε(ν), −π ≤ ν ≤ π (27)

Hence:

σ2
xfx(ν) = Wx(ν) = σ2

ε |G(e−iν |2fε(ν) = σ2
ε |(1− eiν)−d|2fε(ν)
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=σ2
ε fε(ν)(1− eiν)−d(1− eiν)−d

=σ2
ε fε(ν)(2− 2cos(ν))−d, as eiν = cos(ν) + isin(ν)

=σ2
ε fε(ν)(2sin(ν2 ))−2d, as 1− cos(ν) = 2sin2(ν2 )

To prove that lim Wx(ν) ∼ σεν−2d as ν −→ 0, we prove that:

limν−→0 [
2sin

ν

2

σ
−1
2d
ε ν

]−2d = 1 (28)

Which can be easily seen:

limν−→0 [
2sin

ν

2

σ
−1
2d
ε ν

]−2d

=limν−→0 [
2
ν

2

σ
−1
2d
ε ν

]−2d

=limν−→0 [
ν

σ
−1
2d
ε ν

]−2d

=limν−→0 [
1

σ
−1
2d
ε

]−2d

=limν−→0 = 1

Proof is complete.

Driving equation 3.36 using spectral formulation:

There are two ways that one can get to equation 3.36, the autocovariance functions

of ARFIMA(0,d,0). Either through the use of spectral formulation of the autocovari-

ance functions or directly using the definition of the variable. We find autocovariance

functions using both ways. First through the spectral formulation:
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κτ = 1
2π

π∫
−π

eiτνWx(ν)dν

= 1
2π

π∫
−π

eiτνσ2
ε (2sin(ν2 ))−2ddν

= (1/2π)
π∫
−π

(cos(ντ) + isin(ντ))σ2
ε (2sin(ν2 ))−2ddν

= (1/2π)
π∫
−π

cos(ντ)σ2
ε (2sin(ν2 ))−2ddν

= [σ
2
ε

2π ]
2π∫
0

cos(ντ)(2sin(ν2 ))−2ddν

Using integration by substitution:

κτ = [
σ2
ε

2π
2−2d+1]

2π∫
0

cos(
ν

2
2τ)(sin(

ν

2
))−2d 1

2
dν

κτ = [
σ2
ε

π
]2−2d

2π∫
0

cos(t2ν)(sin(t))−2ddt, t =
ν

2
dt =

1

2
dν

κτ = [
σ2
ε

π
]2−2d[

πcos(πτ)Γ(−2d+ 2)22d

(1− 2d)Γ(
−2d+ 1 + 2τ + 1

2
)Γ(
−2d+ 1− 2ν + 1

2
)

]

κτ =
σ2
ε (−1)kΓ(−2d+ 2)

(1− 2d)Γ(1 + τ − d)Γ(1− τ − d)

κτ =
σ2
ε (−1)kγ(1− 2d)

Γ(1 + τ − d)Γ(1− τ − d)
, as Γ(−2d+ 2) = (1− 2d)Γ(1− 2d)

κτ =
Γ(1− 2d)Γ(ν + d)

Γ(d)Γ(1− d)Γ(ν + 1− d)
σ2
ε , as Γ(ν + d) = (−1)k[

Γ(d)Γ(1− d)

Γ(1− ν − d)
]

Gamma function has the asymptotic approximation that limn→∞
Γ(n+α)
Γ(n)nα = 1, for

α ∈ R if α = 1− 2d, then:

κτ =
Γ(1− 2d)Γ(ν + d)

Γ(d)Γ(1− d)Γ(ν + 1− d)
σ2
ε ∼

Γ(1− 2d)

Γ(d0Γ(1− d)
ν2d−1σ2

ε as τ −→∞ (29)

Driving equation 3.36 directly:
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Recall from equation 3.67, that ARFIMA (0,d,0) can be obtained as:

xt = (1− L)−dεt =
∑∞

j=0
Γ(j + d)

Γ(j + 1)Γ(d)
εt−j

So the autocovariance functions are:

κτ = cov(xt, xt−τ )

κτ = E(xt × xt−τ )− E(xt)E(xt−τ )

κτ = E[(xt)× (xt−τ )]

κτ = E[(
∑∞

j=0
Γ(j + d)

Γ(j + 1)Γ(d)
εt−j)× (

∑∞
j=0

Γ(j + d)
Γ(j + 1)Γ(d)

εt−j−τ )]

κτ = E[(εt+
Γ(1 + d)
Γ(2)Γ(d)

εt−1+
Γ(2 + d)
Γ(3)Γ(d)

εt−2+. . .+
Γ(τ + d)

Γ(τ + 1)Γ(d)
εt−τ+

Γ(τ + 1 + d)
Γ(τ + 2)Γ(d)

εt−τ−1

+
Γ(τ + 2 + d)
Γ(τ + 3)Γ(d)

εt−τ−2 + . . .)×

(εt−τ +
Γ(1 + d)
Γ(2)Γ(d)

εt−τ−1 +
Γ(2 + d)
Γ(3)Γ(d)

εt−τ−2 + . . .)]

Since E(εt−τ × εt−τ ) = E(εt−τ−1 × εt−τ−1) = E(εt−τ−2 × εt−τ−2) = . . . we assume

that the variance equals to σ2
ε .

κτ =
σ2
ε

Γ(d)2 × [
Γ(τ + d)Γ(d)

Γ(τ + 1)
+

Γ(1 + d)Γ(τ + 1 + d)
Γ(2)Γ(τ + 2)

+
Γ(2 + d)Γ(τ + 2 + d)

Γ(3)Γ(τ + 3)
+ . . .]

Γ(t) is defined as Γ(t) =
∫∞

0 xt−1e−xdx and it follows from the definition that

Γ(t + 1) = tΓ(t) and Γ(n) = (n − 1)!. For example Γ(τ + 1 + d) can be written as

(τ + d)Γ(τ + d). The proof follows:

κτ =
σ2
ε

Γ(d)2
Γ(τ + d)Γ(d)

Γ(τ + 1)
[1 +

(τ + d)× d
(τ + 1)× 1× Γ(1)

+
(τ + d+ 1)(τ + d)× (1 + d)(d)
(τ + 2)(τ + 1)× 2× 1× Γ(1)

+

(τ + d+ 2)(τ + d+ 1)(τ + d)× (2 + d)(1 + d)(d)
(τ + 3)(τ + 2)(τ + 1)× 3× 2× 1× Γ(1)

+ . . .] =

σ2
ε

Γ(d)2
Γ(τ + d)Γ(d)

Γ(τ + 1)
× F (τ + d, d; τ + 1; 1)
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A Gaussian hypergeometric function, is a series of the form as defined by (Grad-

shteyn and Ryzhik, 2007) (page 1005):

F (α, β; γ; z) = 1+
αβ

γ × 1
z+

α(α+ 1)β(β + 1)

γ(γ + 1)× 1× 2
z2+

α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ + 1)(γ + 2)× 1× 2× 3
z3+. . .

(30)

Which then satisfies this condition (Gradshteyn and Ryzhik, 2007) (page 1008):

F (α, β; γ; z) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
(31)

So κτ can be written as:

κτ =
σ2
ε

Γ(d)2
Γ(τ + d)Γ(d)

Γ(τ + 1)
Γ(τ + 1)Γ(1− 2d)

Γ(ν + 1− d)Γ(1− d)
=

σ2
εΓ(τ + d)Γ(1− 2d)

Γ(d)Γ(1− d)Γ(τ + 1− d)

Which is the same as equation 29.

From (Gradshteyn and Ryzhik, 2007) (page 895), Stirling’s approximation is

Γ(z) ∼ zz−
1
2 e−z
√

2π (32)

and further lim|z|→∞
Γ(z + a)

Γ(z)
e−alnz = 1, which can be used to arrive at:

lim|z|→∞
Γ(z + a)
Γ(z + b)

=

Γ(z + a)

Γ(z)
Γ(z + b)

Γ(z)

= ealnz

eblnz
= za

zb
= za−b

Proof is complete.

Driving equation 3.37, autocorrelation functions of ARFIMA(0,d,0):

γτ = κτ
κ0

=

Γ(1− 2d)Γ(ν + d)
Γ(d)Γ(1− d)Γ(ν + 1− d)

σ2
ε

Γ(1− 2d)Γ(d)
Γ(d)Γ(1− d)Γ(1− d)

σ2
ε
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γτ =
Γ(d)Γ(1− d)Γ(1− d)Γ(1− 2d)Γ(ν + d)
Γ(d)Γ(d)Γ(1− 2d)Γ(1− d)Γ(ν + 1− d)

γτ =
Γ(1− d)Γ(ν + d)
Γ(d)Γ(ν + 1− d)

As limn→∞
Γ(n+α)
Γ(n)nα = 1, α ∈ R, if replace α = 1− 2d, then:

κτ = γτ =
Γ(1− d)Γ(ν + d)

Γ(d)Γ(ν + 1− d)
∼ Γ(1− d)

Γ(d)
τ2d−1 as τ −→∞ (33)

Proof for equation 3.69, driving the autocovariance functions of temporally aggregated yT :

We know from equations 3.63 and 3.67 that for an ARFIMA(0,d,0) time series (xt)

and its temporally aggregated series (yT ), we have yT = xt+xt−1 +xt−2 + . . .+xt−(h−1)

and xt =
∑∞

j=0
Γ(j + d)

Γ(j + 1)Γ(d)
εt−j , where t represents units of fundamental time and

T = ht units of aggregate time. The autocovariance functions of an ARFIMA (0,d,0)

given by equation 3.36 are:

κxτ =
σ2
εΓ(τ + d)Γ(1− 2d)

Γ(d)Γ(1− d)Γ(τ + 1− d)

We will also make use of the following equation:

s=M∑
s=1

Γ(a+ s)

Γ(b+ s)
=

1

1 + a− b
[
Γ(1 + a+M)

Γ(b+M)
− Γ(1 + a)

Γ(b)
] (34)

Then the autocovariance function of yT (κy(τ, h)) is:

κy(τ, h) = cov(yT , yT−τ )

κy(τ, h) = cov(
∑h−1

i=0 xt−i,
∑(h+1)τ−1

i=hτ xt−i)

κy(τ, h) = cov(
∑h−1

i=0 xt−i,
∑h−1

i=0 xt−hτ−i)

κy(τ, h) = cov(xt + xt−1 + . . .+ xt−(h−1), xt−hτ + xt−hτ−1 + . . .+ xt−[(h+1)τ−1])
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κy(τ, h) = hκxhτ + (h− 1)κx(h−1)τ + . . .+ κxhτ−h+1 + (h− 1)κx(h+1)τ + . . .+ κxhτ+h−1

κy(τ, h) = −hκxhτ +
∑h−1

i=0 (h− i)κx(hτ−i) +
∑h−1

i=0 (h− i)κx(hτ+i)

κy(τ, h) = −hκxhτ +
∑h−1

i=0

∑h−i
k=1 κ

x
(hτ−i) +

∑h−1
i=0

∑h−i
k=1 κ

x
(hτ+i)

κy(τ, h) =
∑h

k=1[−κxhτ +
∑h−k

i=0 κ
x
(hτ−i) +

∑h−k
i=0 κ

x
(hτ+i)]

Using equation 3.36, the proof follows:

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

∑h
k=1[− Γ(hτ + d)

Γ(hτ + 1− d)

+
∑h−k

i=0
Γ(hτ − i+ d)

Γ(hτ − i+ 1− d)
+
∑h−k

i=0
Γ(hτ + i+ d)

Γ(hτ + i+ 1− d)
]

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

∑h
k=1[− Γ(hτ + d)

Γ(hτ + 1− d)

+
∑h−k+1

i=1
Γ(hτ − 1 + d− i)

Γ(hτ − d− i) +
∑h−k+1

i=1
Γ(hτ − 1 + d+ i)

Γ(hτ − d+ i)
]

Using equation 34:

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

∑h
k=1[− Γ(hτ + d)

Γ(hτ + 1− d)
+ 1

2d
[

Γ(hτ + d− h+ k − 1)
Γ(hτ − d− h+ k − 1)

−
Γ(d+ hτ)
Γ(hτ − d)

+
Γ(hτ + d+ h− k + 1)
Γ(hτ − d+ h− k + 1)

− Γ(d+ hτ)
Γ(hτ − d)

]]

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

×
∑h

k=1[− Γ(hτ + d)
Γ(hτ + 1− d)

+ 2
−2d

Γ(d+ hτ)
Γ(hτ − d)

+

1
2d

[
Γ(hτ + d− h+ k − 1)
Γ(hτ − d− h+ k − 1)

+
Γ(hτ + d+ h− k + 1)
Γ(hτ − d+ h− k + 1)

]

Using, Γ(x+ 1) = xΓ(x) for x = −d:

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

×
∑h

k=1[− Γ(hτ + d)
Γ(hτ + 1− d)

+
Γ(hτ + d)

Γ(hτ + 1− d)
] +

1
2d

[
Γ(hτ + d− h+ k − 1)
Γ(hτ − d− h+ k − 1)

+
Γ(hτ + d+ h− k + 1)
Γ(hτ − d+ h− k + 1)

]

κy(τ, h) =
σ2Γ(1− 2d)
Γ(d)Γ(1− d)

×
∑h

k=1
1
2d

[
Γ(hτ + d− h+ k − 1)
Γ(hτ − d− h+ k − 1)

+
Γ(hτ + d+ h− k + 1)
Γ(hτ − d+ h− k + 1)

]
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Replacing h− k + 1 with j:

κy(τ, h) =
σ2Γ(1− 2d)

Γ(d)Γ(1− d)2d
×
∑h

j=1[
Γ(hτ + d− j)
Γ(hτ − d− j) + [

Γ(hτ + d+ j)
Γ(hτ − d+ j)

]

And using equation 34 again:

κy(τ, h) =
σ2Γ(1−2d)

Γ(d+1)Γ(1−d)2(1+2d) × [
Γ(1 + hτ + d− h)

Γ(hτ − d− h)
+

Γ(1 + hτ + d+ h)
Γ(hτ − d+ h)

− 2
Γ(1 + hτ + d)

Γ(hτ − d)
]

Proof is complete.

Proof for equation 3.70, driving the autocorrelation functions of temporally aggregated yT :

The autocorrelation functions for yT = yht are denoted as:

γy(τ, h) =
κy(τ, h)

κy(0, h)
(35)

κy(0, h) =
σ2Γ(1− 2d)

Γ(d+ 1)Γ(1− d)2(1 + 2d)
× [

Γ(1 + d− h)
Γ(−d− h)

+
Γ(1 + d+ h)
Γ(−d+ h)

− 2
Γ(1 + d)
Γ(−d)

]

Using the following equation from (Gradshteyn and Ryzhik, 2007) (page 896):

Γ(1− x)Γ(x) =
π

sin(πx)
(36)

And replacing x with −d+ h and −d− h:

Γ(1 + d− h)

Γ(−d+ h)
=

π

sin(π(−d+ h))
(37)

Γ(1 + d+ h)

Γ(−d− h)
=

π

sin(π(−d− h))
(38)
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Since h is a positive integer and sin(x) is a periodic function, sin(π(−d + h)) and

sin(π(−d+ h)) have the same value, hence:

Γ(1 + d− h)

Γ(−d− h)
=

Γ(1 + d+ h)

Γ(−d+ h)
(39)

And so:

κy(0, h) =
σ2Γ(1− 2d)

Γ(d+ 1)Γ(1− d)2(1 + 2d)
×
[
2

Γ(1 + d− h)
Γ(−d− h)

− 2
Γ(1 + d)
Γ(−d)

]

Replacing above in equation 35:

γy(τ, h) =
κy(τ, h)
κy(0, h)

γy(τ, h) =
σ2Γ(1− 2d)

Γ(d+ 1)Γ(1− d)2(1 + 2d)
×
[

Γ(1 + hτ + d− h)

Γ(hτ − d− h)
+

Γ(1 + hτ + d+ h)

Γ(hτ − d+ h)
− 2

Γ(1 + hτ + d)

Γ(hτ − d)

]
σ2Γ(1− 2d)

Γ(d+ 1)Γ(1− d)2(1 + 2d)
× [2

Γ(1 + d− h)

Γ(−d− h)
− 2

Γ(1 + d)

Γ(−d)
]

And hence:

γy(τ, h) =

Γ(1 + hτ + d− h)

Γ(hτ − d− h)
+

Γ(1 + hτ + d+ h)

Γ(hτ − d+ h)
− 2

Γ(1 + hτ + d)

Γ(hτ − d)

2
Γ(1 + d− h)

Γ(−d− h)
− 2

Γ(1 + d)

Γ(−d)

(40)

Proof is complete.

Proof for equation 3.71, the spectral density functions of aggregated yT :

From equation 3.68, yT takes the form:
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yT =
h−1∑
j=0

(1− L)−dεt−j = (1− L)(−d−1)[1− Lh]εt (41)

Using equations 27 for yT and using the same procedure, used for equation 3.38:

fy(ν, h) =
σ2

2π

(
2sin(

ν

2h
)
)−2(d+1)

(2sin(
ν

2
)2 (42)

Proof is complete.

Proof for equation 3.73, the limiting γy(τ, h):

limτ−→∞ γ
y(τ, h) can be donoted as:

limτ−→∞
h2d+1[(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1]

2h2d+1 − 2
Γ(1 + d)

Γ(−d)

When τ −→ ∞, the numerator is a ∞ + ∞ − ∞ case for which the common

factor with the greatest exponent should be removed from the polynomial. Using,

(x+ y)n =
∑n

k=0

(
n
k

)
xn−kyk:

(τ + 1)2d+1 =(
2d+1

0

)
τ2d+110 +

(
2d+1

1

)
τ2d11 +

(
2d+1

2

)
τ2d−112 +

(
2d+1

3

)
τ2d−213 + . . .+

(
2d+1
2d+1

)
τ012d+1 =

τ2d+1

[
1 + (2d+ 1)1

τ + d(2d+ 1) 1
τ2 +

(2d+ 1)d(2d− 1)
3

1
τ3 + . . .+ 1

τ2d+1 12d+1

]

And

(τ − 1)2d+1 =
(

2d+1
0

)
τ2d+1(−1)0 +

(
2d+1

1

)
τ2d(−1)1 +

(
2d+1

2

)
τ2d−1(−1)2 +(

2d+1
3

)
τ2d−2(−1)3 + . . .+

(
2d+1
2d+1

)
τ0(−1)2d+1 =

τ2d+1

[
1− (2d+ 1)1

τ + d(2d+ 1) 1
τ2 −

(2d+ 1)d(2d− 1)
3

1
τ3 + . . .+ 1

τ2d+1 (−1)2d+1

]
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And so (τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1 can be written as:

(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1 =

τ2d+1

[
1 + (2d+ 1)1

τ + d(2d+ 1) 1
τ2 +

(2d+ 1)d(2d− 1)
3

1
τ3

+. . . +τ012d+1+1−(2d+1)1
τ +d(2d+1) 1

τ2−
(2d+ 1)d(2d− 1)

3
1
τ3 +. . .+τ0(−1)2d+1−2

=τ2d+1
[
2d(2d+ 1) 1

τ2 + . . .
]

=2d(2d+1)τ2d−1

And so:

limτ−→∞
h2d+1[(τ + 1)2d+1 + (τ − 1)2d+1 − 2τ2d+1]

2h2d+1 − 2
Γ(1 + d)

Γ(−d)

=τ2d−1 × h2d+1 [2d(2d+ 1)]

h2d+1 − 2
Γ(1 + d)

Γ(−d)

=τ2d−1 × h2d+1 [d(2d+ 1)]

h2d+1 − Γ(1 + d)

Γ(−d)
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