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Abstract

This thesis is concerned with the modeling of financial time series data.
It introduces to the economics literature a set of techniques for this pur-
pose that are rooted in engineering and physics, but almost unheard of in
economics. The key feature of these techniques is that they combine the
available information in the time and frequency domains simultaneously,
making it possible to enjoy the advantages of both forms of analysis. The
thesis is divided into three sections. First, after brifely outlining the Fourier
methods, a more flexible technique that allows for the study of time-scale
dependent phenomena (motivated from a discussion on Heisenberg’s uncer-
tainty principle) namely Wavelet method is defined. A complete account of
discrete and continuous wavelet transformations, and wavelet variation is
provided and the advantages of wavelet-multiresolution analysis over Fourier
methods are demonstrated. In the second section, the statistical properties
of financial returns at 1-day, 5-day and 10-day sampling intervals are stud-
ied using S&P500 index for over a decade, and the links between dependence
properties of financial returns at lower sampling frequencies are explored.
The concepts of temporal aggregation and skip sampling are discussed and
the effects of temporal aggregation on long range dependent time series are
theoretically outlined and then tested through simulations and empirically
via S&P500. In the third section, the variation of two years of five-minute
GBP/USD exchange rate is analysed and the notion of realised variation is
explored. The characteristics of the intraday data at different sampling
frequencies (5-minute, 30-minute, 60-minute, 10-hour, 1-day, and 5-day)
are compared with each other and filtered out from seasonalities using the
wavelet multiscaling technique. We find that temporal aggregation does not
change the decay rate of autocorrelation functions of long-memory data of

certain frequencies, however the level at which the autocorrelation functions



start from move upward for daily data. This thesis adds to the literature
by outlining and comparing the effects of aggregation between daily and
intra-daily frequencies for the realised variances, which to our knowledge is
a first. The effect temporal aggregation has on daily data is different from
intra-daily data, and we provide three reasons why this might be. First, at
higher frequencies strong periodocities distort the autocorrelation functions
which could bring down the decay rate and mask the long memory feature
of the data. Second, the choice of realised variance is crucial in this matter
and different functions can result in contadictory outcomes. Third, as the
order of aggregation increases the decay rate does not depend on the order

of the aggregation.
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Introduction

1.1 Background

The research on the variation of financial time series has attracted different groups of
audience, ranging from hedge fund mangers to macro-economists and econo-physicists.
Over the past 3 decades, appealing properties of financial asset returns have been
uncovered and have assisted to build appropriate models. At the heart of investment
finance, there is the concept of the Efficient Market Hypothesis (EMH). No other
concept in finance, has been discussed and scrutinised as much as EMH. The history
of EMH spans more than a century E] and the building blocks of the past 50 years of
research depend on whether EMH is accepted, half accepted or rejected.

The Efficient Market Hypothesis (EMH) proposes that future prices cannot be pre-
dicted based on past information and one cannot achieve excessive returns using past
information. Even if EMH holds, a vast majority of financial economists and risk man-
agers are not interested in predicting the future price but they are rather interested in
forecasting the future volatility, and have used for this purpose a variety of parametric
and nonparametric econometric models such as generalised autoregressive conditional
heteroscedasticity (GARCH) or stochastic regime switching models. Volatility mea-
surement is of particular value to option traders as they are essentially trading in

volatility.

!George Gibson in 1889 in his book ”The Stock Markets of London, Paris and New York” explains
the idea behind efficient markets: ”When shares become publicly known in an open market, the value
which they acquire may be regarded as the judgment of the best intelligence concerning them”.



1.1 Background

The need for discovering and better understanding the dynamics of financial markets
reaches its peak every time the world faces a financial crisis. The recent financial crises
over the past 30 years, 1987’s Black Monday, 1997’s Asian Financial Crisis, early 2000’s
recession, and the very recent 2008’s Global Financial Crisis, have brought further
attention to the characteristics of financial time series. These events which are often
known as ”fat tail” events when do happen have catasrophic consequences which often
last a long time and that is why they are some times given the ”Black Swans” titleﬂ

It has been argued that nobody (with a few exceptions such as Janet Yellen and
Nouriel Roubini)ﬂ saw the most recent crisis coming (Annunziata, 2011)).

Economists have been widely criticised for ruling out the possibility of sudden vari-
ations such as the one on 19 October 1987 when the Dow Jones Industrial Average
plunged 22.61% in one day, or the one on 29 September 2008 when the same index saw
a 6.98% drop in just a few hours. Assuming that returns are normally distributed, the
probability of the 6.98% loss is approximately 10~!? which is expected to happen once
every billion years. And the probability of the 20—standard deviation loss that hap-

pened on 19 October 1987, is less than one in 10°°

086

, which is expected to happen once
every 10°° years, a number so big that is very hard to imagine EL Of course it is now
widely accepted that the fundamental cause of the global financial crash was purely
human: over—optimisnﬁ But under conventional financial theory, the likes of 6.98%
and 22.61% daily losses in the history of financial markets were not even supposed to
happen. Yet they did.

Perhaps, the assumption of a manageable risk central to all financial models oper-
ating at all scales is to be blamed. What is clear is that these models are not capable
of justifying a natural concept in financial time series which is the notion of multi-scale

features. There was a time when only daily returns were available, and a risk manager

was expected to estimate a measure for the volatility (as volatility is an unobserved

!The term ”Black Swan” is used by Nassim Taleb in capitalized form to refer an event with three
attributes: rarity, extreme impact, and retrospective predictability. Please see (Taleb| [2008) and (Taleb
et al., 2009) for more details.

“Nouriel Roubini is the Yale economics Professor who has been widely known as Dr. Doom as
a consequence of predicting the recession. To read an article in New York times about his lecture
at International Monetary Fund on 7 September 2006 please see (Mihml [2008). Janet Yellen is an
economist who is now the head of Federal Reserve. The Fed’s December 2007 transcripts reveal that
she thought the possibilities of a credit crunch developing seem too real.

3Remember that the universe is only 10'° years old.

*Interested readers are referred to: (Stanton et al),[2010) and (Annunziatal, [2011))



1.2 Time, Frequency, Time-Frequency, and Time-Scale

variable) using daily data. However nowadays intraday data has become widely avail-
able and we are now bound to utilise the more dense observations to maximise the
efficiency of our estimations. It would be possible to have an even more precise esti-
mate of daily volatility and to virtually treat daily volatility as an observed variable.
With data being available at different frequencies what has become clear is that, finan-
cial data contain several structures, each occurring on a different time scale. Clearly,
a new model needs to be flexible enough to justify abrupt changes and should capture
the multi-scale behaviour of the data and should also be compatible with the statistical
properties of high frequency data.

The study of high-frequency data has shed lights into the field of finance. The
availability of such data has made the unobservable process of volatility, observable.
Modelling the second moment of returns has suddenly changed from parametric mea-

sures to simple nonparametric models.

1.2 Time, Frequency, Time-Frequency, and Time-Scale

One of the motivations behind the analysis of a time series in the frequency domain is
to find out any periodic features of the data. If there is only one cycle in the time series,
then the autocorrelation function reveals this cycle. However, if a series contains several
cycles, the autocorrelation function is not capable of separating out such periodicities.
The ideal situation is to be able to determine how many cycles exist in the data and how
important each cycle is with respect to each other. The frequency domain approach
has the power to reveal the information from the data that is not readily available from
the data in the time domain.

A time series is a variable that changes successively in time. Electromagnetic waves,
speech or audio signals, temperature readings, or stock prices are all examples of time
varying signals. One way to represent the signal is to show how the amplitude of a
signal changes over time (which is the common way in economics). But it is not the
only way. In fact, in many other fields (such as in physics, engineering, astrophysics,
geophysics, psychology, language, biology and music) the frequency representation of
a signal is the one that matters most. In these areas statistical analysis in the time
domain do not play a major role but it is rather in the frequency domain that the

characteristics of a signal are analysed.



1.2 Time, Frequency, Time-Frequency, and Time-Scale

Region Frequency
Radio <3x10°
Microwave 3 x 109 — 3 x 1012
Infrared 3x 10" — 4.3 x 10™
Visible (Red-Violet) | 4.3 x 10" — 7.5 x 10
Ultraviolet 7.5 x 1014 — 3 x 107
X — rays 3 x 107 —3 x 107
Gamma rays > 3 x 101

Table 1.1: Electromagnetic waves

To realise how different the frequency domain environment can be, consider visible
light as an example. Visible light is an electromagnetic wave and its frequency can vary
between 4.3 x 10™ to 7.5 x 10 and it is the frequency of the wave that determines the
colour of the wave (Someda, 2006). The frequencies inbetween form the colours in the
rainbow. Table summarises the frequencies for visible and invisible waves.

In the time domain a variable Y; at time ¢ is analysed in models in which the focus
is on the properties of the variable dependent on time ¢, such as covariance between Y.
and Y; at distinct dates r and s. In the frequency domain variable Y; is analysed as a

weighted sum of periodic functions of the form cos(vt) and sin(vt):

Yi=p+ /Owoz(u) -cos(vt)dv + /OWB(V) - sin(vt) dv (1.1)

The goal in the frequency domain is to find out how important cycles of different
frequencies are. This thesis is not trying to explain the techniques in the frequency
domain but it is rather suggesting that analysing a variable in both frequency and time
domains could lead to insightful findings. This thesis is proposing that the statistical
analysis of time series in economics and finance would be explored better in both two
domains.

Fourier transformations are the most common way to transform the information
of a variable from time domain to frequency domain, but they are not widely used in
standard econometrics. If the variable is observed originally in the time domain then
Fourier transform, summarises the information of the time series in an alternative way
rather than in time. It summarises the content of the variable as a function of frequency

and does not involve with any time information. Short Time Fourier Transform (here-



1.2 Time, Frequency, Time-Frequency, and Time-Scale

after abbreviated to STFT) was developed for bringing a balance between time and
frequency by sliding a window across the time series and taking the Fourier transform
of the windowed series. Perhaps one of the reasons Fourier transforms are not very pop-
ular among economists is because Fourier transforms look only for sinusoids globally
and therefore are not suitable for evolving behavior of stock markets, as complete sinu-
soid patterns are rarely encountered in empirical finance. The time information is lost
completely in Fourier analysis, whereas, time information is very critical in economics
and finance. STFT in only applicable for covariance stationary processes and once the
window function is chosen, the frequency and time resolution of the window are fixed
for all frequency bands and all times. So for a signal observed throughout a length
of time, which has different frequency components which might appear, disappear, or
re-appear at different times, STFT might not be the most suitable technique to work
with.

This thesis provides a solution to overcome the shortcomings of STFT by using
Wavelet Transformations. Wavelet analysis is a non-parametric method that allows
for the study of time-scale dependent phenomena. Wavelet Transformations are akin
to Fourier Transforms but do not lose the time dimension in the transformation. The
wavelet transform differs from the STFT by using an entirely different set of basis
functions (not sinusoids) which adaptively partition the time-frequency plane to better
capture the range of low-frequency to high-frequency events.

The power of wavelets is their ability to analyze (decompose) features of a signal
which vary over both time and scale. A natural concept in financial time series is the
notion of multi-scale features. That is, an observed time series may contain several
structures, each occurring on a different time scale. For instance, stock market consists
of multiple layers of investment horizons (time-scales) varying from milliseconds to
years. Wavelet techniques possess an inherent ability to decompose time series into
several sub-series which may be associated with a particular time scale. In other words,
wavelet methods present a lens to the researcher, which can be used to zoom in on the
details and draw an overall picture of a time series at the same time. Unlike Fourier
transforms, they have the capability to decompose processes on different time scales,
but still preserve time localization.

The main motivation in this thesis is to uncover the characteristics of volatility

measures at different scales ranging from intraday to more than a day sampling in-



1.3 Plan of the thesis

tervals. The activities in financial markets involve dealers in different geographical
locations who have different time horizons, home currencies, information access, trans-
action costs, and risk attitudes. The time horizons vary from computer traders trading
at nanoseconds to intraday dealers, who close their positions every evening, to long
term investors and central banks who make decisions depending on much longer hori-
zons (months, quarters or even years). In such a complex structure, market participants
follow different strategies to reach their goals. The development of computer technol-
ogy, has eased the paths for academic researchers to have access to intraday data. With
more information available, there has been a rapidly growing body of empirical studies
on the behavior of the intra-daily volatility measures.

For decades historical volatility has been an unobserved variable but as with the
advancement in technologies intraday data have become available, and time horizons
such as secondly and minutely can now be used, volatility could ”virtually” be treated
as an observed variable. Using intra-day observations for estimating volatility, has
replaced ”historical” volatility with "realised” volatility. The use of intra-day data
and notion of realised variance has given birth to the ongoing new research course of
volatility modeling using intra-day data. This thesis utilises Wavelet methodologies

and apply them on intraday data to further uncover the characteristics of the data.

1.3 Plan of the thesis

This thesis is divided into four parts. The second chapter of the thesis after the in-
troduction starts by investigating the drawbacks of STFT. In doing so, the concepts
of time and frequency localisation with regards to Heisenberg’s Uncertainty Principle
are explored: it is impossible to achieve an optimal resolution simultaneously in the
time and frequency domains. This obvious fact then motivates the need for a more
flexible environment. Wavelet transforms are defined as mathematical transformations
that intelligently overcome the Heisenberg’s principle without violating the theorem.
Continuous and discrete wavelet functions, filters, and coefficients are then defined. Dif-
ferent examples of wavelet family are provided which are used for comparisons against
Fourier transforms. The perception of multiresolution analysis using wavelet decompo-

sitions is expounded, which leads into the definition of wavelet variance and covariance.



1.3 Plan of the thesis

The third chapter used 10 years of daily observations of S&P500 and starts with
describing the data and giving the definitions of the asset returns. The dependence
properties of financial returns are discussed and concepts such as long-memory pro-
cesses, Autoregressive Fractional Moving Average (ARFIMA) are explained in details.
Different methods for testing and estimating ARFIMA models are expounded, namely
the R/S test statistic, the GPH estimator, and the Wavelet Maximum Likelihood Esti-
mator. Section 3.5 explores other properties of financial returns and the famous ques-
tion ”What is the relevant horizon for risk management?” is proposed and answered.
This chapter then continues by exploring concepts of skip sampling and temporal aggre-
gation followed by identifying the effects of temporal aggregation on ARFIMA(0,d,0)
theoretically and through simulations. This section ends by analysing the S&P500
daily, 5-day and 10-day returns. Some of the proofs are provided in the appendix.

The third chapter starts by studying the properties of intraday data and it used
the tick-by-tick and also 5-minute GBP/USD exchange rates for different periods of
time, one month and two years respectively. The concept of realised variance and
different ways of approaching the estimator are discussed. The effects of temporal
aggregation are dealt with and the chapter ends with considering two different scenarios
for forecasting the realised variance.

The fourth chapter is the conclusion which brings the results of chapters two and
three together and gives suggestions for future research.

This thesis has used a selection of widely available software: R version 3.0.1 for
some of the estimations and diagrams. Whenever a package is used, corresponding
authors are referenced. R is an object oriented General Public License software which
is written in C, Fortran and R languageﬂ Matlab version 20106 (mainly the Wavelet
toolbox for showing pictures of different wavelet functions)EL and Stata version 13.1 E|
for some of the statistics and diagrams in chapter four. Most of the R codes used for

plotting figures and estimating models are available in appendix.

! Available at: http://www.r-project.org/
2 Available at: http://www.mathworks.co.uk/products/wavelet/
3http://www.stata.com/



Wavelet Methods for
Multi-Resolution Analysis

2.1 Introduction

Wavelets are a relatively new technique for representing the levels of details present in
the function. Wavelets are mathematical tools for hierarchically decomposing functions
which could resemble anything; time series, images, or even curves (see (Stollnitz et al.|
1996)) for other applications). This decomposition will make it possible to describe
an object in terms of a coarse shape and a range of details. The birth of the formal
subject of wavelets in time series analysis and digital signal processing goes back to
1980s, however it has only been over the last decade that wavelets have started to
find their ways into economics. From a more general perspective, wavelet analysis has
rather completed the existing analysing techniques in some areas such as in spectral
analysis, but in some areas it has been capable of shedding lights on matters where
little progress has been made such as in de-noising.

Most of the existing literature of wavelets in time series analysis require extensive
knowledge of Fourier and Windowed Fourier Transforms (with the exceptions of (Ram-
sey,, |1999),(Ramsey, 2002), and (Rual 2012))). This chapter of the thesis is trying to
familiarise the readers with wavelet techniques without going through all the exten-
sive mathematical proofs. References are given for interested readers to seek the full

proofs. However, before defining wavelet techniques, one needs to go on a quick journey



2.2 Spectral Analysis

from time domain to the frequency domain, and then from time-frequency domain to
time-scale domain. This will help to understand the intuition behind the reasons why
wavelet approach is the preferred (and complementary) method compared to existing
methods for analysing financial time series in domains other than the time domain.
Wherever needed, examples have been given to ease the flow of the discussions.

This chapter starts with giving brief definitions of spectral analysis and Fourier
transform. After familirising the reader with spectral tools, the chapter extrapolates
the shortcomings of (Short Time) Fourier Transforms, defines two dimensional time-
frequency plane and discusses the limitations of time-frequency space using Heisenberg
uncertainty principle. By building up the motivation for a new platform in which time
series can be analysed more precisely, wavelet functions, continuous and discrete wavelet
transforms are defined. Examples of the wavelet family are provided, the concept of

multiresolution analysis is explained and wavelet variance are defined.

2.2 Spectral Analysis

A time series is a set of observations made sequentially in time and it is a process that
is varying in time. Often a graph of its value plotted against time is referred to as
the variable itself. A time domain analysis is aimed to reveal the sequence of events

within the data. That is, the value of a variable (Y;) at time ¢ is described in terms of

t=+o00

+—_ oo in models of similar form:

a sequence of innovations [e]

1=00
Yi=put) Vie (2.1)
1=0

:+oo

where the focus is on analysing the properties of [Y}]izfoo in the time domain and
how different functions of the return series of Y; are inter-connected. However, this is
not the only way to describe, analyse and study a time series, signal, variable, or a
function. There are two approaches in time series analysis: time domain analysis and
frequency domain analysis. A frequency domain analysis describes the data in terms of
sinusoidal functions to reveal its component sequences whenever they exist in separate
frequency bands. Concepts that emerge frequently in frequency domain are: phase(a),

amplitude(A), frequency(v), and bandwidth (see figure (2.1))). Phase is the location of
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the peak and the trough of the oscillation, amplitude shows the size and power of the

signal.

Y; = Asin(a + vt) (2.2)

Figure ([2.1) shows a simple sinusoidal function for v = 1,a =0,4A = 1,t =1, ..., 20.

Figure 2.1: The distance between the two dotted vertical lines (blue line and the green
line) is the bandwidth.The R codes for plotting the graph is given in appendix.

However, time series in real world do not always look like figure (2.1) and possibly
have several sinusoidal components, with different amplitudes, different phases, and
different frequencies. In the frequency domain variable Y; is analysed as a weighted

sum of periodic functions of the form cos(vt) and sin(vt):

Yi=p+ /07r a(vy) - cos(vit) dvy + /07r B(v2) - sin(vat) dve (2.3)

One of the similarities in between the time and the frequency domains is that, the
analyses are based on the assumption of covariance stationarity. The process Y is said
to be covariance stationary if neither the mean u; nor the autocovariances x; depend
on time t. That is, E(Y;) = u for all t and cov(Y:, Yiyr) = x(7) for all t and for all 7.

Standard time series text books that have included spectral analysis are: (Priest-
ley, |1981), (Harvey, 1991), (Hamilton, 1994]) (799 pages, with only 61 pages on spectral
analysis and the Kalman Filter), (Koopmans, 1995), (Bloomfield, |2000), (Osborn and
Ghysels, 2001)). In economics and finance, the interest in studying business cycles in
1940s led to a new line of research dealing with seasonal fluctuations of macro variables
such as GDP (Burns and Mitchell, 1946). However, research on seasonal fluctuations
seemed not to have received a reasonable interest and economists were relatively reluc-
tant to use a new approach (Miron, 1996). In finance, analysis in frequency domain
didn’t catch on with the econometric analysis in the time domain, even though there
have been several attempts towards bringing the two empirical analyses together. On
one hand, ... the time and frequency domain approaches should not be considered as
competitors and they should rather complete each other(Harvey, 1975). On the other

hand, ... applications of spectral analysis to econometric time series will be less useful

10



2.2 Spectral Analysis

periodicity of most econometric time series, such as business cycles or quarterly
effects, can easily be identified, spectral analysis in these areas will be of only marginal
value (Chan, [2010). It is worth noting that, ”time series” might not necessarily mean
that one is limited in using methods in the time domain but rather it means the original
series is a variable that changes successively in time, hence time series.

The most common transformation that translates the information of a time series
from the time domain to the frequency domain is Fourier transform. During the past
two decades there has been a gradual increase in the application of Fourier methods
in standard econometric text books [for example: (Wang, |2009) and (Belsley and Kon-
toghiorghes| [2009)], and analysis in frequency domain is now regarded as an alternative
approach that helps capturing cyclical behaviour of the data series.

This thesis shall not explain Fourier methods in details but since spectral analysis
using Fourier series act as prerequisites for the rest of the thesis, this chapter starts by

Fourier transforms.

2.2.1 Fourier Transform

f(z) is said to have finite energy if:

| 1t@pd <o (2.4

—00

And if f € L*(R), then its Fourier transform f is defined as:

flv) = /_OO f(x)e " dx,v € R (2.5)

where v is the frequency measured in radians per unit time, 7 is the square root of

—1, and f (v) is the function of frequency. If scalar product is defined as:

(g = [ T@lgla)ds (26)
Then equation [2.5| can be re-written as:

A

Fv) = (™", f(2)) (2.7)

11
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Fourier transform preserves the energy in f(xz). That is, if the inverse Fourier

transform is defined as:

fo = | T e iy = (v () (2.8)

Then:

[ ifopar = [ isPas (2.9)

—0o0 —0o0
Equation (2.9)) is a very important property of Fourier transforms and is known as

Parseval’s identity and is often stated more generally as:

A~

(f(x), 9(x)) = (f(¥),9(v)) (2.10)

It basically states that the integral of the square of the Fourier transform of a
function is equal to the integral of the square of the function itself.
Technically, the right-hand side of 1' defines a function f only when the original

f is absolutely integrable. In practice, one uses:

falv) = ' f(z)e ™ dz,v € R (2.11)

—-n

Under certain conditions,

Jm (1= FllP =t [ (@) = fulw) Py =0 (2.12)

Equation ([2.12) is the mathematical definition of the Fourier transform. However,
the data used in this thesis (and mostly in finance and economics) are inherently discrete

signals of finite length and energy. Hence, it is more practical to use:

F) = =3 f(Am)e S <y < (2.13)

Equation ([2.13]) can be used to provide the link between time domain analysis and

frequency domain analysis. If k,, the autocovariance functions is defined as: k, =

cov(Xy, Xpvp) = E[(Xy — ) (Xeak — pesr)] and if replaced as f(Az) in then:

12



2.2 Spectral Analysis

n

a 1
flv)= py- Z Roivr _n<y<n(2.14)

—n
where, v is frequency measured in radians per unit time, and f(v) is a function of
v called power spectrum. Equation is used in this thesis for calculating power
spectrum using Fourier transforms. Since the data used in this thesis (and generally in
finance) do not have any imaginary parts and are all real observation&ﬂ using:

e = cos(vT) — isin(v7) (2.15)

equation [2.14| can be re-written as:

f) = %[P(O) +23 T (r) cos(wr)],0 < v < (2.16)
=1

which is basically the Fourier transform of the autocovariance function (k;). An
interesting case is the power spectrum of a white noise. Y; = ¢, with E(e, e5) = o2 for
r # s then v(7) = ¢ and it follows from equation that f(v) for a white noise is
a flat line ( %) It is worth mentioning that white noise is called white noise because it
contains equal power across frequency axis which is parallel with white light which is
an equally weighted average of all colours.

Instead of plotting , (a function depending on time) against 7, one can plot f(v)
(a function depending on frequency) defined in equation against v. The autoco-

variance function (k;) and spectral density are very close, since:

Ky = i fw)e dv (2.17)

—T

which results in:

(0) = i f(w)e™dy = i f(v)dv (2.18)

which means that the area under the spectral density function of X; between —

and 7 gives the variance of X7. Worth remembering that the long-run variance is

! A complex number such as z, is written as z = a + ib, where a and b are both real numbers. a
is known as the real part of z and b is known as the imaginary part of z. The conjugate of z which is
often shown by Z is: Z=a —ib

13



2.2 Spectral Analysis

equivalent to the spectral density at the zero frequency.
To observe how Fourier transforms can be useful in adding to the results of time
domain analysis, two examples are given. Two simulated series: y; and w; which are

AR(2) and AR(3) processes respectively, are defined as follows:

yr = 0.5yi1 — 0.7yr—2 + e, t = 1, ..., 512 (2.19)

and

wy = 0.6wi—1 — 0.5wi—g — 0.2wy—3 +€,t =1,...,512 (2.20)

In order to look at the roots of the characteristic function, equations (2.19) and ([2.20))

can be written in lag polynomial notations:

(1-05L+0.7LY)y = e, t = 1,...,512 (2.21)

and

(1—-0.6L+0.5L% +0.2L3w; = ¢;,t =1,...,512 (2.22)

1 has roots, 0.357 + 1.1417 and w; has roots 0.592 4+ 1.004: and —3.683.

AR(2)
-4 0 2 4
L

02

-06 -02

Autocorrelaton

Spectrum

0 5 1015

T
00 01 02 03 04 [

Frequenc
bar\dwgm =0. DDS%

Figure 2.2: From top to bottom: Plots of simulated AR(2), y; (t=512) against time [2.19],
partial autocorrelation functions against lag, and power spectrum against frequency.
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2.2 Spectral Analysis

Figure provides full information about g;. From top, a plot of the variable
against time, sample autocorrelation functions up to 90 lags, and power spectrum
against frequency. Figure shows the same for w;. The Fourier transformation
has transformed the information of y; and w; from the time domain to the frequency
domain which have been plotted at the bottom of both figures against frequency. This
extra information added, helps to identify any cyclical behaviour in the time series.

What this thesis is concerned with is how the information from the time domain
has been transferred to the frequency domain. To illustrate this: figure shows
how originally information of the signal was observed in the first place and figure

shows how Fourier transformation has translated the information.

AR(3)
311 3
I

relauon

04 00 04

AutocOor

Spectrum

0 2 4 6

T T T
00 01 02 03 04 05

Frequency

bandwidth = 0.0161

Figure 2.3: From top to bottom: Plots of simulated AR(3), w; (t=512) against time [2.20],
partial autocorrelation functions against lag, and power spectrum against frequency.

From figure , one cannot extract any information about the content of the
signal in the time domain and from figure , the frequency content of the signal is
not readily available. That is not surprising since, on one hand all the formulae used to
analyse time series in the time domain do not have a place for frequency (v) and on the
other hand, equation gives information about the frequency content of the time
series and does not give any information regarding the location of these frequencies
in the time domain. But could the fact that equation does not provide any
information regarding the time dimension of the signal, be a problem? Yes, we explain

with an example.

15
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60
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Figure 2.4:
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|
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The first signal (top) consists of superposition of two frequencies sin(10t)

and sin(20t), and the second (bottom) consists of the same two frequencies each applied

separately over half of the signal duration.

Frequency

Time

Figure 2.5: The time domain representation of the observed time series. Perfect time

resolution and no frequency resolution!
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2.3 The Short Time Fourier Transform (STFT), or Gabor Transform

Frequency

Time

Figure 2.6: The frequency domain after computing the Fourier transform. Perfect fre-
quency resolution and no time resolution!

For example, figure shows two time series: the first one consisting of two
frequencies (sinl0t and sin20t) for the entire duration of the signal (¢ = 60), and the
second one consisting of the same frequencies (sinl0t and sin20t), but each is applied
separately for half of the signal duration: for the first half (sin10t) and for the second
half (sinQOt)lﬂ As can be seen, the spectrum is quite incapable of realising the difference
between the two signals, even though they are totally two different series in the time

domain.

2.3 The Short Time Fourier Transform (STFT), or Gabor

Transform

As discussed Fourier transforms exhibit the spectral content of the time series in fre-
quency domain, but does not give any information regarding where in time those spec-
tral components actually appear, as seen in figure . This is simply because of the
fact that the sine and cosine functions are not local but global functions and cannot
cope with disappearing or re-appearing a feature of the data. Hence, Fourier transform

on its own is not a suitable technique for time evolving time series such as the ones in

Iplease see appendix for the R codes to generate figure 1|
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2.3 The Short Time Fourier Transform (STFT), or Gabor Transform

high frequency data in finance. Fourier transforms are useful when one is interested in
knowing what spectral components have appeared in the time series but not interested
when ”in time” (the example in the introduction), which is not the case in financial
economics.

What is often done to overcome this problem is to divide the whole time interval into
several shorter time intervals. Then take the Fourier transform for each interval, which
is actually what most of the engineers and physicists do. Because the time interval is
divided into shorter time intervals, this method is called Short Time Fourier Transform
(STFT) or Gabor transfor If f € L(R), then its Fourier transform f was defined

as:

flv) = /_OO f(x)e ¥ dz,v e R (2.23)

So what needs to be explained is how to modify the Fourier transform which can
be achieved by multiplying f(x) by a window function ¢:
Suppose that ¢ also € L?(R), for any v € R and b € R:

By(f)(v) = / f@)p(a — bem* dz = (f(x), 0y,) (2.24)

where Oy, = p(z —b)e ™%, ®,(f)(v) is called the Short Time Fourier Transform
(STFT) of f(z).

The resulting expansion is a function of two parameters: frequency and time shift.
Equation appears to be very ideal since (roughly speaking), there are two element
in the equation, location or time shift(b) and frequency (). The main property is
that the window size is fixed with respect to frequency which produces a rectangular
partitioning of the time-frequency plane, as shown in figure

In order to grasp how stable equation is, one needs to know the concept
of time and frequency localisation, which is what next subsection tries to do in the

simplest possible form.

2.3.1 Time and Frequency Localization

Recall the definition of f(x) with finite energy from equation ([2.4)):

!Named after Dennis Gabor, the famous physicist who won the Nobel Prize in Physics in 1971.
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Frequency

Time

Figure 2.7: The balanced resolution between time and frequency by using the Short Time
Fourier transform.

/OO |f(2)?dz < oo (2.25)

—00
If f(z) has finite energy then it is well localised in the time domain if it satisfies
some decay properties away from a fixed value. For example, f(z) is polynomially

localised near x = xg if (examples are all from (Carmona et al., 1998)):

1

0T s " €R (2.26)

[f(2)] < K

for some positive constants K and k. Or f(x) is exponentially localised if:

1f(z)] < Ke~®l#=20l 1 e R (2.27)

for some positive constants K and «. In equations (2.26) and (2.27) = can be

replaced by v to be regarded as exponential and polynomial frequency localisations.

2.3.2 Heisenberg’s Inequality Principle

Now that the concepts of time and frequency localisations are defined, the stability

of equation ([2.24]) can be explained through the bridge between time and frequency
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2.3 The Short Time Fourier Transform (STFT), or Gabor Transform

localisation which is what Heisenberg’s Inequality Principle is about. According to
Heisenberg (Heisenberg, 1930), it is not possible to achieve optimal localisation simul-
taneously in time and in the frequency domain (look at equation ) Improving a
function’s time localisation will end up weakening its frequency localisation. This fact
is a consequence of the well known Heisenberg Uncertainty Principle.

Consider f € L?(R), and assume that its derivatives f’ and its Fourier transform

are also in L2(R). If the time and frequency averages are defined as:

7= H;’Q / o|f (@) dz, (2.28)
and
7= W}W/Vyf(y)ﬁdy, (2.29)

where the corresponding time and frequency variances are:

1 _
Ay = HfH\//(x — (2))?|f (z)*dx (2.30)

and

1 .
A, = —— v— ()2 f(v)|2dv 2.31
H(m'\//( @)1 )] (2.31)

The Heisenberg uncertainty principle states that:

AN, > (2.32)

N | =

Equation[2.32shows that an improvement of the time localisation (a decrease of A;)
will result in a deterioration in the frequency localisation (an increase of A,). ﬂ It is
crucial to point out that achieving an infinitely precise description of the time-frequency
content of a time series/signal is impossible because of the Heisenberg uncertainty prin-
ciple [(Carmona et al.,|1998), (Reed and Simonl |1976)] and there is always a compromise
between time localisation and frequency localisation. Mathematicians, engineers, and

physicists have all been concerned with finding an ideal (suited for their application)

!The proof of equation is not central to the discussion of this thesis and is not provided here,
a complete proof can be found in (Reed and Simon) [1976)).
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2.4 Wavelet Analysis

time-frequency representation of signals/time series in terms of a time variable and a
frequency (or scale) variable simultaneously.

It should be now obvious that time-frequency representations are not unique. There
are different ways of describing the information content of a signal in time and frequency

domain. Depending on the application, this can change.

2.3.3 Shortcomings of STFT

Equation which is the windowed Fourier transform means that at every point in
the time-frequency domain, a window is chosen which is in accordance with a specific
time and frequency. The duration and bandwidth of the window and thus the resolution
do not change. Hence, the accuracy of STFT is limited by the size and the shape of the
window. If one uses many time intervals will end up with good time resolution but the
very short time of each window would not give good frequency resolution, hence loosing
frequency information. The resolution in the time and frequency domains depends only
on the form of the window and, by the Heisenberg uncertainty principle, it is impossible
to achieve an optimal resolution simultaneously in the time and frequency domains.
Also another drawback of the STFT is that it is applying the Fourier transform to bits
of the observed time series and it will not be able to capture the events that fall outside
the width of the window.

For a more extensive and detailed studies on the drawbacks of Short Time Fourier
Transform please see: (Carmona et al.l [1998), (Ramsey, 2002)), and (Gao and Yan,
2011)).

2.4 Wavelet Analysis

The wavelet transform is a powerful mathematical tool that is receiving more and more
attention in the statistical and financial communities. The power of wavelets is their
ability to analyse (decompose) features which vary over both time and scale. Wavelet
transform instead of partitioning the time-frequency plane into a square grid like STFT,
adaptively partitions the time-frequency plane so that it better captures the range of

low-frequency to high-frequency events. Figure shows how the time-frequency plane

is partitioned (in comparison to figures (12.6)), (2.5)), and ([2.7)).
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2.4 Wavelet Analysis

To overcome the fixed time-frequency partitioning in STFT, wavelet transform ex-
ploits a basic function by (often in the literature called analysing or mother wavelet),
shifting (translating) and scaling (dilating) so that it captures all the features local in
time and frequency. Wavelet transform does not violate the Heisenberg’s principle, it
rather gets round it intelligently. The time-frequency partition analyses high-frequency
events with good time resolution and low-frequency features with good frequency res-
olution which, is in contrast to figure where all frequencies were analysed with
the same fixed-width window. As frequency increases, the number of partitions in the
time domain also increases. This enables a balanced resolution in time and frequency
simultaneously. Recall that in STFT, if the focus is on high frequency characteristics
then the time resolution is lost and vice versa. However, in wavelet transform one
is enabled to have both. This is how wavelet transform overcomes the limitations in

STFT and also does not contradict Heisenberg’s principle.

Frequency

Time

Figure 2.8: The partitioning of the time-frequency plane according to a wavelet transform.

To be precise, Fourier transform and STFT deal with frequency, however, wavelet
transform deals with scaling. Roughly speaking, scale is inversely proportional to the
frequency interval.

If the scale parameter in wavelet transform increases, then it increases the time
support, drops off in frequency domain, hence capturing lower frequencies (figure
a)). On the other hand if the scale parameter decreases, then the wavelet basis decreases
the time support and covers high frequencies (figure d)). Figure shows the
Haar wavelet function, shifted towards time axis and scaled towards the frequency axis.

For an introduction to wavelet analysis that does not go through the rigorous maths
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Frequency
Frequency

Time Time

Frequency
Frequency

|

Figure 2.9: Haar Wavelets, shifted and dilated across time and scale.

Time Time
c d

(Hubbard|, |1998) gives a non-technical introduction to wavelets. For good sources with
moderate levels of technicality (Ramsey, [1999), (Schleicher, [2002), (Crowleyl 2007)), and

(Gallegati, 2008) are some easy-to-follow sources to start with. For a more extensive

and thorough introduction to the theory of wavelets and wavelet transforms, see (Chui

11992)), (Daubechies, [1992)), (Carmona et al., [1998)) (Mallat, 1998)) and (Percival and
2000) (specifically for time series analysis) which are mostly used as main

references.

Recently, there have been a growing number of applications of wavelets in areas

from theoretical econometrics to Capital Asset Pricing Model. (Zhang and Benveniste,

1992)) applies wavelets to Artificial Neural Networks (ANN), (Nasornl [2008)) discusses

the applications of wavelet in statistics using R. (Ramsey and Lampart, [1998) analyse

the scale by scale relationship between expenditure and income for upper middle income

countries, while (Gencay et al.,[2002)) apply wavelets on a much wider scale and multiple

empirical applications in finance. (Vuorenmaal 2004) uses wavelets for a volatility

analysis of 5-minute Helsinki Stock Exchange, and (Fan and Wang, 2007)) apply wavelets

for removing the noise from high frequency data when calculating realised variance.

While (Power and Turvey, 2010) apply wavelets for analysing the volatility of energy

markets, (Vacha and Barunik, 2012)) employs wavelets for studying the co-movement of

energy commodities. Overall, the use of wavelets have started to appear more frequently

in empirical analysis of high frequency quadratic variations.
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2.4.1 Wavelet Functions

4

Haar Shannon or Sinc Daubechies 4 Daubechies 20

T 1T

Biorthogonal Mexican Hat Coiflet

Gaussian or Spline

Figure 2.10: Examples of different types of wavelets. Pictures are drawn in Matlab,
Wavelet Toolbox.

A wavelet as the name suggests, is a small wave. A small wave can decay and grow
in a limited time period which is in contrast with sinwave which keeps on oscillates up
and down.

A wavelet 1(t) is simply a function of time ¢ if it satisfies two basic rules (the

integral of 1 is zero):

/ Y )t =0 (2.33)

A secondary condition imposed on a wavelet condition is unit energyﬂ that is

/oo [(t)|dt = 1 (2.34)

—0o0

Just for the sake of comparison, a sinwave is not an appropriate candidate as

! The energy of a function is defined to be the squared function integrated over its domain. This
condition should hold so that the inverse of wavelet transforms exists.
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J75 | sin(t)[?dt, diverges.
Haar wavelet function is the oldest, the most famous, and the simplest wavelet

basis, named after Alfred Haar:

1 on[0,1/2]
Py =< 1 on[1/2,1]
0 Otherwise

It is straightforward to check whether equations (2.33)) and (2.34]) hold.

Figure 2.11: Haar Basis (mother) Function.

s =27 andu = k277 (2.35)

Equations ([2.33)) and ([2.34]) are two very basic rules of wavelets and guarantee that

wavelet function will have nonzero entries, but all departures from zero must cancel
out. This means that the function 1 has to wiggle up and down the time axis, i.e. it
must behave like a wave; this, together with the assumed decaying property, justifies
the choice of the term wavelet (in French, ondelette). For wavelets to be of practical
use, they should obey a basic rule, known as the wavelet admissibility condition. A

wavelet 1) is admissible if its Fourier transform satisfies:

Y(v) = /_ it gy (2.36)

This condition ensures that 1(v) (where 9)(r) is the Fourier transform, of 1(¢)) goes
to zero quickly as v — 0 Mallat| (1998)), that is:
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2.4 Wavelet Analysis
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