John Innes Centre
Unlocking Nature's Diversity

The agronomic and molecular characterisation of $R h t 8$ in hexaploid wheat

Ania M. Kowalski

A thesis submitted for the Degree of Doctor of Philosophy
University of East Anglia
John Innes Centre
Norwich

September 2015
© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution.

Abstract

Ania M. Kowalski, September 2015

The agronomic and molecular characterisation of Rht8 in hexaploid wheat

Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments and reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear. In the present study, near-isogenic lines contrasting for the Rht8/tall allele in the UKadapted and photoperiod-sensitive variety Paragon were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain.

Rht8 conferred a robust height reduction of 11% regardless of treatment and was more resistant to root-lodging at agronomically-relevant N levels. In the UK, the Rht8 NIL showed a 10% yield penalty due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty was abolished at low N and in irrigated conditions in the UK and Spain. This indicates the utility of Rht8 in reduced-input agriculture. Decreased spike length and constant spikelet number in Rht8 compacted spikes by 15% independent of environment. The genetic interval of Rht8 overlaps with the most recent mapping of the compactum gene on 2DS (Johnson et al., 2008) and future work with the markers found in this study is required to genetically dissect these loci.

Rht8 had been previously fine-mapped to a 1.29 cM interval (Gasperini et al., 2012). Rht8 was further fine-mapped using an RNA-Seq enabled bulked segregant analysis method, as well as utilising SNP-platforms and emerging Triticeae genomic resources to identify molecular markers. Rht8 was reduced to a 1.015 cM genetic interval and syntenic intervals of 1.34 Mb on rice chromosome $4,1.36 \mathrm{Mb}$ on Brachypodium chromosome 5, 2.9 Mb on barley 2 H and 4.25 Mb on Ae. tauschii 2D. Disruption to micro-collinearity was found with Brachypodium and rice, with better but imperfect collinearity with Ae. tauschii and barley. Rht8 was also anchored to a single IWGSC-2 POPSEQ bin and to a 2.3 cM region in the whole genome shotgun-ordered wheat scaffolds.

Acknowledgements

I would like to thank Simon Griffiths, whose unwavering enthusiasm and optimism was reassuring during the project, and whose wider perspective on wheat breeding I learnt a lot from. I valued having the freedom to explore my own ideas during the PhD. I was inspired by the esteem with which he held his family life, which is not universally encountered.

Working with Martin Trick and Ricardo Ramirez-Gonzalez was a highlight of my time. Martin Trick developed the UniGene and v3.3 cDNA (with Sarah Ayling, TGAC) wheat references used in this project and used pipelines developed in previous work to call SNPs in the parent NIL data (Chapters 5 and 6) and de novo assembly. He also produced the raw RPKM values for the basis of the expression analysis. Martin helped to troubleshoot the VarScan SNP-calling process I performed in Chapter 5. He advised me through many frustrations with running data on the JIC Cluster and always gave careful thought to the problems we identified. Ricardo was particularly helpful. Ricardo ran my SNPs on his PolyMarker pipeline before it was publically available, which greatly expedited marker design (Chapter 5). At that preliminary stage there were many curiosities we encountered with the idiosyncrasies of wheat, and I enjoyed thinking about those. He generously helped me with scripting problems I encountered at various stages of alignment and quality-control of the RNA-Seq reads in Chapter 5. Ricardo did the BSA analysis reported in Chapters 5 and 6 , using pipelines he developed in related work, described in Chapter 1. He helped with other bioinformatic queries, was always polite and cheerful and most of all was a supportive friend.

Matthew Moscou and Burkhard Steuernagel assisted me with barley resources before they were publically available and Matt especially helped me to download the Morex assemblies for the Rht8 region.

Cathy Mumford, Simon Orford and Dean Cole made it possible to collect and measure the field results presented in Chapter 3. Field trials are a massive undertaking which I could not do alone. I appreciated their advice and willing support in data collection, locating seed in the barn and managing bagging of ears. Cathy was always extremely helpful, cheerful and attentive and I greatly appreciated her attention to the smallest detail in the experimental design and treatment applications. I also thank Simon and Dean for arranging casual labour to meet my requests and 'keeping an eye' on my glasshouse plants. Many casuals helped to collect and measure data at various stages, bag, harvest and thresh grain for a quick turnaround to enable timely glasshouse experiments and field trials. In particular, Joanna Wolstenholme, Jack Raven and Rachel Mumford helped with tiller measurements and grain processing, and Rajani Awal and Dean in data collection for Chapter 7.

The work to assess the agronomic performance of Rht8 benefited hugely from collaborations which added another dimension to the analysis. Mike Gooding kindly collaborated with us in running field trials at the University of Reading. Those results gave me interesting data which we would not have seen under the field design at Norwich. Richard Casebow oversaw the field trials and was helpful with queries I had during and after with the data collected. Gustavo Slafer also ran two field trials in Lleida, Spain. His post-doc Ariel Ferrante collected the data and also made extensive measurements of other physiological traits which do not feature in this work. I appreciated their commitment and reliability.

Liz Sayers (JIC) provided the seed for the Xgwm261-allele introgressions in Chapter 7 and Fernanda Gonzalez (INTA) provided the seed of Klein 49 and Klein 147.

Richard Goram (JIC) ran large batches of plates for me on alternative PCR machines due to frequent breakages of the PCR blocks. This enabled me to test more quickly the SSR markers described in Chapter 5.

Trevor Paterson (The Roslin Institute) responded promptly and generously to queries using ArkMap, which enabled me to produce the graphics for the synteny comparisons for the thesis (Chapter 5). Chris Groom (JIC) was invaluable in sourcing references, EndNote queries and scanned in many older publications from the library.

Madzia and Sam stepped in last-minute to help me harvest and photograph the spikes of hundreds of plants over the course of a weekend. Three years later, that made part of Chapter 4 possible.

Andrew Davis took great photographs and came out to the glasshouse and field to give me the high-quality images which I could use in the thesis. He also helped set up a camera rig on a trolley with a platform for samples and lent me a camera so that I could take the spike and peduncle photos at any time of day and night. I am grateful he was so amenable to helping with various requests.

Laura Dixon and Alba Farré were great friends and colleagues and I was fortunate to have them to share ideas with. Alba helped with JoinMap in Chapter 6. Laura reviewed my work for presentations and reports. She also proof-read the thesis. I'm grateful that she always had this time to give me. We were particularly well-suited to sharing officespace with our sports kits! Oscar Gonzalez wrote the ImageJ macro used in Chapter 3, and I want to thank him for his good-humour and warm hugs.

Viktor Korzun, Colin Law and the Rht8 community at EWAC gave me a sense of the great genetic tradition of aneuploidy and its significance in the Rht8 story, as well perspective on where my work fitted into this ongoing research. This enabled me to feel pride in my work, which was a moving time for me, coming at the end of the PhD. Feeling the sense of community and the interest and appreciation of my efforts at the conference was the highlight of my PhD experience. The questions and discussions at the conference also inspired the ideas for Chapter 4 and I greatly enjoyed that creativity, which was a welcome contrast to much of the technically-dense work where building a narrative was challenging.

Dedications and thanks

I thank my parents who have always given me freedom to make my own decisions and trust me to go my own way, without comparisons. I thank my twin sister, Madzia, for sharing my experiences and with whom I have a relationship which I am only beginning to understand is very unique. Thanks too to Sam, you've become my closest family. I made great friends with Neal Greenaway, Mark Ashwood, David Thurkettle and Chris Judge, who often checked in on me and I will remember the supportive emails from Rachel Goddard. Hester van Schalkwyk was most encouraging in the final months and uniquely understood the links between wheat, CrossFit and long-distance. All those people I met through Quest, such as Terry, Ruby, Mandy, Maria and Fr Kieran helped me find my place in the most important work I did, on myself and in the growing of my faith, during the PhD years.

To my beautiful Jen: thank you for holding my hand along the runway, your resolute love and firm belief in me and for being committed to making decisions that prioritised my needs with work ahead of yours and ours. I appreciated your understanding when our plans and time together were disrupted by or had to be moulded around my work. It still amazes me that you were able to listen to it all and always be there to support me and react positively, even when I couldn't. The pep talks that you gave helped me along the way and I admire how you delivered them tirelessly, even when the recipient was tired and grumpy and wanted to be outside running around. Your skills in empathy coupled with the switch to our language to make me laugh helped pull me out of the selfcentredness that a PhD can encourage and I esteem you so much for finding that balance. The best part was that I knew even if it all went wrong, it wouldn't change what you thought and felt for me. There is a wonderful sense of security, hope and freedom this gave me and I will forever treasure and ponder that. The pull-up bar gave me a welcome diversion in the final months and helped me to make progress in areas I value so much, thank you for that. Most of all, I treasure your skill of listening to understand, rather than listening to reply, which made me feel less isolated in the writing process. The long-distance has meant I value and respect your constancy and dedication. Thank you for your incredible patience. I'm excited for the future.

Publications

Kowalski, A. M., Gooding, M., Ferrante, A., Slafer, G. A., Orford, S., Gasperini, D. \& Griffiths, S. 2016. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting Nitrogen treatments and water regimes. Field Crops Research. Manuscript accepted.

Contents

Abstract ii
Acknowledgements iii
Dedications and thanks V
Publications vi
Chapter 1 : Introduction 1
1.1 Wheat and food security 1
1.1.1 Origin and spread of wheat 1
1.1.2 Genetic bottlenecks due to domestication 3
1.1.3 Advances in wheat breeding in the $20^{\text {th }}$ century 3
1.1.4 Production and use 5
1.1.5 Future challenges and opportunities 6
1.1.6 Climate and resources 8
1.1.6. \quad Climate 8
1.1.6.2 Nitrogen 8
1.1.6.3 Organic agriculture 9
1.2 Stature in wheat breeding 10
1.2.1 The importance of controlling stature 10
1.2.2 The Green Revolution genes Rht-B1 and Rht-D1 11
1.2.3 Other Rht loci 13
1.2.4 Rht8 13
1.3 Mapping genes in wheat 16
1.3.1 Map-based cloning of genes in wheat. 16
1.3.2 NGS advances in sequencing the wheat genome 19
1.3.3 Comparative Genomics 20
1.3.4 Genetic mapping 23
1.3.4.1 Identifying variation in wheat 23
1.3.5 Advances in wheat resources over the course of the thesis 24
1.4 Aims of the thesis 27
Chapter 2 : Materials and Methods 29
2.1 Agronomic characterisation of Rht8 in UK-adapted germplasm 29
2.1.1 Near Isogenic Lines 29
2.1.2 Sites and experimental design 29
2.1.3 Climate and day length 31
2.1.4 Phenotyping and assessments 31
2.1.5 Statistical analyses 33
2.2 Compact spike morphology 33
2.2.1 Measuring spike compactness 33
2.3 Development of molecular markers within the Rht8 interval 34
2.3.1 Plant material 34
2.3.1.1 2D RIL (coarse-mapping) population 34
2.3.1.2 Fine-mapping and medium-resolution populations 34
2.3.1.3 DNA extraction 35
2.3.1.4 Screen with flanking markers 37
2.3.2 Material for genetic dissection 37
2.3.2.1 Phenotyping for height in glasshouse experiments 37
2.3.2.2 Material for iSelect 90K SNP array 41
2.3.2.3 DNA extraction 41
2.3.2.4 Material for Affymetrix Axiom® 820K SNP array 41
2.3.3 Targeting genome-specific allelic variation 41
2.3.3.1 Flow-sorted 2D DNA from the short parent NIL 41
2.3.3.2 PolyMarker 43
2.3.4 Sample preparation for RNA-Seq 44
2.3.4.1 Plant material 44
2.3.4.2 RNA extraction 44
2.3.4.3 Library construction and sequencing 45
2.3.5 References used for alignment 45
2.3.5.1 Customised UniGene reference 45
2.3.5.2 v3.3 cDNA reference 46
2.3.5.3 2D v3.3 cDNA interval 47
2.3.5.4 De novo spike transcriptome assembly 47
2.3.6 Read mapping 47
2.3.6.1 Coverage statistics 48
2.3.7 SNP-calling 48
2.3.7.1 SNPs between the parent NILs in the UniGenes 48
2.3.7.2 SNP identification in v3.3 cDNAs 49
2.3.7.3 SNP identification in narrowed 2D v3.3 cDNA interval 50
2.3.7.4 Troubleshooting v3.3 cDNA and IWGSC CSS alignments 52
2.3.7.5 SNP-calling in the iSelect SNP array data 56
2.3.8 SNP-calling in the 820K Affymetrix Axiom® SNP array data 57
2.3.9 In silico SSR discovery on wheat 2DS sequence 57
2.3.10 Validating variants with markers 57
2.3.10.1 SSR validation 57
2.3.10.2 Validating SNPs with KASP assays 58
2.3.11 Anchoring of the Rht8 interval in Triticeae resources 59
2.3.11.1 Ensemb/Plants and barley resources. 59
2.3.11.2 Constructing zippers. 62
2.3.11.3 IWGSC-2 POPSEQ bins 62
2.3.11.4 Chapman assembly 62
2.3.11.5 Constructing synteny maps 63
2.3.12 Genotyping and mapping with the 2D RIL population 63
2.3.13 Costings for marker development 64
2.4 Fine-mapping and further characterisation of the Rht8 interval 65
2.4.1 Phenotyping the fine-mapping population at the Rht8 locus. 65
2.4.2 Mapping Rht8 69
2.4.2.1 Fine-mapping in stages 69
2.4.2.2 Aligning the genetic map of the Rht8 region with physical maps 70
2.4.3 Gene content of Rht8 interval 71
2.4.3.1 Differential expression analysis 71
2.4.3.2 Gene content of T. aestivum genetic bin and Ae. tauschii physical interval 72
2.5 Germplasm development to study rare alleles at the Xgwm261 locus 73
2.5.1 Plant material 73
2.5.2 Germplasm development 73
2.5.3 Height measurements 73
2.5.4 Statistical analyses 73
Chapter 3 : Agronomic characterisation of Rht8 in UK-adapted germplasm 74
3.1 Introduction 74
3.2 Inter-site comparison 78
3.3 Plant height and height components 82
3.3.1 Genotyping NILs 84
3.4 Grain yield and yield components 88
3.5 Yield response to irrigation, contrasting \mathbf{N} and high temperature 92
3.6 Interplay between yield, grains \mathbf{m}^{-2} and spikes \mathbf{m}^{-2} 94
3.7 Lodging 97
3.8 Developmental traits 100
3.9 Discussion 105
Chapter 4 : Compact spike morphology caused by Rht8 110
4.1 Introduction 110
4.2 QTL for compact-spike overlaps with Rht8 introgression 114
4.3 Assessing compactness in Rht8 x Paragon NILs 116
4.3.1 Spike morphology on the plot level 116
4.3.2 Spike morphology in tiller samples 118
4.4 Spike compactness in contrasting water regimes and \mathbf{N} treatments 125
4.5 Spike compactness in the Rht 8 Cappelle-Desprez fine-mapping population 127
4.6 Discussion 128
Chapter 5 : Development of molecular markers within the Rht8 interval 133
5.1 Introduction 133
5.2 Material for Genetic Dissection 139
5.3 Identification of Variants 142
5.3.1 Combining SNP and microsatellite variation 142
5.3.2 Targeting genome-specific allelic variation 142
5.3.3 Identifying SNP variation in NGS data 145
5.3.4 Identifying SNP variation in SNP platform data 148
5.3.5 Mining for SSRs in wheat sequence 150
5.3.5.1 Identifying microsatellites 150
5.3.5.2 Utilising IWGSC data with syntenic Rht8 intervals 150
5.3.5.3 Extending the sequence space searched with new wheat resources 156
5.3.5.4 Informed searching: mining IWGSC wheat sequence in the NGS references and SNP arrays 158
5.4 Synteny - how good is it? 159
5.5 Prioritising High-confidence Variants 161
5.5.1 Concordance 161
5.5.1.1 Parent NILs 161
5.5.1.2 BSA 162
5.5.2 High BFR 164
5.5.3 Putative chromosome rearrangements 164
5.5.4 Prioritising SSR variants 165
5.6 Likely to Map to Rht8? 166
5.6.1 Physical location on wheat chromosome 2D 166
5.6.2 Synteny 168
5.6.3 Informed by wheat contigs from IWGSC 169
5.6.3.1 2DS provenance 169
5.6.4 2D RIL Population 169
5.7 Validating variants with markers 172
5.8 Discussion 174
5.8.1 Identification of variants - cost and efficiency. 174
5.8.2 SSR variation in wheat sequence 174
5.8.3 Limitation of synteny in the Rht8 region 175
5.8.4 Low-resolution wheat genetic map 176
5.8.5 SNP variation in NGS data 177
5.8.6 SNP variation in SNP-platform data 177
5.8.7 Ensuring genome specificity 178
5.8.8 Low marker validation rate 180
5.8.9 Technical - sequencing and mapping 180
5.8.10 Experimental design 181
5.8.11 SNP discovery and filtering 181
5.8.12 Variation outside 2DS 182
Chapter 6 : Fine-mapping and further characterisation of the Rht8 interval 184
6.1 : Introduction 184
6.2 Phenotyping the fine-mapping population at the Rht8 locus 188
6.2.1 Measuring height in glasshouse-grown plants 188
6.2.2 Sterility induced in glasshouse conditions 189
6.2.3 Measuring height in the field and final typing at the Rht8 locus 190
6.3 Fine-mapping 191
6.3.1 Step 1: Coarse mapping with 2D RILs 192
6.3.2 Step 2: Medium-resolution mapping with Xgwm261-Xcfd53 recombinants 192
6.3.3 Step 3: Fine-mapping with FM recombinants 193
6.3.4 Syntenic relationship of the Rht8 locus with barley, Brachypodium and rice 196
6.3.5 Identification of Rht8-equivalent region in Ae. tauschii and integration with T. aestivum resources 200
6.4 Gene content of the Rht8 interval 204
6.4.1 Expression analysis 204
6.4.2 Ae. tauschii and T. aestivum 206
6.4.2. \quad Loci common to Rht8 intervals in Ae. tauschii and T. aestivum. 208
6.4.2.2 Triticum aestivum-specific loci in IWGSC-2 208
6.4.2.3 Ae. tauschii-specific loci 211
6.4.2.4 v3.3 cDNAs 211
6.4.3 Is there a candidate for Rht8? 212
6.5 Discussion 213
Chapter 7 : Germplasm development to study rare alleles at the Xgwm261 locus 218
7.1 Introduction 218
7.2 Recovered germplasm and development pipeline 222
7.3 Preliminary height measurements 223
7.4 Discussion 224
Chapter 8 : Summary and Outlook 226
8.1 Summary 226
8.1.1 Was the v3.3 cDNA reference fit for purpose? 233
8.1.2 Did the BSA methodology work? 233
8.1.2.1 Background noise 233
8.1.2.2 Genetic resolution from BSA limited by the reference and SNP array 234
8.1.2.3 Did we capture Rht8 in the material sampled? 236
8.2 Future directions. 238
Appendices 242
Appendix to Chapter 2 243
Appendix to Chapter 3 276
Appendix to Chapter 4 286
Appendix to Chapter 5 291
Appendix to Chapter 6 334
Appendix to Chapter 7 390
References 392

List of Figures

Figure 1.1: Evolutionary history of wheat 2
Figure 1.2: Evolutionary history of the Poaceae 21
Figure 1.3: Developments in Triticeae resources over the course of the PhD and a time-line of some of the work in Chapters 5 and 6 to fine-map Rht8. 26
Figure 2.1: NILs carrying a Mara-derived Rht8 introgression in the spring variety Paragon 30
Figure 2.2: Selecting the Rht8 (short) and tall NILs at the $\mathrm{BC}_{3} \mathrm{~F}_{3}$ stage for further field trials 31
Figure 2.3: Background to Rht8 fine-mapping population development by Gasperini (2010) and the selections made for this project 36
Figure 2.4: Design of glasshouse experiment in autumn 2012 38
Figure 2.5: Spacing of 1L pots in the glasshouse experiment in 2013 39
Figure 2.6: Design of glasshouse experiment in summer 2013 40
Figure 2.7: Anchoring the Rht8 interval in Triticeae resources and wheat references, updated during the PhD 61
Figure 2.8: Trial design to phenotype the fine-mapping recombinants in the field using the monodrill. 67
Figure 2.9: Field layout with the outer Soissons rows visible. 68
Figure 2.10: Method used to phenotype recombinants in the field 68
Figure 3.1: Day-length over the wheat growing season (sowing to harvest) overlayed with growth stages and timing of yield components 79
Figure 3.2: Monthly weather data at experimental sites over the 2013-2014 growing season with growth stages and timing on yield components 81
Figure 3.3: Measuring total height and height components. 82
Figure 3.4: Mean plant heights of the Rht8 NIL, tall NIL and Paragon at standard agronomic conditions 86
Figure 3.5: Mean plant height at different N inputs in Church Farm and Reading 87
Figure 3.6: Mean plant height in irrigated and rainfed conditions at Church Farm 87
Figure 3.7: Diagram of wheat yield illustrating the contribution of yield components commonly measured in agronomic trials 88
Figure 3.8: Yield and height trait responses of the Rht8 NIL relative to tall NIL. 90
Figure 3.9: Yield of the Rht8, tall NIL and Paragon in contrasting N and irrigation regimes. 94
Figure 3.10: Yield, grains m^{-2} and spikes m^{2} in the Rht8 NIL, tall NIL and Paragon in Reading and Lleida 96
Figure 3.11: Lodging at Church Farm in July 2014 98
Figure 3.12: Lodging score of the Rht8 NIL, tall NIL and Paragon in contrasting N and irrigation regimes. 99
Figure 3.13: Ground cover estimated by calculating percentage of green canopy 100
Figure 3.14: Senescence estimated on plot-level shown as thermal time at Church Farm in 2013102
Figure 3.15: PAR interception at canopy level at Reading in contrasting N treatments 104

Figure 4.1: Hexaploid and tetraploid wheat $C p$ and C mutants demonstrating a range of
compactness phenotypes.
Figure 4.2: The compact spike observed consistently in the Rht8 NIL across a range of spikelet numbers. 116
Figure 4.3: Compact spike visible on the plot level 117
Figure 4.4: Compact spikes measured in the Rht8 NIL as proportion of whole plot from visual inspection 118
Figure 4.5: Boxplots of spike compactness, spike length and spikelets spike ${ }^{-1}$ in the Rht8 NIL, tall NIL and Paragon 120
Figure 4.6: Mean spike compactness of the Rht8 NIL, tall NIL and Paragon in all sites and all conditions where tillers were sampled. 121
Figure 4.7: Compact spike morphology in the Rht8 NIL contrasted with Paragon, with different spikelet numbers 122
Figure 4.8: Spike compactness and height at maturity of all Rht8 and tall NILs developed to BC_{3} in the Paragon background 124
Figure 4.9: Spike compactness of the Rht8 NIL, tall NIL and Paragon in contrasting water regimes at Church Farm 126
Figure 4.10: Spike compactness of the Rht8 NIL, tall NIL and Paragon in different N treatments126
Figure 4.11: Boxplots of spike compactness, spike length and spikelets spike ${ }^{-1}$ in a subset of fine- mapping Rht8 x Cappelle-Desprez recombinants 127
Figure 4.12: Spikes of a short and tall recombinant from the fine-mapping Rht8 x Cappelle- Desprez population. 128
Figure 5.1: Schematic diagram of the workflow presented in Chapter 3 138
Figure 5.2: Sampling of tissue from spike and peduncle 141
Figure 5.3: Assessing the purity of flow-sorted 2D DNA from RIL4 144
Figure 5.4: Proportion of putative SNPs which could be annotated with syntenic information 147
Figure 5.5: Identifying SSR variation 150
Figure 5.6: Synteny between the barley Rht8 interval and Brachypodium and rice 154
Figure 5.7: Strategy behind mining the Chapman scaffolds for variation 157
Figure 5.8: Synteny between the wheat 17.3 cM bin, barley, Brachypodium and rice. 160
Figure 5.9: The distribution of putative SNPs over the genome in parent NILs and BSA 163
Figure 5.10: Putative varietal SNP distribution over the v3.3 cDNA 2D interval. 167
Figure 5.11: Coarse-mapping of markers developed in Chapter 5 with the 2D RIL population. 171
Figure 5.12: Schematic diagram to show the marker validation pipeline of testing putative variants. 172
Figure 5.13: Total markers tested in Chapter 5 173
Figure 6.1: Schematic diagram of the workflow in Chapter 6 187
Figure 6.2: Height frequencies of the recombinants and parents to the fine-mapping Rht8 population across three locations. 189

Figure 6.3: Defining the fine-mapping and medium-resolution mapping recombinants used in step 2 and 3 of the fine-mapping of Rht8.
Figure 6.4: Fine-mapping Rht8 .. 194
Figure 6.5: Fine-mapping of the Rht8 locus and alignment with the homologues of barley, rice and Brachypodium on physical maps 198
Figure 6.6: Linkage map of Rht8 and anchoring to Ae. tauschii BAC contigs and wheat genetic maps from POPSEQ data 201
Figure 6.7: Differentially expressed genes (DEGs) between the parent NILs in the UniGene dataset 205
Figure 7.1: Germplasm development pipeline for rare Xgwm261 variants 222
Figure 7.2: Plant height at maturity of homozygous individuals within each stream, contrasting for donor and parent allele at the Xgwm261 locus. 224

List of Tables

Table 1.1: Genes which have been positionally cloned in wheat as of September 2015 18
Table 2.1: Assessing the purity of the 2D flow-sorted DNA 43
Table 2.2: Exemplar VarScan SNP-calling output. 51
Table 2.3: Costings used to calculate the cost of developing an individual marker outlined in Chapter 5 64
Table 3.1: Experimental details of sites used for comparing Rht8 and tall NILs and traits measured 80
Table 3.2: Total plant height at maturity 85
Table 3.3: Simple correlation coefficients (r) between total plant height and height-related traits from tiller samples, across all environments. 86
Table 3.4: Simple correlation coefficients (r) between yield and yield components across environments 91
Table 3.5: Simple correlation coefficients (r) between lodging and yield and height components. 98
Table 3.6: Heading and anthesis dates in 2013 at Church Farm shown as thermal time. 101
Table 3.7: Red: Far Red ratios at canopy level at Reading in 2014 103
Table 4.1: Integrating existing knowledge on compact-spike QTL 115
Table 4.2: Spike compactness and its derivative components in the Rht8 NIL, tall NIL and Paragon 119
Table 4.3: Simple correlation coefficients (r) between spike compactness, spike components and total height across all environments 123
Table 5.1: Details of the samples used for RNA-Seq 140
Table 5.2: SNP-calling results. 147
Table 5.3: The previously anchored syntenic Rht8 intervals in Gasperini's work 151
Table 5.4: Anchoring of the Rht8 interval in the most recent Triticeae resources and NGS references. 153
Table 5.5: Summary of wheat sequence space searched for SSRs and the number identified. 158
Table 5.6: Cost break-down for developing markers in Chapter 5 173
Table 6.1: Graphical genotypes of the fine-mapping population grouped in recombinant classes according to their genotype and phenotype at the Rht8 locus 195
Table 6.2: Markers used in the final step to fine-map Rht8. 199
Table 7.1: Segregation for Xgwm261 in the F_{2} germplasm in the Mercia background 223
Table 7.2: Plant height and height components of Xgwm261 allele introgressions 224

Chapter 1: Introduction

1.1 Wheat and food security

1.1.1 Origin and spread of wheat

The first cultivation of wheat was 10,000 years ago during the Neolithic period. This time saw a transition from hunter-gathering after food to a settled lifestyle reliant on agriculture and crops, including barley (Hordeum vulgare), pulses and wheat. The earliest cultivated wheats were the diploid Triticum monococcum (einkorn wheat, genome $A^{m} A^{m}$) and the tetraploid Triticum turgidum ssp. dicoccoides (wild emmer, AABB), originating from south-eastern Turkey and northern Syria (Salamini et al., 2002). The tetraploid arose from the hybridisation of two diploid grasses 150,000 - 500,000 years ago: Triticum urartu ($\mathrm{A}^{\mathrm{u}} \mathrm{A}^{\mathrm{u}}$) and an unknown, possibly extinct species related to the extant Aegilops speltoides (genome SS) (Charmet, 2011).

Emmer was domesticated from its wild relative and in its domesticated form was cultivated for thousands of years in the Fertile Crescent of the Near East due to its adaptability and high yields. Domesticated emmer is the progenitor of modern durum wheat (T. durum, genome AABB) (Feldman, 2001). Emmer spread towards the Caspian Sea and hybridised independently a small number of times with Aegilops tauschii 8,500 years ago to form Triticum aestivum (AABBDD) (Dvorak et al., 1998), perhaps where the wild goat grass was growing as a weed in Neolithic fields of T. dicoccum (Charmet, 2011). The hexaploid wheat had superior yield, viability and adaptability compared to the progenitor species and spread all over the world (Feldman, 2001).

In what is known as the domestication syndrome, farmers selected for traits that clearly differentiated cultivated wheat varieties from their wild ancestors. One altered trait was the reduction of spike-shattering which is determined by the brittle rachis (Br1) locus on the short arm of group-3 chromosomes (Li and Gill, 2006). Non-brittle spikes would have been advantageous where harvested grain was retained as seed for consumption and for the subsequent growing season (Charmet, 2011).

Figure 1.1: Evolutionary history of wheat. Wheat divergences based on Charmet (2011).

A second domestication trait was the conversion from hulled grain to freethreshing (naked) grain by the softening of glumes surrounding the grain. This reduced the labour required to separate grain from the spikelets and is also associated with shorter seed dormancy, which confers advantage over hulled
grain for germination in agriculture (Doebley et al., 2006). The genes associated with this free-threshing are tenacious glume (Tg) on chromosome 2D in T. dicoccoides (Taenzler et al., 2002) and soft glume (Sog) on chromosome 2AmS in T. monococcum (Kerber and Rowland, 1974, Nalam et al., 2006). Freethreshing character was also conferred by the major domestication gene, Q, on chromosome 5A, which encodes an APETALA 2-like transcription factor and has pleiotropic effects on glume shape, glume tenacity, spike shape and rachis fragility (Simons et al., 2006).

1.1.2 Genetic bottlenecks due to domestication

Wheat domestication and later modern selection of wheat has had the effect of introducing genetic bottlenecks, especially into the wheat D-genome. In these genetic bottlenecks, the degree of genetic variability in extant tetraploid and hexaploid species has been found to be much lower than wild diploid and tetraploids (Reif et al., 2005). Analysis of nucleotide diversity found a loss of diversity of 75% during the domestication of tetraploid wheat, 55% for the A- and B- genomes of T. aestivum and 90% for the D-genome (Haudry et al., 2007). The D-genome is the least genetically diverse of the three sub-genomes due to the relatively recent hybridisation of the D-genome (Figure 1.1); a small number of these hybridisations occurring in the first place and then little inter-mating between bread wheat and the diploid progenitor (Dubcovsky and Dvorak, 2007, Dvorak et al., 1998). Conversely a substantial amount of inter-mating appears to have occurred between T. aestivum and tetraploid wheat (Dubcovsky and Dvorak, 2007, Luo et al., 2007). To boost diversity in pre-breeding programmes, methodologies to identify novel genetic variation from Ae. tauschii accessions have been described (Jones et al., 2013) and the hexaploidisation has been recreated to produce synthetic hexaploid wheat in Mexico and the UK.

1.1.3 Advances in wheat breeding in the $20^{\text {th }}$ century

In the $20^{\text {th }}$ century, two major breeding advances allowed substantial increases in wheat production. The work of Nazareno and Carlotta Strampelli in the early $20^{\text {th }}$ century produced improvement in wheat varieties which many see as the first Green Revolution, or at least a precursor (Worland, 1999). The most significant
cross that introduced novel genetic variation into Europe was the crossing of the Japanese variety Akakomugi with an Italian land race and Dutch variety. The aim was to produce rust-resistant, early-flowering and lodging-resistant varieties (Borojevic and Borojevic, 2005).

Crosses with Akakomugi introduced the photoperiod (day length) insensitivity gene Ppd-D1a and the closely-linked Rht8. Prior to the introduction of Ppd-D1a, Italian wheat varieties were late-flowering due to their sensitivity to photoperiod, which meant grain fill occurred at a time when hot desiccating conditions restricted development. With earlier flowering, grain developed earlier in the season with higher soil moisture and lower temperatures. Early-flowering coupled with reduced height increased yields (Worland, 1999).

Strampelli's wheats became the main instruments of the Battaglia del Grano (the Wheat Battle), the propaganda slogan that the Fascist Regime used to define the campaign to reach wheat self-sufficiency in Italy. Strampelli himself joined the National Fascist Party in 1925 (Salvi et al., 2013). This agricultural aim was successful: by the late 1930s Italian wheat production doubled and the country was self-sufficient in wheat, with yields of $8 \mathrm{t} \mathrm{ha}^{-1}$ (Worland, 1999). From Italy, Rht8 and Ppd-D1a were further transmitted to other high-yielding varieties and by the 1940s, wheats originating from the Strampelli cross were grown on 20 million ha in China and were the basis of wheat breeding programmes in other countries such as the USSR, Argentina and Norman Borlaug's Mexican-based programme (Salvi et al., 2013). In regions of the USSR, yield increased from 1.36 t ha ${ }^{-1}$ to $5.21 \mathrm{t} \mathrm{ha}{ }^{-1}$ and in some places yields of $10 \mathrm{t} \mathrm{ha}^{-1}$ were recorded. This enabled some of the Soviet Bloc countries to turn from wheat importers to exporters (Borojevic and Borojevic, 2005).

The second major breeding advance was the Green Revolution of the 1960s and 1970s. One of the major foundation stones of this was the introduction of semidwarfing genes into wheat and the subsequent breeding of high-yielding wheat varieties. Greater yields were associated with improved lodging resistance and the resulting ability of wheat to tolerate higher levels of chemical fertilisers, as well as increased proportion of assimilate partitioned into the grain (Hedden, 2003). The genetic basis of the semi-dwarf varieties are the Reduced height (Rht) genes Rht-B1b (Rht1) and Rht-D1b (Rht2) (Gale and Youssefian, 1985).

These dwarfing genes first came to the US after World War II from the Japanese variety Norin 10 and previously originated from the Korean peninsula. Norin 10 was transferred to CIMMYT (International Maize and Wheat Improvement Centre in Mexico) where Norman Bourlag developed varieties with Rht-B1b and Rht-D1b (Borojevic and Borojevic, 2005). The CIMMYT wheat varieties were distributed all over the world. It is estimated that worldwide, over 70% of the wheat acreage contains at least one of these two genes (Evans, 1998) and that 90\% of the semidwarf wheat varieties contain Rht-B1b and/or Rht-D1b (Worland et al., 1998b).

Together, these advances allowed for cereal crop production to triple globally in the last 50 years with only 30% increase in land area cultivated, at a time when the population has more than doubled (Pingali, 2012).

The success of the Green Revolution has not been enjoyed by everyone to the same extent. With the focus on intensification where returns would be high (in high-yield potential sites), marginal environments were left behind and areas with low population densities and poor market infrastructure such as Africa shared little of the Green Revolution success. Additionally, worldwide, female farmers and women-headed households were found to have gained less than their male counterparts (Pingali, 2012). Green Revolution-driven intensification has also had negative environmental impacts such as soil degradation and increased chemical runoff (Burney et al., 2010).

1.1.4 Production and use

Along with maize and rice, wheat is one of the three major cereal crops in the world and outcompetes the other two in terms of geographical range. The cultivation of wheat occupies the largest crop area on Earth, 215 million ha in 2012 (FAO, 2012). Over 25,000 wheat varieties are grown worldwide (Feldman, 2001) and these are the source of 20% of the world's calories. Currently, 95% of the wheat grown worldwide is hexaploid bread wheat with most of the remaining 5% being tetraploid durum wheat (Shewry, 2009). Small amounts of einkorn, emmer and spelt are still grown in some regions including Spain, Turkey, central and eastern Europe, Italy and India. The markets for some of the more ancient wheats are growing: as 'health foods' (spelt) and as less allogenic alternatives to hexaploid wheat (einkorn).

One subspecies of T. aestivum (Figure 1.1) is taxonomically distinguished by its compact spike and is called compactum (club wheat). The spikes of club wheat can be half the length of spikes in other hexaploid wheats with the same spikelet number (Zwer et al., 1995). This is believed to be principally due to the action of the dominant allele of the compactum (C) locus close to the centromere on 2D (Johnson et al., 2008, Rao, 1972), though QTLs affecting spike compaction have been reported on nearly every chromosome, including by Cui et al., 2012, Faris et al., 2014c, Jantasuriyarat et al., 2004, Ma et al., 2007, Manickavelu et al., 2011, and Sourdille et al., 2000.

Club wheat is a soft white wheat and is well-adapted to intermountain regions of the Pacific Coast States (including California, Oregon, Washington) because the strong, stiff culms are resistant to lodging and the firm spikes are shatter-resistant in the hot, dry and windy summers (U.S. Department of Agriculture, 1923). Club wheat was also reported to be adapted to dryland areas where stand establishment was difficult (Gul and Allan, 1972). Only about 1\% of modern-day acreage planted in the Pacific Northwest is club wheat, much reduced on previous levels in the 1960s (75\%) (Zwer et al., 1995). Owing to the soft texture and low protein content, most of the club varieties are not grown for bread. Instead, club wheat flour is used in blends with soft white wheat for export to Asia, especially for Japanese sponge-cake production, or used to make 'cookies' because bake-time is reduced and cake volumes are greater (http://cbarc.aes.oregonstate.edu/sites/default/files/usdaars_club_wheat_breeding_in_oregon.pdf).

1.1.5 Future challenges and opportunities

Going into the future, there are intersecting challenges with wheat production. There is the challenge of feeding the 9-10 billion people expected by the middle of the century, in a world where already one in seven people have insufficient calories in their diet (FAO, 2009). If the answer to this challenge is to increase global crop production, then wheat production needs to double. In order to achieve this, a rate of 2.4% yield increase is required year-on-year. Yield trends from 1961 to 2008 showed an increase of 0.9% (Ray et al., 2013). Moreover, the rate of increase has slowed down in the last twenty years, particularly in the EU where major-producing countries of Germany, France and the UK have seen
yields stagnate (Charmet, 2011). Currently, the genetic progress is only sufficient to compensate the negative effects of abiotic and biotic stresses but not to increase yield overall. In the UK, increases of yields from 3 t ha ${ }^{-1}$ in the 1950s to $8.6 \mathrm{t}_{\mathrm{ta}}{ }^{-1}$ in 2014 have been achieved (DEFRA, 2015), though with sufficient water, nutrients and management of pests and pathogens, there is potential to achieve yields exceeding $10 \mathrm{t} \mathrm{ha}^{-1}$ (Shewry, 2009).

From another side, the strategy of unreservedly increasing production (including improving the toolkit in wheat breeding with dwarfing genes) to promulgate wheat in the human diet has been questioned. There is a small, but increasing, incidence of allergy ($\sim 0.3-3 \%$) to cereals (Brouns et al., 2013) and intolerance in the form of coeliac disease (CD) (1\% in EU and US populations) (Mustalahti et al., 2010, Rubio-Tapia et al., 2009). There is an even higher incidence of noncoeliac sensitivity in the population, self-reported or otherwise, with some estimates as high as 30\% (Biesiekierski and Iven, 2015, Rona et al., 2007). Other concerns surround high-carbohydrate diets, especially those based on processed wheat-products such as bread and breakfast cereals include links with gastrointestinal discomfort and bloating (Weichselbaum, 2012), chronic inflammation and autoimmune diseases (de Punder and Pruimboom, 2013, RuizNunez et al., 2013), insulin sensitivity and metabolic syndrome (Gower and Goss, 2015) and cancer (Klement and Kaemmerer, 2011). This has led to a rise in nutritional and lifestyle plans which exclude or limit wheat products, such as the modern paleolithic (paleo) diet (Chauveau et al., 2013, Hwang et al., 2014, Klonoff, 2009, Pastore et al., 2015). The paleo-diet movement is growing: in 2013, 'paleo' was the most common word to precede the word 'diet' in the search engine Google (http://www.google.com/trends/topcharts?zg=full).

With so many stakeholders with different positions in the wheat and diet industries, polemic exists, including ardent objections from some wheat researchers, such as the authors of the article 'Does wheat make us fat and sick?' (Brouns et al., 2013). Despite these objections, there are ramifications on wheat production and emerging trends will challenge wheat production quality as well as quantity. The gluten-free market has been increasing 30% per year and is a billion-dollar industry. Breeding reduced CD-toxicity wheat varieties is now a target, through a combination of germplasm selection (e.g. mining variation in landrace collections) and/or genetic modification (Gilissen et al., 2014).

Future directions of wheat production remain to be seen. Increasing health-issues and morbidity in developed countries must be managed as well as the humanitarian need of feeding an expanding population. Overarching these challenges is the need to manage future strategies in an environmentallysustainable way (Godfray et al., 2010).

1.1.6 Climate and resources

1.1.6.1 Climate

Wheat production is highly sensitive to climatic and environmental variations and therefore climate change represents a considerable challenge to increasing yields (Semenov et al., 2014). For example, a modelling study for the main wheat growing regions of Australia showed that an increase in growing-season temperatures of $2^{\circ} \mathrm{C}$ can reduce yield by up to 50%, most of which was attributed to increased leaf senescence due to temperatures above $34^{\circ} \mathrm{C}$ (Asseng et al., 2011).

Drought and heat stress often occur at the same time, for example in late summer in Europe. Worldwide, drought is the most significant environmental stress in wheat production and therefore, improving yields in water-limited environments is a major breeding goal (Cattivelli et al., 2008). In Europe, modelling predictions for 2050 suggest that climate change will not increase vulnerability of wheat due to drought stress. This was attributed to improvement of the current adaptation of wheat to areas with desiccating summers: quicker maturation. Instead, yield losses primarily due to an increase in the frequency and magnitude of heat stress at meiosis and anthesis were predicted, with northern European heat-sensitive varieties hit most severely (Semenov and Shewry, 2011, Semenov et al., 2014). To respond to climate change, improving varieties to be more tolerant to heat and drought stress will remain priorities for breeding.

1.1.6.2 Nitrogen

Nitrogen is a major macronutrient often limiting plant growth. The application of Nitrogen (N) fertilisers increased rapidly due to the impact of the Green Revolution. In the UK, N fertiliser inputs increased up to the 1980s, supporting
the increasing yields. The N fertiliser/yield relationship is not linear and levels off at around $200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}$, at which point increasing N input offers little yield increase, though exact levels differ for different wheat varieties (Barraclough et al., 2010). At very high levels of N application ($350 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}$), no further yield increase occurs, probably due to other limitations such as water or photosynthetic efficiency, although further N uptake is manifested in higher grain N content. Legislation in the UK has limited N application and rates have stabilised at under $200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}$ (Hawkesford, 2014).

Inefficient use of N fertiliser is economically inefficient and environmentally damaging. There are a number of projects aimed at enhancing N use efficiency (NUE) of wheat to achieve greater yields with less input and balance this with grain quality attributes (Ortiz-Monasterio, 2012, Foulkes et al., 2009). Some researchers have called for the selection for NUE-traits in different wheat varieties at a range of N inputs to obtain greater trait differentiation and better dissect differences in components contributing to NUE (Hawkesford, 2014).

NUE has two components: N uptake efficiency, (NUpE) which is the amount of N taken up as a proportion of total N available, and N utilisation efficiency (NUtE), which is the proportion of N taken up which gets converted to grain yield. Fertiliser use efficiency is determined by NUpE, which is predominantly associated with root structure and functioning (Hawkesford, 2014). The percentage recovery of applied fertiliser has been estimated as 33\% across all cereals (Raun and Johnson, 1999). Scientific knowledge of root architecture and the genetic control of root traits affecting nutrient acquisition, branching and anchorage is low compared with the progress made in understanding above-ground wheat adaptation. Since genetic variation in root architecture is associated with yield increase in low-fertility soils, there is a growing imperative to make progress in this relatively understudied area. The wide-reaching impacts, particularly on the poorest farmers on the poorest soils, has led some to call this the next Green Revolution (Lynch, 2007).

1.1.6.3 Organic agriculture

Synthetic nitrogen fertiliser production through the Haber-Bosch process uses natural gas. With pressure to reduce fossil fuel-based inputs, concerns over N
pollution and human health, organic agriculture has rapidly progressed in Europe since the 1990s. In 2010, 5\% of the total agricultural area in the EU was cropped organically, doubling from 2000 (David et al., 2012). Organic wheat systems are diverse and all characterised by higher crop diversity and wider crop rotations than conventional agriculture. Soil fertility is maintained by rotations and organic matter. Wheat varieties in organic agriculture have to be more adaptable because there is little opportunity for immediate alleviation of abiotic and biotic stresses. For this reason, yield stability across varied environmental conditions is often more important than achieving maximal yield in an individual season (Wolfe et al., 2008). In organic systems, a greater proportion of N is available early on in development and therefore there is a greater need for early N uptake in wheat varieties than in conventional systems, where N input can be timed with crop demand (Gooding et al., 2012).

1.2 Stature in wheat breeding

1.2.1 The importance of controlling stature

Paintings in the late $19^{\text {th }}$ and early $20^{\text {th }}$ century of English summer landscapes show tall golden wheat, waving in the wind, at head-height or taller. In contrast, today, wheat is shorter and stockier and less amenable to such poetic imagery. This change was caused by an important breeding target of reducing the height of wheat during the Green Revolution.

Optimising wheat stature is important to maximise yield and this varies from 70 100 cm according to the yield potential of the environment (Fischer and Quail, 1990, Flintham et al., 1997). Shorter plants are more resistant to lodging (Berry et al., 2007). Further, reduced height of cereals is associated with a greater proportion of assimilates partitioned into the grain, resulting in further yield increases and higher harvest index (the ratio of grain weight to biomass above the ground) (Evans, 1998). However, reduced height is often associated with a reduction in yield (Law et al., 1978) thus understanding better genes which reduce height without yield penalty is important for wheat breeding.

Traditionally, the genetic control underlying height is assessed by measuring plant height at maturity. However, plant height is a dynamic trait (Wu and Lin,
2006) and changes throughout development. Height in triticale (a hybrid of wheat and rye) measured across three time points showed temporal dynamics for height QTL (Wuerschum et al., 2014). Such dynamic studies have been made possible by new technology. High-throughput phenotyping technologies are emerging and can measure various agronomic traits in a non-destructive way across a growing season (Busemeyer et al., 2013, Kjaer and Ottosen, 2015). These platforms have been found to be suitable to field conditions and in the near future will eliminate the phenotyping bottleneck and facilitate dynamic height measurement of wheat.

A total of 21 genes with major effect on wheat height have been identified and assigned Reduced height (Rht) symbols (McIntosh et al., 2013). These genes have been traditionally grouped into two categories, depending on response to application of exogenous gibberellins (GAs), namely GA-insensitive or GAresponsive. Gibberellins are a major class of plant hormones that regulate plant growth and development, from seed germination and stem-elongation to fruit-set and growth (Hedden and Kamiya, 1997). Mutants with impaired GA biosynthesis or response display GA-deficient phenotypes, which include dark green leaves, late-flowering and a dwarfed stature. Mutants deficient in GA biosynthesis can be rescued by exogenous GA application (Fleet and Sun, 2005).

In addition to these genes, height effects ascribed to QTLs have been reported even in elite panels of commercial wheat varieties (Griffiths et al., 2012, Wang et al., 2010). Therefore, there is still untapped genetic potential for optimising wheat stature in the future.

1.2.2 The Green Revolution genes Rht-B1 and Rht-D1

The most common sources of semi-dwarfism in wheat are Rht-B1b and Rht-D1b. These alleles are part of the Rht-1 homoeoloci on the group four chromosomes and named according to their sub-genome location: Rht-A1, Rht-B1 and Rht-D1 (Gale and Marshall, 1976, McVittie et al., 1978). There are a series of alleles at these loci (Gale and Youssefian, 1985, Li et al., 2013, Wilhelm et al., 2013), but the most economically important and most common are the b alleles, formerly known as Rht1 and Rht2. Rht-B1b and Rht-D1b are GA-insensitive meaning that the application of exogenous GA does not affect the dwarfing phenotype. The mutations in Rht-B1b and Rht-D1b disrupt their wild-type function as DELLA
proteins which is to act as negative regulators in the GA signalling pathway (Pysh et al., 1999). Both Rht-B1b and Rht-D1b have base substitutions which result in premature stop codons in the DELLA domain at the N -terminus. As a result, interaction with GA and subsequent degradation is inhibited, resulting in constant growth repression (Peng et al., 1999).

The GA-insensitivity of Rht-B1b and Rht-D1b causes decreased cell elongation but constant cell number, so smaller cells contribute to reductions in the internodes, without compacting the spike. The overall reduction in plant height is 15-36\% (Gale and Youssefian, 1985, Trethowan et al., 2001). The effect of each of the genes is similar, but Rht-D1b has a slightly stronger effect than Rht-B1b according to Borner et al., 1993.

The reduced cell-size associated with Rht-B1b and Rht-D1b also decreases coleoptile length and seedling leaf area. This reduces overall seedling vigour and affects the capacity to emerge from deeper sowing. Deeper sowing is preferable in hot and dry conditions which increase seedling mortality, or to avoid animal seed-predation (Botwright et al., 2005, Brown et al., 2003, Mahdi et al., 1998, Rebetzke et al., 2001). Deep-sowing ($>5 \mathrm{~cm}$) of shorter-coleoptile Rht-B1b and Rht-D1b wheats can result in poor and delayed seedling emergence, small leaf area and decreased weed competitiveness (Hadjichristodoulou et al., 1977, O'Donovan et al., 2005, Rebetzke et al., 2007, Trethowan et al., 2001). In addition, though Rht-B1b and Rht-D1b have increased yield potential in highinput growing conditions, yield reductions have been reported in environments with low N inputs (Laperche et al., 2008) and under some water-limited conditions (Butler et al., 2005, Chapman et al., 2007).

Height reductions conferred by the single action of Rht-B1b or Rht-D1b can be insufficient to avoid lodging, especially in optimal conditions with high-fertiliser input and irrigation (Berry et al., 2007). Greater reductions in plant height through double-dwarfs with Rht-B1b+Rht-D1b result in lower biomass and slower seedling leaf area development, though lodging resistance improves (Butler et al., 2005, Flintham et al., 1997). Therefore, alternative dwarfing genes to optimise height in different environments are required in the wheat breeding toolkit, especially with climate change.

1.2.3 Other Rht loci

There are a further 18 Rht genes which differ from the Rht1 homoeoloci in being classified as GA-responsive, labelled from Rht4 to Rht22 (with the exception of Rht10, which is Rht-D1c and GA-insensitive) (McIntosh et al., 2013). Further, Rht23 was recently reported (Chen et al., 2015). The current classification is inadequate, because none of the GA-responsive genes have been cloned. Consequently, the molecular mechanisms of height-reduction remain unknown and roles in GA biosynthesis or signalling, if any, unclear. Rht12 appears to be involved in GA biosynthesis (Chen et al., 2014) rather than signal transduction like the GA-insensitive genes. Rht8 is reported not to be not involved in the GA pathway, but has reduced sensitivity to brassinosteroids in leaf tissues (Gasperini et al., 2012). Rht23 is also reported to have no sensitivity to exogenous GA and have similar endogenous GA levels to its wildtype (Chen et al., 2015).

Rht8 is one of the few GA-responsive Rht alleles that reduce plant height and improve lodging resistance without yield penalty (Worland and Law, 1986) and is the main alternative to the GA-insensitive genes in agriculture. Previous evidence indicates that the GA-responsive genes Rht4, Rht5, Rht12 and Rht13 have more extreme height reduction than Rht8 (Ellis et al., 2004, Flintham et al., 1997, Rebetzke et al., 2012b). Whether these alternative dwarfing genes can be used to improve yield, lodging resistance and seedling vigour in breeding programs is not yet fully established. However, the majority of the GA-responsive genes have a negative impact on yield which can be as severe as 30\% (Chen et al., 2013, Daoura et al., 2014, Law et al., 1978, Wang et al., 2015b) and some also delay anthesis by one to five days (Chen et al., 2013, Daoura et al., 2014). Recently, there has been more interest in stacking some of the Rht genes together to see if some of the negative agronomic effects can be ameliorated in combination with other genes (Rebetzke et al., 2012a, Wang et al., 2014b, Wang et al., 2015b).

1.2.4 Rht8

Rht8 is prevalent in southern and eastern Europe, where it is likely to provide adaptation to the hot and dry conditions (Worland and Law, 1986) as it provides a semi-dwarf phenotype and improved lodging resistance with no effect on coleoptile length or seedling vigour (Ellis et al., 2004, Rebetzke and Richards,
2000). Rht8 is also found in China, Australia and North America (Asplund et al., 2012). Rht8 is not found in northern European germplasm, mainly due to the unfavourable linkage with Ppd-D1a (Worland et al., 1998a), estimated to be 22 cM away by Gasperini, 2010.

The Ppd-D1a allele contains a 2,089 bp deletion in its promoter region, which converts wheat from a long-day to a day-length insensitive plant (Beales et al., 2007). Ppd-D1a reduces time to flowering by early development of floral primordia, once vernalisation requirement has been satisfied, but without the need for long-day exposure. With Ppd-D1a, flowering is achieved around a week early in winter-sowing conditions in the UK and height is also reduced (Worland et al., 1998a). The height-reducing effect from Ppd-D1a is approximately 4 cm and is independent genetically to Rht8 (Borner et al., 1993). For this reason, it is important to dissect away the effects of Ppd-D1a from Rht8 to clarify genetic contributions.

Many previous agronomic assessments of Rht8 have been confounded by the pleiotropic effects of Ppd-D1a. Some of these reports are conflicting. In one study in Australia, traits were investigated using recombinant inbred lines (RILs) in pots. Rht8 decreased grain number per spike, biomass and grain yield, but increased grain weight (2\%) and harvest index (6\%) (Rebetzke et al., 2012b). Another study assessed agronomic traits in a Chinese winter-wheat variety with Rht8 (+PpdD1a), measuring individual plants at F_{2} and early generations ($F_{2}: 3$ and $F_{3: 4}$) in relatively small plots (three rows per plot with a plot length of 2 m). This study reported no difference in grains per spike or grain weight in Rht8 compared with the tall variety, but found a 17\% yield penalty and 10\% increase in harvest index (Wang et al., 2015b). A report of Rht8 in spring wheats in Montana and Washington in the USA specifically tested Rht8 in a photoperiod sensitive background at the BC_{5} generation. Rht8 did not show any yield advantage over 10 sites studied and showed a penalty in three locations (Lanning et al., 2012). Rht8 has also been combined with the GA-insensitive semi-dwarfing genes: Rht8+Rht-B1b or Rht8+Rht-D1b were 25% shorter and higher yielding (8\%) than either dwarfing gene alone (Rebetzke et al., 2012a).

A comprehensive agronomic assessment of Rht8 in a northern European climate in a commercially-relevant background but without confounding effects of other genes is lacking. This gap in knowledge was addressed in this PhD.

In order to study the effects of Rht8 (and Ppd-D1a), precise genetic stocks were developed known as single chromosome recombinant lines. In these lines recombination is restricted to a single defined chromosome with an otherwise uniform genetic background. The 2D chromosome of the Italian variety Mara, descending from the Strampelli variety Ardito and carrying Rht8 and Ppd-D1a, was substituted into the French photoperiod sensitive variety, Cappelle-Desprez (Worland, 1999). The substitution line was then used to develop chromosome recombinant lines for chromosome 2D. Around 90 lines were developed and genotyped with markers segregating on the recombined 2D chromosome (Law, 1966, Worland and Law, 1986).

Initially, the only way to detect Rht8 in a variety was to compare the phenotype of chromosome 2D monosomic lines with the euploid parent. A 2D monosomic with Rht8 typically had a 10\% height reduction. From this, Rht8 was described as a weak allele for height reduction on chromosome 2DS (Worland, 1999).

Subsequently, using the same 2D recombinant lines, the microsatellite marker Xgwm261 was mapped 0.6 cM distally to Rht8 on 2DS (Korzun et al., 1998). This marker is named after where it was developed: ‘Gatersleben wheat microsatellite’ (gwm261) and preceded by an ' X ' to indicate a microsatellite marker. This marker could be used to rapidly screen varieties for the presence of Rht8. Xgwm261 produces a number of allelic variants recognised by different lengths of microsatellite amplicons. The height-reducing allele of Rht8 was associated with a 192-bp allele of Xgwm261, though more recently, the 192-bp allele was found not to be universally diagnostic for the height-reducing allele of Rht8, particularly from varieties not derived from Mara (Ellis et al., 2007). Our knowledge of the adaptive significance of variants at Xgwm261 and the extent to which they correlate with variation at the Rht8 locus is lacking. To address this, work to establish an allelic series of Xgwm261 variants in a common background was started (Worland et al., 2001) but later suspended. This germplasm was recovered and developed further in Chapter 7.

Gasperini, 2010, used the 2D recombinant lines described above to develop a fine-mapping Rht8 population in the Cappelle-Desprez background. This population was used in a comparative genomics approach to delimit Rht8 to a 1.29 cM interval flanked by two single-strand conformation polymorphism (SSCP) markers, DG279 and DG371. Further fine-mapping was prevented by the very low polymorphism between the parents to the fine-mapping population (4\% of all markers tested).

To identify causal polymorphisms/genes for Rht8, new markers were produced and fine-mapped using these materials, as described in Chapters 5 and 6.

1.3 Mapping genes in wheat

1.3.1 Map-based cloning of genes in wheat

Map-based (positional) cloning is a strategy to isolate genes of interest without making any prior assumptions about the locus of interest. A prerequisite for mapbased cloning is a fine-mapping population from a cross between two parents which differ for the trait of interest. Accurate scoring of the phenotype and molecular marker data are then also required to precisely locate the gene of interest on a genetic map. To translate this into physical information, the flanking markers are used to screen complete genome sequences, where available, or clone-based physical maps, such as Bacterial Artificial Chromosome (BAC) libraries. Variant identification in the target interval will lead to the identification of candidate genes which are then validated (Krattinger et al., 2009a).

Map-based cloning and sequencing the genome in wheat is challenging for four main reasons. First, wheat has a large genome at ~ 17-gigabase-pair (Gb) (Shewry, 2009), which is six times larger than the human genome and 125 times the size of the model plant Arabidopsis. Second, the wheat genome is highly repetitive, with repeat DNA content approximately 80\% (Brenchley et al., 2012). This makes sequence assembly challenging with highly homologous stretches of sequence and the transposable element sequences break gene progression relative to related species (collinearity).

Third, as a result of its evolution (Figure 1.1), bread wheat $(2 n=6 x=42)$ is a hexaploid species with an AABBDD genome. The three sub-genomes are
referred to as homoeologous and share sequence identities of ~96-98\% (Dvorak et al., 2006), a figure which was found to be maintained across coding regions (Krasileva et al., 2013). Therefore differentiating and assigning genes from the sub-genomes is problematic. As a corollary, it has remained unclear whether the three sub-genomes contribute equally to wheat gene expression and therefore to wheat phenotypes. Advances in wheat genomics have made it possible to study this genome-wide, rather than on a small number of genes. One such study on $\sim 10 \%$ of the total wheat gene content found that 45% of genes are expressed from all three sub-genomes and that most of the genes show expression that is dominated by a single sub-genome with very small contributions from the other two (Leach et al., 2014). Transcriptional silencing has been found to be involved in a third of genes which are expressed only from one of the sub-genomes, but this is dynamic in nature, changing temporally and spatially in different organs (Bottley et al., 2006). Taken together, variant discovery specific to one of the genomes is challenging, since the genomes are so similar. Variation between the wheat sub-genomes is called homoeologous variation. The hexaploid nature makes it challenging to distinguish this variation from differences in variation between wheat varieties (varietal variation).

The fourth reason complicating sequence assembly and cloning in wheat is that chromosomal rearrangements are relatively common within hexaploid wheat (Badaeva et al., 2007). The best characterised inter-translocations are between chromosomes 4AL, 5AL and 7BS (Devos et al., 1995, Liu et al., 1992, Nelson et al., 1995). The 3B:6B translocations are also found frequently in European wheats (Badaeva et al., 2007). There has been some attempt to quantify these: one estimate is that 13% of genes from 7BS have been translocated to 4AL (Berkman et al., 2012b). Previous studies have been based on cytology and molecular markers, but progress in genome sequencing has allowed genomewide and sequence-based investigations into rearrangements. One study of 720 gene interchromosomal rearrangements in wheat reported that 40% were outside of these well-documented locations, scattered across chromosomes including inter-chromosomal translocations to 2DS (Ma et al., 2015a). A large number of intrachromosomal rearrangements has also been reported, including from chromosome 2DS to 2DL (Ma et al., 2014). The emerging extent of these rearrangements is an important consideration in mapping genes in wheat. First,
where comparative approaches are used to order sequence. Second, since translocations can alter levels of recombination and the chances of getting the desired recombinants as part of a map-based cloning strategy will be diminished (Law and Worland, 1997).

Despite considerable effort, only 16 targeted wheat genes have been positionally cloned (Table 1.1). The lack of high-density ordered sequences hinders marker development for high-resolution mapping. In most of the successful cases in Table 1.1, marker development was guided by good synteny with the sequenced genomes of rice or Brachypodium through comparative analysis, but this is not possible in all cases. Cloning wheat genes will become easier with the great advances in wheat genomics and the expansion of genetic resources in the last 5 years. New technologies, such as TILLING (Targeting Induced Local Lesions In Genomes) are being implemented for tetraploid and hexaploid wheat (Uauy et al., 2009) and will be publically available in late 2015. These will permit more precise and efficient characterisation of the function of candidate wheat genes. Many of these advances have occurred during the course of this PhD, which are outlined in 1.3.5.

Gene	Chr	Gene function	References
Gpc-B1	6BS	NAC transcription factor controlling senescence, grain protein, zinc and iron content	(Uauy et al., 2006)
Lr1	5DL	Leaf rust resistance CC-NBS-LRR	(Cloutier et al., 2007)
Lr10	1AS	Leaf rust resistance CC-NBS-LRR	(Feuillet et al., 2003)
Lr21	1DS	Leaf rust resistance CC-NBS-LRR	(Huang et al., 2003)
Lr34	7DS	Fungal resistance ABC transporter	(Krattinger et al., 2009b)
Ph1	5BL	Major chromosome pairing locus	(Grififths et al., 2006)
PHS1	3AS	Resistance to Hessian fly, heat-shock protein	(Liu et al., 2013)
Pm3b	1AS	Powdery mildew resistance CC-NBS-LRR	(Yahiaoui et al., 2004)
Q	5AL	AP2 transcription factor influencing domestication traits	(Faris et al., 2003)
Sr33	1DS	Stem rust resistance CC-NBS-LRR	(Periyannan et al., 2013)
Sr35	3AL	Stem rust resistance CC-NBS-LRR	(Saintenac et al., 2013)
Tsn1	5BL	Disease resistance to toxins produced by tan spot fungus	(Faris et al., 2010)
VRN1	5AL	AP1-like MADS-box transcription factor controlling flowering	(Yan et al., 2003)
VRN2	5A	Dominant repressor of flowering, downregulated by vernalisation	(Yan et al., 2004)
VRN3	7BS	Vernalisation, orthologue of Arabidopsis FT	(Yan et al., 2006)
Yr36	6BS	Stripe rust resistance START kinase	(Fu et al., 2009)

Table 1.1: Genes which have been positionally cloned in wheat as of September 2015. CC-NBS-
LRR = Coiled-coil, nucleotide-binding site, leucine-rich repeat.

1.3.2 NGS advances in sequencing the wheat genome

Because of the ploidy level, high-repeat DNA content and large genome, generating a high-quality reference genome sequence for wheat is a challenge. To reduce the sequencing and assembly complexity, several strategies have been undertaken in the wheat genome-sequencing community. Initially, researchers focused on coding sequences assembling large collections of expressed sequence tags (ESTs) into UniGenes (a collection of ESTs aligned to the same position on a genome, but with insufficient information to annotate as a gene) (Mochida et al., 2009). Most recently, since 2012, next-generation sequencing (NGS) technologies have revolutionised wheat genomics.

The first commercially available NGS system was developed by 454 and capable of sequencing over 20 million base pairs in four hours (Margulies et al., 2005). HiSeq2000 from Illumina can generate 600 Gbp of data per run, equal to more than 35 hexaploid wheat genomes (http://www.illumina.com). Although NGS technologies produce shorter reads and have greater error rates than Sanger sequencing, they made it feasible to generate the vast sequence data associated with the large wheat genome at lower cost and reduced timeframe (Berkman et al., 2012a).

NGS enabled a whole-genome shotgun (WGS) assembly of wheat to be published, which was based on low-coverage (5x), relatively long-read (454) shotgun sequences of the model wheat variety Chinese Spring. The assembly was fragmented and order was based on diploid progenitor genomes (Brenchley et al., 2012).

Technological advances of high-throughput chromosome isolation using flow cytometry enabled a chromosome-by-chromosome strategy to be adopted to sequence the wheat genome (Vrana et al., 2012). The International Wheat Genome Sequencing Consortium (IWGSC) was formed to construct the physical map and reference sequence in wheat using a chromosome-based approach. Flow sorting can reduce the sample size and complexity by separating chromosomes and, if the purity is high enough, avoid the complications of homoeologous sequences. Flow-sorting directly separated the largest chromosome, 3B, and a BAC library was constructed and assembled into a
physical map (Paux et al., 2008). To separate the other chromosomes from their homoeologues, aneuploid Chinese Spring genetic stocks were used and a 10.2 Gb draft (chromosome survey sequence, CSS) assembly was generated (IWGSC, 2014). Physical map construction of other chromosomes is at various stages of completion (http://www.wheatgenome.org/). The first IWGSC version 1.0 has been improved with more variation data from various sources and population sequencing (POPSEQ) (Mascher et al., 2013) data and released as IWGSC version 2.0 (IWGSC-2) (plants.ensembl.org).

In addition to the chromosome-based strategy, a whole-genome shotgun (WGS) approach has yielded scaffolds of each of the three homoeologous genomes, with better contiguity over coding regions, and covering new sequence space to the IWGSC CSS contigs (Chapman et al., 2015).

Recently, the same POPSEQ map was used to genetically anchor a proportion of both the IWGSC CSS contigs (4.5 Gb) and WGS scaffolds (7.1 Gb) (Borrill et al., 2015, CerealsDB, 2015a, Mascher, 2014, Mascher et al., 2013). These genetic maps, albeit relatively coarse due to the limited size of the POPSEQ population (Sorrells et al., 2011), allow a more targeted approach for gene discovery.

To expedite the bread wheat sequencing efforts, a further strategy is to leverage comparative analysis from the genome sequences of the three diploid ancestors (T. urartu, Ae. speltoides and Ae. tauschii, Figure 1.1). The A and D-genome progenitors have been sequenced using WGS (Jia et al., 2013, Ling et al., 2013). A physical map of Ae. tauschii has been generated (Luo et al., 2013) and the reference sequence is being produced (http://aegilops.wheat.ucdavis.edu/ATGSP/, 2015).

1.3.3 Comparative Genomics

Comparative genomics between wheat and more genetically-tractable diploid organisms within the related grass species (Poaceae family) has contributed greatly to the analysis of the more complex wheat genome. The grass species have diverged over the past 60 million years through whole genome duplications, chromosome rearrangements and deletions (Gale and Devos, 1998). A high-level
of conservation of gene content (synteny) and gene order (collinearity) has been reported between grass species (Moore et al., 1995).

The lineage with Sorghum bicolor (sorghum) and Zea mays (maize) diverged over 70 million years ago (MYA), followed with divergence between Oryza sativa (rice) and the Pooideae lineage (a subfamily within the Poaceae family) 50 MYA (Figure 1.2) (Middleton et al., 2014). Brachypodium distachyon (Brachypodium) and Hordeum vulgare (barley) have a higher conservation of synteny with wheat than rice and are more closely-related (Akpinar et al., 2015, Girin et al., 2014, Luo et al., 2013, Massa et al., 2011). The most closely-related species (other than diploid progenitors) to wheat is barley (Figure 1.2). A WGS assembly of barley has been published followed by a physical map (Ariyadasa et al., 2014, IBGSC, 2012). The barley resources are still not as complete or extensive as those for rice and Brachypodium, since a complete genomic reference has not been completed, but is anticipated soon. One difficulty accessing barley resources is that they are located in disparate locations without common identifiers, making it hard to compare between them. Very recently, all the genetic and physical resources have been integrated into one database with common identifiers in a web-based application called BARLEX (Colmsee et al., 2015).

Figure 1.2: Evolutionary history of the Poaceae. Divergence based on Middleton et al., 2014.

Comparative analyses compiling annotations and genetic maps of different grass species have been combined into Genome Zippers. Genome Zippers allow ordering of genes and genetic maps based on physical data from syntenic species (http://aegilops.wheat.ucdavis.edu/ATGSP/, 2015, Mayer et al., 2011, URGI, 2015a). Recently, datasets of model species in the Pooideae and the Triticeae tribe (including barley and wheat) have been organised into an integrative viewer in Ensemb/Plants, which circumvents the requirement to perform manual iterations of comparative analyses between different resources stored in disparate locations (Bolser et al., 2015). These approaches have already been used to enrich T. aestivum gene annotations (Tulpan et al., 2015) and advance fine-mapping of genes on the wheat D-genome (Chen et al., 2015, Liang et al., 2015).

As the sequencing of bread wheat advances in a chromosome-by-chromosome approach, there has been a recent flurry of publications and those focusing on the D chromosome have assessed syntenic relationships between T. aestivum, Ae. tauschii and other related species. These have found that 26% of Ae. tauschii genes have no orthologues in collinear locations in rice, Brachypodium and sorghum (Luo et al., 2013). A Genome Zipper analysis on wheat chromosome 4DS found that 25% of genes were supported by orthologous relationships with all three of these reference species, and a majority of genes (55\%) were supported by only one. The same study reported less than half (49\%) of survey sequences from pyrosequencing of wheat chromosome 4 anchored to Ae. tauschii scaffolds on the homologous chromosome (Helguera et al., 2015). Another comparative analysis of T. aestivum and Ae. tauschii chromosome 5 found that orthologous genes matching Aegilops was lowest in barley compared with Brachypodium and rice (possibly a reflection on the incomplete barley reference), but that within this number, a significant number of Aegilops sequences matched with barley orthologues which had no similarity with any of the model grass genomes (Akpinar et al., 2015).

Taken together, the emerging picture is that the main limitation of the comparative genomics approach between wheat and related species is the mosaic of conserved synteny at the micro-collinearity level. This complicates the use of such comparisons for map-based cloning and marker discovery, but a manifold approach with different resources can circumvent some of these limitations.

1.3.4 Genetic mapping

A prerequisite for map-based cloning is a high-resolution genetic map which requires development of a population to then be saturated with molecular markers.

Earlier, restriction fragment length polymorphism (RFLP) (Chao et al., 1989), amplified fragment length polymorphism (AFLP) (Barrett and Kidwell, 1998), random amplified polymorphic DNA (RAPD) (Devos and Gale, 1992) and simplesequence repeat (SSR) (Roder et al., 1998) markers were used for variety characterisation. SSR markers are PCR-based DNA markers which require only a small amount of template and can be efficiently used to screen large populations. Most recently, SSR markers have been superseded by single nucleotide polymorphism (SNP) based approaches (Cavanagh et al., 2013). SNPs occur in genomes at a much higher frequency than SSRs and have a lower error rate in detection (Duran et al., 2009). SNP variation can be detected in a much higher-throughput manner, for example using fluorescence-based genotyping technology such as the KASP (Kompetitive Allele Specific PCR) assay (He et al., 2014).

1.3.4.1 Identifying variation in wheat

Great progress has been made in generating wheat sequence from Chinese Spring and the WGS of synthetic wheat W7984 (Chapman et al., 2015, IWGSC, 2014). Re-sequencing whole genomes of specific wheat varieties of interest is not yet viable. For this reason, methods to reduce complexity such as focusing on transcriptomes or exomes have been employed to uncover variation, mainly SNP variation. Recent application of NGS has improved the throughput of SNP discovery. Thousands of SNPs have been uncovered from bread wheat transcriptomes (Allen et al., 2011, Cavanagh et al., 2013) and exomes (Allen et al., 2013). A large number of identified SNP variants have been converted into high-density SNP platforms which can genotype wheat populations. SNP platforms such as the iSelect array with 90,000 SNPs (Wang et al., 2014a) and Affymetrix Axiom ${ }^{8}$ array with 820,000 SNPs (www.cerealsdb.uk.net/cerealgenomics) have driven down the cost per assay. Further, a proportion of SNPs in each platform have been genetically mapped by
combining different mapping studies (http://www.wgin.org.uk/, (Cavanagh et al., 2013). Bioinformatics pipelines such as PolyMarker now allow rapid conversion of array-based assays into genomic-specific KASP assays (Ramirez-Gonzalez et al., 2015). A limitation of these SNP platforms is that they rely on the predetermined set of SNPs on the original discovery panel. Where variety- or population-specific variants are required, for example for fine-mapping, more targeted variant discovery is necessary.

1.3.4.1.1 Targeting variant discovery to genetic intervals

There are two main methods of direct (unbiased) variant detection in wheat, which both use a strategy of first reducing complexity before resequencing. The first method is genotyping-by-sequencing (GBS) (Poland et al., 2012). GBS reduces the genome complexity by digesting the template with restriction enzymes and size-selecting the fragments (Wang et al., 2015a). Downstream GBS bioinformatics analysis is currently complex and it was not clear at the start of this project in 2012 that SNP-calling would be accurate. The second method was used in this thesis, called bulked segregant analysis (BSA) (Michelmore et al., 1991). BSA is a technique that can be combined with NGS of mRNA (called RNA-Seq) to target SNP discovery to a particular genetic interval. Two pools (bulks) of individuals from a population segregating for a specific trait of interest are compared, allowing identification of allelic variation from one of the parents to the population which is enriched in the appropriate bulk. BSA has been combined with RNA-Seq to identify SNPs in mapping studies in tetraploid (Trick et al., 2012) and hexaploid wheat (Ramirez-Gonzalez et al., 2014).

1.3.5 Advances in wheat resources over the course of the thesis

At the beginning of this thesis, the IWGSC chromosome survey sequence had been made available to researchers (restricted by password access) via a BLASTable database hosted by the Unité de Recherche Génomique Info (URGI), a research unit in bioinformatics at Institut National de la Recherche Agronomique (INRA) (URGI, 2013). This first release version (IWGSC-1) was not curated as a set of contigs in their physical order. Instead, other than chromosome arm provenance, the contigs were unannotated. During the course of the project,
there was a rapid expansion in the Triticeae resources available and the most salient are shown in Figure 1.3. The main advances pertained to wheat gene models and accessibility of resources from syntenic species.

As part of the RNA-Seq BSA strategy, a genomic reference is required. With the absence of a reference genome, this was achieved in this project by using the best available gene models for wheat. Since the IWGSC-1 contigs were redundant and also unordered, these were not suitable in this state. At the start of the PhD, the available resource was a UniGene reference which was based on de novo assemblies of diploid progenitors which had been ordered using Brachypodium synteny and a coarse wheat genetic map (Harper et al., 2015). By the end of the project, more complete gene models were available. However, not all developments could be fully capitalised on due to time constraints.

Synteny between the Pooideae genomes had already been established as an extremely valuable resources prior to the start of this PhD. The emerging resources in barley and diploid progenitors throughout this PhD further contributed to this. However, datasets were deposited in disparate locations and could not always be unified using a common identifier, which made it difficult to navigate between them. By 2015, integration of these resources was much more comprehensive.

Figure 1.3: Developments in Triticeae resources over the course of the PhD (left) and a time-line of some of the work in Chapters 5 and 6 to fine-map Rht8 (right).

1.4 Aims of the thesis

Rht8 is one of the few Rht alleles that reduce plant height and improve lodging resistance without yield penalty and is the most prevalent alternative to the GAinsensitive genes in agriculture, mainly in southern and central Europe. Rht8 is not found in northern-European germplasm and its potential for breeding in different N treatments and water regimes in such climates has not been thoroughly studied. Further, most agronomic assessments of Rht8 have focused on height, leaving developmental traits, yield and the underlying components poorly understood. Rht8 has also been anecdotally reported to have a compact spike in observations in the field, but the veracity of this has not been investigated further or quantified.

The first part of the thesis aims to address these questions. The first objective is to assess the influence of Rht8, without the confounding effects of Ppd-D1a or other major dwarfing genes, on height, height components and yield components in a wheat population adapted to northern European conditions and in a commercially-useful wheat background. To achieve this, the thesis will build on previously developed near-isogenic lines (NILs) contrasting for the Rht8 allele from Mara and tall rht8 allele from Cappelle-Desprez developed in the elite spring wheat, Paragon (Gasperini, 2010). The second objective is to investigate spike compactness in this material, to test the veracity of qualitative anecdotal evidence.

The second part of the thesis aims to further fine-map Rht8 by an RNA-Seq enabled bulked segregant-analysis strategy, which had been applied at the time of starting this PhD in tetraploid wheat. This builds on previous efforts which mapped Rht8 to a 1.29 cM interval on chromosome 2DS. To achieve this, the fine-mapping Rht8 population has to be accurately phenotyped and wheat sequence from a variety of sources mined for useful variation. With emerging resources, this will be achieved by constructing Zippers of syntenic species.

The fine-mapping of Rht8 will anchor the interval in the most up-to-date Triticeae resources and detect markers amenable to high-throughput genotyping which will be useful to breeders and the research community. This will be achieved by saturating the region with molecular markers, through manifold approaches from
the emerging resources in wheat. In doing so, the usefulness of different resources will be evaluated.

Chapter 2: Materials and Methods

2.1 Agronomic characterisation of Rht8 in UKadapted germplasm

2.1.1 Near Isogenic Lines

The material used in this project derived from previous work by Gasperini (2010). RIL28, from the 2D RIL population described in 2.3.1.1 was used as the Maraderived Rht8 donor (female parent) and crossed to Paragon. Paragon is a high-bread-quality commercial spring wheat variety in the UK and does not contain Rht-B1b or Rht-D1b and is photoperiod sensitive (Ppd-D1b). A series of backcrosses and marker-assisted selection with Xgwm261 and Xcfd53 (markers named after the locations where they were developed: Gatersleben wheat microsatellite and INRA Clermont-Ferrand, respectively) produced $\mathrm{BC}_{3} \mathrm{~F}_{2}$ seed which was then multiplied in the field (Figure 2.1). The $\mathrm{BC}_{3} \mathrm{~F}_{2}$ near-isogenic lines (NILs) contrasted for the Rht8 allele from Mara (defined by marker-assisted selection for gwm261-192bp and cfd53-274bp) and tall rht8 allele from CappelleDesprez. One (Rht8) short NIL and one tall NIL were selected at the start of this project (Figure 2.2) at the $\mathrm{BC}_{3} \mathrm{~F}_{3}$ stage to be used in further trials.

2.1.2 Sites and experimental design

The Rht8 and tall NILs were grown along with Paragon in field trials across three locations: Church Farm, Bawburgh, Norfolk; the Crops Research Unit, Sonning, University of Reading and Lleida, Catalonia, north-eastern Spain. The site coordinates, soil, plot and drilling details are in Table 3.1, along with the specific traits measured at each location. The NILs were grown in Norwich over three years (2012-14) in a randomised complete block design (RCBD) with three replications in 2012/13 and five replications in 2014, though tiller samples were only taken from three out of five replications in 2014. The same design of RCBD with three replicates was used in Lleida over 2013-2014 and a split-plot design with five replicates was implemented in Reading. Drilling dates were third week
of November 2012 and 2013 in Lleida, 17 ${ }^{\text {th }}$ October 2013 in Reading, 13 ${ }^{\text {th }}$ October (nitrogen trial)/16 ${ }^{\text {th }}$ October (irrigation trial) 2012 and 19th October 2013 at Church Farm. In trials with contrasting nitrogen (N) treatments, 40 kg N ha was applied at Zadoks growth stages GS30-31 (Zadoks et al., 1974) and a further dose of N applied at GS34-39 to make up to the required levels for N2 (total 100 $\mathrm{kg} \mathrm{N} \mathrm{ha}{ }^{-1}$) and N 3 (total $200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$). For the irrigation experiments, trickle irrigation was applied using a timer and piping between each row within a plot. In 2013, water was applied from $17^{\text {th }}$ June $-25^{\text {th }}$ July (after stem elongation) five days per week, receiving 15 litres m^{-2} day $^{-1}$. In 2014, irrigation was applied from $30^{\text {th }}$ April to $23^{\text {rd }}$ May on 14 occasions (no irrigation was supplied on rainy days), receiving approximately 14 litres m^{-2} day $^{-1}$, but on three occasions 10 litres m^{-2} day ${ }^{-1}$ due to leaks. Field trials were kept weed- and pest-free with products according to standard agronomic practice at each of the locations, with the exception that plant growth regulators (PGRs) were not applied.

Figure 2.1: NILs carrying a Mara-derived Rht8 introgression in the spring variety Paragon used in this project. The material originated from a backcrossing programme by Debora Gasperini and then multiplied in the field by Simon Orford.

Figure 2.2: Selecting the Rht8 (short) and tall NILs at the $B C_{3} F_{3}$ stage for further field trials. The selected NILs are shown with arrows, Rht8 NIL (left,) and tall NIL (right).

2.1.3 Climate and day length

Weather data for Reading were recorded at an automated metrological station at the Sonning site; obtained for Lleida from Gustavo Slafer at the University of Lleida and from the Buxton Weather Station (http://www.buxtonweather.co.uk/weather.htm) for Norwich, $\sim 15 \mathrm{~km}$ from the Norwich trial site in Bawburgh. The day-lengths for the 2013-2014 growing season for Norwich and Lleida were calculated using the maptools package (Bivand and Lewin-Koh, 2015) in R v3.1.1 (R Development Core Team, 2014). Maptools has functions for calculating sunrise and sunset using algorithms provided by the National Oceanic \& Atmospheric Administration (NOAA). The R script using these functions to calculate day length is shown in Appendix 2.1.

2.1.4 Phenotyping and assessments

Grain yield was recorded per plot and adjusted for plot size. Grain m^{-2} was calculated from grain yield and thousand grain weight (TGW). Plant height was measured from soil level to the top of each wheat ear. This was measured at maturity from a visually-determined representative tiller per plot at Church Farm and in Reading using a rising disc of polystyrene (Peel, 1987). Plant height and height components were also measured from tillers taken from each plot (outlined below) and extended along a ruler. The spikes m^{-2} was calculated from plant
populations taken at Reading and Lleida using the mean of three $0.1 \mathrm{~m}^{2}$ circular quadrats in each plot.

Developmental stages of heading date at GS57 and anthesis at 50\% emergence from the flag leaf were measured when 50% of the plants in each plot reached them. Senescence was measured at Church Farm in 2013 and assessed on a scale from 0 to 10 with 0 being peduncles completely green and 10 being loss of green colour in 100% of peduncles in a plot. Heading, anthesis and senescence were assessed in thermal time of ${ }^{\circ} \mathrm{C}$ days, by calculating the cumulative temperature from drilling to assessment date. The mean daily temperature was calculated from the minimum and maximum daily temperatures from the weather data described in 2.1.3. At Reading, the proportion of photosynthetically active radiation (PAR) and red:far-red reflectance ratios were measured at the base of the canopy on the dates shown in Appendix 3.8 using methodologies described elsewhere (Addisu et al., 2009b).

Prior to harvest, three main tillers from three plants were sampled from each plot in the UK sites only. Tillers were used for assessment of height, height components and yield components: harvest index (ratio of grain weight to aboveground biomass), spikelets spike ${ }^{-1}$ and TGW. Above-ground biomass was measured before threshing the grain. Morphometric measurements (grain width, length, area and TGW) were recorded from threshed grain using 300-400 grains per sample on the MARVIN grain analyser (GTA Sensorik GmbH, Germany). The internode below the spike was defined as the peduncle and the successive internodes as the first, second, third internodes, respectively. Each internode was measured from the mid-point of the subtending node.

Ground cover was measured at Church Farm on $25^{\text {th }}$ March 2014 and $26^{\text {th }}$ March at Reading. Images of plots were taken at waist-height and the proportion of green canopy in the plot was measured using an ImageJ (Abramoff et al., 2004) macro written by Oscar Gonzalez which calculates the proportion of the image with green cover. The script for the macro is in Appendix 2.2.

Lodging was measured in each plot where any degree of lodging had occurred at approximately GS70 in July 2014. Lodging score was calculated using the percentage of the plot area which had lodged multiplied by the angle of lodging (0 to 90°) (Fischer and Stapper, 1987). Lodging score ranged from 0 to 100, with

0 being no lodging and 100 being total displacement to horizontal across the whole plot.

2.1.5 Statistical analyses

Comparisons between NILs were carried out using genotype analyses of variance (ANOVAs) to assess the effects of genotype within treatment combinations. For Lleida, a two-way ANOVA was performed for data across both years, using a treatment structure of year*genotype with block as the random effect. For Church Farm, for the nitrogen and irrigation trials in 2013 and for nitrogen in 2014 a two-way ANOVA was performed with the treatment*genotype (treatment structure) and block as random effect. Residual Maximum Likelihood (REML) analysis was carried out for the irrigation experiment at Church Farm in 2014, where the fixed effects were N treatment*water treatment*genotype. The NILs in Reading were compared at different nitrogen treatments using a split-plot ANOVA where nitrogen treatment was the main plot and genotype the sub-plot. ANOVA, REML and correlations were performed using GenStat $16^{\text {th }}$ edition (VSN International). Fisher's least significant difference (LSD) test was used to determine significant differences between means at the 0.05 level. The complete data from the analyses of each trial is shown in Appendix 3.

2.2 Compact spike morphology

2.2.1 Measuring spike compactness

Spike compactness was scored visually by assessing the percentage of spikes in the plot which were compacted. No distinction could be made visually to the degree of compactness. All five plots at each water regime at low nitrogen (40 kg $\mathrm{N} \mathrm{ha}{ }^{-1}$) for the Rht8 NIL showed a degree of spike compactness and all 15 plots with the Rht8 NIL in Reading were also assessed to have spike compactness. All other plots and genotypes had no discernible compaction (0\%).

Spike compactness was quantified using the same tiller samples taken before harvest as outlined in 2.1.4. Spike length and spikelet number spike ${ }^{-1}$ were used to calculate compactness as cm spikelet ${ }^{-1}$. To measure compactness in the finemapping Rht8 recombinants described in 2.3.1.2, a subset of 20 fine-mapping
recombinants typed short and 20 fine-mapping recombinants typed tall were selected and spike lengths measured from the images taken of developing spikes at as outlined in 2.3.4.1. Spikelet number was counted visually and compactness calculated from the two values.

Pearson's correlation coefficients were calculated between spike measurements and height. Analyses are as described in 2.1.5 and shown in full in Appendix 4.

2.3 Development of molecular markers within the
 Rht8 interval

2.3.1 Plant material

2.3.1.1 2D RIL (coarse-mapping) population

The 89 2D RILs were initially obtained by developing a 2D substitution line in which the 2D chromosome of Mara, the Akakomugi-derived Rht8 donor, was substituted into the Cappelle-Desprez background. This was achieved by backcrossing to the existing Cappelle-Desprez monosomic stock for 2D (Law, 1967, Law and Worland, 1973). The Mara 2D substitution line was crossed to the recipient parent and the F_{1} further crossed to the Cappelle-Desprez 2D monosomic line. The progeny with 41 chromosomes were extracted from the hybrid progeny and self-fertilied for selection of disomic lines carrying different 2D chromosomes with homozygous recombination events in an otherwise homozygous Cappelle-Desprez background (Korzun et al., 1998). These recombinant lines are the 89 2D RILs.

2.3.1.2 Fine-mapping and medium-resolution populations

The fine-mapping population from which the fine-mapping (FM recs) and medium-resolution mapping (gwm recs) populations were selected were developed by Gasperini (2010). An outline of the population development is shown in Figure 2.3. RIL4, from the 2D RIL population described in 2.3.1.1, was used as a female parent and crossed into Cappelle-Desprez. The F_{1} plants were self-fertilised to produce $3104 \mathrm{~F}_{2}$ plants which were screened with the markers Xgwm261 and Xcfd53 for recombinants. Recombinants were self-fertilised and
the resulting $152 \mathrm{~F}_{3}$ families were genotyped to identify homozygous Rht8 recombinants (recombinant with respect to the original crossing parents and homozygous at both flanking-marker loci). The F_{3} recombinants were selffertilised and the F_{4} seed was obtained as the start-point for the work in this project. Originally, of these recombinants, 79 were used to resolve $R h t 8$ to a 1.29 cM interval between DG279 and DG371. A total of 69 wider recombinants which were recombinant between Xgwm261 and Xcfd53 but outside the DG279-DG371-defined interval were used as the medium-resolution mapping population (gwm recs). All recombinants were screened using Xgwm261 and Xcfd53 to verify previous genotyping. From the 79 FM recs, F4-1-1-10-5 and F4-1-1-2-9 were discarded as scoring errors in population development since they were heterozygous at one of the flanking-marker loci. F4-1-1-6-4 and F4-1-1-6-5 were completely sterile when grown in the first glasshouse experiment and were discarded. F4-3-1-6-4 and F4-3-1-1-8 had insufficient seed to be taken forward without staggering a generation and were discarded. This left a total of 73 FM recs. The FM recs were further genotyped with DG279 and DG371 prior to finemapping.

2.3.1.3 DNA extraction

Wheat seeds for the parent NILs, 2D RIL population, fine-mapping population and medium-resolution mapping population were germinated on wet filter paper in Petri dishes at $20^{\circ} \mathrm{C}$ for 24 hours following a cold treatment at $5^{\circ} \mathrm{C}$ in the dark for 48 hours. Germinated seeds were planted into individual cells ($4 \times 4 \mathrm{~cm}$) of 96 -well trays filled with a mixture of peat and sand. Two-week old leaf tissue was harvested into microtubes containing a 3mm tungsten bead (Qiagen, 699997) in a 96 -well collection box (Qiagen, 19560) by folding a 5 cm section of leaf into a concertina. DNA was extracted according to the Somers and Chao protocol (http://maswheat.ucdavis.edu/PDF/DNA0003.pdf), adapted from Pallotta et al., 2003. DNA was quantified at a wavelength of 260 nm using a NanoDrop 2000 (ThermoScientific). Yields per extraction were $60-150 \mathrm{ng} \mathrm{\mu}^{-1}$.

Figure 2.3: Background to Rht8 fine-mapping population development by Gasperini (2010) and the selections made for this project. Marker names and numbers are derived from laboratory designators and chronologically-ordered lists used by the scientists who first published them and preceded by an ' X ' to indicate a microsatellite marker: 'Gatersleben wheat microsatellite' (gwm261) (Roder et al., 1998) and INRA Clermont-Ferrand (cfd53) (Paillard et al., 2003).

2.3.1.4 Screen with flanking markers

The FM recs and gwm recs were screened with Xgwm261 and Xcfd53 to verify previous genotyping. Primer sequences and amplification conditions were obtained from GrainGenes (http://wheat.pw.usda.gov/cgi-bin/graingenes). The FM recs were also screened with DG279 and DG371, using the primer sequences and amplification conditions described by Gasperini et al., (2012). PCR reactions were conducted as described in 2.3.10.1 but LIZ1200 (Applied Biosytems) was used as the sizing standard.

2.3.2 Material for genetic dissection

2.3.2.1 Phenotyping for height in glasshouse experiments

The 73 fine-mapping recombinants described in 2.3.1.2 were grown in the glasshouse and in the field in order to obtain height measurements. First, the finemapping recombinants and the parent NILs were grown in a lit glasshouse in long days and phenotyped for height. Wheat seeds were germinated on wet filter paper in Petri dishes at $20^{\circ} \mathrm{C}$ for 24 hours following a cold treatment at $5^{\circ} \mathrm{C}$ in the dark for 48 hours. Germinated seedlings were grown in a mixture of peat and sand and vernalised at $5^{\circ} \mathrm{C}$ with 70% relative humidity for 10 weeks under short days (10 h light/14h dark). The light in the vernalisation chamber was provided by tungsten lamps to an intensity of $250 \pm 50 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ at canopy level.

Plants were subsequently transplanted into 1L pots in September 2012 and transferred to a glasshouse. Plants were grown in long days (16h light/8h dark) under HPS 400 W lamps providing $400 \pm 50 \mu \mathrm{~mol} \mathrm{~m}{ }^{-2} \mathrm{~s}^{-1}$ at canopy level. The temperature ranged from $15^{\circ} \mathrm{C}-33^{\circ} \mathrm{C}$ (mean of $23^{\circ} \mathrm{C}$) and relative humidity ranged from $35 \%-81 \%$ with a mean of 56%. Temperature and humidity was recorded using a USB data logger (RS Components Ltd, 4801064) tied to a stake at canopy level which recorded data every 30 min .

Plants were arranged in a randomised-block design trial of eight blocks split equally over two central benches. Each block contained one replicate of each genotype along with controls of the tall parent (Cappelle-Desprez) and short parent (RIL4) (Figure 2.4). No plant growth regulators were applied. Final plant
height was measured from the soil to the tip of the spike of the main tiller．Where spike length was measured，the height to the bottom of the spike was subtracted from the total height．The ears of each plant were bagged and hand－threshed．

Bench 1						
下 ㄷ O 0	F4－3－7－9－1	F4－2－7－3－6	F4－1－1－12－1	F4－1－1－10－5	F4－1－2－4－3	RIL6
	F4－3－8－5－2	F4－3－8－3－3	F4－1－7－1－1	RIL6	F4－2－1－16－3	F4－1－7－4－1
	F4－1－6－12－1	F4－1－7－17－1	F4－3－2－5－1	F4－1－7－7－1	F4－3－1－1－6	F4－3－2－13－1
	F4－3－1－3－6	F4－2－7－9－2	F4－2－2－7－1	F4－1－6－19－2	F4－1－2－2－1	F4－3－3－15－1
	F4－3－2－8－1	F4－2－8－4－1	F4－3－2－15－1	F4－1－6－17－1	F4－1－9－1－1	F4－1－6－13－2
	F4－2－1－8－4	F4－2－2－10－1	F4－1－2－9－1	F4－3－7－8－2	F4－2－3－8－1	F4－3－7－14－3
	RIL4	F4－2－7－12－2	F4－3－7－6－1	F4－1－1－2－9	F4－1－1－9－7	F4－1－9－3－1
	F4－3－7－7－2	F4－2－1－11－4	F4－2－2－2－3	CD	F4－3－8－2－2	F4－1－6－11－1
	F4－1－7－18－3	F4－2－2－6－1	F4－3－2－7－2	F4－3－2－2－1	F4－2－7－4－1	F4－3－1－2－6
	F4－1－7－15－1	F4－3－2－16－1	F4－1－6－9－1	F4－2－3－7－1	F4－3－8－6－3	F4－3－7－1－2
	F4－2－7－6－2	F4－2－7－2－1	F4－2－3－2－1	F4－2－8－5－2	F4－3－7－10－1	FILLER
	RIL4	F4－2－1－4－1	F4－3－7－13－3	F4－1－6－3－1	CD	F4－2－8－6－1
	F4－2－8－1－2	F4－1－2－7－1	F4－1－9－2－1	F4－3－2－12－1	F4－1－6－16－1	RIL4
	F4－2－1－12－1	F4－3－8－1－1	F4－1－1－11－1	F4－3－7－5－3	F4－1－1－7－3	1－1－6－5
$\begin{aligned} & \mathbf{N} \\ & \vdots \\ & \underline{0} \\ & \mathbf{0} \end{aligned}$	F4－2－2－10－1	F4－3－8－6－3	F4－2－8－5－2	F4－3－2－15－1	F4－1－1－10－5	F4－1－2－7－1
	F4－2－1－8－4	F4－3－7－8－2	F4－3－1－1－6	F4－3－2－2－1	F4－2－1－11－4	RIL4
	F4－2－7－6－2	F4－1－6－3－1	F4－3－2－7－2	F4－3－7－1－2	F4－2－1－16－3	F4－2－8－6－1
	F4－2－8－4－1	F4－1－6－16－1	F4－3－7－13－3	F4－3－1－2－6	F4－3－7－9－1	F4－3－2－8－1
	FILLER	F4－1－6－11－1	F4－2－3－2－1	RIL4	F4－1－9－2－1	F4－1－1－11－1
	F4－2－8－1－2	F4－1－7－17－1	F4－1－2－9－1	F4－1－9－1－1	F4－2－2－7－1	F4－3－7－6－1
	F4－1－7－15－1	F4－1－1－7－3	F4－3－1－3－6	F4－2－3－7－1	F4－1－6－12－1	F4－2－1－12－1
	F4－1－1－2－9	F4－2－7－9－2	F4－3－3－15－1	F4－1－6－17－1	F4－3－7－7－2	F4－2－7－4－1
	F4－1－6－9－1	F4－2－1－4－1	F4－3－8－1－1	CD	F4－1－6－19－2	F4－3－2－12－1
	F4－2－2－6－1	F4－1－7－4－1	F4－3－2－5－1	F4－1－1－12－1	F4－3－7－14－3	F4－3－7－10－1
	F4－1－6－13－2	F4－2－2－2－3	F4－1－9－3－1	F4－1－2－2－1	F4－1－2－4－3	FILLER
	F4－3－2－16－1	F4－3－7－5－3	F4－1－7－7－1	F4－3－8－5－2	F4－2－3－8－1	1－1－6－4
	F4－3－2－13－1	RIL6	F4－1－7－1－1	F4－2－7－2－1	F4－2－7－3－6	CD
	F4－3－8－2－2	F4－1－1－9－7	F4－2－7－12－2	RIL6	F4－1－7－18－3	F4－3－8－3－3
$\begin{aligned} & \text { M } \\ & \text { ப } \\ & \underline{0} \\ & \hline \mathbf{0} \end{aligned}$	F4－1－9－3－1	F4－2－1－4－1	F4－3－2－12－1	F4－1－2－7－1	F4－3－8－6－3	CD
	F4－3－8－2－2	F4－1－1－12－1	RIL6	F4－1－2－2－1	F4－3－8－3－3	F4－1－7－7－1
	F4－1－7－4－1	F4－2－7－6－2	F4－3－7－10－1	F4－3－2－7－2	F4－2－2－2－3	F4－3－7－5－3
	CD	F4－2－3－2－1	F4－3－7－13－3	F4－2－1－8－4	F4－1－6－13－2	F4－3－7－7－2
	F4－2－8－4－1	F4－2－7－4－1	F4－3－2－13－1	RIL4	F4－2－8－6－1	F4－3－1－3－6
	F4－2－8－1－2	F4－1－1－9－7	F4－1－1－10－5	F4－3－1－2－6	F4－2－7－12－2	F4－2－1－12－1
	F4－1－6－11－1	F4－3－2－2－1	F4－3－2－5－1	F4－1－7－1－1	F4－2－7－2－1	F4－1－2－4－3
	F4－1－1－11－1	F4－1－1－7－3	F4－1－7－15－1	F4－3－8－1－1	F4－3－2－8－1	F4－2－3－7－1
	F4－1－6－19－2	F4－1－6－17－1	F4－1－6－16－1	F4－3－2－15－1	F4－1－6－9－1	F4－1－6－3－1
	F4－2－2－7－1	F4－3－7－6－1	F4－2－1－16－3	F4－1－7－17－1	F4－1－7－18－3	F4－1－2－9－1
	F4－2－1－11－4	RIL6	F4－2－2－10－1	F4－2－3－8－1	CD	F4－3－3－15－1
	F4－3－7－9－1	F4－3－7－8－2	F4－2－8－5－2	F4－3－8－5－2	F4－2－7－9－2	1－1－6－5
	RIL4	F4－1－1－2－9	F4－2－2－6－1	FILLER	F4－1－9－1－1	F4－3－2－16－1
	F4－3－7－14－3	F4－3－1－1－6	F4－1－6－12－1	F4－2－7－3－6	F4－3－7－1－2	F4－1－9－2－1
$\begin{aligned} & \text { J } \\ & \text { 广 } \\ & \text { O} \\ & \mathbf{0} \end{aligned}$	F4－1－1－10－5	F4－1－2－4－3	F4－1－6－16－1	F4－2－1－8－4	F4－2－7－12－2	F4－3－7－14－3
	F4－1－2－7－1	F4－1－6－3－1	RIL6	F4－3－2－15－1	F4－2－3－7－1	F4－1－1－2－9
	F4－2－8－6－1	F4－1－7－4－1	F4－2－1－16－3	F4－3－2－12－1	RIL4	F4－2－2－7－1
	F4－3－7－10－1	F4－1－1－11－1	F4－2－8－4－1	F4－3－8－3－3	F4－3－7－9－1	F4－3－7－8－2
	RIL6	F4－2－1－11－4	F4－3－2－5－1	F4－1－7－7－1	F4－3－7－7－2	F4－1－6－17－1
	F4－3－7－1－2	F4－3－2－16－1	F4－3－2－8－1	F4－1－6－13－2	F4－2－2－6－1	F4－3－2－2－1
	F4－1－7－17－1	F4－3－7－13－3	F4－2－1－12－1	F4－1－7－15－1	F4－1－2－2－1	RIL4
	CD	F4－1－1－12－1	FILLER	F4－1－9－2－1	F4－1－1－7－3	F4－1－9－3－1
	F4－3－7－5－3	F4－2－7－4－1	F4－1－6－9－1	F4－3－8－5－2	F4－3－1－2－6	F4－2－2－10－1
	F4－2－7－9－2	F4－2－1－4－1	F4－2－8－1－2	F4－2－3－8－1	F4－1－6－11－1	F4－2－7－2－1
		F4－3－8－6－3	F4－3－1－3－6	F4－1－7－1－1	F4－1－7－18－3	F4－3－1－1－6
	F4－1－2－9－1	F4－1－9－1－1	F4－3－8－1－1	F4－3－3－15－1	F4－1－1－9－7	1－1－6－4
	F4－3－2－7－2	CD	F4－2－7－3－6	F4－1－6－12－1	F4－1－6－19－2	F4－3－2－13－1
	F4－2－2－2－3	F4－2－3－2－1	F4－3－8－2－2	F4－2－8－5－2	F4－3－7－6－1	F4－2－7－6－2

Bench 2						
1－1－6－4	F4－2－1－8－4	F4－2－3－8－1	F4－3－2－12－1	F4－3－8－6－3	F4－1－1－7－3	
F4－2－7－3－6	F4－3－2－7－2	RIL4	F4－2－1－16－3	CD	F4－3－2－13－1	
F4－1－7－7－1	F4－3－7－5－3	F4－1－2－2－1	F4－1－6－19－2	F4－3－8－2－2	F4－3－7－13－3	
F4－3－1－1－6	F4－2－3－7－1	F4－1－1－12－1	F4－2－7－9－2	F4－1－1－9－7	F4－3－8－3－3	
F4－1－7－17－1	F4－2－1－12－1	F4－1－6－17－1	F4－1－2－7－1	F4－1－7－1－1	F4－1－1－10－5	
F4－1－6－9－1	F4－2－8－5－2	CD	F4－2－8－4－1	RIL6	RIL4	¢
F4－2－2－7－1	F4－1－6－13－2	F4－3－8－1－1	F4－1－9－2－1	F4－3－2－5－1	F4－1－7－18－3	$\bar{\square}$
CD	F4－3－3－15－1	F4－3－7－14－3	F4－1－7－15－1	F4－1－1－2－9	F4－1－6－16－1	
F4－2－8－6－1	RIL6	F4－1－6－11－1	F4－2－7－6－2	F4－3－7－1－2	F4－2－7－2－1	\cdots
F4－1－2－4－3	F4－3－7－8－2	F4－2－1－11－4	F4－1－6－12－1	F4－3－8－5－2	F4－3－7－6－1	
F4－3－2－15－1	F4－1－2－9－1	F4－1－9－1－1	F4－1－9－3－1	F4－1－7－4－1	F4－2－8－1－2	
F4－2－3－2－1	F4－3－1－2－6	FILLER	F4－2－7－4－1	F4－2－2－2－3	F4－2－2－6－1	
F4－3－2－8－1	F4－2－1－4－1	F4－1－1－11－1	F4－3－1－3－6	F4－2－2－10－1	F4－3－7－9－1	
F4－3－2－2－1	F4－2－7－12－2	F4－3－7－10－1	F4－3－2－16－1	F4－3－7－7－2	F4－1－6－3－1	
F4－2－2－2－3	F4－2－7－6－2	F4－2－2－6－1	F4－1－6－3－1	F4－1－1－11－1	F4－3－3－15－1	
F4－3－8－6－3	F4－3－7－1－2	F4－1－6－11－1	F4－1－2－7－1	F4－2－7－12－2	CD	
F4－1－7－15－1	RIL4	F4－3－7－6－1	F4－3－7－13－3	F4－3－2－7－2	F4－3－2－15－1	
F4－1－6－13－2	F4－2－2－10－1	F4－1－9－2－1	F4－3－7－10－1	F4－1－1－2－9	F4－3－2－5－1	
1－1－6－5	F4－3－1－2－6	FILLER	F4－3－7－7－2	F4－1－1－9－7	F4－2－1－11－4	
F4－3－2－8－1	F4－3－1－3－6	F4－2－7－4－1	F4－3－2－12－1	F4－1－1－7－3	F4－3－7－9－1	¢
F4－2－1－16－3	F4－2－3－8－1	F4－1－2－9－1	F4－1－9－3－1	F4－1－7－1－1	F4－2－7－3－6	$\bar{\square}$
F4－2－8－4－1	F4－1－6－12－1	RIL6	F4－3－7－5－3	F4－1－6－9－1	F4－2－3－7－1	
F4－3－8－1－1	F4－1－2－2－1	F4－1－9－1－1	F4－3－2－16－1	F4－2－8－1－2	F4－3－8－3－3	
F4－1－6－19－2	F4－3－2－2－1	F4－3－7－14－3	F4－3－7－8－2	RIL6	RIL4	
CD	F4－2－7－9－2	F4－2－1－4－1	F4－1－1－12－1	F4－2－3－2－1	F4－2－8－5－2	
F4－3－1－1－6	F4－2－7－2－1	F4－1－1－10－5	F4－1－2－4－3	F4－1－7－7－1	F4－1－7－4－1	
F4－1－7－17－1	F4－3－8－2－2	RIL6	F4－1－6－16－1	F4－2－1－12－1	F4－1－7－18－3	
F4－1－6－17－1	F4－2－2－7－1	F4－2－1－8－4	F4－2－8－6－1	F4－3－8－5－2	F4－3－2－13－1	
F4－2－8－5－2	F4－1－6－3－1	F4－1－6－13－2	RIL4	F4－3－2－2－1	F4－3－1－1－6	
F4－2－1－11－4	F4－1－1－11－1	F4－2－7－4－1	F4－3－7－14－3	F4－3－1－3－6	1－1－6－5	
F4－3－8－3－3	F4－1－9－2－1	F4－3－7－8－2	F4－1－1－9－7	F4－1－1－2－9	F4－2－8－1－2	
F4－3－8－6－3	FILLER	F4－3－8－2－2	F4－2－1－12－1	F4－1－6－9－1	F4－2－7－3－6	
F4－2－7－6－2	F4－2－7－12－2	F4－3－2－15－1	F4－2－3－7－1	F4－3－7－10－1	F4－3－8－1－1	
RIL6	F4－1－6－17－1	F4－3－2－8－1	F4－2－3－8－1	F4－2－2－6－1	CD	ロ
F4－1－7－17－1	F4－3－8－5－2	F4－1－7－18－3	F4－2－1－4－1	F4－1－6－12－1	F4－3－7－6－1	
F4－2－2－10－1	F4－1－9－3－1	RIL6	F4－2－3－2－1	F4－2－8－6－1	F4－3－2－16－1	
F4－3－7－9－1	F4－3－2－5－1	F4－2－8－4－1	F4－1－1－7－3	RIL6	F4－3－7－5－3	
F4－3－7－7－2	F4－3－7－1－2	F4－3－7－13－3	F4－3－1－2－6	F4－1－7－15－1	F4－2－2－2－3	
RIL4	F4－1－2－2－1	F4－2－1－16－3	F4－3－3－15－1	F4－2－7－2－1	F4－1－7－1－1	
F4－2－7－9－2	F4－1－2－7－1	CD	F4－1－6－16－1	F4－1－2－9－1	F4－1－1－12－1	
F4－1－7－4－1	F4－1－2－4－3	F4－1－1－10－5	F4－3－2－7－2	F4－3－2－12－1	F4－1－7－7－1	
F4－2－2－7－1	F4－1－9－1－1	F4－1－6－11－1	F4－3－2－13－1	F4－1－6－19－2	F4－2－1－8－4	
F4－2－2－2－3	F4－1－6－16－1	F4－1－9－1－1	F4－3－1－2－6	F4－1－7－7－1	F4－3－7－10－1	
F4－3－7－7－2	F4－3－8－1－1	F4－1－7－4－1	F4－3－1－3－6	FILLER	F4－2－7－3－6	
CD	F4－2－2－10－1	RIL4	F4－1－6－17－1	F4－1－7－18－3	F4－3－7－13－3	
F4－3－7－9－1	F4－3－8－2－2	F4－3－2－15－1	F4－2－7－6－2	F4－3－8－3－3	F4－3－2－12－1	
F4－3－7－5－3	F4－1－7－17－1	F4－1－2－9－1	CD	F4－1－7－1－1	F4－2－8－5－2	
F4－2－8－4－1	F4－1－6－13－2	F4－3－7－14－3	F4－2－7－2－1	1－1－6－5	F4－2－1－8－4	ロ
F4－1－1－2－9	F4－1－1－7－3	F4－3－2－7－2	RIL4	F4－1－7－15－1	F4－1－6－9－1	
F4－3－7－1－2	F4－3－7－8－2	F4－1－1－11－1	F4－2－1－16－3	F4－2－7－4－1	F4－1－6－3－1	त
F4－2－2－7－1	F4－1－9－2－1	F4－3－2－8－1	F4－3－8－5－2	F4－2－1－4－1	F4－3－7－6－1	
F4－3－2－5－1	F4－3－8－6－3	F4－1－6－12－1	F4－2－2－6－1	RIL6	F4－2－8－1－2	
F4－1－1－12－1	RIL4	F4－1－6－19－2	F4－1－6－11－1	F4－2－1－11－4	F4－3－2－2－1	
F4－1－2－7－1	F4－2－3－2－1	F4－3－2－13－1	F4－1－2－4－3	F4－1－2－2－1	F4－3－3－15－1	
F4－1－1－9－7	F4－2－1－12－1	F4－2－7－12－2	F4－1－1－10－5	F4－2－3－8－1	F4－1－9－3－1	
F4－3－2－16－1	F4－2－7－9－2	F4－3－1－1－6	RIL6	F4－2－3－7－1	F4－2－8－6	

Figure 2．4：Design of glasshouse experiment in autumn 2012．Each cell represents a 1L pot．
Recombinants from the extremes of the height distributions of the initial phenotyping（Figure 5．2）were selected for a further glasshouse experiment in summer 2013 to determine with confidence short and tall recombinants for RNA－ Seq．The experiment was conducted in the same way as described in the preceding paragraph，with the exception that pots were further spaced to avoid mildew which had affected the first experiment．

The recombinants were randomised in 24 blocks across four benches（Figure 2．6），with additional replicates for some of the recombinants．Some replicates were lost due to disease．Parent NILs were replicated to $\mathrm{N}=63$ with two or three replicates of each parent per block．The temperature ranged from $18^{\circ} \mathrm{C}-54^{\circ} \mathrm{C}$
(mean of $25^{\circ} \mathrm{C}$) and humidity ranged from $11 \%-85 \%$ with a mean of 54%. The plant height was measured and selections made on the basis of phenotype for short and tall bulks for RNA-Seq and the iSelect SNP array as shown in Appendix 2.3 and Figure 5.2.

Figure 2.5: Spacing of 1 L pots in the glasshouse experiment in 2013. Photograph taken in June 2013.

		$\begin{array}{\|l\|} \hline \stackrel{N}{\hat{N}} \\ \dot{N} \\ \dot{\sim} \\ \dot{\omega} \\ \hline \end{array}$	$\begin{gathered} \hat{1} \\ \frac{1}{\dot{L}} \end{gathered}$	\bigcirc	$\begin{array}{\|c\|} \hline \stackrel{\hat{6}}{\dot{N}} \\ \tilde{\sim} \\ \dot{e} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{\grave{N}} \\ \stackrel{\vdots}{\dot{N}} \\ \dot{\dot{L}} \\ \hline \end{array}$	$\stackrel{\underset{\sim}{\Perp}}{\stackrel{1}{4}}$	$\begin{array}{\|c\|} \hline \stackrel{\grave{N}}{\tilde{N}} \\ \underset{\dot{L}}{\dot{L}} \\ \hline \end{array}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{U} \end{aligned}$	\bigcirc		$\begin{aligned} & \hline \stackrel{N}{N} \\ & \stackrel{1}{\hat{N}} \\ & \stackrel{U}{4} \end{aligned}$					炭	$\begin{array}{\|c} \underset{\sim}{\dot{u}} \\ \dot{\tilde{y}} \\ \dot{\mu} \end{array}$	$\left.\begin{array}{\|c} \stackrel{?}{1} \\ \frac{!}{\dot{h}} \\ \mid \end{array} \right\rvert\,$	$\begin{aligned} & \stackrel{\varphi}{\grave{N}} \\ & \stackrel{\rightharpoonup}{\dot{M}} \\ & \stackrel{\leftrightarrow}{L} \end{aligned}$				U	｜lo							$\frac{N}{C 1}$	$\|\underset{\overline{\mathbb{\alpha}}}{J}\|$	$\left.\begin{array}{\|l} \stackrel{1}{\grave{6}} \\ \frac{1}{\dot{6}} \\ \dot{\mu} \end{array} \right\rvert\,$	$\begin{aligned} & \dot{\infty} \\ & \underset{\sim}{\tilde{1}} \\ & \underset{\sim}{\dot{W}} \\ & \hline \end{aligned}$	$\|\stackrel{\underset{\sim}{\dot{x}}}{\underline{J}}\|$		$\begin{array}{\|l\|} \stackrel{\rightharpoonup}{\hat{1}} \\ \dot{\omega} \\ \dot{\mu} \end{array}$		0	N
	$\begin{aligned} & \frac{7}{7} \\ & \frac{1}{4} \\ & \underset{\sim}{4} \\ & \dot{4} \end{aligned}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\dot{\alpha}} \\ \dot{\dot{L}} \\ \dot{U} \\ \dot{L} \end{array}$			$\begin{gathered} \varphi \\ \tilde{y} \\ \underset{N}{N} \\ \underset{\sim}{4} \\ \underset{N}{2} \end{gathered}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{T}} \\ \dot{\grave{v}} \\ \dot{\dot{L}} \end{array}\right\|$	$\left\|\begin{array}{c} \dot{\dot{\circ}} \\ \dot{\mu} \\ \tilde{\omega} \\ \dot{L} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{N}{\dot{C}} \\ \dot{\dot{L}} \\ \dot{山} \\ \dot{L} \end{array}\right\|$	$\begin{gathered} 9 \\ \vdots \\ \dot{e} \\ \tilde{\dot{L}} \\ \dot{L} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\vdots}{\dot{h}} \\ & \frac{1}{\dot{L}} \end{aligned}$						0	$\begin{array}{\|c\|} \hline \stackrel{N}{\grave{N}} \\ \dot{\sim} \\ \text { UU } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \dot{\sim} \\ \dot{\sim} \\ \dot{N} \\ \dot{\mu} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\varrho}{2} \\ \frac{1}{\grave{L}} \\ \hline \frac{1}{\dot{L}} \\ \hline \end{array}$		？ $\underset{\sim}{2}$ \vdots \vdots $\dot{4}$		نً	山	$\frac{\dot{5}}{\frac{\dot{6}}{\dot{L}}}$			$\begin{array}{\|c\|} \substack{\mathrm{N} \\ \underset{\sim}{L}} \end{array}$					\bigcirc	$\stackrel{ \pm}{\stackrel{y}{ \pm}}$		\bigcirc		$\stackrel{\text { d }}{\stackrel{\text { d }}{\sim}}$	¢	¢	
［1	\bigcirc	$\left\|\begin{array}{c} \overline{\dot{~}} \\ \stackrel{\dot{C}}{\dot{L}} \end{array}\right\|$	$\begin{array}{\|c} \overline{6} \\ \vdots \dot{\varphi} \\ \vdots \dot{\dot{L}} \\ \hline \end{array}$	$\begin{gathered} \underset{\sim}{\grave{N}} \\ \stackrel{\sim}{\dot{L}} \end{gathered}$			$\stackrel{4}{3}$	\bigcirc	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{j}} \\ & \stackrel{1}{\dot{~}} \end{aligned}$		－					$\underset{\sim}{\underset{\sim}{x}} \mid$		\bigcirc	$\left\lvert\, \begin{gathered} \stackrel{9}{\dot{~}} \\ \frac{\vdots}{\dot{~}} \\ \hline \dot{~} \end{gathered}\right.$					$\dot{\Perp}$		\bigcirc		$\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \underset{\sim}{U} \\ & \stackrel{U}{U} \end{aligned}$	f				$\left\lvert\, \begin{gathered} \stackrel{N}{\hat{1}} \\ \stackrel{\hat{M}}{\dot{L}} \\ \mid \end{gathered}\right.$	$\left\|\begin{array}{l} \bar{\top} \\ \grave{\omega} \\ \tilde{\mu} \\ \stackrel{L}{L} \end{array}\right\|$	$\frac{\dot{\square}}{\substack{\text { ¢ }}}$	筞		$\bar{\sim}$ \vdots \vdots U U	N	－	8
	$\stackrel{ \pm}{\vec{\sim}}$	0			$\stackrel{J}{\bar{x}}$		$\begin{gathered} \bar{\omega} \\ \stackrel{c}{\dot{N}} \\ \dot{e} \\ \dot{\omega} \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{寸} \\ \dot{N} \\ \dot{U} \end{array}\right\|$	$\begin{aligned} & \hat{\dot{o}} \\ & \frac{\grave{\zeta}}{\dot{\grave{L}}} \end{aligned}$										$\left\|\begin{array}{c} \hat{M} \\ \dot{\varphi} \\ \dot{0} \\ \dot{\mu} \\ \dot{L} \end{array}\right\|$			完	0	$\stackrel{5}{6}$				$\dot{\dot{\leftrightarrow}}$				1			$\begin{aligned} & \dot{\omega} \\ & \stackrel{\rightharpoonup}{\dot{N}} \\ & \dot{U} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{0}} \\ \dot{\vdots} \\ \dot{\varphi} \end{array}\right\|$		－	产	¢	－
	$\begin{aligned} & \hline N \\ & \stackrel{N}{\hat{N}} \\ & \hat{\sim} \\ & \tilde{L} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{\grave{N}}{\hat{\varphi}} \\ \hline ⿳ 亠 口 冋 丸 灬 \\ \hline \end{array}$			\bigcirc	$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \tilde{\sim} \\ \tilde{\sim} \\ \underset{\sim}{4} \\ \hline \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \begin{array}{c} n \\ \dot{N} \\ \hat{e} \\ \dot{e} \\ \hline \end{array} \\ \hline \end{array}$	$\left\|\begin{array}{c} \frac{⿳ 亠 二 口}{亠} \\ \frac{1}{\dot{L}} \\ \frac{1}{2} \end{array}\right\|$	$\begin{gathered} \substack{0 \\ \vdots \\ \vdots \\ \vdots \\ \\ \dot{U} \\ \hline \\ \hline} \end{gathered}$								0	$\begin{array}{\|l\|} \hline \frac{\bar{\zeta}}{\dot{\circ}} \\ \frac{\dot{\zeta}}{\dot{\zeta}} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \frac{\overline{1}}{\bar{\zeta}} \\ \frac{1}{\dot{L}} \\ \hline \end{array}$	$\begin{array}{ll} \dot{\sim} \\ \vdots \\ \vdots \\ \\ \\ \\ \\ \hline \end{array}$			\dot{L}	$\dot{\rho}$				$\overline{\bar{x}}$		ָ		$\dot{6}$	$\left\|\begin{array}{c} \underset{\sim}{\hat{N}} \\ \stackrel{y}{\sim} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	0	产	べ			N	N	
1 \％วо19								81 צэоㅢ									61 צว019								0乙 уэоэя									เ乙 》эо口							

Figure 2．6：Design of glasshouse experiment in summer 2013．Each cell represents a 1 L pot．

2.3.2.2 Material for iSelect 90K SNP array

Parent NILs along with short and tall bulks were genotyped on two separate runs of the iSelect 90K SNP array (Wang et al., 2014a). Samples were prepared for both runs in the same way. The parent NILs and Mara were genotyped first. For the bulks, three individuals were selected from each of the short (S1-S3) and tall (T1-T3) recombinant types (Appendix 2.3). The individuals were also pooled following DNA extraction to make the short bulk (SB) and tall bulk (TB).

2.3.2.3 DNA extraction

Harvested spike tissue of each parent NIL and recombinant was ground to a fine powder in a liquid-nitrogen cooled mortar using a pestle. DNA was extracted from approximately 100 mg of ground tissue using a DNeasy® Plant Mini Kit (Qiagen, 69104) according to manufacturer's instructions. DNA was quantified at a wavelength of 260 nm using the NanoDrop 2000 spectrophotometer (ThermoScientific) and a $15 \mu \mathrm{l}$ sample of $60 \mathrm{ng} \mu^{-1}$ DNA per genotype was submitted to the University of Bristol Genomics facility. For the bulks (SB and TB), $5 \mu \mathrm{l}$ of DNA from each individual (S1-3; T1-3, Appendix 2.3) was combined into one sample.

2.3.2.4 Material for Affymetrix Axiom® 820K SNP array

Seed from the Rht8 NIL in the Paragon background and Paragon was sent to the University of Bristol Genomics facility to be genotyped on the Axiom® 820K SNP array (www.cerealsdb.uk.net/cerealgenomics).

2.3.3 Targeting genome-specific allelic variation

2.3.3.1 Flow-sorted 2D DNA from the short parent NIL

2.3.3.1.1 Plant material sent for flow-sorting

Approximately $\sim 12,000$ seed (700 g) from the short parent NIL, RIL4, was sent to the Institute of Experimental Botany (IEB), Prague, Czech Republic for flowsorting and 2D BAC library construction. A pilot experiment confirmed that 2D
could be successfully sorted from a small quantity of DNA prior to flow-sorting DNA from the full seed collection for library construction. The chromosomes were flow-sorted as described in IWGSC, 2014. The chromosome 2D DNA was amplified using the Illustra GenomiPhi DNA amplification kit, as outlined in Simkova et al., 2008. Samples were pooled from three independent amplifications and lyophilized.

2.3.3.1.2 Assessing purity of flow-sorted 2D DNA

A total of $10.22 \mu \mathrm{~g}$ of amplified DNA from chromosome 2D of RIL4 was received from the IEB on 27 October 2014. The purity of the sorted fraction was estimated as 94.44% with contamination mainly from chromosome 7D. The DNA was dissolved in $20 \mu \mathrm{l}$ of $\mathrm{dH}_{2} \mathrm{O}$ over 24 hours at ambient temperature and further diluted to $10-15 \mathrm{ng} \mu^{-1}$. DNA concentration was measured at 260 nm using the NanoDrop 2000 spectrophotometer (ThermoScientific).

The 2D flow-sorted DNA was tested with markers mapping across a range of chromosomes from previous mapping projects using the JIC core collection of KASP markers (marker spreadsheet provided by Michelle Leverington-Waite). KASP markers were selected on the basis that they showed good cluster separation in previous genotyping and were polymorphic between Mara and Cappelle-Desprez. An optimal cycle number for each marker was determined, since at the highest cycle number (40), most of the markers amplified the 2D DNA and negative control. Out of a total of 15, three markers amplified the 2D DNA (shown in Table 2.1 and Figure 5.3). KASP assays were performed as described in 2.3.10.2.

SNP ID	Mara	Cappelle Desprez	Identifier (core collection)	Chr	AXC	FAM	VIC	amplifies 2D?	$\begin{gathered} \hline \text { Optimal } \\ \text { cycle } \\ \text { number } \end{gathered}$
BS00062738	A:A	C:C	Bristol 18:B06	7D	22	A	C	Yes	25
BS00023159	G:G	C:C	Bristol 10:H07	7D	40.4	C	G	Yes	27
BS00033613	C:C	T:T	Bristol 15:F06	7A	178.1	C	T	No	30
BS00027942	G:G	A:A	Bristol 13:F09	6B	25.2	A	G	No	30
BS00022157	A:A	G:G	Bristol 03:D02	5D	73.4	A	G	No	30
BS00021939	$\mathrm{G}: \mathrm{G}$	A:A	Bristol 03:D12	5A	17.6	A	G	Yes	30
BS00023431	$\mathrm{G}: \mathrm{G}$	T:T	Bristol 13:F01	4 B	51.1	G	T	No	30
BS00036493	A:A	C:C	Bristol 20:B08	4A	8.8	A	C	No	25
BS00040001	T:T	C:C	Bristol 20:F04	3B	149.9	C	T	No	30
BS00070870	G:G	A:A	Bristol 28:C12	3A	75.9	A	G	No	30
BS00022946	T:T	C:C	Bristol 03:D09	2 B	95	C	T	No	25
BS00090234	A:A	G:G	Bristol 20:D06	2B	87.2	A	G	No	30
BS00022332	C:C	T:T	Bristol 05:B11	2 A	49.2	C	T	No	30
BS00022260	C:C	T:T	Bristol 05:D08	2 A	-	C	T	No	25
BS00062783	C:C	$\mathrm{G}: \mathrm{G}$	Bristol 24:C07	1A	-	C	G	No	25

Table 2.1: Assessing the purity of the 2D flow-sorted DNA using KASP markers from the JIC core collection.

2.3.3.1.3 Ensuring genome-specificity with 2D flow-sorted DNA and nullitetrasomics

Genome specificity for 2D was tested initially by validating markers with Chinese Spring nulli-tetrasomic (NT) (Sears, 1966) DNA (for SSRs). The complete set of chromosome 2 NT DNA was used: AAAABB (N2DT2A), AAAADD (N2BT2A), BBBBAA (N2DT2B), BBBBDD (N2AT2B), DDDDAA (N2BT2D) and DDDDBB (N2AT2D). The SSRs tested did not amplify the nulli-tetrasomics for 2D (N2DT2A and N2DT2B), whereas the markers did amplify the nulli-tetrasomics with the Dgenome present (all N2A~ and N2B~). Later, once the 2D flow-sorted DNA was received, specificity to the 2DS genome for both SSR and KASP markers was tested (as reported in Figure 5.11).

2.3.3.2 PolyMarker

PolyMarker (Ramirez-Gonzalez et al., 2015) was used to increase the likelihood of generating homoeologue-specific assays on putative SNPs. PolyMarker is a primer-design pipeline for SNP assay development which generates a multiple alignment between the target SNP sequence and the IWGSC CSS for each homoeologous genome. A mask is then generated with informative positions (further detail in 2.3.7.4). This indicates whether the SNP is varietal or homoeologous and whether the designed primers are specific to the target
genome (the SNP is only present in the target genome), semi-specific (polymorphism found on two out of three genomes) or non-genome specific. The web-based interface for PolyMarker (http://polymarker.tgac.ac.uk) was used for primer design and SNPs identified as homoeologous based on the IWGSC CSS alignments were not considered for marker validation (with the exception of cases investigated in 2.3.7.4).

Primers for KASP assays were ordered from Sigma-Genosys Ltd, UK, with forward primers carrying standard FAM or VIC tails at the 5' end with the SNP at the 3' end. (FAM tail: 5' GAAGGTGACCAAGTTCATGCT 3'; VIC tail: 5' GAAGGTCGGAGTCAACGGATT 3').

2.3.4 Sample preparation for RNA-Seq

2.3.4.1 Plant material

Plant material for RNA-Seq was harvested from the glasshouse-grown plants described in 2.3.2.1 .Tissue from the spike and elongating peduncle during stem elongation (GS $30-39$) (Figure 5.2A) of the parent NILs and recombinants to the fine-mapping population was dissected destructively from individual plants, photographed, snap frozen in liquid nitrogen and then stored at $-80^{\circ} \mathrm{C}$. The spike and peduncle lengths were measured using imageJ software (Abramoff et al., 2004) and samples were selected from the middle of the distribution of lengths (Figure 5.2B) in order to use tissue at the same developmental time-point. For the parent NILs, two biological replicates per tissue per genotype were selected, as shown in Table 5.1.

For the bulked segregant analysis, spike tissue from a total of 18 recombinants was selected. Nine short and nine tall recombinants were selected on the basis of height distribution, as shown in Appendix 2.3. The mean height of the recombinants for the short bulk was $\sim 9 \mathrm{~cm}$ less than the mean height of the tall recombinants (Appendix 2.3).

2.3.4.2 RNA extraction

Harvested spike/peduncle tissue was ground to a fine powder in a liquid-nitrogen cooled mortar using a pestle. Total RNA was extracted from approximately 100
mg of ground tissue using an RNeasy® Plant Mini Kit (Qiagen, 74903) according to manufacturer's instructions. RNA samples were treated with DNase I using the RNase-Free DNase Set (Qiagen, 79254) DNA and then RNA cleanup was performed using the RNeasy® Kit. The RNA concentration was measured at 260 nm using a NanoDrop 2000 (ThermoScientific) and was approximately ~250 ng μ^{-1}. The RNA quality was assessed using the A260/280 and A260/230 ratios (>2.0 in all cases) and samples were frozen at $-80^{\circ} \mathrm{C}$. Prior to sequencing, RNA samples were diluted using nuclease-free water to achieve $5 \mu \mathrm{~g}$ at a minimum concentration of $20 \mathrm{ng}^{-1}$.

2.3.4.3 Library construction and sequencing

RNA-Seq samples were submitted to The Genome Analysis Centre (TGAC) for library construction and sequencing. All samples passed the QC checks by TGAC, which used Total RNA Analysis pg sensitivity for Eukaryotes (Agilent Technologies). The parent NIL samples (P1-8, Table 5.1) were sequenced two per lane across four lanes, with each parent NIL represented in each lane to avoid lane bias. The six bulk samples (B1-6, Table 5.1, Appendix 2.3) were randomised for short/tall and multiplexed three per lane across two lanes. In all cases one Illumina TruSeq RNA v2 library was constructed per sample and the libraries were barcoded. Sequencing was carried out on the Illumina HiSeq2000 with 100 bp paired-end reads. The Illumina $100-\mathrm{bp}$ reads were received as FASTQ compressed files.

2.3.5 References used for alignment

2.3.5.1 Customised UniGene reference

The customised UniGene reference is described by Harper et al., 2015 and was developed using de novo transcriptome assembly, a SNP genetic linkage map and comparative genomics approaches. De novo leaf transcriptome assemblies from T. urartu, Ae. speltoides and Ae. tauschii transcriptomes (representing the A, B and D genomes, respectively) were assembled into UniGenes using the Trinity package (Grabherr et al., 2011). Since the B-genome diploid which was sequenced was dissimilar to the B-genome in hexaploid wheat, the B-genome
assemblies were specifically adjusted ('cured') using a de novo transcriptome assembly from the tetraploid T. dicoccoides. The UniGenes were used as query sequences in BLASTN homology searches of the Brachypodium genome and the hit with the greatest sequence similarity was retained. This anchored the UniGenes to the Brachypodium chromosomes and provided a physical position for each gene. A Chinese Spring x Paragon mapping population was transcriptome-sequenced and SNPs in the UniGenes were identified. The SNP linkage map was used to fine order the UniGenes (previously in Brachypodiumlike order) into a wheat-like order. The same order was used for the A, B and D genome since the transcriptome sequencing of the Chinese Spring x Paragon mapping population was not genome-specific and all three homoeologues were collapsed together. UniGenes which were monomorphic in the Chinese Spring x Paragon population were assigned a position according to the Brachypodium physical order. To eliminate redundancy due to alternative splice forms, the longest UniGene was retained where multiple UniGenes mapped to the same location. The resulting reference comprised 147,411 UniGenes (47,160 for the A genome, 59,663 for the B-genome and 40,588 for the D genome).

2.3.5.2 v3.3 cDNA reference

The v 3.3 cDNA reference is described in full in Borrill (2014) and was provided by Martin Trick (JIC). The UniGenes described in 2.3.5.1 were used as queries in BLASTN homology searches of the IWGSC CSS contigs and the best-scoring hit (above e-value 1E-30) selected. These IWGSC CSS contigs corresponding to the UniGenes were called pseudomolecules v3. Pseudomolecules v3 consisted of genomic sequence.

A file with annotation of the IWGSC CSS contigs was generated by Sarah Ayling (TGAC) with predicted mRNA features. These mRNA features were predicted using a de novo assembly pipeline at TGAC and were also combined with the best tetraploid and diploid wheat gene models at the time (Krasileva et al., 2013).

The annotation file was used to extract the gene models from pseudomolecules v3 and these comprised the v3.3 cDNA reference. The mRNA features from the IWGSC CSS contigs were ordered using the Chinese Spring x Paragon map. Gene models and contigs which could not be anchored due to lack of
polymorphism in the Chinese Spring x Paragon mapping population were assigned into the 'unordered' bin (remaining assigned to chromosome arm only). Hence the reference contained an ordered and unordered section. Since there was redundancy in the mRNAs (splice isoforms), only the longest mRNA was retained to achieve a non-redundant set of 75,419 gene models. Of the gene models, 42% were in the ordered section and 58% were unordered.

2.3.5.3 2D v3.3 cDNA interval

As marker development progressed during the course of Chapter 5, an interval was demarcated in the ordered section of the v3.3 cDNA reference. This was done by anchoring the Rht8 flanking markers as shown in Table 5.4 and then taking a conservative region either side. The reference comprised 59 gene models totalling 65,564 bp in length, shown in Appendix 2.4.

2.3.5.4 De novo spike transcriptome assembly

The de novo spike assembly of Cappelle-Desprez was built by Martin Trick using the Trinity package, using the RNA-Seq reads P1 and P3 (Table 5.1). The longest splice isoform was selected to remove redundancy and any assembly that matched the UniGenes (from leaf transcriptomes) was removed. A total of 82,762 spike-specific unordered assemblies were retained.

2.3.6 Read mapping

Reads were mapped to the UniGenes directly from the compressed reads by Martin Trick using Maq (Mapping and Assembly with Quality) (Li et al., 2008) to map reads and call variants using mapping quality scores. The methodology is described in Trick et al., (2012). Reads were mapped to the v3.3 cDNA reference, spike de novo assembly and 2D v3.3 cDNAs in three separate alignments, all following the same methodology and using the read aligner bowtie2 (v2.1.0) (Langmead and Salzberg, 2012) with the default parameters for read pair libraries. Mapped reads were subsequently filtered using SAMtools (v0.1.19) (Li et al., 2009) and mapping statistics were checked using SAMStat (v1.0) (Lassmann et al., 2011). The steps are shown in full in Appendix 2.5 for the read mapping to the v3.3 cDNAs and 2D v3.3 cDNAs, with reads being mapped to the
spike assembly using the same method. The BAM files were then processed to identify variant candidates using bulk frequency ratios by Ricardo RamirezGonzalez.

2.3.6.1 Coverage statistics

Coverage statistics were obtained from Maq, bowtie2 and VarScan LSF output considering only properly paired reads and are shown in Appendix 2.6 and Appendix 5.9.

2.3.7 SNP-calling

2.3.7.1 SNPs between the parent NILs in the UniGenes

Varietal SNPs, representing allelic variation (as opposed to inter-genome SNPs between homoeologous genomes or varietal SNPs between Cappelle-Desprez and the Chinese Spring reference) were called between each sample (P1-P8, Table 5.1) and the UniGene reference by Martin Trick, as described previously (Trick et al., 2012). Briefly, in a two-step process, first Maq (Li et al., 2009) (default parameters) was used to call SNPs between the reference and each parent NIL, generating two SNP sets. In the second step, a custom Perl script was used to derive the difference between the sets. SNPs were filtered with a minimum depth threshold of 10x. The SNP-calling process identified a total of 60,454 putative SNPs between any of the eight samples and the reference, across 32,663 unique UniGenes. These were arranged in a spreadsheet to aid further inspection and sorting. Ancillary synteny data for each UniGene was added, including the best hit for the UniGene from BLASTN analysis against Brachypodium and rice gene models (E-value cut-off 1E-50).

The 638 concordant SNPs in the parent NILs described in 5.5.1.1 and shown in Figure 5.9 were normalised to account for the relative under-representation of the D-genome in the reference (Table 5.2). The SNPs on each chromosome arm were presented as a percentage of total SNPs on that genome, so that each homoeologous genome represented 100%.

2.3.7.2 SNP identification in v3.3 cDNAs

SNP variants were identified by Ricardo Ramirez-Gonzalez using methodology first described in Trick et al., (2012) and extended to work with BAM files and to allow detection of SNPs where a variant is completely absent from one of the parental sequences (BFR of infinity), as outlined in Ramirez-Gonzalez et al., (2014). The objective was to identify SNPs that were highly enriched for the parental allele in the corresponding bulk i.e. SNPs found in the short parent also present in the short bulks and vice versa for the tall parent/bulk. A total of 15 different combinations of parent NIL and bulk BAM files were compiled, since the phenotyping had not been verified at this point and there was uncertainty as to whether there would be any biases in the SNP calling as a result. The different in silico mixes are shown in Appendix 2.7.1 with the number of SNPs identified in each mix. Once the phenotyping had been verified, all the samples within each parent NIL and bulks were pooled to increase coverage (mix number 2, Appendix 2.7.1).

The SNP calling process involved first identifying varietal SNPs between the parents. A consensus from the two parents was identified and a varietal SNP was called. SNPs were called at bases which had a minimum coverage of 20.

In addition to the threshold for coverage, a second parameter was the threshold at which to accept a varietal SNP: initially this parameter was set to 100% to capture only the most stringent varietal SNPs (i.e. all of the bases at that position differed from the reference in one variety) (Appendix 2.8). However, crucially, no SNPs on the short arm of chromosome 2 (2AS, 2BS or 2DS; group 2S) which harboured the Rht8 introgression were identified. For this reason, the parameter was adjusted and varietal SNPs were called where a minimum of 20% of the bases differed from the reference in one of the parents. Lowering this parameter allowed for sequencing error but primarily was a cautious approach to account for missing sequence from one or more homoeologues and potential genome misassignment of the IWGSC CSS contigs (discussed further in 5.3.2).

Subsequently, in the second step, for each bulk the frequency of the base at each SNP position was calculated and the bulk frequency ratio (BFR) between bulks determined. In this way, the BFR provided a relative measure of SNP enrichment
in both bulks, which was normalised by coverage to eliminate bias over regions with a greater representation of reads. A high BFR indicated that the allelic variation was contributed from one bulk and absent in the other bulk.

2.3.7.2.1 Bulk frequency ratios

In order to set the minimum BFR threshold, the relative proportion of SNPs from group $2 S$ was calculated as the BFR increased. As the BFR increased, the number of SNPs from 2S decreased markedly from >100 at $\mathrm{BFR}=6$ to single counts at $\mathrm{BFR}=18$ (Appendix 2.7.2). The relative 2 S enrichment when considering density peaked at BFR $=7$ SNPs. For this reason the BFR threshold was set to 6 . The vast majority of SNPs with BFR = infinity were being called due to a small ratio of reads calling a SNP in one of the parent NILs relative to the coverage of reads at that position. In order to eliminate this large number of potentially low-confidence SNPs, the ratio threshold for the informative parent of SNPs with BFR = infinity was set to ratio ≥ 0.2. Setting both the BFR and ratio thresholds retained a total of 7666 putative SNPs across 2055 unique genes genome-wide. The SNP frequencies on each chromosome arm shown in Figure 5.9 were normalised as described in 2.3.7.1.

2.3.7.3 SNP identification in narrowed 2D v3.3 cDNA interval

The narrowed interval on 2D consisted of 59 gene models from the 'ordered' section of the full v3.3 cDNA set, from mrna126380 (2D: 716490) to mrna057019 (2D:1386885). VarScan 2.0 (Koboldt et al., 2012) was used to call SNPs, which is open software designed to detect variants from multiple pileup files and filters variants by coverage, read depth, variant frequency and base quality. The process had to be customised since the software was originally designed to detect human tumour variants. SNP were called from the parent NIL and bulk BAM files by piping an mpileup2snp output from SAMtools (Li et al., 2009) directly to VarScan. The commands for this are shown in full in Appendix 2.5. Files were output from VarScan in two formats: one viewable in IGV (VCF format) and another which was human readable and could be opened in a spreadsheet which enabled further SNP filtering (an example of this output is shown in Table 2.2).

Source	Chrom	Position	Ref	Var	Cov	Reads1	Reads2	Freq (\%)	StrandFilter	R1+	R1-	R2+	R2-
CD	mrna126380	84	A	T	1141	551	589	51.62	Pass	1	529	22	576
CD	mrna064977	606	C	T	133	67	66	49.62	Pass	0	3	64	2
CD	mrna066573	1	T	C	24	2	15	62.5	Pass	1	2	0	15
CD	mrna066573	135	G	T	279	0	271	97.13	Pass	0	0	123	148
CD	mrna066573	146	A	C	262	0	238	90.84	Pass	0	0	100	138
CD	mrna105132	221	A	G	738	0	737	99.86	Pass	0	0	437	300
CD	mrna105132	261	G	C	789	0	789	100	Pass	0	0	387	402
RIL4	mrna004763	1461	T	C	183	70	113	61.75	Pass	0	7	63	5
RIL4	mrna007148	30	C	T	49	29	20	40.82	Pass	1	25	4	19
RIL4	mrna014279	89	G	A	80	41	39	48.75	Pass	28	13	27	12
SHORT	mrna105132	1374	C	G	262	127	135	51.53	Pass	54	73	50	85
SHORT	mrna009588	850	T	C	11	3	8	72.73	Pass	1	2	4	4
TALL	mrna105132	532	T	C	219	0	219	100	Pass	0	0	112	107
TALL	mrna096393	2154	G	A	33	7	26	78.79	Pass	6	1	21	5
TALL	mrna106738	210	G	T	188	141	47	25	Pass	73	68	21	26

Table 2.2: Exemplar VarScan SNP-calling output. Columns left to right: Source = the pooled reads from which the SNP was called relative to the reference (either CD, RIL4, SHORT or TALL); Chrom: gene in reference; Position = base position at which the SNP is located; Ref = the base call on the reference; Var = variant base (SNP) call; Cov = total depth of coverage; Reads1 = number of reads supporting the reference; Reads2 = number of reads supporting the SNP; Freq = the SNP frequency from the read count (Reads2/total count); StrandFilter = Ignores SNP with $>90 \%$ support on one strand; $R 1+/-=$ reference-supporting reads on forward/reverse strand; R2+/- = SNP-supporting reads on forward/reverse strand (http://varscan.sourceforge.net).

SNPs in the 2D interval were prioritised for marker validation by first removing likely homoeologous SNPs and second by determining the highest-frequency variant calls. The two steps are shown in Appendix 5.10.

First, in order to identify likely homoeologous SNPs, datasets between the parent NILs were considered separately from the bulks. Between each of these datasets, shared SNPs found with respect to the reference were discarded, since these were most likely either homoeologous SNPs or varietal SNPs between CappelleDesprez and Chinese Spring (the reference). This retained a total of 401 putative SNPs across 51 unique genes between the parents and the reference and 388 putative SNPs across 47 unique genes between the bulks. Taking the putative varietal SNPs identified, the overlap between the parent NILs and bulk datasets was examined in order to determine which SNPs from the parents were enriched in the corresponding bulk, similar to the BFR approach. A total of eight SNPs were common to the short parent and short bulk and 22 SNPs common to the tall parent and tall bulk (Appendix 5.11). In both datasets, there was more overlap in SNPs between the converse parent/bulk (Appendix 5.11).

In the second step, the frequencies of the variant call (Frequency column in Appendix 5.12 and 5.15) were considered in the putative SNP parent and bulk
datasets. This step was necessary to ensure higher-confidence calls that would normally be reported by VarScan. Personal correspondence with the developer suggested that due to the high depth of coverage (minimum average over the whole reference >200 x, Appendix 5.9), the in-built VarScan quality scores were all high thus all SNPs passed the statistical tests (e.g. Fisher's Exact Test p-value was low - data not shown). The majority of the putative SNPs ($\sim 80 \%$ in both parent and bulk datasets) had a frequency $<50 \%$, (distribution of frequencies shown in Appendix 5.14) meaning that in fewer than half the SNP calls, most of the reads at the base supported the reference rather than the variant call.

The putative SNPs which were considered for validation by developing markers from the overlap between parent NILs and bulks are shown in Appendix 5.13 and those from the high-frequency prioritisation are shown in Appendix 5.15.

2.3.7.4 Troubleshooting v3.3 cDNA and IWGSC CSS alignments

To ensure that SNPs were truly varietal rather than inter-homoeologous, the 2D cDNA sequences were used as query sequences in BLASTN sequence homology searches (Altschul et al., 1997) of the v3.3 cDNAs in a manual alignment step. SNPs were retained if the sequence around the SNP had significant (e-value above 1E-05) BLAST hits to the 2A and 2B genomes and the alignment of these using ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2/) unambiguously found the SNP to be varietal. These were then aligned again to the CSS contigs using PolyMarker (Ramirez-Gonzalez et al., 2014). Those SNPs found to be varietal again, this time from the contig alignments, were retained, as shown in Appendix 5.10. In some cases, the alignments to the v3.3 cDNAs and the CSS contigs yielded conflicting results since some SNPs that were found to be homoeologous in one alignment were varietal in another alignment. This was surprising, since the mRNAs comprising the v3.3 cDNA reference originated from gene models predicted using the IWGSC 1.0 CSS contigs. This was examined in detail by considering several case-studies, which revealed the limitations associated with an unassembled reference genome. These case-studies fell into two main classes, and examples from each class are presented here:

1) Redundant IWGSC CSS contigs with different base calls at the SNP position.

SNP mrna007148_169 was identified as a varietal SNP between RIL4 and Cappelle-Desprez (G/A) and tested as marker vcf_11 which was monomorphic (Appendix 6.6).

Step 1: BLASTing the 2D gene model to retrieve the best-hit homoeologues to the $2 A$ and $2 B$ homoeologues in the $v 3.3$ cDNAs:

| Sequences producing High-scoring Segment Pairs: | High
 Srobability | | |
| :--- | :--- | :--- | :--- | :--- |
| | | Prore
 P(N) | N |

In this first step, all three homoeologues were retrieved in the BLAST search with a high score.

Step 2: BLASTing the 2D gene to retrieve the best-hit to the IWGSC CSS contigs:

```
Sequences producing High-scoring Segment Pairs:
2DS 5381947 13777 606514 4821150+,...,1671179-
2AS 5306358 7274 158566 5163351-,...,3566353+
2AS 5182464 8700 186985 2670+,...,5163351+
```

Sum		
High	Probability	
Score	P(N)	N
		2
6901	0.	4
6424	0.	4
6406	0.	3
6349	0.	

In the second step, two 2AS contigs were returned in the BLAST search on the Unité de Recherche Génomique Info (URGI) BLAST webpage (https://urgi.versailles.inra.fr/blast/blast.php). When mrna007148, mrna007149 and mrna07136 were checked to verify which CSS contigs they were assigned to in the v3.3 cDNA reference, the 2DS and 2BS contigs and mRNAs corresponded. The 2A mrna007149 was assigned to 2AS_5182464.

Step 3: PolyMarker alignment:

The alignment (a graphical output of the mask that PolyMarker generates) shows the VIC and FAM primer in the red box, with the G/A varietal SNP at the 3' end.

The alignment shows that the SNP is varietal, since a G is present in the 3 ' position of the 2A, 2B and 2D CSS contigs. The best-hits to the CSS contigs from PolyMarker agreed with the contigs that the mRNAs has been assigned to, with the exception of 2AS. PolyMarker used the best-hit to 2AS in the BLAST in step 2 (2AS_5306358), whereas the v3.3 cDNA reference used the other 2AS contig (labelled B and A in the alignments below, respectively).

Step 4: Aligning the v3.3 cDNAs and CSS contigs.
> (2D) mrna007148
> (2A) mrna007149
> (2B) mrna071326 2DS 5381947
> (A) $2 \mathrm{AS}^{-} 5182464$
> (B) $2 \mathrm{AS}^{-} 5306358$ 2BS_5226042

TACAGGGAGAGCATCGATAAGCGTGTTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 204 TACAGGGAGAACATCGATAAGCGC TTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 204 TACAGGGAGAGCATTGATAAGCGTGTTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 960 TACAGGGAGAGCATCGATAAGCGTGTTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 186 TACAGGGAGAACATCGATAAGCGC TTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 497 TACAGGGAGAGCATTGATAAGCGCGTTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 186
TACAGGGAGAGCATTGATAAGCGTGTTTCTCCCACTCGGATTGTTGTCTTGAAACCATGC 186

Conclusion: Aligning the v3.3 cDNA homoeologues with the corresponding CSS contigs indicates that there is a different base-call at the SNP position (highlighted in yellow and red) between the redundant 2AS contigs. The alignment around the SNP is robust so presumably this is a sequencing difference as opposed to alignment error. The different base call explains why the PolyMarker assignment (B) returns a varietal SNP whereas the v3.3 cDNA assignment (A) indicates a homoeologous SNP between the A genome and B/D. Clearly redundancy of the CSS contigs can in some cases (quite frequently, from all the SNPs which were manually aligned in this same way) lead to a difference in calling the SNP homoeologous or varietal. It is difficult in these cases to judge which alignment is correct, since the base difference is probably sequencing error in the original CSS contigs and a limitation of working with an unassembled reference, polyploidy genome. For this reason, the SNPs described in 2.3.7.3 were filtered (steps shown in Appendix 5.10) to ensure both the v3.3 cDNA alignments and the CSS contigs unambiguously returned a varietal-SNP verdict.

2) CSS contig alignments are more reliable than low-scoring homoeologues in v3.3 cDNAs.

SNP mrna026970_384 was identified as a varietal SNP between RIL4 and Cappelle (C/T), and tested as marker Freq_2 based on primers from PolyMarker CSS alignments, which was polymorphic.

Step 1: BLASTing the 2D mrna to retrieve the best-hit homoeologues to the 2 A and 2B homoeologues in the v3.3 cDNAs:

A low-scoring 2A mRNA was returned (mrna053115).
Steps 2 \& 3: BLASTing the 2D mrna to retrieve the best-hit to the IWGSC CSS contigs and comparing this to CSS contigs in PolyMarker alignments:

The contig assignments from BLASTing the 2D mRNA sequence against the CSS contigs retrieved the same hits as the contigs used in the PolyMarker alignments. The PolyMarker alignments indicate a varietal SNP, with a C being called at the SNP position in all the homoeologues.

Step 4: Aligning the v3.3 cDNAs and CSS contigs.

The alignments were gapped and had a poor overall match. The SNP is homoeologous according to the v3.3 cDNAs, but varietal according to the CSS contigs. Since the 2A mRNA had a relatively low BLAST score, this was used as a query in a BLASTN homology search against the CSS contigs and found to be anchored to 2AL_6432943, which is not the same contig reported as the best 2A hit when the 2D mRNA is used in a BLASTN search of the contigs. The 2B and 2D mRNAs match the CSS contigs reported by PolyMarker.

Conclusion:

The gene models in the v3.3 cDNA reference are shorter in length than the CSS contigs and in many cases, one gene model does not have the other two homologues present. Thus taking the 'best' 2A/2B hit might not be reliable, where
the score of one is outside the top three reported. This is confounded where the 2D mRNA is relatively short, compared to the longer CSS contigs. A KASP marker (Freq_2) developed on this SNP was found to be varietal, using the 2D flow-sorted DNA. Hence the varietal call from the CSS contigs was reliable in this case.

2.3.7.5 SNP-calling in the iSelect SNP array data

Data from the second run with the bulked segregant analysis (BSA) was added to the first run of the parent NILs. The data was received as AA/AB/BB/NC (NC is 'no call') calls from genotyping using the polyploid version of GenomeStudio (Wang et al., 2014a) and orthologue annotation, as well as map position on the Avalon x Cadenza map (http://www.wgin.org.uk/) and Akhunov genetic map (Cavanagh et al., 2013). SNPs were considered between homozygous and heterozygous calls, as described in 5.3.4. The SNPs between parent NILs on the iSelect array shown in Figure 5.9 were normalised for the number of pre-defined variants captured on the array for each chromosome arm (data from http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/iselect_mapped_snps. php).

2.3.7.5.1 Mapping SNPs and marker position on the iSelect SNP array

SNPs between the parent NILs were considered in the context of all the mapped markers on the iSelect array. A total of 9800 markers on the array had a genetic position on the Avalon x Cadenza map and 38,832 markers were mapped using the Akhunov genetic positions. From these totals, redundant markers which mapped to the same genetic position and had the same genotype in both parent NILs were removed for clarity to reduce the linkage group size. SNPs being called due to missing data (NC) were also removed. The remaining markers were mapped using the chromosome arm and genetic position along the chromosome (in cM) using MapChart v2.2 (Voorrips, 2002).

2.3.8 SNP-calling in the 820K Affymetrix Axiom® ${ }^{\circledR}$ SNP array data

Affymetrix data was received as two csv files with the same calls as the iSelect data, described in 5.3.4. From the total SNPs identified between the Rht8 NIL and Paragon, NC calls were excluded to leave a total of 6089 SNPs (Table 5.2) and the 2DS contigs which the SNPs mapped to were considered for microsatellite variation.

2.3.9 In silico SSR discovery on wheat 2DS sequence

Sequence from 2DS IWGSC CSS contigs was mined for microsatellite variation using the online web-interface for WebSat (http://wsmartins.net/websat/) (Martins et al., 2009). Sequence was entered in FASTA format 150,000 characters at a time with parameters set to identify motif length from mono- to hexa-nucleotide with a minimum repeat number of six. Default parameters were used for primers designed on identified SSRs (WebSat uses primer3), but SSRs that were based on mono-nucleotide repeats were omitted where longer nucleotide lengths were available. Overlapping SSRs were also omitted. Primer sequences were downloaded as csv files.

2.3.10 Validating variants with markers

2.3.10.1 SSR validation

Primers were ordered from Sigma-Genosys Ltd, UK, with the forward primers tailed at the 5' end with 5' TGTAAAACGACGGCCAGT 3'. A multiplexed PCR was set up with one of four dyes (Applied Biosystems Standard Dye Sets) which were 6-FAM (blue), VIC (green), NED (yellow but visualised as black on GeneMapper v4) and PET (red). Each PCR assay was in a $6 \mu \mathrm{l}$ volume and contained 20 ng of genomic DNA, $3.125 \mu \mathrm{l}$ HotStar Taq Master Mix (Qiagen, 203443) and $0.625 \mu \mathrm{l}$ of primer mix $(18.75 \mu \mathrm{l}$ of dye $+18.75 \mu \mathrm{l}$ of reverse primer $(100 \mu \mathrm{M})+1.25 \mu \mathrm{l}$ of tailed forward primer $(100 \mu \mathrm{M})+211.25 \mu \mathrm{l}$ of $\left.\mathrm{dH}_{2} \mathrm{O}\right)$. Amplification was carried out on a G-Storm thermal cycler using the following programme: initial denaturation at $95^{\circ} \mathrm{C}$ for 15 min then 35 cycles of $\left[94^{\circ} \mathrm{C}\right.$ for 1
min, a primer-pair annealing temperature for 1 min and $72^{\circ} \mathrm{C}$ for 1 min , then final extension at $72^{\circ} \mathrm{C}$ for 10 min . All annealing temperatures were $60^{\circ} \mathrm{C}$ unless otherwise specified. Following amplification, 1μ l of each sample (up to four PCR samples with different dyes) was diluted in $25 \mu \mathrm{l}$ of $\mathrm{dH}_{2} \mathrm{O}$ and $1 \mu \mathrm{l}$ of the dilution was added to $8.9 \mu \mathrm{l}$ of Hi -Di Formamide (Applied Biosystems) and $0.1 \mu \mathrm{l}$ of the size standard LIZ500 (Applied Biosystems). LIZ500 was used for allele sizing up to 500 bp and this was the case for all SSRs unless otherwise specified.

Products were separated by capillary electrophoresis on an ABI 3730 DNA Analyzer (Applied Biosystems) with a POP-7 ${ }^{\text {TM }}$ polymer column and manual SSR allele sizing was performed using GeneMapper v4 software (Applied Biosystems). Each SSR marker was first tested on the parent NILs and four types of polymorphism could be identified, outlined in Figure 5.5. Polymorphic markers were then used to genotype the mapping populations. The markers tested are shown in Appendix 2.9. Polymorphic markers are shown in Appendix 2.10.

2.3.10.2 Validating SNPs with KASP assays

KASP assays were conducted in a 384-well format using an optically clear 384well plate (Framestar, 4titdue Ltd). An aliquot of $2 \mu \mathrm{l}$ of DNA at $\sim 10 \mathrm{ng} \mu^{-1}$ was dried at $65^{\circ} \mathrm{C}$ for 30 min . KASP assays were carried out using $0.056 \mu \mathrm{l}$ of primer mix ($12 \mu \mathrm{I}$ FAM primer $(100 \mu \mathrm{M})+12 \mu \mathrm{l}$ of VIC primer $(100 \mu \mathrm{M})+30 \mu \mathrm{l}$ of common primer $(100 \mu \mathrm{M})+46 \mu \mathrm{l}$ of $\left.\mathrm{dH}_{2} \mathrm{O}\right)$ and $2 \mu \mathrm{l}$ of KASP V4 Mastermix (LGC group, UK). PCR cycling was performed on the Eppendorf Mastercycler pro, using the same program with an optimal cycle number for each marker (as indicated in Appendix 2.11 and Appendix 2.12): $94^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, 10$ cycles of $94^{\circ} \mathrm{C}$ for 20 s , $65^{\circ} \mathrm{C}$ for 1 min and $94^{\circ} \mathrm{C}$ for 20 s , then $30-40$ cycles of $\left[94^{\circ} \mathrm{C}\right.$ for 20 s and 57 ${ }^{\circ} \mathrm{C}$ for 1 min . Fluorescence was measured by a Tecan Safire plate reader at ambient temperature. Results were analysed manually using the KlusterCaller software (version 2.22.0.5; LGC group, UK). Blue clusters on the y-axis were FAM-labelled and red clusters on the x-axis were VIC-labelled, with the no template control labelled black and 2D DNA labelled pink. If the genotyping clusters were not sufficiently separated after initial amplification, additional cycles were added in groups of five to a maximum of 40 cycles and re-analysed.

2.3.11 Anchoring of the Rht8 interval in Triticeae resources

2.3.11.1 Ensemb/Plants and barley resources

The Rht8 interval was anchored in the most recent resources using the flanking markers DG279 and DG371. This was updated as resources become available during this project. The final update to these resources was in March 2015 for Ensemb/Plants (release 26) (http://plants.ensembl.org), May 2015 for population sequencing (POPSEQ) data for IWGSC-2 (Mascher, 2014) and Chapman assemblies (CerealsDB, 2015a) and August 2015 for the Ae. tauschii resources.

The EST sequence of DG279 was used as a query in a BLASTN homology search against the IWGSC CSS hosted on the URGI server (URGI, 2013) to retrieve two overlapping CSS 2DS contigs shown in Figure 2.7. The Bd21 Genome Annotation v1.0 (International Brachypodium Initiative, 2010) was updated using Brachypodium Munich Information Center for Protein Sequences (MIPS) gene models in the Ensemb/Plants 2013 release (which first included the IWGSC arms). The Brachypodium orthologue was confirmed as Bradi5g03460. The rice locus identifiers used previously from MSU (Ouyang et al., 2007) by Gasperini (2010) became obsolete in the Ensemb/Plants IWGSC v1 release, which instead used the International Rice Genome Sequencing Project (IRGSP1.0) assembly (Kawahara et al., 2013). Therefore, for consistency the new identifiers were used (Figure 2.7). DG279 mapped to the new IRGSP-1.0 locus name of Os04g0209200.

Initially, barley resources were fragmented and were made available on the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) barley BLAST server (Deng et al., 2007) as 'high-confidence’ (HC) and ‘low confidence’ (LC) MIPS gene models, as well as the whole-genome shotgun assembly of Morex. Prior to the barley data being published, the Morex assembly data was provided by Burkhard Steuernagel and Matthew Moscou. The corresponding HC barley gene was MLOC_5957 on 2H: 15451125, which mapped to a Morex contig in the 12.11 cM bin on chromosome 2.

Later, DG279 was mapped onto the v3.3 cDNAs. This reference contained ordered and unordered cDNAs, but only the ordered genes were of use for anchoring, since the unordered cDNAs could only be sorted according to chromosome arm provenance. DG279 mapped to a 2A cDNA on the ordered cDNAs. In order to delimit the 2D interval on the v3.3 cDNAs, the Morex assembly data was used to find Morex contigs within the same genetic bin (12.11 cM) which did map to an ordered cDNA in the wheat reference. Brachypodium and rice synteny was used to locate the appropriate genetic bins in the Morex assemblies and then these were used as queries in BLASTN homology searches of the HC barley genes. Of the 43 Morex contigs in the 12.11 cM bin, only two could be anchored to ordered 2D v3.3 cDNAs. The most proximal (conservative) of these was taken to anchor the DG279-end of the 2D interval

An analogous process was used to anchor the distal end of the Rht8 locus with DG371. The EST retrieved a highest hit by BLASTN sequence homology search to a 2BS CSS contig. The highest level of homology (by e-value) to Brachypodium and rice genes was Bradi5g04710 and Os04g0261400 in the new rice annotation. The gene in barley was much more difficult to anchor, presumably due to the 2BS localisation in wheat chromosome arm sequence. DG371 was mapped to MLOC_58453 which was not a HC gene, but mapped to contig_42684 in the 14.38 cM bin on chromosome 2 according to the IPK server. However, this contig could not be found in the Morex assembly data. Brachypodium synteny was used to consider the closest gene which had a strong identity hit to a wheat 2DS contig which could be anchored to the HC barley data and Morex assemblies. Accordingly, Bradi5g04673 was used (via 2DS_5366894) to anchor DG371 to the 15.44 cM bin as MLOC_12182. Since DG371 mapped to a 2B v3.3 cDNA, the Morex contigs in the 15.44 cM bin were considered to find a distal Rht8 interval anchor on the 2D ordered v3.3 cDNAs. The most distal of these was taken as a conservative estimate of the v 3.3 cDNA position.

Figure 2.7: Anchoring the Rht8 interval in Triticeae resources and wheat references, updated during the PhD.

2.3.11.2 Constructing zippers

The Plant Mart menu within BioMart (Kasprzyk, 2011) in Ensemb/Plants (release 25) was used to export iteratively assemblies shown in Figure 2.7 for chromosome 2 H for barley, chromosome 5 for Brachypodium and chromosome 4 for rice. For each dataset, orthologues were selected from the attributes menu and each of the other species was selected, as well as the IWGSC CSS contigs. The data was exported as a csv file and modified further. For each dataset, the 2DS CSS contig for each gene was retained and this formed the basis of the zipper. Each zipper was annotated with orthologous information and subsequently with marker information. Anchoring of the wheat resources in the zippers was achieved by using the IWGSC CSS contig to each gene as an identifier in searches between datasets.

2.3.11.3 IWGSC-2 POPSEQ bins

The wheat chromosome 2 data from IWGSC-2 contigs arranged into genetic bins according to POPSEQ was downloaded from the URGI server (Unité de Recherche Génomique Info), a research unit in bioinformatics at Institut National de la Recherche Agronomique (INRA) (URGI, 2015b). Subsequently the IWGSC CSS contig which new markers anchored to was used as an identifier in searches in the spreadsheet to retrieve the genetic bin corresponding to that contig.

2.3.11.4 Chapman assembly

In May 2015, the WGS Chapman assembly was hosted on CerelasDB with an interface for a MegaBLAST search (Morgulis et al., 2008). A file ordering the Chapman scaffolds by their identifier into genetic bins ordered by POPSEQ was also made downloadable in 2015 from IPK (Mascher, 2014). The FASTA sequences of 2DS contigs from the genome zippers described in 2.3.11.2 were used as queries against the Chapman scaffolds in a MegaBLAST search (E-value cut-off 1E-05) on the CerelasDB interface. MegaBLAST is able to handle longer DNA sequences (as is the case with the Chapman scaffolds) than the BLASTN program of the BLAST algorithm. Chapman scaffolds matching with a minimum 99% sequence identity were retained. FASTA sequences of the Chapman scaffolds corresponding to the syntenic intervals of the zippers were mined for

SSRs as described in 2.3.9. Markers in Table 6.2 were annotated with the genetic bin the Chapman scaffold anchored to, using the 2DS contig to the marker as the identifier between datasets.

2.3.11.5 Constructing synteny maps

The synteny maps were constructed using ArkMAP (Paterson and Law, 2013), which at the time of writing incorporated Ensemb/Genomes release 25. The barley 2H map was downloaded first (IBSC-1.0; 2H: 15,200,000-20,000,000). The context menu was used to show conserved synteny with Brachypodium (v1.0) and rice (IRGSP-1.0). The threshold for defining an orthologous relationship was set to 125/200 combined similarity threshold. A total of 48 orthologous genes were found on Brachypodium chromosome 5, 16 on chromosome 3 and 15 on chromosome 1 . For rice, 38 orthologous genes were found on chromosome 4, 11 on chromosome 11 and 9 on chromosome 10. For the wheat synteny map, the wheat interval was downloaded first (IWGSC-2; 2D: 6478405 - 10885088). A total of 71 orthologues were identified on barley 2 H (only 1 or 2 genes were found outside of 2 H , data not shown on map), for Brachypodium: 57 on chromosome 5, 17 on chromosome 4 and 15 on chromosome 3 and for rice: 39 on chromosome 4, 14 on chromosome 11 and 10 on chromosome 7. For clarity, not all the orthologous relationships were shown on the map. Instead, the number of orthologues shown on the map was filtered to 1 in 10 for barley, 1 in 10 for Brachypodium and linked genes in rice.

2.3.12 Genotyping and mapping with the 2D RIL population

The polymorphic markers shown in Appendix 2.10 and Appendix 2.11 were used to genotype the 2D RIL population (described in 2.3.1.1) with SSR and KASP assays (2.3.10). The conditions in terms of optimal cycle number (for KASP) and detail about the type of polymorphism identified (SSR) are shown in Appendices 2.10-2.12. Each polymorphic marker was also tested with the flow-sorted 2D DNA as outlined in 2.3.3.1, to ensure 2D specificity (shown in Figure 5.11). The markers were arranged into classes according to the graphical genotypes (Appendix 5.16). The genotypic information (Appendix 5.17) was combined with
the genotypic scores of markers mapping close to the Rht8 interval used by Gasperini (2010) (shown in black in Figure 5.11). The linkage maps were created using the Haldane mapping function in JoinMap® version 3, using a log-of-odds (LOD) threshold of 3.0. Genetic distances were not adjusted using recombination frequencies at this coarse-mapping stage. MapChart v2.2 (Voorrips, 2002) was used to draw the linkage map.

2.3.13 Costings for marker development

The cost per marker shown in Table 5.6 were calculated on the basis of the costings in Table 2.3.

Calculating costs:

	Axiom:	2 samples	$£ 600$
	iSelect	10 samples	$£ 500$
4 lanes, 8 libs	NCBI	parent NILs	$£ 7,580$
6 lanes, 14 libs	SSA parent NIL and bulks		$£ 11,550$

1 lane	$£ 1,715$
1 library	$£ 90$

For each marker: allow 300 reactions to map all populations

For SSR:	labelled adapter	£96	800ul	
	For 300 reactions:	£5	38ul	
	Liz500	£360	500ul	
		£20	27ul	
	HotStar Taq	£327	10200ul	
		£31	300 reactions	$950 \mu \mathrm{l}$
	Plates	£3		
	primer set	£6		
For KASP:	KASP mix	£450	25ml	
		£11	300 reactions	$600 \mu \mathrm{l}$
	Plate	£1.50		
	primer set	£12		

Table 2.3: Costings used to calculate the cost of developing an individual marker outlined in Chapter 5.

2.4 Fine-mapping and further characterisation of the Rht8 interval

2.4.1 Phenotyping the fine-mapping population at the Rht8 locus.

The phenotyping of the fine-mapping recombinants in the glasshouse is described in 2.3.2.1. Sterility in the glasshouse was measured by assessing the grain content of each spike. A scale of 0-5 was used to assess sterility, as shown in Appendix 6.3, with 5 being totally sterile (no grain in the spike). A linear model was fitted in R v3.1.1 (R Development Core Team, 2014) to measure the effect of sterility on the spike length, with genotype as a fixed effect and with block and bench as random terms (Appendix 6.2). Block and bench were subsequently removed from the model since they did not affect the spike length at the $\mathrm{P}<0.05$ level.

The fine-mapping recombinants were further grown in monodrill trials in the field at two locations (Church Farm and Morley) in the 2013-2014 season, with the exception of six recombinants not grown at Morley due to insufficient seed (details in Appendix 6.1). The monodrill was set up to drill 10 plants per row with a spacing of 12.5 cm between plants. There were four rows per plot, 10 plots per block and five blocks within a replicate (Figure 2.8). The outer rows were drilled with the wheat variety Soissons (drilled as discard), which is an easily visually-identifiable early-flowering, short and awned wheat (Figure 2.9). This was used to eliminate edge effects that might affect height and also to shelter the inner rows from lodging in the event of extreme weather. Soissons was also included in the field design as a marker for orientation in the field (Figure 2.8). Each recombinant was grown in five replicates. The parent NILs were grown at least one per block. The recombinants were randomised within each replicate across the blocks in a complete block design.

Field trials were kept weed- and pest-free with products according to standard agronomic practice at each of the locations, with the exception that plant growth regulators (PGRs) were not applied. Trials were drilled in October 2013.

Plant height was measured in the field upon maturity (Figure 2.10). A height measurement was made per row (each cell in Figure 2.8). A main tiller was selected from a representative plant within a row, avoiding the edges of rows, therefore (pseudo-)replication was in reality higher than the five replicates of the field design. Height was measured using an extended ruler from soil level to the tip of the spike.

The height distributions of recombinants were plotted in histograms and a bimodal split identified in each of the locations shown in Figure 6.2, which was calculated as the middle of the bin which separated the two bimodal distributions. The bimodal split was 76.75 cm in the glasshouse, 88.75 cm at Church Farm and 104.25 cm at Morley. Recombinants in the distribution below the split were typed as short ('b') and above the split were typed as tall ('a'). The full data is shown in Appendix 6.1.

A consensus score of short or tall for each recombinant was based on a minimum match of two out of three locations by comparing phenotype scores at each location. In one case with a contrasting score between glasshouse and Church Farm (and no data at Morley), the field score was used since it was deemed more reliable (Appendix 6.1).

Figure 2.8: Trial design to phenotype the fine-mapping recombinants in the field using the monodrill. The same design was implemented in each field location (this particular design is for Morley), but blocks were arranged with two replicates adjacent to three replicates at Church Farm due to field constraints. Each cell represents a row. One plot is each horizontal section of each block. Highlighted yellow = Soissons (discard); Highlighted green = RIL4 (short parent NIL); highlighted orange = Cappelle-Desprez (tall parent NIL). Trials were drilled in October 2013.

Figure 2.9: Field layout with the outer Soissons rows visible. Photograph taken at Church Farm on $8^{\text {th }}$ July 2014.

Figure 2.10: Method used to phenotype recombinants in the field. A ruler was used to measure from soil level to the tip of the ear. The ruler in the image is for scale only (20 cm intervals), a more precise extended ruler was used to record heights to the nearest half centimetre.

2.4.2 Mapping Rht8

2.4.2.1 Fine-mapping in stages

The first mapping stage using the coarse-mapping population (described in 2.3.1.1) is outlined in 2.3.12. From Figure 5.11, the 62 markers grouping with the flanking Rht8 markers DG279/DG371 were carried forward for fine-mapping. In the medium-resolution mapping, the Xgwm261-Xcfd53 recombinants (described in 2.3.1.2) were genotyped with the 62 markers. Markers were arranged into classes according to co-segregating graphical genotypes (Appendix 6.5). The Rht8 phenotype score was obtained from Gasperini's (2010) height data for these recombinants and used as a graphical genotype, as shown in Appendix 6.5. The graphical genotype of Rht8 was combined with the marker class genotypes and marker class order around Rht8 was determined using JoinMap® version 3 for linkage analysis as described in 2.3.12. The marker classes that mapped within the DG279-DG371 interval (classes 13-29) contained a total of 33 markers, which were retained for the final fine-mapping step.

The 73 fine-mapping recombinants (described in 2.3.1.2) were used to genotype the 33 markers and subsequently marker classes A-G were established on the basis of co-segregating markers (Appendix 6.6). The consensus a/b scores for the fine-mapping population were used as a graphical genotype at the Rht8 locus. Linkage between marker classes A-G and the Rht8 locus was established using Joinmap version 3.0 (Van Ooijen and Voorrips, 2001), with default settings and the Kosambi mapping function. The linkage to Rht8 was determined using a LOD threshold score of 3.0. Genetic distances were computed based on recombination frequency. The recombination frequency between marker classes was calculated from the numbers of recombination events between classes divided by 6208, which was derived from the formula: recombination frequency $=$ [(recombinant heterozygotes $+2 x$ recombinant homozygotes)/2x F_{2} plants], where F_{2} plants $=3104$. The linkage map was drawn using MapChart v2.2 (Voorrips, 2002).

2.4.2.2 Aligning the genetic map of the Rht8 region with physical maps

2.4.2.2.1 Syntenic species

Marker information from Table 6.2 was used to anchor the markers and marker classes onto the physical maps of barley, Brachypodium and rice. This was done using the resources outlined in section 2.3.11. The alignment of the Rht8 genetic map with the physical maps was done using the physical positions of each marker to construct the individual physical maps for each species. Distances between markers were calculated using the physical positions and these were drawn to scale, with the lines between markers shown. The map was constructed manually using the vector graphics software Inkscape version 0.91 (www.inkscape.org).

2.4.2.2.2 Ae. tauschii and T . aestivum resources

To identify Ae. tauschii BAC contigs (Luo et al., 2013) orthologous to the Rht8 region, the FASTA sequences of the 2DS CSS contigs corresponding to the markers in classes A-G were used to perform BLASTN analysis against the $A e$. tauschii SNP marker sequence database (http://probes.pw.usda.gov/WheatDMarker/phpblast/blast.php). The best-hit SNP marker identifiers were retrieved, with parameters of an E-value cut-off 1E10 and overall bit score >200. The comparative map, gene list and genome zipper were downloaded from the 'Sequencing the Aegilops tauschii Genome' project, (UC Davis Plant Science and USDA, 2015) then compiled and annotated using the SNP marker identifiers. Extant markers that had already been tested during the project were annotated onto the Ae. tauschii resources using the Brachypodium genes as identifiers between datasets.

To anchor the Rht8 linkage map in the IWGSC-2 and Chapman POPSEQ bins, the resources described in 2.3.11.3 and 2.3.11.4 were inspected and the 2DS CSS contig corresponding to the marker was used as the identifier between datasets.

The Ae. tauschii genetic map was constructed by using the linkage bins in the gene list described above and mapping the SNP markers in the appropriate cM bins using MapChart v2.2 (Voorrips, 2002). This was then annotated with the

BAC contig onto which the SNP markers mapped to, using the comparative map file. The genetic maps of the IWGSC-2 and Chapman POPSEQ bins were drawn to scale according to the number of contigs/scaffolds within each bin. Finally, the maps were compiled in Inkscape version 0.91 (www.inkscape.org) and lines between maps drawn manually.

2.4.3 Gene content of Rht8 interval

2.4.3.1 Differential expression analysis

The sorted and indexed BAM files from the v3.3 cDNAs and UniGenes were processed to measure transcript abundance by Martin Trick, using the methodology outlined in Trick et al., (2012). Transcript abundance was expressed as reads per kilobase per million mapped reads (RPKM values) for the parent NILs in the UniGenes and for both the parent NILs and bulks in the v3.3 cDNA gene models. Since there was no reference group against which to identify functional enrichment, the data was analysed using an adapted workflow based on the R package sRAP (v1.8.0) (simplified RNA-Seq Analysis Pipeline) (Warden et al., 2013). RPKM values were normalised by setting an RPKM cutoff in order to eliminate false discovery of high fold-changes between genes with very low absolute expression levels (<0.1). Additionally, genes with an expression of zero were rounded to a small number (0.001) to avoid logarithms of zero. Expression values were then log2 transformed and genes were defined as differentially expressed if they showed an absolute fold-change >1.5. Conservative parameters (according to Warden et al., 2013) were used to define differentially expressed genes (DEGs) in both the normalisation step and the fold-change step. The analysis is shown in full in the R script in Appendix 2.13.

The GO Analysis Toolkit and Database (agriGO) (http://bioinfo.cau.edu.cn/agriGO/) was used compare the molecular function and biological processes for the 1735 DEGs between the parent NILs and a reference library. At the time of doing this work, the Triticum aestivum gene models from the IWGSC-2 data (gene models in Appendix 6.9 and Appendix 6.10) were unavailable on agriGO therefore the Brachypodium homologues to the DEGs were used as identifiers. The singular enrichment analysis (SEA) tool was used with the Bradi genome locus (JGI) set as the reference library with 25,219

Brachypodium genes (Du et al., 2010). Significant GO terms were identified using a p-value <0.05 from the SEA.

2.4.3.2 Gene content of T. aestivum genetic bin and Ae. tauschii physical interval

The IWGSC-2 data was represented in Ensemb/Plants as contiguous sequence, despite there being no greater resolution to order individual IWGSC CSS contigs within genetic POPSEQ bins. In order to identify the gene content of the 17.3 cM bin and surrounding bins, a physical interval had to be identified Ensemb/Plants. To do this, 2CS CSS contigs from the flanking POPSEQ bins were used as an approximate estimate (with the knowledge that the intervening sequence would contain some sequence space from each of the flanking bins). The 2DS CSS contig was used as a query for homology searching in the Triticum aestivum BLASTN menu, and the pseudo physical position retrieved. For the 17.3 cM bin, this was achieved using a contig from the flanking 17.0 and 18.1 cM bins. The physical intervals used were 2D: 6478405-8959961 for the 17.3 cM bin and 2D: 8745143 - 10885088 for the 33.1 cM bin.

Using these physical intervals, BioMart (Bolser et al., 2015) was used to export the peptide sequences and the corresponding syntenic information as outlined 2.3.11.1. In order to functionally annotate the genes, the peptide sequences were used as queries in BLASTP searches of non-redundant protein sequences of the National Center for Biotechnology Information (NCBI), using 'flowering plants' (taxid 3398) as a filtering parameter in the 'organism' menu (http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web\&PAGE_TYPE=BlastHo me). The best-hit by query-coverage percentage and peptide identity was retrieved, however where the best hit was an uncharacterised protein, lower hits were used where annotations existed. BLASTP searches which returned retrotransposons were discarded, but these were infrequent. The annotation was also checked using the GenBank identifier. The GenBank identifier was used for further literature searches on the NCBI and elsewhere (for example in www.uniprot.org) to investigate putative biological roles.

2.5 Germplasm development to study rare alleles at the Xgwm261 locus

2.5.1 Plant material

The original introgressions of the rare Xgwm261-allele donors into the Mercia background were performed by Liz Sayers (JIC) in 2006 in multiple streams. Four streams produced heterozygous offspring which were fertile. Seed was obtained for these and 48 seeds for each stream were germinated and planted into individual cells in a 96 -well tray as described in 2.3.1.3. Leaf material was used for DNA extraction (described in 2.3.1.4) to screen with Xgwm261 (described in 2.3.1.4) and allelic variation scored as shown in Appendix 7.1.

2.5.2 Germplasm development

The homozygous individuals for the parent and donor Xgwm261 allele identified in 2.5.1 were transplanted into 1 L pots and grown to maturity in glasshouse conditions in the summer of 2015. Plants were bagged in order to bulk seed.

2.5.3 Height measurements

Measurements for height and height-components were made as described in 2.3.2.1.

2.5.4 Statistical analyses

The Student's t-test was used to compare height and height components between the donor and parent alleles within each cross. The deviation of the observed segregation patterns from the Mendelian 1:2:1 ratio were tested by $x 2$ using the Microsoft Excel function.

Chapter 3: Agronomic characterisation of Rht8 in UKadapted germplasm.

3.1 Introduction

Crop height is a key trait to optimise the performance of wheat (Triticum aestivum L.). Decreasing height is important in order to reduce lodging (Berry et al., 2007). However, reduced height is often associated with a reduction in yield (Law et al., 1978) thus understanding better genes which reduce height without yield penalty continues to be a prominent breeding target.

The widespread deployment of the semi-dwarfing genes Rht-B1b and Rht-D1b was a key part of the Green Revolution in reducing plant height by 15-36\% (Gale and Youssefian, 1985, Trethowan et al., 2001) and increasing yields, as well as improving lodging resistance to high nitrogen (N) application (Hedden, 2003). Rht-B1b and Rht-D1b are gibberellin (GA)-insensitive and inhibit cell elongation, with subsequent height reduction. The reduced cell-size also causes a reduction in coleoptile length (Trethowan et al., 2001). Shorter coleoptiles and decreased leaf area of seedlings reduce early vigour and impede emergence in deeper sowing due to dry conditions (Botwright et al., 2005, Rebetzke and Richards, 1999).

Despite the prevalence of Rht-B1b and Rht-D1b in over 70\% of wheat varieties worldwide (Hedden, 2003), the genes perform less well in lower yield-potential environments. Rht-B1b and Rht-D1b increase sensitivity to drought and temperatures stress (Gale and Youssefian, 1985) and are associated with reduction in yield in more marginal environments such as low rainfall (Chapman et al., 2007, Butler et al., 2005) and low nitrogen fertiliser input (Laperche et al., 2008). Circumstantially, this is further evidenced with reduced prevalence of Rht$B 1 b$ and Rht-D1b in southern/central European gene pools where there are higher temperatures associated with arid summers (Šíp et al., 2009).

The main alternative to the GA-insensitive dwarfing alleles found in agriculture is the GA-responsive Rht8 on 2DS, recognised by a 192-bp allele at the closelylinked microsatellite locus Xgwm261 (Korzun et al., 1998). Rht8 is well-adapted to dry, Mediterranean-like environments (Worland and Law, 1986) as it provides semi-dwarf stature with the benefits of early seedling vigour and a longer coleoptile (Ellis et al., 2004). Rht8 is found extensively in southern Europe and parts of eastern/central Europe, as well as China and Australia (Asplund et al., 2012). Rht8 is not found in northern European germplasm and has not been tested extensively in the UK, principally due to the tight linkage with Ppd-D1a (Worland et al., 1998a).

Rht8 was introduced together with the closely-linked photoperiod-insensitive Ppd-D1a into European wheats in the 1930s from the crossing programmes with the Japanese variety Akakomugi by the Italian breeder Strampelli (Borojevic and Borojevic, 2005, Lorenzetti, 2000). Photoperiod-insensitive wheat flowers rapidly in both short and long days, whereas photoperiod-sensitive wheat is delayed in short days, flowering rapidly in long days. Ppd-D1a is advantageous in climates (such as southern Europe) where earlier flowering avoids late-season drought stress (Kato and Yokoyama, 1992) and high-temperatures at grain fill (Bennett et al., 2012). In northern Europe, breeders likely selected against the tightly-linked Ppd-D1a, because in a climate with relatively cool summers, a long vegetative phase coupled with late flowering is favourable to maximise yield (Kato and Yokoyama, 1992). In order to test the behaviour of Rht8 without the disadvantageous (to the UK) Ppd-D1a allele, a population was developed in the Griffiths' group in a photoperiod sensitive (Ppd-D1b) background (first described in Gasperini, 2010).

Near-isogenic lines (NILs) contrasting for the Rht8 allele from Mara (defined by marker-assisted selection for Xgwm261-192bp and Xcfd53-274bp) and tall rht8 allele from Cappelle-Desprez were developed in the elite spring wheat, Paragon (Gasperini, 2010). Paragon does not contain Rht-B1b or Rht-D1b but has reduced height probably due to accumulation of several minor genes and is photoperiod sensitive. From the $\mathrm{BC}_{3} \mathrm{~F}_{3}$ stage, one short NIL and one tall NIL were selected and grown alongside Paragon in two sites in the UK and a hightemperature site in Lleida, Spain. These results are described in this Chapter.

Previous agronomic assessments of Rht8, many confounded by the pleiotropic effects of Ppd-D1a, have mainly focused on height with limited investigation into yield, yield components or developmental traits without the earliness conferred by photoperiod insensitivity. Dissecting the genetic and physiological effects of Rht8 away from Ppd-D1a was a key aim of this study.

Optimum plant height for maximising yield varies according to the yield potential of the environment (Fischer and Quail, 1990, Flintham et al., 1997) and ranges from $70-100 \mathrm{~cm}$ (Flintham et al., 1997). In high-yield potential environments (high fertiliser input and irrigation), the dwarfing conferred by the single action of RhtB1b or Rht-D1b is insufficient to avoid lodging (Berry et al., 2007). Hence there is growing interest in combining Rht8 with other dwarfing genes to 'fine-tune' height. Double-dwarfs with Rht-B1b+Rht-D1b confer maladaptive traits of poor establishment and low biomass (Butler et al., 2005, Flintham et al., 1997) whilst other Rht genes such as Rht3, Rht10 and Rht12 are too extreme in their height reduction to be of commercial value (Ellis et al., 2004, Flintham et al., 1997). Instead the more subtle height reduction conferred by Rht8 makes the combination of Rht8 with Rht-B1b/RhtD1b to create 'sesqui-dwarfs' a more attractive target and this was first studied in a high-yielding Australian semi-dwarf wheat background (Rebetzke et al., 2012a). The combination of dwarfing alleles reduced lodging and increased grain yields relative to the single dwarfs. The work presented in this Chapter is the prelude to work the Griffiths' group is carrying out to obtain a similar stacking of Rht8 with other Rht genes in Paragon, a highyielding UK spring wheat, and testing performance in northern European climates.

Molecular-marker studies for Rht8 in Akakomugi-derived, Mara progeny found a height reduction of 10-15\% (Gasperini et al., 2012, Korzun et al., 1998). In the field, Rht8 has been found to decrease height by a mean of 6.5% across a range of environments in Colorado (Lanning et al., 2012). In the $\mathrm{BC}_{3} \mathrm{~F}_{2}$ NILs used in the current work, an initial assessment of the heights of the Rht8 NILs reported a 20% height reduction in the glasshouse (Gasperini, 2010). A modest number of studies have characterised the effect of Rht8 in terms of yield and yield components; none have used morphometric measurements (presented in this Chapter) to report on grain size. For lines carrying Rht8, yield increases of 9.7\% (Rebetzke and Richards, 2000) and 3.8\% (Borner et al., 1993) have been
reported. However, in more recent agronomic assessments, the Rht8 allele did not confer yield advantage over 10 sites studied and instead showed a penalty in three of the 10 environments (Lanning et al., 2012). The Rht8 allele has been shown to increase carbon-partitioning to the grain to increase grain number and yield in Australia in a relatively low-yield environment ($2.5-4.6 \mathrm{t} \mathrm{ha}{ }^{-1}$) (Rebetzke and Richards, 2000). In studies with Rht8+Ppd-D1a, Rht8 had little effect on grain number (-1\%), but this was linked with earlier flowering (Addisu et al., 2009a, Rebetzke et al., 2012b). With need to clarify these conflicting reports, an extensive assessment of yield and yield components of Rht8 was carried out across multiple sites in the work presented here.

There is growing need to reduce or curtail the use of synthetic inputs including N fertiliser. In the UK, N fertiliser inputs are already limited by legislation and it is anticipated that a more severe reduction will be enforced by EU-wide legislation in 2016. For this reason, there is imperative to understand how the action of semidwarfing genes differs at contrasting N applications. The use of Rht8 in alternative management systems, such as organic agriculture with low N inputs, has not been extensively tested. This is despite the highly promising increase in early crop vigour reported with this gene (Ellis et al., 2004), a trait which has been identified as particularly useful in organic contexts in order to promote early nutrient uptake (Wolfe et al., 2008). To this end, the agronomic performance of Rht8 was assessed here at N inputs below that of conventional agriculture.

There has been limited work to contrast the performance of Rht8 in irrigated and non-irrigated systems. In one experiment, an Rht8+Ppd-D1a NIL in the Mercia background was found to have increased drought tolerance at booting, resulting in increased grain per spikelet relative to Rht-B1b and Rht-D1b even at temperatures as high as $36^{\circ} \mathrm{C}$ (Alghabari et al., 2014). Since the plants in those experiments were potted, the translation of these results to the field is uncertain. Additionally, the considerable $G \times E$ interactions, as well as the photoperiod insensitivity, meant that effects could not be unambiguously ascribed to the semidwarfing Rht8 allele. In the field, Rht8 NILs in a Ppd-D1b background yielded less than those with Rht-B1b and Rht-D1b, in conditions with late-season drought and temperature stress (Lanning et al., 2012). Experiments with the Rht8 and tall NILs were conducted in irrigated conditions in the UK growing season, to test whether these findings could be extended to relatively cooler summers.

In this Chapter, the agronomic performance of Rht8 is described for the first time in a UK-adapted spring wheat background (Paragon) in terms of height, yield, yield components and developmental traits. The trait responses of Rht8 in contrasting irrigation treatments and a range of N inputs were examined as a preliminary study into whether the gene could be usefully deployed in lower input management systems typical of organic agriculture.

3.2 Inter-site comparison

Near-isogenic lines (NILs) contrasting for the Rht8 allele from Mara (defined by marker-assisted selection for Xgwm261-192bp and Xcfd53-274bp) and tall rht8 allele from Cappelle-Desprez were developed in a Paragon background (Gasperini, 2010). At the $\mathrm{BC}_{3} \mathrm{~F}_{3}$ stage, one short NIL (herein Rht8 NIL) and one tall NIL were selected and grown along with the recurrent parent to the population, Paragon. Three growing environments were used for this study (Table 3.1), two in the UK and a high-temperature site (that was irrigated to field capacity) in Lleida. The UK sites had shorter days in winter and longer days in summer relative to Lleida (Figure 3.1).

A range of temperature was encountered in UK and Lleida (Figure 3.2A) with Lleida being higher throughout the reproductive and grain-filling phases (including booting and anthesis). Lleida had a higher range (with a low of $4^{\circ} \mathrm{C}$ and high of $24^{\circ} \mathrm{C}$ in July, when harvest was completed) than the UK (low of $4^{\circ} \mathrm{C}$ and high of $18^{\circ} \mathrm{C}$ in Reading). The two UK sites had similar climates, differing only slightly in temperature at the end of stem elongation/beginning of grainfilling. Reading was $2^{\circ} \mathrm{C}$ hotter than Norwich in June and $1^{\circ} \mathrm{C}$ hotter in July. There was more rainfall at the start of the season in Reading compared to Norwich during the vegetative phase followed by a drier latter half of the season in Norwich (Figure 3.2C). UK sites had markedly lower levels of solar radiation, with half the levels in Lleida in some months (Figure 3.2B). Church Farm in Norwich was the highest yield-potential site: though variable, the highest average yield was close to $11 \mathrm{t} \mathrm{ha}^{-1}$, compared to $9 \mathrm{t} \mathrm{ha}{ }^{-1}$ in Reading and only 7 t ha ${ }^{-1}$ in Lleida (Table 3.1).

Figure 3.1: Day-length over the wheat growing season (sowing to harvest) overlayed with growth stages and timing of yield components. The growth phases were based on a UK autumn drilling season, and adapted from HGCA, 2008. Growth season for Lleida is shifted 4-6 weeks earlier. Day-length was calculated by using the latitude and longitude coordinates to determine sunrise and sunset over the year 2013-2014 and finding the numeric difference, as described in 2.1.3. The yield components are overlayed on the growing season and adapted from Slafer, 2012.

$\begin{array}{\|l\|} \hline \frac{0}{0} \\ \frac{0}{7} \end{array}$				人̀	$\stackrel{\circ}{\circ}$	$\stackrel{\bigcirc}{\circ}$
			，	2id	$\begin{aligned} & \stackrel{x}{\tilde{u}} \\ & \dot{\ddot{x}} \\ & \dot{\tilde{d}} \end{aligned}$	
	彦				$\begin{aligned} & \mathbb{ভ} \\ & \sum_{i}^{3} \\ & \vdots \end{aligned}$	$\underset{1}{3}$
	产		cososesos．	ci	ज	
	$\stackrel{\square}{0}$					
	损	I	$\pm \pm \pm \frac{1}{\text { I }}$	$\stackrel{\rightharpoonup}{\text { I }}$	ェ	ェ
				$\underset{\substack{\text { c }}}{ \pm}$		
				$\begin{gathered} 0 \\ 0 \\ \stackrel{0}{0} \end{gathered}$	$\begin{aligned} & \overline{\text { 후 }} \\ & \text { 흠 } \end{aligned}$	
	－	－	の ¢ ¢ ¢	m	\llcorner	¢
			$\cdots \mathrm{Cl}$		$\begin{aligned} & \widehat{\sim} \\ & \underset{\sim}{n} \\ & \tilde{z}_{2}^{z} \\ & \mathrm{z} \end{aligned}$	\％
	$\begin{aligned} & \begin{array}{r} \stackrel{0}{5} \\ \stackrel{y y y y y}{*} \\ \hline \end{array} \\ & \hline \end{aligned}$	\cdots		$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\text { ¢ }}{\substack{\text { a }}}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{N} \\ & \hline \end{aligned}$
	$\stackrel{8}{0}$	$\underset{\sim}{\text { E }}$				$\xrightarrow{\text { EV}}$
			$\stackrel{\circ}{\circ}$		\％	8
			앙		is	q
$\|\overline{\bar{c}}\|$			＇			
	$\stackrel{0}{0}$		층			－
$\stackrel{\rightharpoonup}{\circ} \mid$	（1）					
	（1）		$\begin{aligned} & \text { 들 } \\ & \sum_{0}^{2} \end{aligned}$			－
	（		$\begin{aligned} & \text { 들 } \\ & \text { 든 } \end{aligned}$		¢	$\stackrel{\stackrel{0}{0}}{\square}$

Table 3．1：Experimental details of sites used for comparing Rht8 and tall NILs and traits measured．$Y=y i e l d, H=h e i g h t, ~ S=s p i k e ~ l e n g t h, ~ I=i n t e r n o d e ~ l e n g t h s, ~ T G W=T h o u s a n d ~ g r a i n ~ w e i g h t, ~$ $G N=$ grain m^{-2} ，$G S=$ grains spike ${ }^{-1}, H I=h a r v e s t ~ i n d e x, ~ S A=$ spikes $m^{-2}, S S=$ spikelets spike ${ }^{-1}$ ，$G A=$ grain area also length，width），HD＝heading，$A N=$ anthesis，$G C=G r o u n d ~ c o v e r, ~ S E N=$ senescence， PAR＝photosynthetically active radiation，R：FR＝red：far red ratio．

Figure 3.2: Monthly weather data at experimental sites over the 2013-2014 growing season with growth stages and timing on yield components. (A) Mean daily temperature each month based on the mean of daily maximum and minimum temperatures (B) Total solar radiation measured each month based on the total mean daily levels (from maximum and minimum levels) (no data for Church Farm was available) (C) Total rainfall received each month (Lleida experiments were irrigated to field capacity so comparison not pertinent). The growth phases were adapted from HGCA, 2008. Timing of yield components was adapted from Slafer, 2012.

3.3 Plant height and height components

In order to assess the extent of height reduction conferred by Rht8, total plant height (PH) (Figure 3.3A) was taken upon maturity and internode components were measured from tiller samples (Figure 3.3B).

Figure 3.3: Measuring total height and height components. (A) Stature at maturity was measured in the field (left = Rht8, right = Paragon control) (B) Tiller samples taken from field plots (Rht8, tall, Paragon, left to right) (C) internode components measured from tiller samples.

Comparison of the Rht8 NIL, tall NIL and Paragon showed that there was a highly significant difference between PH in all seven environments ($\mathrm{P}<0.05$ in 2012, $\mathrm{P}<0.001$ in all other environments) (Table 3.2). PH of the Rht8 NIL ranged from $88-115 \mathrm{~cm}$ (excluding plot to bulk seed in 2011) and was on average 11\% shorter than the tall NIL across environments. The height reductions were
relatively consistent across environments (Table 3.2), with the exception of the two seasons in Lleida which were the most variable within a single location, with the highest and lowest percentage difference relative to the tall NIL reported (-1 to -22%). The tall NIL was taller than Paragon in seven of the environments, with the exception of Lleida in 2014 (Table 3.2 and Figure 3.4). This indicated that there was some genetic background, distinct from the Rht8 locus since this had been genotyped during population development (described in Chapter 2), which was making the tall NIL taller than Paragon, and, speculatively, the Rht8 NIL taller than it might otherwise be. Interestingly, this background effect had not been prominent in the field in 2011 and 2012 (described in Chapter 2), where all the tall NILs developed were of the same height as Paragon, implying a $G \times E$ interaction. In order to mitigate these background effects, trait responses of the Rht8 NIL were considered relative (in percentage terms) to the tall NIL.

Correlation analysis across environments between PH and height components revealed that PH was very positively and significantly correlated mostly with the length of the spike and peduncle ($r=0.63,0.47 ; \mathrm{P}<0.01$) and also top internode ($r=0.35, \mathrm{P}<0.05$) (Table 3.3). There were no significant correlations observed between PH and the lower internodes. This was in contrast to the tall NIL and Paragon, where only the bottom two internodes showed a positive and significant correlation with PH .

Using analysis of variance (ANOVA), the effect of N and irrigation treatment on PH was measured (Figure 3.5 and Figure 3.6). Increased N treatment had a significant effect in increasing $\mathrm{PH}(\mathrm{P}=0.004$ Church Farm, $\mathrm{P}<0.001$ Reading). Irrigation also increased PH , but only significantly differently to unirrigated (rainfed) treatment in 2014 ($\mathrm{P}=0.03$). In 2013, where the irrigation was applied relatively late, there was no significant increase in height due to treatment ($\mathrm{P}=0.096$). Crucially, there was no $\mathrm{G} \times \mathrm{E}$ interaction in any of the environments. This means that genotypes were affected in the same way by all treatments considered. In other words, the height reduction conferred by Rht8 was maintained regardless of N or irrigation treatment.

Taken together, the data indicated that Rht8 conferred a stable and significant height reduction of $\sim 11 \%$ relative to the tall NIL, across environments of varying yield potential and climatic conditions. The magnitude of the height difference
between the Rht8 and tall NIL was proportionately unaffected by N or irrigation treatment and the total height reduction was principally contributed by the spike, peduncle and top internode.

3.3.1 Genotyping NILs

In order to assess the genotypic differences between the NILs, the Rht8 NIL selected from $\mathrm{BC}_{3} \mathrm{~F}_{5}$ was genotyped along with Paragon using the 820,000 (820K) feature Axiom® SNP array (www.cerealsdb.uk.net/cerealgenomics) (described in 2.3.8). A total of 6088 SNPs were found between the Rht8 NIL and Paragon (discarding SNP calls due to missing data in one of the genotypes), indicating a 99.4% Paragon background, well above the expected theoretical 87.5% at BC_{3} (population development described in Chapter 2). Within the identified SNPs, 2% were located on 2DS. However, since the mapping data for the markers had not been released at the time of writing, the precise background contribution could not be further assessed.

Table 3.2: Total plant height at maturity. Data shown as mean values. The p-value refers to significant differences in height between genotypes within each experiment determined by the least significant difference (L.S.D.) test. 2011 data was based on one replicate. ${ }^{*} P<0.05$, ${ }^{* *} P<0.01,{ }^{* * *} P<0.001 . N 1=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}, N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$.

- Rht8 - tall - par

Figure 3.4: Mean plant heights of the Rht8 NIL, tall NIL and Paragon at standard agronomic conditions. Nitrogen treatment is indicated only where alternative treatments to standard agronomic conditions were present. $N 3=200 \mathrm{~kg}^{N} \mathrm{ha}^{-1}$, Ul=unirrigated (rainfed) (indicated only where there was a contrasting irrigation regime).

	Rht8		par		tall	
	r	p-val	r	p -val	r	p -val
spike	0.63	$* * *$	0.17	NS	0.26	NS
peduncle	0.47	$* * *$	0.19	NS	0.00	NS
int-1	0.35	$*$	0.03	NS	0.50	$* *$
int-2	0.23	NS	0.87	$* * *$	0.85	$* * *$
int-3	0.27	NS	0.70	$* * *$	0.81	$* * *$

lowest highest

Table 3.3: Simple correlation coefficients (r) between total plant height and height-related traits from tiller samples, across all environments. $N S=$ not significant at $P<0.05,{ }^{*} P<0.05,{ }^{* *} P<0.01$, ${ }^{* * *} P<0.001$.

Figure 3.5: Mean plant height at different N treatments in Church Farm (left) and Reading (right). Data from 2013-2014 season. Error bars represent standard error. N1=40kg N ha-1, N2=100kg N $\mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$.

Figure 3.6: Mean plant height in irrigated (I) and unirrigated (UI; rainfed) conditions at Church Farm. Data from 2012-2013 season (top) and 2013-2014 in contrasting N treatments (bottom). Error bars represent standard error. $N 1=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$.

3.4 Grain yield and yield components

Yield is a complex polygenic trait, determined by genetic and environmental interactions throughout the growing season of wheat (Figure 3.1). To facilitate studying this complex trait, yield is dissected into yield components (Figure 3.7). At the highest level, wheat yield is a product of grains per unit area (GN) and grain weight (TGW). Generally, increases in yield have been achieved by increased GN (Peltonen-Sainio et al., 2007). There is a trade-off between the increase in GN and reduction in TGW (Acreche and Slafer, 2006). However, some exceptions to this exist, with high GN and high TGW (Griffiths et al., 2015). For this reason, increasing both GN and TGW to maximise yield has been proposed as a target 'ideotype' (Ma et al., 2015b). TGW can be broken down into grain length (GL) and grain width (GW), with GL believed to be the key component and most responsive (Gegas et al., 2010). In order to study the contribution of Rht8 on yield as fully as possible, key yield components were also measured (shaded in Figure 3.7).

Figure 3.7: Diagram of wheat yield illustrating the contribution of yield components commonly measured in agronomic trials. Components measured in this study are highlighted in grey. Abbreviations are shown in brackets and correspond to the description in Table 3.1. Adapted from Slafer, 2003.

Grain yield varied significantly between the NILs based on means over six of the seven environments (full data in Appendix 3.1). Within the environments, in standard agronomic conditions (rainfed and high N(N3)), Rht8 conferred a yield penalty of a mean -8%, ranging from -4 to -26% (Figure 3.8A). Exceptions to the yield penalty within the environments were at non-standard agronomic conditions (Figure 3.8B), at the lowest N treatment (N 1) and in irrigated conditions. At these treatments, the yield of the Rht8 NIL was either comparable to or had a higher mean to that of the tall NIL. The yield penalty observed in the UK standard agronomic conditions was abolished in the high-temperature site in Lleida. There was a borderline non-significant difference ($\mathrm{P}=0.07$) in yield between the NILs, with the mean yield of the Rht8 NIL 10 and 16\% higher than the tall NIL in 2013 and 2014, respectively (Figure 3.8C). The highest overall yields were observed in 2013 in Church Farm under irrigated conditions (~ 12 t ha ${ }^{-1}$), whereas the lowest observed were in the lowest N treatment in Reading ($\sim 5.5 \mathrm{t} \mathrm{ha}^{-1}$) (Appendix 3.1).

GN correlated most strongly to yield out of the components measured (Table 3.4). There were highly positive ($r=0.85-1$) and significant interactions between yield and GN across all environments. There were also significant ($\mathrm{P}<0.05$ and $\mathrm{P}<0.01$) differences in GN between the NILs in most of the environments (full table in Appendix 3.1). The negative impact of Rht8 on yield was closely mirrored by a concomitant decrease in GN (Figure 3.8A), averaging -7\% in standard agronomic conditions. Where the yield penalty was abolished, in Lleida and at low N levels, the decrease in GN was also eliminated (Figure 3.8B\&C). The difference in GN between the NILs was not significant in Lleida ($\mathrm{P}=0.1$) with the mean GN of the Rht8 NIL 2\% (2013) and 10\% (2014) higher than the tall NIL.

Since GN is a product of grains spike ${ }^{-1}$ (GS) and spikes m^{-2} (SA) (Figure 3.7), these sub-components were investigated. There was limited data for these components: GS was only measured in Lleida and SA data was obtained in Lleida and Reading. SA had a positive correlation with yield (Table 3.4) in Reading ($r=$ 0.53) and Lleida ($r=0.43$) but the correlation was only significant in Reading ($\mathrm{P}<0.05$). There were no significant differences between the NILs observed in GS in Lleida ($\mathrm{P}=0.6$). There was a highly significant $(\mathrm{P}<0.001$) reduction in $S A$ in Reading (a mean of -15%) across all N treatments. In Lleida, this reduction was reversed. There was no longer a significant difference in SA between NILs in

Figure 3.8: Yield and height trait responses of the Rht8 NIL relative to tall NIL. (A) In standard agronomic conditions in Church Farm and Reading, unirrigated (Ul; rainfed) and N3=200kg N ha ${ }^{1}(B)$ in non-standard conditions in Church Farm and Reading (irrigated and N1=40kg N ha- ${ }^{-1}$, $N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}$) (C) in standard agronomic conditions at all three sites (reduced dataset to show comparison of traits measured across all three sites, with the exception of the additional trait of spikes m^{-2} which was only measured in Reading and Lleida).

Yield/Grains m ${ }^{-2}$		Rht8		tall		par	
		r	p-val	r	p-val	r	p-val
	2013 nitrogen	1.00	***	0.92	**	0.97	**
	2014 nitrogen	0.95	***	0.96	***	0.92	***
	2013 irrigation	0.95	***	0.96	***	0.92	
	2014 irrigation	0.91	***	0.86	***	0.93	
Reading	2014	0.99	***	1.00	***	0.99	***
Lleida	2013 \& 2014	0.85	*	0.92	**	0.83	*

Yield / TGW		Rht8		tall		par	
		r	p-val	r	p-val	r	p-val
$\begin{aligned} & \text { C } \overline{0} \text { E } \\ & \text { 든 } \end{aligned}$	2013 nitrogen	-0.98	***	0.29	NS	-0.52	NS
	2014 nitrogen	0.83	**	0.81	**	0.59	NS
	2013 irrigation	0.95	**	0.83	*	0.99	***
	2014 irrigation	0.09	NS	0.12	NS	0.21	NS
Reading	2014	0.22	NS	0.28	NS	0.02	NS
Lleida	2013 \& 2014	-0.12	NS	-0.11	NS	-0.24	NS

Yield/Spikes m ${ }^{-2}$		Rht8		tall		par	
		r	p-val	r	p -val	r	p -val
Reading	2014	0.53	*	0.61	**	0.43	NS
Lleida	2013 \& 2014	0.43	NS	0.51	NS	0.25	NS

Grains spike ${ }^{-1}$ Spikes m^{-2}		Rht8		tall		par	
		r	p-val	r	p-val	r	p-val
Lleida	2013 \& 2014	-0.58	NS	-0.53	NS	-0.88	*

Table 3.4: Simple correlation coefficients (r) between yield and yield components across environments. $N S=$ not significant at $P<0.05,{ }^{*} P<0.05$, ${ }^{* *} P<0.01$, ${ }^{* * *} P<0.001$.

Lleida, with the mean of the Rht8 NIL showing an 11% increase across both years (Figure 3.8C).

Other yield trait responses of Rht8 relative to the tall NIL were smaller (Figure 3.8). TGW did not correlate stably and strongly with yield to the extent of GN, having a significant positive and negative correlation with yield in Rht8 in consecutive years at Church Farm (Table 3.4), but no other significant correlations in other environments. There were significant differences between the NILs in TGW in three out of seven environments (data in Appendix 3.1). In 2013 at Church Farm, the Rht8 NIL had a significant ($\mathrm{P}<0.05$) mean 5\% increase in TGW across the N treatments compared to the tall NIL. In Lleida, there was a significant ($\mathrm{P}<0.05$) increase of 7%. In the Reading environment, there was a significant ($\mathrm{P}<0.05$, L.S.D) decrease of 4% but only at the lowest N treatment.

Responses in Grain area (GA) only varied significantly between NILs ($\mathrm{P}<0.01$) in the 2013 Nitrogen trial at Church Farm (Figure 3.8A; full data in Appendix 3.1). The Rht8 NIL had a 3\% increase in GA in both N treatments. In the same trial, Grain Length (GL) and Grain Width (GW) also increased significantly ($\mathrm{P}<0.001$ $\mathrm{GL} ; \mathrm{P}<0.05 \mathrm{GW}$) by 1 and 3%, respectively. Thus the increase in GA was due to an approximately concomitant increase in both grain dimensions.

The harvest index (HI) was significantly ($\mathrm{P}<0.05$) different in the Rht8 NIL compared to the tall NIL in two environments. In one year at Church Farm (2013), the Rht8 NIL had a 5\% increase in HI, but only at N3 (LSD test). However, in the subsequent year, Rht8 conferred a reduction in the mean HI relative to tall NIL 7%. Thus this trait did not have a robust, extensive response.

There was no difference in the number of spikelets spike ${ }^{-1}(\mathrm{SS})$ between the NILs in any of the environments ($\mathrm{P}>0.05$).

3.5 Yield response to irrigation, contrasting N and high temperature

In order to determine if Rht8 conferred any adaptation at lower input conditions, the NILs were grown in trials with contrasting N treatments and water regimes. The trials in Lleida were fully irrigated, and this provided opportunity to observe increased adaptation to high temperature, which is notoriously difficult to dissect from drought stress. The temperatures in the Lleida growing season were high relative to the UK (Figure 3.2), but were below the $27^{\circ}-30^{\circ} \mathrm{C}$ at anthesis range which has been used to define 'heat stress' (Semenov et al., 2014).

Soils in arable rotations in typical agronomic conditions supply enough N for wheat to fulfil approximately half its yield potential. The remaining yield potential can be realised with applied N fertiliser (HGCA, 2008). The NILs were grown in three contrasting N fertiliser regimes. At the standard agronomic treatment (200 $\mathrm{kg} \mathrm{N} \mathrm{ha}^{-1}$), the Rht8 NIL had a yield penalty in UK sites. At lower N treatments, the yield penalty was abolished (Figure 3.9A). A higher resolution of the effects of N was available in Reading, since the split-plot experimental design allowed the genotype to be analysed as a sub-plot effect nested within N as a main-plot
factor. In the Reading data, the yield penalty was abolished at the lowest N input only (N1), whereas at Church Farm, the penalty was not observed at N1 or N2 (Figure 3.9A). Dwarfing alleles in wheat have been shown to affect Nitrogen Use Efficiency (NUE) (Gooding et al., 2012). There is a complex relationship between the effect of different soil N levels and the components of NUE, nitrogen uptake (NUpE) and utilisation efficiency (NUtE) (Ortiz-Monasterio, 2012). NUpE is the major contributor to NUE at low N and NUtE at higher N (Hawkesford, 2014). The abolishment of the yield penalty at standard N levels in the high-temperature conditions in Lleida (Figure 3.8C) suggested that at increased temperatures, Rht8 conferred adaptive advantage which was not due to 'escape' by earlier heading or flowering (personal communication). Additionally, the Rht8 NIL did not show reduced TGW or reduced GN, which has been reported in wheat under heat stress (over $30^{\circ} \mathrm{C}$) (Semenov et al., 2014). Taken together, the results here offer a preliminary indicator that Rht8 has a penalty in NUE at higher N levels (typical of standard N inputs), but this disadvantage is overcome at higher temperatures, and even errs toward an almost significant yield advantage. At lower N, the yield penalty is overcome, speculatively due to improved NUpE in Rht8 at levels where soil N is much lower than standard agronomic fertiliser input levels.

Irrigation treatments were conducted in 2013 and 2014 growing seasons at Church Farm. At $200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}$ (N3), the yield penalty of Rht8 observed in rainfed conditions was abolished by providing irrigation, since there was no difference in yield between NILs. This result was observed across both years (Figure 3.9B). In 2014, at N1, irrigation increased yield across all genotypes, but in the same proportion, so that the yield penalty in the Rht8 NIL was maintained (Figure 3.9B).

Although the UK growing climate does not subject wheat to the same drought stress as southern Europe, the different timings of the irrigation in consecutive years offer some contrast in temporal application of drought stress. In 2013, irrigation at Church Farm was supplied after GS61, when stem extension was complete (Figure 3.2), whereas in 2014, irrigation was supplied throughout the reproductive phase. The timing of irrigation did not greatly affect the yield of the Rht8 NIL at N3 relative to tall NIL (1% and 2% increase relative to the tall NIL in 2013 and 2014, respectively). Though speculative, this reflects similar findings in the agronomic performance of Rht-B1 and Rht-D1 genes. In water stressed
environments, the yield seemed more closely related with the right plant height than with the combination of dwarfing alleles (Butler et al., 2005).

Figure 3.9: Yield of the Rht8 NIL, tall NIL and Paragon in contrasting N treatments and irrigation regimes. (A) 2013-2014 season at Church Farm (left) and Reading (right) (B) Church Farm in 2012-2013 (left) and 2013-2014 (right). N1=40kg N ha ${ }^{-1}, N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$, I=irrigated, UI=unirrigated (rainfed).

3.6 Interplay between yield, grains m^{-2} and spikes \mathbf{m}^{-2}

The interplay between yield, GN and SA is shown in Figure 3.10. As already described in 3.4 , yield was tightly correlated with GN. In the temperate UK climate, the yield penalty observed at N 2 and N 3 was abolished at N 1 . This was reflected in the GN, which was reduced at N2 and N3 relative to the tall NIL, but no differences between NILs were observed at N1. SA was reduced at all levels of N , which was presumably offset by increased grain spike ${ }^{-1}$ at N 1 , the other component of GN (Figure 3.7), though this data was not collected. At the hightemperature site, the Rht8 NIL had no penalty and instead had a borderline significant ($\mathrm{P}=0.07$) increase in yield. GN tightly mirrored this: there was no reduction in GN and instead higher GN in the Rht8 NIL compared to the tall NIL
(Figure 3.10). There was also no significant reduction in SA in the Rht8 NIL which had been observed under conditions with the yield penalty.

At the highest N input (N 3), GN was highest in the high-temperature site (ranging from 18,000-22,000 grains m^{-2} across NILs in Lleida) compared to the UK site (18,000 - 19,000 grains m^{-2}). SA was also increased in Lleida, ranging from 564 -627 spikes m^{-2} compared to $383-487$ spikes m^{-2} in Reading (data in Appendix 3.1). This was unsurprising, given that $S A$ is determined by tiller production which was likely limited by the solar radiation received during the vegetative phase in the UK but not in Lleida (Figure 3.2).

In sum, the data suggested that in UK field conditions, the yield penalty at N2 and N3 was due to decreased GN and not TGW. This is in accordance with studies which have shown that in temperate conditions (such as the UK), with an absence of stress during grain fill, GN is the dominant component influencing yield (Peltonen-Sainio et al., 2007). Moreover, it has been shown that introgression of semi-dwarfing genes increases juvenile spike formation which enhances the responsiveness of GN (Miralles et al., 1998). It seems likely that a combination of these effects was acting in the Rht8 NIL in the UK climate, making GN dominate in determining yield.

The reduction in GN observed in the UK data was in turn due to decreased SA. Conversely, in Lleida, where no yield penalty was observed, there was also no reduction in either GN or SA. It is interesting to consider the hierarchy of influence of yield components reported here with previous findings examining relationships between yield components and environmental modulation of yield responses (Slafer et al., 2014). In that study, a large database of wheat yield components from published literature was examined. A 'hierarchy of plasticities' was reported, where within the GN components, SA was more dominant in determining GN than GS, particularly when driven by environmental factors. This was in part related to the investment required to produce a tiller compared to a floret primordium. Furthermore, there were no trade-offs reported between GS and SA where there was a large change in yield ($>50 \%$) due to environmental factors, but a strong trade-off was present for large changes in GN driven by genetic factors (Slafer et al., 2014). Since there was no GS data for Reading, these findings could not be unambiguously verified. However, GN did appear to be driven by SA for the

Figure 3.10: Yield, grains m^{-2} and spikes m^{-2} (top to bottom) in the Rht8 NIL, tall NIL and Paragon in Reading (column A) and Lleida (column B). Error bars represent standard error. N1=40kg N $\mathrm{ha}^{-1}, N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} N \mathrm{ha}^{-1}$.
available data. Interestingly, in Lleida, there were strong negative correlations between SA and GS (indicative of a trade-off), but these were only significant in one of the genotypes (Paragon) (Table 3.4). From this, it can be reasoned the genetic (Rht8) factors were stronger than environmental, but not overwhelmingly so as described in cases of a 50% yield differential by Slafer et al. 2014. In light of this, it can be recommended that further investigations into the agronomic performance of Rht8 in different treatments should be moderate rather than extreme (which would tip the balance into yield relationships driven by environmental rather than genetic contributions).

3.7 Lodging

Lodging in cereals is the permanent displacement of the culms from the upright vertical position. Lodging limits yield particularly in high-yield potential environments, such as western Europe. In the UK, severe lodging occurs in UK cereal crops every three-four years, when $15-20 \%$ of the wheat growing area lodges (Berry et al., 2004). Lodging can reduce grain yield by up to 50% (Fischer and Stapper, 1987). In wheat, there are two types of lodging: stem lodging, caused by buckling of the stem, and root lodging, caused by over-turning of the anchorage system. In the 2013-2014 growing season at Church Farm, a storm with high winds caused lodging in early July, at approximately GS70. Root lodging was the only type observed (no buckling of stems) and lodging only affected plots at higher N levels (N 2 and N 3) (Figure 3.11).

Lodging has been found to decrease both GN and TGW (Acreche and Slafer, 2011). Correlation analysis was performed in order to assess which yield and height components were linked to increased lodging across all genotypes. Yield was highly positively and significantly correlated with lodging ($r=0.75, \mathrm{P}<0.001$), as was $\mathrm{GN}(r=0.70, \mathrm{P}<0.001)$. There were no significant correlations between lodging and TGW or harvest index. Lodging was also significantly positively correlated with overall height ($r=0.73, \mathrm{P}<0.001$) and some height components (Table 3.5). The lack of negative correlation between lodging and yield might be due to the relatively moderate lodging found here: in the work by Acreche and Slafer 2011, lodging was artificial and to 80° displacement from the vertical, whereas the lodging here was to an average 45° displacement.

Figure 3.11: Lodging at Church Farm in July 2014. Lodging was severe and caused 90° displacement of culms from the vertical position in a few plots (left). The predominant type of lodging observed was root lodging (right).

		r	p-val
	Yield	0.75	va
	Grains m^{-2}	0.70	***
	TGW	0.10	NS
	Harvest Index	-0.07	NS
	Height	0.73	***
	Spike	0.16	NS
	Peduncle	0.27	NS
	Int-1	0.53	*
	Int-2	0.26	NS
	Int-3	0.47	*

lowest highest

Table 3.5: Simple correlation coefficients (r) between lodging and yield and height components. $N S=$ not significant at $P<0.05,{ }^{*} P<0.05,{ }^{* * *} P<0.001$.

It should also be noted that stems were re-erected by leaning to prepare for harvest prior to GS75, at which stage the greatest yield losses have been reported (Berry and Spink, 2012).

Interestingly, unlike the GA-insensitive Rht-B1 or Rht-D1 genes, no Xgwm261 allele linked with the Rht8 locus has been found to have a significant effect on lodging resistance (Šíp et al., 2009). In order to further explore this, lodging score between the NILs was analysed by ANOVA. There was a significant difference in lodging between the NILs ($\mathrm{P}<0.001$), with the Rht8 NIL having half the mean lodging score of the tall NIL at N3 (38\% vs $74 \%, 0 \%=$ no lodging) (Figure 3.12). There was a significant N^{*} allele interaction ($\mathrm{P}<0.01$), which was expected since at N2, the Rht8 NIL was completely resistant to lodging. The irrigation treatment at both N1 and N3 had no effect on the lodging score ($\mathrm{P}=0.4$). In sum, the findings here indicate for the first time that Rht8 confers lodging resistance at agronomically-relevant N treatments.

Figure 3.12: Lodging score of the Rht8 NIL, tall NIL and Paragon in contrasting N treatments and irrigation regimes. Error bars represent standard error. $N 1=40 \mathrm{~kg} N \mathrm{ha}^{-1}, N 2=100 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$, $N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}-$ - , I=irrigated, UI=unirrigated (rainfed).

3.8 Developmental traits

The effects of Rht8 on developmental traits has usually been reported in a PpdD1a background. Here, developmental traits could be analysed without the earliness conferred by photoperiod insensitivity. One study which did measure heading in a spring wheat background in Colorado found no difference between Rht8 and wild-type (Lanning et al., 2012), though no other developmental traits were measured.

In work from Australian trials, Rht8 has been proposed as a way to provide semidwarf stature with the benefits of early seedling vigour and a longer coleoptile, leading to improved emergence (Ellis et al., 2004). This was tested in UK conditions by measuring ground cover as a proxy to establishment. Ground cover was measured at both UK sites at the end of March 2014, towards the end of the vegetative phase, using images of plots from which proportion of green canopy was measured (using an ImageJ macro developed by Oscar Gonzalez) (Figure 3.13). There was no significant difference ($\mathrm{P}=0.8$) between NILs in ground cover estimated using this method.

Figure 3.13: Ground cover estimated by calculating percentage of green canopy. Photo taken at waist height before (left) and the same image output from analysis (right).

Heading date was measured across two growing seasons, 2013 and 2014, at Church Farm. Contrasting N treatment had no effect in either year on heading ($\mathrm{P}>0.05$) (Table 3.6A). Irrigation significantly ($\mathrm{P}<0.001$) delayed heading in all NILs, by approximately 1 calendar day, but only in the 2014 season. Though not significant, the mean heading thermal time was reduced by 0.25% in the Rht 8 NIL in 2013 and 0.4% in 2014 across treatments when compared to the tall NIL (Table 3.6A). This equates to half a calendar day.

Anthesis was measured in 2014. Overall, different N treatment or water regime had no significant effect on anthesis ($\mathrm{P}>0.05$). Significant ($\mathrm{P}<0.05$, LSD) differences between the Rht8 and tall NIL were observed in two of the four treatments (Table 3.6B). At N2 and in rainfed conditions the Rht8 NIL had a mean delay of $1-1.4 \%$ in thermal time to anthesis compared to the tall NIL, which equates to $2-2.5$ calendar days.

Heading (${ }^{\circ} \mathrm{C} \mathrm{d}$)

A	2013				2014				
	N2	N3	UI	1	N1 UI	N1 I	N2	N3 UI	N3 I
par	1498	1471	1456	1458	1766	1777	1769	1766	1779
Rht8	1505	1493	1478	1465	1779	1782	1782	1779	1812
tall	1515	1488	1482	1471	1782	1800	1782	1782	1807
P-value allele	*		*		***				
P-value treatment	NS		NS		***(I)/NS(N)				
L.S.D.	13		14		13(1)/12(N)				

Rht8 (\% of tall)	99.4	100.3	99.7	99.6	99.8	99.0	100.0	99.9	100.3
difference (\%)	-0.6	0.3	-0.3	-0.4	-0.2	-1.0	0.0	-0.1	0.3

Anthesis (${ }^{0} \mathrm{C} \mathrm{d}$)

B	2013			
	N2	N3	UI	I
par	1581	1564	1551	1547
Rht8	1592	1574	1547	1556
tall	1608	1579	1569	1566
P -value allele				
P-value treatment		S	N	S
L.S.D.		3	1	

lowest highest

Rht8 (\% of tall)	99.0	99.6	98.6	99.4
difference (\%)	-1.0	-0.4	-1.4	-0.6

Table 3.6: Heading and anthesis dates in 2013 at Church Farm shown as thermal time. Data shown as mean values. The p-value refers to significant differences between genotypes determined by the least significant difference (L.S.D.) test. NS=means not significantly different at $P<0.05,{ }^{*} P<0.05$, ${ }^{* * *} P<0.001$. P-values are shown separately for N and I in the factorial experiment. $N 1=40 \mathrm{~kg} N \mathrm{ha}^{-1}, N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg}^{N} \mathrm{ha}^{-1}$, I=irrigated, Ul=unirrigated (rainfed).

Senescence at the plot level was measured visually using a $1-10$ score in the 2013 season at Church Farm. Irrigation increased senescence and no differences were observed in contrasting N treatments (Figure 3.14). There was
high variation within genotype and no significant differences were observed between NILs (overlapping error bars), with the exception of more rapid early senescence under irrigation in the Rht8 NIL. This difference disappeared by $2000^{\circ} \mathrm{C}$ d (Figure 3.14A).

In sum, there was no strong effect of Rht8 on the developmental traits studied, which is in line with the common belief that the earliness from the Ppd-D1 locus was dominant in previous studies where Rht8 was linked with Ppd-D1a.

Figure 3.14: Senescence estimated on plot-level shown as thermal time at Church Farm in 2013 (A) in contrasting irrigation regimes (B) in contrasting N treatments. Data recorded from initial senescence (a score of 0) to complete senescence of plot (a score of 10). Data points are mean values. Error bars represent standard error. N2=100kg N ha-1, N3=200kg N ha-1.

The earlier results presented in 3.6 indicated that spikes m^{-2} (SA) modulated grains $\mathrm{m}^{-2}(\mathrm{GA})$, which in turn affected yield, and that the response was different between the NILs. Tiller dynamics determine SA to a large extent (Sreenivasulu and Schnurbusch, 2012). In wheat, a low red:far red (R:FR) ratio reduces tillering (Casal et al., 1987, Kasperbauer and Karlen, 1986) and also has a role in modulating root anchorage to increase lodging (Sparkes and King, 2008). In order to elucidate the interplay between tiller dynamics and some of the yield trait responses described in this Chapter, light quantity in terms of photosynthetically active radiation (PAR) and light quality (R:FR) at base canopy level were measured.

Pre-anthesis, there was no difference in R:FR between the NILs, which is in accordance with the green canopy findings (Table 3.7). From October to March, the R:FR halved from ~ 1 to 0.5 , reflecting the canopy growth and increase in density which promoted mutual shading among plants. Post anthesis, R:FR increased with time, reaching ~ 0.85 by GS85 (end of grain filling). N treatment only had a significant ($\mathrm{P}<0.001$) effect on R:FR in early - mid July, and increased N reduced R:FR across all genotypes in equal proportion (treatment*allele $\mathrm{P}=0.8$). The only significant ($\mathrm{P}<0.01$, LSD test) difference between the Rht8 and tall NILs occurred on $7^{\text {th }}$ July, with an 18% increase in R:FR in the Rht8 NIL at treatment. Over all treatments at that first time-point post anthesis, the Rht8 NIL had a mean 14% increase compared to the tall NIL.

R:FR	lowest highest														
	pre-anthesis						post-anthesis								
	30/10/2013			04/03/2014			07/07/2014			14/07/2014			24/07/2014		
	N1	N2	N3												
par	1.04	1.08	1.10	0.49	0.50	0.48	0.57	0.54	0.40	0.76	0.65	0.61	0.84	0.85	0.83
Rht8	1.06	1.06	1.08	0.49	0.51	0.49	0.59	0.53	0.40	0.73	0.69	0.54	0.86	0.84	0.83
tall	1.06	1.04	1.09	0.50	0.48	0.52	0.54	0.45	0.36	0.71	0.65	0.58	0.82	0.84	0.82
P-value allele	NS			NS			**			NS			NS		
P-value treatment	NS			NS			***			***			NS		
L.S.D.	0.05			0.05			0.07			0.04			0.04		

Rht8 (\% of tall)	99.5	102.2	98.9	98.8	105.4	93.5	110.3	117.8	112.9	102.0	105.7	94.1	105.3	100.5	100.7
difference (\%)	-0.5	2.2	-1.1	-1.2	5.4	-6.5	10.3	17.8	12.9	2.0	5.7	-5.9	5.3	0.5	0.7

Table 3.7: Red: Far Red ratios at canopy level at Reading in 2014. Data shown as mean values. $N=5$. The p-value refers to significant differences between genotypes determined by the least significant difference (L.S.D.) test. NS=means not significantly different at $P<0.05,{ }^{* *} P<0.01$, ${ }^{* * *} P<0.001, N 1=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}, N 2=100 \mathrm{~kg} N \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}$.

PAR was measured post anthesis at three time points in July 2014, one week apart (Figure 3.15). At all time-points, there was a significant ($\mathrm{P}<0.001$) effect of N treatment: PAR increased $\sim 5 \%$ between incremental N treatments, such that there was $\sim 10 \%$ greater reduction in PAR at N1 than at N3 (full data in Appendix 3.7). There was a significant ($\mathrm{P}<0.05$) difference in PAR between NILs, with the mean of the Rht8 NIL lower than the tall NIL at each time-point. Furthermore, the differential between the Rht8 and tall NIL increased with time (-1.4\%, -1.5% and -2.3\%).

Figure 3.15: PAR interception at canopy level at Reading in 2014 in contrasting N treatments. Data points are mean values. Error bars represent standard error. N=5. Values recorded on same dates as R:FR ratio, displayed as days after anthesis (6/6/14). N1 $=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}, N 2=100 \mathrm{~kg} \mathrm{~N}$ ha ${ }^{1}, \mathrm{~N} 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$.

3.9 Discussion

The work in this Chapter assessed the agronomic performance of Rht8 in the field in a photoperiod sensitive (Ppd-D1b) background (first described by Gasperini, 2010) for the first time in UK-adapted, spring wheat. Previous reports on the trait responses of Rht8 have been confounded by the presence of the tightly linked Ppd-D1a allele. In particular, it was unclear in many studies whether the reduction in height was due to quicker development from earlier flowering. This has led to an 'adaptation vs escape' paradigm (described in Semenov et al., 2014): wheats grown in southern Europe are not necessarily more tolerant of heat and drought stresses than wheats grown in more temperate conditions e.g. northern Europe. Instead, agronomic practices and photoperiod insensitivity are used to 'escape' terminal desiccating conditions. This suggests untapped potential for breeding. Without Ppd-D1a in this study, it was assessed whether Rht8 confers adaptive advantage. Furthermore, outside of height, yield and in particular yield component traits in Rht8 remain poorly studied.

There was no significant premature development of the Rht8 NIL in any of the developmental traits examined (heading, anthesis or senescence), therefore, reduction in height could be ascribed to the genetic effects of Rht8. The genetic control underlying plant height was studied here by assessing the trait at final height maturity. Height was reduced by $\sim 11 \%$ and was principally correlated with the spike, peduncle and top internode. The height reduction was relatively stable, remaining unperturbed by environmental factors of N or water regime. The consistent reduction in height adds further merit to the work of 'stacking' Rht8 with other dwarfing genes e.g. work by Rebetzke et al., 2012. This finding differed to a study of Rht8 in a spring wheat background in Colorado (Lanning et al., 2012), where the magnitude of height reduction tended to be smaller in loweryielding environments. However, the sites varied greatly for precipitation, whereas here, the lowest-yielding environment was irrigated to field capacity.

Plant height, despite being measured terminally in this work, is, however, a dynamic trait (Wu and Lin, 2006). Additionally, dynamic analysis of QTLs for plant height in wheat discovered several conditional QTLs affecting height at distinct temporal phases (Wang et al., 2010). An attempt to measure height dynamics over time was attempted in a controlled environment room (CER) experiment, but
was foiled by rampant mildew which severely stunted growth. Understanding the dynamics of height in future work is particularly important in order to understand the molecular function of Rht8 and to identify the key temporal stages for expression analysis work, which was also undertaken in the fine-mapping work of this project.

In high yield-potential sites, Rht8 conferred a $\sim 10 \%$ yield penalty in standard agronomic conditions of high N and without irrigation. This is in accordance with findings of Lanning et al,, 2012, who also reported a negative impact of Rht8 on yield in standard agronomic conditions. The yield penalty at high N was mitigated in irrigated conditions, and was also abolished at the lowest N input. Additionally, in the lower yield-potential, high-temperature site in Lleida, the Rht8 NIL had no yield penalty. It appears that in conventional agriculture, Rht8 is not advantageous in terms of yield. However, there is growing pressure to reduce fertiliser input and PGRs, typical of organic agriculture. In these conditions, breeders are more focused on varieties with stable yield, rather than highest possible yield, due to more heterogeneous conditions across growing seasons. The work in this Chapter suggests that Rht8 could be an attractive proposition in these environments, where semi-dwarfing stature can be achieved without yield penalty and offer further agronomic advantages by reducing lodging.

UK data showed that the yield penalty found in rainfed conditions was mitigated upon irrigation. It is notoriously difficult to separate heat and drought stress, but this was achieved by irrigating in Lleida to field capacity. Since there was no difference in rate of development between the NILs, these initial findings would suggest that Rht8 might confer 'adaptation' to high temperature, rather than 'escape'. Although the Rht8 NIL did not appear to have good drought tolerance, the relatively wet vegetative phase in the UK precludes the sort of environmental conditions which lead to early drought stress (e.g. Siberia) where Rht8 is found in commercial germplasm. Future collaboration with groups working in these conditions would be beneficial to assess further the performance of Rht8 in different types of drought. It is interesting to speculate on the molecular mechanism underlying the apparent reduced drought tolerance of Rht8. Rht8 has reduced sensitivity to brassinosteroids (Gasperini et al., 2012). Brassinosteroid signalling is important for the development of stomata (Casson and Hetherington, 2012) and thus perhaps drought tolerance. An unsuccessful attempt to measure
the effect of drought more precisely and over time was made in the aforementioned CER experiment. Future work at contrasting temperatures and irrigation treatments (early and late onset) would further elucidate the interplay between these two variables which could then be translated to the field. This is particularly important with a more erratic growing season in the UK in face of climate change, where drought might not always be terminal.

The yield penalty was driven by concomitant reduction in grain number per unit area (GN), and spikes $\mathrm{m}^{-2}(\mathrm{SA})$. Conversely, where the yield penalty was abolished, these two yield trait responses were no longer reduced. SA is determined by tiller dynamics early on in development, although relatively little is known about the molecular basis of tiller formation in wheat (Sreenivasulu and Schnurbusch, 2012). Tillering is the emergence of side shoots at leaf-stem junctions up to the point when the Green Area Index (GAI) reaches ~ 1, which is typically just before GS31 (HGCA, 2008). Before GS31, high N uptake affects canopy size by promoting tillering and encourages tiller survival. A study of durum wheat in response to N and water availability found that increasing N during this early phase of growth increased GN by increasing both the number of fertile florets and the proportion of them setting grains (Ferrante et al., 2013). Further, tillering responses are affected by $R: F R$ and low R :FR reduce $G N$. The story is further intertwined with the findings that R:FR regulates yield components in order to adjust to the availability of limited resources such as N (Cecilia Ugarte et al., 2010). The initial findings in the yield components pointing to Rht8 modulating tiller dynamics was strengthened by two observations in light quantity and quality at the base of the canopy. First, PAR was reduced in the Rht8 NIL and the reduction was more severe as the canopy matured. This suggests that overall the Rht8 NIL was using less solar radiation in a useful way, thus compromising yield, at least in conditions where PAR was limiting (i.e. UK). In Lleida, where PAR was in excess, this deleterious effect on yield was compensated. Second, though not highly significant, the data showed a trend in increased R:FR in the Rht8 NIL, however there was no difference reported between N treatments.

Tiller number is the limiting component of yield in northern European environments with high N input and temperate climates. In these conditions, the Rht8 NIL had reduced SA, as a result of decreased tillering. Tiller number is established early on in the vegetative phase. It can be surmised that the tall NIL,
with more tillers than the Rht8 NIL, had plentiful resources in high N conditions for all tillers to be productive and consequently had a yield advantage over the Rht8 NIL. Conversely, in low N, advantage from increased tiller number (in the tall NIL) was eradicated since the yield potential could not be fully achieved due to the limitation of N uptake efficiency (NUpE). Thus the yield penalty of Rht8 was abolished in low N conditions. This hypothesis points to the study of floret generation and tiller dynamics to understand further the mechanisms modulating GN, SA and the differences in canopy conferred by Rht8.

Large variation has been observed for anchorage and stem strength in UK wheat varieties (Berry et al., 2003). It has been suggested that breeders are unlikely to have exploited this variation since improved understanding of the importance of these traits has only recently been established (Berry et al., 2007). The development of root and stem traits associated with lodging resistance continues until anthesis (Crook and Ennos, 1995) and competes with resources determining GN and well as stem reserves. Therefore, the ideal wheat 'ideotype' has been described as one with the best combination of lodging resistance with the least investment in biomass in order to minimise conflict with yield potential (Berry et al., 2007). In the work presented in this Chapter, Rht8 conferred decreased GN and yield in the same conditions in which it promoted root lodging resistance, with no difference in harvest index. This strongly points to Rht8 acting in the root system as opposed to stem biomass, specifically in promoting root plate spread and root plate depth, since these are characters associated with improved root lodging risk (Berry et al., 2007). Further investigation into the root characteristics and how they vary at high temperatures where the yield/GN penalty is reversed is required to determine whether mechanisms other than height reduction are conferring lodging resistance. Based on these findings, in UK growing conditions, Rht8 can be proposed as an attractive candidate to provide lodging resistance in certain environments. First, where lodging is extensive and the risk to yield obliteration outweighs the $\sim 10 \%$ penalty. Second, where yield stability is preferred over absolute maximal yield; and/or ecological systems (namely organic agriculture) where the N fertiliser and the use of PGRs to reduce lodging risk are not permitted.

In the global context of fertiliser reduction, the ability to identify genetic control of NUE-related traits and implement this in breeding programs is an important part
of future genetic gain. Though speculative, the results in this Chapter indicate that the Rht8 NIL had improved (or at worse adaptively neutral) NUpE at low N input. This is particularly welcome in organic systems, where a greater proportion of N is available earlier on in the growing season as well as much reduced N levels in the soil. NUpE is a trait predominantly associated with the root structure. High NUpE is associated with early root proliferation and shallow proliferation of roots to capture applied N and then later, longer roots to access deeper N reserves (Hawkesford, 2014). The reduction in lodging was not due to differences in stem biomass (since harvest index was not significantly different between NILs). It can be hypothesised that deeper or increased lateral roots that make the Rht8 NIL better anchored and more resistant to lodging also support a higher NUpE, which is only evident when the N input is reduced to such levels that efficiency cannot be overcome by increased availability in the soil (such as at the N3 treatment). Work in this Chapter clearly calls for a close examination of the spread and depth of roots in the Rht8 NIL, and to determine whether root traits confer resistance to lodging in a distinct mechanism to just reducing stature, which has been well-established in Rht8 and in the semi-dwarfing genes of the Green Revolution (Worland et al., 1998b, Hedden, 2003). This is exciting since breeders and scientists (e.g. Lynch, 2007) have already identified that overturning our relatively poor knowledge of wheat adaptation below the soil (compared to above-ground knowledge) could signal the next Green Revolution.

Background effects in the selected NILs were seen consistently across environments with respect to height. Linkage drag might have introduced negative alleles at other loci during the backcrossing process. To compensate for background differences between the NILs, there is scope to use the remaining NILs at $\mathrm{BC}_{3} \mathrm{~F}_{2}$, from which the Rht8 and tall NIL used here were selected. This would offer a comparison between multiple NILs with the same Rht8 genotype. This strategy has been used in the past for assessing the effects of dwarfing genes (Chen et al., 2013, Wang et al., 2014b).

Finally, the findings presented in this Chapter would benefit to being extended to a direct comparison of Rht8 relative to Rht-B1b and Rht-D1b. This could easily be obtained in future, since our group has developed NILs in Paragon with both these genes and a meaningful comparison could be made in the same genetic background.

Chapter 4:
 Compact morphology caused by Rht8

4.1 Introduction

Spike compactness in the glasshouse and field in wheat with the Mara-derived, Rht8 allele had been reported anecdotally before the start of this project. Further observation of spike compactness in the material grown in Chapter 3 led to a closer inspection of this trait. This is described in this Chapter.

Spike characteristics determine the number of grains per spike and contribute to yield. In addition, variations in spike morphology are widely-used criteria for species determination. Subsequently, the genes and the underlying mechanisms controlling spike morphology are important to taxonomists, breeders and scientists.

In bread wheat, there are three major genes which affect gross morphology of the spike: Q, which determines whether a spike is square-headed or spear-like (speltoid); S, which controls grain and glume roundness, and C, which determines how compact the spike is.
Q is one of the most important genes in the domestication of wheat because it confers the free-threshing character and a square-spike phenotype (Muramatsu, 1963). More primitive wild (spelt) wheat with the q allele has a speltoid spike with an elongated rachis and adherent glumes, which make the wheat difficult to thresh (non-free threshing). The mutation to Q resulted in the free-threshing character, along with reduced rachis fragility and reduced glume tenacity. This had a profound effect on agriculture, allowing large-scale, efficient harvesting of grain (Simons et al., 2006). The cloning of Q on chromosome 5AL revealed that the gene encoded an AP2-class transcription factor involved in plant development (Simons et al., 2006, Zhang et al., 2011). The q-to- Q mutation resulted in a single amino-acid substitution (gain-of-function) (Simons et al., 2006). A putative miRNA172 binding site in exon 10 of Q further points to the involvement of miRNA regulation (Zhang et al., 2011). Consistent with its role as
a transcription factor, Q pleiotropically affects spike length and shape, plant height and spike emergence time (Muramatsu, 1963, Muramatsu, 1986, Sears, 1952, Simons et al., 2006, Zhang et al., 2011). Further, it has been shown that there is co-regulation and complex interactions among the Q / q homoalleles on 5DL and 5BL with 5AL, which result in phenotypic differences in spike morphology (Zhang et al., 2011).

A gene which modulates Q expression to control threshability and rachis fragility is Tenacious glumes (Tg). Tg1 is on 2DS and coincident with Xgwm261 in QTL studies (Jantasuriyarat et al., 2004, Nalam et al., 2006). Further, Tg1 has a homoeologue on 2B (Tg2) (Faris et al., 2014b, Simonetti et al., 1999) and putative homoeologue on 2A (Tg3) (Faris et al., 2014a). Tg is a semi-dominant gene that inhibits expression of Q, though the mechanism remains unknown (Jantasuriyarat et al., 2004, Kerber and Rowland, 1974). Therefore a dominant Q and recessive $t g$ allele must be present for the free-threshing phenotype.

The recessive s allele on chromosome 3DL confers sphaerococcoidy (round grains and glumes) (Rao, 1977). This allele defines the sub-species of T. aestivum, called sphaerococcum, or shot wheat, which has short, dense spikes (Sears, 1947).

The gene compactum (C) determines spike compactness and defines a subspecies of hexaploid wheat known as T. aestivum ssp. compactum, or club wheat. Club wheat is characterised by the dominant C allele which results in a compact "club" spike. It is generally accepted that that the origin of club wheat is from a mutation at the C locus in T. aestivum, and not from a tetraploid or diploid ancestor (Johnson et al., 2008). The gene compactum was mapped to 2D (Rao, 1972), and since then, relatively few studies have investigated this gene. Notably, Johnson et al., 2008 mapped C to two bins, either side of the 2D centromere, though the precise location could not be determined. In that study, prior cytogenetic work which localised C to the long arm (Unrau, 1950) was cited to corroborate the localisation of C to the 2DL bin rather than the bin the other side of the centromere. Conversely, a more recent publication stated that C was located on 2DS, based on personal communication with a researcher (Faris et al., 2014c). Intriguingly, in a different study, a spike compactness QTL was reported on 2DS, close to the 2DS bin reported earlier (Manickavelu et al., 2011).

Since the Rht8 introgression in the Rht8/tall NILs in Paragon was in this region, and there was anecdotal evidence of spike compaction, the map data between these studies was examined in relation to the markers used to select for the Rht8 allele in the Paragon back-crossing population. The compact spike phenotype associated with the Rht8 allele was, for the first time, quantified in the work presented in this Chapter.

Two spike-compaction genes in other Triticeae species have been suggested as orthologues to C. The first is the soft glume (Sog) gene, found in a compactoidspike variety (called sinskajae) of diploid T. monococcum (Taenzler et al., 2002). Johnson and co-workers (2008) placed Sog on 2AmS, close to the centromere, in an approximately homoeologous location to C, which was mapped to two bins either side of the centromere separating the chromosome arms on 2D. In light of the unresolved location of C (Faris et al., 2014c, Johnson et al., 2008), the relationship between Sog and C remains uncertain. Second, the barley zeocriton (Zeo) gene, which confers a dense spike in barley, was also investigated as a possible C orthologue by Johnson et al., 2008. Zeo has been isolated and shown to be an AP2-like gene (HvAP2) on 2HL, the homoeologous chromosome to wheat 2D (Houston et al., 2013). The mRNA turnover of HvAP2 was found to be regulated by microRNA172, and perturbing this interaction resulted in phenotypic differences in the barley spike morphology (Houston et al., 2013). Map comparison showed Zeo was located on the distal end of 2 H (Johnson et al., 2008), not overlapping the C region close to the centromere. Functional work also showed no miRNA172 binding-site mutations analogous to Zeo-like control in compactum wheat mutants (Houston et al., 2013).

The compact spike character of C provides an easily distinguishable feature which has taxonomic importance in defining subspecies. For this reason, there is interest in understanding the relationship between C and other genes affecting spike compactness in different wheat subspecies. A dominant gene determining compact ear in T. aestivum ssp. sphaerococcum was shown to be non-allelic to C, and named C2 (Goncharov and Gaidalenok, 2005). Four induced mutant genes in Russian wheat, named $C p, C^{769}, C^{17648}, C p^{m}$, all conferring spike compactness, were localised to 5AL and were discounted as being allelic to C (Kosuge et al., 2012). Instead, the authors suggested that these were alleles of
a new locus (they named Cp1) which they postulated is in tandem with the Q locus.

Common wheat (ssp. aestivum) has the genotype QcS, shot wheat (sphaerococcum) is Qcs, spelt wheat (spelta) is qcS and club wheat (compactum) is QCS. As there is little allelic variation reported at the major loci, differences in spike morphology cannot always solely be attributed to these genes. Further, all durum wheat cultivars have the Q allele and no D genome, therefore lacking C and S. This suggests that homoeoalleles or that different minor genes are involved in controlling spike morphology. Indeed, research has found QTLs contributing to spike compaction on almost all 21 wheat chromosomes (Faris et al., 2014c, Jantasuriyarat et al., 2004, Sourdille et al., 2000). These studies have found that compactness QTLs usually coincide with QTLs for spike length as opposed to spikelets spike ${ }^{-1}$, despite compactness being a function of both these components. This would suggest that spike length and spikelets spike ${ }^{-1}$ are under differing genetic control. These two components were investigated in the work in this Chapter to establish the relative contribution to the compactness phenotype.

In terms of agronomic importance, club wheat is not grown widely. Club varieties are grown commercially (at diminishing levels) as a class of soft white wheat in the Pacific Northwest of the US and areas of Australia, Europe (e.g. Russia) and Turkey. In regions such as the US Pacific Northwest, club wheat has desirable grain quality characteristics: better stability in milling performance over growing seasons compared to other wheat (Jones and Cadle, 1997, Lin and Czuchajowska, 1997). In the hot, dry and windy summer conditions of these regions, stiff culms resistant to lodging and shatter-resistant spikes provide club wheat with superior adaptation to common wheat (Zwer et al., 1995). In the most comprehensive study to date on the agronomic performance of club wheats, the main components differentiating club from common wheat in the US Pacific Northwest environment were more grains per spike with a lower grain weight, whilst harvest index, spikes per unit area and overall yield were unchanged relative to common wheat (Zwer et al., 1995). It has been established that the size of the floret cavity (reduced in a densely packed club spike) is associated with grain weight (Millet, 1986) and that lower grain weight and greater grain number per spike are associated with C (Gul and Allan, 1972). Zwer et al. (1995) suggested that club wheats are better adapted to dryland areas where marginal
moisture at emergence provides the smaller grains of club wheat with superior establishment compared to common wheat (Gul and Allan, 1972, Zwer et al., 1995). No study to date has assessed the effects of different treatments such as N or water on compactness and related traits. This was achieved in the work presented here, in the same N and water regimes as described in Chapter 3.

The main aim of the work in this Chapter was to quantify spike compactness in glasshouse- and field-grown plants with Rht8. This was achieved first by measuring the compactness on the plot level of the Rht8 x Paragon NILs described in Chapter 3. Second, tiller samples from Norwich and Reading were measured to dissect further the compact spike phenotype. A secondary aim was to determine whether the compact spike phenotype could be attributed to particular conditions, since anecdotal reports varied with environment, implying G x E interaction. To do this, spike compactness was measured across the water regimes and N treatments outlined in Chapter 3. Finally, the timing of the onset of spike compactness was measured by assessing spikes at GS 30-39 in the fine-mapping Rht8 population (described in detail in Chapter 5). The spike compactness measured here is also put into the context of current research on the genetics of spike morphology.

4.2 QTL for compact-spike overlaps with Rht8

introgression

Johnson and co-workers (2008) mapped C to two bins either side of the 2D centromere. In their map, the 2DS bin (designated a position of 0.33 cM from the centromere) was two bins away from and 0.7 cM more proximal to the centromere than Xgwm261 and Xcfd53. Xgwm261 and Xcfd53 were mapped to a 2DS bin designated a position of $0.47-1.00 \mathrm{cM}$. These markers were the same two used for marker-assisted selection during the Rht8 NIL development in the Paragon background by Gasperini (2010) (described in Chapter 3). Additionally, a stable spike compactness QTL was found to overlap the Xgwm261-Xcfd53 region by Manickavelu et al., 2011. Further, a recent paper stated that from personal communication C was believed to be on 2DS (Faris et al., 2014c). Since a more precise location of C is unknown (or at least unpublished) and given the relatively poor marker density on the resolution of the spike compactness QTL compared
to Johnson's map, it is possible that the spike compactness QTL and C are the same locus. Given this, it is probable that the Rht8 introgression includes this ambiguous genetic region. In order to rationalise the spike compactness QTL with the Rht8 work in this thesis, Xgwm261 and Xcfd53 were integrated in the most recent wheat bioinformatics and comparative genomics resources, which were used in Chapters 5 and 6 to further fine-map Rht8.

	Wheat					
Assembly/ source	Manickavelu et al. 2011	IWGSC		Chapman assembly		
	cM	QTL	contig	bin (cM)	scaffold	bin (cM)
Xgwm261	33.1	QCpt-07/08	2DS_5318891	17.34	518430	13.642
Xcfd53	37.2	QCpt-07/08	2DS_5378845	16.95	6258899	14.7795

	Barley				Brachypodium		Rice	
Assembly	IBSC-1.0 (082214v1)	WGS Morex		v1.0		IRGSP-1.0		
	Gene	pos	contig	bin (chr:cM)	Gene	pos	Gene	pos
Xgwm261	MLOC_66589	Chr 5	51801	$5: 139$	BRADI1G626040	21142086	-	-
Xcfd53	MLOC_76709	20513991	72474	$2: 19$	BRADI1G69730	68206285	OS10G0399700	13467597

Table 4.1: Integrating existing knowledge on compact-spike QTL reported by Manickavelu et al. 2011 with wheat bioinformatics and comparative genomics used in fine-mapping Rht8 in this project. The arrow indicates the downstream position of the centromere. Further explanation of the resources used is in Chapter 5.

The two markers were placed in adjacent bins in the International Wheat Genome Sequencing Consortium (IWGSC)-2 data; estimated to be 0.39 cM apart (based on population sequencing (POPSEQ) data) and over 1 cM apart in the Chapman scaffolds (Table 4.1). The order of the IWGSC-2 bins is incorrect based on the Chapman assembly and already well-established genetic maps which place Xgwm261 more distal to the centromere than Xcfd53. However, this discrepancy is due to the limitation of current wheat resources and is only a good approximation. Crucially, the position of Xgwm261 and Xcfd53 in the IWGSC-2 bins was identical to Gasperini's flanking markers to Rht8, DG279 and DG371 (shown in Table 5.4). Comparative genomics resources indicated poor synteny with the Rht8 region (compared with Table 5.4), a problem already associated with work in Tg1 also on 2DS (Faris et al., 2014b). Taken together, the region harbouring Rht8 introgressed to make NILs for the Rht8 locus in Paragon (reported in Chapter 3) overlaps with a spike compactness QTL and possibly C. Given the observations of spike compaction in the Rht8 NIL, further investigation was highly warranted.

4.3 Assessing compactness in Rht8 x Paragon NILS

4.3.1 Spike morphology on the plot level

Figure 4.1: Hexaploid and tetraploid wheat $C p$ and C mutants demonstrating a range of compactness phenotypes. The arrow indicates the 'semi-compact' morphology which was also observed in the Rht8 NIL in the Paragon background. From Kosuge et al., 2012.

Despite the common reference to club or common wheat based on the binary taxonomic distinction of a compact or lax spike, the trait itself is quantitative and different degrees of compactness are observed (Figure 4.1). Compared to other reports (e.g. Kosuge et al., 2012), the spike compaction observed in the Rht8 NIL in the field (Figure 4.2) was of the 'semi-compact' type, and not the extreme compactness used by Johnson et al. 2008 in their C fine-mapping population. Indeed, more recent studies of spike compaction have quantified the trait by dividing spike length by spikelet number spike ${ }^{-1}$ (Faris et al., 2014c).

Figure 4.2: The compact spike observed consistently in the Rht8 NIL across a range of spikelet numbers. Spikes from the Rht8 NIL (right) exhibiting semi-compact morphology as classified in Figure 4.1, compared to the more lax spike in Paragon (left). The scale bar is in centimetres.

Spike compactness had been observed sporadically in the glasshouse (in the fine-mapping Rht8 population) and field (fine-mapping population and Rht8NILs). In the 2013-2014 season, spike compactness in field trials at Church Farm and Reading (described in full in Chapter 3) was also observed (Figure 4.3), and measured quantitatively on the whole-plot level for the first time.

Figure 4.3: Compact spike visible on the plot level.Contrasting compactness in Paragon (left) and the Rht8 NIL (right). Taken at Church Farm in 2013-2014 growing season.

Rht8 NIL plots were scored for compactness at the plot-level by visually assessing the percentage of compact spikes in the plot (Figure 4.3 right) relative to a more lax ear (Figure 4.3 left). Compactness was only observed in the Rht8 NIL (not in the tall NIL or Paragon) and only at the low N (40kg N ha ${ }^{-1}$; N1) treatment at Church Farm. A considerable proportion (75\%) of the spikes in the low N plots were compacted but visually no difference was discerned between water regimes (overlapping error bars, Figure 4.4). At Reading, every Rht8 NIL plot in the experiment ($\mathrm{n}=15$) showed compaction to some degree across all N treatments. Overall, the percentage of compact spikes was estimated to be lower than at Church Farm ($\sim 50 \%$) and there was no significant difference between the N treatments (overlapping error bars, Figure 4.4).

Figure 4.4: Compact spikes measured in the Rht8 NIL as a proportion of the whole plot from visual inspection $N 1=40 \mathrm{~kg} N$ ha $^{-1}, N 2=200 \mathrm{~kg}^{N}$ ha $^{-1}, N 3=200 \mathrm{~kg}^{N}$ ha ${ }^{-1}$, l=irrigated, Ul=unirrigated (rainfed). Measurements made in 2013-2014 growing season. Error bars represent standard error. $N=5$ per treatment across both sites.

4.3.2 Spike morphology in tiller samples

The general observation on the plot-level that the Rht8 NIL had more compact spikes than the tall NIL was quantified on the plant-level by analysing tiller samples taken at Church Farm from 2012-2014 and at Reading in 2014. Spike compactness was measured by dividing the spike length by the spikelets spike ${ }^{-1}$, to achieve a unit of cm spikelet $^{-1}$. A smaller value is a smaller area per spikelet and hence greater compaction. Spike compactness was significantly different ($\mathrm{P}<0.05$ and $\mathrm{P}<0.001$) between the genotypes in every environment (Table 4.2A) with the Rht8 NIL being consistently significantly lower than the tall NIL and Paragon (L.S.D. test) (smaller value is increased compactness). The mean decrease in cm spikelet ${ }^{-1}$ (increase in compactness) across environments of the Rht8 NIL compared to the tall NIL was 15%. There was similar overall variation in compactness between genotypes, with a 0.1 cm spikelet ${ }^{-1}$ difference between minimum and maximum values (Figure 4.5A). As reported in Chapter 3.3 and Figure 3.4, there were some background genetic effects influencing the compactness, since the measure of compactness in the tall NIL was sometimes lower than in Paragon (Figure 4.6). However, the background effects were considerably less prominent than in the plant height data. When the data was considered overall, the distribution of values was very similar between the tall NIL
and Paragon (Figure 4.5). Across sites, contrary to the observations on the plot level outlined in 4.3.1, there was no marked difference in the spike compactness found across sites, with a -17% change in Rht8 NIL compactness compared to the tall NIL in Church Farm 2014 data (mean compactness 0.4 cm spikelet ${ }^{-1}$), whilst at Reading this value was -16% (0.39 cm spikelet $^{-1}$) (Table 4.2A).

A Spike Compactness (cm spikelet ${ }^{-1}$)	lowest highest												
	Church Farm										Reading		
	2012	2013				2014					2014		
		N3	N2	UI	I	N3 I	N3 UI	N1 I	N1 UI	N2	N1	N2	N3
par	0.46	0.46	0.51	0.47	0.47	0.46	0.49	0.46	0.44	0.52	0.42	0.45	0.48
Rht8	0.41	0.38	0.42	0.39	0.39	0.41	0.42	0.41	0.37	0.41	0.37	0.36	0.43
tall	0.48	0.47	0.51	0.51	0.46	0.50	0.50	0.47	0.45	0.50	0.43	0.45	0.50
P-value	*	***		***		***				***	***		
L.S.D.	0.05	0.03		0.04		0.02				0.05	0.03		
Rht8 (\% of tall)	85	82	83	77	83	82	84	87	81	82	86	80	86
difference (\%)	-15	-18	-17	-23	-17	-18	-16	-13	-19	-18	-14	-20	-14
Spike length (cm)	Church Farm										Reading		
	2012	2013				2014					2014		
		N3	N2	UI	1	N3 I	N3 UI	N1 I	N1 UI	N2	N1	N2	N3
par	11.20	10.63	10.71	10.73	10.65	10.54	11.89	10.59	10.04	11.96	9.90	10.40	10.90
Rht8	10.28	8.83	8.81	9.09	8.78	10.41	9.84	9.29	8.10	9.16	9.10	8.30	10.20
tall	11.48	10.43	10.72	11.23	10.81	11.42	11.50	10.44	9.89	11.21	9.90	10.40	11.30
P-value	NS	***		***		***				***	***		
L.S.D.	1.70	0.70		0.80		1.50				0.90	0.80		
Rht8 (\% of tall)	90	85	82	81	81	91	86	89	82	82	92	80	90
difference (\%)	-10	-15	-18	-19	-19	-9	-14	-11	-18	-18	-8	-20	-10
	Church Farm										Reading		
	2012	2013				2014					2014		
		N3	N2	UI	1	N3 I	N3 UI	N1 I	N1 UI	N2	N1	N2	N3
par	24.11	23.11	20.94	22.83	22.61	23.22	24.33	23.00	23.11	23.11	23.56	23.22	22.89
Rht8	25.00	23.00	20.89	23.22	22.78	25.44	23.44	22.11	22.56	22.56	24.89	23.22	23.56
tall	23.89	22.22	21.00	22.22	23.33	22.89	23.11	22.00	22.00	22.67	22.89	23.33	22.67
P-value	NS	NS		NS		NS				NS	NS		
L.S.D.	1.02	1.46		1.57		2.10				2.00	1.69		
Rht8 (\% of tall)	105	104	99	105	98	111	101	101	103	100	109	100	104
difference (\%)	5	4	-1	5	-2	11	1	0	3	0	9	0	4

Table 4.2: Spike compactness and its derivative components in the Rht8 NIL, tall NIL and Paragon. (A) Spike compactness, (B) spike length and (C) spikelets spike ${ }^{-1}$. Data shown as mean values. The p-value refers to significant differences between genotypes determined by the least significant difference (L.S.D.) test. NS=means not significantly different at $P<0.05,{ }^{*} P<0.05$,
*** $P<0.001$.
Spike length and spikelets spike ${ }^{-1}$ was already reported on in Chapter 3 and Appendices, but is included here for ease of comparison. Spike length closely mirrored the pattern observed in the spike compactness. The Rht8 NIL had a significantly ($\mathrm{P}<0.001$) shorter (L.S.D test) spike than the tall NIL, with a mean
15% decrease across all environments (Table 4.2B). This mean decrease was consistent across sites, with a 14% (9.36 cm mean length) shorter spike at Church Farm in 2014 compared with a 13\% reduction at Reading (9.20 cm mean length). Overall, there was a 3 cm difference between the minimum and maximum spike length measured across all three genotypes, with the median spike length much lower (9.2 cm) in the Rht8 NIL compared to 10.75 cm in the tall NIL/Paragon (Figure 4.5B).

Figure 4.5: Boxplots of (A) spike compactness (units in cm spikelet ${ }^{1}$), (B) spike length and (C) spikelets spike ${ }^{-1}$ in the Rht8 NIL, tall NIL and Paragon. Data pooled across all sites (Norwich and Reading) where tillers were sampled. Lines represent ranges of the data, with extreme values as points. The box represents top and lower quartiles, with the median as the central line.

Figure 4.6: Mean spike compactness (units in cm spikelet ${ }^{1}$) of the Rht8 NIL, tall NIL and Paragon in all sites and all conditions where tillers were sampled. N1=40kg $N \mathrm{ha}^{-1}, N 2=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$, $N 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}-$ - , I=irrigated, Ul=unirrigated (rainfed).

The number of spikelets spike ${ }^{-1}$ was not significantly different between genotypes at the 95% confidence level in any environments (Table 4.2C), although the Rht8 NIL did have a higher median value than the tall NIL (23 versus 22.5 spikelets spike ${ }^{-1}$) (Figure 4.5C). In two environments, the Rht8 NIL had a $\sim 10 \%$ increase in the number of spikelets spike ${ }^{-1}$, which equates to 2-2.5 more spikelets (Table 4.2C). Taken together, this suggests that despite spike compactness being a function of spike length and spikelets spike ${ }^{-1}$, the difference in compactness in the Rht8 NIL was driven by reduction in the spike length rather than an increased number of spikelets on the rachis. This was confirmed by anecdotal observation in the field, where compact spikes were collected with different numbers of spikelets (i.e. the traits were largely independent) (Figure 4.7).

To test this, correlation analysis was carried out (data pooled across environments) between spike compactness and its components. Spike compactness displayed highly positive and significant correlation with the length of the spike ($r=0.7-0.8, \mathrm{P}<0.001$) across genotypes. There was a small negative correlation between spike compactness and the number of spikelets spike ${ }^{-1}$, but this was not significant at the 95% confidence interval. This corroborated that spike length was driving the differential spike compactness observed between the NILs.

Figure 4.7: Compact spike morphology in the Rht8 NIL contrasted with Paragon, with different spikelet numbers. Scale bar is in centimetres.

lowest highest		Rht8		par		tall	
	r	p-val	r	p-val	r	p-val	
Spike length	0.726	$* * *$	0.802	$* * *$	0.679	$* * *$	
Spike:height	-0.010	NS	0.015	NS	0.071	NS	
Spikelets spike ${ }^{-1}$	-0.003	NS	-0.056	NS	-0.111	NS	
Plant height	0.275	0.07	-0.018	NS	0.057	NS	

Table 4.3: Simple correlation coefficients (r) between spike compactness, spike components and total height across all environments. Spike:height is the spike length normalised for the total height (Plant height). NS = not significant at $P<0.05,{ }^{* * *} P<0.001$.

Since spike compactness was significantly reduced in the Rht8 NIL compared with the tall, it was hypothesised that the trait could be used as a binary score to type at the Rht8 locus, in a similar way to plant height at maturity. Testing this hypothesis was approached in two ways. First, the compactness was measured in the BC_{3} NILs typed tall/short for Rht8 on the basis of final height in 2012, from which one short and tall were selected for further field trails (described in Chapter 3). The NILs typed 'Rht8' had significantly ($\mathrm{P}<0.001$, one-way ANOVA) greater spike compaction than the tall NILs. The mean spike compaction was 0.40 cm spikelet ${ }^{-1}$ for short NILs compared to 0.46 cm spikelet $^{-1}$ for tall NILs. When the NILs were ordered by spike compaction, and the plant heights plotted, a clear binary step appeared between short and tall (Figure 4.8), allowing the NILs to be typed at a high level of confidence for the Rht8 locus.

Second, correlation analysis of the Rht8 NIL spike compactness (pooled data) with plant height length showed a moderately weak positive correlation ($r=0.275$, $\mathrm{P}=0.07$) which was only significant in the Rht8 NIL at 93% confidence interval. Correlation between compactness and height is not unexpected if the genes are linked. No significant correlation was observed for the other genotypes ($\mathrm{P}>0.1$). When the spike length was normalised for the total plant height (by dividing the spike length by the plant height), the significant correlations found in raw spike length were obliterated. Taken together, this suggests first, that typing for spike compactness might indeed be easier where the plant height has a more continuous distribution less amenable to assigning a qualitative score. In this situation the spike compactness could be used in lieu of the height to type the Rht8 locus. Second, compactness was due to spike length and only weakly correlated with overall height, and it was the raw spike length which was key, rather than the ratio of the spike:height.

Figure 4.8: Spike compactness (units in cm spikelet ${ }^{1}$) (A) and height at maturity (B) of all Rht8 and tall NILs developed to $B C_{3}$ in the Paragon background. Data represent means, with error bars representing range of three values. Data taken from 2011-2012 growing season at Church Farm. Arrows indicate the Rht8 and tall NIL selected for further field trials. Height data is ordered in ascending order according to spike compactness.

4.4 Spike compactness in contrasting water regimes and \mathbf{N} treatments

Using ANOVA, the effect of N and irrigation treatment on spike compactness was measured. Overall, irrigation had no effect on spike compactness in any of the genotypes in 2013 or 2014 ($\mathrm{P}=0.13$; $\mathrm{P}=0.57$) (Figure 4.9 and Appendix 4.1.2). The Rht8 NIL maintained increased compactness compared to the tall NIL across all water regimes. Furthermore, there was no interaction between the genotype, water regime and N treatment (Appendix 4.1).

N treatment had a significant effect on spike compactness at both Church Farm ($\mathrm{P}<0.05$) and Reading ($\mathrm{P}<0.01$) in 2014, however, this affected both NILs equally since there was no N^{*} genotype interaction ($\mathrm{P}=0.6 ; \mathrm{P}=0.1$) (Figure 4.10 and Appendix 4.2.3).

In sum, the data showed that the greater spike compactness in the Rht8 NIL remained unchanged (in the case of irrigating) and where increasing N did have an effect, the differential between the Rht8 NIL and tall NIL was maintained since the NILs responded in the same way.

Figure 4.9: Spike compactness (units are cm spikelet ${ }^{1}$) of the Rht8 NIL, tall NIL and Paragon in contrasting irrigation regimes at Church Farm. 2012-2013 season (top) and 2013-2014 (bottom). $N 1=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{ha}^{-1}$, I=irrigated, UI=unirrigated (rainfed). Data points are means, error bars represent standard error.

Figure 4.10: Spike compactness (units are cm spikelet ${ }^{1}$) of the Rht8 NIL, tall NIL and Paragon in different N treatments at Church Farm (left) and Reading (right) in 2014. N1=40kg N ha- ${ }^{-1}$, $N 2=100 \mathrm{~kg} \mathrm{ha}^{-1}, N 3=200 \mathrm{~kg} \mathrm{ha}^{-1}$. Data points are means, error bars represent standard error.

4.5 Spike compactness in the Rht8 x CappelleDesprez fine-mapping population

The spike compaction reported in the Paragon NILs in this Chapter was taken from mature spike measurements. There have been no reports of spike compaction dynamics across developmental stages, yet there is a growing awareness that height and yield components have plasticity to varying degrees during the wheat growing season (Slafer et al., 2014, Slafer, 2003). The finemapping Rht8 population was grown in the glasshouse and the spikes harvested for RNA-Seq (Figure 5.2) early in the reproductive phase (GS $30-39$). A subset of 20 short and 20 tall recombinants were selected (typed on the basis of plant height at maturity) and compactness measured as before, however software was used to measure length due to the small size of the spike ($2-5 \mathrm{~cm}$, Figure 4.11B). By ANOVA (Appendix 4.4), there was no significant difference in spike compactness between the short and tall recombinants ($\mathrm{P}=0.3$), although the short recombinants had decreased mean spike compaction compared to the tall (1.55 cm spikelet ${ }^{-1}$ versus 1.71 cm spikelet $\left.^{-1}\right)$. The components of spike compactness were also not significantly different between the short and tall groups ($\mathrm{P}>0.05$) (Figure 4.11B \& C).

Figure 4.11: Boxplots of spike compactness (units are cm spikelet ${ }^{-1}$) (A), spike length (B) and spikelets spike ${ }^{-1}$ (C) in a subset of fine-mapping Rht8 x Cappelle-Desprez recombinants. Recombinants were retrospectively typed short/tall at Rht8 based on final height. N=20 for short and $N=20$ for tall. Lines represent ranges of the data, with extreme values as points. Box represents top and lower quartiles, with median as central line.

Despite no statistically-significant difference in compactness between the genotypes, an observation was made during the measurement taking that at a similar magnification, the short NIL had a markedly compact spikelets at the tip of the spike (Figure 4.12).

Figure 4.12: Spikes of a short and tall recombinant from the fine-mapping Rht8 x CappelleDesprez population. Recombinants were retrospectively typed short/tall at Rht8 locus. Recombinant 2-1-8-4 = short (A), recombinant 1-7-7-1 = tall (B). Spikes were harvested within an 8 -hour period on the same day at approximately GS 30-39. Note that scales are not equivalent.

4.6 Discussion

Johnson and co-workers (2008) mapped C to two centromeric bins, one on 2DS and the other on 2DL. The bin on 2DS mapped 0.7 cM proximal to the bin containing Xcfd53 and Xgwm261, and therefore outside the introgression which was selected in the Rht8 x Paragon population, though it is likely that linkage drag might include the adjacent regions. Therefore, the spike compactness observed in the Rht8 NIL might be due to the Clocus. Alternatively, the spike compactness observed here might not be due to C but instead due to another distinct QTL, such as the one reported by Manickavelu et al., 2011. It should be noted that neither Manickavelu et al., (2011) nor Johnson et al., (2008) have Ppd-D1 (estimated at 10 cM distal to Xcfd53 by Gapserini et al., (2012)) in their genetic maps and Ppd-D1 could feasibly influence this trait.

Manickavelu et al., (2011) detected a QTL for spike compactness across both years of their study, indicating a stable locus. This QTL spanned Xgwm261Xcfd53, with Xcfd53 as the closest marker. It should be noted, however, that the marker density in this more recent study was much lower than that of Johnson's map. Therefore, a third possibility is that C and the spike compactness QTL are the same locus, and that the locus coincides with the introgressed segment harbouring Rht8 in the Rht8NIL. A fourth possibility is that the spike compactness QTL found by Manickavelu et al., (2011) and the spike compactness documented in this Chapter are pleiotropic effects of Mara-derived Rht8 only, and not due to variation at or surrounding the C locus. A recent paper commented on C being firmly located on 2DS, but cited personal communication with a researcher. Therefore, imminent but as yet unpublished work might resolve this issue. In anticipation of that, the work here contributes to the relative dearth of research underlying spike compactness, especially spike compactness and environmental interaction, which has not been reported in detail before.

The most comprehensive agronomic study on the effect of spike compactness was in the US Pacific Northwest on commercial club cultivars, which also had the Rht-B1b and Rht1-Db semi-dwarfing alleles. Zwer et al. (1995) found that club wheat had lower TGW compared to common wheat, but grain number per spike compensated to produce an overall yield equivalent to common wheat. A further finding was that the club wheat had an increased number of fertile spikelets, presumably due to the compressed nature of spikelet development in the club wheat. It was established early in this Chapter that the spike compactness observed in the Rht8 NIL was not equivalent to the compaction of club wheats, which typically have spike length reduced by almost half compared to common wheat. Further, results in Chapter 3 already showed that the Rht8 NIL did not have a consistent significant reduction in TGW, improved spikelet fertility or differences in grain size. Taken together, this suggested that the semi-compact phenotype had a more subtle effect on yield components than the more extreme club spike. Interestingly, results in Chapter 3 did corroborate the compensatory effect of increased grain per area on yield, described by Zwer et al., 1995 in the high-temperature conditions in Lleida. However, it is difficult to ascribe these effects to the compact spike or to Rht8, since no tiller data was collected from Lleida.

Work in this Chapter highlighted a discrepancy in consistency of spike compaction reported from tiller samples versus visual assessment of plots in the field. Visual assessment in 2014 only identified compaction in low N at Church Farm, whereas tiller samples showed a consistent compact spike at all N levels. One reason for this might be sampling methodology. Assessing agronomic characteristics on a plot-level has proved reliable (e.g. for lodging and height in Chapter 3) since an average is taken by eye. A disadvantage is that the assessment is qualitative, and tends to be binary (compact/lax spike). Additionally, it is only reasonably simple to assess the club spike coverage in the plot, and much harder to make judgements as to the degree of compactness (apart from to a trained breeder). The compactness conferred by the Rht8 introgression is semi-compactness, as opposed to the 50% reduction in spike length reported in the extreme 'compact' phenotype (Kosuge et al., 2012). Therefore, this more subtle effect is difficult to assess visually. The tiller samples were based on three to five tillers selected from a 'representative' sample from the plot and are by their nature a representation of only a small subset. However, the consistent quantification of spike compaction observed across all sites and environments in the Rht8 NIL suggests a robust effect. An alternative explanation might be that there is a pleiotropic canopy effect which is seen on a whole plotbasis, but is not necessarily gleaned from individual tillers. For example, the spike compaction might be more visible in the field when there is a reduction in tillers per unit area, since individual plants are more spaced. It was already shown in Chapter 3 that the tillering of the Rht8 NIL was affected by N and water treatment. It would seem that several confounding factors might be involved.

Spike compaction in the Rht8 NIL was quantitatively measured here for the first time. A robust, significant increase in spike compaction of 15% was observed across sites, water regimes and N treatments. The degree of compaction was unaffected by irrigation. The spike was more lax (decreased compaction) at the higher N treatment, but this was matched by the tall NIL response, therefore the proportional difference in compaction remained constant. For this reason, the treatment effect was due to environment rather than a differential genotypic response. It can be speculated that the differences in spike compaction between the NILs might in reality be greater than reported here, since extremely compacted spikes were not likely collected in tiller samples.

Spike compactness also has an effect on diseases associated with the spacing between florets on the rachis. Fusarium head blight (FHB) is a devastating fungal disease of hexaploid and durum wheat. The fungus infects the spike, causing production of mycotoxins and shrivelled grains, resulting in yield losses. A narrow flower opening width, likely associated with spike compactness, has been found to be associated with FHB resistance (Gilsinger et al., 2005). Therefore, the spike compactness in the Rht8 NILs might be a breeding target to improve resistance to the disease.

The results presented in this Chapter indicate that spike length and spikelet number per spike are largely controlled by different genes. Additionally, in agreement with other studies (Faris et al., 2014c, Jantasuriyarat et al., 2004, Sourdille et al., 2000), despite spike compaction being a function of spike length and spikelets per spike, the differences in compaction were driven only by changes in spike length.

Interestingly, the background effects on height which made the tall NIL taller than Paragon (reported in Chapter 3), presumed to be due genotypic variances outside the 2DS introgression, were also found in the spike compaction data, but to a smaller degree. This might indicate that the traits are under different genetic control, but this is highly speculative.

Since spike compaction was significantly greater in the Rht8 NIL compared to the tall NIL across environments, and was also less responsive to environmental effects than height, along with having seemingly smaller background effects, it was hypothesised that spike compactness was a useful score with which to type at the Rht8 locus. The NILs at the $\mathrm{BC}_{3} \mathrm{~F}_{3}$ stage could be easily distributed in a bimodal fashion according to the compact spike data. Thus spike compaction is a viable score with which to type recombinants at the Rht8 locus and could be taken in conjunction with the more traditional mature plant height. However, from a practical standpoint, this would only be useful where height at maturity was unreliable and unavailable, and this must be balanced against the greater effort and delay to gather tiller samples and measure them. Furthermore, the genetic region encompassing Rht8 and C requires clarification to determine which of the loci is influencing the compactness phenotype.

An attempt was made to discern the onset of the spike compaction much earlier in wheat development, at the early reproductive stage, using the recombinants to the fine-mapping Rht8 population in the Cappelle-Desprez background. There was a large range of spike length that likely caused noise in the data and masked any possible compaction effect. This is likely first due to greater technical error with measuring small spikes, but second and more compellingly, due to the spikes being harvested according to chronological date rather than developmental time. The observation of compaction in the tip of the spike in the short recombinants suggests that measuring the spikes at the same developmental stage might yield significant results. Further, the observation also indicates that compaction is visible and measurable early on in development. This has not been reported before, but is valuable in determining the mode of action and timing of expression of Rht8 and the surrounding genetic region. Further work in establishing spike compaction along a developmental time-series would be interesting.

The findings presented in this Chapter increase our understanding of the effect of spike compactness on agronomic traits. Even a relatively subtle compact phenotype produced quantitative, stable phenotypic differences. The background effects (albeit smaller ones) reported in spike compaction between the NILs corroborate findings in plant height in Chapter 3, and add importance to genotyping the NILs with a high-density array. The findings here are likely to become more significant with finer genetic dissection of Rht8 and C, since currently, it has not been possible to discern unambiguously the precise contribution of Rht8, C and linkage blocks around those loci (assuming they are distinct) to the overall phenotype. Interestingly, a recently characterised Rht gene, Rht23, has been reported to control both spike compactness and dwarfing at a single locus (Chen et al., 2015). The markers for Rht8 developed in Chapter 5 could greatly improve the density of the current mapping efforts of C, and, assuming they are polymorphic in the C mapping populations, provide a rapid way of resolving the location of C relative to Rht8.

Chapter 5 :
 Development molecular markers within the Rht8 interval

5.1 Introduction

Saturating the Rht8 interval with molecular markers prior to fine-mapping, with the aim of identifying a marker co-localising with the Rht8 phenotype, is an underlying tenet of map-based cloning (Scheible et al., 2005). Previous efforts which mapped Rht8 to a 1.29 cM interval utilised a comparative genetics approach relying on the synteny of sequenced cereal genomes (Brachypodium, rice and sorghum) to develop single-strand conformation polymorphism (SSCP) markers (Gasperini et al., 2012). Developments in technologies and wheat resources offer an exciting opportunity to expedite traditional map-based cloning efforts in wheat. However, evaluation of approaches to filter the vast amount of data from new bioinformatic approaches and resources is not commensurate with our ability to generate data and discover variation. In this Chapter, different strategies were used and evaluated to extract biological relevance in identifying genetically-linked variation to fine-map Rht8. The aim of the work presented in this Chapter was to develop markers to further fine-map Rht8, which could be released to breeders for validation, with the ultimate goal of deploying Rht8 into wheat breeding programs. The utility of cutting-edge technologies and wheat resources will be evaluated and the challenges of data-filtering discussed.

Rht8 was delimited to a 1.29 cM genetic interval on wheat chromosome 2DS (Gasperini et al., 2012). In Gasperini's work, a fine-mapping population was developed from recombinant-inbred lines (RILs) (Korzun et al., 1998), which originated from crosses between Cappelle-Desprez (CD) and the Rht8 donor, RIL4. This fine-mapping population (henceforth called FM recs) was further developed to a fourth generation of self-fertilised F4 recombinants. The Rht8 target region was saturated with gene-based markers using syntenic intervals in Brachypodium and rice and Rht8 was mapped to a 1.29 cM interval on
chromosome 2DS. Monomorphism between markers prevented further mapbased cloning and showed that polymorphism between the parent near-isogenic lines (NILs) to the original mapping population (RIL4 and CD) is low (Gasperini et al., 2012).

Emerging new technologies have revolutionised molecular breeding (Bernardo et al., 2008). Next-generation sequencing (NGS) approaches, including NGS on mRNA samples (RNA-Seq), are accelerating gene discovery (Schneeberger, 2014, Schneeberger and Weigel, 2011). Several strategies have been published in Arabidopsis (James et al., 2013). The success of these relies on a completed genome sequence in a (model) diploid organism. NGS technologies are currently underexploited in wheat due to the challenge of the large, $\sim 17 \mathrm{~Gb}$ genome-size (Shewry, 2009) and the highly-related (96-98\%) (Krasileva et al., 2013) A, B and D homoeologous genomes which comprise the 42 chromosomes of hexaploid wheat ($6 n=$ AABBDD).

Bulked segregant analysis (BSA) (Michelmore et al., 1991) is a technique that can be combined with RNA-Seq to target single nucleotide polymorphisms (SNPs) within a particular genetic interval. Two pools of individuals from a population segregating for a specific phenotype are compared, allowing identification of allelic variation from one of the parents to the population which is enriched in the appropriate bulk. The pools are 'bulked' since a number of individuals (and hence recombination events) comprise each pool. Excitingly, BSA has been combined with RNA-Seq to identify SNPs in targeted genetic intervals in tetraploid (Trick et al., 2012) and hexaploid wheat (Ramirez-Gonzalez et al., 2014). The SNPs generated were then used to fine-map to a 12.2 cM and 0.77 cM interval, respectively. This approach was also used in this Chapter, using pipelines developed by Martin Trick and Ricardo Ramirez-Gonzalez to detect SNPs between the parent NILs and then between the short and tall bulks.

Identification of SNPs between wheat varieties has recently been expedited with large-scale capture of allelic variation on high-density SNP arrays, such as the iSelect array with 90,000 (90K) SNPs (Wang et al., 2014a), and Affymetrix Axiom® 820K feature SNP array (www.cerealsdb.uk.net/cerealgenomics). These arrays have a predefined set of allelic variants against which the probes are designed. Despite relative under-representation of allelic variation on the D-
genome in both these arrays, markers in the Rht8 interval were developed and successfully validated, demonstrating excellent potential for fine-mapping.

Developments in cereal genomics during the course of this project have provided an exciting opportunity to utilise sequence information from related plant species as well as wheat itself, to further fine-map Rht8. Sequence information of barley (IBGSC, 2012) has been published and the wheat D and A progenitors have been sequenced (Jia et al., 2013, Ling et al., 2013) as well as the hexaploid wheat 3B chromosome (Choulet et al., 2014). Sequence from flow-sorted hexaploid wheat chromosome arms was released in version 1.0 of the International Wheat Genome Sequencing Chromosome Survey Sequence (IWGSC CSS) (IWGSC, 2014). This sequence information was used to predict gene models in tetraploid and hexaploid wheat homoeologues (Krasileva et al., 2013). The first IWGSC version has been very recently improved with more variation data from various sources and population sequencing (POPSEQ) (Mascher et al., 2013) and released as IWGSC v2.0 (IWGSC-2) (plants.ensembl.org). In addition, a wholegenome shotgun (WGS) approach has yielded scaffolds of each of the three homoeologous genomes, covering new sequence space not completely overlapping with the IWGSC CSS contigs (Chapman et al., 2015). Very recently, the same POPSEQ map was used to genetically anchor these scaffolds (Mascher et al., 2013, CerealsDB, 2015a). These developments were integrated into marker development presented in this Chapter.

Integrating existing cereal genome sequences such as Brachypodium and rice, with new wheat sequence resources is challenging, given that many of the genome assemblies vary in sequence contiguity and annotation. Utilising the most recent cereal sequence information has also been difficult since data has been deposited in different servers with varying levels of access and userfriendliness. In the last couple of years, Ensemb/Plants has integrated Triticeae resources into a genome browser which allows for visualisation and download of genomic information (Bolser et al., 2015). The BioMart toolkit (Kasprzyk, 2011) in Ensemb/Plants also enables retrieval of sequence information across related species. This Chapter presents how wheat 2DS sequence, including intergenic sequence, was mined using BioMart in several iterations for marker development in the Rht8 interval as IWGSC v 1.0 and 2.0 were released.

Wheat 2DS sequence from other sources was also exploited to discover polymorphism between the parents to the Rht8 fine-mapping population. The gene-based reference used in the RNA-Seq approach (v3.3 cDNAs) was utilised to extract wheat sequence which could be mined for single-sequence repeats (SSRs). Sequence from a commercial partner (Limagrain) was used in a similar way. Combined marker discovery using SSRs and SNPs has been demonstrated in wheat (Lu et al., 2015) and a similar strategy was used in work presented here.

The design of genome-specific genetic markers in wheat is essential due to the hexaploid nature of the genome. Most primer-design tools are designed on diploid species thus a common approach is to align manually A, B and D sequence and identify a SNP to enable genome-specific primer design. This is time-consuming and manual sequence-scanning is prone to human-error. PolyMarker is a fast polyploid primer-design pipeline, recently developed, which was implemented in this Chapter (Ramirez-Gonzalez et al., 2015).

Physical mapping in wheat was first used to construct a flow-sorted 3B-specific Bacterial Artificial Chromosome (BAC) library (Safar et al., 2004). BACs carry large DNA fragments and are relatively immune to chimerism and insert rearrangement, hence BAC libraries are widely used for gene isolation. Given the recent advances in chromosome flow-sorting in plants, (reviewed in Dolezel et al., 2014) during this project, the process constructing a 2D-specific BAC library was initiated with Jaroslav Doležel and colleagues from the short parent NIL to the Rht8 fine-mapping population (RIL4), with the aim of allowing precise gene isolation of Rht8. During this process, DNA was sorted from the single chromosome arm of 2D (Vrana et al., 2012). In a method first demonstrated in barley, DNA amplified from recovered flow-sorted chromosome fractions can be used in marker development and fine-mapping (Simkova et al., 2008). A small amount of 2D DNA from RIL4 was obtained before BAC library construction was completed. In this Chapter this DNA was used in concert with the PolyMarker tool in SNP assays to validate D-genome specificity.

This Chapter describes efforts to comprehensively exploit the most recent resources in wheat for marker discovery with the aim of further fine-mapping Rht8. The workflow for marker discovery in this Chapter is shown in Figure 5.1. The identification of allelic variants in the parent NILs and from the BSA approach
is described, using manifold analysis of RNA-Seq data, SNP platforms and the mining of wheat 2DS sequence as it became available for SSRs. The different strategies used to filter the large datasets for high-confidence variants are discussed and evaluated. It is shown here how the Rht8 interval was targeted using genetic and physical data. Finally, marker validation prior to fine-mapping is discussed. These markers are the basis of the fine-mapping described in Chapter 6.

Figure 5.1: Schematic diagram of the workflow presented in Chapter 5 to generate markers targeted to the Rht8 interval.

5.2 Material for Genetic Dissection

The short and tall parent NILs (RIL4 and CD) were grown with the 73 recombinants to the fine-mapping population in the glasshouse in 2012. RIL4 was originally selected from a population of single-chromosome recombinant inbred lines (RILs) developed on wheat 2D (Korzun et al., 1998). The 2D chromosome of Mara, the Rht8 donor, was substituted into a CD background via a series of back-crossing, to create a population of 89 RILs carrying 2D chromosome recombination events in an otherwise isogenic CD background (Korzun et al., 1998). RIL4 was selected by Gasperini as the short parent from this 2D RIL population to create a fine-mapping population (Gasperini et al., 2012) on the basis of carrying the (diagnostic for Rht8) 192 bp allele of Xgwm261.

Developing spike and elongating peduncle tissue was harvested destructively during stem elongation (GS 30 - 39) (Figure 5.2A), on multiple plants of the same genotype. Rht8 acts to reduce cell size in the peduncle and uppermost internodes (Gasperini et al., 2012) thus it was hypothesised that Rht8 would be expressed during this growth stage in the selected tissue. In order to maintain sampling consistency for the RNA extracted for RNA-Seq, samples were selected from the middle of the distributions of length of spike (mean $=2.5 \mathrm{~mm}$) and peduncle $($ mean $=15 \mathrm{~cm})($ Figure 5.2B) .

RNA-Seq was performed in two sequencing runs (described in Chapter 2, summarised in Table 5.1). In the first stage, samples from two biological replicates for each parent NIL and tissue were sequenced. In the second stage, the mRNA from spike tissue in the middle of the spike-length distribution (Figure 5.2A) of nine short and nine tall recombinants was pooled (Figure 5.2D). These short and tall recombinants were initially identified in the extremes of the height distribution of the 73 glasshouse-grown recombinants (Figure 5.2C). A subset of 32 recombinants from the extremes was selected for a further highly-replicated ($\mathrm{N}=24$) glasshouse experiment in order to confirm the phenotype (Figure 5.2D, Appendix to Chapter 2). The strategy was to achieve higher coverage of the bulks as opposed to independent biological replicates of the recombinants within the bulks themselves. The nine recombinants within each bulk were subdivided into three libraries due to the concern of phenotyping accuracy in suboptimal glasshouse conditions, as reported in Chapter 6. The recombinants were
selected in confidence intervals of phenotype, such that the three most extreme shorts/talls were in one pool and subsequent pools consisted of recombinants with heights closer to the middle of the distribution (Appendix to Chapter 2). The six samples were randomised (Table 5.1) to avoid lane bias.
iSelect samples were prepared in two stages in a similar manner to the RNA-Seq samples. First, DNA from the parent NILs along with Mara, the original Rht8 donor was sent for analysis. Second, in a separate array analysis, three extreme short and three extreme tall individuals from the fine-mapping population were sent for genotyping, along with pooled short and tall samples comprised of the three individuals of each phenotype.

For the Affymetrix Axiom® SNP array, DNA from the short Rht8 x Paragon NIL and Paragon as control (detailed in Chapter 2) was sent to be analysed.

Sequencing stage	Lane	Genotype	Tissue	Sample	Raw reads
11	1	CD	Spike	P1	120915587
		RIL4	Spike	P2	94493958
	2	CD	Spike	P3	120731082
		RIL4	Spike	P4	83981466
	3	CD	Peduncle	P5	118647743
		RIL4	Peduncle	P6	87078263
	4	CD	Peduncle	P7	112118008
		RIL4	Peduncle	P8	94694351
2	5	Short bulk	Spike	B1	62007005
		Tall bulk	Spike	B2	76466586
		Short bulk	Spike	B3	75119011
	6	Tall bulk	Spike	B4	62430624
		Short bulk	Spike	B5	74208678
		Tall bulk	Spike	B6	75472124

Table 5.1: Details of the samples used for RNA-Seq in two stages: experimental design of multiplexing and randomisation across lanes, and the number of reads achieved per sample. The lane count used is 1-4 for the first sequencing stage and continues 5-6 for the second stage for clarity.

Figure 5.2: Sampling of tissue from spike and peduncle (A) Tissue sampled from the two organs indicated for each genotype during stem elongation (B) Multiple biological replicates were collected for each genotype and measured. Tissue from the middle of the distributions of the lengths all the biological replicates from the developing spike (left, $N=85$) and elongating peduncle (right, $N=80$) were selected for RNA-Seq (C) The heights of the 73 fine-mapping recombinants in the glasshouse, 2012-13, in height order ($N=8$). The recombinants coloured in green were extreme short and talls (a total of 30: 14 short and 16 tall) selected for a further glasshouse experiment in spring 2013. The grey bars indicate the parent NILs (N=16) (D) The subset of recombinants ($N=24$) from the 2012-13 glasshouse experiment (ordered by height) grown to validate heights for bulks for RNA-Seq. The individuals in blue were selected for short and tall bulks. The grey bars are the short and tall parent NILs ($N=63$). Details of the individuals allocated to each library within the short/tall bulks is in the Appendix to Chapter 2.

5.3 Identification of Variants

5.3.1 Combining SNP and microsatellite variation

Molecular genetic markers exploit nucleotide variation to study heritable traits and can be applied to diversity analysis, association studies, marker-assisted selection and genetic mapping (Duran et al., 2009). Molecular marker technology in wheat has advanced rapidly over recent times, as outlined in Chapter 1. SSRs and SNPs predominate among markers currently applied in genetic analysis. The molecular basis of SSR and SNP polymorphisms is quite different. SSRs are caused by replication slippage and can be multi-allelic in nature whereas SNPs are generated via point mutation and are bi-allelic (Duran et al., 2009). Therefore, the different marker systems capture different genetic variation, as was confirmed in a recent study comparing an SSR panel with the 90K SNP array used in this Chapter (Jiang et al., 2015b).

Combining the two marker systems for novel marker discovery and fine-mapping has been reported, for example in mapping a powdery mildew resistance gene in Agropyron cristatum, a perennial Triticeae species (Lu et al., 2015). In other work, when de novo transcriptome data in T. monococcum was mined for SNP and microsatellite sites, the overlap when measured by counting the sampled barley genes was relatively low, despite SNP discovery outnumbering SSR sites over 20 times (Fox et al., 2014). Taken together, it was decided to identify both SNPs and microsatellites in this project to capture different variation which might be underexploited if relying only on the SNP marker system.

5.3.2 Targeting genome-specific allelic variation

Identification of allelic variation in wheat is not trivial, given the highly-related (96 - 98\%) (Krasileva et al., 2013) A, B and D genomes. Correct identification of variants on 2DS as opposed to the homoeologues was important for marker development in this project. Different strategies and resources were used to attempt to do this in silico and in vivo.

In silico genome specificity was attempted wherever possible prior to marker validation. The release of IWGSC-1 (IWGSC, 2014) generated genome-specific
contigs by flow-sorting individual chromosome arms prior to sequencing. In identifying SSR variants in this project, only sequence from IWGSC CSS contigs mapping to 2DS, as opposed to 2AS or 2BS, were used.

The limitation of the IWGSC-1 scaffold information (and the gene models based upon them) is that robust genome assignation, for example by a BLASTN homology search, is limited by the availability of all three homoeologues. For example, in most cases SNPs mapping to a 2DS CSS contig with $\geq 99 \%$ nucleotide identity were prioritised, since those with lower identity matches (97$99 \%$) might imply one of the homoeologous genomes is missing (in the cases where such a hit is returned as the best hit by homology in a BLASTN search). Therefore, in filtering variation, group 2 S SNPs were considered wherever possible. However, the concern of excluding SNPs mapping to 2AS or 2BS where the 2DS CSS contig was absent had to be balanced with the need to prioritise SNPs more discriminately.

The bioinformatic tool, PolyMarker, was used to increase the likelihood and efficiency of designing genome-specific markers (Ramirez-Gonzalez et al., 2015). PolyMarker aligns the three homoeologous wheat genomes around the target sequence SNP sequence, using IWGSC-1 scaffolds. An output identifies a SNP as homoeologous (which could be discarded) or varietal. PolyMarker then generates KASP primers by incorporating the varietal SNP (in this case between CD and RIL4) into the 3' end of the VIC and FAM primers, whereas the common primer is designed to be genome-specific based on a SNP which can discriminate between all three genomes (on the 3' end of the sequence). The success of designing genome-specific markers again relies on sequence from all three genomes being present in the alignments. This limitation is explored in depth in 5.6.1. Where SNP availability was low, there were cases where semi-specific (amplifying the D-genome and one other homoeologue) or non-specific markers were used (amplifying all three homoeologues). Despite these limitations, pursuing allelic SNPs as a priority based on the (limited) sequence information available was a cost- and time-effective strategy.

In vivo, targeted genome analysis was facilitated initially by validating markers with nulli-tetrasomic Chinese Spring DNA (in the case of SSRs). The complete set of nulli-tetrasomic DNA on chromosome 2 was used. The null 2D DNA (2DA and 2DB) showed no amplification (data not shown). Later, specificity to the 2DS genome for both SSR and KASP markers was tested with amplified 2D flowsorted DNA from RIL4 (Simkova et al., 2008). The purity of the sorted fraction was reported as 94.44%, with contamination mainly from chromosome 7D. The DNA was tested further by using KASP markers amplifying DNA from different chromosomes (including 2A, 2B and 7D), which were known to be polymorphic between Mara and CD. A total of 15 markers were used to genotype the 2D DNA (details in Chapter 2). Most of the markers tested (12 out of 15) failed to amplify the 2D DNA, with the 2D DNA clustering with the no-template control (Figure 5.3A). However, three out of 15 markers, comprising two markers on 7D and one marker on 5A (Figure 5.3B), amplified the 2D DNA. This suggested that the contamination in the estimated 5\% of the sample (which mainly consisted of 7D) was sensitive to amplification using the KASP system. The amplification from a small proportion of markers outside 2D indicated that assessing genome specificity from the flow-sorted DNA had to be done with caution. However, crucially, the markers on 2 A and 2 B did not amplify the flow-sorted DNA, indicating that the DNA was a useful resource to assess whether markers designed on 2DS were genome-specific.

Figure 5.3: Assessing the purity of flow-sorted 2D DNA from RIL4 with KASP markers. Representative results are shown (A) 12 out of 15 markers previously mapped to chromosomes outside group 2 showed no amplification of 2D DNA (B) Three out of 15 markers tested amplified the 2D DNA (C) A positive control of a 2DS-specific marker designed on a RIL4/CD SNP. 'CD' = Cappelle-Desprez, tall parent NIL to the fine-mapping population; '2D' = flow-sorted DNA from chromosome 2D of RIL4, the short parent NIL to the fine-mapping population; 'ntc' = no template control. Coloured red on y-axis is the FAM-labelled adapter, coloured blue on the x-axis is VIC, coloured pink is the 2D DNA.

5.3.3 Identifying SNP variation in NGS data

SNPs were identified in two stages: first in the parent NILs using the customised UniGene reference (Harper et al., 2015) and second in a BSA approach, using the best gene-based in-house reference available at the time, the v3.3 cDNAs.

The reads generated from the parent NILs were aligned to a customised wheat reference as described in Chapter 2. The objective following the first RNA-Seq stage of the parent NILs was to identify putative SNPs between the short (RIL4) and tall (CD) parent NILs (Table 5.1) and proceed along the workflow in Figure 5.1. SNPs between RIL4 and CD and representing allelic variation (as opposed to inter-genome SNPs between homoeologous genomes or varietal SNPs between CD and the reference), were called between each sample (P1 - P8, Table 5.1) and the UniGene reference by Martin Trick (Chapter 2).

The SNP-calling process identified a total of 60,454 putative SNPs between any of the eight samples and the reference across 32,663 unique UniGenes (80% of the reference set) (Table 5.2). Most of the SNP-containing UniGenes could be aligned to the CSS contigs. A proportion of the UniGenes (68-82\%) could also be annotated with information from at least one of barley, Brachypodium or rice (Figure 5.4).

RNA-Seq reads from a CD sample used by another research group were used in the initial SNP calling as a control, but the SNPs found between this sample and those from the CD samples (Table 5.1) were incongruent with each other. The extraneous CD sample had 14,283 SNPs not found in any of the CD samples. The DNA from the extraneous sample could not be obtained for typing with markers which would enable unambiguous comparison of genetic background. Therefore, this sample and all SNPs detected using those reads were discarded from further analysis. This finding highlights the importance of genotypic screening to identify errors in germplasm selection prior to sequencing (as was carried out for all samples in this project) and maintenance of pure genetic stocks between research groups, to avoid the costly error of sequencing incorrect material.

In the second stage of SNP identification in a BSA approach, the short and tall bulks (Table 5.1) as well as the previously generated parent NIL reads were
aligned to an in-house v3.3 cDNA reference. The v3.3 cDNA reference was compiled by Martin Trick and described in Chapter 2. In essence, the v3.3 cDNA reference comprised a non-redundant set of 75,419 gene models anchored to IWGSC CSS contigs. The v3.3 cDNAs were partitioned into an ordered and unordered section based on whether gene models could be anchored on the CS x Paragon map. Ordered gene models were given a chromosome position, those which could not be anchored due to lack of polymorphism in the mapping population were assigned to the 'unordered' bin (remaining assigned to chromosome arm only according to the CSS).

In the BSA approach, the objective following the RNA-Seq of the short and tall bulks was to identify SNPs that were enriched for the parental allele in the corresponding bulk i.e. SNPs found in the short parent also present in the short bulks and vice versa for the tall parent/bulk combination. To achieve this, first the parent NIL and bulk samples were aligned to the v3.3 cDNA reference (Chapter 2). Due to concern over typing the plants as short or tall in suboptimal glasshouse conditions (explained in 6.2.2), the reads from each of the bulks were separated into three libraries (Table 5.1). However, by the time the samples were sequenced, experimental data had validated the phenotyping (6.2.3). Consequently, all short reads were merged in silico into one bulk and all tall reads merged into a tall bulk. The short and tall parent NIL reads from biological replicates and tissues were also merged. This strategy had been demonstrated previously as an effective SNP-calling strategy to score SNPs in genes with relatively lower expression (Ramirez-Gonzalez et al., 2014).

The aligned files were passed through a pipeline for SNP discovery using bulk frequency ratios by Ricardo Ramirez-Gonzalez (described in full in RamirezGonzalez et al., 2014). Briefly, first varietal SNPs were identified between the parents. Then, for each bulk, the frequency of the base at each SNP position was calculated and the bulk-frequency ratio (BFR) between bulks determined. The BFR provides a relative measure of SNP enrichment in both bulks, which is normalised for coverage. A high BFR indicates that the allelic variation is contributed from one bulk and absent in the other bulk.

Reference	Dataset	Total putative SNPs	No. of genes with SNPs	A	B	D
UniGenes	parent NILs	60,454	32,663	33	47	20
v3.3 cDNAs,	parent NILs	90	50	90	3	7
BFR>6	BSA	31,350	7251	32	40	28
2D v3.3 cDNAs,	parent NILs	401	51	-	-	100
59 genes	BSA	388	47	-	-	100

SNP-calling in SNP-platform data

Platform	Dataset	Total	Without NC	$\%$
iSelect 90K	parent NILs	1557	412	26
	BSA	970	314	32
Axiom $®$ 820K	Rht8 NIL vs Paragon	56114	6089	11

Table 5.2: SNP-calling results.

NCBI UniGenes \square v3.3 cDNA \square iSelect

Figure 5.4: Proportion of putative SNPs which could be annotated with syntenic information from the different references and SNP platform. SNPs with an annotation from any of the syntenic species were counted as a percentage of the total SNP set.

When the highest stringency of 100% was applied to identify varietal SNPs (i.e. 100% of the bases in the reads of one parent differed to the reference at the SNP position - explained further in 2.3.7.2), total of 90 putative SNPs over 50 unique genes was identified (Table 5.2 and Appendix 2.8). Most of these mapped to chromosome 1A. Crucially, none of these stringent SNPs were located on chromosomes of group 2S, where the Rht8 introgression is located.

Due to concern of discarding potentially informative SNPs from downstream analysis resulting from homoeologue miss-assignment in the IWGSC CSS scaffolds, as well as no group 2S SNPs in the most stringent varietal SNPs, the
threshold to identify varietal SNPs was lowered to 20%. This threshold had proved successful in SNP discovery at another locus in hexaploid wheat (Ramirez-Gonzalez et al., 2014). The SNPs identified in this way were used for all further downstream analysis. The BFR SNP-calling with the 20%-threshold varietal SNPs identified 31,350 putative SNPs over 7,251 unique genes (Table 5.2). The SNP-containing genes were aligned to the IWGSC CSS contigs to map them to a chromosome arm. Most SNPs could be annotated with a barley physical position, though only a small proportion of genes could be annotated with information from Brachypodium and rice (Figure 5.4).

To specifically target the Rht8 interval, a second iteration of BSA was performed using a narrowed 2D interval on the ordered section of the v3.3 cDNAs. The 2D interval was narrowed using the pre-existing information from the fine-mapping of Rht8, using the flanking markers DG279 and DG371 (Gasperini et al., 2012) (described in Chapter 2 and 5.3.5). The unordered 2D contigs were not considered, sincthe position was unknown. SNPs were called in this narrowed interval (herein termed 2D v3.3 cDNAs) using VarScan 2.0 (Koboldt et al., 2012) and additional customised steps (described in Chapter 2). SNP-calling identified 401 putative varietal SNPs between the parent NILs and the reference and 388 putative varietal SNPs between the bulks (Table 5.2).

5.3.4 Identifying SNP variation in SNP platform data

SNP discovery between wheat varieties has recently been propelled by advances in high-density arrays to capture pre-defined allelic variation. Two such arrays used in this project are the iSelect array with 90,000 (90K) SNPs (Wang et al., 2014a) and the Affymetrix Axiom® 820K SNP array (www.cerealsdb.uk.net/cerealgenomics). These arrays are used widely for genome-wide association (GWAS) and diversity studies (among others Ishikawa et al., 2014 and Zanke et al., 2014) since they incorporate a large number of wheat varieties with genome-wide marker coverage. However the arrays also offer opportunity for fine-mapping and have increasingly been exploited to this end (Babiker et al., 2015, Knight et al., 2015). Only one analysis has been published very recently which applied the BSA approach to the iSelect 90K array (Lu et al., 2015).

In this project, the iSelect 90K array was used in two analyses to genotype first the parent NILs and second, the short and tall bulks in a BSA approach. The Axiom® 820K array was used to genotype the short Rht8 x Paragon NIL and Paragon (the provenance of this is described in Chapter 3).

Data from the arrays is interpreted by a polyploid version of GenomeStudio (Wang et al., 2014a). The data is displayed as 'AA', 'AB' or 'BB' calls. Where data is missing due to low signal, an ' NC ' is returned. This does not allow for discrimination between missing data due to a deletion or technical limitation. Heterozygous 'AB' data is likely caused by inter-genome hybridisation due to a non-specific assay for that marker (since the array should capture allelic variation only). The filter in GenomeStudio identifies data in spatial clouds, with datapoints distributed within these clouds. Thus it cannot be unambiguously ascertained whether an ' $A B$ ' call is a true polymorphism relative to ' $A A$ ' or ' $B B$ '. In published analyses, typically markers which return missing values or show ambiguous SNP calls are discarded (Babiker et al., 2015, Lu et al., 2015). In this project, a conservative approach was adopted throughout, retaining putative SNPs based on 'AB' calls.

From the first iSelect analysis of the parent NILs, SNPs were found between RIL4 and CD genome-wide, including 'AB' calls. Most of this number was due to missing data ('NC') from one of the genotypes being called with respect to the other, leaving 412 SNP variants (Table 5.2). From the total probes on the iSelect array ($\sim 81 \mathrm{~K}$), only 11% were mapped to an Avalon x Cadenza map. From this subset, there was a dearth of SNPs between the parent NILs genome-wide (Appendix 5.1). Therefore, it was not possible to simply use the pre-existing genetic map to target SNPs on 2D. In the second iSelect analysis of the BSA, there were 970 SNPs between the pooled DNA of the short and tall bulks, and a third were retained when eliminating SNPs based on missing data (Table 5.2). The SNPs on the iSelect array were annotated with orthologues (Figure 5.4) and also designated a position on the in-house wheat pseudomolecules, as well as annotated with the corresponding CSS contig. Later, the array data was improved with the chromosome, arm and cM position on the wheat chromosome following the publication of Wang et al., 2014.

Genotyping Paragon and the Rht8 x Paragon NIL on the Axiom® 820K array identified 6089 variants once the SNPs due to missing data were discarded (Table 5.2).

5.3.5 Mining for SSRs in wheat sequence

5.3.5.1 Identifying microsatellites

SSRs are short stretches of tandem repeats of mono-, di-, tri-, tetra-, penta- and hexa-nucleotides, which can be interrupted by non-repeat nucleotides, or found adjacent to each other. Several computational tools are available for the identification of SSRs in sequence data, reviewed by Duran et al., (2009). Most of these tools require a pre-defined repeat-length. Here, WebSat (Martins et al., 2009) was used to find microsatellites with parameters set to identify motif length from mono- to hexa-nucleotide (full details in Chapter 2). SSR markers were designed on wheat sequence from multiple sources, outlined below. Crucially, intergenic sequence could also be considered in this way, circumventing the limitation of using genic references in SNP discovery. Different types of variation between the parent NILs were identified: presence/absence of a peak (Figure 5.5 A) or variation in peak size (Figure $5.5 \mathrm{~B}-\mathrm{D}$).

Figure 5.5: Identifying SSR variation as polymorphism between parent NILs. A: presence/absence of a peak; B: polymorphism in peak size; C : polymorphism in peak shape; D : polymorphism in number of peaks.

5.3.5.2 Utilising IWGSC data with syntenic Rht8 intervals

Rht8 had been previously mapped to a 1.29 cM interval between SSCP markers DG279 and DG371. Good overall conservation of gene content (synteny) and order (collinearity) was reported in the syntenic intervals in Brachypodium and rice (Gasperini et al., 2012). Synteny has been used extensively in fine-mapping genes in wheat (Krattinger et al., 2009a). This approach was made more powerful
during the course of this project with new resources in barley and wheat being published. At the beginning of this project, a WGS assembly of the barley genome was released with gene models (IBGSC, 2012) followed by a genetic map (Mascher et al., 2013). At the time of performing the work, these resources were fragmented. The genes were first made available on the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) server (Deng et al., 2007) as 'highconfidence' (HC) and 'low-confidence' (LC) Munich Information Center for Protein Sequences (MIPS) gene models, as well as the WGS assembly of the cultivar Morex (herein referred to as Morex assembly). The IWGSC coordinated the flowsorting (Safar et al., 2004) of chromosome arms from the cultivar Chinese Spring, followed by chromosome-by-chromosome shotgun sequencing and assembly into contigs of average size 2.5 kb (IWGSC, 2014). The genome-specific wheat chromosome arm assemblies were made BLASTable (Altschul et al., 1997) on the Unité de Recherche Génomique Info (URGI) server (URGI, 2013). Later, Ensemb/Plants integrated these Triticeae resources into a genome browser in release IWGSC v1 (IWGSC-1), which allowed for visualisation and download of genomic information (Bolser et al., 2015).

SSRs are highly transferrable between wheat varieties and even species (Duran et al., 2009). Therefore, unlike SNP markers, which might be expected to differ between Chinese Spring and the parents to the fine-mapping Rht8 population, it was posited that mining Chinese Spring sequence for SSRs would transfer well to Cappelle-Desprez and RIL4.

	EST name	Brachypodium	Rice
DG279	TA44444_4565	Bradi5g03460	Os04g0132100
DG371	BJ307036	Bradi5g04710	Os04g0191400

Table 5.3: The previously anchored syntenic Rht8 intervals in Gasperini's work based on Brachypodium and rice. This information was the starting point of the marker development work in this project. Originally, the Brachypodium assembly used was Bd21 Genome Annotation v1.0, the Rice assembly was MSU 6.

The first step to mine wheat sequence in the syntenic intervals was to anchor the previously delimited Rht8 interval (Table 5.3) using the most current Triticeae resources. This was updated as resources become available during this project. To achieve this, iterations of the BioMart toolkit (Kasprzyk, 2011) in Ensemb/Plants were used in conjunction with other servers hosting barley (IPK) and wheat sequence information (URGI) (full details in Chapter 2) as well as inhouse JIC resources. The Rht8 interval was anchored in barley and the

Brachypodium and rice positions consolidated with the unified assembly in Ensemb/Plants (Table 5.4). Table 5.4 was consolidated when new resources became available, is described in the appropriate place in the text. Crucially, the syntenic intervals were combined with IWGSC-CSS data in order to consider only those genes with evidence of 2DS localisation. This information was used to create genome zippers for each of the syntenic species (the three zippers are shown in Appendix 5.2). The genes in the zippers were annotated with the highest nucleotide identity hit to wheat 2DS contigs by BLASTN. This gave the best wheat 2DS sequence based on gene prediction from barley, Brachypodium and rice.

A total of 61 unique wheat 2DS contigs (some <200bp long) were found to correspond to the syntenic intervals across the three species. Within this sequence, 78 SSRs were identified (Table 5.5).

Table 5.4: Anchoring of the Rht8 interval in the most current Triticeae resources and NGS references. The flanking markers DG279 and DG371 were anchored in the physical data available for barley, Brachypodium and rice, as well as wheat. Full details are in Chapter 2.

In order to examine synteny between comparative species, ArkMap (Paterson and Law, 2013) was used to show the orthologous relationships between the barley interval (Table 5.4), Brachypodium and rice (Figure 5.6).

The first observation was that the barley interval (Appendix 5.2.1) had no annotated HC genes from 2HS:16200000-17200000, 17800000-18600000 and $18700000-9400000$, a total of $\sim 2.5 \mathrm{Mb}$. The second observation was that the syntenic relationship between Brachypodium and rice, when considering those genes with orthology to barley, was not as good as previously described (Gasperini, 2010). The barley-to-Brachypodium interval contained orthologous genes on Brachypodium chromosomes 1, 3 and 5. The barley-to-rice interval had orthologues on rice chromosomes 4, 10 and 11. Overall, the barley-toBrachypodium gene order was superior to barley-to-rice. There were considerably more one-to-one orthologues between barley and Brachypodium chromosome 5, compared with barley and rice chromosome 4 (these are both the syntenic chromosomes identified previously (Gasperini, 2010)).

Taken together, the data suggested that first, it was not prudent to consider only barley (the closest sequenced syntenic relative to wheat) to mine sequence space, since only wheat sequence space corresponding to barley HC genes was reported. There were extensive annotation gaps in the interval. To circumvent this, the ~ 300 WGS Morex assemblies in the 3cM space from 12.11-15.44cM, corresponding to the best-anchored Rht8 interval (Table 5.4), were used as query sequences in BLASTN homology searches of CSS 2DS contigs. In this way, wheat 2DS sequence which could be anchored to the lower confidence barley genes was also considered for microsatellite variation. Second, the idiosyncratic nature of the break down in synteny across the different species suggested that considering wheat sequence independently from each of the comparative species was best to extract the maximum possible 2DS sequence.

Figure legend precedes the figure to facilitate maximum figure enlargement.
Figure 5.6: Synteny between the barley Rht8 interval and Brachypodium and rice. The barley interval on $2 H$ (15200000-20000000) was used, as defined in Table 5.4 along with generous flanking margins with side. Conserved synteny was shown in Brachypodium and rice, based on orthologous relationship defined by a 125/200 combined similarity threshold. Orthologous relationships between genes are shown with lines as follows: black = one-to-one, green = one-to-many, brown = many-to-many. Genes on the non-syntenic chromosomes in Brachypodium and rice are not shown for clarity, instead physical position alone is indicated. ArkMap used EnsemblGenomes release 25. The assembly details are: barley IBSC-1.0, Brachypodium v1.0, rice Oryza Sativa Japonica IRGSP-1.0.
B. distachyon
chr 1 chr 3
\%
Kigivigi

5.3.5.3 Extending the sequence space searched with new wheat resources

In 2015, at the end of this project, Ensemb/Plants (in release 26, March 2015) incorporated updated wheat sequence as IWGSC v2 (referred to herein as IWGSC-2). At the time of writing, the most recent release (June 2015) re-named this to IWGSC-1+POPSEQ, but the former name will be used here, in line with when the information was accessed. The release refined the CSS contigs by mapping them into chromosome genetic bins using wheat POPSEQ data (Mascher et al., 2013) and aligned additional datasets such as barley, Brachypodium and rice to the CSS. Additionally, a genome zipper based on IWGSC-2 and 90K iSelect array data (Wang et al., 2014a) (shown in Appendix 5.2) was compiled by MIPS and was downloaded from URGI in March 2015 (URGI, 2015a).

Further, in 2015, a WGS de novo assembly of a synthetic hexaploid wheat (cultivar W7984) was published (herein named Chapman assembly) (Chapman et al., 2015). The Chapman assembly compared similarly to the CSS in terms of total genome assembled (9.1 Gbp and 10.1 Gbp, respectively). However, of particular interest in this project, the Chapman assembly had much better contiguity, with average contig size more than double that of the IWGSC assembly. This made it possible to anchor almost double the fraction of the genome to chromosome locations using the same POPSEQ information that was used to anchor the IWGSC assembly (Chapman et al., 2015). Furthermore, the authors estimated that the gene space sampled by their assembly did not completely overlap with the IWGSC. Taken together, excitingly the Chapman assembly provided novel sequence space which had a higher likelihood of capturing intact genes than the previously considered IWGSC data.

In light of these developments, a second iteration of the process described in 5.3.5.2 with IWGSC-1 was performed, with some modifications. Using the now genetically-mapped CSS contigs, DG279 and DG371 were mapped to the 17.3 cM POPSEQ bin (Table 5.4). There were ~ 300 CSS contigs in this bin, which it was not possible to consider in the limited time available. For this reason, two strategies were used to prioritise marker discovery. First, new 2DS CSS contigs now anchored into the syntenic intervals were interrogated for variation. Second,
marker discovery was prioritised around genes which might be involved in plant growth and development. As marker development progressed, markers were mapped to the genetic bins. This identified that most of the markers mapped to the 17.3 cM and 33.1 cM bins (Appendix 5). The nucleotide sequence within the four genetic bins from $17.3 \mathrm{cM}-33.1 \mathrm{cM}$ totalled 4.62 Mb . The gene models in Ensemb/Plants from this sequence were extracted and annotated as described in Chapter 2 using syntenic orthologues and functional annotations. Sequence space around some of the resulting 115 genes was mined for SSR variation (this is annotated in Appendix 6.9 and 6.10 and outlined in Chapter 6). One notable gene for which a polymorphic marker was developed is BRU1, which encodes a brassinosteroid-regulated protein in Ae. tauschii.

Interrogating the IWGSC data in this way contributed to the SSR marker tally shown in Table 5.5.

The Chapman assembly was utilised to extend the synteny approach once it was hosted on the CerealsDB website (CerealsDB, 2015a) in April 2015. The flanking markers DG279 and DG371 were mapped to different genetic bins (Table 5.4). A total of 253 Chapman scaffolds were anchored between these cM bins. It was not possible within the time restrictions of this project to examine these without aligning the NGS data to these scaffolds. As a priority, SSR identification was extended to novel wheat sequence that anchored to the Rht8 interval by synteny (Figure 5.7). To achieve this, the 2DS CSS contigs in the syntenic intervals (Appendix 5.1) were used as queries against the Chapman assembly, to retrieve Chapman scaffolds which extended beyond the sequence of the queries (Figure 5.7). A total of 56 new SSRs was identified in the 1.5 Mb of sequence space and 23 of these were prioritised (Table 5.5) based on location around the centre of the syntenic Rht8 intervals, since a polymorphic marker here would halve the interval.

Extended sequence space
Figure 5.7: Strategy behind mining the Chapman scaffolds for variation within sequence that could be anchored to the Rht8 syntenic regions.

Sequence space searched	no. of SSRs identified
WGSC-1	139
WGSC-2	72
Chapman	23
NCBI UniGenes	6
v3.3 cDNAs	27
Axiom data	42
Limagrain	44

Table 5.5: Summary of wheat sequence space searched for SSRs and the number of markers identified.

5.3.5.4 Informed searching: mining IWGSC wheat sequence in the NGS references and SNP arrays

The Rht8 interval was anchored in the NGS references described in 5.3 .3 as shown in Table 5.4. The 2DS CSS corresponding to SNPs within those intervals (not already found in the IWGSC/Chapman assembly) were mined for SSRs. In the case of the v3.3 cDNAs, the 2DS CSS contigs corresponding to the genes within the 2D interval were targeted.

A collaboration on an unrelated project investigating a QTL on 2D provided confidential wheat 2D sequence from a commercial partner (Limagrain). It was unclear how this 2D sequence had been assembled and curated. The sequence was unannotated. The markers DG279 and DG371 were anchored in the sequence by BLAST and 44 SSRs were identified in the intervening sequence space (Table 5.5).

Since the Axiom® SNP array was used to genotype Paragon and the Rht8 x Paragon short NIL, the SNP variants identified in probe sequences were not certain to be present between the parent NILs to the fine-mapping Rht8 population. Additionally, the array was not annotated, apart from containing the CSS contigs the probe sequences mapped to. To prioritise marker discovery, SNPs mapping to 2DS contigs were targeted and from these 120 unique 2DS contigs, only the SNPs without heterozygous (AB) calls were retained. A total of 42 new SSRs was identified in the corresponding 2DS sequence (Table 5.5).

5.4 Synteny - how good is it?

It was important to evaluate how good the synteny was as a whole between wheat 2D and the comparative species, as well as establishing the collinearity along the syntenic intervals. In 5.3.5.2, genome zippers (Appendix 5.2) were constructed using the IWGSC CSS contigs to retain genes within the syntenic intervals which showed evidence of 2DS localisation (Table 5.4). These results showed that barley had the highest number of genes with 2DS localisation, followed by Brachypodium and finally rice (Appendix 5.2). By directly comparing the zipper for each species with orthologous genes in the other two species, it was evident that synteny between the species was not as good as had been reported previously (Gasperini et al., 2012). This was examined further (Figure 5.6) to reveal that even in barley, which had the highest number of 2DS-localised genes, there were large assembly/annotation gaps in the Rht8 interval. As resources developed during this project, it became possible to establish a 2D interval a wheat genetic bin in wheat (5.3.5.3, Table 5.4). This made it possible to study the wheat-to-barley, wheat-to-Brachypodium and wheat-to-rice synteny directly, rather than using barley. Using the wheat 2D interval, ArkMap (Paterson and Law, 2013) was used to show orthologous relationships between the wheat 2D genetic bin and barley, Brachypodium and rice (Figure 5.8).

Of the 162 genes in the wheat sequence, 71 had orthologues in barley, 57 in Brachypodium and fewest (39) in rice. The synteny between wheat 2D and barley 2 H in this region was good and very few genes (two) mapped to another barley chromosome (3H). The micro-collinearity progression along barley broadly mirrored that of wheat, however large annotation gaps remained in barley, as found previously (Figure 5.6 and 5.3.5.2). However, significant numbers of orthologous relationships were found with Brachypodium chromosomes 4 and 3, as well as rice chromosomes 7 and 11 (Figure 5.8).

Figure 5.8: Synteny between the wheat 17.3 cM bin, barley, Brachypodium and rice. The 17.3 cM bin was identified as most likely to contain the Rht8 interval as defined in Table 5.4. The coordinates used were wheat 2D 6478405-10885088. Conserved synteny was shown in barley, Brachypodium and rice, based on orthologous relationship defined by a 125/200 combined similarity threshold. Orthologous relationships between genes are shown with lines as follows: black $=$ one-to-one, green $=$ one-to-many, brown $=$ many-to-many. Genes on the non-syntenic chromosomes in Brachypodium and rice are not shown for clarity, instead physical position alone is indicated. ArkMap used EnsemblGenomes release 25. The assembly details are: wheat IWGSC-2, barley IBSC-1.0, Brachypodium v1.0, rice Oryza Sativa Japonica IRGSP-1.0. Not all relationships are shown for clarity (described in Chapter 2). The density of annotation was reduced to 1 in 10 for barley, 1 in 10 for Brachypodium and linked genes in rice.

5.5 Prioritising High-confidence Variants

From the large SNP platform and NGS datasets, as well as extensive wheat sequence space available, strategies were required to prioritise the most reliable variants. In order to attempt to sift the high-confidence variants 'noise', three main criteria were considered.

5.5.1 Concordance

5.5.1.1 Parent NILs

Concordance within the parent NILs and BSA was considered differently. In the NGS data of the parent NILs, there was considerable discordance (Appendix 5.4) between the biological replicates and tissues (P1-8, Table 5.1) within the 60,454 putative SNPs identified. Only 1\% of the total putative SNPs (a count of 638) were completely concordant whereby the base call within all four samples of the parent NIL was consistent and this base was also distinct between the other parent (Appendix 5.4). These SNPs were targeted as being high-confidence variants.

The distribution of completely concordant putative SNPs between the parent NILs was plotted with the mean SNPs found per chromosome arm, which could be considered as 'background noise'. The SNPs were normalised as described in Chapter 2 to account for the relatively under-represented D genome (Table 5.2) and also to mitigate the concern that 3B could have more variation reported since it has been fully sequenced (Choulet et al., 2014). There was enrichment on chromosome group 2 well above this mean line of 7\%, particularly on 2AS and 2DS. There were also high densities of SNPs found on chromosomes 3B, 6AL, 7BS and 7DS (Figure 5.9A). Unfortunately, of the highly concordant SNPs on 2DS, there was a dearth on SNPs in the middle of the Rht8 interval (Appendix 5.5.1).

The SNPs between the parent NILs in the dataset without missing calls on the iSelect array numbered 412 (Table 5.2). From this, a total of 85 SNPs mapped to chromosome group 2S. Since the total variation captured between the parent NILs would be inherently limited by the location of pre-defined probes on the array, the SNPs were normalised according to the number of probes mapping to
each chromosome arm (Figure 5.9B). Similarly to the UniGene data, 2AS and 2DS had high SNP densities, but notably 2BS was much lower than the other homoeologues, this time below the threshold set for background noise. The SNP hotspots on 3B, 6AL, 7BS and 7DS found between the parent NILs in the NGS dataset were once again prominent between the parent NILs in the iSelect data, though 7DS was reduced compared to the UniGenes (Figure 5.9A versus Figure 5.9B). The enriched SNP densities outside group 2 S found between the parent NILs in two independent datasets were important because translocations into the Rht8 genetic interval would complicate the fine-mapping and would also considerably limit the comparative genomics strategy. Some background SNPs outside 2DS were expected since the short and tall parent NILs were estimated as 97% similar on the basis of DArT markers (Gasperini, 2010). However, any such background noise that did not correlate with the height phenotype should have been minimised by the BSA unless it was genetically linked to or originated from a translocation into the Rht8 genetic interval on 2DS.

5.5.1.2 BSA

In the BSA analysis of the iSelect array, three short individuals and three tall individuals, as well as bulks combining the DNA from short/tall individuals were genotyped and added to the data from the parent NILs. Surprisingly, there was considerable discordance between the variants identified. Some discordance was expected due to the BSA approach, since in close proximity to Rht8, recombination in individuals of the same bulk might lead to contrasting 'AA'/'BB' calls. However, the bulk samples often had opposite SNP calls to the individuals (all concordant) comprising that bulk. Additionally, the parent NILs frequently had the opposite SNP call to the individuals in the bulk of the same phenotype (Appendix 5.6). An alternative scenario was that a SNP variant identified between the parent NILs was unanimously monomorphic in the short and tall individuals comprising the bulks (Appendix 5.6). A conservative strategy was adopted and (conflicted) SNP variants identified were taken forward in the workflow (Figure 5.1). However, this exemplifies that with the great efforts to increase bioinformatic resources for wheat, the discourse on the data processing and analysis, including reliability and unsuccessful strategies, is not commensurate with the volume of data produced.

Figure 5.9: The distribution of putative SNPs over the genome in parent NILs and BSA as mapped to the CSS contigs. (A) Concordant SNPs (638) between the parent NILs from the UniGene reference (B) SNPs between the parent NILs on the iSelect 90K array, without missing data (412) (C) SNPs from BSA with BFR>6 on the v3.3 cDNAs, with the total number (7666) and the unique genes from this set (2055). The data was normalised in the following way: (A) \& (C) were normalised to calculate SNP distribution as a percentage of the homoeologous genome; (B) SNPs were normalised to account for the total number of pre-defined probes on each chromosome arm in the 90K array. The dashed lines show the mean SNP percentage (per chromosome arm): 7.317% for $(A) \&(C) ; 0.472 \%$ for (B).

5.5.2 High BFR

To prioritise the high-confidence variants from the BSA analysis of the NGS data and ensure SNPs on chromosome group $2 S$ were adequately sampled, a minimum BFR threshold was determined as $B F R>6$. The majority of putative SNPs (75\%) were reported with a BFR of infinity, indicating 100% enrichment from one parent and absence in the other parent. However, the vast majority of SNPs with BFR = infinity were being called due to low coverage ($<20 \mathrm{x}$) in the parent with the SNP present. To eliminate this large number of potentially lowconfidence SNPs, the ratio threshold for the informative parent of SNPs with BFR $=$ infinity was set to ratio ≥ 0.2. Setting both the BFR and ratio thresholds retained a total of 7666 putative SNPs genome-wide on 2055 unique genes (Figure 5.9C). The duplicated genes (total vs unique) did not overly influence the SNP distribution over the whole genome.

The high-confidence SNPs found by BSA were examined to see if they mapped to similar locations as in the parent NILs. The BSA data had high SNP densities (SNP hotspots) on 3B, 5BL, 7BS and 7DS, in common with the parent NILs. The SNP density on 5BL and 5DL was much enriched whereas the 7BS and 7DS hotspots were reduced in prominence in the BSA relative to the parent NILs (Figure 5.9C versus Figure 5.9A). High SNP densities were also found on group 2 L in the BSA which had not been found in the parent NILs (Figure 5.9C). 2AS had the highest SNP density of group 2S, which was also reported in the parent NILs, but 2DS fell below the mean SNP density per chromosome arm.

5.5.3 Putative chromosome rearrangements

Interchromosomal translocations involving chromosomes 4A, 5A and 7B in wheat have been well characterised (Devos et al., 1995, Liu et al., 1992, Nelson et al., 1995). Most recently, in a study of 720 genes representing putative interchromosomal rearrangements in wheat, 40% were reported outside of these well-documented locations, scattered across chromosomes. Of particular interest to this project, one or two genes from 12 locations (1BS, 1BL, 3B, 4BS, 4DL, 5AL, 5DS, 5DL, 6AS, 6BS, 7DS, 7DL) were found to be translocated to 2DS (Ma et al., 2015a). In another study utilising the chromosome arm locations from IWGSC-1, intrachromosomal rearrangements, where sequences found on homoeologous
chromosomes were located on a different arm in one of the homoeologues were reported. One of the conclusions was that there was strong evidence of intrachromosomal rearrangement on 2D short arm to long arm (Ma et al., 2014).

Taken together, data from the parent NILs and BSA indicated a relatively high number of putative SNPs outside 2DS that could not be ruled out were translocations to 2DS or potential intrachromosomal SNPs on 2DL actually originating from 2DS. Of particular interest were putative SNPs reported on 3B, 6AL and 7BS, since these had high SNP densities reported consistently in both the independent datasets comparing the parent NILs (Figure 5.9A \& B). To investigate this further, SNPs with a high degree of concordance in calls between the parent and bulk iSelect array data (Appendix 5.6.2) or with a high BFR (Appendix 5.7.2) were prioritised for marker discovery. Markers mapping to 5B and 7BS were polymorphic between RIL4 and CD and these were taken through the workflow (Figure 5.1) to assess whether the markers were likely to map to Rht8.

5.5.4 Prioritising SSR variants

Often, multiple SSRs were located in close proximity. In these cases, SSRs were prioritised in two main ways. First, SSRs based on mono-nucleotides were less desirable than the longer repeat lengths, due to the incomplete nature of the sequence of the CSS contigs (and hence possibility of unresolved sequencing error or missing sequence leading to stretches of mononucleotide repeats which might be artefactual). For this reason, where multiple SSRs were identified in the same CSS contig, those based on two to six repeats were prioritised. However, markers based on mono-nucleotides had been found to work and were still considered if in a prime physical location. Second, where multiple SSR markers mapped to the same CSS contig, those which were based on size polymorphism were used over presence/absence markers (Figure 5.5). This was to mitigate for the uncertainty associated with scoring false negatives. The incidence of this last case was low.

5.6 Likely to Map to Rht8?

The high-confidence variants identified in the previous step in the workflow were assessed prior to marker validation on the fine-mapping Rht8 population for whether they were likely to map to the Rht8 interval using genetic and physical information.

5.6.1 Physical location on wheat chromosome 2D

As described in 5.3.3, the physical ordering of the v3.3 cDNAs was used to delimit an interval most likely to contain Rht8 based on pre-existing markers anchored onto the ordered section of the reference (Table 5.4). The genes were ordered using a Chinese Spring x Paragon map and the limitation of the reference was that lack of polymorphism in the mapping population assigned a large proportion of genes on 2DS into the unordered bin. Nevertheless, this was the best resource available at the time. To specifically target SNPs likely to map to Rht8, a second iteration of BSA was performed using the narrowed 2D interval comprising 59 genes in the ordered section of the v3.3 cDNAs.

The individual SNP distribution per gene in the narrowed 2D interval is shown in Appendix 5.8. The distribution was normalised (details in Chapter 2) to account for within-sample bias (gene length) and between sample bias (sequencing depth, Appendix 5.9). This resulted in a unit of SNPs read ${ }^{-1}$ base $^{-1}$ for each of the 59 gene models (Figure 5.10). The normalised distribution was markedly different from the raw SNP distribution (Appendix 5.8). The gene model mrna057019, outside the strict interval, had almost ten-fold the SNP density at 30 SNPs read ${ }^{-1}$ base ${ }^{-1}$ of the next highest genes, mrna096393 and mrna023290 (within the strict interval) at approximately 5 SNPs read ${ }^{-1}$ base $^{-1}$ (Figure 5.10). The high SNP density of mrna057019 was due to the extremely low coverage ($\times 0.19$) rather than a high raw SNP count (Appendix 5.9).

Figure 5.10: Putative varietal SNP distribution over the v3.3 cDNA 2D interval (a total of 59 cDNAs), with the genes ordered from left to right as they are anchored in the ordered v3.3 cDNA reference. The varietal SNPs between the parent NILs/ bulks and the reference are shown. SNPs were normalised from the raw number in Appendix 5.8 by the formula: SNP count/coverage where coverage was calculated as illustrated in Appendix 5.9. The dashed lines indicate the anchoring of DG279 (left) and DG371 (right) as outlined in Table 5.4. The black arrows indicate successful SNP-based KASP markers developed as described in 5.3. The green arrows indicate SSR markers developed based on the corresponding IWGSC contig to the gene highlighted.

The SNPs in Figure 5.10 were further analysed to select the most confident SNPs to validate by developing markers. Two different approaches were used, as shown in Appendix 5.10 and described in full in Chapter 2. The first approach mirrored a BSA approach and identified SNPs which overlapped in the corresponding parent NIL and bulk (Appendix 5.10). This approach found that in both short/tall datasets, there was more overlap in SNPs between the converse parent NIL/bulk (Appendix 5.11). The SNPs found in this way (Appendix 5.12) were aligned to the CSS contigs and the 18 identified as varietal were monomorphic between the parents NILs (Appendix 5.13).

Trouble-shooting this first approach found two main issues which were attributed to the poor validation rate. The first issue pertained to the SNP-calling quality threshold with the software used. Due to the high-depth of coverage (Appendix 5.9), the SNP-calling software (Koboldt et al., 2012) passed SNPs with highquality scores, despite having a relatively low frequency (Appendix 5.13) (where frequency is used to describe the reads at the base supporting the variant call as opposed to reference, a measure of the SNP 'confidence'). In fact, the majority of putative SNPs (80\% of the total) had a frequency $<50 \%$ (Appendix 5.13 and Appendix 5.14), meaning that these SNPs were called despite most of the reads supporting the reference base. Personal communication with the developer
confirmed this bias, and highlights the need for software and pipelines which are developed for the intricacies of the wheat genome, rather than adapting existing pipelines which are designed for analysis of sequenced and annotated genomes.

The second issue concerned the identification of varietal SNPs. Case-studies of a number of putative SNPS (described in Chapter 2) revealed that there were instances of sequence differences between the v3.3 cDNA reference and the IWGSC CSS contigs. The difference in a single base was sufficient to result in a homoeologous SNP being called using contig alignments from one source versus a varietal SNP being called using the other source. This was unexpected, given that the v3.3 cDNA originated from gene models predicted using the IWGSC CSS contigs. The discrepancy was attributed to sequencing error and further, from redundancy between overlapping IWGSC CSS contigs (described in detail in 2.3.7.4) which complicated the situation since it was not possible to judge which redundant contig was more reliable where sequence differences arose. This shows that there are still formidable challenges when working with a hexaploid organism with an incompletely-assembled genome.

In an attempt to resolve both these issues, in the second marker validation approach, SNPs were filtered first by high frequency and second by two alignments (steps shown in Appendix 5.10.2). From the SNPs validated by markers using this process, two were found to be polymorphic between the parent NILs (Appendix 5.15). These are indicated in Figure 5.10.

5.6.2 Synteny

Work in this Chapter showed that the synteny in the Rht8 intervals identified in comparative species (Table 5.4) was disrupted (5.4). Nevertheless, synteny (albeit limited) could still be used to target variation to Rht8 region.

Physical information from syntenic intervals in barley, Brachypodium and rice was used as shown in Table 5.4. The comparative genomics approach relied on good annotation of the SNP platforms and NGS references. Barley and Brachypodium physical information was more prevalent than rice but the iSelect array as a whole was more poorly annotated than the other references (Figure 5.4). Notably, using syntenic information to consider high-confidence variants recovered many SNPs mapping to 2AS or 2BS CSS contigs that would have been discarded by only
considering SNPs mapping to 2DS. This complemented the strategy outlined in 5.5.2. Synteny was used to identify high-confidence variants (from 5.5) in the NGS data and SNP-platform data: between parent NILs (Appendices 5.3, 5.6.1, 5.5.2, 5.5.3) and BSA (Appendix 5.7.1).

5.6.3 Informed by wheat contigs from IWGSC

5.6.3.1 2DS provenance

To avoid relying only on comparative genomics since not all variants which mapped to 2DS had such annotation, high-confidence variants which mapped to 2DS were targeted using the IWGSC chromosome arm assignments. In the variants between parent NILs, 34 highly-concordant allelic SNPs mapping to 2DS were identified (Appendix 5.5.1). From the BSA data, 10 new allelic SNPs were identified in the iSelect array that mapped to 2DS (Appendix 5.6.2). A total of 132 putative SNPs that mapped to group 2S were identified in the v3.3 cDNAs, and PolyMarker was used to select SNPs on which markers could be designed that included all three homoeologues in the alignments to enable primer design which was D-genome specific or semi-specific (distinguishing between 2DS and another genome). Of the 48 putative allelic SNPs tested, 11 were polymorphic (Appendix 5.7.1).

5.6.4 2D RIL Population

The 2D RIL coarse-mapping population was used to identify markers from the workflow in this Chapter that were likely to map to Rht8 (Figure 5.11). The population had been developed in the first genetic analysis of Rht8 on 2DS (Korzun et al., 1998) and was used in further fine-mapping of Rht8 (Gasperini et al., 2012). The population had been genotyped using markers described by Gasperini (2010) which are coloured black in Figure 5.11. A core set of markers mapping close to the Rht8 interval was identified in group B (coloured red in Figure 5.11 B), which was then fine-mapped in Chapter 6. Group B surrounded the DG279/DG371 markers on 2D used in mapping by Gasperini et al., 2012. Group B contained 62 markers which were arranged into 22 marker classes (Appendix 5.16), according to their graphical genotypes (Appendix 5.17).

The outgroups (Figure 5.11A \& C) contained markers which did not map to 2D and were not passed along the workflow (Figure 5.1) to Chapter 6. Group A contained markers from SNPs with a high BFR, mapping to 2 S but not the Rht8 region (Appendix 5.7.1). Group C contained markers from SNPs mapping outside chromosome 2S: 5BS and 7BS (Appendix 5.6.2, Appendix 5.7.2 and Chapter 2). All the markers were tested with the flow-sorted 2D DNA from the short parent NIL (RIL4). All markers in group A amplified the 2D DNA in the KASP assay distinctly from the tall NIL (Figure 5.11A). This validated that the SNPs were on 2D but did not map genetically to the Rht8 region. For the SSR assays, all markers had a peak identical to the short parent NIL (Appendix to Chapter 2). Markers in group C showed mixed results. Most of the markers did not amplify 2D DNA (C. 1 and C.2). Since these markers were polymorphic between the parent NILs but were developed on SNPs outside of 2D, this indicated that the SNPs were not interchromosomal rearrangements (translocations into 2DS), but instead SNPs on chromosome 7BS. One marker (labelled D), did amplify the 2D DNA. This either represents an interchromosomal rearrangement - a translocation from 7BS to 2D, or contamination in the 2D DNA. In 5.3.2, which describes the testing of the 2D DNA, two markers on 7D and one marker on 5A amplified the 2D 2DNA, and a small amount of contamination was reported (6\%). Therefore, it is not possible to unambiguously ascertain which of the two alternatives ' D ' represents.

Figure 5.11: Coarse-mapping of markers developed in Chapter 5 with the 2D RIL population. Marker classes 1-22 in group B are highlighted in red. Markers developed from the high BFR BSA data are shown in orange. Markers from the iSelect BSA are shown in green. Distances in the mapping (left, in cM) are relative measures only for ordering marker classes. The specificity of the KASP assays as ascertained by amplification of the flow-sorted 2D DNA from RIL4 (highlighted pink), CD (Cappelle-Desprez, tall parent NIL), RIL4 (short parent NIL) and Mara (Rht8 donor to RIL4) is shown and labelled according to the genetic map groupings. 'ntc' (coloured black) is the no template control, which had assay mix but no DNA as a control. Coloured red on y-axis is the FAM-labelled adapter, coloured blue on the x-axis is VIC.

5.7 Validating variants with markers

Figure 5.12: Schematic diagram to show the marker validation pipeline of testing putative variants. Three main steps were involved in the workflow. The populations used were: FM = fine-mapping Rht8 population; 2D RILs = 89 Recombinant Inbred Lines on 2D used as a coarse-mapping population; Xgwm261-Xcfd53 = Recombinants between the original two flanking markers from which the FM population was selected. The populations are described in more detail in Chapter 6.

Markers were developed to validate the variants likely to map to Rht8, identified by the workflow in Figure 5.1. Markers were tested in the pipeline showed in Figure 5.12. Putative variants were either SSRs or SNPs. Both types of marker were validated in the same way. SNPs were tested using the KASP assay (He et al., 2014). First, markers were tested on the parent NILs to check if they were polymorphic. If the marker was polymorphic, the 2D flow-sorted DNA was used to ensure specificity to the D genome to target genome-specific allelic variation (outlined in 5.3.2). The proportion of markers tested which were polymorphic ranged from $14-38 \%$ (Figure 5.13). Second, the coarse-mapping population, described in 5.6.4, was used to identify the markers which genetically mapped close to Rht8. A total of 62 (Table 5.6) markers were taken forward to Chapter 6, since they fitted into group A in Figure 5.11. In the final step, the markers were genotyped on all the mapping populations (Appendix 5.18), including reproducing results for robustness (Figure 5.12, part 3). The markers were then used to further fine-map Rht8, explored in Chapter 6.

Figure 5.13: Total markers tested in Chapter 5 and the rates of identifying a polymorphic marker across the different approaches.

	Source	Initial cost	Cost/marker	Marker count taken forward for fine-mapping
SNP	NCBI UniGenes	$£ 7,580$	$£ 24.50$	10
	v3.3cDNA	$£ 11,550$	$£ 24.50$	3
	iSelect array	$£ 500$	$£ 24.50$	6
SSR	Axiom array	$£ 600$	$£ 65$	6
	2DS sequence	0	$£ 65$	37

Total: 62
Table 5.6: Cost break-down for developing markers in Chapter 5. A more detailed description of how the costings were calculated is shown in Chapter 2.

5.8 Discussion

The aim of this Chapter was to saturate the Rht8 region with markers prior to further fine-mapping. Wide-ranging strategies were used to identify variants and then prioritise the variants most likely to map to Rht8. In total, 62 markers were generated during the workflow presented at the beginning of the Chapter. Other markers which were developed were discarded because they did not map to the same linkage group as Rht8.

5.8.1 Identification of variants - cost and efficiency

Among different marker systems SSRs and SNPs are the markers favoured in wheat breeding (Gupta et al., 1999). SSR assays are more time-consuming and in the work in this Chapter were found to be over double the expense of the SNP KASP assay, on an individual-assay level (Table 5.6). Anecdotally, breeders prefer SNP-based high-throughput assays for large populations. Additionally, SNPs are bi-allelic and the most abundant genetic variations, with higher frequencies found distributed evenly throughout the genome (Allen et al., 2011). Despite this, the rate of marker validation between the two variant types was broadly similar (Table 5.6). SNP assays allowed for a lower cost per marker once high-density arrays or NGS sequencing were used to identify the variants (Table 5.6). Nevertheless, SSRs and SNPs target different variation and have been used in concert previously for marker development (Jiang et al., 2015a), and in this Chapter, both types of marker were developed. The alternative approaches will be considered in turn.

5.8.2 SSR variation in wheat sequence

Different sources of wheat sequence were targeted for identifying microsatellite variation. Comparative genomics is widely used in map-based cloning of Triticeae (Krattinger et al., 2009a). The advantage of the IWGSC CSS contigs was that they allowed for genes in the syntenic intervals to be considered only if they had evidence of 2DS-localisation. By anchoring existing Rht8 markers in physical sequence, work in this Chapter established three zippers for barley, Brachypodium and rice syntenic intervals on chromosomes $2 \mathrm{H}, 5$ and 4
respectively. The 2DS CSS contigs across the zippers were mined for SSR variation. The NGS data was also searched using these contigs to return SNPs which mapped to the syntenic intervals. Low polymorphism between the parent NILs, which was reported previously when fine-mapping Rht8 (Gasperini et al., 2012) was also found to hinder marker development here and is in line with extensive reports of low polymorphism on the D-genome in wheat research. Developments in the last six months of this project saw the release of a WGS wheat assembly. The Chapman assembly is an excellent resource because the sequence space sampled is not completely overlapping with the IWGSC CSS contigs and the scaffolds have much better contiguity, on average double that of the CSS contigs (Chapman et al., 2015). The IWGSC CSS contigs corresponding to the zippers were used to query the Chapman scaffolds and this returned an additional 1.5 Mb of novel sequence space. Due to time limitations, only half of the SSRs identified were validated by markers and only one was found to be polymorphic. Therefore the Chapman assembly did provide novel sequence which was not fully utilised here, but the low polymorphism on the D-genome would likely remain problematic even with more time to examine remaining sequence space.

5.8.3 Limitation of synteny in the Rht8 region

Compiling the zippers of barley, Brachypodium and rice revealed that when only genes with evidence of 2DS-localisation (using the IWGSC CSS) were considered within the delimited intervals, micro-collinearity was disrupted. Using the POPSEQ genetic map of wheat (discussed directly below), the synteny directly between wheat and the three comparative species corroborated the initial findings. Barley had the highest density of genes collinear with the wheat 2D interval. The medium resolution synteny between the demarcated wheat 2D region and barley 2HS was good, however, there were large annotation gaps in the barley data within the Rht8 interval. The synteny with Brachypodium and rice was not as good as previously reported (Gasperini et al., 2012) and inferior to barley. In particular, there were clear breakpoints in synteny where orthologous genes were found on Brachypodium chromosomes 3 and 4, and rice chromosomes 7 and 11. The work in this Chapter strongly pointed towards barley
being the best comparative species to use out of the three considered here, but the quality of the draft whole-genome shotgun assembly was a limitation.

The disrupted micro-collinearity does not exclude the possibility that a marker mapping closest to Rht8, or the Rht8 gene itself, could be a gene found in some or all of the candidate-gene intervals across the species used here. This is investigated further in Chapter 6. Different strategies used in marker development described in this Chapter and taken further into Chapter 6 relied on synteny to varying extents. However, the imperfect micro-collinearity indicates that it is important to be aware that strategies relying on this might be limited.

5.8.4 Low-resolution wheat genetic map

Late in the project, an improved release of the IWGSC CSS data used POPSEQ to order the CSS contigs into chromosomal pseudomolecules in genetic bins (Mascher, 2014, IWGSC, 2014). Previously, the IWGSC CSS contigs were unanchored. This development meant that a coarse genetic map could be used to target sequence space for variants likely to map to Rht8. During the process of marker development in this Chapter, ordering the successful polymorphic markers revealed approximately $\sim 5 \mathrm{Mb}$ of space from the POPSEQ-anchored contigs. Due to the time limitations, a targeted approach around some genes identified in this sequence space was used to identify microsatellite variation. The genetic anchoring of wheat sequence to bins was an improvement to the unordered IWGSC CSS contigs. However, POPSEQ uses several individuals from a doubled-haploid or recombinant inbred line population, sequenced to low coverage ($\sim 1.5 \mathrm{x}$). SNPs identified between individuals are then used to map the sequenced contigs (Mascher et al., 2013). Since the wheat POPSEQ for both the Chapman scaffolds and IWGSC-2 was based on analysis of a small doubledhaploid population of 80-90 individuals (Sorrells et al., 2011), this map only provided low-resolution. This low-resolution genetic map was used for finemapping in Chapter 6. However, the large bin size in terms of contig number and low-resolution of the map meant that a more efficient strategy was required to target variation around candidate genes. This was considered once fine-mapping had narrowed the sequence space, which is described further in Chapter 6.

5.8.5 SNP variation in NGS data

Bulked segregant analysis (BSA) was used to target variation which was enriched for the corresponding parental allele in the relevant bulk. Importantly, the BSA strategy did not rely on synteny, which as discovered in this Chapter, had its limitations. The UniGenes had the greatest proportion of syntenic relationships ($60-80 \%$), which is slightly higher than previous genome-wide studies have identified (60-70\%) (Massa et al., 2011, Luo et al., 2013). This figure in the v3.3 genes was lower at $20-70 \%$. As with previous studies in tetraploid and hexaploid wheat (Trick et al., 2012, Ramirez-Gonzalez et al., 2014), the tens of thousands of variants generated required filtering to a manageable shortlist. Variants were prioritised which showed six-fold depletion or enrichment (BFR>6) in the corresponding bulk. This value was empirically determined as being suitable to capture SNPs on 2S. Of the genes with the highest (non-infinity) BFRs (BFR>20), only two out of 47 were localised to 2 (Appendix 5.19). One of the SNP assays to validate these was monomorphic, whilst the marker on the other SNP mapped outside the Rht8 linkage group, to group A (Figure 5.11).

5.8.6 SNP variation in SNP-platform data

The iSelect array was used to identify SNPs between the parent NILs and between the bulks. The iSelect array provided the highest proportion of polymorphic markers at 38% (Figure 5.13), and was also cost-effective compared to the cost of sequencing (Table 5.6). The iSelect array was limited since only 15% of the pre-defined allelic variation on the array mapped to the D genome (Wang et al., 2014a). The markers which mapped to syntenic intervals in the zippers was low, and most of these were monomorphic (Appendix 5.1). However, even normalising for the pre-defined markers on each chromosome arm, the data showed high SNP densities outside of 2DS, which is explored below.

The BSA data showed high discordance between bulks and parent NILs in contrasting ways, explored in this Chapter, some of which was due to heterozygous calls. There is also the possibility that the difference in iSelect runs confounded analysis. The parent NILs and bulks were genotyped on separate arrays and by the second array, the SNP-calling had improved, since the number
of SNPs called due to missing data (NC) decreased across the whole array (down by 5%).

The heterozygous call assignment was made using the software GenomeStudio, which cannot always assign calls in overlapping clusters (Wang et al., 2014a). However, this issue was representative of the array genome-wide, rather than this particular analysis. This could be due to deletions or missing data, variation arising due to copy number rather than presence/absence and the limitations of using wheat sequence from the reference research wheat, Chinese Spring, in alignments.

The Axiom® 820K array could not be fully capitalised on because the parent NIL material or BSA was not used, instead, the Rht8 NIL in the Paragon background was genotyped. Only the 2DS contigs from these SNPs could be used for marker development, and 120 of these were identified. The contigs from SNPs without heterozygous calls were prioritised. Since the markers on the Axiom® array at the time of writing were not mapped to any genetic maps or annotated with syntenic information, specific targeting of SNPs was hindered. This was not pursued further since the SNPs might not transfer to the parent NILs to the finemapping population. However, the array shows considerable potential for developing markers mapping close to Rht8, since a large number of SNPs mapped to the syntenic Rht8 intervals in the genome zippers. These are highlighted in Appendix 5.1. Even though the SSRs on the corresponding CSS contigs were mostly monomorphic, the SSRs were designed on microsatellites identified in Chinese Spring whereas SNP assays from the array would target variation specific to the genotyped varieties.

5.8.7 Ensuring genome specificity

Designing D-genome-specific markers was important for cost and efficiency. An in silico approach was used in this Chapter, and then verified by 2D flow-sorted DNA from the short parent NIL. PolyMarker was used to prioritise SNPs for marker validation by using homoeologous IWGSC CSS contig alignments (Ramirez-Gonzalez et al., 2015). At times, this was limited by the absence of some homoeologue sequence, however the tool was useful for at least narrowing
down large numbers of SNPs for consideration to SNP assays which could be confirmed to be semi-specific or specific to the D genome.

One major technical problem that was found in this Chapter was the discrepancy between the identification of varietal and homoeologous SNPs caused by the redundancy of IWGSC CSS contigs. Manual alignment and visual assessment of a number of case studies identified two main problems. First, due to redundancy in the CSS contigs, often at least two highly similar (by nucleotide identity in BLAST) contigs were returned. Due to the much shorter gene models in the v3.3 cDNA reference compared with the CSS contigs, often the alignment in PolyMarker did not match the contig that the gene model was anchored to. For an unknown reason (assumed to be sequencing error), the CSS contigs, otherwise aligning with high-identity around the SNP position, would have a different base-call at the SNP. Therefore, there were cases where there was a difference in calling a SNP as varietal or homoeologous depending on which contig was used. A systematic review of how frequently this occurred in the IWGSC CSS contigs was beyond the scope of this project, but estimates report that that $3-5 \%$ of the IWGSC CSS contigs are duplicated (IWGSC, 2014).

The v3.3 cDNAs were a non-redundant set of gene models with the longest transcript retained in the case of multiple splice variants. It is plausible that given slightly different splice variant lengths, the IWGSC CSS contig returned as a best match (by nucleotide identity in BLAST) to a gene model varied depending on which splice variant was used. The implications of this could extend to other projects using the v3.3 cDNA reference. To my knowledge, the v3.3 cDNAs have been used in one other project (Borrill, 2014) where this was not reported. However, it is likely that this was not identified due to the greater emphasis on gene expression in that work (unpublished). To circumvent this problem, manual alignments were carried out in a subset of high-confidence variants, and doing this did improve the marker validation rate. However, time constraints did not permit for manual validation of all the SNPs already filtered in silico. For this to be an effective strategy, a smaller stretch of sequence would have to be considered, based on the fine-mapping of Rht8 and physical anchoring of sequence. This will be reviewed further in Chapter 8 in light of the fine-mapping findings described in Chapter 6.

The flow-sorted 2D DNA was used to validate genome-specificity. The flowsorted DNA was found to amplify some non-2D-localising markers used in genetic maps in the Griffiths' group. However, the DNA was found to discriminate well between $2 \mathrm{~A}, 2 \mathrm{~B}$ and 2 D . This was not unexpected, given the 95% purity of the flow-sorted fraction (the remaining 5\% was identified mostly as 7D). This finding has consequences for 2D BAC library construction based on the flow-sorted DNA. Crucially, the purity also limited the confidence with which SNPs apparently mapping outside 2DS could be validated.

5.8.8 Low marker validation rate

It is difficult to find one causal factor to explain the abysmally low markervalidation rate in both the SNPs identified between the parent NILs, and in the SNPs identified in the BSA strategy to target variation associated with Rht8. In this project, these figures were $16-19 \%$ (Figure 5.13). Previous studies in wheat reported $\sim 55 \%$ success rate of marker validation (Trick et al., 2012, RamirezGonzalez et al., 2014). Different angles can be considered and some of these are done so here. However, further evaluation of the BSA approach and the v3.3 cDNA reference is carried out in Chapter 8 in light of the results to fine-mapping.

5.8.9 Technical - sequencing and mapping

The strategy and SNP-calling pipelines were identical to those used before in two projects involving SNP discovery in wheat (Trick et al., 2012, Ramirez-Gonzalez et al., 2014). There is no evidence to suggest that sequencing or mapping was inferior in this project; in fact the analysis in this work built on recommendations by both sets of authors.

One study in tetraploid wheat (Trick et al., 2012) mapped the grain protein content gene GPC-B1 to a 0.4 cM interval, with a 58% success rate in terms of validated SNPs. That work used the same UniGene reference and SNP-calling procedure that was used in the first approach of SNP discovery between the parent NILs. The experimental details of the sequencing in this Chapter were similar to that study: Trick et al., (2012) sequenced one parent per lane, and here, four samples of each parent were sequenced over two lanes. Effectively, this results as one parent per lane, stratified into four smaller samples, which were then merged.

Mapping details were better here (average of 59% across parent NIL samples, Appendix 2) than that reported in the tetraploid wheat study (48\%).

The authors of that work suggested a minimum of eight-fold coverage across genes for BSA analysis. They found that increasing coverage from 8 x to 16 x reduced the number of putative SNPs identified by 60% and increased the validation rate from 57% to 83% (Trick et al., 2012). The coverage across genes used here was a minimum of 20 x , identical to the BSA analysis in a project in hexaploid wheat by Ramirez-Gonzalez et al., (2014).

5.8.10 Experimental design

Within the parent NIL samples, spike and peduncle tissue was harvested and the mRNA sequenced. Since the bulk samples were only from spike tissue, there was the possibility that the different tissues might result in different SNP datasets. This was investigated using in silico mixes (outlined in Chapter 2). It was decided to consider all SNPs identified within the different in silico mixes together, since there was no consistent bias identified when excluding spike and peduncle in turn from the parent NIL data (shown in Chapter 2). Also, it was desirable to maximise coverage in order to increase marker validation rate, since this was so low in this project.

5.8.11 SNP discovery and filtering

The specific numbers of SNPs reported between the studies in wheat and in this project vary in detail due to experimental design, which is expected. The biggest difference is the extremely low enrichment of SNPs on 2DS found here, when compared with enrichment of the target chromosome in the other studies.

In the parent NILs, 60,454 SNPs were identified between any one of the eight samples and the reference. Of these, 1% were highly concordant where all the samples within each parent NIL had the same base call. Nevertheless, even in the highly concordant dataset, there were high SNP densities outside of 2DS. Of the SNPs that mapped to 2DS and were prioritised for validation based on synteny and concordance, only 16% were validated as polymorphic and taken forward for fine-mapping.

It was expected that the BSA approach would enrich putative SNPs in the Rht8 region on 2DS. The chromosome arms 2AS and 2BS were also considered since the absence of a 2DS CSS homoeologue would result in a gene aligning to a 2AS or $2 B S$ contig instead. Of the genes with the highest (non-infinity) BFRs (BFR>20), only two out of 47 were localised to $2 S$ (Appendix 5.19). Only one of these could be validated but did not map to the Rht8 linkage group (BFR_4 in group A, Figure 5.11). This contrasted with the study in tetraploid wheat, where the highest BFR identified was of a SNP which mapped closely to the candidate gene (Trick et al., 2012). In that study, the approach used was to validate all SNPs with a BFR >3 on unique genes (regardless of location), which was ~ 100 markers. Of those, 58% were polymorphic and 60% of polymorphic markers mapped close to the target gene.

Here, more stringent filtering was necessitated by the greater number of SNPs identified (SNPs with BFR>6 were found across >7000 unique genes). Of the putative SNPs with infinity BFR ratios, indicating that they were completely absent in one bulk, only 7% were on 2 (data not shown). The high-density of SNPs outside of 2DS even in the most highly enriched (therefore perhaps most reliable) putative SNPs, was indicative of the dataset as a whole. When all SNPs on unique genes with BFR>6 were considered (~2500 unique genes), 9% were on 2S which was above the average per chromosome arm (7\%), but there were higher SNP densities outside of 2DS (Figure 5.9).

5.8.12 Variation outside 2DS

Some variation in the genetic background between the two parent NILs was expected, even though the two parent NILs were near-isogenic outside of chromosome 2D (Korzun et al., 1998). Around 50\% of the total SNPs on the iSelect array were assigned a genetic position at the time of writing. Analysing the variation genome-wide on the array identified some SNPs outside of 2DS, e.g. on 3B but only the genetically-mapped variants could be resolved (Appendix 5.1). When considering the IWGSC CSS SNPs mapped to and not genetic position, for both the parent NIL NGS and SNP-platform data there were high SNP densities on chromosomes 3B, 6AL and 7BS.

The extent of intra- and interchromosomal rearrangements genome-wide in hexaploid wheat is only beginning to be documented (Ma et al., 2015a, Ma et al., 2014). A recent study found that 40% of translocated genes were outside of the well-known translocations involving 4A, 5A and 7B and instead were scattered across the remaining wheat chromosomes and sub-genomes.

SNPs between parent NILs in locations that were also enriched for SNP density in the BSA were focused on. The BSA data showed enrichment of SNPs on 3B and 7S in common with the parent NILs. Of these, SNPs on 7BS and on 5B could be validated and these were found to map outside the Rht8 linkage group. None of these markers, with the exception of one, amplified the 2D DNA. This would suggest that these are not interchromosomal rearrangements but SNPs enriched in the BSA that are outside the Rht8 region. The one exception, taken with the incomplete purity of the 2D DNA, means that there is a possibility that some interchromosomal translocations are present in the Rht8 region.

Since the resolution of the BSA approach is a combination of marker density and the recombinations sampled in each bulk, this strategy will be evaluated along with the points discussed here in Chapter 8, in light of the fine-mapping.

Chapter 6: Fine-mapping and further characterisation of the Rht8 interval

6.1: Introduction

Map-based (positional) cloning is a technique for characterising a gene with a particular altered phenotype usually caused by sequence polymorphism (Huang et al., 2003). The basis of this technique is the linking of molecular markers to a phenotype in order to identify a small interval harbouring the gene, which is defined by the two most closely-linked flanking markers. The ultimate goal is to find a set of makers that co-segregate (no recombination) with the gene of interest. These flanking markers can then be used to screen clone-based physical maps, such as Bacterial Artificial Chromosome (BAC) libraries. From these, physical information can be extracted and further steps such as sequencing, sequence annotation and the identification of expressed regions can take place to identify a candidate gene. Finally, there is the verification step of the identified gene by sequencing of isolated alleles, the introduction of a wild-type copy of the gene into a mutant, or overexpression/knock-out studies (Scheible et al., 2005). The prerequisites for map-based cloning of Rht8 form the basis of much of this Chapter.

The first step for map-based cloning is the creation of an appropriate mapping population. This population should enable initial low-resolution mapping subsequently followed by mapping to enrich for recombinants around the gene. This is directed towards the definition of a minimal interval of molecular markers that includes the locus of interest. Establishing these populations can cause considerable delays in projects. The work in this Chapter was supported by previous work which developed these populations. First, a recombinant-inbred line (RIL) population based on 2D substitution lines (Korzun et al., 1998) was developed. The 2D RIL population was used in this Chapter in the first step of low-resolution mapping. Next, a fine-mapping population was developed by Gasperini et al., (2012), which originated from crosses between CappelleDesprez (CD) and the Rht8 donor, RIL4. From 3104 F2 individuals, recombinants
with respect to the parents were selected and developed to further generations to map Rht8 between Xgwm261 (distal) and Xcd53 (proximal). The interval was flanked by the single-strand conformation polymorphism (SSCP) markers DG279 and DG371. This population was used in the second fine-mapping step presented here. Finally, a subset of the fine-mapping population was developed to a fourth generation of self-fertilised F4 recombinants, which were fixed (recombinant with respect to the parents) homozygotes at the Rht8 locus. These recombinants were used to order markers around Rht8 between DG279 and DG371. The populations established from both these previous efforts are excellent resources for further map-based cloning of Rht8, described in this Chapter.

The second requirement for map-based cloning is markers which saturate the region of interest. In the absence of a physical map for wheat chromosome 2DS, comparative genomics was used to fine-map Rht8. Previously, the target region was saturated with gene-based markers using syntenic intervals in Brachypodium and rice, but low polymorphism between the parent NILs to the original mapping population hampered further marker development (Gasperini et al., 2012). In Chapter 5, markers were developed from SNP arrays and RNA-Seq-enabled bulked segregant analysis. As well as this, the IWGSC CSS contigs were used to target marker design to genes with the greatest probability of lying in the syntenic gene intervals based on 2DS localisation. In addition to the CSS contigs, a WGS assembly (named Chapman scaffolds) was used to extend the sampled sequence space (Chapman et al., 2015). However, comparative genomics approaches rely on a good degree of micro-collinearity between candidate gene intervals in related species. In certain situations collinearity has been sufficient to enable cloning of wheat genes e.g. Ph1 (Griffiths et al., 2006). In other cases, too many local rearrangements have hindered gene isolation, therefore working on a case-by-case basis is key (Krattinger et al., 2009a). The draft sequence of barley, more closely related to wheat than Brachypodium and rice (Chapter 1), showed superior synteny to the wheat Rht8 interval than the other two species. This was explored in Chapter 5.

Resources made available at the end of this project offered a way to explore the micro-collinearity further and even circumvent the limitations. A WGS draft sequence of $A e$. tauschii, the D-genome progenitor to hexaploid wheat, was published in 2013 (Jia et al., 2013). In the same year, a 4.03 Gb physical map
was released (Luo et al., 2013). In 2015, this data was compiled into one location (http://aegilops.wheat.ucdavis.edu/ATGSP/, 2015). As part of the work, BAC clones were compiled into minimal tiling paths to assemble BAC contigs. These BAC contigs were further combined with the WGS reads to assemble scaffolds. The BAC contigs were anchored using a genetic map containing over 7000 SNPs from an iSelect SNP array. The contigs, scaffolds and SNP-marker sequences were deposited in the database (Luo et al., 2013). The physical map was also made comparative between Ae. tauschii, Brachypodium and rice (Luo et al., 2013). This provided a powerful resource to identify an Rht8 interval which had higher genetic resolution than the T. aestivum population sequencing (POPSEQ) resources, described in Chapter 5, and more closely related to wheat than the previously considered syntenic species. Additionally, the comparative genomics map enabled a thorough evaluation of the micro-collinearity in the Rht8 region between resources.

Finally, for successful map-based cloning of Rht8, there must be accurate phenotyping. This is crucial to establish the order of recombinants and subsequently markers around the genetic interval. This Chapter presents the work which was used to score the graphical genotype at the Rht8 locus based on plant-height data.

In this Chapter, the markers from Chapter 5 were fine-mapped and syntenic intervals harbouring Rht8 established. The fine-mapping strategy was made possible by extensive phenotyping at the Rht8 locus in order to establish the graphical genotype for accurate ordering of markers. Further, genetic intervals were demarcated in the most current wheat genomic resources: the IWGSC-2 CSS contigs anchored to genetic bins by POPSEQ, and the Chapman scaffolds also anchored by the same doubled haploid population. The major recent advances in Ae. tauschii genetic and physical maps enabled a more systematic assessment of the collinearity of the Rht8 interval. The highly-saturated maps were also used to evaluate the performance of the wheat reference used in the bulked segregant analysis (BSA) approach outlined in the previous Chapter. Finally, the gene content in Ae. tauschii and T. aestivum is explored here, focusing particularly on differentially expressed genes and genes related to biological processes which could explain the Rht8 phenotype.

Figure 6.1: Schematic diagram of the workflow in Chapter 6 to fine-map and further characterise Rht8.

6.2 Phenotyping the fine-mapping population at
 the Rht8 locus

6.2.1 Measuring height in glasshouse-grown plants

A graphical genotype score of short/tall at the Rht8 locus of each recombinant in the fine-mapping population was a pre-requisite to mapping markers developed in Chapter 5. Accurate assignment of recombinants as short/tall was also critical for the RNA-Seq strategy outlined in Chapter 5.

In order to ascertain the phenotype, the fine-mapping F4 recombinants were grown alongside the short and tall parent NILs, initially in a glasshouse trial in eight randomised blocks in the winter of 2012. Plant height was measured at maturity. The short parent NIL RIL4, homozygous for Rht8, had a mean height of $75.7 \pm 1.2 \mathrm{~cm}(\mathrm{~N}=14)$. The tall parent Cappelle-Desprez (CD), homozygous for rht8, had a mean height of $82.3 \pm 1.2 \mathrm{~cm}(\mathrm{~N}=16)$. The difference in height between the two parents was 6.6 cm , somewhat less than the $8-10 \mathrm{~cm}$ reported by Gasperini (2010). The reduced differential in height was due to a decreased height of CD, since the mean height of RIL4 was comparable to that found previously (77 cm). The mean heights of the F4 recombinants (73 individuals) and parents are available in Appendix 6.1. The height frequencies were plotted in a histogram and a bimodal distribution was observed, with a split at 76.75 cm which enabled recombinants to be assigned to two distinct groups based on phenotype: recombinants below 76.75 cm were typed 'short', those above typed 'tall' (Figure 6.2). The mean height of the 'shorts' was $74.8 \pm 0.5 \mathrm{~cm}(\mathrm{~N}=32)$ (shown by a dashed line) and the mean height of the 'talls' was $81.0 \pm 0.4 \mathrm{~cm}(\mathrm{~N}=42)$. The mean height of each recombinant group short/tall was below the mean of the corresponding short/tall parent (shown by a continuous line and arrow in Figure 6.2A).

A total of 14 short and 16 tall recombinants from the extreme ends of the distribution were selected as candidates for the short and tall bulks for RNA-Seq, described in Chapter 5. The short outlier at 65 cm was not included in the bulk.

Figure 6.2: Height frequencies of the recombinants and parents to the fine-mapping Rht8 population across three locations. Mean height data was used. The y-axis represents the frequency count. The dashed lines represent the mean of the short (left) and tall (right) recombinants. The solid lines highlighted with the arrows represent the height of the corresponding parent of the short/tall group (RIL4 or Cappelle-Desprez). The recombinants were typed short or tall based on the bimodal split at each location. (A) Glasshouse 2012. Bimodal split at 76.75 cm. (B) Church Farm 2014. Bimodal split at 88.75 cm . (C) Morley 2014. Bimodal split at 104.25 cm . Full data shown in Appendix 6.1. The extreme short outlier (F4-1-2-2-1) was not selected for RNA-seq (Appendix 6.2) but was used for fine-mapping.

6.2.2 Sterility induced in glasshouse conditions

Sterility was observed in approximately half of the plants in the glasshouse experiment. There was visible absence of grain in florets of the spike, and it was hypothesised that this also reduced the overall height. The subset of extreme short and tall recombinants (30 in total) were measured for spike length and sterility was scored on a scale of 0 to 5 according to severity (5 being totally sterile) as described in Chapter 2. A linear model was fitted and sterility had a significant effect on spike length ($\mathrm{P}<0.05$) (shown in Appendix 6.2), however
there was no recombinant*sterility interaction, suggesting that all recombinants were affected similarly. It was critical to have a reliable height phenotype for finemapping and for the selection of short/tall bulks for RNA-Seq. Since the latter was of primary concern earlier on in the project (see 5.3.3), the subset of 30 recombinants selected as candidates for the short and tall bulks were grown to obtain more phenotypic data. This was achieved in an experiment in the spring of 2013 with 24 randomised blocks. All plants were measured for sterility and 93% of the 880 plants had some degree of sterility (Appendix 6.3). Sterility had a highly significant effect on total height ($\mathrm{P}<0.001$) and there was also a significant genotype*sterility interaction ($\mathrm{P}<0.05$) (Appendix 6.2). A datalogger which measured glasshouse conditions at canopy level recorded temperatures of $+50^{\circ} \mathrm{C}$ during grain filling (Appendix 6.4) which likely caused the severe sterility. Due to the concern of mis-typing recombinants, coupled with lack of confidence in appropriate glasshouse conditions to eliminate sterility, the recombinants (now F5 but herein called F4 for consistency with the glasshouse results) were sown in the field in winter 2013 in two Norwich sites.

6.2.3 Measuring height in the field and final typing at the Rht8 locus

The 73 recombinants were grown with the short and tall parents in the 2013-14 season in randomised blocks with five replicates in two locations. At Morley, six recombinants were not sown due to lack of seed (specified in Appendix 6.1). Seed was drilled 12 cm apart using the spaced drill, which meant that in actuality the replication was much higher than $N=5$, since plants within each row could be measured as individual replicates if necessary and an 'average by eye' was conducted when selecting plants within a row. A representative plant from each row was measured at maturity.

Overall, the plants were taller in both field experiments than the glasshouse (Figure 6.2B\&C), and the differential between short and tall parent was similar to the $8-10 \mathrm{~cm}$ reported previously by Gasperini (2010) and Korzun et al. (1998). The short parent, RIL4 had a mean height of $86.9 \pm 0.5 \mathrm{~cm}(\mathrm{~N}=40)$ at Church Farm, which was 8.9 cm shorter than CD $(95.8 \pm 0.7 \mathrm{~cm}, \mathrm{~N}=35)$. Morley had the tallest plants overall and the greatest difference in height between the parents. RIL4 had
a mean height of $100.8 \pm 0.3 \mathrm{~cm}(\mathrm{~N}=53)$ and CD was 9.7 cm taller ($110.5 \pm 0.4 \mathrm{~cm}$, $\mathrm{N}=49$). The mean height frequencies of the recombinants were bimodally distributed as before (Figure 6.2) and independently typed as short or tall at the two field locations.

Using the independently-assigned phenotype score the three locations, each recombinant was assigned a consensus score at the Rht8 locus. Mostly, the same score was assigned at each location. For 13 recombinants, there was a contrasting score in one of the locations, and the consensus score was based on the majority score (confirmed by two out of three locations). These are marked by a darker colour and with an asterisk in Appendix 6.1. Of these contrasting scores, the majority (8 out of 13) were from the glasshouse. This highlighted first, the importance of the field experiments to provide more reliable height data, and second, the ambiguity in scoring a trait seemingly trivial to phenotype.

6.3 Fine-mapping

Rht8 was fine-mapped in stages of increasing resolution since mapping directly with the fine-mapping (FM) recombinants (Figure 6.3) would give spurious results with markers which were outside the Rht8 interval when considered at lower resolution.

Figure 6.3: Defining the FM and gwm recombinants used in step 2 and 3 of the fine-mapping of Rht8.

6.3.1 Step 1: Coarse mapping with 2D RILs

First, the 2D RIL population (described in Chapter 5) was used to coarsely map the markers. The markers were arranged into 22 2D RIL classes according to markers which shared the same genotype (full details in Appendix 5). The main group of interest surrounded the DG279/DG371 markers on 2D used in mapping by Gasperini (2010), since this group was likely to map to Rht8. This group is marked ' B ' in Figure 6.4. The outgroups to group B contained markers on chromosomes outside 2D ('C’ in Figure 6.4) or on 2D but outside group B (labelled ' A '). These markers were discarded (blue dotted line in Figure 6.4). Group B contained 62 markers across 2D RIL classes 1-22. These markers were retained (marked with the black dashed line in Figure 6.4). This first step was used to filter markers in Chapter 5 which were likely to map to Rht8.

6.3.2 Step 2: Medium-resolution mapping with Xgwm261-Xcfd53 recombinants

In the second step, the fine-resolution mapping population for Rht8 was considered to discriminate which markers were within the DG279-DG371 interval from those in the wider region on 2DS. The fine-mapping population was developed from crossing selected 2D RILs containing the Mara-derived Rht8 allele into the Cappelle-Desprez background, as outlined by Gasperini (2010). From the original F2 population of 3104 F2 individuals, a total of 152 recombinant families with genotypes different to the crossing parents were identified. These were used by Gasperini et al., (2012) to fine-map markers between Xgwm261 and Xcfd53. From this F2 recombinant subset, 79 recombinant individuals were used to resolve Rht8 between DG279 and DG371. Of these 79 recombinants, some were found to be scoring errors and others sterile, so 73 were retained in this work (taken to F4 and phenotyped in 6.2), which decreased the interval size (Figure 6.3). The wider recombinants outside DG279-DG371 which could be retained were used in the second step (abbreviated to gwm recs). The 62 markers from the first step (Figure 6.4) were grouped into 30 distinct genotypic marker classes, based on markers which shared the same graphical genotype when typed with the gwm recs (full details in Appendix 6.5). There was a clear separation between marker classes which mapped between Xgwm261 and

DG279 (discarded, shown in blue, Step 2 in Figure 6.4) and the marker classes which grouped within the Rht8 interval (shown in red, Step 2 in Figure 6.4). These marker classes (13-29), containing 33 markers, were retained for the final finemapping step.

6.3.3 Step 3: Fine-mapping with FM recombinants

In the third and final step of fine-mapping, the remaining 33 markers could be grouped into seven classes, labelled A-G, according to their genotypes when typed with the 73 FM recombinants (Figure 6.4 and in full in Appendix 6.6). The recombinants were grouped into 12 recombinant classes (labelled I - XII in Table 6.1) according to their graphical genotypes and by scoring each of the recombinants as short (b)/tall (a) at Rht8. As described previously in 6.2, some recombinants had conflicting short/tall scores and where these conflicts arose, the majority score (according to two out of the three locations) was used to establish a consensus. These cases are marked with an asterisk. Where a recombinant with a less confident Rht8 score was in a recombinant class with individuals of a confident score (classes VI, VIII and XII), both scores were included for transparency (Table 6.1). Given the ambiguity in height score in recombinant classes with either a single (VII) or small number (three, in VIII) of recombinants, there was reduced confidence in defining the exact short/tall boundary at the Rht8 locus.

Nevertheless, the recombinants were ordered using the height data and arranged to minimise double recombination events. A total of 75 recombination events were counted between the seven marker classes. The recombination frequency was used to identify eight genetic intervals, shown in Step 3 of Figure 6.4. Rht8 was mapped to a 1.015 cM interval between marker classes D and E , with the largest interval of 0.95 cM between D and Rht8. This placement of Rht8 was different to the more central location of Rht8 between DG279 and DG371 mapped previously (Gasperini et al., 2012), which is likely due to the differences in phenotype scoring at the Rht8 locus. Crucially, no marker class co-segregated with Rht8.

STEP 1
Population
2D RILs
Coarse mapping to 2 D region (Chapter 5)
Purpose

Result 62 markers
Retain 2DRIL classes 1-22

STEP 2
gwm recombinants
Medium-resolution mapping to Xgwm261-Xcfd53

Retain gwm classes 13-29 33 markers

STEP 3
FM recombinants
Fine-mapping to Rht8 interval
Map FM classes A-G 33 markers

Figure 6.4: Fine-mapping Rht8. Rht8 was fine-mapped in steps from left to right, described in the top panel. Markers retained from each step are marked in black dashed lines and used in the next step as shown by the arrows. Markers discarded since they did not map in close proximity to Rht8 are indicated with blue dashed lines. Marker classes retained in the 2D RIL population and Xgwm261-Xcfd53 recombinants are coloured red. In the fine-mapping using the FM population, 73 recombinants were used and a total of 75 recombination events were counted. These are indicated in the 'recs' column (far right), along with the cM distance of the intervals between the marker classes. Rht8 was fine-mapped to a 1.015 cM interval between marker classes D and E. Distances in the mapping using the 2D RIL population (left) and Xgwm261-Xcfd53 recombinants (centre) are relative measures only for ordering marker classes. The difference in interval size between classes B-C and C-D in Step 3 (right) is due to rounding in the mapping software (the value is 0.0644 to 4 d.p.).

Table 6.1: Graphical genotypes of the fine-mapping population grouped in recombinant classes according to their genotype and phenotype at the Rht8 locus. Markers were grouped into classes and shown along with the short (RIL4) and tall (CD) parent NILs. The mean height of each recombinant class from the three locations are shown, where ' $G H^{\prime}=$ Glasshouse 2012 , 'CF' = Church Farm 2014, 'MOR' = Morley 2014.

Marker class A was estimated to be 0.016 cM away from DG279 due to one recombination event. It is likely that DG279 was previously mis-scored at this recombinant, since the genotype in the individual could not be reproduced. Therefore, DG279 could be combined into marker class A. However, DG279 was presented in a separate class to marker class A (Table 6.1) for consistency with the previously published data (and not correcting this likely error).

A single marker comprised marker class D (2DS_5375260, Table 6.2). This SSR marker was designed to amplify a microsatellite on 2DS_5375260: 4772-5019. The marker 55_uni, in marker class C, four recombination events apart from marker class D (0.064 cM , Figure 6.4) was a KASP marker designed on a SNP at the beginning of the same CSS contig. Both these markers mapped to the same 2D RIL and gwm rec marker class (Table 6.2). Since the genotypic data
was consistent and reproducible, these markers were left in distinct marker classes.

Marker class E co-segregates with DG371, but was positioned separately for clarity and because one marker in the class (2DS_208) was ordered by barley physical position to define a smaller region/closer to Rht8 than DG371 (2DS_208, barley gene MLOC_58453, chromosome 2H:18521524, versus DG371, chromosome 2H:18522971, Table 5.4). Marker classes F and G were placed distal to marker class E to minimise gene conversion events with recombinant class XI, however, this class comprises a single recombinant. Therefore, it is possible that a genuine gene conversion event could place classes F and G closer to Rht8. The ordering of these classes based on physical data from $A e$. tauschii and T. aestivum later confirmed the existing genotypic order (6.3.5).

6.3.4 Syntenic relationship of the Rht8 locus with barley, Brachypodium and rice

It was already established in Chapter 5 that previous comparative analysis between rice and Brachypodium in the Rht8 region (Gasperini et al., 2012) gave an incomplete picture of the gene content of the locus. It was shown in Chapter 5 that when only 2DS CSS contigs in the region were considered, barley had the closest synteny to wheat, and that the synteny between the barley candidategene interval and Brachypodium and rice was poor. The poor micro-collinearity in the Rht8 region was also seen when fine-mapping Rht8 using the marker classes A-G. The marker information from Table 6.2 (with the exception of asterisked markers which had no comparative information or were mapped to non-syntenic chromosomes) was used to anchor markers onto comparative maps of barley, Brachypodium and rice and homologues joined to show the relationship between the species (Figure 6.5).

The first observation was that barley had the most anchored markers, followed by Brachypodium and then rice. This is in line with the findings in Chapter 5, where barley had the best synteny of these three in the region. Due to this attrition across the three comparative species, not all markers could be anchored across the three maps and therefore, obtaining the smallest region in one species was not necessarily confirmed with the same markers in all three maps. Further, due
to the sparseness of the rice map compared to barley, for example, analysing the rice map in isolation by only retaining the markers which map to chromosome 4 might lead to a false sense of high collinearity (Figure 6.5D).

The second observation was that macro-synteny was good in places. The marker classes from A-G which were best annotated in barley did show a general progression along barley chromosome 2. Further, in marker class A, physical positions from barley synteny could be used to order markers (Figure 6.5A) which otherwise co-localised to the same genetic marker class, and this translated well across the three comparative maps. In other marker classes, such as D and E, the synteny was much more disrupted. It should also be noted that a significant number of markers within classes $A-G$ could not be anchored onto the homologous chromosomes, since they mapped outside of chromosomes $2 \mathrm{H}, 5$ and 4 in the corresponding species. This is shown in Table 6.2. Furthermore, many markers which were developed following the reasoning that they first mapped to a wheat 2DS contig and second were also anchored physically to either one of the syntenic intervals in Figure 6.5 (as described in Chapter 5) were discarded in the first two fine-mapping steps, since the genotypes did not localise close to Rht8.

Perhaps most crucially, combining the observations made above, it was not possible to define the Rht8 region using the tightest (genetically) flanking marker classes D and E in all cases, or indeed using the same markers across all three species. Nevertheless, it was possible to define physical intervals for Rht8 in all three comparative species, summarised in Figure 6.5. The smallest barley region that could be demarcated was between 2DS_6 in marker class A (MLOC_62798, chromosome 2H:15618954) and, mapping the other side of Rht8, 2DS_208 in marker class E (MLOC_58453, chromosome 2H:18521524), defining a 2.9 Mb region on barley chromosome 2 H . On Brachypodium chromosome 5, 52i (Bradi5g03460, 4042855) in marker class B and 2DS_138 (Bradi5g04130, 5393012) in marker class F defined a 1.36 Mb interval and the same markers also defined a 1.34 Mb interval between Os04g0209200 and Os04g0229100 on rice chromosome 4

Figure 6.5: Fine-mapping of the Rht8 locus and alignment with the homologues of barley, rice and Brachypodium on physical maps. (A) Fine-mapping marker classes A-G are sub-divided into individual markers since markers within the same class mapped to different comparative map positions. The closest flanking markers to Rht8 in classes D and E are shown in red. Markers that mapped to genes used to define the smallest syntenic Rht8 intervals described in the text are in bold italics. The bottom of the map is towards the centromere, and the top towards the telomere. (B) The physical map of barley chromosome 2 (C) The physical map of Brachypodium chromosome 5 and (D) The physical map of rice chromosome 4. Homologues between the genomes are joined with blue dashed lines. Where no homology was found between all three species, the line loops over the absent map, or is discontinued where no further map position was found. Genes used to define the smallest syntenic Rht8 intervals are shown in purple dot-dash lines. The genes defining these intervals are highlighted in bold italics and the intervals themselves are filled in purple. The sizes of the syntenic Rht8 intervals were calculated from flanking Mb positions, which are coloured purple. Each comparative map is drawn to its own scale indicated at the bars along the bottom. Breaks in the scale which were necessitated to contract the maps in order to fit the page are indicated by the double diagonal bars and the break in scale is indicated by the Mb positions.

	\％	＋					$\stackrel{\rightharpoonup}{\text { to }}$	$\begin{array}{l\|l} \hline \stackrel{\rightharpoonup}{\mathrm{c}} & \stackrel{0}{\circ} \\ \hline \stackrel{y}{c} \end{array}$				$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{\dot{m}} \\ \stackrel{9}{2} \end{array}$	$\begin{array}{\|l\|l} \hline \stackrel{y}{0} \\ \stackrel{9}{2} \end{array}$	\dot{f}	\mathfrak{m}		$\begin{array}{\|l\|l} \hline \stackrel{y}{\mathrm{~m}} \\ \stackrel{1}{2} \\ \hline \end{array}$	$\underset{\substack{2 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$	®	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathbf{j}} \\ \stackrel{9}{2} \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathbf{~}} \\ \stackrel{\rightharpoonup}{2} \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{y}{\mathbf{j}} \\ \stackrel{9}{2} \end{array}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\mathfrak{c}	$\stackrel{\sim}{\circ}$	$\begin{array}{\|l\|} \hline \infty \\ \underset{\dot{f}}{ } \end{array}$	$\begin{array}{\|l} \stackrel{\sim}{\mathrm{N}} \\ \stackrel{1}{2} \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{N}{\stackrel{1}{n}} \\ \stackrel{y}{2} \end{array}$			$\stackrel{\substack{\text { N} \\ \stackrel{\rightharpoonup}{2}}}{ }$	$\begin{array}{\|l\|} \hline \stackrel{y}{\dot{\omega}} \\ \hline \end{array}$	$\begin{aligned} & \text { B } \\ & \stackrel{8}{c} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \dot{\sim} \end{aligned}$		$\stackrel{\sim}{n}$	\％		
		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \mathbf{\infty} \end{array}\right\|$			$\stackrel{\sim}{\sim}$							－	N			，				$\left\|\begin{array}{c} \hat{0} \\ \infty \\ \underset{\infty}{\infty} \end{array}\right\|$	$\begin{array}{\|c\|} \hline \hat{\infty} \\ \substack{n \\ \infty \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ \frac{0}{n} \\ 0 \\ \underset{y}{0} \\ \hline \end{array}$	crion		－0	－	\％	N	$\begin{array}{\|c} \hline 0 \\ \\ \\ \hline 0 \\ \hline \end{array}$	$\begin{gathered} 1 \\ N \\ \\ \substack{2 \\ d} \end{gathered}$		N	$\begin{aligned} & 10 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\sim}{\underset{\sim}{N}}$		M	－		
		$\stackrel{\substack{\mathrm{s} \\ \underset{\sim}{2}}}{ }$		$\stackrel{\substack{\mathrm{N}}}{\stackrel{1}{c}} \underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$			$\stackrel{\underset{N}{c}}{\stackrel{\rightharpoonup}{c}} \underset{\sim}{\sim}$				$\stackrel{\stackrel{\rightharpoonup}{\mathbf{N}}}{\stackrel{1}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{1}{2}}$				$\stackrel{\text { ¢ }}{\stackrel{\sim}{\sim}}$			$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{N} \\ \stackrel{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{N} \\ \stackrel{y}{2} \end{array}\right\|$	，		$\stackrel{\stackrel{\rightharpoonup}{N}}{\stackrel{N}{\wedge}}$	\wedge	セூ	寺	¢	$\left\|\begin{array}{c} \circ \\ \hline \end{array}\right\|$	$\begin{array}{\|c} \bullet \\ \hline \end{array}$	$$	$\stackrel{\stackrel{\rightharpoonup}{N}}{\stackrel{N}{2}}$	$\left\|\begin{array}{l} \infty \\ 0 \\ \hline \end{array}\right\|$		$\stackrel{\text { c }}{ }$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\rightharpoonup}{\text { ¢ }}$		
																		$\left\lvert\, \begin{aligned} & 9 \\ & \hat{N} \\ & \hat{\infty} \\ & \infty \end{aligned}\right.$				$\begin{array}{\|l\|} \hline \frac{m}{2} \\ \stackrel{\rightharpoonup}{N} \\ \hline \end{array}$			－				$\begin{array}{\|l\|} \hline \stackrel{\sim}{0} \\ \stackrel{2}{2} \\ \underset{F}{2} \\ \hline \end{array}$	－		¢ $\stackrel{\circ}{\text { ¢ }}$ ¢							
									$\begin{array}{\|c} \hline \frac{9}{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	，					，						［	$\begin{array}{ll} 8 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & \frac{0}{\infty} \\ & \end{aligned}\right.$				$\begin{array}{\|l\|} \hline \stackrel{m}{0} \\ \infty \\ \hat{0} \\ 0 \\ 0 \\ \tilde{\varepsilon} \\ \hline \end{array}$												
	\％			$\left\lvert\, \begin{gathered} \stackrel{\circ}{0} \\ \stackrel{n}{N} \\ \stackrel{0}{8} \\ \hline 8 \end{gathered}\right.$		$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{n}{4} \\ & \stackrel{0}{8} \end{aligned}$															$\begin{array}{\|c} \hline 0 \\ \hline \mathbf{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{array}$	$\left.\begin{array}{\|c\|} \hline 0.0 \\ 0 \\ 000 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$		O	O						0 0						웅	（10	－
																																$\begin{aligned} & 3 \\ & \hline \end{aligned}$				（1）	（1）		
	$\begin{aligned} & \text { ® } \\ & \text { ¢ } \\ & \text { (1) } \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \end{array}\right\|$					Bue	Cole									，		$\left\lvert\, \begin{aligned} & \hat{4} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \hat{0} \\ \mathbf{o} \\ \stackrel{y}{N} \\ \underset{N}{2} \end{gathered}\right.$		$\left.\begin{array}{\|c\|} \hat{N} \\ \hat{e} \\ \stackrel{0}{N} \\ \underset{N}{N} \end{array} \right\rvert\,$	N	－				ご				$$			$\left\|\begin{array}{l} \hat{6} \\ \hat{6} \\ \stackrel{6}{6} \\ \stackrel{6}{2} \end{array}\right\|$	N	－		
				$\left\|\begin{array}{l} \mathbb{N} \\ N_{1} \\ 0 \\ 0 \\ \underset{\Sigma}{2} \end{array}\right\|$															$\left\|\begin{array}{l\|} \hat{e} \\ 0 \\ 0 \\ 0 \\ 0 \\ \hat{\Sigma} \end{array}\right\|$		$\begin{array}{\|l\|} \hline \stackrel{e}{0} \\ \stackrel{e}{\prime} \\ \mathrm{O}^{\prime} \\ \dot{\Sigma} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ i \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & \Sigma \end{aligned}$	$\begin{array}{l\|l} 3 \\ 0 & n \\ 0 \\ 0 \end{array}$		$\begin{array}{\|l\|l\|} \hline 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ \\ \hline \end{array}$		$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sum_{1} \end{aligned}$					$\begin{aligned} & \sqrt{8} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$	（1）	R		
																																	$\begin{aligned} & 1 \\ & \hline \end{aligned}$			（1）	－		
				．.	$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ \vdots \\ G \end{array}\right\|$			$\begin{aligned} & \text { n } \\ & \hline \\ & \hline \end{aligned}$				$\begin{array}{l\|l\|} \hline \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$					＇	$\left\|\begin{array}{l} \dot{f} \\ \dot{f} \\ \dot{f} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \left.\begin{array}{l} F \\ \dot{0} \\ \dot{C} \end{array} \right\rvert\, \end{array}$			$\left\|\begin{array}{c} -\dot{0} \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{array}{r} \dot{\circ} \\ \stackrel{\sim}{\infty} \\ \hline \end{array}$	．					－		$\left\|\begin{array}{l} \dot{0} \\ \underset{\sim}{0} \end{array}\right\|$				$\begin{array}{\|c} \bar{F} \\ 0 \\ \vdots \\ \dot{q} \end{array}$	－	$\stackrel{\square}{\text { ¢ }}$		
					$\left\lvert\, \begin{gathered} \mathbf{y} \\ \substack{8 \\ 0} \end{gathered}\right.$			$\begin{aligned} & \underset{\sim}{g} \\ & \underset{0}{0} \\ & \vdots \end{aligned}$										$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{gathered} 9 \\ \hline \\ \substack{0 \\ 0} \end{gathered}\right.$			$\begin{array}{\|c\|} \hline \\ \vdots \\ \vdots \\ 0 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \begin{array}{r} 7 \\ 0 \\ 0 \\ 0 \end{array} \\ \hline \end{gathered}\right.$	，					$\begin{array}{\|c} \substack{0 \\ \vdots \\ 0 \\ \hline} \end{array}$			N			$\begin{gathered} \stackrel{y}{⿳ 亠 丷} \\ \vdots \\ \vdots \\ \hline \end{gathered}$	W	O		
	\sum_{0}			． ．	$$			$\begin{gathered} 0 \\ \substack{2 \\ \hline \\ \hline} \end{gathered}$		$$							＇	$\begin{aligned} & \hat{N} \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 8 \\ \mathbf{i} \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathrm{m}} \\ \hline \end{array}$	$\begin{gathered} \underset{\sim}{4} \\ \stackrel{y}{m} \end{gathered}$	，					$\begin{aligned} & \stackrel{e}{0} \\ & \stackrel{c}{c} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{ल} \\ & \underset{m}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { প. } \\ & \stackrel{9}{9} \end{aligned}$	$\stackrel{\infty}{\text { ले }}$	$\stackrel{0}{0}$		
	\％				$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	$\begin{array}{l\|l\|l\|} \substack{0 \\ \hline \\ \hline \\ \hline} \\ \hline \end{array}$	－	5		$\stackrel{\otimes}{\sim}\|\underset{\sim}{\infty}\| \underset{\sim}{\circ}$	$\stackrel{\otimes}{\sim}$							$\stackrel{\circ}{\stackrel{\circ}{ }}$				$\stackrel{\substack{\text { m }}}{\substack{\text { m }}}$	骨						\％		¢	$\stackrel{\text {－}}{\stackrel{\text { ¢ }}{\sim}}$			\％	～	－		
					$\left.\begin{array}{\|c} \hline \stackrel{\circ}{\circ} \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{4} \end{array} \right\rvert\,$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{4} \end{aligned}$								，						$$	䓂	，					－		\％	N			N		－		
	$\overline{\Sigma x}_{\substack{n \\ 0}}^{\substack{0}}$	«		＜＜	«＜	＜$<$	く	$\varangle<$	$\varangle<$	$\varangle<$	$\varangle<$	＜	＜	＜	« $<$	＜	＜	\varangle	∞	0	0	0	－	ш	山	ш	ш	ш	แ	山		แ	4						
		$\stackrel{\square}{-}$		へ	\wedge	$\stackrel{\mathrm{m}}{-}$	N	N \sim	\sim	\wedge	\wedge	$\stackrel{+}{\circ}$	\bigcirc	$\stackrel{\square}{\circ}$	\bigcirc	N	～	$\bar{\sim}$	앙	$\stackrel{\sim}{\sim}$	－	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$												
	$\begin{aligned} & \text { 立命 } \\ & \text { N } \\ & \text { N } \end{aligned}$	2		$\wedge \wedge$	－	N		\cdots	\because	\wedge	\wedge 응	$\stackrel{\sim}{\sim}$	ํ	\sim	\simeq	\cong	\wedge	\wedge	\bigcirc	\wedge	\wedge	\wedge	\wedge	の	\wedge	o	の	σ	\bigcirc	\bullet	\sim	N	\sim						
	¢				$\begin{array}{l\|l\|} \hline & \overline{0} \\ 0 & 0 \\ & 0 \\ \end{array}$										氷				$\left\|\begin{array}{l} \underline{0} \\ \stackrel{0}{0} \\ \mathscr{O} \end{array}\right\|$			$\begin{array}{\|c\|c} 0 \\ \stackrel{0}{0} \\ \stackrel{U}{3} \\ \stackrel{\rightharpoonup}{5} \\ \hline \end{array}$							$\begin{array}{\|l} - \\ \text { Un } \\ \\ \end{array}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \underline{y} \\ & \underline{3} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \underset{\substack{0}}{3} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline 0 \\ \sum_{0} \\ 0 \\ 0 \\ m \\ c \end{array} \right\rvert\,$		3					
		＊	＊	＊								＊	＊	＊	＊	＊		＊		＊	＊					＊	＊	＊					＊						
		$\left\|\begin{array}{l} \dot{\Xi}_{1}^{\prime} \\ \wp_{0} \end{array}\right\|$	$\left\lvert\, \begin{array}{r} -\dot{N} \\ \stackrel{y}{n} \end{array}\right.$							$\begin{array}{l\|l\|l} \infty & \infty \\ \boldsymbol{o}^{\prime} & 0 \\ \end{array}$			$\left\|\begin{array}{l} \underset{N}{\bar{N}} \\ 0^{\prime} \end{array}\right\|$			$\mathfrak{c} \left\lvert\, \begin{gathered} n \\ N \\ n \\ \end{gathered}\right.$	$\left\|\begin{array}{l} \stackrel{\circ}{0} \\ 0_{1}^{\prime} \\ \mathrm{N}^{2} \end{array}\right\|$		\bar{N}	$\left\|\begin{array}{c} \tilde{N} \\ \mathcal{N}^{2} \end{array}\right\|$	$\begin{gathered} \underset{\sim}{N} \\ c_{1} \\ \underset{\sim}{2} \end{gathered}$		（\％		－	\mathfrak{c}	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & n \\ & \\ & \hline \end{aligned}\right.$		$\left\|\begin{array}{c} i \\ N_{0} \\ \hat{N} \end{array}\right\|$	$\left\{\begin{array}{l} n \\ n_{n} \\ \text { a } \end{array}\right.$			$\begin{aligned} & 8 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{N}{N}$	$\begin{gathered} \stackrel{0}{0} \\ \hat{O} \end{gathered}$	N	㾊		

Table 6．2：Markers used in the final step to fine－map Rht8．Markers are annotated by marker class at each mapping step and with comparative genomic data to syntenic species．Wheat annotation is shown in terms of the POPSEQ bin the 2DS CSS contig was mapped to in the IWGSC－2 and Chapman datasets．No information indicates the contig is not in the POPSEQ data．Each contig was also anchored on the v3．3 cDNAs where possible．Anchoring of DG279 and DG371 is shown fully in Chapter 5 but included here for ease of comparison between all markers．

6.3.5 Identification of Rht8-equivalent region in Ae. tauschii and integration with T. aestivum resources

Towards the end of this project, major advances in gene discovery and building of a highly-saturated genetic Ae. tauschii map were achieved using survey sequencing (Jia et al., 2013). Additionally, an Ae. tauschii physical map was reported, which spanned 672 Mb of chromosome 2D defined by 385 anchored BAC contigs carrying 1282 markers (Luo et al., 2013). The completion of these resources is still ongoing, but they were compiled in one downloadable location in 2015 (http://aegilops.wheat.ucdavis.edu/ATGSP/, 2015).

To identify the orthologous Rht8 region in Ae. tauschii, the linkage map of the Rht8 region (Figure 6.5A) was anchored to BAC contigs in the Ae. tauschii chromosome 2D physical map (Figure 6.6; Luo et al. 2013). This was achieved by BLASTN homology searches of the 2DS CSS contigs to the markers in classes A-G as queries against the Ae. tauschii SNP marker extend contig database (http://probes.pw.usda.gov/WheatDMarker/phpblast/blast.php). The 2D gene list was then consulted to retrieve the BAC contigs anchored by the SNP markers. The same 2DS CSS contigs were queried against the IWGSC-2 data, where contigs had been anchored to POPSEQ bins (Mascher, 2014). The contigs were also used as queries against the Chapman scaffolds which were ordered by the same high-density genetic map and hosted on CerealsDB (Mascher et al., 2013, CerealsDB, 2015a).

The marker order in the Rht8 linkage map was maintained between the $A e$. tauschii physical map (Figure 6.6A\&B) and T. aestivum (Figure 6.6C\&D), though only 13 markers out of 33 across all classes $A-G$ could be mapped to an $A e$. tauschii SNP marker. Most markers could be mapped to the POPSEQ bins (Table $6.2)$.

In the POPSEQ data, marker classes $A-E$ anchored to the 17.3 cM bin in IWGSC-2, with marker classes F and G anchoring to the 33.1 cM bin. This placed Rht8 in the 17.3 cM bin. The Chapman scaffolds showed a higher resolution, with marker classes A - D mapping to 13.64 cM and E to 15.9 cM . This resolved Rht8 to a 2.3 cM interval between classes D and E, compared with 1.015 cM in the

Rht8 fine-map. Classes F and G then progressed down in a linear fashion to 24.8 cM in class G (Table 6.2 and (Figure 6.6C \& D).

Figure 6.6: Linkage map of Rht8 and anchoring to Ae. tauschii BAC contigs and wheat genetic maps from POPSEQ data (A) The linkage map of Rht8 and details of which markers from the marker classes A-G were anchored onto BAC contigs and wheat POPSEQ genetic bins. The orthologous relationships are shown in blue dashed lines. The markers used to define the smallest intervals defined in Ae. tauschii and wheat are shown in red dot-dash lines. Markers which did not anchor in Ae. tauschii but anchored in wheat pass under (B). (B) The genetic position of the Ae. tauschii SNP markers and the corresponding BAC contigs along chromosome 2D. The smallest genetic interval defined in Ae. tauschii is highlighted in red along with the corresponding markers and BAC contigs. (C) The wheat CSS contigs and (D) Chapman scaffolds anchored to genetic POPSEQ bins. The bins were delimited using the 2DS CSS contig corresponding to the markers in (A). The smallest interval is highlighted in red. The POPSEQ bins are scaled to represent the relative size in terms of contig/scaffold number.

The markers from the Rht8 linkage map (Figure 6.6A) anchored to six BAC contigs in the Ae. tauschii physical map (Figure 6.6B). There was no instance of a marker from each side of the Rht8 interval mapping to the same BAC contig or scaffold (Table 6.2). Therefore, it was not possible to anchor Rht8 to a single BAC or to overlapping BACs (since the assembly is incomplete). The Ae. tauschii SNP markers AT2D1065 and AT2D1072 defined a 4.25 cM genetic interval on 2D.

Marker class E was used to define one end of the Ae. tauschii interval. BFR_46 mapped to 35.657 cM and BAC contig 1775. The other end of the Ae. tauschii interval was anchored using 2DS_5375260 in marker class D, which was assigned to the 31.408 cM bin and BAC contig 494.

The 4.25 cM interval between marker classes D and F in $A e$. tauschii compares with the 1.031 cM between the same marker classes found using the finemapping Rht8 population (Figure 6.6A). The Ae. tauschii interval contained six SNP marker sequences, with sizes from $5-13 \mathrm{~Kb}$.

The exact physical space of this interval cannot be ascertained since the gaps between the BAC contigs have not been closed. However, anchored genetically in the interval between ctg494 and ctg1775 is ctg6164, which is 360 Kb (Figure 6.6B). Taking the three BAC contigs together and using the extreme genetic position at either end (AT2D1059 at 30.401 cM and AT2D1074 at 36.203 cM) defines a 5.8 cM genetic distance which contains 4.251 Mb (sum of BAC contig size). This results in a recombination rate of $1.36 \mathrm{cM} / \mathrm{Mb}$, compared with the average on Ae. tauschii 2D of $0.32 \mathrm{cM} / \mathrm{Mb}$ (Luo et al., 2013) and wheat 3B ranging from 0 to $2.3 \mathrm{cM} / \mathrm{Mb}$ with an average of $0.16 \mathrm{cM} / \mathrm{Mb}$ (Choulet et al., 2014).

Using the physical map positions, a gene list, gene zipper file and comparative map were downloaded (http://probes.pw.usda.gov/WheatDMarker/downloads). The data was annotated by using the Brachypodium homology to highlight which 2DS CSS contigs had been tested for SSRs or SNPs from the parent NIL and BSA approaches previously, and which of the tested markers were polymorphic (Appendix 6.7). Combining the Brachypodium genes predicted from both the gene list and zipper, 23 genes were identified within the 4.251 Mb interval, with a density of 5.4 genes $/ \mathrm{Mb}$ (Appendix 6.7.1 and 6.7.2).

Further attempts to decrease this interval in Ae. tauschii were unsuccessful since markers which were tested (highlighted in red, Appendix 6.7) were monomorphic between the parent NILs to the fine-mapping population. There was not enough time to consider sequence from the non-syntenic Brachypodium and rice genes which punctuated the Ae. tauschii interval - for example, no sequence on BAC ctg6164 was tested in this project. There was also insufficient time to directly mine the extended SNP markers within the delimited interval.

The comparative map of the Ae. tauschii interval (Appendix 6.7.3) showed the comparison with the Brachypodium and rice orthologous pseudomolecules. The delimited interval in Ae. tauschii was extended either side on chromosome 2D to better establish the context of gene rearrangements and collinearity. The first observation was that most of the genes with the highest homology for each $A e$. tauschii marker in the demarcated region were on Brachypodium chromosome 5 and rice chromosome 4, which confirmed the previous macro-synteny identified by Gasperini et al. (2012). However, the second observation is that the collinear progression along the Brachypodium and rice chromosomes disintegrated upon approach to the 4.25 cM Rht8 interval. Between $30-31 \mathrm{cM}$, there is a collinear progression from Bradi5g02990 - Bradi5g03460 and Os04g12560-Os04g13210, though still with punctuations from Brachypodium chromosome 1, 3 and 4 and rice chromosomes 1 and 7. Closer inspection of the gene list (Appendix 6.7.1) reveals that this region includes a tandem eight-copy gene duplication of Bradi5g03380/Os04g12980 which encodes the UDP-glucosyltransferase 74F2.

In the 4.25 cM interval from $\sim 31-35 \mathrm{cM}$, the shaded dark green cells in the comparative map (Appendix 6.7.3) highlight gene translocations. The intrachromosomal rearrangements are shown in detail in Appendix 6.7.1 and Appendix 6.7.2, including Bradi5g05140/Os03g58960 and Bradi5g09000/Os04g20880. The zipper (Appendix 6.7.2) reveals that Bradi5g0900 - Bradi5g09090 is a cluster of seven genes with limited homology to rice (only one out of seven of the cluster). Further to these translocations from within the same chromosome, interchromosomal rearrangements were also present from Brachypodium chromosomes 4 and 2/rice 2 and 5. As the progression on Ae. tauschii 2D continues towards the centromere, outside the delimited interval, the synteny is also punctuated with both intra- and interchromosomal rearrangements.

Taken together, this confirmed the emerging picture first observed in barley, that the synteny surrounding the Rht8 interval is good on a medium resolution between rice and Brachypodium, but this does not extend to the fine-detail. The Ae. tauschii data was best (most densely) annotated with Brachypodium genes and this comparison highlighted gene duplications which occurred in Ae. tauschii after divergence from its common ancestor with Brachypodium. There were substantial numbers of genes in Ae. tauschii which had no homology to

Brachypodium or rice in the genome zipper data. Also, there was insertion of transposed chromosomal blocks from both intra- and interchromosomal regions.

In summary, the analysis of the Ae. tauschii Rht8 interval indicates genomic divergence across the grass genomes which was not observed when looking at the model grasses individually (Chapter 5) or the Rht8 linkage map between barley, Brachypodium and rice. The inversions and rearrangements, taken together with genes with no homology to rice or Brachypodium, indicate that the Ae. tauschii genome in this region expanded upon divergence from Brachypodium and rice. This is corroborated by the physical data, since the Rht8 interval was narrowed to 1.36 Mb in Brachypodium and 1.34 Mb in rice, whereas the three BAC contigs in the Ae. tauschii anchored to the Rht8 interval define a distance close to $\sim 4 \mathrm{Mb}$. This distance could be larger still since the BAC contigs are not overlapping.

6.4 Gene content of the Rht8 interval

6.4.1 Expression analysis

To prioritise genes of interest within the intervals found in Ae. tauschii and the POPSEQ-anchored IWGSC-2 and Chapman bins, differentially expressed genes in spike tissue between the parent NILs (UniGenes) and BSA (v3.3 cDNAs) were identified. The relative expression level of genes was estimated by calculating the transcript abundance expressed as reads per kilobase per million mapped reads (RPKM) (Mortazavi et al., 2008). Martin Trick analysed the datasets and calculated RPKM values as described in Trick et al., 2012 and Harper et al., 2015.

Ascertaining criteria for differentially expressed genes (DEGs) from RNA-Seq data is an ongoing area of research (Tarazona et al., 2011, Yendrek et al., 2012). For this reason, conservative criteria were adopted both for filtering out lowly expressed genes and then for establishing differential expression by 1.5 fold difference (Warden et al., 2013). The DEG data is displayed in full in Appendix 6.8.

Globally, 1735 DEGs were identified between the parent NILs. Only 4\% of these genes localised to a 2AS, 2BS or 2DS CSS contig. Most of the DEGs were relatively overexpressed in the short parent NIL (Figure 6.7). The DEGs were also annotated when the gene appeared in the SNP data, reported in Chapter 5. There was 8% overlap between DEGs and genes with putative SNPs. One notable DEG that was observed (first entry in Appendix 6.8.1) encoded a brassinosteroid (BR) insensitive 1-associated receptor kinase on wheat chromosome 4, corresponding to Bradi4g14000. This gene was overexpressed in the short parent by 1.67 -fold, though overall expression was low (0.11 RPKM in the tall parent and 0.35 RPKM in the short parent). In the BSA data, 20 DEGs were identified (Appendix 6.8.4) using the same criteria as before, but in addition, the genes had to be overexpressed toward the same parent/bulk combination (e.g. short/short). The brassinosteroid-related gene identified in the parent NILs was not recovered in the BSA. Most of the BSA DEGs were overexpressed in the short parent/bulk. None of these DEGs were on chromosome 2D.

Figure 6.7: Differentially expressed genes (DEGs) between the parent NILs in the UniGene dataset. Values are Log2 RPKM values. There were 1735 genes in total. Most DEGs ($>95 \%$) were outside chromosome 2S. The full list is shown in Appendix 6.8.1. In order to be differentially expressed, a gene had to have an RPKM of >0.1 and have a 1.5 -fold difference in expression between short and tall parent NIL.

Since Brachypodium offered the most comprehensive annotation of the parent NIL dataset (Chapter 5), the Brachypodium annotation was used to compare the enrichment of molecular function and biological process in the global DEGs
(Appendix 6.8.2 and Appendix 6.8.3). Relative to the background library of Brachypodium genes, the DEG dataset had enrichment for genes involved in metabolic processes. In terms of molecular function, there was double the enrichment in the DEGs for catalytic activity, comprising mainly of enrichment for catalytic oxidoreductase activity and hydrolase activity of O-glycosyl compounds (Appendix 6.8.3).

6.4.2 Ae. tauschii and T. aestivum

Work in this Chapter strengthened the emerging picture first explored in Chapter 5 of poor micro-collinearity in the Rht8 region between wheat and the models Brachypodium and rice. Synteny with barley was better preserved than with these models, but barley is still relatively poorly annotated and the draft sequence has large assembly gaps in the Rht8 region. For this reason, candidate genes were explored in the Ae. tauschii interval and wheat POPSEQ bins, the latter described in 6.3.5. Given the hyposenstivity to BR conferred by Rht8 (Gasperini et al., 2012) and reduced stature explored in Chapter 3, genes which could have a biological role in processes related to BR signalling and biosynthesis, cell growth and plant development were explored with particular focus.

Despite being based on the same high-density genetic map using population sequencing (Mascher et al., 2013), the Rht8 linkage map resolved the IWGSC-2 and Chapman data differently. An interval of 2.3 cM was demarcated in the Chapman scaffolds between 13.6 cM and 15.9 cM bins (Figure 6.6D). Taking these bins together, there were over 250 scaffolds. There was insufficient time to design markers on this sequence space beyond the approach outlined in Chapter 5. Apart from being made available for BLAST homology searches on CerealsDB, there are no gene models or annotations available for these scaffolds, therefore the Chapman assembly was not used directly to predict gene content.

The CSS contigs from marker classes D and E (either side of Rht8) anchored into the same bin in the IWGSC-2 data (17.3 cM bin, Figure 6.6C). This was a strong indication that the neighbouring bins ($18.1-33.1 \mathrm{cM}$, Figure 6.6 C) were outside the Rht8 interval. Indeed, multiple markers from classes E and F, the proximal side of $R h t 8$ relative to the centromere anchored into the 17.3 cM bin (Table 6.2).

Since the Ae. tauschii genetic map was based on SNP markers from a 10K SNP array to which BAC contigs were anchored (Luo et al., 2013), it is reasonable to assume that the resolution would be superior to that proffered by POPSEQ analysis of 80-90 doubled haploid lines (Sorrells et al., 2011) used to genetically order IWGSC-2 data (Mascher, 2014). For this reason, the Ae. tauschii genetic map was used to annotate the IWGSC-2 data. This was achieved by first downloading the peptides from the relevant IWGSC-2 bins from Ensemb/Plants, along with their syntenic annotation. Second, since the peptide sequence would be better conserved than nucleotide sequence, the peptides were used as a query in BLASTP searches against the NCBI database of flowering plants. The highest hit by identity and query coverage was retrieved. From the first step, the Brachypodium genes were used to retrieve the positions of genes which overlapped with the Ae. tauschii genome database (UC Davis Plant Science and USDA, 2015). Annotation of the genes in the $18.1-33.1$ cM IWGSC-2 bins with the Ae. tauschii genetic positions confirmed that this bin was outside the Rht8 interval (Appendix 6.10). For this reason, the genes in these bins will not be considered in detail here. One notable gene within the 18.1 cM bin is the BRregulated BRU1, which had no Brachypodium or rice homologues. A marker to this gene was designed and validated (2DS_280) but was discarded in Step 2 of the fine-mapping process (gwm class 12, Figure 6.4).

The 17.3 cM IWGSC-2 bin identified in the Rht8 linkage map contained 483 2DS contigs, totalling 2.48 Mb . This sequence was annotated as described above. Additionally, the genes were annotated with the expression data (Appendix 6.8.1 and described in 6.4.1) and the genes were marked if they appeared in the parent NIL SNP dataset (Appendix 6.9). There were a total of 60 genes, including duplications, which were marked in the second column of Appendix 6.9. Of these genes, 11 could be anchored outside the Ae. tauschii Rht8 genetic interval. These are shown separately in Appendix 6.9.2 and are not considered further here.

Of the remaining genes, a minority (11) overlapped between the Ae. tauschii and T. aestivum data, whilst others were loci only found in either one of the two species.

6.4.2.1 Loci common to Rht8 intervals in Ae. tauschii and \boldsymbol{T}. aestivum

The genes in the 17.3 cM IWGSC-2 bin and also within the 4.35 cM Rht8 interval in Ae. tauschii encoded proteins involved in a range of biological functions. These proteins included Bradi5g04686, a probable Sec1a protein based on similarity to Arabidopsis Sec1 (AtSec1a), involved in vesicle trafficking during exocytosis (http://www.uniprot.org/uniprot/Q9C5P7); a predicted ATP-binding protein and ABC transporter (Bradi5g03477/Os04g0209300); the nucleic-acid binding cleavage and polyadenylation specificity factor Bradi5g04673/Os04g0277400 and the membrane-bound O-acyltransferase (MBOAT) Bradi5g09000. MBOATs are involved in Golgi vesicle transport and metabolism (http://www.uniprot.org/uniprot/Q9SV07). The Ae. tauschii genome zipper (Appendix 6.7.2) revealed that Bradi5g09000 was part of a gene cluster from an interchromosomal translocation from Bradi5g09000 - Bradi5g09064, comprising six genes, three of which had no ontology; the others (Bradi5g09010 and Bradi5g09020) were genes predicted to have prephenate dehydratase activity, which are enzymes involved in amino acid metabolism. Markers were designed on wheat 2DS sequence to these genes, but all were monomorphic (details in Appendix 6.9.1). Bradi5g04630 was found as a single copy gene in the 35.3 cM bin on Ae. tauschii 2D (Appendix 6.7.2). This gene was also found in the T. aestivum data, but here a large-scale duplication was found with seven copies in the T. aestivum gene models based on the nucleotide sequence, all orthologues of Bradi5g04630. This duplicated gene encodes a plant pollen protein whose biological function is unknown (http://www.ebi.ac.uk/interpro/entry/IPR006041), but structurally related to the Olea europaea (olive tree) pollen protein, Ole e I (Villalba et al., 1993).

6.4.2.2 Triticum aestivum-specific loci in IWGSC-2

6.4.2.2.1 Loci with possible roles in BR signalling and metabolism

The cytochrome P450 family (abbreviated to CYP) is one of the largest and diverse superfamilies in plants, bound to membranes and involved in lipid metabolism, hormone metabolism and defence (Bak et al., 2011). In Arabidopsis, there are 244 genes and 28 pseudogenes within this superfamily organised into
two main clades: the A-type and non-A-type (Bak et al., 2011). Though pathways have not been fully elucidated, CYP family members in the 'non-A-type' clade are involved in hormone metabolism and modulate BR precursors. For example, CYP51 is an obtusifoliol 14α-demethylase involved in BR metabolism and the gene sequence encoding it has been identified in wheat (Cabello-Hurtado et al., 1997). CYP90 and CYP85 also participate in BR biosynthesis (Bak et al., 2011). Three P450s were identified: TRAES_2DS_985CFD29C/Bradi4g09000, CYP71D11/CYP71AF3P (different nomenclature between species), and TRAES_2DS_7EDB434AD/Bradi3g15020, CYP71D8/CYP71AB5P. There was also the isoflavone hydroxylase, Bradi4g07480. The CYP database (Nelson, 2009) was searched to assess their relationship with BR biosynthetic genes and other CYPs. Bradi4g07480 is CYP81M1, identified in Brachypodium and rice, of unknown function. Bradi4g09000 and Bradi3g15020 are both encoded by pseudogenes which remain uncharacterised. In fact, the CYP81 and CYP71 subfamilies, to which the three CYPs in the interval belong, are particularly badly characterised, even in the rice/Arabidopsis data, which has the best plant annotation. The CYP71A subfamily has one member known to be involved in BR metabolism (CYP71A6, http://www-ibmp.ustrasbg.fr/~CYPedia/index.htm|\#CYP71) but this did not show homology with either of the CYPs identified here. Therefore, none of the P450s identified in the genetic bin have a known function in BR metabolism.

One UDP-glycosyltransferase (UGT74E1) was identified in the interval. As mentioned in 6.3.5, there was a tandem eight-copy gene duplication encoding UGT74F2 just outside the Ae. tauschii interval (genetic position 30.4 cM , Appendix 6.7.1). UGTs are of interest in the context of BR signalling, since in Arabidopsis the UTG73 family glucosylates brassinolide, the biologically active form of BR, which renders the substrate inactive. Overexpression of two members of a UGT73 gene cluster (C5 and C6) leads to a BR deficiency in Arabidopsis, both in phenotype and in reduced endogenous BR levels (Husar et al., 2011). The UGT74E1 in the T. aestivum interval has limited characterisation in Arabidopsis. The precise in vivo function remain unknown, but UGT74F1 acts on salicylic acid (Dean and Delaney, 2008). The closely related gene UGT74F2 (found outside the interval) is expressed at higher levels in Arabidopsis and is
better characterised in glycosylating jasmonates in a defence response (Ostrowski and Jakubowska, 2014, Lim et al., 2002).

6.4.2.2.2 Protein kinases with a possible role in cell elongation

Two protein kinases (PK) were identified in the interval, both of which could feasibly modulate cell expansion. This is of interest since Rht8 causes internodelength reduction (Chapter 3) by decreasing cell expansion (Gasperini et al., 2012). PKs act in signalling transduction and are classified according to their primary sequence and the type of protein phosphorylation activity in Ser/Thr, His or Tyr PKs (Chevalier and Walker, 2005). Traes_2DS_CB771B9DF was annotated as receptor-like Ser/Thr PK SD1-8 and the gene in Arabidopsis, SD18, is involved in cell expansion (http://www.uniprot.org/uniprot/O81905). The other kinase was a cell wall-associated kinase (WAK). WAKs and WAK-like kinases are transmembrane receptor-like kinases which contain a Ser/Thr kinase domain and extracellular region. There is growing evidence that WAKs are pectin receptors, both for shorter pectins generated during pathogen exposure or wounding, and for longer pectins in cell walls which are modulated during cell expansion (Kohorn and Kohorn, 2012). WAKs are commonly found in tandem repeats, but this was not observed here.

6.4.2.2.3 Other biological functions

The LRR extensin-like protein 2 encoded by Bradi1g18280 was of interest since it was also a DEG, with 2.32 -fold higher expression in the short parent NIL relative to the tall parent NIL. There are around 20 extensins in Arabidopsis, which are highly-abundant glycoproteins involved in primary cell wall architecture (Lamport et al., 2011). Pollen-specific LRR/extension 2 is AtPEX2 in Arabidopsis and the gene is highly expressed in mature pollen and during anthesis (Noir et al., 2005).

Other proteins with catalytic functions encoded by genes in the interval included Bradi5g02900, a reticuline oxidase, Bradi1g69730, a cystathionine gammasynthase, localised to the chloroplast, the phospholipid synthase (Bradi5g09110), a cytosolic sulfotransferase (Bradi3g09500) and a caffeic acid methyltransferase (Bradi1g14870).

There were three transporters within the interval: SWEET6a, a bidirectional sugar transporter, a vacuolar amino acid transporter (Bradi5g02920) and a chloride transporter (Bradi2g11652).

Also in the interval were T. aestivum orthologs of genes encoding proteins involved in plant defence, such as Bradi1g22860, a synthase of Momilactone A, a secondary metabolite and four disease resistance-response proteins. There were also a number of proteins of unknown function.

Markers were designed on microsatellite sequence around some of these genes, but all were monomorphic (Appendix 6.9.2). None of the genes mentioned in this section had putative SNPs between parent NILs.

6.4.2.3 Ae. tauschii-specific loci

Loci found in the Ae. tauschii gene list (Appendix 6.7.1) from $31.4 \mathrm{cM}-35.7 \mathrm{cM}$ which were not represented in the $17.3 \mathrm{cM} T$. aestivum bin were genes encoding Bradi2g20430, of unknown function with the domain DUF594; proteins involved in nucleic acid binding (Bradi4g267670, a ribonuclease and Bradi4g34520, a nucleotide transferase) and Bradi2g16396, a 6-phosphgluconate dehydrogenase. Two genes found in a tandem repeat in Ae. tauschii of which only a single-copy was found in T. aestivum were Bradi5g03530 and Bradi5g03550, which encode WAKs.

6.4.2.4 v3.3 cDNAs

The 2D interval in the v3.3 cDNAs consisted of 59 genes. In the fine-mapping described in 6.3, this interval was narrowed to 20 genes between $52 i$ (position 929999) and 2DS_26 (position 1178953), an interval of 0.25 Mb . The full details of this interval are shown in Appendix 6.11. To determine whether the interval identified in the v3.3 cDNAs was congruent with the Rht8 intervals and gene content in Ae. tauschii and IWGSC-2 genetic data, the Brachypodium orthologues to the v3.3 cDNAs were used, as described in 6.4.2. Almost all the genes in the v3.3 cDNA interval could be assigned a position in either the $A e$. tauschii or IWGSC-2 data, or both (Appendix 6.11).

Most genes anchored into the $18.3-33.1 \mathrm{cM}$ POPSEQ bins, outside the 17.3 cM previously identified as most likely to contain Rht8. The Ae. tauschii data confirmed that most of the genes were likely not in candidate-gene Rht8 regions. Only one gene in the v3.3 cDNA interval (mrna070632, with a Brachypodium orthologue of Bradi5g03510) was identified to be inside the 4.25 cM interval in Ae. tauschii. The gene directly preceding this was mrna020368, which was anchored to the 31.0 cM POPSEQ bin. The proceeding genes were anchored to POPSEQ bins in the vicinity of $38-42 \mathrm{cM}$. Taken together, the data indicated that there was a very poor representation of the Rht8 interval in the v3.3 cDNAs. This was because the resolution was not great enough to resolve the region apart from the one identified gene, which was already present in the other datasets. Indeed, analysis of the SNP data confirmed this. The SNP dataset (BFR>6) described in Chapter 5 contained genes from 145 2DS contigs. Of these, only 51 overlapped with the POPSEQ-anchored CSS contigs, and of this subset, only three anchored into the 17.3 cM bin. Most of the putative SNPs identified in the BSA on these three contigs had been identified as homoeologous SNPs in the PolyMarker alignments, thus markers were not developed to validate these SNPs. The one contig with a putative varietal SNP was validated with BFR_46, which was mapped to marker class F.

In sum, these findings showed that the v3.3 cDNA reference was a resource with limited potential for fine-mapping Rht8, since the gene models did not cover the Rht8 region with sufficient density to provide enough resolution power for finer mapping.

6.4.3 Is there a candidate for Rht8?

The Ae. tauschii and IWGSC-2 T. aestivum data was used as the best representation of wheat gene content of the Rht8 interval. Higher resolution of the Ae. tauschii genetic map facilitated the narrowing-down of the large 17.3 cM bin to which the Rht8 interval was anchored in the IWGSC-2 data. A number of genes with functions feasibly involved in BR-signalling or metabolism were identified, however a number of genes remain uncharacterised. There is no clear candidate which co-localises with the Rht8 phenotype (6.3.3) and only two genes in the 17.3 cM bin had differential expression. Therefore, all the genes within the interval should still be considered. In the current project, the lack of polymorphism
in sequence around genes identified in the interval hampered finer mapping and there was insufficient time to fully capitalise on the emerging genetic and physical resources in Ae. tauschii. The best onward strategy is discussed in the next section and in wider context in Chapter 8.

6.5 Discussion

The strategy to fine-map Rht8 was to saturate the region with markers using a variety of approaches (Chapter 5) and then to map these markers with increasing resolution, with the aim of finding markers which co-localised with the phenotype. Ultimately, Rht8 was mapped to a 1.015 cM region flanked by two marker classes, D and E (Figure 6.4). The markers across all fine-mapping classes, not only the closest flanking, were used to resolve syntenic intervals of $1.34 \mathrm{Mb}, 1.36$ Mb and 2.9 Mb in rice, Brachypodium and barley, respectively. Using the latest genetic and physical resources in Ae. tauschii, the candidate-gene interval was narrowed to 4.25 Mb , which had high micro-collinearity to T. aestivum genetic bins in IWGSC-2 and Chapman assembly data. This enabled the wheat gene content of the Rht8 regions to be considered.

The map-based cloning strategy of mapping with increasing resolution was effective in progressively retaining the markers most closely segregating with the Rht8 phenotype. From over 60 markers, 33 were fine-mapped within a 1.18 cM genetic interval. The mapping population is an excellent resource, and there are still 63 recombinants between the flanking marker classes D and E for future mapping efforts.

A discernible, confidently-scored phenotype was critical for accurate ordering of the marker classes around the Rht8 region. In this Chapter, it was shown that highly-replicated field-sown plants were required to ameliorate the initial height data from the glasshouse. The scoring of recombinants based on bimodal distribution of plant height at maturity showed first, that the height differential between recombinants scored 'short' and 'tall' was decreased in the glasshouse which made these scores less reliable. Second, the glasshouse assignations did conflict with field scores (across both field sites) in a number of cases. In the end, there was only one recombinant (F4-2-3-2-1) for which, due to missing data in
one field site, there was a 1:1 opposing score. Therefore, overall, a consensus score could be reached for all the individuals to the fine-mapping population.

Anchoring the markers across classes A-G in syntenic Rht8 intervals in rice, Brachypodium and barley provided a close study into the degree of microcollinearity in the Rht8 region between wheat 2DS, Ae. tauschii 2D, barley 2H, Brachypodium chromosome 5 and rice chromosome 4. Barley anchored the most markers by orthology to 2 H . Across the barley Rht8 interval, the collinear progression from marker class A to G was generally good. For example, the barley physical map could be used to order co-segregating markers in marker class A (Figure 6.5B). The exception in this was in the collinearity for markers in classes D and E, which was unwelcome, given that these flanked Rht8. The micro-collinearity between the wheat Rht8 interval and Brachypodium and rice was poor, confirming the initial findings in Chapter 5. As shown in Figure 6.5D, taking a more sparsely annotated syntenic interval, as in the case of rice which had the fewest markers anchored, gave a false sense of the collinearity, taken at the medium-resolution level. This likely explained the previous under-reporting of the micro-collinearity disintegration by Gasperini et al., (2012). In fact, in addition to the poor micro-collinearity in the final Rht8 linkage map, a high number of markers developed in Chapter 5 on 2DS CSS contigs anchoring to the syntenic intervals were discarded at Step 2, suggesting the possibility of intrachromosomal rearrangements around the region which mean that genes which were apparently in physical syntenic intervals were not genetically linked to Rht8. Taken together, this confirmed that the comparative genomics approach used in Chapter 5 was limiting.

Comparative genomics was used as a tool to prioritise marker development in Chapter 5. However, a de novo assembly of wheat was also performed by Martin Trick to circumvent the limitations of the incomplete wheat reference. This approach has been used in several studies in analysing wheat transcriptomes (Duan et al., 2012, Oono et al., 2013). The Trinity assembler was used since it was developed specifically for short-sequence reads as was the case here (100bp) (Grabherr et al., 2011). The same BSA approach was used as with the v3.3 cDNA reference. All genes which overlapped with genes in the original A/B/D genome progenitor leaf assemblies were removed to avoid duplicating sample space already examined and to ensure genes were spike-specific. The de novo
assembly only generated 29 putative SNPs mapping to 2AS, 2BS or 2DS CSS contigs which were not already represented in the v3.3 cDNA (data not shown). All these SNPs were tested with markers, but were monomorphic between the parent NILs. No SSRs were found on the eight 2DS contigs within the data, and these 2DS CSS contigs were localised to bins well outside the proximity of the 17.3 cM bin identified in this Chapter. This assembly was not used further, since it appeared that it did not offer a rich source of novel SNPs on genes likely to map to Rht8.

The ordered part of v3.3 cDNA reference only contained one gene on 2DS which mapped to the Rht8 interval by comparative genomics and comparison to the wheat genetic bins (identified in Figure 6.6C). This, together with the technical difficulties reported due to redundancy in CSS alignments and a high level of background noise (Chapter 5), explains the poor return on the marker development based on these SNPs. Of course, it is possible that genes mapping to the Rht8 interval are present in the unordered part of the v 3.3 cDNAs , but these were not successfully identified in the BSA, since all SNPs with high-BFR on 2DS were considered in Chapter 5. In sum, the work in this Chapter showed that the v3.3 cDNA reference limited the resolution with which gene content of the Rht8 interval could be determined.

The genetic and physical map resources in Ae. tauschii that were developed late in to this project offered the opportunity to bridge the gap between the limitations of comparative genomics already described and existing wheat genetic maps (Borrill et al., 2015). In Ae. tauschii, the markers from the Rht8 linkage map were used to delimit a 4.25 cM region. The physical distance could not be exactly determined since the BAC contigs are not overlapping. However, one estimate was reached of 4.25 Mb based on three non-overlapping BAC contigs. The outer extent of the BAC contigs was wider than the 4.25 cM interval, and using this wider interval, a $1.36 \mathrm{cM} / \mathrm{Mb}$ recombination rate was calculated, with 5.4 genes/Mb. In the physical mapping of wheat chromosome 3B, an average of $9 \pm$ 5 genes/Mb was reported across the whole chromosome, with much higher density in the distal region (Choulet et al., 2014). The highest recombination rates found in global comparison of the Ae. tauschii physical data were around 1.5 $2.0 \mathrm{cM} / \mathrm{Mb}$ and were found in distal regions (Luo et al., 2013), in line with the recombination rate found in this small interval, though the number reported here
cannot be precise. Interestingly, in hexaploid wheat, estimates of 1 cM in genetic distance corresponding to an average of 4.4 Mb of physical distance (Faris and Gill, 2002) seem to be in line with the genetic interval in the Rht8 linkage map and the physical data from Ae. tauschii.

The comparative map from the Ae. tauschii data was used to study the gene rearrangements and expansions between species. There were intra- and interchromosomal rearrangements in Ae. tauschii relative to Brachypodium and rice. Multiple genes were found on chromosomes outside of Brachypodium chromosome 5 and rice chromosome 4, previously identified to be syntenic with wheat 2DS in this region (Gasperini et al., 2012). A tandem eight-copy gene duplication of Bradi5g03380/Os04g12980, encoding a UDP-glucosyltransferase of unknown function was found proximal to the Rht8 interval. The relatively high non-collinearity found here, taken together with the relatively high recombination rate described in the previous paragraph is in line with the findings across the $A e$. tauschii genome as a whole: first, showing that non-collinear genes correlated with recombination rates along chromosomes and second, that a faster rate of genome evolution was found between Ae. tauschii - Brachypodium than that with Ae. tauschii - rice (Luo et al., 2013).

The Ae. tauschii genomic resources have already empowered genetic and genomics studies which could be translated to wheat, for example in the isolation of the stem rust resistance gene Sr33 (Periyannan et al., 2013). The Ae. tauschii resources provide excellent scope to the further map-based cloning of Rht8. The individual non-syntenic genes identified here could be targeted for marker development. As a priority though, the BAC contig spanning 360 Kb in the middle of the Rht8 interval should be mined for polymorphism, followed by the other two contigs, as well as the extended SNP-marker sequences used to anchor the BACs. If markers co-segregating with the Rht8 locus are found, then working backwards from the BAC contig, markers can be mapped onto the minimal tiling path (MTP) BACs, the individual BACs then sequenced and physical sequence isolated. A similar strategy has been used with the same resources in projects involving the mapping of genes on wheat sub-genomes B and D in T. dicoccoides and Ae. tauschii (Liang et al., 2015, Zhang et al., 2015).

The Rht8 linkage map was used to identify the 17.3 cM bin in the IWGSC-2 CSS contigs, ordered by POPSEQ, as most likely to contain Rht8. The flanking marker classes D and E both anchored into this bin. However, the Chapman scaffolds showed higher genetic resolution here than IWGSC-2, since the flanking marker classes delimited a 2.3 cM distance between bins. Although the precision of these genetic bins is limited by the low-resolution of POPSEQ, these findings confirm that the gene space sampled by the Chapman assembly does not completely overlap with the IWGSC contigs (Chapman et al., 2015).

The gene content of the 17.3 cM bin containing Rht8 was focused on with improved resolution using the Ae. tauschii genetic map. Particular emphasis was placed on genes that could have a biological role in plant growth and development, based on NCBI annotation. There was no clear candidate based on the Rht8 linkage map since no markers co-segregated with the Rht8 locus and only two genes in the 17.3 cM bin showed differential expression. One high-copy number duplication in the T. aestivum data that was identified is the incompletely characterised pollen Ole1-like protein. However, the gene was not differentially expressed between the parent NILs, and the duplication might indicate genome expansion from Ae. tauschii to T. aestivum rather than Rht8-related function. Three cytochrome P450s were identified, as well as a UDP-glycosyltransferase, but these proteins are encoded by large gene families and the particular families found here remain poorly characterised. The P450s found in the interval belong to subfamilies CYP71 and CYP81, which are non-A-type P450s. Non-A-type P450s contain families known to be involved in BR metabolism, but the non-Atypes also include more divergent sequences than the A-types. Many families show more similarity to non-plant P450s than to other plant P450s and in Arabidopsis, sequence identity among family members can be less than 20% (Bak et al., 2011). Wheat is likely to have a much more sequence divergence. For this reason, high-quality gene models and annotation will be crucial in identifying genes such as these.

Chapter 7: Germplasm development to study rare alleles at the Xgwm261 locus

7.1 Introduction

In bread wheat, there is a general correlation between reduced height and reduced yield (Law et al., 1978). The most influential breeding strategy of the $20^{\text {th }}$ century was the introduction of the major semi-dwarfing genes Rht-B1b and RhtD1b into germplasm at the International Maize and Wheat Improvement Centre in Mexico (CIMMYT) by Norman Borlaug. These genes break the height/yield correlation. Rht-B1b and Rht-D1b are gibberellin (GA) insensitive and in optimal conditions, reduce plant height by 15-35\% (Gale and Youssefian, 1985, Trethowan et al., 2001) whilst increasing yield to similar levels (Worland and Law, 1986). Originally derived from the Japanese cultivar 'Norin 10', these genes became prevalent in CIMMYT wheat varieties and are now found in the majority of modern wheat cultivars (Hedden, 2003). However, Rht-B1b and Rht-D1b are not universally beneficial. Where heat stress occurs during ear emergence, interactions between these dwarfing genes and the environment have been shown to reduce fertility resulting in a yield penalty (Worland and Law, 1986). Furthermore, poor seedling emergence due to reduced coleoptile length and maladaptation to dry environments are other problems associated with Rht-B1b and Rht-D1b (Botwright et al., 2005, Rebetzke and Richards, 1999, Trethowan et al., 2001). In these conditions, the GA-responsive semi-dwarfing gene Rht8 produces a semi-dwarf phenotype without the undesirable effects of the Norin 10derived genes (Ellis et al., 2004, Rebetzke and Richards, 1999). Pre-dating Borlaug, the Italian wheat breeder Strampelli introduced Rht8 to Europe from the Japanese variety ‘Akakomugi'.

Using a chromosome substitution line between Cappelle-Desprez and the Strampelli cultivar Mara, Korzun et al. (1998) reported a tight linkage of 0.6 cM between Rht8 and a 192-bp allele at the microsatellite locus Xgwm261. A screen
of over 800 wheat varieties revealed that 90% of varieties carried the three most common alleles of 165-bp, 174-bp or 192-bp at this locus (Worland et al., 1998b, Worland et al., 2001). A height-reduction of $7-8 \mathrm{~cm}$ was attributed to the 192bp allele relative to the $174-\mathrm{bp}$ allele; a 3 cm reduction was found in varieties carrying the $174-\mathrm{bp}$ allele relative to $165-\mathrm{bp}$, and the $165-\mathrm{bp}$ allele was found to be neutral for height. It was therefore suggested that genotyping at Xgwm261 represents a simple method to assay for variants at the rht8 locus, and that a 192-bp allele was diagnostic for Rht8 (Worland et al., 1998b, Worland et al., 2001).

However, it was reported by Ellis et al. (2007) that the 192-bp allele at this locus is not always diagnostic for the height-reducing Rht8. Instead, Xgwm261-192-bp is only indicative of Rht8 in wheat cultivars that have inherited this allele from Akakomugi or a Strampelli-wheat ancestor. The authors found that Norin 10derived material has an identical 192-bp allele at the Xgwm261 locus which is not associated with Rht8 and suggested that this alternative haplotype evolved prior to the Xgwm261-192-bp linkage with Rht8. Furthermore, Gasperini et al. (2012) reported that Xgwm261 maps further away from Rht8 (1.95 cM) than previously described (0.6 cM , Korzun et al., 1998). Taken together, the linkage between the 192-bp allele at Xgwm261 and Rht8 can be broken, thus a 192-bp allele at this locus is insufficient to unequivocally determine whether a particular cultivar carries Rht8.

Despite the more complex relationship between the rht8 locus and Xgwm261 than initially believed, genotyping at Xgwm261 is likely to remain a popular method to assess allelic variation at rht8, at least in conjunction with other information, such as pedigree or height-reducing effect. This is for two main reasons. First, Xgwm261 is multi-allelic whereas DG279 and DG371, previouslyreported flanking markers to Rht8, are bi-allelic and showed very low polymorphism across a diversity wheat panel (Gasperini, 2010). The markers developed in Chapters 5 and 6 remain untested for the extent of their multiallelism. Further, when novel KASP markers closely linked to Rht8 have been provided to breeders during the course of this PhD, they have tested the performance of these relative to Xgwm261. One breeder reported 100\% match with the 192-bp allele in Akakomugi-derived material (personal communication). Therefore, breeders will likely use these new high-throughput markers in addition
to the well-established Xgwm261 screen. Second, Xgwm261, in addition to the SSR-markers developed in Chapters 5 and 6, will still be used by breeders in countries where SNP markers and the associated technology is not yet prevalent.

Despite the importance of understanding the variants at the Xgwm261 locus, almost all research has focused on height-related effects only. Germplasm development to enable better understanding is needed. The 192-bp allele at Xgwm261 is found in Bulgaria, Greece, former Yugoslavia, Ukraine, China, North America and more recently Australia (reviewed in Asplund et al., 2012). Other than the most common 165-, 174- and 192-bp alleles, genotypic screens have reported distinct and less prevalent ('rare') Xgwm261 alleles ranging from 180- to 220-bp (Ahmad and Sorrells, 2002, Asplund et al., 2012, Bai et al., 2004, Bakshi and Bhagwat, 2012, Chebotar et al., 2001, Ganeva et al., 2005, Liu et al., 2005, Worland et al., 1998b, Worland et al., 2001, Yediay et al., 2011). The precise number of these rare alleles remains uncertain since it has been demonstrated that variations of $2-5 \mathrm{bp}$ are 'stutter' as a result of polymerase slippage during amplification of the alleles (Schmidt et al., 2004), and the same authors speculated that many scientists did not adjust allele sizes to produce uniformity of results in line with previous investigations. For these reasons, descriptions of 'novel' Xgwm261 alleles varying by only two bp from previous reports should be treated with caution (e.g. as in Bakshi and Bhagwat, 2012). Despite ambiguities about the precise number, 'rare' alleles at Xgwm261 exist and their adaptive significance remains poorly understood. This is despite 'rare' alleles (in terms of global distribution) being highly prevalent in certain germplasm collections e.g. Argentinian wheat with 42% of varieties reported to contain a 210-bp allele (Worland et al., 2001), indicating non-random selection by breeders or founder effects.

To determine the agronomic significance (including height and yield components) of allelic variants at Xgwm261 rather than only cataloguing diversity at the locus, the alleles need to be studied in a common genetic background. Work to achieve this was first mentioned in Worland et al., 2001 (p.159). A range of alleles at Xgwm261 were selected and backcrossed into a UK-adapted winter wheat, Mercia, used by Worland and colleagues to study other genes such as Ppd. Since this first mention in 2001, adaptive significance of the alleles at the Xgwm261 locus remains poorly studied. One analysis of distribution of 192- and non-192-
bp genotypes showed no advantage of the 192-bp allele to coleoptile elongation in 135 US and Chinese winter wheat cultivars (Bai et al., 2004). Further, a screen on a $19^{\text {th }}$ century wheat collection revealed no correlation between genotype at Xgwm261 and plant height, but the authors cited height measurements taken from small, non-replicated plots as a possible reason for this result (Asplund et al., 2012). Another study found that all Bulgarian cultivars carrying the rare 203bp allele were the earliest in heading and also had increased yield due to increased spikes per area (Ganeva et al., 2005). However, these effects were not dissected away from other genes determining earlier flowering on 2D (e.g. PpdD1), since the allele was studied in different genetic backgrounds. Clearly, isogenic lines grown in yield-size plots in replicated conditions are required in order to unambiguously determine the pleiotropic effects of the Xgwm261-allelic variants. The germplasm first mentioned in Worland et al. (2001) was recovered during the course of this PhD, from the JIC. The development of this germplasm is described in this Chapter.

Our current knowledge of the adaptive significance of variants at Xgwm261, the extent to which they reveal variation at Rht8 and the pleiotropic effects of Xgwm261 variants is poor. The importance of studying the agronomic performance in a comprehensive way, other than just height effects, was demonstrated in Chapter 3. The Rht8 allele from Mara has great agronomic importance in reducing lodging and has no yield penalty (and a non-significant higher mean yield) in certain agronomic conditions. Additionally, in Chapter 4, it was shown that an interesting spike morphology closely segregates with Rht8. The allelic diversity of the Rht8 flanking markers developed in Chapters 5 and 6 mapping closer to Rht8 than Xgwm261 remains untested, but they could be used by breeders in conjunction with typing for Xgwm261. With the aim of filling this gap in our knowledge of variants at Xgwm261, the isogenic lines first described by Worland et al. (2001), were developed in this Chapter and will provide the basis for ongoing work.

7.2 Recovered germplasm and development
 pipeline

Rare Xgwm261 alleles, as well as the 192-bp Mara-derived allele, were introgressed into Mercia in 2006 by Liz Sayers at JIC, in multiple streams. Mercia carries the 174-bp allele at Xgwm261 and also Rht-D1b (GRIS, 2015). The alleles which were introgressed were derived from Maringa, a Brazilian wheat, Pliska, of Bulgarian origin (reported initially as 201-bp by Worland et al., (2001) and later as 203-bp (Ganeva et al., 2005)), Klein 157 and Klein 49 (Argentinian wheats, reported originally as 210-bp and 215-bp, respectively, by Worland et al., (2001)). Extant allele sizes as described in the initial screen were used here for continuity (Sayers, personal communication), even though the actual sizes detected were larger due to the tailed primer with a labelled adapter (shown in Appendix 7.1). Four streams produced fertile heterozygous seed (Figure 7.1). The F2 seeds from each stream were planted and genotypes collected. The segregation patterns for the introgressed Xgwm261 allele did not significantly deviate from 1:2:1 Mendelian ratios (Table 7.1). The plants homozygous for the parent and donor alleles were grown to maturity in the glasshouse and bagged in order to bulk seed.

Figure 7.1: Germplasm development pipeline for rare Xgwm261 variants. Material was recovered from the introgression of rare Xgwm261 alleles (sizes indicated in brackets) into a common Mercia background. Four successful streams are highlighted from which the homozygous plants for donor and parent allele were selected to be grown in the glasshouse. This seed has been bulked and will next be drilled in replicated plots in the field in order to assess agronomic performance.

Cross and stream	Size		Frequency	\%	$\chi^{2} 1: 2: 1$	$P 2$ d.f.
Maringa x Mercia 4-2	174 and 201	het	27	56	0.792	0.673
	174	hom parent	10	21		
	201	hom donor	11	23		
Maringa x Mercia 5-6	174 and 201	het	24	50	0.000	1.000
	174	hom parent	12	25		
	201	hom donor	12	25		
Klein 157 x Mercia 1-3	174 and 213	het	28	58	2.833	0.243
	174	hom parent	13	27		
	213	hom donor	7	15		
Klein 157 x Mercia 4-4	174 and 213	het	19	40	3.125	0.210
	174	hom parent	17	35		
	213	hom donor	12	25		

Table 7.1: Segregation for Xgwm261 in the F_{2} germplasm in the Mercia background. The p-value at two degrees of freedom was calculated for each Chi-square value. The test value for Chisquare tests is: $H_{0}=5.99, N=48$.

7.3 Preliminary height measurements

To determine the effect of the donor allele on height, the plant height and internode lengths were measured at maturity. The homozygotes for the donor versus parent (Mercia) allele were compared using the Student's T-test. Cappelle-Desprez and RIL4 were grown concurrently to compare the effects of the rare Xgwm261 alleles to the 192-bp allele. In glasshouse conditions, the Mara-derived 192-bp allele in RIL4 had an 8 cm height-reducing effect and highlysignificant reduction in spike and internode length relative to the wild-type Cappelle-Desprez (Figure 7.2). Neither streams from the Maringa introgression into Mercia showed a significant difference in height between parent and donor alleles. The Maringa allele was also neutral for reduction in the spike and internode lengths. In the Klein $157 \times$ Mercia streams, there were two significant differences between the donor- and Mercia-allele. In one stream (4-4), the donor allele had a significant overall height-reducing effect of 3.6 cm , but no further differences in height components. The other stream (1-3), had no difference in overall height, but the donor allele had a length-promoting effect in the first internode (Table 7.2).

Figure 7.2: Plant height at maturity of homozygous individuals within each stream, contrasting for donor and parent allele at the Xgwm261 locus. Cappelle-Desprez parent is wild-type, donor is RIL4. Data represent means, error bars represent standard error. N shown in Table 7.1 and for Cappelle-Desprez and RIL4, N=16.

lowest	highest	Total height		Spike length		Internode-1		Internode-2		$\begin{array}{r} \hline \text { NS } \mathrm{P}>0.05 \\ { }^{*} \mathrm{P}<0.05 \\ { }^{* *} \mathrm{P}<0.01 \\ { }^{* *} \mathrm{P}<0.001 \\ \hline \end{array}$
		mean	p-val	mean	p-val	mean	p-val	mean	p-val	
Cappelle-Desprez	parent	86.7	***	10.2	**	32.4	***	17.9	***	
RIL4	donor	78.8		9.5		26.4		16.4		
Maringa x Mercia	parent	75.3	NS	9.2	NS	26.0	NS	16.7	NS	
4-2	donor	72.9		9.4		25.6		16.3		
Maringa x Mercia	parent	76.6	NS	9.7	NS	26.3	NS	17.0	NS	
5-6	donor	77.2		9.7		24.7		17.3		
Klein 157 x Mercia	parent	89.0	NS	8.5	NS	28.9	*	21.7	NS	
1-3	donor	92.4		8.9		33.5		22.8		
Klein 157 x Mercia	parent	84.4	*	8.5	NS	29.2	NS	22.2	NS	
4-4	donor	80.8		9.4		32.4		22.4		

Table 7.2: Plant height and height components of Xgwm261 allele introgressions. P-values to student's T-test comparing the donor and parent alleles within each stream are shown. Means are based on N shown in Table 7.1. All units are in centimetres.

7.4 Discussion

The work here progresses the development of germplasm which will enable the agronomic effects of rare Xgwm261 alleles to be assessed in the field. Measurements from plants grown in the glasshouse revealed an overall heightreducing effect of the Maringa allele (201-bp) in only one of the streams by 3.6 cm . This is approximately comparable to the reduction of the 174-bp allele relative to $165-\mathrm{bp}$ allele described previously (3 cm) (Worland et al., 1998b), but modest with respect to the 8 cm reduction from the 192-bp allele. The isogenic lines contrasting for the rare donor and common-background parent allele have been bulked which will enable replicated plots to be drilled in the field and other agronomic traits to be measured.

As seen in Chapter 5, it can be crucial to verify height effects observed in glasshouse-grown plants in the field. In Chapter 5, a reported 8 cm difference in heights was not observed in the glasshouse due to confounding factors. Therefore, the even more modest height effects reported here require verification in the field.

Germplasm development is a crucial resource, since advancing generations requires time and often limits projects in crops. At the same time, germplasm development can be perceived to be an unglamorous task and usually continued over time by different people. Often, continuity and records are lacking. The work here in advancing a germplasm resources was therefore included for transparency.

Cloning Rht8 will be an assured way of understanding the adaptive significance of variants at Xgwm261 and will also likely identify new alleles at the Xgwm261 locus.

Chapter 8: Summary and Outlook

8.1 Summary

The aims of this PhD were broadly divided into two parts: agronomic characterisation of Rht8 and the cloning of the gene. At the start of the project, Rht8 had been fine-mapped to a 1.29 cM region on 2DS with single-strand conformation polymorphism (SSCP) markers, primarily using Brachypodium and rice synteny. A population had been developed of NILs contrasting for Maraderived Rht8 and the rht8 allele from Cappelle-Desprez into a photoperiod sensitive background (Ppd-D1b). One of the aims of this PhD was to assess the performance of Rht8 for the first time in UK-adapted germplasm in northern latitudes, without tight-linkage to Ppd-D1a which confounded many previous reports. This enabled the evaluation of the adaptive significance of Rht8, as opposed to 'escape' from terminal stresses due to earliness conferred by PpdD1a (Semenov et al., 2014). Most agronomic reports into Rht8 have focused on height, leaving yield and yield component traits poorly understood. A thorough evaluation of these traits was conducted in this thesis. Another objective was to investigate the spike compactness following anecdotal reports of the phenotype in Rht8-related material. The other main aim was to further fine-map Rht8.

In this Chapter, I summarise the findings and how they further our knowledge of Rht8. I evaluate questions pertaining to some of the key strategies used in this thesis. I also outline suggestions for future work.

In the first part of this thesis, a short and tall NIL contrasting for the Rht8 (short)/rht8 (tall) allele were selected from a $\mathrm{BC}_{3} \mathrm{~F}_{3}$ population of NILs in the UK spring wheat background, Paragon, without Ppd-D1a or any known major height genes. The Rht8 and tall NIL were grown alongside the recurrent parent across two sites in the UK and a high-temperature site in Spain, which had irrigation to field capacity. Field experiments included contrasting N treatments and irrigation regimes.

There was no significant difference in the developmental traits examined (heading, anthesis or senescence) therefore it was confirmed that the height
reduction was due to Rht8 and not premature development. Plant height at maturity was reduced by $\sim 11 \%$ consistently across sites and different N and water treatments and was principally due to the shortening of the spike, peduncle and top internode. This reduction in stature is within the $7-18 \%$ range reported in varying genetic backgrounds and conditions (Wang et al., 2015b, Rebetzke et al., 2012b, Lanning et al., 2012, Ellis et al., 2004).

In high-yield potential UK sites under standard agronomic conditions of high N and no irrigation, the Rht8 NIL had a $\sim 10 \%$ yield penalty which agrees with previous reports of the negative impact of Rht8 on yield (Wang et al., 2015b, Lanning et al., 2012). The key findings of Chapter 3 were that the yield penalty was abolished at low N input, in irrigated conditions and at the high-temperature, lowest yield-potential site in Spain. This is a novel finding and indicates that Rht8 might be usefully deployed in low-input agriculture including, but not limited to, organic systems where yield stability is often more important than maximal yield in an individual season (Wolfe et al., 2008). To add to this, Chapter 3 showed very preliminary indicators that Rht8 had improved N uptake efficiency at low N , which further strengthens the case for future trials in organic systems. There is growing demand for organic wheat in the EU, increasing 15\% year-on-year from 2000 to 2010. Currently the production of organic bread wheat in the EU is well below demand resulting in high prices and reliance on imports (David et al., 2012). Therefore, there is a clear agronomic niche which Rht8 could fill.

Dissecting the yield components revealed that the yield penalty was driven by a concomitant reduction in grains m^{-2} and spikes m^{-2}, and not grain weight or harvest index, where there was no significant difference between the Rht8 and tall NIL. There have been mixed reports previously, with significant differences reported in grain weight but not grain number in different environments and much smaller trials (either pots or smaller field plots) (Wang et al., 2015b, Rebetzke et al., 2012b). The interplay in yield components suggest that studying tiller dynamics and floret generation, both established early in wheat development, is key to further explaining these findings.

A further key finding of Chapter 3 was that the Rht8 NIL conferred root-lodging resistance at agronomically-relevant N levels. On average, every three or four years, widespread lodging occurs on up to 20% of the UK wheat-growing area
which reduces grain yield and quality (Berry et al., 2004). Rht8 could be deployed where lodging risk outweighs the 10% yield penalty. This work forms a basis from which to extend our understanding of the mechanism of improved anchorage in Rht8 by investigating the spread and depth of the root plate. The role that root traits might play in increasing wheat yield has not been fully explored even though genetic diversity in root traits has been reported in bread wheat (Narayanan et al., 2014, Herrera et al., 2012). The effects of the Rht alleles on root systems are unclear with contradictory results reported in different growing conditions. In the most recent investigation in near-isogenic lines in the wheat variety Mercia, the presence of Rht8, Rht-B1b or Rht-D1b had no effect on total root length in seedlings and the authors ascribed contradictory reports in other studies to differences between methodologies such as laboratory gel experiments versus field experiments (Wojciechowski et al., 2009). Recent developments in imagebased high-throughput analysis of crop roots could ameliorate future investigations into Rht8 roots in the field (Downie et al., 2015, Bucksch et al., 2014).

In Chapter 4, I set out to investigate the spike compactness which had been reported anecdotally. A semi-compact spike phenotype was quantified as a significant $\sim 15 \%$ increase in compaction in the Rht8 NIL compared to the tall. The compaction was due to a decreased spike length and not a change in the spikelet number per spike. Spike compactness was unaffected by the different N treatments and water regimes. The findings from this Chapter provide a novel way with which to type for Rht8, in addition to the well-established plant height at maturity. The methodology in Chapter 4 showed that visual assessment of compaction is unreliable and further work needs to be quantitative. In light of this, further work is being undertaken within our group to measure spike compactness in Rht8-related material and a landrace collection with more extreme club spikes. The findings in Chapter 4 pave the way for future investigation into how spike compactness in Rht8 might affect disease resistance, for example Fusarium Head Blight (FHB), which infects the spike and is considered one of the most devastating diseases of wheat worldwide. Further work is being done at the JIC with the Rht8 NIL to assess the potential in reducing spike infection in FHB.

Chapters 5 and 6 presented the results to efforts to isolate Rht8 by map-based cloning. Work in Chapter 5 used manifold approaches to generate markers likely
to map to Rht8. The strategy to fine-map Rht8 was to saturate the region with markers and then to map these markers with increasing resolution, with the aim of finding markers which co-localised with the phenotype, or at least flanked Rht8 and aligned to a contiguous region of a wheat physical map. Ultimately, no cosegregating marker or contiguous sequence was identified so we could not clone Rht8. However a total of 33 markers from Chapter 5 were used to map Rht8 to a 1.015 cM region and resolve syntenic intervals of $1.34 \mathrm{Mb}, 1.36 \mathrm{Mb}$, and 2.9 Mb in rice, Brachypodium and barley, respectively. Using the latest genetic and physical resources in Ae. tauschii, the candidate-gene interval was narrowed to 4.25 Mb , which had high collinearity to T. aestivum genetic bins in IWGSC-2 and Chapman assembly data. This enabled the wheat gene content of the Rht8 region to be considered.

The gene models in the IWGSC-2 genetic bin identified as most likely to contain Rht8 were examined in Chapter 6, but attempts at further marker development mainly focused on genes on barley chromosome 2, Brachypodium chromosome 5 and rice chromosome 4, due to the late stage the Ae. tauschii data was obtained. However, there is scope to examine the other genes mapping to the wheat population sequencing (POPSEQ) bin which were not represented in syntenic intervals. The coarse resolution of the POPSEQ bins still makes mining this sequence a formidable challenge in its current state.

Of the genes within the narrowed wheat genetic bin, there were feasible candidates which could be involved with brassinosteroid signalling. Three cytochrome P450s (CYPs) were identified, as well as a UDP-glycosyltransferase (UGT), which both belong to large gene families. The particular families found in the Rht8 region remain poorly characterised. The P450s found in the interval belong to the non-A-type P450s subfamily and some members of this sub-family are known to be involved in BR metabolism. Since the particular families found here (CYP71 and CYP81) are poorly characterised, this could not be further investigated. UGT74F1 acts on salicylic acid in Arabidopsis but the mechanism is not fully understood. Future improvements in gene annotation will be useful, but all the genes in the interval should be considered.

Many aspects of the fine-mapping strategy were evaluated. At the highest level, fine-mapping was hampered by both low polymorphism and low recombination.

Low polymorphism was reported in the previous fine-mapping attempt of Rht8, where only 4% of the tested markers were polymorphic. In this project the figure was $\sim 15 \%$. The low polymorphism is a product of the relatively recent addition of the D-genome and bottlenecks during hexaploid wheat evolution as outlined in Chapter 1. Historical limitations which make cloning genes on the wheat D genome more challenging cannot be reversed. However, contributing variables can be broken down into poor micro-collinearity in the Rht8 region, low success of marker validation, limitation of the wheat reference/arrays and the limitation of the bulked segregant analysis approach. The latter two are discussed in the next sections.

Marker development in Chapter 5 identified technical limitations which limited marker validation. These included the redundancy in the IWGSC CSS contigs and the scoring of variants on SNP arrays. For example, 52i was completely monomorphic within the bulks on the iSelect SNP array, but polymorphic between the parent NILs. This SNP would not be found following the filtering of variant markers with a high number of absent or heterozygous calls, as some studies have done (Lu et al., 2015, Jiang et al., 2015a). More transparent reporting is needed within the research community to explore limitations in bioinformatics, since going into the future, data analysis will be a bottleneck faced by researchers rather than data generation.

Development in genomic resources allowed closer study of synteny around the Rht8 interval. By focusing on genes on 2DS CSS contigs and by comparing orthologous relationships between genes within the IWGSC-2 genetic bins on wheat 2D, barley was identified as having the highest density of genes collinear with the wheat 2D interval, as might be expected given its more recent divergence from wheat. Unfortunately, there are large annotation gaps in the barley data in the Rht8 interval. The synteny with Brachypodium and rice was worse than previously reported (Gasperini et al., 2012). In particular, there were clear synteny breakpoints where orthologous genes were found on Brachypodium chromosomes 3 and 4, and rice chromosomes 7 and 11. The poor microcollinearity does not exclude the possibility that a marker mapping closest to Rht8, or the Rht8 gene itself, could be a gene found in some or all of the syntenic gene intervals across the different species considered here. However, there is clearly a need to consider the non-syntenic gene content.

At the end of this project, genetic and physical map resources in Ae. tauschii, including genome zippers were made available. Given the low polymorphism experienced during this project and coarse resolution of extant wheat genetic maps, these resources are an excellent marker source for cloning Rht8. One analysis comparing Ae. tauschii 5D with barley 5H and wheat 5D found that the relative positioning of genes had fewer perturbations between Ae. tauschii and wheat than Ae. tauschii and barley (Akpinar et al., 2015). This fits with evolutionary distances between the species and adds weight to the usefulness of Ae. tauschii as a tool to examine hexaploid wheat gene content, in particular for genes on the D-genome. With this in mind, the comparative map from the $A e$. tauschii data was used in Chapter 6 to study the local gene order around the Rht8 interval. There were intra- and inter-chromosomal rearrangements evident in $A e$. tauschii relative to the model grasses. This is reflective of genome-wide findings that the gene space in the smaller grass genomes is more stable than the larger Aegilops genome (Massa et al., 2011, Luo et al., 2013). The finer genetic map of Ae. tauschii was used to narrow down the large IWGSC-2 wheat genetic bin, but many non-syntenic genes identified in the Ae. tauschii data along with $\sim 4 \mathrm{Mb}$ of physical space could not be investigated fully due to the lack of time available to complete the research part of the PhD.

Map-based cloning strategies and the bulked segregant analysis (BSA) strategy adopted in this PhD require confident phenotyping for the trait of interest. Scoring the heights of the fine-mapping recombinants in the field was found to be more robust than the glasshouse data, where sterility and high temperatures were encountered and contracted the height differential - for example, the short parent NIL was 25 cm taller in the Morley field location than in the glasshouse. For the first time in this work, the Rht8 score for each of the individual fine-mapping recombinants could be ascertained, based on multiple replicates across three locations. Previously, markers had been ordered around Rht8 based on mean scores of recombinant classes. However, despite the high replication of the measurement of a single trait across multiple environments, there were still 13 instances of recombinants where conflicts in short/tall typing were encountered. Phenotyping technologies based on 3D lasers are emerging. These platforms can measure multiple traits, including height, under field conditions in a nondestructive manner and without affecting photosynthesis (Busemeyer et al.,

2013, Kjaer and Ottosen, 2015). The Phenospex PlantEye high-resolution 3D laser scanner is being trialled at the JIC and might be able to offer dynamic height measurements during the growing season and provide canopy heights to ensure more robust typing. Directly for fine-mapping Rht8, the spike compaction might offer an alternative approach independent of plant height at maturity, as outlined in Chapter 4.

The markers developed in Chapter 5 fine-mapped with some redundancy across seven marker classes. This redundancy was useful for defining syntenic Rht8 intervals, since not all the markers could be mapped across all species. The redundancy is also convenient since it gives generous scope to identifying markers which could be polymorphic in a wide range of populations, and hence beneficial from a breeders' perspective. Though the SSR markers developed here are less applicable to breeding in Western Europe, where SNP technologies are more cost-effective, they are of particular importance in countries and research institutes where SNP technology is lacking. To this end, the markers are being disseminated to breeders and colleagues of EWAC, the European Wheat Aneuploidy Consortium.

As bioinformatic and genomic resources develop in wheat, the development and maintenance of mapping populations is likely to be the rate-determining step in cloning genes. Work in Chapter 7 continued the germplasm and resource development to generate an allelic series of Xgwm261 in a common background. Xgwm261 is still used in many breeding programs as a proxy of the genotype at the Rht8 interval and we do not yet understand how variation at Xgwm261 reflects variation at $R h t 8$. For this reason, the work in Chapter 7 is useful in developing a future resource which will be tested in field trials.

Overall, the RNA-Seq strategy used in this project had a sound rationale based on the limited previous work in tetraploid and hexaploid wheat which used similar approaches (Ramirez-Gonzalez et al., 2014, Trick et al., 2012). The practical implementation of the strategy over the course of Chapters 5 and 6 brings up two key elements: evaluation of the wheat reference used and the BSA approach.

8.1.1 Was the v3.3 cDNA reference fit for purpose?

The v3.3 cDNA was the best ordered representation of 75,419 gene models which became available during the PhD. At the time, the alternative resources were the customised UniGene reference which relied on ordering from Brachypodium synteny together with a low-resolution Chinese Spring x Paragon map, or the raw CSS contigs released in IWGSC-1, which were not ordered. Work in Chapter 6 showed that gene models on the ordered section of the v3.3 cDNA did were of insufficient density around Rht8 to facilitate fine-mapping.

Assessing the gene content in the unordered section of the v3.3 cDNAs is difficult since the cDNAs have no position or order relative to each other. However, the overlap between the BFR>6 SNPs on genes anchored to IWGSC CSS contigs across the v3.3 cDNA reference as a whole and the IWGSC-2 POPSEQanchored contigs was low. The SNPs with BFR>6 covered 145 2DS CSS contigs and only three of these were in the 17.3 cM POPSEQ bin most likely to contain Rht8. One of these was validated with the marker BFR_46 and the other two mapped outside the Rht8 linkage group. Most of the 2D markers developed on SNPs from BSA did not map to the Rht8 linkage group. There were also technical limitations of IWGSC CSS redundancy which complicated marker validation. Taken together, there is strong evidence that the v3.3 cDNA reference was not fit for purpose. Better gene model representations now exist, which are considered below.

8.1.2 Did the BSA methodology work?

The BSA strategy was built on the rationale that variation captured in the parent NILs to the fine-mapping Rh8 population would be enriched in the bulks in regions which mapped to Rht8.

8.1.2.1 Background noise

The first significant finding was a high level of background noise across several chromosomes outside of 2DS, the chromosome which Rht8 maps to. High numbers of SNPs between the parent NILs were identified on chromosomes 3B, 6AL, 7BS and 7DS. Some background noise in the parent NILs was expected but
through BSA we anticipated that only variation that was genetically linked to Rht8 would be enriched in the bulk data.

Instead, BSA identified high SNP densities on chromosomes 3B, 5BL, 7BS and 7DS. Background noise across chromosomes has been reported in previous BSA approaches in wheat, but not to the extent encountered here. Trick et al., (2012) found one significant peak on a different wheat chromosome to that with the candidate gene, and one SNP from that chromosome mapped close to the candidate region, implying a small insertion. The authors in the study found that increasing gene coverage and considering the highest BFR-SNPs reduced background noise and was successful at identifying SNPs in the collinear regions. Both these recommendations were followed here but were relatively unsuccessful. In the study upon which the BSA analysis was developed (Ramirez-Gonzalez et al., 2014), using an F2 segregating population for the yellow rust gene Yr15, 60% of the mapped SNPs with BFR>6 aligned to group 1 chromosomes (the gene is close to the centromere on 1BS, but the Yr15 introgression included regions from 1BS and 1BL). In the v3.3 cDNA dataset, only 20% of the mapped SNPs with BFR>6 aligned to group 2 chromosomes.

The second significant finding was that for the markers which could be developed on the SNPs enriched in the BSA, on 7BS and 5B, most did not amplify the 2D flow-sorted DNA and did not map close to Rht8. This implies that SNPs were enriched in the BSA which were not linked to the 2D Rht8 interval, although one of the markers did amplify the 2D DNA so might be a translocation to 2D. However, some SNPs with a high BFR mapping to 2 S which were validated by polymorphic SNPs assays did not map to the Rht8 linkage group. This implied that the resolution of the BSA might be limited to identify markers mapping close to Rht8. This will be considered next.

8.1.2.2 Genetic resolution from BSA limited by the reference and SNP array

One viewpoint is that the BSA strategy worked as well as it could have, but the genetic resolution was instead limited by other factors. In light of the evaluation of the v3.3 cDNAs above, it is possible that the limitations of the gene models captured in the reference meant that more tightly-linked SNPs with Rht8 could
simply not be identified because the genes in the Rht8 interval were not adequately represented. This is also true of BSA approach with the pre-defined variants on the iSelect array.

A systematic analysis of the pre-defined SNP-probes on the iSelect array mapping to 2D either genetically (the Akhunov map captured half of the probes, Appendix 5.1) or in the syntenic intervals, found low polymorphism between parent NILs and bulks. Even in the barley Rht8 interval, the best-annotated of the syntenic species, the density of SNP-probes was low, with seven within the strict barley Rht8 interval (Appendix 5.6.3). Only one marker designed on those predefined probes was found to be polymorphic between parent NILs and mapped to the Rht8 interval (52i). Therefore, a valid view is that in this case, both the v3.3 cDNA reference and the iSelect array were not complete enough for the precision required for mapping Rht8.

In terms of using a capture array, there is potential to use the Axiom® 820K array for developing markers mapping close to Rht8, since a large number of variants on the array mapped to the syntenic zippers constructed in Chapter 5. This is a function of the greater (~ten-fold) number of pre-defined variants on the array, and the wider germplasm sampled (including landraces) to construct that array (CerealsDB, 2015b).

The aim of the de novo assembly was to circumvent the limitations of an incomplete reference or limited variant capture on an array. A de novo assembly would allow SNPs to be detected on novel transcripts as long as they were expressed to levels compatible with the depth of coverage (Wang et al., 2009).

The de novo assembly also had considerable background noise across non-2S chromosomes. The assembly only generated 29 putative SNPs mapping to 2 S which were on novel genes not sampled in the v3.3 cDNA reference. The putative varietal SNPs identified from IWGSC CSS alignments did not generate any polymorphic markers. Since the SNPs on 2DS CSS contigs did not map to the POPSEQ bin identified as most likely to contain Rht8 (or close by), these were not pursued further.

8.1.2.3 Did we capture Rht8 in the material sampled?

The resolution of the BSA approach is a combination of marker density and the number of recombinations sampled in each bulk. The question of marker density and the possibility that this was limited by technical issues in the marker validation and limitations inherent to the references used have already been explored. It is also crucial to address the question as to whether it was realistic for the sampling strategy to identify the causal Rht8 SNP. So rather than exploring the question: how did the BSA fail? We could consider: could the BSA ever have worked?

The criticisms of our BSA approach pertain to first, the recombinants sampled within the bulks, and second, the tissue selected for RNA-Seq.

The first point was of great concern at the start of the project. Accurate phenotyping was a major determinant in the success of the BSA approach and this was not underestimated. The work in Chapter 6 has shown that assigning recombinants to short and tall phenotypes was not trivial even with highlyreplicated trials. The suboptimal conditions in the initial glasshouse experiments did delay the sequencing and as was shown in Chapter 6, field data changed the phenotype of a small number of recombinants. Phenotyping for a BSA in a quantitative trait such as height is more difficult than previous work in cereals, almost all of which has studied disease resistance where a qualitative score of resistant/susceptible between bulks is more certain (Ramirez-Gonzalez et al., 2014, Quarrie et al., 1999, Michelmore et al., 1991). Measures were taken to account for the potential phenotyping ambiguity, such as stratifying the bulks and sampling at the extremes of the height distributions. Looking back at the end of the project, it seems that only recombinants with confident phenotypes were included in the BSA, but there is a small possibility this was not the case.

A criticism of our BSA approach could be the small number of individuals (nine) which comprised each bulk. These individuals originated from $3104 \mathrm{~F}_{2}$ plants and were selected from a fine-mapping Rht8 population which mapped to a 1.29 cM interval harbouring Rht8. The number of individuals comprising bulks for BSA is typically much larger in Arabidopsis, ranging from 50-500 (Schneeberger et al., 2009, Austin et al., 2011). Other studies in cereals have used bulks comprising 14 - 20 plants (Trick et al., 2012, Ramirez-Gonzalez et al., 2014, Quarrie et al.,
1999). Although the absolute number of individuals is low in this case, since they were selected from a 1.29 cM interval, the mapping resolution was high theoretically 0.07 cM . This supposes that the individuals comprising the samples captured enough recombination events to allow for this resolution. Given the large co-segregating block of 59 recombinants between marker class D and Rht8, which could not be resolved, there might be a lack of further recombination within the Rht8 interval in the fine-mapping population used here. An alternative is that the relatively low number of individuals in the bulks did not capture enough recombination events to allow for adequate mapping. By sampling at the extreme of the height distributions, the recombinants with potential for ambiguity in phenotype were discounted. It might be that these recombination events were closest to Rht8 and were not sampled. Given the concerns of incorrect typing of recombinants at the start of this project, it was decided imprudent to increase the size of the bulks. The lack of recombination within the interval will be explored in the future strategies below.

In our sampling strategy at the start of this project, we had to take a best estimate on the time-point and organ where Rht8 would be actively expressed at high levels. It was reasonable to assume that this might be in the developing spike, given the reduction of spike length by Rht8 reported previously by Gasperini (2010). If Rht8 is linked to or causes the spike compaction reported in Chapter 4, it is feasible that the window of expression in terms of developmental time could be narrow and also at a different time point to our sampling at GS $30-39$. Undetectably low Rht8 expression would render our RNA-Seq approach ineffective. To resolve this, further work in terms of a developmental time-course of the action of Rht8 looking at both wheat culms and spike compaction would be invaluable.

Finally, the very question of whether Rht8 transcripts were captured in our strategy should be examined. The RNA-Seq strategy used here assumes that Rht8 is a gene generating mRNA which we could detect. Some reasons why this might not have been the case have been explored. It is also possible that the mode of action of Rht8 is more complex and related to gene dosage/copy number (for example, the duplicated gene cluster in Chapter 6) or epigenetic variation, which the RNA-Seq approach would not detect.

Epigenetic variation from variable methylation has been identified via bisulfite sequencing to be involved in the modulation of certain genes in wheat such as Ppd-B1 (Sun et al., 2014) and the expansin gene TaEXP1 (Hu et al., 2013). Further, transcriptional silencing has been found to be involved in a third of singlecopy gene homoeoalleles with organ-specific and temporal control found to be common (Bottley et al., 2006). In addition, small non-coding RNAs have been shown to regulate expression in plants at the transcriptional and posttranscriptional level by binding to gene targets (Vazquez et al., 2010). The small RNA transcriptome has been analysed, revealing dynamic homoeologue regulation mediated by small RNAs (Li et al., 2014). One example of this is a putative miRNA172 binding site in an exon of the domestication gene, Q, pointing to a possible role of miRNA regulation (Zhang et al., 2011). Since the sequencing of the wheat genome and its progenitors has identified large numbers of small non-coding RNAs (IWGSC, 2014, Ling et al., 2013, Jia et al., 2013), we are only at the beginning of understanding how this might alter expression of agronomically-important genes such as Rht8.

8.2 Future directions

Deployment of Rht8 in agriculture

Further trialling of the Rht8 NIL in low-input agricultural systems is endorsed in light of the findings of Chapter 3. Favourable results would broaden the potential agronomic application of Rht8. The emphasis on low-input agricultural systems is only going to increase into the future as resources become more limited. Further investigation into the mechanism of root-lodging is also warranted, given that variation for anchorage in the UK remains largely untapped (Berry et al., 2007).

Developmental time-course of Rht8

Work in Chapter 3 implicated the involvement of tiller dynamics in modulating the yield of Rht8. This, together with the spike compaction which was visually observed in the developing spike in Chapter 4, suggests that studying the effect of Rht8 only at full maturity is insufficient. Taken together with the evaluation of the BSA strategy, it is clear that a developmental time-course to study the spatial and temporal effects of Rht8 would increase our understanding both on the
molecular and agronomic level. New phenomics technology being trialled at the JIC could be used to measure canopy dynamics on a plot-level in the field. This could be complemented by experiments in controlled-growth conditions, by destructive assays measuring internode and spike dynamics during development, and also investigating the development of the floret to observe how early compaction takes place.

Interplay between Rht8 and compactum

The intriguing findings of Chapter 4 highlight the dearth of knowledge in spike compactness and niche interest in club wheats in scientific literature. It is particularly important to dissect the genetic effects of Rht8 and compactum (C), if they are separate loci, for fine-mapping purposes. It is also important to determine the extent to which, if any, C contributes to some of the undesirable agronomic effects found in Chapter 3 such as yield penalty. The markers developed in Chapter 5, including the markers mapping to 2D but outside of the Rht8 linkage map provide a fast way of determining genetic linkage between Rht8 and C if they are polymorphic in compactum mapping populations. A collaboration with the small compactum research community could provide novel links between the well-documented semi-dwarf effect of Rht8 and the relatively unknown semicompact spike phenotype.

Short-term strategies for targeted marker development

The Ae. tauschii resources could not be fully capitalised on due to time limitations. An immediate strategy would be to utilise the $\sim 4 \mathrm{Mb}$ of sequence identified in the genetic interval. The highest priority should be mining the BAC contig spanning 360 Kb , in the middle of the Rht8 interval and corresponding SNP marker sequences for polymorphism. Additionally, the Axiom ${ }^{\circledR}$ SNP array showed potential for marker discovery since it captured SNPs within the syntenic Rht8 intervals. Genotyping the parent NILs with this array would be a relatively fast and inexpensive method to probe these variants.

Physical information to improve the low recombination in the Rht8 interval

Usually a target interval of <0.5 cM is required to establish a physical contig (Krattinger et al., 2009a), which was not achieved in this case. However, in some situations, recombination is limited which does not make this a feasible target
(Adamski et al., 2013). Similarly in this case, there is low recombination within the Rht8 interval since of the 63 fine-mapping recombinants mapping between the flanking marker classes; 59 are in a co-segregating block. These recombinants are only useful for fine-mapping if they can be resolved further. In light of this uncertainty, and with the evaluation of the flow-sorted 2D DNA in Chapter 5, a 2D BAC library from RIL4 would be an invaluable resource for the future. This could be screened with the markers developed in this project, followed by chromosome walking. A recent development is the fluorescence in situ hybridization in suspension (FISHIS) method (Giorgi et al., 2013). Using this method, chromosomes are flow-sorted using a fluorescent label. This method is currently run as a service for any wheat variety. This provides the opportunity to obtain a BAC library from flow-sorted 2D DNA of the short parent NIL in a matter of weeks.

Developing another fine-mapping population to capture more recombination events around Rht8

Success of map-based cloning of Rht8 requires high polymorphism and a high recombination rate. Recombination in the interval was limited. In particular, there is a recombination dead-lock in the co-segregating block of 59 recombination events between marker class D and Rht8. Using another mapping population which might capture more recombination in this region should be constructed to increase mapping resolution. The fastest way of doing this would be to use some of the BC5-material in Paragon generated previously (Gasperini, 2010). The first step would be to self-pollinate the heterozygotes from a further back-cross (say BC_{6}) to generate a $\mathrm{BC}_{6} \mathrm{~F}_{2}$ population which could then be used for fine-mapping. An alternative would be to construct a new population with greater polymorphism by hybridisation of D-genome donors with tetraploid wheat to create a synthetic hexaploid-wheat mapping population.

Future NGS strategies should use an improved wheat reference

The v 3.3 cDNA wheat reference used in this project was the best representation of gene models at the time. By the end of this thesis, it can be seen that the reference was limiting for the purposes of fine-mapping Rht8. Currently, there are more complete sets of gene models on Ensemb/Plants, comprising over 100,000 genes (for example, the PGSB gene models, based on the flow-sorted CSS assemblies) (EnsembIPlants, 2015). These are improved references which could
be used to align to with the sequenced reads and for SNP-calling. However, a limitation is that truncated genes that are split across different CSS contigs are not represented in those gene models. Given the prediction of obtaining greater contiguity across coding regions from the Chapman assembly (Chapman et al., 2015), developments in the near future incorporating genes from that dataset will improve the gene models available to the wheat community.

Future strategies to clone Rht8

One strategy to further define the Rht8 interval would be the use of overlapping deletions in γ-irradiated mutants. This approach has been used successfully for the Ph1 locus, which was also suffering from a lack of recombination (Griffiths et al., 2006). Deleted segments of the Rht8 interval could be identified and the plants harbouring these deletions grown and phenotyped. Subsequently, candidate genes mapping to the deletions essential for Rht8 function could be further tested, but subtle height effects would be difficult to detect robustly.

One way in which candidate genes identified in this project and in the future could be tested is through the use of Targeting Induced Local Lesions IN Genomes (TILLING). TILLING is a reverse genetics approach which introduces SNPs from chemical mutagenesis to induce deleterious mutations and then uses highthroughput screening to identify the mutations (Uauy et al., 2009). Sequenced tetraploid and hexaploid TILLING populations are being made available at the JIC later in 2015, whereby it will be possible to identify a mutation in a gene of interest in silico and order the seed online. The database which will host these resources will be searchable using the IWGSC CSS scaffold or Ensemb/Plants gene model as a query. This will be a valuable resource for functional characterisation of candidate genes. A candidate gene would be further validated by transformation studies such as stable transformation or virus-induced gene silencing and by complementation of null or knock-down mutants by transgenesis (Krattinger et al., 2009a).

Appendices

The appendices are presented grouped into chapters, with the relevant chapter number preceding the figures and tables.

Appendix to Chapter 2

```
##R Script to calculate day length over the growing season 2013-14
##Ania Kowalski
##June 2015
##loading packages
library("ggplot2")
library("maptools")
library("scales")
#Norwich data
##using site co-ordinates
x_seq_N <- seq(from = as.POSIXct("2013-09-01", tz = "GMT"), length.out = 365, by = "days")
coord_N <- matrix(c(-1.29,52.63), nrow = 1)
sunrise<-sunriset(coord_N, x_seq_N, direction="sunrise", POSIXct.out=TRUE)
sunset<-sunriset(coord_N, x_seq_N, direction="sunset", POSIXct.out=TRUE)
day_length=as.numeric(sunset$time-sunrise$time)
n<-data.frame(date=as.Date(sunrise$time),day_length)
##Lleida data
##using site co-ordinates
x_seq_L <- seq(from = as.POSIXct("2013-09-01", tz = "CET"), length.out = 365, by = "days")
coord_L <- matrix(c(0.63, 41.62), nrow = 1)
sunrise_L<-sunriset(coord_L, x_seq_L, direction="sunrise", POSIXct.out=TRUE)
sunset_L<-sunriset(coord_L, x_seq_L, direction="sunset", POSIXct.out=TRUE)
day_length_L=as.numeric(sunset_L$time-sunrise_L$time)
L<-data.frame(date=as.Date(sunrise_L$time),day_length_L)
setwd("E:/PhD/Paragon x Rht8/R/data")
write.csv(L, file="Lleida_daylength.csv")
write.csv(n, file="Norwich_daylength.csv")
##now combine these into one csv and load it in
days<-read.csv("daylength_combined.csv",as.is=T)
days$date <- as.Date(days$date, format="%d/%m/%Y")
days$location <- factor(days$location, levels=c("Norwich","Lleida"))
class(days$date)
dayl<-ggplot(days, aes(x=date, y=day_length, group=location)) +
geom_line(size=2,aes(colour=location)) +
scale_colour_manual(values = c("#0072B2", "#CC0000")) +
scale_x_date(breaks=date_breaks("1 month"), labels=date_format("%b"), expand=c(0,0)) +
scale_y_continuous(limits=c(0,20), breaks=seq(0,20,4), expand=c(0,0)) +
ylab("Day length (hours)") +
    xlab("") +
    theme(panel.grid.minor.x=element_blank(), panel.grid.major.x=element_blank(),
    plot.title = element_text(lineheight=.4, face="bold"),
    axis.title = element_text(size=25, face="bold", colour="black"),
    axis.text.y = element_text(size=20, colour="black"),
    axis.text.x = element_text(hjust=-1, size=20,face="bold", colour="black"),
    strip.text.x =element_text(size=22, face="bold"),
    strip.background=element_rect(colour = "black"),
    legend.text= element_text(size = 22),
    legend.title=element_blank(),
    legend.position="top") +
guides(fill=guide_legend(title=NULL))
```

A2.1: R script to calculate day length over the 2013-14 growing season in Norwich and Lleida.

```
//Image procesing
//run("Threshold...");
// Color Thresholder 1.48i
min=newArray(3);
max=newArray(3);
filter=newArray(3);
a=getTitle();
run("HSB Stack");
run("Convert Stack to Images");
selectWindow("Hue");
rename("0");
selectWindow("Saturation");
rename("1");
selectWindow("Brightness");
rename("2");
min[0]=34
max[0]=117;
filter[0]="pass";
min[1]=0;
max[1]=255;
filter[1]="pass";
min[2]=0;
max[2]=255;
filter[2]="pass";
for (i=0;i<3;i++){
    selectWindow(""+i);
    setThreshold(min[i], max[i]);
    run("Convert to Mask");
    if (filter[i]=="stop") run("Invert");
}
imageCalculator("AND create", "0","1");
imageCalculator("AND create", "Result of 0","2");
for (i=0;i<3;i++){
    selectWindow(""+i);
    close();
}
selectWindow("Result of 0");
close();
selectWindow("Result of Result of 0");
rename(a);
// Pixel counting
blackPixels = 0;
totalPixels = getHeight * getWidth;
for (j = 0; j < getHeight(); j+=1){
    for(i = 0; i< getWidth(); i+=1){
        val=getPixel(i,j);
        if(val==255){
                blackPixels +=1;
            }
    }
}
percent=(blackPixels)*100/totalPixels;
//Results
n=nResults;
e= getTitle();
setResult("File", n,a);
setResult("% Ground cover", n, percent);
```

A2.2: ImageJ (.ijm) script to calculate ground cover written by Oscar Gonalez.

	Glasshouse 2013			BSA		
F4 rec	Score	Height (cm)	N	St. error	RNA-Seq	iSelect
F4-1-2-4-3	a	79.9	24	0.9	B2	
F4-1-6-13-2	a	79.9	22	0.5	B4	T1
F4-1-6-17-1	a	78.7	25	0.9	B4	T2
F4-3-2-7-2	a	78.1	24	0.8	B4	T3
F4-3-2-13-1	a	77.8	24	0.7	B2	
F4-1-9-1-1	a	77.6	24	0.8	B2	
F4-1-6-16-1	a	77.5	24	1.0	B6	
F4-3-8-5-2	a	77.2	24	0.7	-	
F4-2-7-3-6	a	76.9	22	1.0	B6	
Cappelle	a	76.2	63	0.6	-	
F4-2-1-16-3	a	76.1	24	0.8	B6	
F4-1-7-4-1	a	75.5	24	0.7	-	
F4-3-7-7-2	a	75.4	24	0.6	-	
F4-1-1-7-3	a	75.3	24	1.5	-	
F4-3-7-14-3	a	75.0	24	0.7	-	
F4-2-1-11-4	a	74.6	25	0.7	-	
F4-2-8-1-2	b	74.1	24	0.9	-	
F4-2-2-7-1	b	73.9	23	0.7	-	
F4-3-2-2-1	b	73.3	24	0.6	-	
F4-1-7-1-1	b	71.2	25	1.0	B3	
F4-2-1-12-1	b	70.8	23	0.7	B3	
F4-3-2-16-1	b	70.7	23	1.2	B3	
F4-1-1-2-9	b	70.2	24	1.1	-	
F4-1-1-9-7	b	70.2	24	0.7	B5	S3
RIL4	b	69.8	63	0.4	-	
F4-3-2-5-1	b	69.3	24	0.7	-	
F4-3-1-2-6	b	69.3	20	0.9	B5	S2
F4-1-2-2-1	b	69.2	24	0.9	-	
F4-2-7-12-2	b	69.0	22	0.7	B1	
F4-3-8-6-3	b	68.7	22	0.9	B1	
F4-2-1-4-1	b	68.7	23	1.0	-	
F4-1-1-10-5	b	68.5	24	0.7	-	
F4-3-2-8-1	b	67.5	24	1.0	B5	S1
F4-3-8-1-1	b	66.6	23	1.7	B1	

BSA	Height (cm)	N	St. error
Short (B1, B3, B5)	69.3	204	0.4
Tall (B2, B4, B6)	78.0	213	0.3

A2.3: Mean heights of the subset of short and tall recombinants identified following the first glasshouse experiment. The selection of recombinants for the short and tall bulks for RNA-Seq and also for BSA using the iSelect SNP array is indicated.

Marker	Gene	Pos	Barley			Brachypodium		Rice	
2DS_AX4	mrna105701	573682..576170	MLOC_5618	2	9707617	Bradi5g02040	-	Os04g01740	heat shock protein 82
	mrna105285	581614..582602	MLOC_74324	4	207672522	Bradi1g63430	-	Os06g03770	ATP-binding cassette sub-family B member 7, mitochondrial
	mrna094242	585492.. 594064	MLOC_53502	2	9665488	Bradi1963430	-	Os06g03770	ATP-binding cassette sub-family B member 7, mitochondrial
	mrna006241	-	-	3	170328523	Bradi4g00290	-	Os 12g44360	-
	mrna091443	617087..617504	MLOC_65860	2	9586895	Bradi2g11550	-	Os01g19740	CP12-1
	mrna037735	626889..630688	MLOC_65968	2	7996695	Bradi5g02160		Os04g01590	arginase
	mrna026681	633698..638867	MLOC_15515	5	347207284	Bradi5g02170	acetyl-CoA C-acetyltransferase activity	Os09g07830	acetyl-CoA acetyltransferase, cytosolic 1
	mrna063205	647427..647522	MLOC_57107	2	9598506	Bradi5g02200	uridy late kinase activity	-	-
	mrna102282	677583..675726	MLOC_54900	2	9627250	Bradi5g02300	rRNA (uridine-C5-)-methyltransferase activity	Os04g01480	nucleic acid binding protein
	mrna047620	682344..676292	MLOC_54900	-	-	Bradi5g02300		Os04g01480	
	mrna038321	686600..689111	MLOC_5776	4	350822582	Bradi5g02340	-	Os04g01290	PCI domain containing protein
	mrna126380	716490..723135	MLOC_18035	2	10827107	Bradi5g02400		Os04g01230	phosphoglycerate mutase-like protein
2DS_242	mrna090625	724876..729232	MLOC_13122	2	12807171	Bradi5g02400		Os04g01230	phosphoglycerate mutase-like protein
	mrna074113	$737560 . .741664$	MLOC_62712	-	-	Bradi5g02450	-	Os04g01150	
66_uni	mrna040847	764510..755080	MLOC_65493	2	12631261	Bradi5g02490	cyclopropane-fatty-acyl-phospholipid synthase	Os 07g29220	cyclopropane-fatty-acyl-phospholipid synthase
27_uni	mrna064977	773718..772828	MLOC_62750	2	11080613	Bradi5g02510		Os09g09320	
	mrna066573	-	-	,	421952842	-	-	-	-
Freq_2	mrna026970	779625..784077	MLOC_62749	2	11088281	Bradi4g39940	serine-type carboxypeptidase activity	Os11g24374	circumsporozoite protein precursor, putative
	mrna105132	$789621 . .784897$	MLOC_38821	2	9986033	Bradi5g02520	D-glucose transmembrane transporter activity	-	-
1_al	mrna009588	$809811 . .811325$	MLOC_56811	2	12512964	Bradi5g02860	NBS LRR	Os04g11430	disease resistance RPP13-like protein 1, putative
	mrna121627	820329..817278	MLOC_56812	2	12519925	-		-	-
72_uni	2DS_5343763								
	mrna074509	865258..860151	MLOC_61723	2	14128009	Bradi5g02920	L-tyrosine transmembrane transporter activity	Os04g12499	amino acid permease, putative
	mrna028105	868800..875398	MLOC_13573	2	23130708	Bradi5g02940	NAD-dependent histone deacetylase activity	Os04g20270	mono-ADP-ribosyltransferase sirtuin-6
	mrna121338	895032..896599	MLOC_38009	2	27646647	-		-	-
2DS_235	mrna107490	905879..906241	MLOC_24124	2	15297328	Bradi5g03300	UDP-galactose:glucosylceramide beta-1,4-galactosyltransferase activity	-	-
DG_279	mrna093230	929999..929511	MLOC_5957	2	15606953	Bradi5g03460	xenobiotic-transporting ATPase activity	Os04g13210	multidrug resistance-associated protein 4
$52 i$	mrna020368		MLOC_5957						
	mrna070632	934335..937458	MLOC_37835	2	283333993	Bradi5g03510	single-stranded DNA specific 3'-5' exodeoxyribonuclease activity	Os 04g23830	oligoribonuclease
	mrna093698	942301..940006	MLOC_54824	2	283296081	Bradi1g55690	tyrosine-tRNA ligase activity	Os04g23820	multisynthetase complex auxiliary component p43
	mrna084787	952651..950993	MLOC_48019	2	17529225	Bradi5g03580		-	-
	mrna139758	967144..975027	MLOC_57508	2	15598089	Bradi5g03600		Os04g13470	expressed protein

A2.4: Annotated 2D v3.3 cDNA interval, delimited from the ordered section of the v3.3 cDNA reference. Physical position is indicated. Coloured red: markers developed in Chapter 5 which could be anchored via IWGSC 2DS contig; coloured blue: new markers developed in Chapter 6; shaded green: limits of the 59 genes used as the 2D interval; shaded grey: delimited interval by Gasperini (2010).

Marker	Gene	Pos	Barley			Brachypodium		Rice	
	mrna071578	980992..982656	MLOC_14804	2	17593210	Bradi5g03640	cytochrome-c peroxidase activity	Os04g14680	OsAPx3 - Peroxisomal Ascorbate Peroxidase
	mrna048555	987628..992477	MLOC_72300	-	-	-	-	-	-
	mrna091757	996752..998090	MLOC_78870	2	433617556	Bradi5g11360	-	Os04g36062	expressed protein
	mrna015009	1008566..1009383	MLOC_16798	2	17491605	Bradi3g20960	YUCCA-like flavin monooxygenase	Os04g14690	monooxygenase/ oxidoreductase
	mrna004763	1014979..1022844	MLOC_57069	2	293513169	Bradi5g03740	FAD binding	Os04g20990	tRNA -dihydrouridine synthase A
	mrna098230	1034572..1032265	MLOC_11990	2	15662153	Bradi5g03810	-	Os04g14790	mitochondrial precursor
	mrna053306	-	-	2	17554661	Bradi5g03830	-	Os05g22970	
	mrna035375	1052274..1048977	MLOC_45846	2	17496478	Bradi5g03850	-	Os04g20590	nucleus protein
	mrna002983	1067514..1055341	MLOC_52767	2	17439859	Bradi5g03860	ATP binding	Os05g22940	acetyl-coenzyme A carboxylase
	mrna096393	1078530..1075332	MLOC_58539	2	17418895	Bradi5g03960	leucine-rich repeat protein kinase, subf amily LRR-XII	Os04g15560	receptor kinase-like protein, putative
	mrna016294	1097699.. 1098161	MLOC_10026	2	17639762	-	-	-	-
	mrna106738	1109640..1110322	MLOC_61794	2	17692687	Bradi5g03980	-	-	-
	mrna096003	1117860..1116717	MLOC_61793	2	17399188	Bradi5g04000	leucine-rich repeat protein kinase, subf amily LRR-XII	Os04g15660	receptor-like protein kinase 5 precursor, putative
	mrna124385	1128085..1128538	MLOC_63016	2	17704245	Bradi5g04060	-	Os04g15800	expressed protein
	mrna118007	1133627..1133074	MLOC_21811	2	17600858	Bradi4g08500	ribulose-bisphosphate carboxylase activity	Os12g17600	ribulose bisphosphate carboxylase small chain C
	mrna105093	1141782..1137361	MLOC_64679	5	308971823	Bradi4g08800	ribulose-bisphosphate carboxylase activity	Os12g17600	ribulose bisphosphate carboxylase s mall chain C
2DS_26	mrna057813	1178953..1175902	MLOC_10084	2	19080339	Bradi4g40600	protein ty rosine/serine/threonine phosphatase activity	Os12g09120	mRNA capping enzyme
	mrna043662	1187529..1177350	MLOC_10084	2	19203419	Bradi4g40600	protein ty rosine/serine/threonine phosphatase activity	Os12g09120	mRNA capping enzyme
	mrna007120		-						
	mrna096121	1213914..1221010	MLOC_81817	-	-	Bradi5g04580	-	Os04g14510	-
	mrna029953	1228749..1227278	MLOC_62246	2	19049035	Bradi5g04590	RING finger protein 13	-	-
	mrna001012	1247138..1246392	MLOC_71561	2	19532719	Bradi5g04630	-	Os10g05970	proline-rich protein
	mrna023290	1261929..1263458	MLOC_60079	2	18991726	Bradi3g59380	-	Os08g33910	NAC domain-containing protein 9
DG371	mrna079612	1295398..1277393	MLOC_4350	2	19442462	Bradi5g04670	-	Os04g18010	160 kDasubunit
	mrna066175	1304350..1308155	MLOC_8932	2	557067051	Bradi1g15750	-	Os03g36439	F-box domain containing protein
	mrna110666		-						
	mrna064310	1319922..1325751	MLOC_36970	2	145179275	Bradi1954980	-	Os03g58600	argonaute-like protein
	mrna139098	1320119..1326260	MLOC_36970	2	145179275	Bradi1g54980	-	Os07g09020	argonaute-like protein
	mrna072920	1345527..1345991	MLOC_43713		-	Bradi1g16060	-	Os03g33650	
	mrna077126	1347080..1350291	MLOC_59733	2	19470273	Bradi1g16100	-	Os03g39740	expressed protein
	mrna024572	1352649..1353401	MLOC_58913	2	454551540	Bradi1g16240	F-Box	Os03g30920	F-box domain containing protein
	mrna131003	1354903..1352804	MLOC_58913	2	454551973	Bradi1g16240	F-Box	Os03g30920	F-box domain containing protein
	mrna054831	1357377..1359480	MLOC_58913	2	454556219	Bradi5g12610	-	Os04g38980	pentatricopeptide repeat protein PPR1106-17
	mrna053564	1362385..1362937	MLOC_60251	6	524296736	Bradi1g22150	-	Os01g62000	pectate lyase 4 precursor, putative
	mrna007148	1366856..1364433	MLOC_17685		-	Bradi1g16460	-	-	-
	mrna014279	1369240..1366797	MLOC_17685	-	-	Bradi1g16460	-	-	-
	mrna066730	1384586..1383619	MLOC_72613	2	24814834	Bradi1g16480	subfamily RLCK-VIla	Os07g49470	protein kinase APK1B, chloroplast precursor
	mrna058994	1386885.. 1386044	MLOC_81154	2	24919963	Bradi1g16490	-	-	-
	mrna098363		-						
	mrna057019		-						
	mrna057573	-	-	2	358279548	Bradi1g16520	-	Os07g49390	-

A2.4 continued

A2.5 continued over 12 pages: UNIX and BASH commands to align parent NIL and bulk reads to v3.3 cDNA reference, 2D v3.3 cDNAs and call SNPs in the 2D v3.3 cDNA interval using VarScan.
\#\#\#BASH commands to align parent NIL and bulk reads to v3.3 cDNA reference \# Ania Kowalski
\# April-June 2014
\#files were received as gzip forward (R1) and reverse (R2) reads
\#in fastq format
\#\#files split into separate folder per sample and reads within each folder were concatenated

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#1\#

\#\#concatenate the files into R1 and R2
\#\#This merges all forward read together and reverse reads together, for each sample.
\#\#Parent reads shown here, repeated in the same way for bulks samples B1-B6
\#S1_CD_Spike
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S1_CD_Spike_R_1.fastq.gz bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S1_CD_Spike_R_2.fastq.gz \#S2_RIL4_Spike
bsub-q NBI-Test128 cat *R1*.fastq.gz >P_S2_RIL4_Spike_R_1.fastq.gz bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S2_RIL4_Spike_R_2.fastq.gz \#S3_CD_Spike
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S3_CD_Spike_R_1.fastq.gz bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S3_CD_Spike_R_2.fastq.gz \#S4_RIL4_Spikecd ../S4
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S4_RIL4_Spike_R_1.fastq.gz bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S4_RIL4_Spike_R_2.fastq.gz \#S5_CD_Peduncle
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S5_CD_Peduncle_R_1.fastq.gz bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S5_CD_Peduncle_R_2.fastq.gz \#S6_RIL4_Peduncle
bsub-q NBI-Test128 cat *R1*.fastq.gz >P_S6_RIL4_Peduncle_R_1.fastq.gz
bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S6_RIL4_Peduncle_R_2.fastq.gz
\#S7_CD_Peduncle
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S7_CD_Peduncle_R_1.fastq.gz
bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S7_CD_Peduncle_R_2.fastq.gz
\#S8_RIL4_Peduncle
bsub -q NBI-Test128 cat *R1*.fastq.gz >P_S8_RIL4_Peduncle_R_1.fastq.gz
bsub -q NBI-Test128 cat *R2*.fastq.gz >P_S8_RIL4_Peduncle_R_2.fastq.gz
\#\#Copying all reads into reads_fastq file
bsub -q NBI-Test128 cp *.fastq.gz /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/reads_fastq/
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#2\#
\#\#indexing genome for alignment
first source bowtie2-2.1.0
bsub -q NBI-Test128 bowtie2-build v3.3_cdna.fasta bowtie2_v3.3_cDNA \#cDNA reference from Martin Trick

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#3\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

\#\#aligning with bowtie
\#\#navigate to Reads_input folder where .fastq files are
source bowtie2-2.1.0
\#\#run alignments in batches:
\#\#for bulks, run one alignment with the shorts and second alignment with the talls
\#\#example bowtie2 -p 12 -x bowtie2/NC_012967.1-1 SRR030257_1.fastq -2
SRR030257_2.fastq -S SRR030257.sam
\#\#note: considered relaxing parameters to allow one mismatch (default is 0) by using -N 1 , \#\# but in the end used default parameters
\#\# the more relaxed mapping gave hardly any difference,
\#\# therefore do with more stringent parameters (i.e. no need for $\mathrm{N}-1$)
\#\#single alignments for the shorts
\#\#S1/S3/S5
bsub -q NBI-Test256 "bowtie2 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S1_short_R_1.fastq.gz -2 B_S1_short_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/short_S1.sam"
bsub -q NBI-Test256 "bowtie2 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S3_short_R_1.fastq.gz -2
B_S3_short_R_2.fastq.gz-S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/short_S3.sam"
bsub -q NBI-Test256 "bowtie2 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S5_short_R_1.fastq.gz -2
B_S5_short_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/short_S5.sam"
\#\#single alignments for the talls
\#talls S2/S4/S6
\#save tall_S2_S4_S6 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test128 "bowtie2 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S2_tall_R_1.fastq.gz -2 B_S2_tall_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/tall_S2.sam"
bsub -q NBI-Test128 "bowtie2 -x/net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S4_tall_R_1.fastq.gz -2 B_S4_tall_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/tall_S4.sam"
bsub -q NBI-Test128 "bowtie2 -x/net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 B_S6_tall_R_1.fastq.gz -2 B_S6_tall_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/alignments/bowtie2/tall_S6.sam"
\#\#combining bulks
\#shorts S1, S3, S5
\#save short_S1_S3_S5 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test256 bowtie2 -p 10 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1
B_S1_short_R_1.fastq.gz,B_S3_short_R_1.fastq.gz,B_S5_short_R_1.fastq.gz -2
B_S1_short_R_2.fastq.gz,B_S3_short_R_2.fastq.gz,B_S5_short_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/alignments/bowtie2/short_S1_S3_S5.sam
\#talls S2, S4, S6
\#save tall_S2_S4_S6 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test256 bowtie2 -p 10 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1
B_S2_tall_R_1.fastq.gz,B_S4_tall_R_1.fastq.gz,B_S6_tall_R_1.fastq.gz -2
B_S2_tall_R_2.fastq.gz,B_S4_tall_R_2.fastq.gz,B_S6_tall_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/alignments/bowtie2/tall_S2_S4_S6.sam
\#\#for parents, run one alignment per biological replicate
\#\#save CD_Spike_S1_S3 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test256 bowtie2 -p 10 -x /net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1 P_S1_CD_Spike_R_1.fastq.gz,P_S3_CD_Spike_R_1.fastq.gz -2 P_S1_CD_Spike_R_2.fastq.gz,P_S3_CD_Spike_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/alignments/bowtie2/CD_Spike_S1_S3.sam
\#\# SAVE RIL4_Spike_S2_S4 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test256 bowtie2 -p 10 -x/net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1
P_S2_RIL4_Spike_R_1.fastq.gz,P_S4_RIL4_Spike_R_1.fastq.gz -2
P_S2_RIL4_Spike_R_2.fastq.gz,P_S4_RIL4_Spike_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/alignments/bowtie2/RIL4_Spike_S2_S4.sam
\#\#save CD_Peduncle_S5_S7 to Ania_seq/alignments/bowtie2
bsub -q NBI-Test256 bowtie2 -p 10 -x/net/group-data/ifs/NBI/Research-Groups/SimonGriffiths/Ania_seq/reference/genes/bowtie2_v3.3_cDNA -1
P_S5_CD_Peduncle_R_1.fastq.gz,P_S7_CD_Peduncle_R_1.fastq.gz -2
P_S5_CD_Peduncle_R_2.fastq.gz,P_S7_CD_Peduncle_R_2.fastq.gz -S /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/alignments/bowtie2/CD_Peduncle_S5_S7.sam
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#4\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#index genome for SAMTOOLS
\#\#cd into samtools_bowtie2
bsub -q NBI-Test128 samtools faidx v3.3_cdna.fasta
\#\#\#\#\#\#\#\#\#\#\#\#5\#\#\#\#\#\#\#\#\#\#
\#\# Convert .sam to .bam using SAMTOOLS
\#\# first check header is present in the sam files
head filename.sam
\# if header info is there, use -bS option
\#\#header is there if there is @ visible
\#navigate into alignments/spike for bowtie sam files
bsub -q NBI-Test256 "samtools view -bS CD_Peduncle_S5_S7.sam > CD Peduncle S5 S7.bam"
\#\#Note correcting for incorrect SAM file naming - now corrected with RIL S6 S8 (same file called CD mistakenly)
bsub -q NBI-Test256 "samtools view -bS CD_Peduncle_S6_S8.sam > RIL4 Peduncle S6 S8.bam"
bsub-q NBI-Test256 "samtools view -bS CD_Spike_S1_S3.sam > CD_Spike_S1_S3.bam" bsub -q NBI-Test256 "samtools view -bS RIL4_Spike_S2_S4.sam > RIL4_Spike_S2_S4.bam" bsub -q NBI-Test256 "samtools view -bS short S1 S3 S5.sam > short S1 S3 S5.bam" bsub -q NBI-Test256 "samtools view -bS tall_S2_S4_S6.sam > tall_S2_S4_S6.bam"
\#\#\#\#\#6\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#QC using samstat on sam files
\#\#and also samtools flasgstat of bam files to get statistics
\#\#note this requires indexing and sorting
\#\#navigate to alignments/bowtie2
bsub -q NBI-Test128 "samtools flagstat CD_Peduncle_S5_S7.bam"
bsub -q NBI-Test128 "samtools flagstat RIL4_Peduncle_S6_S8.bam"
bsub -q NBI-Test128 "samtools flagstat CD_Spike_S1_S3.bam"
bsub -q NBI-Test128 "samtools flagstat RIL4_Spike_S2_S4.bam"
bsub -q NBI-Test128 "samtools flagstat short_S1_S3_S5.bam"
bsub -q NBI-Test128 "samtools flagstat tall_S2_S4_S6.bam"
\#\#\#\#\#7\#\#\#\#\#\#\#\#
\#\#removing duplicates
\#\#Need to first sort by read names -n
\#sorting by name rather than the default which is chromosome location
\#\#navigate to alignments/bowtie2
bsub -q NBI-Test256 "samtools sort -n CD_Peduncle_S5_S7.bam
CD_Peduncle_S5_S7_nsorted"
bsub -q NBI-Test256 "samtools sort -n RIL4_Peduncle_S6_S8.bam
RIL4_Peduncle_S6_S8_nsorted"
bsub -q NBI-Test256 "samtools sort -n CD_Spike_S1_S3.bam CD_Spike_S1_S3_nsorted" bsub -q NBI-Test256 "samtools sort -n RIL4_Spike_S2__S4.bam RIL4_Spike_-_S2_-_ 44 nsorted" bsub -q NBI-Test256 "samtools sort -n short_S1_S3_S5.bam short_S1_S3_S5_nsorted" bsub -q NBI-Test256 "samtools sort -n tall_S2_S4_S6.bam tall_S2_S4_S6_nsorted"
\#\#second step: because samtools rmdup works better when the insert size is set correctly, \#samtools fixmate can be run to fill in mate coordinates, ISIZE and mate related flags from a name-sorted alignment
bsub -q NBI-Test256 "samtools fixmate CD_Peduncle_S5_S7_nsorted.bam CD_Peduncle_S5_S7_nsorted_fixm.bam" bsub -q NBI-Test256 "samtools fixmate RIL4_Peduncle_S6_S8_nsorted.bam
RIL4_Peduncle_S6_S8_nsorted_fixm.bam"
bsub-q NBI-Test256 "samtools fixmate CD_Spike_S1_S3_nsorted.bam CD_Spike_S1_S3_nsorted_fixm.bam"
bsub -q NBI-Test256 "samtools fixmate RIL4_Spike_S2_S4_nsorted.bam
RIL4_Spike_S2_S4_nsorted_fixm.bam"
bsub-q NBI-Test25 $\overline{6}$ "samtoōls fixmate short_S1_S3_S5_nsorted.bam
short_S1_S3_S5_nsorted_fixm.bam"
bsub -q NBI-Test256 "samtools fixmate tall_S2_S4_S6_nsorted.bam
tall_S2_S4_S6_nsorted_fixm.bam"
\#\#third step
\#\#remove duplicates, treating paired-end reads as single reads
\#\#use -S
\#\#format = samtools rmdup -S input bam output.bam
\#navigate to alignments/bowtie2
bsub -q NBI-Test256 "samtools rmdup -S CD_Peduncle_S5_S7_nsorted_fixm.bam CD_Peduncle_S5_S7_nsorted_fixm_rmdup.bam"
bsū -q NBI-Test256 "samtools rmdup -S RIL4_Peduncle_S6_S8_nsorted_fixm.bam
RIL4_Peduncle_S6_S8_nsorted_fixm_rmdup.bam"
bsub -q NBI-Test256 "samtools rmdup -S CD_Spike_S1_S3_nsorted_fixm.bam
CD_Spike_S1_S3_nsorted_fixm_rmdup.bam"
bsū -q NBI-Test12 28 "samtōols rmdup -S RIL4_Spike_S2_S4_nsorted_fixm.bam
RIL4_Spike_S2_S4_nsorted_fixm_rmdup.bam"
bsub -q NBI-Test128 "samtools rmdup -S short_S1_S3_S5_nsorted_fixm.bam
short_S1_S3_S5_nsorted_fixm_rmdup.bam"
bsub-q NBI-Test 128 "samtools rimdup -S tall_S2_S4_S6_nsorted_fixm.bam
tall_S2_S4_S6_nsorted_fixm_rmdup.bam"
\#\#\#\#\#8\#\#\#\#\#\#\#\#\#\#
\#\#Sorting and indexing by genomic position
\#\#since this is the genomic position, use default
bsub -q NBI-Test256 "samtools sort CD_Peduncle_S5_S7_nsorted_fixm_rmdup.bam
CD_Peduncle_S5_S7_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test256 "samtools sort RIL4_Peduncle_S6_S8_nsorted_fixm_rmdup.bam
RIL4_Peduncle_S6_S8_nsorted_fixm_rmdup_gsort"
bsub-q NBI-Test256 "samtools sort CD_Spike_S1_S3_nsorted_fixm_rmdup.bam CD_Spike_S1_S3_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort RIL4_Spike_S2_S4_nsorted_fixm_rmdup.bam
RIL4_Spike_S2_S4_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort short_S1_S3_S5_nsorted_fixm_rmdup.bam
short_S1_S3_S5_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort tall_S2_S4_S6_nsorted_fixm_rmdup.bam tall_S2_S4_S6_nsorted_fixm_rmdup_gsort"
\#samtools index input file (automatically will create a .bai file)
bsub -q NBI-Test256 "samtools index CD_Peduncle_S5_S7_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test256 "samtools index RIL4_Peduncle_S6_S8_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test256 "samtools index CD_Spike_S1_S3_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index RIL4_Spike_S2_S4_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index short_S1_S3_S5_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index tall_S2_S4_S6_nsorted_fixm_rmdup_gsort.bam"
\#\#Aligned and indexed files given to Ricardo Ramirez-Gonzalez \#\#to run on BFR pipeline June 2015
\#\#BASH commands to align parent NIL and bulk reads to 2D v3.3 cDNA interval \#\#Ania Kowalski
\#\#January 2015
\#using 2D interval fasta file from extracted mRNA sequences on 2D within interval as reference and aligning CD and RIL4 reads
\#\#following this pipeline:
\#https://wikis.utexas.edu/display/bioiteam/Removing+duplicates+from+alignment+output \#\#\#1\#\#\#\#\#
\#\#INDEX THE GENOME
\#Indexing the genome, which is the mrnas extracted from 2D
\#\#indexing genome for alignment
first source bowtie2-2.1.0
bsub -q NBI-Test128 bowtie2-build interval.fasta 2Dinterval_bowtie2 \#mRNAs extracted from Martin
\#\# index the reference sequence in the FASTA format
bsub -q NBI-Test128 samtools faidx interval.fasta
\#\#\#\#2\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#ALIGN THE READS
\#
\#\#\#Reads to align
\#\#use the fastq.gz files
\#\#copy from Reads_input folder into interval_2D folder:
bsub cp P_S1_CD_Spike_R_1.fastq.gz ../interval_2D
bsub cp P_S1_CD_Spike_R_2.fastq.gz ../interval_2D
repeat for S2-S8
bsub cp P_S2_RIL4_Spike_R_1.fastq.gz ../interval_2D
bsub cp P_S2_RIL4_Spike_R_2.fastq.gz ../interval_2D
bsub cp P_S3_CD_Spike_R_1.fastq.gz ../interval_2D
bsub cp P_S3_CD_Spike_R_2.fastq.gz ../interval_2D
bsub cp P_S4_RIL4_Spike_R_1.fastq.gz ../interval_2D
bsub cp P_S4_RIL4_Spike_R_2.fastq.gz ../interval_2D
bsub cp P_S5_CD_Peduncle_R_1.fastq.gz ../interval_2D
bsub cp P_S5_CD_Peduncle_R_2.fastq.gz ../interval_2D
bsub cp P_S6_RIL4_Peduncle_R_1.fastq.gz ../interval_2D
bsub cp P_S6_RIL4_Peduncle_R_2.fastq.gz ../interval_2D
bsub cp P_S7_CD_Peduncle_R_1.fastq.gz ../interval_2D
bsub cp P_S7_CD_Peduncle_R_2.fastq.gz ../interval_2D
bsub cp P_S8_RIL4_Peduncle_R_1.fastq.gz ../interval_2D
bsub cp P_S8_RIL4_Peduncle_R_2.fastq.gz ../interval_2D
\#Now have all reads, F and R from each parental sample.
\#Align each sample (S1-S8) individually and then merge at the end \#Even though bowtie2 can align multiple reads at same time (bwa cannot)
\#PARENTS
\#single sample at a time
bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S1_CD_Spike_R_1.fastq.gz -2 P_S1_CD_Spike_R_2.fastq.gz -S bowtie2_S 1 _CD_Spike_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S2_RIL4_Spike_R_1.fastq.gz -2 P_S2_RIL4_Spike_R_2.fastq.gz -S bowtie2_S2_RIL4_Spike_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S3_CD_Spike_R_1.fastq.gz -2 P_S3_CD_Spike_R_2.fastq.gz -S bowtie2_S3_CD_Spike_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S4_RIL4_Spike_R_1.fastq.gz -2 P_S4_RIL4_Spike_R_2.fastq.gz -S bowtie2_S4_RIL4_Spike_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S5_CD_Peduncle_R_1.fastq.gz -2 P_S5_CD_Peduncle_R_2.fastq.gz -S bowtie2_S5_CD_Péduñcle_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2-1 P_S6_RIL4_Peduncle_R_1.fastq.gz -2 P_S6_RIL4_Peduncle_R_2.fastq.gz -S bowtie2_S6_RIL4_Peduncle_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2 -1 P_S7_CD_Peduncle_R_1.fastq.gz -2 P_S7_CD_Peduncle_R_2.fastq.gz -S bowtiè2_S7_CD_Péduncle_mrna.sam" bsub -q NBI-Test256 "bowtie2 -x 2Dinterval_bowtie2-1 P_S8_RIL4_Peduncle_R_1.fastq.gz -2 P_S8_RIL4_Peduncle_R_2.fastq.gz -S bowtie2_S8_RIL4_Peduncle_mrna.sam"
\# \#\#\#\#\#\#\#\#3\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#QC on sam files
\#
\# samstat on sam files to get alignment statistics
\#For each input file SAMStat will create a single html page named after the input file name plus a dot html suffix.
\#more info here http://samstat.sourceforge.net/
\#

\#\#\#\#\#\#\#

\#\#First need to source samstat
source samstat-1.09
\#\#\#\#\#\#\#
bsub -q NBI-Test128 samstat bowtie2_S1_CD_Spike_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S2_RIL4_Spike_mrna.sam bsub-q NBI-Test128 samstat bowtie2_S3_CD_Spike_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S4_RIL4_Spike_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S5_CD_Peduncle_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S6_RIL4_Peduncle_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S7_CD_Peduncle_mrna.sam
bsub -q NBI-Test128 samstat bowtie2_S8_RIL4_Peduncle_mrna.sam
\#
\#\#4\#\#\#\#
\#\#\#\# Convert .sam to .bam
\#
\#\# first check header is present in the sam fil
\# head filename.sam
\# if header info is there, use -bS option
\#\#header is there if there is @ visible
\#SQ is present thus us -bS option
bsub -q NBI-Test256 "samtools view -bS bowtie2_S1_CD_Spike_mrna.sam > bowtie2_S1_CD_Spike_mrna.bam" bsub -q NBI-Test256 "samtools view -bS bowtie2_S2_RIL4_Spike_mrna.sam > bowtie2_S2_RIL4_Spike_mrna.bam"
bsub -q NBI-Test256 "samtools view -bS bowtie2_S3_CD_Spike_mrna.sam > bowtie2_S3_CD_Spike_mrna.bam" bsub -q NBI-Test256 "samtools view -bS bowtie2_S4_RIL4_Spike_mrna.sam > bowtie2_S4_RIL4_Spike_mrna.bam" bsub -q NBI-Test256 "samtools view -bS bowtie2_S5_CD_Peduncle_mrna.sam > bowtie2_S5_CD_Peduncle_mrna.bam"
bsub -q NBI-Test256 "samtools view -bS bowtie2_S6_RIL4_Peduncle_mrna.sam > bowtie2_S6_RIL4_Peduncle_mrna.bam"
bsub -q NBI-Test256 "samtools view -bS bowtie2_S7_CD_Peduncle_mrna.sam > bowtie2_S7_CD_Peduncle_mrna.bam" bsub -q NBI-Test256 "samtools view -bS bowtie2_S8_RIL4_Peduncle_mrna.sam > bowtie2_S8_RIL4_Peduncle_mrna.bam"

\#

\#\#\#\#\#\#\#\#5\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#QC on bam files
\#
\#\#\# samtools flagstat of the bam files to get statistics
bsub -q NBI-Test128 "samtools flagstat bowtie2_S1_CD_Spike_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S2_RIL4_Spike_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S3_CD_Spike_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S4_RIL4_Spike_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S5_CD_Peduncle_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S6_RIL4_Peduncle_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S7_CD_Peduncle_mrna.bam" bsub -q NBI-Test128 "samtools flagstat bowtie2_S8_RIL4_Peduncle_mrna.bam"

\#\#\#\#\#\#\#\#\#\#\#
 \#\#\#\#\#6\#\#\#\#\#
 \#\#\#\#\#\#\#\#\#\#\#

\# remove duplicates
\#run samtools fixmate, and remove pcr duplicates.
\# To do this, first sort by read names (-n)
\#\# further explanation here http://www.htslib.org/workflow/ and in
https://wikis.utexas.edu/display/bioiteam/Removing+duplicates+from+alignment+output \#\#a)sort by read name
bsub -q NBI-Test256 "samtools sort -n bowtie2_S1_CD_Spike_mrna.bam
bowtie2_S1_CD_Spike_mrna_nsorted"
bsub -q NBI-Test256 "samtools sort -n bowtie2_S2_RIL4_Spike_mrna.bam
bowtie2_S2_RIL4_Spike_mrna_nsorted"
bsub -q NBI-Test256 "samtools sort -n bowtie2_S3_CD_Spike_mrna.bam
bowtie2_S3_CD_Spike_mrna_nsorted"
bsub -q NBI-Test128 "samtools sort -n bowtie2_S4_RIL4_Spike_mrna.bam
bowtie2_S4_RIL4_Spike_mrna_nsorted"
bsub -q NBI-Test128 "samtools sort -n bowtie2_S5_CD_Peduncle_mrna.bam
bowtie2_S5_CD_Peduncle_mrna_nsorted"
bsub -q NBI-Test128 "samtools sort -n bowtie2_S6_RIL4_Peduncle_mrna.bam
bowtie2 S6 RIL4 Peduncle mrna nsorted"
bsub -q NBI-Test128 "samtools sort -n bowtie2_S7_CD_Peduncle_mrna.bam
bowtie2_S7_CD_Peduncle_mrna_nsorted"
bsub -q NBI-Test128 "samtools sort -n bowtie2_S8_RIL4_Peduncle_mrna.bam
bowtie2_S8_RIL4_Peduncle_mrna_nsorted"
\#\#b) run samtools fixmate to fill in mate coordinates, ISIZE and mate related flags from a namesorted alignment
bsub -q NBI-Test256 "samtools fixmate bowtie2_S1_CD_Spike_mrna_nsorted.bam
bowtie2_S1_CD_Spike_mrna_nsorted_fixm.bam"
bsub -q NBI-Test256 "samtools fixmate bowtie2_S2_RIL4_Spike_mrna_nsorted.bam bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm.bam"
bsub -q NBI-Test256 "samtools fixmate bowtie2_S3_CD_Spike_mrna_nsorted.bam
bowtie2_S3_CD_Spike_mrna_nsorted_fixm.bam"
bsub -q NBI-Test256 "samtools fixmate bowtie2_S4_RIL4_Spike_mrna_nsorted.bam bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm.bam"
bsub -q NBI-Test128 "samtools fixmate bowtie2_S5_CD_Peduncle_mrna_nsorted.bam
bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm.bam"
bsub -q NBI-Test128 "samtools fixmate bowtie2 S6 RIL4 Peduncle mrna nsorted.bam bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm.bam"
bsub -q NBI-Test128 "samtools fixmate bowtie2_S7_CD_Peduncle_mrna_nsorted.bam bowtie2 S7 CD Peduncle mrna nsorted fixm.bam"
bsub -q NBI-Test128 "samtools fixmate bowtie2_S8_RIL4_Peduncle_mrna_nsorted.bam bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm.bam"
\# c) remove duplicates, treating paired-end reads as single reads
bsub -q NBI-Test256 "samtools rmdup -S bowtie2_S1_CD_Spike_mrna_nsorted_fixm.bam bowtie2_S1_CD_Spike_mrna_nsorted_fixm_rmdup.bam" bsub -q NBI-Test128 "samtools rmdup -S bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm.bam bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup.bam" bsub -q NBI-Test256 "samtools rmdup -S bowtie2_S3_CD_Spike_mrna_nsorted_fixm.bam bowtie2_S3_CD_Spike_mrna_nsorted_fixm_rmdup.bam" bsub -q ${ }^{\text {NBI-Test256 "sāmtools }}$ rmdup -S bōwtie2_S4_RIL4_Spike_mrna_nsorted_fixm.bam bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup.bam"
bsub -q NBI-Test128 "samtools rmdup -S bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm.bam bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup.bam" bsub -q NBI-Test128 "samtōols rmdup -S bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm.bam bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup.bam"
bsub -q NBI-Test128 "samtools rmdup -S bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm.bam bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm_rmdup.bam" bsub -q NBI-Test128 "samtōols rmdup -S bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm.bam bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm_rmdup.bam"

\#

\#\#\#\#\#\#\#\#7\#\#\#\#\#\#\#\#\#\#\#
\#\#SORT AND INDEX\#\#\#\#
\# a) sort by genomic position so use default i.e NO NEED FOR -N
bsub -q NBI-Test256 "samtools sort bowtie2_S1_CD_Spike_mrna_nsorted_fixm_rmdup.bam bowtie2_S1_CD_Spike_mrna_nsorted_fixm_rmdup_gsort" bsub -q NBI-Test256 "samtools sort bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup.bam bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort" bsub -q NBI-Test256 "samtools sort bowtie2_S3_CD_Spike_mrna_nsorted_fixm_rmdup.bam bowtie2_S3_CD_Spike_mrna_nsorted_fixm_rmdup_gsort" bsub -q NBI-Test256 "samtools sort bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup.bam bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort" bsub -q NBI-Test128 "samtools sort
bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup.bam
bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort
bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup.bam
bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort
bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm_rmdup.bam
bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort"
bsub -q NBI-Test128 "samtools sort
bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm_rmdup.bam
bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort"
\#b) merge CD and RIL4 files, and also keep as separate bam files so have merged and individual (S1-S8 biorep and tissue provenance)
\#merge all CD alignments
\#S1, S3, S5, S7
bsub -q NBI-Test256 "samtools merge bowtie2_S1357_CD_mrna.bam
bowtie2 S1 CD Spike mrna nsorted fixm rmdup gsort.bam
bowtie2_S3_CD_Spike_mrna_nsorted_fixm_rmdup_gsort.bam
bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam
bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam"
\#merge all RIL4 alignments
\#S2, S4, S6, S8
bsub -q NBI-Test256 "samtools merge bowtie2_S2468_RIL4_mrna.bam bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam bowtie2_S8_RIL4_Peduncle_mrna_nsorted_-_ixm rmdup gsort.bam"
\#now sort these pooled alignments, to be sure they are sorted by genome position bsub -q NBI-Test256 "samtools sort bowtie2_S1357_CD_mrna.bam bowtie2_S1357_CD_mrna_gsort" bsub -q NBI-Test128 "samtools sort bowtie2_S2468_RIL4_mrna.bam bowtie2_S2468_RIL4_mrna_gsort"
\#c)indexing to create a .bai file \#individual alignments bsub -q NBI-Test128 "samtools index bowtie2_S1_CD_Spike_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S3_CD_Spike_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S7_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam" bsub -q NBI-Test128 "samtools index bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam"
\#pooled CD and RIL4 alignments
bsub -q NBI-Test128 "samtools index bowtie2_S1357_CD_mrna_gsort.bam"
bsub -q NBI-Test128 "samtools index bowtie2_S2468_RIL4_mrna_gsort.bam"

\#\#\#\#\#\#\#\#\#\#\#\#\#

\#\#FINAL QC
\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#OUTPUT format is:
\#Retrieve and print stats in the index file.
\#The output is TAB delimited with each line consisting of reference sequence name, sequence length, \# mapped reads and \# unmapped reads
\#NOTE: this requires bam files to be indexed and have a .bai file in the same directory.
bsub -q NBI-Test128 "samtools idxstats
bowtie2 S1 CD Spike mrna nsorted fixm rmdup gsort.bam" bsub -q NBI-Test128 "samtools idxstats
bowtie2_S2_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam"
bsub -q NBI-Test128 "samtools idxstats
bowtie2 S3 CD Spike mrna nsorted fixm rmdup gsort.bam"
bsub -q NBI-Test128 "samtools idxstats
bowtie2_S4_RIL4_Spike_mrna_nsorted_fixm_rmdup_gsort.bam"
bsub -q NBI-Test128 "samtools idxstats
bowtie2_S5_CD_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam"
bsub -q NBI-Test128 "samtools idxstats
bowtie2_S6_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam"
bsub -q NBI-Test128 "samtools idxstats
bowtie2 S7 CD Peduncle mrna nsorted fixm rmdup gsort.bam"
bsub -q NBI-Test128 "samtools idxstats bowtie2_S8_RIL4_Peduncle_mrna_nsorted_fixm_rmdup_gsort.bam"
\#pooled CD and RIL4 alignments
bsub -q NBI-Test256 "samtools idxstats bowtie2_S1357_CD_mrna_gsort.bam" bsub -q NBI-Test256 "samtools idxstats bowtie2_S2468_RIL4_mrna_gsort.bam"
\#\#\#COPYING OVER FINAL FILES TO A SUBFOLDER
\#\#\#individual sample files for S1-S8
\#\#copying bams
bsub -q NBI-Test128 "cp *rmdup_gsort.bam /net/group-data/ifs/NBI/Research-Groups/Simon-
Griffiths/Ania_seq/interval_2D/bams"
\#\#copying bai files
bsub-q NBI-Test128 "cp *rmdup_gsort.bam.bai /net/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams"
\#\#\# pooled RIL4 and CD
\#\#copying bams
bsub -q NBI-Test128 "cp bowtie2_S1357_CD_mrna_gsort.bam /net/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams" bsub -q NBI-Test128 "cp bowtie2_S2468_RIL4_mrna_gsort.bam /net/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams"
\#\#copying bai files
bsub -q NBI-Test128 "cp bowtie2_S1357_CD_mrna_gsort.bam.bai /net/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams" bsub -q NBI-Test128 "cp bowtie2_S2468_RIL4_mrna_gsort.bam.bai/net/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams"
\#\#\#END HERE
\#\#BASH commands used to call SNPs using VarScan and pipe these into a .vcf file \#\#Using samtools to generate mpiluep files against interval.fasta 2D mrnas
\#\#Ania Kowalski
\#\#Run on 24-29th Dec 2014
\#\#final edit January 2015
\#
\#\#input is the merged bam file alignments
\#\#one example is shown here, the same commands were used for all bam alignments
\#note, the script below was edited in vi for each file
\#editing in a windows editor created ${ }^{\wedge} \mathrm{M}$ symbols which caused errors.
\#each script was then saved as the name of the input bam file, and the .vcf file saved accordingly.
\#each script was edited with the correct .bam file and new .vcf piped output.
\#insert changes with *i, then esc, then save name with :w filename.Isf, then quit vi editor with :q!
\# job run as bsub < file.lsf
\#\#6th Jan 2015 edit: add --output-vcf 1 with *i
\#\#saved this script as vcf
\#\#modified output to have 'vcf'
\#\#this is to get vcf v4.1 output, for visualising in IGV. Note, IGV accepts v4 vcf files.
\#\#also, on 7th Jan 2015: ran pileup (not mpileup) on CD, RIL4, short and tall bulks, to see
difference.
\#\# Note that pileup doesn't have the vcf output option.
\#\#saved the pileups with pileup_prefix
\#\#NOTE: PILEUP command has been removed (error message), so cannot compare this, only
use mpileup.
\#\# Ran mpileup with all CD samples, RIL4 samples, short samples, and tall samples.
\#\# ran above line again with vcf output, saved with usual prefix.
\# LSBATCH: User input
\#!/bin/bash
\#\# LSF script to launch VarScan
BSUB -q NBI-Test128
BSUB -J VarScan
BSUB -R "rusage[mem=100000]"
source samtools-0.1.19
HOME=/usr/users/celldev/kowalska
REF=/nbi/group-data/ifs/NBI/Research-Groups/Simon-Griffiths/Ania_seq/interval_2D/bams/ cd \$REF
samtools mpileup -f \$REF/interval.fasta bowtie2_S1357_CD_mrna_gsort.bam | /software/jre-
6.0.25/x86_64/bin/java -jar \$HOME/VarScan.v2.3.7.jar mpileup2snp > CD.vcf
\#\#use this as a trick to see the progression of each job
\# .bashrc
\# User specific aliases and functions
\# Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc
fi
export PYTHONPATH=\$HOME/lib/python2.7/site-packages:\$PYTHONPATH export PYTHONPATH=\$HOME/lib/python2.6/site-packages:\$PYTHONPATH export HISTTIMEFORMAT="\%F \%T "
alias Isrun='/nbi/common/Isf/lsf-7.0/7.0/linux2.6-glibc2.3-x86_64/bin/lsrun' [kowalska@NBI-HPC interval_2D]\$ /nbi/common/lsf/lsf-7.0/7.0/linux2.6-glibc2.3x86_64/bin/Isrun -SPv -m ncn-128-07 top

	Genotype	ID	Tissue	Total raw reads	Total reads mapped in pairs	Reads mapped in pairs of total (\%)	Coverage
	CD	P1	Spike	241,831,174	173,151,639	72	65
	RIL4	P2	Spike	188,987,916	136,685,332	72	51
	CD	P3	Spike	241,462,164	171,850,700	71	64
	RIL4	P4	Spike	173,680,844	124,603,201	72	46
	CD	P5	Peduncle	237,295,486	186,694,002	79	70
	RIL4	P6	Peduncle	174,156,526	136,755,947	79	51
	CD	P7	Peduncle	224,236,016	178,394,809	80	67
	RIL4	P8	Peduncle	189,388,702	148,341,563	78	55
022000	CD	P1	Spike	242,908,601	140,782,372	58	222
	RIL4	P2	Spike	189,833,791	111,238,568	59	175
	CD	P3	Spike	242,516,079	140,625,613	58	222
	RIL4	P4	Spike	174,429,905	101,792,495	58	161
	CD	P5	Peduncle	238,337,131	146,915,945	62	232
	RIL4	P6	Peduncle	174,924,471	109,124,171	62	172
	CD	P7	Peduncle	225,206,215	134,015,987	60	211
	RIL4	P8	Peduncle	190,256,420	117,003,831	61	185
	Short bulk	B1	Spike	124,330,880	69,318,085	56	109
	Tall Bulk	B2	Spike	153,325,474	87,709,759	57	138
	Short bulk	B3	Spike	150,650,804	88,522,097	59	140
	Tall bulk	B4	Spike	125,179,316	71,884,092	57	113
	Short bulk	B5	Spike	128,251,751	72,387,212	56	114
	Tall Bulk	B6	Spike	147,871,785	88,445,515	60	140

A2.6: Mapped reads and coverage statistics for alignments to the the v3.3 cDNAs and UniGenes.

in silico mix ID	Short parent NIL			
1	bowtie2_S24_RIL4_Spike_short.bam	bowtie2_S13_CD_Spike_tall.bam	bowtie2_S135_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
2	bowtie2_S2468_RIL4_SpPed_short.bam	bowtie2_S1357_CD_SpPed_tall.bam	bowtie2_S135_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
3	bowtie2_S68_RIL4_Peduncle_short.bam	bowtie2_S57_CD_Peduncle_tall.bam	bowtie2_S135_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
4	bowtie2_S24_RIL4_Spike_short.bam	bowtie2_S13_CD_Spike_tall.bam	bowtie2_S35_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
5	bowtie2_S2468_RIL4_SpPed_short.bam	bowtie2_S1357_CD_SpPed_tall.bam	bowtie2_S35_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
6	bowtie2_S68_RIL4_Peduncle_short.bam	bowtie2_S57_CD_Peduncle_tall.bam	bowtie2_S35_bulk_Spike_short.bam	bowtie2_S246_bulk_Spike_tall.bam
7	bowtie2_S24_RIL4_Spike_short.bam	bowtie2_S13_CD_Spike_tall.bam	bowtie2_S1_bulk_Spike_short.bam	bowtie2_S2_bulk_Spike_tall.bam
8	bowtie2_S2468_RIL4_SpPed_short.bam	bowtie2_S1357_CD_SpPed_tall.bam	bowtie2_S1_bulk_Spike_short.bam	bowtie2_S2_bulk_Spike_tall.bam
9	bowtie2_S68_RIL4_Peduncle_short.bam	bowtie2_S57_CD_Peduncle_tall.bam	bowtie2_S1_bulk_Spike_short.bam	bowtie2_S2_bulk_Spike_tall.bam
10	bowtie2_S24_RIL4_Spike_short.bam	bowtie2_S13_CD_Spike_tall.bam	bowtie2_S3_bulk_Spike_short.bam	bowtie2_S6_bulk_Spike_tall.bam
11	bowtie2_S2468_RIL4_SpPed_short.bam	bowtie2_S1357_CD_SpPed_tall.bam	bowtie2_S3_bulk_Spike_short.bam	bowtie2_S6_bulk_Spike_tall.bam
12	bowtie2_S68_RIL4_Peduncle_short.bam	bowtie2_S57_CD_Peduncle_tall.bam	bowtie2_S3_bulk_Spike_short.bam	bowtie2_S6_bulk_Spike_tall.bam
13	bowtie2_S24_RIL4_Spike_short.bam	bowtie2_S13_CD_Spike_tall.bam	bowtie2_S5_bulk_Spike_short.bam	bowtie2_S4_bulk_Spike_tall.bam
14	bowtie2_S2468_RIL4_SpPed_short.bam	bowtie2_S1357_CD_SpPed_tall.bam	bowtie2_S5_bulk_Spike_short.bam	bowtie2_S4_bulk_Spike_tall.bam
15	bowtie2_S68_RIL4_Peduncle_short.bam	bowtie2_S57_CD_Peduncle_tall.bam	bowtie2_S5_bulk_Spike_short.bam	bowtie2_S4_bulk_Spike_tall.bam
15				

A2.7.1: In silico mixes with different BAM-file combinations used to call SNPs in the BSA (top) and the number of SNPs identified using the different mixes (bottom).

A2.7.2: SNP density in the SNPs mapping to chromosomes 2AS, 2BS and 2DS with increasing BFR.

Gene	Base	Pos	SNP	Parent	Contig	Identity
mrna060106	C	165	G	tall	1AL_3459745	100
mrna068831	C	115	T	short	1AL_3844200	100
mrna068831	G	95	A	short	1AL_3844200	100
mrna031602	C	918	T	tall	1AL_3870255	97.95
mrna049250	A	738	G	tall	1AL_3875538	100
mrna049250	A	766	G	short	1AL_3875538	100
mrna049250	A	771	C	short	1AL_3875538	100
mrna038535	A	1608	G	tall	1 AL _ 3888227	100
mrna038535	C	1310	T	tall	1AL_3888227	100
mrna038535	G	753	A	tall	1AL_3888227	100
mrna104149	C	1215	G	tall	1AL_3888280	99.65
mrna077919	T	174	C	tall	1AL_3900709	99.86
mrna134932	A	683	G	tall	1AL_3903825	99.69
mrna136896	G	259	C	tall	1AL_3915371	100
mrna041882	G	304	T	short	1AL_3920586	98.84
mrna115004	C	146	A	tall	1AL_3920663	100
mrna024736	C	452	T	tall	1AL_3925769	100
mrna018965	A	728	G	short	1AL_3930734	99.45
mrna056956	T	2084	C	short	1AL_3932920	100
mrna014541	T	111	C	short	1AL_3933825	100
mrna006360	G	135	C	tall	1AL_3936026	100
mrna042991	G	552	T	tall	1AL_3938636	100
mrna035206	A	352	G	short	1AL_3938726	100
mrna035206	C	298	T	short	1AL_3938726	100
mrna035206	G	289	C	short	1AL_3938726	100
mrna035206	G	322	C	short	1AL_3938726	100
mrna035206	T	1398	G	short	1AL_3938726	100
mrna035894	T	573	C	short	1AL_3963635	100
mrna132305	A	1137	G	short	1AL_3968091	100
mrna132305	A	1191	T	short	1AL_3968091	100
mrna132305	A	1429	G	short	1AL_3968091	100
mrna132305	A	960	G	short	1AL_3968091	100
mrna132305	C	1047	A	short	1AL_3968091	100
mrna132305	C	843	T	short	1AL_3968091	100
mrna132305	G	1086	A	short	1AL_3968091	100
mrna132305	G	1106	A	short	1AL_3968091	100
mrna132305	G	1164	A	short	1AL_3968091	100
mrna132305	G	624	C	short	1AL_3968091	100
mrna132305	T	1077	G	short	1AL_3968091	100
mrna132305	T	498	C	short	1AL_3968091	100
mrna132305	T	879	C	short	1AL_3968091	100
mrna132305	T	900	C	short	1AL_3968091	100
mrna132305	T	948	C	short	1AL_3968091	100
mrna077677	T	138	G	short	1AL_3968565	100
mrna019803	G	143	C	tall	1AL_3976997	100

Gene	Base	Pos	SNP	Parent	Contig	Identity
mrna039178	A	416	G	short	1AL 3977586	100
mrna039178	G	345	A	short	1AL_3977586	100
mrna059394	C	816	T	short	1AL_3977616	99.68
mrna059394	G	180	C	short	1AL_3977616	99.68
mrna082756	C	87	T	short	1AS_1644836	100
mrna026487	A	54	C	short	1AS_2196745	100
mrna026487	T	2250	C	short	1AS_2196745	100
mrna059657	C	708	T	tall	1AS_2294915	100
mrna059657	C	708	T	tall	1AS_2294915	100
mrna099156	A	135	G	tall	1AS_3252213	99.57
mrna082355	G	561	A	tall	1AS_3252288	100
mrna088602	C	150	T	tall	1AS_3263146	100
mrna088602	G	987	A	tall	1AS_3263146	100
mrna055280	T	439	C	tall	1AS_3263388	99.73
mrna107291	A	359	G	tall	1AS_3263895	99.63
mrna107291	A	763	G	tall	1AS_3263895	99.63
mrna036678	T	615	A	short	1AS_3266877	100
mrna032695	C	4	G	short	1AS_3270733	100
mrna134181	A	990	G	ta	1AS_3271165	100
mrna134181	T	1044	C	sho	1AS_3271165	100
mrna123893	G	154	A	short	1AS_3272904	100
mrna013943	G	973	T	tall	1AS_3273947	100
mrna024055	A	1083	G	tall	1AS_3274088	100
mrna024055	A	1767	G	short	1AS_3274088	100
mrna024055	C	1453	T	tall	1AS_3274088	100
mrna106327	G	492	C	short	1AS_3275079	100
mrna079310	G	513	A	tall	1AS_3282639	100
mrna020301	A	123	T	tall	1AS_3287290	100
mrna031065	A	593	T	short	1AS_3295387	100
mrna037032	G	187	C	tall	1AS_3298206	100
mrna064198	T	1222	C	short	1AS_3302210	100
mrna075779	C	477	G	short	1AS_3316467	100
mrna075779	T	573	C	short	1AS_3316467	100
mrna010207	A	2362	C	tall	1AS_380247	100
mrna010207	A	2431	G	tall	1AS_380247	100
mrna010207	C	2356	T	tall	1AS_380247	100
mrna072622	A	850	G	short	1BL_3895131	95.99
mrna019962	A	1414	G	short	1DS_1875577	95.13
mrna019962	T	918	C	short	1DS_1875577	95.13
mrna019962	A	1414	G	short	1DS_1891653	95.13
mrna019962	G	787	C	short	1DS_1891653	95.13
mrna019962	T	918	C	short	1DS_1891653	95.13
mrna127780	T	90	A	tall	2DL_9876388	99.24
mrna087948	C	180	G	tall	3B_10673105	92.09
mrna072622	A	850	G	short	5BL_10869081	95.99

A2.8: Varietal SNPs in the v3.3 cDNAs with 100% variant bases at the SNP position from either short or tall parent, with a minimum-coverage threshold of 20. Columns left to right: Base $=$ reference base at SNP position; Pos $=$ position on gene model; SNP = variant at SNP position; Parent = short or tall progenitor from which 100% of the variant calls originated; Contig = IWGSC CSS best hit; Identity $=\%$ nucleotide identity of the gene to Contig.

Marker ID	Contig/source	FW-primer	RV-primer
2DS_1	2DS_5359909	TgtaaaacgacggccagtGTGTGGAGCCTATCCAAATGA	CCCAATGAACTGCTACATGAGT
2DS_3	2DS_5337443	TgtaaaacgacggccagtAAAAGGTAATAGAACCGGAGCC	TGTGATTGGTGAAGATGGAGAG
2DS_4	2DS_5337443	TgtaaaacgacggccagtAAAAGGTAATAGAACCGGAGCC	CATTTTCACCCCTATATGTCCG
2DS_5	2DS_5362384	TgtaaaacgacggccagtGCTTGTTGGTTTAATTGGTGG	TCTCTCTCCATAAGAAAACGCC
2DS_6	2DS_5321865	TgtaaaacgacggccagtCGACAGAAAACAAACGAGACTG	AGATTGATATGTACCTGCGCGT
2DS_7	2DS_5352598	TgtaaaacgacggccagtTCATTGTCATCCTTCTGCTGTC	CGTCTTGTAGTTGGCATCAATC
2DS_8	2DS_5352525	TgtaaaacgacggccagtTGTTTTGCTTTGATCCGTGTAG	GGAGAAGAAATGGACACACACA
2DS_9	2DS_5352525	TgtaaaacgacggccagtTGTTTTGCTTTGATCCGTGTAG	GGAGAAGAAATGGACACACACA
2DS_10	2DS_5352525	TgtaaaacgacggccagtATACGGGTCACAAATGGTCATA	AGGCTCAAGTTCTGCTGGATAG
2DS_11	2DS_5327480	TgtaaaacgacggccagtGTCACAAGGCAGCACAAACTAC	GGTTGATATGCACGATGATTTG
2DS_12	2DS_5390981	TgtaaaacgacggccagtGATGAGGAACACTCACAGCTTCT	ATAACCAGCTCCACACATTTCC
2DS_13	2DS_5379098	TgtaaaacgacggccagtACCTGCAAAACTCAAAAGTTGG	TCAGATTTATTCGCACTTGCC
2DS_14	2DS_5347513	TgtaaaacgacggccagtTTCGGTGTGCAGAAAAGTCTAA	TCTTAGTCCACCCATCTCCATC
2DS_15	2DS_5390752	TgtaaaacgacggccagtGTACCAACCTTTACGCCCCT	ACCACATCTTCACCCATATTCC
2DS_16	2DS_5390752	TgtaaaacgacggccagtATTGATGAGGAAAGGTGGAAGA	GACTCTTGAAAACGGAGCAAGT
2DS_17	2DS_5379495	TgtaaaacgacggccagtAAATCTAGGGTTGGGTTTTGGT	AAGAGGAAGAGGAAGAGGGAGA
2DS_18	2DS_5361162	TgtaaaacgacggccagtCATGAGCGAAAGGTCAGATACA	ACATCGTGTTTGTGCTTGGAC
2DS_19	2DS_5366894	TgtaaaacgacggccagtTGCTGGCTTGAGTAGTGAGAAA	ACATGACCCACACAAAACACAT
2DS_20	2DS_5389857	TgtaaaacgacggccagtCTCCTCCTCCTCAGTGTAGCAT	GACAAGCAAATTAAGACCGACC
2DS_21	2DS_5389857	TgtaaaacgacggccagtGGTCGGTCTTAATTTGCTTGTC	GTGTATGTACCAAAGCGGCATA
2DS_22	2DS_5389857	TgtaaaacgacggccagtAATATCCTCCCAGTCCTTCTCC	TAGATCCTTCCTTCCTTCCCTC
2DS_23	2DS_5389857	TgtaaaacgacggccagtAGCAGAGATGTGTGGATGGAC	CTAAACGGCCATAATAACCACC
2DS_24	2DS_5375625	TgtaaaacgacggccagtGCCATGTCTCTCTTCTTGTCCT	AGTTTCTGCTCCCCTTCCTTAC
2DS_25	2DS_5375625	TgtaaaacgacggccagtGCCATGTCTCTCTTCTTGTCCT	AGTTTCTGCTCCCCTTCCTTAC
2DS_26	2DS_5390977	TgtaaaacgacggccagtTGAGGGAAAATACAAAGAGGGA	ATGTTAAGTGGAACAGCGTGTG
2DS_27	2DS_5377094	TgtaaaacgacggccagtAAATGAAGGTTCGAGCAAAGAG	AAATGAAGGTTCGAGCAAAGAG
2DS_28	2DS_5341683	TgtaaaacgacggccagtACCATCGTTTCCTTAGCCTTCT	ACCATCGTTTCCTTAGCCTTCT
2DS_29	2DS_5347050	TgtaaaacgacggccagtGTTGTTGCGAATCAGTAATGGA	GTTGTTGCGAATCAGTAATGGA
2DS_30	2DS_5347050	TgtaaaacgacggccagtGAGCTTTGAGGTTTGATCCCTA	GAGCTTTGAGGTTTGATCCCTA
2DS_31	2DS_5383358	TgtaaaacgacggccagtATGTGGCAGTTCCTTCTTTTGT	ATGTGGCAGTTCCTTCTTTTGT
2DS_32s	2DS_5352598	TgtaaaacgacggccagtGGGACTCAATGTCTTCCTTGAC	TTGGTGTTGGATCTGCTAGTTG
2DS_33s	2DS_5352598	TgtaaaacgacggccagtCTCCGGCCACAATACCTATAAC	GTACTCTATGCAACCCTACCGC
2DS_34s	2DS_5352598	TgtaaaacgacggccagtATGAGCAGATCCACCCCTTT	AATTTACCCCTCAGCTTTTCGT
2DS_35s	2DS_5352598	TgtaaaacgacggccagtATCCACACATCAAATTCAGACG	GGCCATCTTATGCAACTTCTTT
2DS_36s	2DS_5367475	TgtaaaacgacggccagtGTCACAGCTTTCTTCCATCAAG	AGTCTTCGTTTGGGATTGGAT
2DS_37s	2DS_5367475	TgtaaaacgacggccagtAGATTCCCAACAAGCAAGGTAA	AGTGTTCACAACGAGCAAAAGA
2DS_38s	2DS_5389048	TgtaaaacgacggccagtTTCCACCACTAAATGCAGATTG	TACAATGCAGAGTGCTTAGGGA
2DS_39s	2DS_5343181	TgtaaaacgacggccagtCAACAGGCTTCATAACCAACTG	TATTGGCTGGGTCTAGTTTTGG
2DS_40s	2DS_5385061	TgtaaaacgacggccagtTCGTATCTGGTAAGTCCTCGGT	TAAACAAATCCAAACGGCCTAC
2DS_41s	2DS_5316778	TgtaaaacgacggccagtAATTGCGCTTGCTCTAACTTTC	TACTGGTATGCAACACGCCTTA
2DS_42s	2DS_5352525	TgtaaaacgacggccagtTAGCATTGGAATCTGTTGGTTG	CAAAAGGACATCTAAAACCGGA
2DS_43s	2DS_5327480	TgtaaaacgacggccagtGACCTTTAGCTTCTGCAAGGAA	TCGCCAAACTCTCTGAATAACC
2DS_44s	2DS_5327480	TgtaaaacgacggccagtCAACCAAAACCTTTATACCCCA	CCTCTCTGAAGCAAGAAGCCTA
2DS_45s	2DS_5324300	TgtaaaacgacggccagtACGGAGAATGGAAGAGGAAGAG	AGAGGGTGGGAGAGTGACCTAT
2DS_46s	2DS_5324300	TgtaaaacgacggccagtAGCCCTGCAATCCTTTATTCTA	ACTCATTTCTCTCAACGTGCAA
2DS_47s	2DS_5389716	TgtaaaacgacggccagtTCATTGGCTTGTTGCTCTCTTA	AAGGTTTCCGTGCATAGGTACA
2DS_48s	2DS_5389716	TgtaaaacgacggccagtAAAGCTCGACAACGCTCTAGTT	GTACCTCGCTACCGTCCATTTA
2DS_49s	2DS_5389716	TgtaaaacgacggccagtTGCTTGTATAGATGGTGCTTGG	CATGCCTGCTTCTTTATTACCC
2DS_50s	2DS_5389716	TgtaaaacgacggccagtTACAAAACTCGACCACGCTCTA	GATCTGTCTTTTAATTTGCCCG
2DS_51s	2DS_5341587	TgtaaaacgacggccagtACGTTCGACTTGATCCTTGATT	CCTACCCTATGTTGCCCATAAA
2DS_52s	2DS_5363870	TgtaaaacgacggccagtCAAGACATGCAACTGTGCTTTA	GCTGTTTTCTACAGACGTGGAGT
2DS_53s	2DS_5375380	TgtaaaacgacggccagtCATAGAATCATCCCAAAACCG	AAATCGAGCAAGAAAACTGGAG
2DS_54s	2DS_5339156	TgtaaaacgacggccagtCACGACTTTCGGTGAATCTTTA	AATGTGTTTGATTGGAAGGGAG
2DS_55s	2DS_5335120	TgtaaaacgacggccagtAGCAAGGTGAGATGAAGTTTCC	GGGCAAGACGCTATATTGTGAT
2DS_56s	2DS_5335120	TgtaaaacgacggccagtATGTGTCCCTTCCATTTATCGT	AATCTGTTCCCACTTGTTTTGG
2DS_57s	2DS_5343181	TgtaaaacgacggccagtCAACAGGCTTCATAACCAACTG	TATTGGCTGGGTCTAGTTTTGG
2DS_58s	2DS_5381312	TgtaaaacgacggccagtAATGCCTAACTGAATTGCCTGT	TGAGTATGTTTATTGCTTGGCG
2DS_59s	2DS_5381312	TgtaaaacgacggccagtAATGCCTAACTGAATTGCCTGT	TGAGTATGTTTATTGCTTGGCG
2DS_60s	2DS_5374739	TgtaaaacgacggccagtGGTGAATGTTGGTTGCACATAG	CAGTATTTGATGTTTGCCTTGC
2DS_61s	2DS_5379098	TgtaaaacgacggccagtGCAGTGGGAAACATGCTCTTAT	GATCAAAAGCTAGAATGGGGTG
2DS_62s	2DS_5347513	TgtaaaacgacggccagtGGATAGCCCGGAAGAGTAAAAT	GGACAAGTAAGCATGAGAACCC
2DS_63s	2DS_5347513	TgtaaaacgacggccagtACCAAACAAGCCTGAACTGAAT	CGTGTTCTGTCAATATGTGCAA
2DS_64s	2DS_5390752	TgtaaaacgacggccagtGTACCAACCTTTACGCCCCT	ACCACATCTTCACCCATATTCC
2DS_65s	2DS_5371042	TgtaaaacgacggccagtAATACGTCCTTTTCGCATCACT	ATGTGTACCAGAGAGAGGTCGG

A2.9: SSR markers. Annealing temperature with HotStar Taq was $60^{\circ} \mathrm{C}$.

Marker ID	Contig/source	FW-primer	RV-primer
2DS_66s	2DS_5357871	TgtaaaacgacggccagtAATGGATGGGTAATATGGCACT	GCTAGGATGAGGTCCGAGTTTA
2DS_67s	2DS_5341487	TgtaaaacgacggccagtCCAATTCCAAACTTCCAACAAC	CAATACAATATCAACGCCCAGA
2DS_68s	2DS_5365680	TgtaaaacgacggccagtTTGTAGTTCTTTGCCTTCCGAT	AACCGAACAGACCGAAATCTTA
2DS_69s	2DS_5333000	TgtaaaacgacggccagtATCATTCCTCAACTCAAAACGG	ACTGTTCACGGGCGTAGATATT
2DS_70s	2DS_5341683	TgtaaaacgacggccagtCAAAACCAACTCAGCCTCTTCT	CCTCCATAATAAAATGCAAGGC
2DS_71s	2DS_5341683	TgtaaaacgacggccagtGCAGACTTTGTCGGTATCATCA	AGTAAGAGGAGGTTAAAGGGCG
2DS_72s	2DS_5341683	TgtaaaacgacggccagtACATTAACCCTGACATCAAGCC	CCAGTAGAGCCATCTCTCCATC
2DS_73s	2DS_5341683	TgtaaaacgacggccagtATTAAAGAGGGAGAATGGGGAA	AAACCAAGGACGATTGATGAAC
2DS_74s	2DS_5341683	TgtaaaacgacggccagtAAACGCTCAAACACAAAGGACT	CTACCCACAGGTTTAGGTGCAT
2DS_75s	2DS_5341683	TgtaaaacgacggccagtAAACGCTCAAACACAAAGGACT	CTACCCACAGGTTTAGGTGCAT
2DS_76s	2DS_5341846	TgtaaaacgacggccagtATCATTCCTCAACTCAAAACGG	ACTGTTCACGGGCGTAGATATT
2DS_77s	2DS_5375208	TgtaaaacgacggccagtCACGAAATCACAACTATGCCTC	GAGTCACGGCAATACCTCTCA
2DS_78s	2DS_5390697	TgtaaaacgacggccagtTTGAAAGACAGGGATCACAGAA	GAGAGAGACAAAAGAGTGGCAAA
2DS_79	2DS_5317970	TgtaaaacgacggccagtACTTATGGGTTTCAGGCTTTCA	GTGAACACAAATCTTCCGTCAA
2DS_80	2DS_5318660	TgtaaaacgacggccagtATTTGTACCGAGAAACACAGCA	TACGGAAACAAGTCCAGTAGCA
2DS_81	2DS_5318660	TgtaaaacgacggccagtTCTAACTTTATGACACCGCCAA	GAAGAAGGGTGAGGAAGGAACT
2DS_82	2DS_5318660	TgtaaaacgacggccagtTACTTTTGCCTTGACCAGAACC	TGCTATGTTTCTACGGCTGTGT
2DS_83	2DS_5319403	TgtaaaacgacggccagtATTTGTACCGAGAAACACAGCA	TACGGAAACAAGTCCAGTAGCA
2DS_84	2DS_5319403	TgtaaaacgacggccagtTCTAACTTTATGACACCGCCAA	GAAGAAGGGTGAGGAAGGAACT
2DS_85	2DS_5319403	TgtaaaacgacggccagtTACTTTTGCCTTGACCAGAACC	TGCTATGTTTCTACGGCTGTGT
2DS_86	2DS_5319959	TgtaaaacgacggccagtTATAGACGAGAGCGTCGTTTCA	CTTATGACTCTTTACCGCCGTC
2DS_87	2DS_5321770	TgtaaaacgacggccagtAAACCCAGTGAACAAAACAAGC	AAAGTGCCAAATAGGAATCGTC
2DS_88	2DS_5321770	TgtaaaacgacggccagtTCTAACCCTTTGGTCTTATCGC	TTCGCGGAAGATGAGTACATAA
2DS_89	2DS_5321770	TgtaaaacgacggccagtGAAGAATGAGGGAAATACGCAA	TTGACCTTCCATTGTACTGGTG
2DS_90	2DS_5330382	TgtaaaacgacggccagtAAACGCTCAAACACAAAGGACT	CTACCCACAGGTTTAGGTGCAT
2DS_91	2DS_5330382	TgtaaaacgacggccagtAAACGCTCAAACACAAAGGACT	CTACCCACAGGTTTAGGTGCAT
2DS_92	2DS_5338366	TgtaaaacgacggccagtTACTATGTTTTGGCACCCAGTT	AAGCGAGGATAAATCGGTAAGA
2DS_93	2DS_5338366	TgtaaaacgacggccagtGAGACTGGATGGGAGGGTAAAC	CGTGCATGAGAGGCAATATAGA
2DS_94	2DS_5338366	TgtaaaacgacggccagtCATGTGGTAAGCAATCCAAACT	CACGCGAGAAGCACAACTAT
2DS_95	2DS_5341322	TgtaaaacgacggccagtAACAAAGCTCGCAGTACATCAA	CCAATCCTTGAAAAGAACCCTA
2DS_96	2DS_5344563	TgtaaaacgacggccagtGTTGGACATTTGTACCCGAAAT	CTGGGTGTGCCTAGCTCTTATC
2DS_97	2DS_5349408	TgtaaaacgacggccagtCATCGGAATGAATGAAGGAAAC	AGTGCTGGTAGTGGTACGTGGT
2DS_98	2DS_5349408	TgtaaaacgacggccagtGATTGTCCGGTTCTCAGTCTTC	TGCGTGGTCCTACAGTTATGTC
2DS_99	2DS_5349408	TgtaaaacgacggccagtACTGCCGTAACCCTGAAAACT	ACGCGAAAAGAGACTTGACATT
2DS_100	2DS_5352574	TgtaaaacgacggccagtTTGATGTTAGCGAAGACATTGG	GTCATGCCACTCTTTGGTGAT
2DS_101	2DS_5352574	TgtaaaacgacggccagtGTTACAGTGCGGGAGATGTTTT	GTGTGAAAGAGCAAATGAAGACC
2DS_102	2DS_5358023	TgtaaaacgacggccagtGGTAGGTATATGTGTGCGCCTT	AGATGGGAAAAGGTAAGTGTGG
2DS_103	2DS_5368504	TgtaaaacgacggccagtCGTAGATAGTGTTCTCAGGCCG	GGCAGCTATGTTCAGTTCACAA
2DS_104	2DS_5372744	TgtaaaacgacggccagtCACAAACTTGCCTGGTATTTGA	AGTTATCATTCCTTTTGCGAGG
2DS_105	2DS_5390456	TgtaaaacgacggccagtGTACATTTTGCTTCCTTTTCCG	TAAAACCAGTTACATGCGGTGA
2DS_106	2DS_5390754	TgtaaaacgacggccagtCTACTACAACAACATTTGCCCG	ACATGAATTAACAGTCTTGCCG
2DS_107	2DS_5390754	TgtaaaacgacggccagtCAACAGAAAACCAAAGAGGGAG	TTGGGCTAGTATGGAGAGTTATGA
2DS_108	2DS_5325683	TgtaaaacgacggccagtACCTTCTATGGATCACCAGCTC	ACCTTCTATGGATCACCAGCTC
2DS_109	2DS_5325683	TgtaaaacgacggccagtAAGAAGAAGAAAGAGCGTGTGC	AAGAAGAAGAAAGAGCGTGTGC
2DS_110	2DS_5325683	TgtaaaacgacggccagtGTTCGACAACCTCTACCTCGAC	GTTCGACAACCTCTACCTCGAC
2DS_111	2DS_5325683	TgtaaaacgacggccagtAGAAATGTAGGAAAAGGTTGCG	AGAAATGTAGGAAAAGGTTGCG
2DS_112	2DS_5350706	TgtaaaacgacggccagtTGTACGATAGGACGTTTTCTGC	TGTACGATAGGACGTTTTCTGC
2DS_113	2DS_5350706	TgtaaaacgacggccagtGGTTTCTGAGTGTCGTGTGTGT	GGTTTCTGAGTGTCGTGTGTGT
2DS_114	2DS_5388494	TgtaaaacgacggccagtCTTTGTGGATGTCTTGAATGGA	CTTTGTGGATGTCTTGAATGGA
2DS_115	2DS_5390725	TgtaaaacgacggccagtGTTCTGTAACCGGCACTAAAGG	GTTCTGTAACCGGCACTAAAGG
2DS_116	2DS_5331590	TgtaaaacgacggccagtGTTTTAGTTGGAAATGGTGACG	GTTTTAGTTGGAAATGGTGACG
2DS_117	2DS_5331590	TgtaaaacgacggccagtTACTCCATTAAGTTCGCCATCA	TACTCCATTAAGTTCGCCATCA
2DS_118	2DS_5345858	TgtaaaacgacggccagtGAGCAGGAAGAAGGCGGT	GAGCAGGAAGAAGGCGGT
2DS_119	2DS_5345858	TgtaaaacgacggccagtTGGCTGTATCTCCTGCTCTGTA	TGGCTGTATCTCCTGCTCTGTA
2DS_120	2DS_5345858	TgtaaaacgacggccagtGATCTTCTTGTTCTGGTCGCTC	GATCTTCTTGTTCTGGTCGCTC
2DS_121	2DS_5340507	TgtaaaacgacggccagtCAGCACAGTAGATAGGCCAACA	CAGCACAGTAGATAGGCCAACA
2DS_122	2DS_5340507	TgtaaaacgacggccagtACTCTGGCTGTAAGGAAAGGTG	ACTCTGGCTGTAAGGAAAGGTG
2DS_123	2DS_5340507	TgtaaaacgacggccagtCCTCTCTCTCTCTCTCGACCAC	ССТСТСТСТСТСТСTCGACCAC
2DS_124	2DS_5318940	TgtaaaacgacggccagtTTCATGCAGAGTTCGTTTGTCT	TTCATGCAGAGTTCGTTTGTCT
2DS_125	2DS_5318940	TgtaaaacgacggccagtATTATACTGCCTGTTTGGCTGG	ATTATACTGCCTGTTTGGCTGG
2DS_126	2DS_5354001	TgtaaaacgacggccagtCCCGCTGAAATACTTACTTGAT	CCCGCTGAAATACTTACTTGAT
2DS_127	2DS_5390973	TgtaaaacgacggccagtGTAATGCGAGCACCAATATCAA	GTAATGCGAGCACCAATATCAA
2DS_128	2DS_5390973	TgtaaaacgacggccagtTGTTCGTGGATAAGGGAGCTAT	TGTTCGTGGATAAGGGAGCTAT
2DS_129	2DS_5390973	TgtaaaacgacggccagtAGAGAAGAAAGGAGAAAGGGGA	AGAGAAGAAAGGAGAAAGGGGA

A2.9 continued

Marker ID	Contig/source	FW-primer	RV-primer
2DS_130	2DS_5390973	TgtaaaacgacggccagtAGAACAAAGATAGCCGGTTGTG	AGAACAAAGATAGCCGGTTGTG
2DS_131	2DS_5371882	TgtaaaacgacggccagtTCGCCATAAGGTTGTGTCTATG	TCGCCATAAGGTTGTGTCTATG
2DS_132	2DS_5320325	TgtaaaacgacggccagtCCTTGGGTCTATCAAGCTGAAC	CCTTGGGTCTATCAAGCTGAAC
2DS_133	2DS_5389491	TgtaaaacgacggccagtGCATTTTCTTCCAAATCCAGTC	GCATTTTCTTCCAAATCCAGTC
2DS_134	2DS_5375359	TgtaaaacgacggccagtCAACGATGACACAGTCCGTATT	CAACGATGACACAGTCCGTATT
2DS_135	2DS_5329971	TgtaaaacgacggccagtATTTTGGTCCTTCTGAGTGCAT	ATTTTGGTCCTTCTGAGTGCAT
2DS_136	2DS_5309868	TgtaaaacgacggccagtCAGTGTAGGGGACGGATGG	CAGTGTAGGGGACGGATGG
2DS_137	2DS_5309868	TgtaaaacgacggccagtCTAAGGACCAACAGCGGTATTC	GTGACAAGCATCTATGTGGAGG
2DS_138	2DS_5318296	TgtaaaacgacggccagtCGTGCGAGAGATTACAGAGAGA	GGGGTGGTAAAACAAATCAAGA
2DS_139	2DS_5324565	TgtaaaacgacggccagtGCTACGTTGGTTGTACTTGCAC	CATCTCAGGGCATTTCACAATA
2DS_140	2DS_5324565	TgtaaaacgacggccagtCACAAATGTTGGAAAAGTGCC	GGATGTTAGTCAGGGCGATCTA
2DS_141	2DS_5361624	TgtaaaacgacggccagtATGCTGCTAGGGCAATCTAAAA	CCCATCCCTTCTAACAATATGC
2DS_142	2DS_5361624	TgtaaaacgacggccagtTGGAGTACAAGACAAGGCAGAA	CTACCTCAACCACGGCTACAC
2DS_143	2DS_5362023	TgtaaaacgacggccagtCGCGTACATACTCTCCTCTTTGA	CTCATTTGCATTGGGTTTCTTC
2DS_144	2DS_5362023	TgtaaaacgacggccagtAAATGGTTGCATGTATCACCCT	TATGCTCCTGCCCATACGATA
2DS_145	2DS_5366858	TgtaaaacgacggccagtAATAGATACCGATAACGCTCCG	ATGGACAAGCACACACACATCT
2DS_146	2DS_5381599	TgtaaaacgacggccagtCTGCCAAATTCATGTGTAGAGC	GAGTTTCCATCCCCAAATAGC
2DS_147	2DS_5388432	TgtaaaacgacggccagtGAAACAAGACCAAAGGTGGTTC	ACCCTACATGGAAATGCAAAAC
2DS_148	2DS_5319467	TgtaaaacgacggccagtGTACCAATACCAGAAAGCCTCG	GCCATTTATTCTCAACCACCAT
2DS_149	2DS_5319467	TgtaaaacgacggccagtAGATTGAGCCGACACATCATC	CGGAACGAGAAGAAGAAGCTAA
2DS_150	2DS_5379496	TgtaaaacgacggccagtCACAACAACAACTTTGAATGGC	TCACAAGATTCCCACATCTCAC
2DS_151	2DS_5354706	TgtaaaacgacggccagtGCTTGAACTCGCTGTACCTCTT	CGTCGGTCAATAGAAGGAAAAC
2DS_152	2DS_5354706	TgtaaaacgacggccagtTACCCTCACTAACAGGGCACTT	TCTCTGCAACTGTGGATTTGAT
AX1	2DS_5389432	TgtaaaacgacggccagtCAGCTAATGCAAATGTGGGTAA	CGCAGGTTTGTTGTCCAGTAG
AX2	2DS_5389432	TgtaaaacgacggccagtGTTAAATGTTATGTGCGGCCAG	TAAAAGGGTTTGATGCCAGGAG
AX3	2DS_5389432	TgtaaaacgacggccagtGTTAAATGTTATGTGCGGCCAG	TAAAAGGGTTTGATGCCAGGAG
AX4	2DS_5389432	TgtaaaacgacggccagtAAACAGCGACAACAGAAAGTGA	TCGTTAGATTTCCCATCTTCGT
AX5	2DS_5389432	TgtaaaacgacggccagtAAGAGTCGGATGAGAAGAAGGA	GCACGTAGAGCTTGATGTTGTT
AX6	2DS_5389432	TgtaaaacgacggccagtGGGGAAGCAGAACAGAAAGTTA	ACGAGAAGGTCATATTTGGGTG
AX7	2DS_5389432	TgtaaaacgacggccagtCACCCAAATATGACCTTCTCGT	GTGTCCAGCAAGTTCTTCTACAAA
AX8	1BL_3920229	TgtaaaacgacggccagtACAACTCTCCGACCATGAGG	AGCTCGCACCTACTGATAATAGAAA
AX9	1BL_3847188	TgtaaaacgacggccagtCCGGACTCTCTCATGTGTATCA	TCAAGCAAAGACAAAGGATCTG
AX10	1BL_3896023	TgtaaaacgacggccagtCCTAGATGTCCAAACACCATGA	GCTTGTTGCCAGTGTGAGATAA
AX11	1BL_3898099	TgtaaaacgacggccagtGCAGAGCGATGAACTAAAGAGA	ATACAGGGACGGATACTGAAGC
AX12	1BL_3898099	TgtaaaacgacggccagtTCCAGTAACAGAGCACATATTCC	CCTTTGAGATAGGTTTCCAAGA
AX13	1BL_3803445	TgtaaaacgacggccagtGGAGCATGGCAATTTTAGTTTC	AGGCAATGGACACAGTTGTAGA
AX14	1BL_3878973	TgtaaaacgacggccagtCCATGTCTTCCCAAAGGTTCTA	CCCACCAGATGTACGGTTCTTA
AX15	1BL_3919868	TgtaaaacgacggccagtTGAATGTGTCCTTGTTGTAGGC	ACAGAGATGGATGAGGGAAAGA
AX16	1BL_3920351	TgtaaaacgacggccagtAGGAATAAGCGACCACATCACT	TCATGGAAGGTCAAACAAGATG
AX17	1BL_3832084	TgtaaaacgacggccagtTCAGGGGTGTAGAGTGTAGTTTATGA	TGAGAATGCTTCCTTGCATCTA
AX18	2DS_5357871	TgtaaaacgacggccagtAATGGATGGGTAATATGGCACT	GCTAGGATGAGGTCCGAGTTTA
AX19	2DS_5334312	TgtaaaacgacggccagtTGAGAAAGGAACAAACGAAACC	CCATGCGTGACTGGAATTG
AX20	2DS_5334312	TgtaaaacgacggccagtCGAGTCCGATAAATAGGTTTGTG	GATCTGGCTTGTGTGTTCTGTC
AX21	2DS_5354297	TgtaaaacgacggccagtACGCCCAGATACCTAAGATTGA	TGTTTTAACGGGATCAAGTGTG
AX22	2DS_5347513	TgtaaaacgacggccagtTTCGGTGTGCAGAAAAGTCTAA	TCTTAGTCCACCCATCTCCATC
AX23	2DS_5347513	TgtaaaacgacggccagtGGATAGCCCGGAAGAGTAAAAT	GGACAAGTAAGCATGAGAACCC
AX24	2DS_5347513	TgtaaaacgacggccagtACCAAACAAGCCTGAACTGAAT	CGTGTTCTGTCAATATGTGCAA
AX25	2DS_5358861	TgtaaaacgacggccagtTCTCAATCTTCAGCACTTTCCA	GCAGCACGTCTCGTATTTACTG
AX26	2DS_5358861	TgtaaaacgacggccagtACGATGGAAGAGCGAAGAGAG	GTGACATTGAACAGGTGGTTTG
AX27	2DS_5358861	TgtaaaacgacggccagtAGCATCCAGATTTCCTCTCAAA	CTTCAGTCCCGCTTCAATATCT
AX28	2DS_5358861	TgtaaaacgacggccagtTTATCATGTGGTTGTAGGGCTG	AGAAAGAGAGGTGAGCAGTTGG
AX29	2DS_5358861	TgtaaaacgacggccagtTGCACTGAGCGTGGAAAA	ACCAACCACTATACGAGGAGGA
AX30	2DS_5388293	TgtaaaacgacggccagtAAGTACCCATACACATGCCCAG	GGTCAAAATAAACATGCCACCT
AX31	2DS_5388293	TgtaaaacgacggccagtACTACGCAGAACGGTATCAAAA	CCAGAATCCTACTTACCCCAAC
AX32	2DS_5388293	TgtaaaacgacggccagtTTGTCGAAGGAGTAGGTCTCATC	ACAATCAATTACGTCCATGCAG
AX33	2DS_5352839	TgtaaaacgacggccagtGCAAGGAGAAAGACACCAAGAT	CGACGACAATGAAAACAGAGAA
AX34	2DS_5352839	TgtaaaacgacggccagtAACAAATACTAATGGCGCACCT	CACAAAGAACGTACCAGATCCA
AX35	2DS_5352839	TgtaaaacgacggccagtTGGTCTACGGATCTGGATGTAA	AACTACACACACACACACGCTG
AX36	2DS_5352839	TgtaaaacgacggccagtGGCGGCAAGTAGAAAGACACTA	CAGCCAAACTGAACTGAAGACA
AX37	2DS_5352839	TgtaaaacgacggccagtAATGTTTGGTTACAGTTTCCGC	ATTTCACGCACCTGTCCAATAG
AX38	2DS_5352839	TgtaaaacgacggccagtTCTGAATACGAGCAAACCTGAA	GGAAATACTTGTCGGAGGAATG
AX39	2DS_5352839	TgtaaaacgacggccagtGGTGCGATTTTCTCTTTGTTTC	ACTCCTCGAAGTGCTATGCTTC
AX40	2DS_5352839	TgtaaaacgacggccagtACATACACGCACACAATCACAA	CAGAGAAAGCAAGCAAACATTC
AX41	2DS_5352839	TgtaaaacgacggccagtGCCTAGCCAACTTATGAGCTTC	AAACCATGACTCTCACGAAAGG

A2.9 continued

Marker ID	Contig/source	FW-primer	RV-primer
AX42	2DS_5317606	TgtaaaacgacggccagtGCATACATACTCTCGTGCAAGG	CGTACTAACCTTTGTCGTGCTG
AX43	2DS_5317606	TgtaaaacgacggccagtAAAAGCATCACCGAAGAGCTAC	GTCATGGATGTTGATCGAGAGA
AX44	2DS_5317606	TgtaaaacgacggccagtTCTCTCGATCAACATCCATGAC	AGACTCCATTAGGCTGAACACC
AX45	2DS_5317606	TgtaaaacgacggccagtGAGCTTCTAATATGGCGTGACC	TTTGCCCTGTATTGATGTTGAG
AX46	2DS_5359909	TgtaaaacgacggccagtTCGTCTGATTAAAGTGGTGGAA	CGACTTCTAGGTAGTGCAAGTGG
AX47	2DS_5359909	TgtaaaacgacggccagtGTGTGGAGCCTATCCAAATGA	CCCAATGAACTGCTACATGAGT
AX48	2DS_5366459	TgtaaaacgacggccagtCCCCGTCATGTGGTAGTATGTA	GGTTAATCCTGGTCAATGTGGT
AX49	2DS_5373243	TgtaaaacgacggccagtCGGCCTATTCACTTCAAAGATT	ACCGGCAAATGTAAGACAAGAT
AX50	2DS_5377660	TgtaaaacgacggccagtCTCGGGAGATCAATTAGGTTTG	AACTAGAAAGGATCGGAGGGAG
AX51	2DS_5377660	TgtaaaacgacggccagtTATGTGTGTGTGTGCGAGAGAG	AACTAGAAAGGATCGGAGGGAG
AX52	2DS_5377660	TgtaaaacgacggccagtCTAGGATTTCGCCACGTATAGC	TAGTGAGTTGAGAGCAAACCGA
AX53	5BL_1091087	TgtaaaacgacggccagtATAATGGATTTCACTCGATGCC	ACAGTATTTCAGACCCGCAAAA
AX54	5BL_1091087	TgtaaaacgacggccagtACTCCTCCATTAGCCTCCCTAC	ACACGTCCAGTGACAACAACTC
AX55	5BL_1088962	TgtaaaacgacggccagtGCACTTCGTGTACTCTCTCCCT	TTGTTGTGTGTGTGTGTGTGTG
AX56	5BL_1088962	TgtaaaacgacggccagtGCACTTCGTGTACTCTCTCCCT	TGTTGTTGTGTGTGTGTGTGTG
AX57	5BL_1088962	TgtaaaacgacggccagtCACACACACACACACAACAACA	CCCTACTCCTTCGGTGTCAGTA
AX58	5BL_1088962	TgtaaaacgacggccagtCACACTTACTGACACCGAAGGA	GGCACAGAGACACAACTAGCAC
2DS_153	v3.3 cDNA	TgtaaaacgacggccagtTGAAACAGATGGCTGATGTACG	ATCTCTCCCCTATCTCTCTGCC
2DS_154	v3.3 cDNA	TgtaaaacgacggccagtATAGGGGAGAGATTAAGTGGGC	ACTACACCACGACACTGCATTC
2DS_155	v3.3 cDNA	TgtaaaacgacggccagtATCAACCAACCAGAGACCAGAC	TTCATGTACCCAAGATGACCAG
2DS_156	13.3 cDNA	TgtaaaacgacggccagtATGGATACAAGGGGTTCTTCCT	GACTCATCATCATCTTCGCTTG
2DS_157	v3.3 cDNA	TgtaaaacgacggccagtGAGAAGGAAGGTCAACGGTGT	CAGCAAGGACCAGCTACCC
2DS_158	V.3 cDNA	TgtaaaacgacggccagtCTGACATAGTGACAAAAGGACCC	TCACACACACACACACACACAC
2DS_159	V3.3 cDNA	TgtaaaacgacggccagtGGATTCTCTTGATCTCTCTTGACG	TATCGTTTTAGCAAGCACTCCC
2DS_160	V3.3 cDNA	TgtaaaacgacggccagtAGAGCTTGGACCCATTTTGTAG	GGCCACTTCGAGTCAGGTTA
2DS_161	v3.3 cDNA	TgtaaaacgacggccagtGGAATGCTGGAAACTGTGTGTA	GCGAGTAGAAGTCAAGGCTCAC
2DS_162	v3.3 cDNA	TgtaaaacgacggccagtCCACTGCTTTTGCTTAATCTCA	CCATCATCTGGTTTCTTCACAA
2DS_163	v3.3 cDNA	TgtaaaacgacggccagtCAGCTCCGCCTCAACTTT	CATTGCTTCAACTTCTCCGACT
2DS_164	$\checkmark 3.3$ cDNA	TgtaaaacgacggccagtACACATGGCAGAAAAGCTAACA	GCCTACCGAGCACCCTTC
2DS_165	v3.3 cDNA	TgtaaaacgacggccagtATGGCTCACTTCAGTTCACCTT	CTTCGAGTTTACTGCTACGCTG
2DS_166	v3.3 cDNA	TgtaaaacgacggccagtGTGTAGATGAGACATGGCAAAA	CCTACCGAGCACCCTTCT
2DS_167	v3.3 cDNA	TgtaaaacgacggccagtAAATGACTGGCCGAACTATTTG	ATTGTATTAACCCCATGCCAAC
2DS_168	v3.3 cDNA	TgtaaaacgacggccagtACGCACAATCAGTTCCAAGATA	ATTCCAGGTTTATCGTCCCTTT
2DS_169	V3.3 cDNA	TgtaaaacgacggccagtAGAGCACCATGTTCAAAACCTT	CTGTTCATTTCAGATTGCTTGC
2DS_170	$\checkmark 3.3$ cDNA	TgtaaaacgacggccagtTGCAACTCTTACTCTGTGCCTG	GGGTGTAGTATGTGGAAGCCAT
2DS_171	V3.3 cDNA	TgtaaaacgacggccagtGTTGAAGAACTGTGCCTACACG	TTGTTCGGACGTATGGTAGAAA
2DS_172	V3.3 cDNA	TgtaaaacgacggccagtTTGGGGTATATTTGGTTTGGAG	AAAAGAGAACTGCAAGTGGAGG
2DS_173	V3.3 cDNA	TgtaaaacgacggccagtGGTATCTCACACAGGGACAGGT	GACCTTCTTTTCAGTTTGGAGC
2DS_174	v3.3 cDNA	TgtaaaacgacggccagtGATAGCAGGGTTCTGATTTTGG	CGTGGTTTTCTCTGAATTTGG
2DS_175	V3.3 cDNA	TgtaaaacgacggccagtCACTCCCTCCATCACATTTTCT	GACAAGCTCACCCTCCTCC
2DS_176	$\checkmark 3.3$ cDNA	TgtaaaacgacggccagtAACTTTCTCTGCAACCAAAACC	CGCGAAGAACTCGTAGAGG
2DS_177	v3.3 cDNA	TgtaaaacgacggccagtTACAAGGTCACGATTCATTTCG	AATATCCTCTCCAGCACTCCAG
2DS_178	13.3 cDNA	TgtaaaacgacggccagtGATGATGCTCCATTACAACACC	СTACTCCCCTACTCCCAAATCC
2DS_179	13.3 cDNA	TgtaaaacgacggccagtGTGCTAGGAAACCAAGAGGAGA	TAGTTCACTGGTGTTGATGCGT
2DS_180	v3.3 cDNA	TgtaaaacgacggccagtAAAGCACGACCTCTCTACTTGG	TTTGGAGTTTATCGGGCAATAC
2DS_181	Avalon \times Cadenza interval	TgtaaaacgacggccagtGAAAGCAGAGTGGGAGAAGAAA	ATTGCGTCAACAGTCAAGGTAG
2DS_182	Avalon \times Cadenza interval	TgtaaaacgacggccagtTCCAGTCTCGTTTCCCTTATGT	GTATGCACAAGCTACAGGCAAG
2DS_183	Avalon xCadenza interval	TgtaaaacgacggccagtATGATAATTGGCGGAAGATGAG	TCAAGTAGAGGGTACATCGGGT
2DS_184	Limagrain	TgtaaaacgacggccagtCAGTTTTCCCTCGCCTATAATG	CCAGATACTAATGACGCACCAG
2DS_185	Limagrain	TgtaaaacgacggccagtCAAATCAATATGACTGCCGTGT	GTATGTGTGTGTGTGTGTGCGT
2DS_186	Limagrain	TgtaaaacgacggccagtCAAATCAATATGACTGCCGTGT	CATGTGTGTGTGTGTGTGTGTG
2DS_187	Limagrain	TgtaaaacgacggccagtCAAATCAATATGACTGCCGTGT	ACAAGGAGAGGCTGGAGTTTC
2DS_188	Limagrain	TgtaaaacgacggccagtATGGGTAACGGAAGATGTCCTA	TTCGTTGGAACTTTGACGTG
2DS_189	Limagrain	TgtaaaacgacggccagtGGTTGTGCTTTTGCGAGAGT	CCATGTTGATAGGTTTTGACGA
2DS_190	Limagrain	TgtaaaacgacggccagtCTCCAGCGACAGTACAAATACG	TCTTACCATCAGCTCAAAAGCA
2DS_191	Limagrain	TgtaaaacgacggccagtTGTGGCATAGGTCTACAAGTGG	ATCCATATTGGTCAGTTGGCTC
2DS_192	Limagrain	TgtaaaacgacggccagtTAGCAAGAGCGAGAAACACTTG	TCATCACAAATCCCTATTTCCC
2DS_193	Limagrain	TgtaaaacgacggccagtGACCCATCTTCCATCTTCTGG	AGGAGCGAAGCTAGTCAACATC
2DS_194	Limagrain	TgtaaaacgacggccagtATATACACGGTAGAACGGGTCG	TGGTTGCAGAGAAGTAGAGCAA
2DS_195	Limagrain	TgtaaaacgacggccagtTGGTTGCAGAGAAGTAGAGCAA	ATATACACGGTAGAACGGGTCG
2DS_196	Limagrain	TgtaaaacgacggccagtACAAATCGTTTAGGCTGGGTTA	GGCAAGCAACCACTATCTTGA
2DS_197	Limagrain	TgtaaaacgacggccagtAAATCCTACCACAAGATCGCAT	TGTCCTCTCTTATCTCCATGCTT
2DS_198	Limagrain	TgtaaaacgacggccagtTGTCCTCTCTTATCTCCATGCTT	AAATCCTACCACAAGATCGCAT
2DS_199	Limagrain	TgtaaaacgacggccagtTTCAGGACTTGTTGAGTTGTGC	ATAGATTATGTGGCCGGTATGG

A2.9 continued

Marker ID	Contig/source	FW-primer	RV-primer
2DS_200	Limagrain	TgtaaaacgacggccagtTTGTGCCTCTCACTAAAGGAAA	ATGCCTCTCGGAAACAGAAA
2DS_201	Limagrain	TgtaaaacgacggccagtGATCTGCACAAAATTCCATCTG	GCATTCCCCTTCTTTTCTATCC
2DS_202	Limagrain	TgtaaaacgacggccagtAAGTTCATTTGGGATCTGGTTG	GCATGTCTAGTTCTCTGACCCC
2DS_203	Limagrain	TgtaaaacgacggccagtTTTGGTTTGTCTGGAGTTTGTG	TACGTTCCCCTTTAATTTCCCT
2DS_204	Limagrain	TgtaaaacgacggccagtGAAAACATTCAAAGGCTCAAGG	ATTCAACTGGACTTCGTCGTTC
2DS_205	Limagrain	TgtaaaacgacggccagtAGGATGTTGGTTGCAGTTTTCT	AGTTGGAGTACCGCTCGTTTAG
2DS_206	Limagrain	TgtaaaacgacggccagtTGATACCTCCTTCGTTTTCTCC	GAAATCATCCACAACCACAAGA
2DS_207	Limagrain	TgtaaaacgacggccagtCTTTGTGGATGTCTTGAATGGA	CTCTGGTTTGTTTGGTTTTGGT
2DS_208	Limagrain	TgtaaaacgacggccagtAGTGTAGCATTCCATCCCATTC	TACCCAACCAAAACAAGAGGAG
2DS_210	Limagrain	TgtaaaacgacggccagtTTCCTGGTATTGTCTAGGCTCC	AGTGCCCAGTGTTAGTTCCAAT
2DS_211	Limagrain	TgtaaaacgacggccagtGTCAGTCCCTGTTGATGATGAC	TAATACACTCCGAAAAGCCACC
2DS_212	Limagrain	TgtaaaacgacggccagtTGACTGATTTGATGCGAACAC	GGAGAAGATGCAGATGTAGGGT
2DS_213	Limagrain	TgtaaaacgacggccagtGGGCCATCTTGTTTGTGAGTAT	CTTATTTTACATTTGGGTGCCG
2DS_214	Limagrain	TgtaaaacgacggccagtATTTTGGGTTGTGCTAGACGTT	GGTAGATAATTTGGTGCATGAGG
2DS_215	Limagrain	TgtaaaacgacggccagtGATGCACCATATCAAGGTCTCC	AGCCTACCAAATCGAAACACAT
2DS_216	Limagrain	TgtaaaacgacggccagtGTCCCCTATGCTCCTTCTTCTT	AGCCTACCAAATCGAAACACAT
2DS_217	Limagrain	TgtaaaacgacggccagtAGCCTACCAAATCGAAACACAT	GTCCCCTATGCTCCTTCTTCTT
2DS_218	Limagrain	TgtaaaacgacggccagtAGCCTACCAAATCGAAACACAT	GATGCACCATATCAAGGTCTCC
2DS_219	Limagrain	TgtaaaacgacggccagtTGTAGGCAAACACAAAGACACC	ACCAAAGCGACGACATTACTTAC
2DS_220	Limagrain	TgtaaaacgacggccagtTTCATGCAGAGTTCGTTTGTCT	GTCGTCTGAAATGGGATAAAGC
2DS_221	Limagrain	TgtaaaacgacggccagtATTATACTGCCTGTTTGGCTGG	GTTGCTGTTTGTGCTATGAACC
2DS_222	Limagrain	TgtaaaacgacggccagtTACATGGCAAAACACAAAGACC	TAGCAGGTTTCTACGTGATGGA
2DS_223	Limagrain	TgtaaaacgacggccagtTTAAATCACTGCTCTTCGCGT	AGCCTCATCACCAGGAAAATAA
2DS_224	Limagrain	TgtaaaacgacggccagtCTAATGTGTTTGGATGGATTCG	GAGACTTTCTTGGAGGGATGAG
2DS_225	Limagrain	TgtaaaacgacggccagtCGTTGTCACTTTCCTTTACCAA	ACGCAATAAGAAGATCCACGTT
2DS_226	Limagrain	TgtaaaacgacggccagtTTAGAGTGCATGAATGAGACGC	GCTGAAAATACAACGGTGAACA
2DS_227	Limagrain	TgtaaaacgacggccagtATGTGGACGAGTACGTGGATCT	AAGAAAGAGGATCGGGAGAAAC
2DS_228	Limagrain	TgtaaaacgacggccagtAGCTTCAACTTCCCTCACAAAA	ACGTAAACCGAAACAAATCAGG
2DS_229	2D v3.3	TgtaaaacgacggccagtCCCATCTAGGGAGAAGGTCAA	ATTCACCAATTACCGACAGGAC
2DS_230	2D v3.3	TgtaaaacgacggccagtATCAGGTCCCCACTAGAAATCA	AAAATGGGAGATACATGGGTTG
2DS_231	2D v3.3	TgtaaaacgacggccagtTACGGCGCGATATGTGGT	GAACAATCTCTACAACCATGAGCA
2DS_232	2D v3.3	TgtaaaacgacggccagtAAAAGGCTCTAATGGTTGGTGA	CAGACAGGTTTGGGACTAAAGG
2DS_233	2D v3.3	TgtaaaacgacggccagtATATTCACCAAGGAAATCGCTG	TAGTCGTTTCAGACCAAAAGCA
2DS_234	2D v3.3	TgtaaaacgacggccagtCACACTCTCCTCCTCCTCCTC	CCGGAGTATAAAACAAAGCCAC
2DS_235	2D v3.3	TgtaaaacgacggccagtGATCTATTGACGGCGATCCTAC	CTACAACCACAGTCCGAAACAA
2DS_236	2D v3.3	TgtaaaacgacggccagtCTCCCATCAAACTGAGAAAAGG	GGACTTAACTGAGGCAACCACT
2DS_237	2D v3.3	TgtaaaacgacggccagtGGATTCGGAGATAAAATGAGCA	ACTGCCGATAAAAGACAAAAGC
2DS_238	2D v3.3	TgtaaaacgacggccagtTTGGGGTTTGGTACAGCTAACTA	TCTTTGTCGTTAAATGCGACTG
2DS_239	2D v3.3	TgtaaaacgacggccagtAACCTGATCCTTGAGCTAACCA	TTGCTTAATTGTGTCTGTTCCG
2DS_240	2D v3.3	TgtaaaacgacggccagtCCATCAACTCCCTTCGTTCATA	СССТСССАССАСАTTACTTAGA
2DS_241	2D v3.3	TgtaaaacgacggccagtGGAGCTATATTTTCCCTTGCTG	GTGATGAGTGAGTACGACTGGC
2DS_242	2D v3.3	TgtaaaacgacggccagtAATGACCTCCTCGTCGTACACT	TAGTAAAAGGCGTCGATTCTCC
2DS_243	2D v3.3	TgtaaaacgacggccagtAGTTGGAGCAGGTTCATGTTTT	TAGTAAAAGGCGTCGATTCTCC
2DS_244	2D v3.3	TgtaaaacgacggccagtCATCATCTCAGGCTTTCAGCTA	CTGACTCTAACCCCAAACAAGC
2DS_245	2D v3.3	TgtaaaacgacggccagtACATACGCCTCACATCCTTGTT	GGCAGTTTCACCTTTTGCAT
2DS_246	2D v3.3	TgtaaaacgacggccagtCAGAACACAATGACACCACCTT	GGGGAAACAATAACCAACTCAA
2DS_247	2D v3.3	TgtaaaacgacggccagtGCCTGATGCTCTGCTTTTATG	GAAGATATGGGACTCTTGACCG
2DS_248	2D v3.3	TgtaaaacgacggccagtCGTCTTCTCCCAGCTCAGTATAG	TTGTACCAGTCTCATCACAGGC
2DS_249	2D v3.3	TgtaaaacgacggccagtCAATGGGAGAGAGAAACAATACG	AAGTGATGCTGATCGTTGTGAG
2DS_250	2D v3.3	TgtaaaacgacggccagtAGACACGGTTTTGCTTCTGTG	ATCGTAATTGTGCCTCTCGC
2DS_251	2D v3.3	TgtaaaacgacggccagtAGAAGGGAAGCTCTTTTATGGG	GGTGGACATGCTAATTTTCTCC
2DS_252	2D v3.3	TgtaaaacgacggccagtATGTGCAGTGTCTTACTTTCCG	TCTTGGCCTACAAAATGGTCTT
2DS_253	2D v3.3	TgtaaaacgacggccagtCAACAAGCACCCGTTATCCT	TCCCTTCTACTGATTTTCGGAG
2DS_254	2D v3.3	TgtaaaacgacggccagtGGGGTTGAATCGTAACAAAGAA	CTCAAGATGCTATGCCAACTCA
2DS_255	2D v3.3	TgtaaaacgacggccagtAAACAAAACCATGCCTCTCGT	GGTCTTTCCTAGCTCTTCGACA
2DS_540403	IWGSC-2/Ensembl	TgtaaaacgacggccagtAAACCGAGTTACCGATGAATTG	CCCGAGCAAAAGTATGTGTGTA
2DS_256	IWGSC-2/Ensembl	TgtaaaacgacggccagtATTTCTGTAACCCATTTGTCGC	TCAATCCAACCCTGTCATACAA
2DS_257	IWGSC-2/Ensembl	TgtaaaacgacggccagtCTAAGCGAGCCTTCATTTCCTA	ACCCACACATGCCCTTATACAT
2DS_258	IWGSC-2/Ensembl	TgtaaaacgacggccagtCCCGATCTTGTTTTCCTACCTA	GGCTGTCATATCTGGTCTCAAA
2DS_259	IWGSC-2/Ensembl	TgtaaaacgacggccagtTGTACGATAGGACGTTTTCTGC	CTACTCATGGCCCGTTAATTTT
2DS_260	IWGSC-2/Ensembl	TgtaaaacgacggccagtATTTCAGGCAGGCAATTAAGAG	ATGAGCACAATGAAGATGATGC
2DS_261	IWGSC-2/Ensembl	TgtaaaacgacggccagtGGCGACCTCAAACTCTACCATA	AGCCCTAGCCATATCCTCTTTC
2DS_262	IWGSC-2/Ensembl	TgtaaaacgacggccagtTTATGAACCCGCACAGTACATC	AGGCTTACATGAGAAAGGCAAG
2DS_263	IWGSC-2/Ensembl	TgtaaaacgacggccagtAACGCGCTACTGCTAGTTTGAC	AATGCCTACTGCCCTAAACAAA

A2.9 continued

Marker ID	Contig/source	FW-primer	RV-primer
2DS_264	IWGSC-2/Ensembl	TgtaaaacgacggccagtCACAATAGTAGAAGCACTCTGCG	TGATGCGCTCTCTTTGAACTAA
2DS_265	IWGSC-2/Ensembl	TgtaaaacgacggccagtATTTGAAGGGTTAATGAGCCAC	TGAAAACCAGAGAGAACACACA
2DS_266	IWGSC-2/Ensembl	TgtaaaacgacggccagtAAAAGTAGTTGGTGCAAATGGG	ACTTGACTCGGACATGCAAATA
2DS_267	IWGSC-2/Ensembl	TgtaaaacgacggccagtAGTTGCTGGTGAGAGAGTTCGT	CAGATAGAGAGAGGGAGAGGCA
2DS_268	IWGSC-2/Ensembl	TgtaaaacgacggccagtTCATCCTGGTCATCTTTATCCTG	GGTGAAAGCAAATTCATCAAGG
2DS_269	IWGSC-2/Ensembl	TgtaaaacgacggccagtCAGCACAGTAGATAGGCCAACA	TGCTTCAGTTTTGGATGGTATG
2DS_270	IWGSC-2/Ensembl	TgtaaaacgacggccagtACTCTGGCTGTAAGGAAAGGTG	TTGCACGTAAGATTGTCTGGAG
2DS_271	>IAA-amino acid hydrolase ILR1-like protein 8	TgtaaaacgacggccagtCGCGGTATAGGCAAAAGAACTA	CATGAATGGAAATGTGTGTGTG
2DS_272	>IAA-amino acid hydrolase ILR1-like protein 8	TgtaaaacgacggccagtTATCTTTCCACCATCCTTCCAC	ATCTTTGTCCACTTTGATCCCA
2DS_273	IWGSC-2/Ensembl	TgtaaaacgacggccagtCTTGATGGAGGATATGGTGGTT	TAGTGAAATTGCTAGGGCATGA
2DS_274	IWGSC-2/Ensembl	TgtaaaacgacggccagtTGATCGTGACTACATCGACTCC	AAACCTCCTCTCCTTCTCGTCT
2DS_275	IWGSC-2/Ensembl	TgtaaaacgacggccagtCAGAGATGGATGACGTGGACT	TATTGGCAGAACAGAGTGATGG
2DS_276	IWGSC-2/Ensembl	TgtaaaacgacggccagtATCAGAGTGGACAAGCAATGG	ATGCTCTCGCATGAACAGTAAA
2DS_277	IWGSC-2/Ensembl	TgtaaaacgacggccagtCACTGTCGCGGTAGAAGGTC	ACAAGATTGCTTAACGGGTCTG
2DS_278	IWGSC-2/Ensembl	TgtaaaacgacggccagtATAGCGCATGATCCATCTTTCT	ATCCTGACCCAATAACCATGAC
2DS_279	IWGSC-2/Ensembl	TgtaaaacgacggccagtGTTTCCTAGTGGACATGGTTGC	CAGAGGGTGGACCTCATTTAAC
2DS_5375260	BRADI5G05140	TgtaaaacgacggccagtAGATCCCATTGACAGAACGAAT	TTGAAAACGGTGAGCAGTTG
2DS_280	>BRU1	TgtaaaacgacggccagtCCGGACCAACTCTTTTCTTCTA	ATTCCTTTGATCTTGCATGGAG
2DS_281	>BRU1	TgtaaaacgacggccagtTTCCGGTCTCTCTGTCTAGCTC	ATCGAGTAACGCTGCATAAACA
2DS_282	esponse_factor 9-like	TgtaaaacgacggccagtTGGGTAGGAGAGAGAGGGTACA	GTACACAAGCTGTTGACCTTGC
2DS_283	>UDP_glycosyltransferase 92A1	TgtaaaacgacggccagtGATCACAGGGAACAATGCCTAT	AAGCGTTTTGACTAGAAGCCC
2DS_284	>UDP_glycosyltransferase 92A1	TgtaaaacgacggccagtTGATTACACTTCTCTGCCTCCA	GATTCATGTTGCCTTGTGAAGA
2DS_285	>IAA-amino acid hydrolase ILR1-like protein 8	TgtaaaacgacggccagtATATTAACAAAGCCCGCGATAC	CTTCATAATCATCACCGGAGG
zip_1_Ft	2DS_5375260	TgtaaaacgacggccagtTTTATTGGAGAAAGCCAGCCTA	CACCTGATTTGATGTGTTCTGC
zip_2_Ft	2DS_5340329	TgtaaaacgacggccagtCTAGGCCAGGTCATCTCTCTGT	TTATGGTGCCCCTGAATCTAGT
zip_3_Ft	2DS_5340329	TgtaaaacgacggccagtGGGATTGTCTAGGTCTCAGTCG	GTTTTGCCTGGGTTCAGTTAGA
zip_4_Ft	2DS_5366894	TgtaaaacgacggccagtTGCTGGCTTGAGTAGTGAGAAA	ACATGACCCACACAAAACACAT
2DS_283b	2DS_5351773	TgtaaaacgacggccagtTCCTGATCTGTTTGTGTTCGTT	GCAATGTTTATTCAGCAAGACG
2DS_284b	2DS_5351773	TgtaaaacgacggccagtCGTCTTGCTGAATAAACATTGC	TAGTGCTTGGTATCGTTGTTGG
2DS_285b	2DS_5319489	TgtaaaacgacggccagtTAGGTAGGAAAACAAGATCGGG	GAAGCTAATGTGAAGGTGGCTC
2DS_286b	2DS_5388540	TgtaaaacgacggccagtACTAGAGAGGATGCGGAAGTGA	CGCGTCAAGTTTTCTGATCTTT
2DS_287b	2DS_5390725	TgtaaaacgacggccagtGTTCTGTAACCGGCACTAAAGG	TGTGTATGTGTGAATGGTGGTG
2DS_288	2DS_5384527	TgtaaaacgacggccagtACATGAAAACAACGAAGACACG	TGAGTACGGAAGAAGGTCAAGTTT
2DS_289	2DS_5384527	TgtaaaacgacggccagtGCCGTGAGAGATTTTGAGAGAT	GGTGTCTTCTGACTTTGTTTGC
2DS_290	2DS_5323988	TgtaaaacgacggccagtAGTTTCTGCTCCCCTTCCTTAC	GCCATGTCTCTCTTCTTGTCCT
2DS_291	2DS_5352525	TgtaaaacgacggccagtAGAGTGTTTTCGCAAGAGGAAC	TATGAAGAGATGGTTGGTGCTG
2DS_292	2DS_5390004	TgtaaaacgacggccagtGCAAATAAACACCCCACTATAACC	GCAACGGGAGAGAAAACATAAC
2DS_293	2DS_5363870	TgtaaaacgacggccagtACCCTAAGAAAGGACTGCATCA	CAAGGGGTCATAAATTGAGGTT
2DS_294	2DS_5363870	TgtaaaacgacggccagtAGACGCACAGCAGGTTAGTACA	GAATCCATCAGCCTCACTGTC
2DS_295	2DS_5363870	TgtaaaacgacggccagtGCGTACATTGGTTGGAATAACA	AGTTGGTTGTCGCACCTAGTTT
2DS_296	2DS_5366894	TgtaaaacgacggccagtCAATGTTCAGGTTGCAGTTGTT	AAAGACCATGTGAAGGAAAACG
2DS_297	2DS_5341587	TgtaaaacgacggccagtAGATGGGAAAAGGTAAGTGTGG	GGTAGGTATATGTGTGCGCCTT
2DS_298	2DS_5379098	TgtaaaacgacggccagtTCAGATTTATTCGCACTTGCC	ACCTGCAAAACTCAAAAGTTGG
2DS_299	2DS_5347513	TgtaaaacgacggccagtTCTTAGTCCACCCATCTCCATC	TTCGGTGTGCAGAAAAGTCTAA
2DS_300	2DS_5319959	TgtaaaacgacggccagtCCTCGACCCTATGTGATTTTGT	TGCATGGTACTTGTGGCTTATC
2DS_301	2DS_5319959	TgtaaaacgacggccagtTCTTCTTCTTCTTCTTCGTGGG	TGCATGGTACTTGTGGCTTATC
2DS_302	2DS_5319959	TgtaaaacgacggccagtCCCATTGAAAGAAAACCCTACA	CATCATAGGAACGGTCAGGAGT
2DS_303	2DS_5319959	TgtaaaacgacggccagtTCTGAAGAAACACACATCTCCG	TCCTCTAGTGCTCTCTCCGTTT
2DS_304	2DS_5319959	TgtaaaacgacggccagtGCCAACCTAAACAGGTGAAAAG	CCATGTGTGCTTGTTGTGTATG
2DS_305	2DS_5319959	TgtaaaacgacggccagtCCAGTAGCTTAACATCCCTTGG	TATATTTGGGGCGCTTTGTACT
2DS_306	2DS_5319959	TgtaaaacgacggccagtTTGGTACTCACACTGACATGGAC	TTCACTTTTCTTCCTCCTCTGC
2DS_307	2DS_5319959	TgtaaaacgacggccagtAAAGGTGCGAGCTATTTAGTGG	TTTGCTTGGGTAGCGATTAGTT
2DS_308	2DS_5389716	TgtaaaacgacggccagtCTCATAAGAAGACGCCACGAC	AGGGATGTGTGCAAAGGAGTAT
2DS_309	2DS_5389716	TgtaaaacgacggccagtAAACTATACCTTGGGGAGGGG	TCTGCGACACCGTATTAAAAGA
2DS_310	2DS_5390981	TgtaaaacgacggccagtCTCTTCGCCCAAAACCCTAC	GATCTCCCAATAGCAATCAAGC

A2.9 continued

Marker	IWGSC contig	Marker class			Marker validation			Primers	
		$\begin{array}{\|l\|} \hline \text { 2D } \\ \hline \text { RIL } \\ \hline \end{array}$	gwm	FM	CD (a)	RIL4 (b)	Type	Forward	Reverse
2DS_1	2DS_5359909	7	14	A	372	375	B	GTGTGGAGCCTATCCAAATGA	CCCAATGAACTGCTACATGAGT
2DS_3	2DS_5337443	7	13	A	-	261	A	AAAAGGTAATAGAACCGGAGCC	TGTGATTGGTGAAGATGGAGAG
2DS_4	2DS_5337443	7	13	A	-	292	A	AAAAGGTAATAGAACCGGAGCC	CATTTCACCCCTATATGTCCG
2DS_6	2DS_5321865	10	14	A	283	279	B	CGACAGAAAACAAACGAGACTG	AGATTGATATGTACCTGCGCGT
2DS_66	2DS_5357871	5	25	F	411	412	B	AATGGATGGGTAATATGGCACT	GCTAGGATGAGGTCCGAGTTTA
2DS_79	2DS_5317970	11	3	-	348\&349	348\&350	C	ACTTATGGGTTTCAGGCTTTCA	GTGAACACAAATCTTCCGTCAA
2DS_88	2DS_5321770	7	17	A	275\&285	282	D	TCTAACCCTTTGGTCTTATCGC	TTCGCGGAAGATGAGTACATAA
2DS_89	2DS_5321770	7	17	A	324 double	324 triple	C	GAAGAATGAGGGAAATACGCAA	TTGACCTTCCATTGTACTGGTG
2DS_94	2DS_5338366	11	3	-	357	362	B	CATGTGGTAAGCAATCCAAACT	CACGCGAGAAGCACAACTAT
2DS_95	2DS_5341322	7	17	A	311 double	311 single	C	AACAAAGCTCGCAGTACATCAA	CCAATCCTTGAAAAGAACCCTA
2DS_105	2DS_5390456	7	23	A	424	422	B	GTACATTTGCTTCCTTTCCG	TAAAACCAGTTACATGCGGTGA
2DS_137	2DS_5309868	1	7	-	280	281	B	CTAAGGACCAACAGCGGTATTC	GTGACAAGCATCTATGTGGAGG
2DS_138	2DS_5318296	5	27	F	397	395	B	CGTGCGAGAGATTACAGAGAGA	GGGGTGGTAAAACAAATCAAGA
2DS_145	2DS_5366858	11	3	-	248	249	B	AATAGATACCGATAACGCTCCG	ATGGACAAGCACACACACATCT
2DS_149	2DS_5319467	12	15	A	339	344	B	AGATTGAGCCGACACATCATC	CGGAACGAGAAGAAGAAGCTAA
2DS_15	2DS_5390752	6	25	F	411	410	B	GTACCAACCTTTACGCCCCT	ACCACATCTTCACCCATATTCC
2DS_187	2DS_5354335	9	28	E	286	282	B	CAAATCAATATGACTGCCGTGT	ACAAGGAGAGGCTGGAGTTTC
2DS_192	2DS_5378845	9	28	E	209	232	B	TAGCAAGAGCGAGAAACACTTG	TCATCACAAATCCCTATTTCCC
2DS_201	2DS_5389660	9	28	E	322\&323	322\&324	C	GATCTGCACAAAATTCCATCTG	GCATTCCCCTTCTTTTCTATCC
2DS_208	2DS_5389857	9	28	E	212	222	B	AGTGTAGCATTCCATCCCATTC	TACCCAACCAAAACAAGAGGAG
2DS_210	2DS_5337059	12	16	A	233	236	B	TTCCTGGTATTGTCTAGGCTCC	AGTGCCCAGTGTTAGTTCCAAT
2DS_211	2DS_5337059	12	16	A	315	321	B	GTCAGTCCCTGTTGATGATGAC	TAATACACTCCGAAAAGCCACC
2DS_212	2DS_5337059	12	16	A	253\&267	267	D	TGACTGATTTGA TGCGAACAC	GGAGAAGATGCAGATGTAGGGT
2DS_215	2DS_5379317	12	22	A	145\&157	144\&161\&170	D	GATGCACCATATCAAGGTCTCC	AGCCTACCAAATCGAAACACAT
2DS_217	2DS_5319965	12	16	A	127	130\&139	D	AGCCTACCAAATCGAAACACAT	GTCCCCTATGCTCCTTCTTCTT
2DS_222	2DS_5342594	7	19	C	354	353	B	TACATGGCAAAACACAAAGACC	TAGCAGGTTTCTACGTGATGGA
2DS_223	2DS_5342594	7	19	C	380	384	B	TTAAATCACTGCTCTTCGCGT	AGCCTCATCACCAGGAAAATAA
2DS_235	2DS_5365907	4	2	-	300 triple	300 double	C	GATCTATTGACGGCGATCCTAC	CTACAACCACAGTCCGAAACAA
2DS_242	2DS_5388557	3	9	-	354	355	B	AATGACCTCCTCGTCGTACACT	TAGTAAAAGGCGTCGATTCTCC
2DS_243	2DS_5388557	3	9	-	260	261	B	AGTTGGAGCAGGTTCATGTIT	TAGTAAAAGGCGTCGATTCTCC
2DS_26	2DS_5390977	6	26	F	185	198	B	TGAGGGAAAATACAAAGAGGGA	ATGTTAAGTGGAACAGCGTGTG
2DS_275	2DS_5344159	14	29	G	401	399	B	CAGAGATGGATGACGTGGACT	TATTGGCAGAACAGAGTGATGG
2DS_278	2DS_5360680	2	10	-	350	349	B	ATAGCGCATGATCCATCTTTCT	ATCCTGACCCAATAACCATGAC
2DS_280	2DS_5323734	4	12	-	394	-	A	CCGGACCAACTCTITTCTTCTA	ATTCCTTTGATCTTGCATGGAG
2DS_293	2DS_5363870	8	30	-	370	372	B	ACCCTAAGAAAGGACTGCATCA	CAAGGGGTCATAAATTGAGGTT
2DS_5375260	2DS_5375260	7	18	D	299	284	B	AGATCCCATTGACAGAACGAAT	TTGAAAACGGTGAGCAGTTG
2DS_540403	2DS_540403	7	22	A	226	223	B	AAACCGAGTTACCGATGAATTG	CCCGAGCAAAAGTATGTGTGTA
AX-2	2DS_5389432	1	7	-	379	376	B	GTTAAATGTTATGTGCGGCCAG	TAAAAGGGTTTGATGCCAGGAG
AX-25	2DS_5358861	11	3	-	241	239	B	TCTCAATCTTCAGCACTTTCCA	GCAGCACGTCTCGTATTTACTG
AX-28	2DS_5358861	11	3	-	398 single	398 double	C	TTATCATGTGGTTGTAGGGCTG	AGAAAGAGAGGTGAGCAGTTGG
AX-29	2DS_5358861	11	3	-	356	354	B	TGCACTGAGCGTGGAAAA	ACCAACCACTATACGAGGAGGA
AX-30	2DS_5388293	13	8	-	200	201	B	AAGTACCCATACACATGCCCAG	GGTCAAAATAAACATGCCACCT
AX-4	2DS_5389432	1	7	-	382	381	B	AAACAGCGACAACAGAAAGTGA	TCGTTAGATTTCCCATCTTCGT

A2.10: Details of polymorphic SSR markers and the allele sizes used for genotyping the mapping populations.

Marker	Source	IWGSC contig	$\begin{array}{\|c\|} 2 D \\ \text { class RIL } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { gwm } \\ \text { class } \end{array}$	$\begin{array}{\|c\|c\|c\|} \hline \text { FM } \\ \text { class } \end{array}$	BS code/ gene model	$\begin{gathered} \text { FAM primer } \\ \text { (GAAGGTGACCAAGTTCATGCT) }+ \end{gathered}$	VIC primer (GAAGGTCGGAGTCAACGGATT) +	Common primer	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Optimal } \\ \text { cycle } \\ \text { number } \end{array} \\ \hline \end{array}$
76_uni	UniGenes	2DS_5330846	3	11	-	D_comp79633_co_seq1:189	CGCACTCTACCCATTGAGATACTG	CGCACTCTACCCATTGAGATACTA	TCCCTCAGCTCACTATTTGCA	35
55_uni	UniGenes	2DS_5375260	7	18	C	D_comp16925_c0_seq1:2569	ACAGTACCTCATCCTCGGATTT	ACAGTACCTCATCCTCGGATTG	GTCTATGGCTACCGGTGACA	35
8_uni	UniGenes	2DS_5388088	7	21	A	D_comp211584_c0_seq2:332	AGAATTAAGCTTCCTGCCATTACG	AGAATTAAGCTTCCTGCCATTACA	AAGCCAAAGATTTCTGCGCC	35
BFR_46	v3.3 cDNAs	2DS_5371750	7	25	F	mrna042711	TGTAGTTGCCGTTGGATTGT	TGTAGTTGCCGTTGGATTGC	GGACTTGACAAAAATCCCACTT	40
16_uni	UniGenes	2DS_5364728	7	28	E	D_comp554514_c0_seq1:82	TССТТСТСТTTCATTGCCTTCTT	TCСТTСТСТTTCATTGCCTTTCTC	GAGGGGAGCGAAGGAAAGG	30
21_uni	UniGenes	2DS_5353487	15	6	-	D_comp132046_c0_seq2:176	TGCAACTTATCGGCAAGGAAA	TGCAACTTATCGGCAAGGAAG	TCCATGGAGTTGTGGCTGTC	40
50_uni	UniGenes	2DS_4514573	15	6	-	D_comp132046_c0_seq1:407	TGATAAAAGGGGAGCATATCGT	TGATAAAAGGGGAGCATATCGC	CGAGCAAAGTTTGACCGTGG	35
6 iS	iSelect	2DS_5354297	16	5	-	BS00185568	CGAGTTGCAAAAATTGTGGTGTT	CGAGTTGCAAAAATTGTGGTGTG	CATCGCTTTCGTAAAATTGTTCC	30
4iS	iSelect	2DS_5343763	17	2	-	BS00049514	TCAACGGGCTGTGCTTCG	TCAACGGGCTGTGCTTCA	GGTGAACCCCTCCGCACC	35
5 S	iSelect	2DS_5316382	17	2	-	BS00134231	TGGGAAATCTTCACCTTGAGATTC	TGGGAAATCTTCACCTTGAGATTT	AAACCATAGCCTTCAAGAAACAG	30
1_al	2D v3.3 cDNAs	2DS_5338366	18	2	-	mrna009588	TCTTTCCACAGATAGAACTCCAATG	TCTTTCCACAGATAGAACTCCAATC	ATTGAAAGCGGTGCTAAAAGAAG	35
66_uni	UniGenes	2DS_5362023	18	2	-	D_comp4534_c0_seq1:1233	GAGTGGGGCAGCCGGAAT	GAGTGGGGCAGCCGGAAC	GGCATTGCTCTTCTGCGCT	30
27_uni	UniGenes	2DS_5358861	18	4	-	D_comp3280_c0_seq1:727	CAAGTAAAAAGGGCAGGCATATC	CAAGTAAAAAGCGCAGGCATATT	GAAGATGATCCTATATGACCAAATTGA	35
Freq_2	2D v3.3 cDNAs	2DS_5358861	18	4	-	mrna026970	GCGAGCGTCCTCTTTGTC	GCGAGCGTCCTCTTTGTT	AGCTTCAGTTGAATTATTGCTACG	35
$52 i$	iSelect	2BS_4748675	19	20	B	BS00164872	GCCTGAGACCTTGTCCATCG	GCCTGAGACCTTGTCCATCT	CGGCAAGTCGTCACTGCTG	35
11iS	iSelect	2DS_5343186	20	2	-	BS00181365	CGAATTGTTGTTAGCTCGGAAG	CGAATTGTTGTTTAGCTCGGAAA	GGTTTACCATTAGCCCTTGTGT	35
63_uni	UniGenes	2DS_5359909	20	14	A	D_comp375913_c0_seq1:199	CCACCTTTTGCCTTTCTAATATCTGAC	CCACCTTTGGCCTTTCTAATATCTGAT	AGCAGCCCTATGGTAATGGC	30
72_uni	UniGenes	2DS_5343763	21	2	-	D_comp713_c0_seq1:154	GCGAGGAAGGTTTACCGTTC	GCGAGGAAGGTTTACCGTTT	AGGATTGCCATTTTGCGAC	35
10iS	iSelect	1BS_3467454	22	1	-	BS00022234	TCTACGATAGCCCAACCCAC	TCTACGATAGCCCAACCCAT	CGAATGCCAGCCAGGTTCTA	35

A2.11: Details of KASP assays for markers within group B in coarse mapping using the 2D RIL population.

Marker	2D RIL group	Source	IWGSC contig	BS code/ gene model	$\begin{gathered} \text { FAM primer } \\ (\text { GAAGGTGACCAAGTTCATGCT) }+ \end{gathered}$	VIC primer (GAAGGTCGGAGTCAACGGATT) +	Common primer	$\begin{array}{\|l\|} \hline \text { Optimal } \\ \text { cycle } \\ \text { number } \end{array}$
BFR_11_7BS	C	$\checkmark 3.3 \mathrm{cDNAs}$	7BS_3121441	mrna084023	TACGTCGGGAGCCTGGAC	TACGTCGGGAGCCTGGAT	CGTGCAATTCGAGCGGAGA	30
91i_7BS	C	iSelect	7BS_3095060	BS00158894	ACCTCGGCATCATCTAGTAGC	ACCTCGGCATCATCTAGTAGT	CAGCATGAGGATTAGTCTGTTGG	35
92i_7BS	C	iSelect	7BS_3153065	BS00157057	TCTGAAGAAGCAGCTCATCATC	TCTGAAGAAGCAGCTCATCATT	CCGAAGTTGAAGATGGTGAACTTG	35
89i_7BS	C	iSelect	7BS_2854988	BS00182691	TGTGGCTCGAGAACTTGTCG	TGTGGCTCGAGAACTTGTCA	GTCTGTAGAAGCCGACACCT	35
90i_7BS	C	iSelect	7BS_3032904	BS00178201	TGAAACGAGTGAA TTCAGATGAGC	TGAAACGAGTGAATTCAGATGAGT	CGTGGTTCAGCATCTTGTCT	35
14i_7BS	C	iSelect	7BS_196497	BS00138407	CCCTCAACCTCCGCTCCG	СССТСАAССTCCGCTCCA	CGTCAGAACCACGTGACAG	35
15i_7BS	C	iSelect	7BS_3032904	BS00079019	TGTTAACTTGAACTGGTCCGC	TGTTAACTTGAACTGGTCCGT	GTGCCAATTGAATTTGGGCG	35
17i_7BS	C	iSelect	7BS_3089157	BS00139230	AGCTAAACTGGTTCGGGCTG	AGCTAAACTGGTTCGGGCTC	TCACTGGCAGCAGATTTCCA	35
50i_5B	C	iSelect	5B	BS00035631	CTTCTCGCTCAAAACCACGCAAT	CTTCTCGCTCAAAACCACGCAAC	CGGCCGGAGAGGGTCGCTT	35
BFR_44	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5247752	mrna034307	GGTAACCAAACCTTTTAGATGTGCC	GGTAACCAAACCTTTTAGATGTGCT	AAATGCTGCGACCCCAGC	30
BFR_34	A	$\checkmark 3.3$ cDNAs	2AS_2899441	mrna071136	ACATTTGCAACAGTTGATAAATCCG	ACATTTGCAACAGTTGATAAATCCA	GCAGGTTGGAGTATGTATAGACAAC	30
BFR_3	A	$\checkmark 3.3 \mathrm{cDNAs}$	2DS_5390412	mrna083050	GTTGTTCAGGATGCCAAGCA	GTTGTTCAGGATGCCAAGCG	CCATGCAAATTGGACACCGA	30
BFR_28	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5223115	mrna003675	GGAAGCCATCAGTTATGAAGATTTC	GGAAGCCATCAGTTATGAAGATTTG	CAGCTCGAGTGAAGGCCATG	30
BFR_31	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5188575	mrna041371	GCCGGGAAGGTGAACAGT	GCCGGGAAGGTGAACAGC	TCCTTGAGCACGAGCCGC	30
BFR_38	A	$\checkmark 3.3$ cDNAs	2AS_5264433	mrna120229	CGCTTCAGAAAACAACACCA	CGCTTCAGAAAACAACACCG	CGCTGCCTATCACGAAGACT	30
BFR_35	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5265661	mrna083051	GTTGTTCAGGATGCCAAGCA	GTTGTTCAGGATGCCAAGCG	CCATGCAAATTGGACACCGA	30
BFR_41	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5265661	mrna035372	AGTAGGACCCGACGTAAGATAA	AGTAGGACCCGACGTAAGATAG	GGTCATGTAATGGCAAAAGGC	30
BFR_42	A	$\checkmark 3.3$ cDNAs	2AS_5265661	mrna035372	CAGTGGGCAGTTTGTAGGATTA	CAGTGGGCAGTTTGTAGGATTG	AGTCCATGGTCTTCTTGAAATCA	30
BFR_47	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5207752	mrna070131	CAGCAGAGAAGCTTCAGCG	CAGCAGAGAAGCTTCAGCA	TCATCCTTCTTTGGGCCAC	30
BFR_49	A	$\checkmark 3.3 \mathrm{cDNAs}$	2AS_5264433	mrna051701	GCACCTGTACTTGCCGTCA	GCACCTGTACTTGCCGTCG	CGAAGAGGCTGTGGAGTTT	30
BFR_4	A	$\checkmark 3.3$ cDNAs	2AS_5237913	mrna098108	GACAAGTATGACAGGCCAAGT	GACAAGTATGACAGGCCAAGC	GGCGATATGAACTGTCATCCT	30

A2.12: Details of KASP assays for markers outside group B in coarse mapping using the 2D RIL population.

A2.13: R script used for identifying differentially expressed genes.

```
####R Script for RPKM analysis
##Two key steps
##1) rounding for RPKM cutoff of 0.1 and Log 2 transformation
##2) identify DEGs using a 1.5-fold difference
####
##Ania Kowalski
##Updated July 2015
####
rm(list=ls()) ###clears any previous workspace/data
##reading in data
##UNIGENES FIRST
setwd("E:/PhD/RNA Seq/RPKM")
uni.r<-read.csv("unigenes_raw.csv",as.is=T)
\#\#\#\#\#\#\#\#\#\#\#\#
\#\#searching for unigenes with 1.5 -fold expression difference or higher
\#\#first need to filter out the lowly expressed genes, where a two-fold difference
\#\#will be occurring even at low expression - use anything under 0.1.
\#\#This is the most conservative threshold identified by Warden et al., 2013.
\#\#then log transform the data to avoid division by zeros
\#\#need to keep the zero expression unigenes for the comparison, \#\#because zero expression in one dataset could be highly expressed in the other. \#\#therefore change the zeros to a small number.
\#\#can use histograms to check the distribution of the expression of genes, which should be normal
\#\#selecting data, filter for expression higher than 0.1 in either of the parent columns uni.sel<-((uni.r["CD_S"]>0.1)\&(uni.r["RIL4_S"]>0.1)) \#\#vertical line is 'or' symbol \#\#subsetting data based on the selection criteria from above uni.subset<-uni.r[uni.sel,]
\#\#Writing a for loop for log transformation because logs of multiple columns doesn't work
```

```
uni.log<-uni.subset
```

uni.log<-uni.subset
for (i in 19:22)
for (i in 19:22)
uni.log[,i]<-log2(uni.subset[,i])
uni.log[,i]<-log2(uni.subset[,i])
\#\#writing csv as log2 values
\#\#writing csv as log2 values
write.csv(uni.log, file="E:/PhD/RNA Seq/RPKM/log2_uni.csv")
write.csv(uni.log, file="E:/PhD/RNA Seq/RPKM/log2_uni.csv")
\#\#selecting for higher than 1.5 fold expression
\#\#selecting for higher than 1.5 fold expression
\#\#subtract rather than divide because we have logs
\#\#subtract rather than divide because we have logs
\#
\#
\#\#differences between parents have 1.5-fold difference
\#\#differences between parents have 1.5-fold difference
\#\#this is logs so this is fold difference
\#\#this is logs so this is fold difference
uni.exP<-abs(uni.log[,"CD_S"]-uni.log[,"RIL4_S"])>1.5
uni.exP<-abs(uni.log[,"CD_S"]-uni.log[,"RIL4_S"])>1.5
sum(uni.exp,na.rm=T) \#1735 with threshold 1.5
sum(uni.exp,na.rm=T) \#1735 with threshold 1.5
\#exporting the data into a spreadsheet
\#exporting the data into a spreadsheet
write.csv(uni.log[uni.exp,], file="E:/PhD/RNA Seq/RPKM/log2_15fold_uni.csv")
write.csv(uni.log[uni.exp,], file="E:/PhD/RNA Seq/RPKM/log2_15fold_uni.csv")
deg<-read.csv("log2_15fold_uni_labelled.csv",as.is=T)
deg<-read.csv("log2_15fold_uni_labelled.csv",as.is=T)
\#\#GRAPHING
\#\#GRAPHING
library("ggplot2")
library("ggplot2")
library(reshape2)

```
library(reshape2)
```

deg\$category<-factor(deg\$category, levels=c("all","2DS","2BS","2AS"), labels=c("rest of genome","2DS", "2BS","2AS"))
degs<-
ggplot(data=deg,aes(x=RIL4_S, y=CD_S, colour=category, shape=category)) +
geom_point(aes(size=category, alpha=category)) +
xlab("Short NIL") +
ylab("Tall NIL") +
coord_cartesian(ylim = c(-4, 8), xlim=c(-4,8)) +
scale_shape_manual(values=c(21,19,17,15),
breaks = c("rest of genome","2DS", "2BS","2AS"),
labels = c("rest of genome","2DS", "2BS","2AS")) +
scale_colour_manual(values=c("\#009E73","black","red","blue"),
breaks = c("rest of genome","2DS", "2BS","2AS"),
labels = c("rest of genome","2DS", "2BS","2AS")) +
scale_size_manual(values=c(3,7,5,5)) +
scale_alpha_manual(values=c(0.7,1,1,1)) +
theme(panel.grid.minor.x=element_blank(), panel.grid.major.x=element_blank(),
axis.title.y=element_text(vjust=1.5),
plot.title = element_text(lineheight=.4, face="bold"),
axis.title = element_text(size=28, face="bold", colour="black"),
axis.text.y = element_text(size=24, colour="black"),
axis.text. $x=$ element_text(vjust $=0.5$, size $=24$,colour="black"),
\#strip.text.y=element_text(size =26, face="bold"),
\#strip.background=element_rect(colour = "black"),
legend.text= element_text(size = 24),
legend.title=element_blank(),
legend.direction = "horizontal",
legend.position=c(0.5,0.95)) +
guides(fill=guide_legend(title=NULL))
\#\#plotting
png("unigenes_exp.png", width=3000, height=3000, res=300)
plot(degs)
dev.off()
\#\#v3.3 cDNAs, with same parameters, but overlap between the same expression in parent NILs and bulks.
setwd("E:/PhD/RNA Seq/RPKM")
cdna<-read.csv("RPKM_cDNA_bowtie.csv",as.is=T)

\#\#\#\#\#\#\#\#\#\#\#\#

\#\#selecting data, filter for expression higher than 0.1 in either of the parent columns cdna.sel<-
((cdna["bowtie2_S24_RIL4_Spike_short"]>0.1)\&(cdna["bowtie2_S13_CD_Spike_tall"]>0.1)\&(cd na["bowtie2_S246_bulk_Spike_tall"]>0.1)\&(cdna["bowtie2_S135_bulk_Spike_short"]>0.1)) \#\#vertical line is 'or' symbol
\#\#subsetting data based on the selection criteria from abovebowtie2_S135_bulk_Spike_short cdna.subset<-cdna[cdna.sel,]
\#\#Writing a for loop for log transformation because logs of multiple columns doesn't work
cdna.log<-cdna.subset
for (i in 4:7)
cdna. $\log [, \mathrm{i}]<-\log 2(c d n a . s u b s e t[, i])$
\#\#writing csv as log2 values
write.csv(cdna.log, file="E:/PhD/RNA Seq/RPKM/log2_cdna.csv")
\#\#selecting for higher than 1.5 fold expression
\#\#subtract rather than divide because we have logs
\#
\#\#differences between parents and bulks have 1.5 -fold difference
\#\#this is logs so this is fold difference
cdna.exP<-(abs(cdna.log[,"bowtie2_S24_RIL4_Spike_short"]-
cdna.log[,"bowtie2_S13_CD_Spike_tall"])>1.5)\&(abs(cdna.log[,"bowtie2_S135_bulk_Spike_sho rt"]-cdna.log[,"bowtie2_S246_bulk_Spike_tall"])>1.5)
sum(cdna.exp,na.rm=T) \#278 with threshold 1.5 common to both datasets
\#exporting the data into a spreadsheet
write.csv(cdna.log[cdna.exp,], file="E:/PhD/RNA
Seq/RPKM/log2_15fold_cdna_parent_bulk.csv")
\#\#\#expression skew is same way i.e. upreg in short across both or downregulated in short across both
common<-read.csv("log2_15fold_cdna_parent_bulk.csv",as.is=T)
cdna.skew<-
(((common[,"bowtie2_S24_RIL4_Spike_short"]>common[,"bowtie2_S13_CD_Spike_tall"])\&(co mmon[,"bowtie2_S135_bulk_Spike_short"]>common[,"bowtie2_S246_bulk_Spike_tall"]))|((com mon[,"bowtie2_S24_RIL4_Spike_short"]<common[,"bowtie2_S13_CD_Spike_tall"])\&(common[," bowtie2_S135_bulk_Spike_short"]<common[,"bowtie2_S246_bulk_Spike_tall"]))) sum(cdna.skew)
\#\#only 20 DEGs identified with skew in same direction across parent NIL and bulk write.csv(common[cdna.skew,], file="E:/PhD/RNA
Seq/RPKM/log2_15fold_cdna_bias_parent_tall.csv")

Appendix to Chapter 3

	Reading			Lleida		
Spikes/m	$2014(\mathrm{~N} 1)$	$2014(\mathrm{~N} 2)$	$2014(\mathrm{~N} 3)$	2013	2014	
par	417	419	475	717	411	
Rht8	300	391	383	738	516	
tall	377	403	487	626	500	
P-value	${ }^{* * *}$				NS	
L.S.D.	66.0			187		
Rht8 (\% of tall)	80	97	79	118	103	
difference (\%)	$\mathbf{- 2 0}$	$\mathbf{- 3}$	$\mathbf{- 2 1}$	$\mathbf{1 8}$	$\mathbf{3}$	

A3.1: Yield components. Data shown as mean values. $\mathrm{N} 1=40 \mathrm{~kg} \mathrm{~N} \mathrm{ha}^{-1}, \mathrm{~N} 2=100$ kg N ha ${ }^{-1}$, $\mathrm{N} 3=200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}, \mathrm{I}=$ irrigated, $\mathrm{UI}=$ unirrigated (rainfed). UI is only indicated where there was a contrasting irrigation regime. The p-value refers to significant differences in height between genotypes within each experiment determined by the least significant difference (L.S.D.) test. * $\mathrm{P}<0.05$, ${ }^{* *} \mathrm{P}<0.01$, *** $\mathrm{P}<0.001$.

Grain length (mm)	Church Farm									Reading		
	2012	2013 (N3)	2013 (N2)	2013 (UI)	2013 (I)	2014 (N3 UI)	2014 (N3 I)	2014 (N1)	2014 (N2)	2014 (N1)	2014 (N2)	2014 (N3)
par	6.20	6.74	6.71	6.63	6.76	6.92	6.80	6.757	6.956	6.81	6.84	6.78
Rht8	6.17	6.89	6.85	6.66	6.82	6.97	6.87	6.843	6.959	6.84	6.71	6.89
tall	6.20	6.82	6.82	6.79	6.89	7.05	6.87	6.819	7.042	6.90	6.85	6.90
P-value	NS		**	NS		NS			NS		*	
L.S.D.	0.15		04	0.1		0.1			16		0.09	
Rht8 (\% of tall)	99	101	100	98	99	99	100	100	99	99	98	100
difference (\%)	-1	1	0	-2	-1	-1	0	0	-1	-1	-2	0
					Church	Farm					Reading	
Grain width (mm)	2012	2013 (N3)	2013 (N2)	2013 (UI)	2013 (I)	2014 (N3 UI)	2014 (N3 I)	2014 (N1)	2014 (N2)	2014 (N1)	2014 (N2)	2014 (N3)
par	3.37	3.71	3.68	3.58	3.83	4.00	3.82	3.82	4.07	3.94	3.87	3.91
Rht8	3.30	3.79	3.79	3.55	3.87	4.03	3.84	3.81	3.95	3.87	3.90	3.94
tall	3.20	3.71	3.65	3.60	3.85	4.03	3.74	3.79	4.02	3.90	3.87	3.86
P-value	**		*	NS		NS			NS		NS	
L.S.D.	0.08		08	0.1		0.1			14		0.11	
Rht8 (\% of tall)	103	102	104	99	101	100	103	101	98	99	101	102
difference (\%)	3	2	4	-1	1	0	3	1	-2	-1	1	2
					Church	Farm					Reading	
Spikelets spike ${ }^{-1}$	2012	2013 (N3)	2013 (N2)	2013 (UI)	2013 (I)	2014 (N3 UI)	2014 (N3 I)	2014 (N1)	2014 (N2)	2014 (N1)	2014 (N2)	2014 (N3)
par	24.11	23.11	20.94	22.83	22.61	24.33	23.22	23.00	23.11	23.56	23.22	22.89
Rht8	25.00	23.00	20.89	23.22	22.78	23.44	25.44	22.11	22.56	24.89	23.22	23.56
tall	23.89	22.22	21	22.22	23.33	23.11	22.89	22.00	22.67	22.89	23.33	22.67
P-value	NS		S	NS		NS			NS		NS	
L.S.D.	1.02		46	1.5		2.1			00		1.69	
Rht8 (\% of tall)	105	104	99	105	98	101	111	101	100	109	100	104
difference (\%)	5	4	-1	5	-2	1	11	0	0	9	0	4

A3.1 (continued)

RCBD with three replicates
RCBD with three replicates
Two-way ANOVA with randomised blocks
Lleida 2013 \& 2014
Design:
Analysis:

ANOVA	Yield (t DM/ha)			TGW (g)		Height (cm)			Grains/m ${ }^{2}$			Grains/spike			Harvest index			Spikes/m ${ }^{2}$		
	d.f. F-test p -value			F-test	p-value	F-test	p-value		F-test	p -value										
year	1	4.32	0.401	62.25	0.007	1.95	0.235		0.75	0.059		0.75	0.436		7.86	0.145		16.67	0.0150.481	
allele	2	3.91	0.072	6.53	0.024	20.78	<. 001		0.53	0.103		0.53	0.607		1.55			0.63		
year.allele	2	0.17	0.856	0.07	0.933	16.31	0.002		2.7	0.741		2.7	0.127		2.67	0.2230.098		0.95	0.348	
Means	par	rht8	tall	par	rht8 tall	par	rht8	tall												
2013	6.78	8.06	7.35	33.49	33.4430 .90	111.0	93.3	119.0	20241	24175	23711	28.6	33.2	39.0	0.32	0.36	0.35	717	738	626
2014	6.27	7.35	6.35	38.28	$37.99 \quad 36.03$	119.0	114.7	115.3	16365	19328	17596	40.3	37.7	36.2	0.38	0.37	0.36	411	516	500
mea	an S.E.D.	0.943			1.30		6.6			2504			6.3			0.02			86	
L.S.D. ${ }^{\text {y }}$	year.allele	2.202			2.88		16.7			5610			14.5			0.04			187	
	alleele	1.458			2.51		7.1			4643			10.2			0.04			187	

A3.2: ANOVA and experimental details of Lleida data. Shaded values are significant at the 95% confidence level.
RCBD with three replicates
RCBD with three replicates
One-way ANOVA with randomised blocks
Church Farm 2012
Design:
Analysis:
Site:
Yield components

[^0]A3.3: ANOVA and experimental details of Church Farm 2012 data. Shaded values are significant at the 95% confidence level.
Design: RCBD with three replicates per N treatment (100 and $200 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$)
Analysis: Two-way ANOVA with randomised blocks
Site: Church Farm 2013
Church Farm 2013
Yield components

ANOVA	Yield (t DM/ha)			TGW (g)			Grains/m ${ }^{2}$			Spikelets/ear		Grain area (mm^{2})		Grain width (mm)			Grain length (mm)			Harvest index		
	d.f.	F-test	p-value	F-test	p-value		F-test	p -value		F-test	p-value	F-test	p -value	$\begin{gathered} \hline \text { F-test } \\ 7.56 \end{gathered}$	p-value		$\begin{gathered} \hline \text { F-test } \\ 1.21 \end{gathered}$	p -val		F-test	p-value	
N treatment	1	0.12	0.745	4.11	0.113		0.35	0.585		11.67	0.027	O.8610.13	0.4070.006		0.0610.021			0.333			0.0150.007	
allele	2	5.42	0.032	6.01			10.59			0.24	0.791			6.57			37.48			16.47 9.89		
N treatment.allele	2	0.15	0.866	0.2	0.826		0.32	0.737		0.35	0.716	0.02	0.981	0.45	0.653		0.69	0.528		0.41	0.68	
Means	par	rht8	tall	par		$\begin{gathered} \text { tall } \\ 44.05 \end{gathered}$		$\begin{gathered} \text { rht8 } \\ 17314 \end{gathered}$	$\begin{array}{cc} 8 & \text { tall } \\ 4 & 19484 \\ 35 & 18550 \\ \hline \end{array}$	$\begin{array}{r} \text { par } \\ 20.94 \\ 23.11 \\ \hline \end{array}$	$\begin{array}{rr} \text { rht8 } & \text { tall } \\ 20.89 & 21.00 \\ 23.00 & 22.22 \\ \hline \end{array}$	$\begin{gathered} \text { par } \\ 20.26 \\ 20.30 \\ \hline \end{gathered}$	rht8 tall 21.0720 .49 21.1520 .60	$\begin{array}{r} \text { par } \\ 3.68 \\ 3.71 \\ \hline \end{array}$	$\begin{aligned} & \text { rht8 } \\ & 3.79 \\ & 3.79 \end{aligned}$	$\begin{array}{r} \text { tall } \\ 3.65 \\ 3.71 \\ \hline \end{array}$	$\begin{array}{r} \text { par } \\ 6.71 \\ 6.74 \\ \hline \end{array}$	rht8 6.85 6.89 6	$\begin{array}{r} \text { tall } \\ \hline 6.82 \\ 6.82 \\ \hline \end{array}$	$\begin{array}{r} \text { par } \\ 0.66 \\ 0.63 \\ \hline \end{array}$	rht8 tall 0.660 .65 0.650 .62	
	8.80	8.08	8.59	44.33																		
N3	8.74	8.05	8.35	44.52	46.90	45.06	19671	17185														
mean S.E.D.	0.40			0.92			959			0.91		0.23		0.04			0.03			0.008		
L.S.D. allele	0.50			1.79			1296			1.46		0.43		0.08			0.04			0.016		

Height components																		
ANOVA	Height of plots (cm)			Height of tiller (cm)			Ear length (cm)			Peduncle (cm)			Internode-1 (cm)			Internode-2 (cm)		
	d.f.	F-test	p-value	F-test	p -value		F-test	p -value		F-test	p -value		F-test			F-test		
N treatment	1	9.39	0.038	2.38	0.198		0.19	0.689		8.62	0.043		2.9	p-value		9.410.6	0.037	
allele	2	58.96	<. 001	71.45	<. 001		25.03	<. 001		85.8	<. 001		17.810.38	0.698			0.006	
N treatment.allele	2	0.52	0.616	2.19			0.15			2.55						1.23	0.341	
Means	par	rht8	tall															
N2	103.7	94.3	107.3	102.2	92.1	104.7	10.7	8.8	10.7	40.9	36.8	44.0	22.0	20.7	23.0	14.7	12.6	14.1
N3	107.7	98.3	113.7	103.2	94.1	110.7	10.6	8.8	10.4	39.2	36.4	41.6	22.8	21.4	24.5	15.7	13.7	16.6
mean S.E.D.		2.2			2.4			0.4			0.8			0.8			0.8	
L.S.D. allele		3.2			2.9			0.7			1.1			1.1			1.2	
Developmental traits																		
ANOVA	Heading (${ }^{\circ} \mathrm{Cd}$)			Anthesis (${ }^{\circ} \mathrm{Cd}$)														
	d.f. F-test p -value			F-test p-value														
N treatment	1	2.57	0.184	4.22	0.109													
allele	2	4.97	0.039	6.69	0.02													
N treatment.allele	2	1	0.41	0.58	0.583													
Means	par	rht8	tall	par	rht8 tall													
N2N3	1498	1505	1515	1581	15921608													
	1471	1493	1488	1564	$1574 \quad 1579$													
mean S.E.D.		15		12														
L.S.D. allele		13		13														

A3.4: ANOVA and experimental details of Church Farm 2013 Nitrogen experiment. Shaded values are significant at the 95% confidence level. $\mathrm{N} 2 / \mathrm{N} 3=100 / 200 \mathrm{~kg} \mathrm{~N} \mathrm{ha}{ }^{-1}$.

A3.5: ANOVA and experiment. Shaded values are significant at the 95% confidence level.
Design: RCBD with three replicates per N treatment (40,100 and 200 kg NHa)
Analysis: Two-way ANOVA with randomised blocks
Site: Church Farm 2014 Yield components

A3.6: ANOVA and experiment. Shaded values are significant at the 95% confidence level.

A3.7: ANOVA and experimental details of Church Farm 2014 Nitrogen and Irrigation experiment. Shaded values are significant at the 95% confidence level.
Design: Split-plot with $\mathrm{N}(40,100$ and $200 \mathrm{~kg} \mathrm{N/Ha)} \mathrm{as} \mathrm{the} \mathrm{whole} \mathrm{plot} \mathrm{treatment} \mathrm{and} \mathrm{allele} \mathrm{as} \mathrm{the} \mathrm{sub-plot} ,\mathrm{with} \mathrm{five} \mathrm{replicates}$.
Analysis: Split-Plot ANOVA with N^{*} allele as treatment structure Site: Sonningham, Reading 2014 $\frac{\text { Yield components }}{\text { ANOVA }}$

ANOVA	Yield (t DM/ha)			TGW (g)			Grains $/ \mathrm{m}^{2}$			Spikelets/ear			Grain area (mm^{2})			Grain width (mm)		Grain length (mm)			Harvest index			Infertile spikelets			Spikes/m ${ }^{2}$	
	d.f.	F-test	p -value	F-test	p -value		F-test	p -value		F-test	p-value		F-test	p -value		F-test	p -value	F-test	p -value		F-test	p -valu		F-test	p -value		F-test	p -value
treatment	2	302.3	<. 001	0	0.997		263.4	<. 001		1.1	0.415		1.2	0.391		0.98	0.451	2.52	0.195		3.11	0.153		24.25	0.006		6.81	0.019
allele	2	3.88	0.035	3.91	0.034		4	0.032		2.55	0.1190.416		0.51			0.54	0.598	7.03	0.0		3.42	0.0		1.42	0.280.068		13.94	0.103
treatment.allele	4	3.35	0.026	1.5			3.89		. 14	1.06			1.73	0.209		0.67	0.623	5.04	0.013		0.86	0.514		2.9			2.17	
Means	par	rht8	tall	par	rhts tall	par	rht8	tall	par	rht8	tall	par	rht8	tall	par	rht8 tall												
N1	5.70	5.72	5.47	48.96	48.56	50.48	11640	11770	10837	23.56	24.89	22.89	21.59	21.52	21.83	3.94	3.873 .90	6.81	6.84	6.90	0.44	0.41	0.45	4.11	2.67	3.89	417.3	300.0377 .3
N2	7.25	6.97	7.39	48.48	50.00	49.60	14964	13955	14908	23.22	23.22	23.33	21.50	21.14	21.53	3.87	3.903 .87	6.84	6.71	6.85	0.43	0.42	0.42	3.33	3.78	3.33	418.7	390.7403 .3
N3	9.16	8.75	9.22	48.96	49.20	49.84	18709	17775	18496	22.89	23.56	22.67	21.42	21.99	21.64	3.91	3.943 .86	6.78	6.89	6.90	0.42	0.41	0.42	2.89	2.56	2.22	475.3	383.3486 .7
mean S.E.D.		0.19			0.72			428			0.79			0.31			0.05		0.04			0.01			0.41			32.0
L.S.D.		0.39			1.46			883			1.69			0.67			0.11		0.09			0.03			0.88			66.0

A3.8: ANOVA and experimental details of Reading data. Shaded values are significant at the 95% confidence level.

Appendix to Chapter 4

Site: Church Farm 2014
Design: RCBD, 3 replicates per $\mathrm{N}(40$ and $200 \mathrm{~kg} \mathrm{~N} / \mathrm{Ha})$ and water treatment
Analysis: Mixed model: N^{*} water*allele

A4.1: ANOVA and experimental details of Church Farm 2012-2013 height and spike compaction data. Shaded values are significant at the 95% confidence level.
Site: Church Farm 2014
Design: RCBD, 3 replicates
Design: RCBD, 3 replicates per $\mathrm{N}(40$ and $200 \mathrm{~kg} \mathrm{~N} / \mathrm{Ha}$) and water treatment
Analysis: Mixed model: N^{*} water*allele

A4.2: ANOVA and experimental details of Church Farm 2014 height and spike compaction data. Shaded values are significant at the 95% confidence level.
troz бuрреәу 'шечбйииоя :ә!!

A4.3: ANOVA and experimental details of Reading height and spike compaction data. Shaded values are significant at the 95% confidence level.

ANOVA	Spike compaction (cm spikelet ${ }^{-1}$)		Spike length (cm)		Spikelets spike ${ }^{-1}$	
d.f.	F-test	p-value	F-test	p-value	F-test	p-value
allele 1	1.08	0.305	0.45	0.505	3.09	0.087
Means	short	tall	short	tall	short	tall
	1.55	1.71	3.15	3.35	20.41	19.67
mean S.E.D.	0.15		0.30		0.42	
L.S.D.	0.30		0.60		0.86	

A4.4: ANOVA for spike compaction in the fine-mapping Rht8 recombinants, grouped into short and tall types.

Appendix to Chapter 5

A5.1:

SNP probes across the entire iSelect 90K array were mapped in two ways. First, in the Avalon \times Cadenza population and later, using the genetic positions from the Akhunov genetic map, named after the author (Krasileva et al., 2013). These probes had a genetic position in the array. SNPs between the parent NILs within the mapped probes are shown. Of the total 81,587 SNPs on the array, 9360 SNP probes had a genetic position in the AxC map. A total of 38,832 had a genetic position in the Akhunov map. Redundant SNP probes at the same genetic position and with the same allele call were removed. Probes coloured black have no polymorphism between the parent NILs. Probes coloured green are a polymorphism based on one of the parent NILs having a heterozygous call, 'AB' (described in the text in 5.3.4). Probes coloured red and italicised are more confident SNPs where the short parent NIL had a different (homozygous) call to the tall NIL.

1A AxC

1B AxC

[BS00022020_5
BS00022180_5
BS00067201_51
Excalibur_c21898_1423
BS00110121_51
BS00062605-51
tplb0036123 $\overline{2} 43$
BS00012068_51
IACX502
D_contig25392_201

- GENE-3653 580

BS00067043̄ 51

- BS00067043_51

GENE-0004_125
BS00065889 51
BSO006588
IACX1776
IACX1776
BS00087451_51
BS00069610_51
BS00074034_51
RAC875_c2257_728
wsnp_Ku_c4911_8795151
TA001559-0515
BS00070283 51
Excalibur_c20863_179
RAC875_c10659_1539
Kukri c18052_356
IAAV 3666
BS00062632 51
BSO0062632_51
Excalibur_c13573_230
wsnp_Ex_c3016_5573603 BSOO042054_51 - Tdurum_contig28305_106 BobWhite_c11235_370
BobWhite_rep c66032 270
Excalibur c7035 155
tplb0024i15 1754
GENE-0107 807
JD_c3116_778
BobWhite_c20015 300
BobWhite_c20015_300
Excalibur_c48379_116
Excalibur_c48379-116
RAC875 c2936 5114
[RAC875_c2936_5
BS00066007_51
Excalibur_c40808_585
BS00066278_51

- wsnp_Ex_c15611_23929128
- Tdurum_contig57101_1616

Kukri_rep_c115898_504
(BS00062724_51
BS00067627_51
BS00042244_51
RAC875_c31031_387
BS00067024 51

- Excalibur_c581_1220

Excalibur_c581_947

- Excalibur_c581_947

RAC875_c291_6
BS00110435_51
CAP11_rep_c7035_189
Tdurum_contig57927_460
Tdurum_contig57927_171
BS00087544_51
BS00065257-51
BS00022176-51
Kukri c44191 452
Ex c$\overline{2} 57333 \overline{4} 8$
RFL_Contig16_132

- wsnp Ex_c23598_32826926
wsnp_Ex_c23598
BS00064052_51
BSO000774
IACX5803
wsnp_JD_c14411
CAP8_c50 43 _190
tplb0034p10_1134
Tdurum_contig75731_537
BS00077831_51
Kukri c36758_140
GENE-0129 123
GENE-0208-688
BobWhite_c9091_160
Excalibur_c7684_54
Excalibur_c7684
CAP12_c1085_283
CAP12_c1085_283
- BS00065694 $\overline{5} 1$
wsnp_Ex_c649_1279852
Ra_c 109187 _3 $\overline{7} 1$
BS000063686_51
IAAV6133
wsnp_Ex_c1597_3045682
RFL_Contig2550_679
RAC875_c6537_2196

1D AxC
(RAC875_c52947_338 wsnp_Ex_c48407_53323801 wsnp_Ex_c48407_53323483 BS00075271_51
Kukri c9387_112
Kukri_c9387_-112
BS00011913-51
Kukri c15691 151
Kukri_c15691_151
BobWhite_c14363_480
BobWhite_c14363_480
RAC875_c68927_95
RAC875_c68927_95
BobWhite_c10251_382
BS00111218_51
D_GDRF1KQ02G917G_247
wsnp_Ex_c35886_43949442
CAP11_c1701 $32 \overline{4}$
BS00063907_51
GENE-0524_302
IAAV7473
BobWhite_c6998_365
BobWhite
D contig14507 369
D D_contig14507_3
RAC875_rep_c105196_532
BS00110144-51
EL wsnp_BE424-100D_Ta_1_1

- IACX-11283

Excalibur_c54055_694
BS00068256_51
RAC875_rep_c69777_101
CAP7_c1609_203
wsnp_Ex_c6974_12025571

- WSnp Ex Ex_c6974_
- wsnp_BE405834B_Ta_2_3
- wsnp_BE405834B_Ta_2

CAP11_rep_c6465_98
Kukri_c19257_78
CAP7 c973_156
CAP7_C973-GB7FA1369B_378
CAPB_c2401_433
RFL_Contig1338_2062
Excalibur_c44711_453
BS000296009_51
Excalibur_c15692_532
RFL_Contig5639_1168
Kukri_c8390_712
Kukri_c8390_712

A5.1 (continued)

2A AxC

BobWhite_c48552_673
BobWhite_c22714_132
Excalibur_c34600_292
Excalibur_rep_c67619_217
Kukri_c22152_1059
tplb0032i02_14335
BSO0068050 51
BSO0022252 51
Tdurum contig66353 358
Excalibur_c24764_305
Excalibur_c33560_256
Excalibur_c58231 273
BS00027799 51
Kukri c36985 104
BS000049816_51
RAC875_rep_c102485_606
BSO0062869 51
IAAV7287
BS00072914 51
Tdurum_contig50839_593
BobWhite_c25784_83
BS00095525_51

BS00030136 51
Excalibur_c200439_825
CAP12_c575_105
Tdurum_contig61938_424
BobWhite_c15773_166
BS00066409_51
BobWhite_c17113_240
BSOOO25880_51
Excalibur_c7241_284
Kukri_c209_999
BobWhite_c31163_694
BS00000209_51
Excalibur_c24715_276
IACX5800

- Tdurum_contig93508_295

BS00065366 51
wsnp_Ku_c33̄884_43306422
BSOO 065808851
wsnp_Ex_c11827_18986376
Excalibur_rep_c102310_1429
Tdurum_contiḡ33398_10̄
BobWhite_c16923_64
Kukri_c11327_977
BobWhite_c2 3 362_393
Ex_c10320_444
wsnp_Ex_rep_c101526_86881496
IACX 5910
Excalibur_c23681_317
TA004602-1630
Ra_c37244-428
RAC̄875_c17787_274
BS00001107_51
wsnp_Ku_c155567_24224486
BSO0022013_51
BSOO044274-51
Ra_c10616_265
Bob̄White_c18852_91
wsnp_Ex_c5412_9564346
Tdurum _contig34009_364
Kukri c46426 338
BS00076693_51
BobWhite_c48481_81
Kukri_c337̄79_1069
BSOOŌ67342 51
Tdurum_contig29563_183
RFL_Contig1863_250

2B AxC
2D AxC

A5.1 (continued)

4A AxC

4B AxC
Ex_c864_653
wsnp_Ex_c14478_22481430
BS00092244 51
wsnp_Ra_c14920_23225219
Ex_c7626_444
RAC875_c1377_428
IAAV855
wsnp_Ex_c22913_32130617
Ex_c7227 53
BS00089283_51
wsnp_Ex_c20386_29451037
Kukri_c 74409 _199
RAC875_c754_120
Kukri c6221_742
BobWhite_c7235_365
wsnp_Ex_c13105_20721321
GENE-2621_193
Ex_c53906_571
wsñp_Ku_c̄5197_52288542
IAAV8947
Ra_c15433 622
Ra_c3111_1623
Excalibur_c 539 _1253
wsnp Ex c539 1072859
Excalibur_c58393_329
BobWhite_c20909_243
BobWhite c9660 938
wsnp_Ku_c1205_2398925
Ra_c1082 1100

BS00021701_51
Kukri_c27874_515
BSO0037019_51
Jagger_c4331 _105
BS00023151_51
Excalibur_c44194_192
RAC875_c17918_321
Ra_c49035_206
Excalibur_c30378_673
RAC875_c34231_812
BS00108849 51
Kukri_c63460-739
wsnp_Ex_c27294_36502333
Excalibur_rep_c114451_411
Tdurum_contig22511_355
Excalibur_c5624_1026
RAC875_c88582_131
wsnp_Ra_rep_c70233_67968353
BS00059503 51
Kukri_c48943̄_1149
wsnp Ex_c2352 4405961
BS00066066_51
Kukri c3948-209
RFL_Contig4095_1201
RAC875 c40654 206
BS00066041_51
BS00039641-51
GENE-0689 $\mathbf{6} 58$
BS00047220_51
BS00067903 51
Kukri_c79627_749
CAP7 c254 486
BS00108169 51
wsnp_Ku_c200949_30631810
BobWhite_c47168_598
Excalibur c2827 286
wsnp_Ex_c16369̄24860698
Kukri_c5033_1815
BS00063708 51
BobWhite_c38832_153
BS00067078_51
BS00063433-51
Excalibur_c37807 390
Tdurum_contig46583_958
IAAV2678

A5.1 (continued)

5A AxC

[BobWhite_c31599_604 BS00067606 51
BobWhite_c23992_300 Excalibur_rep c104815 1181
BS00064188_51
IAAV2776
BS00066403_51
wsnp_JD_c940_1381378
Excalibur_c3442 2723
Excalibur s11276 $\overline{2} 8$
BS00063519_51
GENE-3500_336
-Kukri_rep_c116526 98 wsnp_Ex_rep c68269 67060931 BobWhite_c15454_63
BS00039188_51
Kukri_c36747 195
BobWhite_c8202_245
Kukri_c27691_226

- Tdurum_contig67516_236

IAAV316̄
BS00083507 51
IACX2581
BS00110285_51
BS00090309-51
Kukri_c41797-393
tplb0057m23_716
BS00010706_51
IAAV2363
wsnp_Ex_c7383_12655992
wsnp_Ex_c30551_39457494
Tdurum_contig49187_601
IAAV75 $\overline{14}$
Excalibur_c1208_72
wsnp_Ex_c492111_53875575
JD_c5000_410
Tdurum_contig17712_115
wsnp_RFL_Contig3939_4369467
BS00029412_51
BS00110075 51
wsnp_Ra_c17216_26044790
wsnp_Ku_c12211_19780409
Excalíbur_c45894_552
BS00067676_51
IAAV2328
BobWhite_c6782_180
BS00067209_51
BS00062729_51
E Excalibur_c8030_2139

- Ex_C472_2724
- Excalibur_C45297_97

Ku_c21002_1075
Kukri c6669
145
Kukrri_c6669_145
GENE-3601_145
Ex_c27046_1546

- Bob̄White_c $48730 _723$

Kukri_c20011_147
Excalibur_c379743_221
Ex_c2840_1013
BobWhite_c21949_117
Tdurum_contig10843_745
wsnp_Ex_c8424_14192191
Ku_c12469_837
RAC875_c3964_752
Excalibur_c92705_94
IACX2539
BobWhite_c15476_88
BS00028356_51
IAAV3527
RAC875_c59520_130
CAP8_c 317 _307
BobWhite_c 27193 _217
Kukri_c86812_193
wsnp_Ex_rep_c107017_90850230 AAV 699
Excalibur_c79009_75
BS000643̄36 51
wsnp_Ex_c54211_ 57168122
Tdurum_contig11951_212
BS00067351_51
Kukri_rep_c91370_381 BS00063793_51
wsnp_Ra_c3095_5835193
Kukri_c20412_302
Kukri_c49033_52
KAP8_c3064_95
Excalibur_rep_c104168_697
BS00021969_51
plb0029a15_1300
Excalibur_rep_c68005_67
BS00067206_51
BobWhite_c11539_336
BSOO068108_51
GENE-2673_2387

5B AxC
5D AxC

GENE-3274_213
IAAV731
BS00079185_51
Excalibur_c11605_156
Excalibur_c4468_654
wsnp_Ku_c568_1187615
Wsnp_Ku_c568-118761
Excalibur_c58520_78
Excalibur_c45323-708
Excalibur_c6010_433

- wsnp_BQ171683B_Ta_2_1 BSOOO63785_51
wsnp_Ex_c43̄3096_49510056
Kukri_c16907_390
Kukri_c16907
IACX6007
RAC875_c10932_1697
IACX6036
BS00062658_51
Kukri_c11890-709
RAC875 c26328 75
BS00083806_51
RAC875_rep_c108159_480
Excalibur_c41298_459
CAP8_c7 $\overline{6} 3$ _344
CAP12 c 1816325
BobWhite c4253_568
BS00011652_51
- Tdurum_contig42423_1536

Tdurum_contig30677_66

- Tdurum_contig42712-284

Tdurum_contig10530_427 Kukri_c41117_824
Ex_c 24068 _6 $\overline{5} 2$
I Excalibur_rep_c106365_485
BobWhite_c42273_716
BobWhite_c33990_190
RAC875_rep_c119031_71
BS00039492_51

- RAC875_c10174_268

IACX8389
Kukri c8780_304
Excalibur_c47684_1393 wsnp_Ex_c2264_-4243233 Ex_c13277_2025
Excalibur_rep_c103280_119
BobWhite_c48730_575
wsnp_Ex_c1838_3461594
IACX2796
BS00067331_51
Excalibur_c18492_249
wsnp_RFL_Contig2809_2587619
BS00099719_51
IACX5702
GENE-2794_534
RAC875_rep_c114200_428
wsnp_Ex_c11265_18216936
tplb0036g02_113
BS00110346_51
BS00022098-51
Excalibur_c82693_359
BSO0054946_51
BS00033768_51
BS00111093_51
BobWhite_c41609_107
BS00082399_51
BS00097105-51
wsnp_ Ex_c46̄494_51987109
RAC875_C45135_184
CAP7_c1979_79
wsnp_CAP12_c2231_1090724
Excalibur_c9563_1157
BS000483̄16_51
RAC875_c1148_609
tplb0041f21_972
Kukri_rep c106490 1398
Kukn_rep_c106490-1398
wsnp_Ex_rep_c68491_67318138
wsnp_Ex
IACX 5957
RAC875_c12181_1166
RAC875_c12181
Excalibur_c303̄38_344

- Excalibur_c30378
- BS00089597_51
- BS00064893_51 BS00022267_51

Kukni_c1214_2400
Kukri c7786-81
Kukn_c7786_81
CAP8 c145-89
CAPS_Contig617_1357
RFL_Contig617_-
IACX5717
Kukri_7827 1309
Kukri_c7827_1309
BSOO085610-51
BobWhite_c47158_89

A5.1 (continued)

A5.1 (continued)

7A AxC
wsnp_Ex_c14219_22169892
BSOOO99611_51
Kukri_c35451~85
wsnp_Ex_c24167 33416760
Tdurum_contig49158_617
BS00021973-51
BSO0066373-51
RAC875_C4 $1208 \quad 304$ BobWhite
IAAV7217
wsnp_Ex_rep_c66939_65370468
|ACX7857
RAC85 IACX $785 \overline{7}$
RAC875_c1553_129
Kukri_c11260_559
Tdurum_contig28493_829
tolb0027m03 172 $\overline{2}$
BobWhite_rep_c58252_112 tplb0059b17_358 Tdurum_contig9584_624 GENE-4633_82
BSOOO65648_51 Tdurum_contig16632_288 wsnp_Ex_c35_77935
BobWhite c24803 563 BobWhite_c24803_563
BSOOO67845_51 BS00067845-51 GENE-1795-81 Tdurum_contig 14075 _173 BS00010559 51 BobWhite c1085-412 CAP7_C4304_207 RAC875_c17881 199 Kukri_c60729_430 BS00010282_51
RAC875_c3450_83
Ex C4463_-146
BobWhite_c34551_714
BSOOO63267-51_
BS00062425_51
BSO00040929
IACX9283
wsnp_Ra_rep_c69620_67130107
JD_c19177_1284
CAP11 c3138_24
GENE-5000 606
RFL_Contig3425_378
RAC875 C67063-984
RAC875_c67063-984
Ku_c12139_1714
CAP11_c1048_99
BSOOO64072 51
wsnp_Ra_c201189_29442564
wsnp_Ex_c25025 34285478
Excalibur c11040-276
CAP7_c1933_304
Ex_c9556 2547
wx_C9556_2547
Wukri_rep_c105999_572

Ku_ c $29856-132$
BS 00071424

BSO00071424-51
wsnp.Ku c5160_9203226
CAP7 c3782_133
IACX5974
Kukri_c53682_85
Excalibur_c3298_533
BobWhite_rep_c49367 4
BSO0042116 51
BobWhite_c1215_240
RAC875_c35723-106
RAC875_C35723-106
RAC875_c20121-561
Excalibur_c32223_734
BobWhite_rep_c52270_315
Kukri_C42156 415
Excaībur_c3611_799
BS00066468_51
wsnp_CAPT_c1321_664480
Kukr ${ }^{\text {co }}$ c16852
Ra c 708291425
Ra_C70829_
|AAV5268
Ra_c105310_660
wsñ_ Ex_c27̄898_37058842
Excalibur c113078_320
Kukri C45763_319
BSOOO655529_51
GENE-4672-55
Excalibur_ci1791_819
Excalibur c61603 1209
Excalibur_rep_c102327_102
wsnp_Ku-c5693_10079278
BS000037̄30_51
CAP7_C950_137
BS00060187_51
BSOOO64666-51
Excalibur_rep_c105674_99
GENE-1996_277
Kukn_c9728_1171
Tdurum_contig93328-
Excalibur c6101_6
GENE-4895 101
BSO0061911_51
BS00063860_51
BS00110894_51
BobWhite_rep_c50659_205
BS00069988_51

7B AxC
7D AxC

Wusnp_Ku_c16295_25148628
Ku_c5351_1820
GENE-4608-280
Kukri_c12901-706
Excalibur_c6871_217
Excalibur c681112
BS00663744_51
BS00063744-51
tplb0021114-1322
BS00027054_51
Tdurum_contig47317_100
Kukri_c-15912_1189
Kukri c15912_2330 Tdurum_contig30625_450 BS00077956_51
BS00000925_51
Excalibur_c13033_240
RAC875_c10364_727
RAC875_c10364_727
BobWhite_c42536 235
Tdurum_contig4658 106
wsnp Ex c56425 5854809
BSOOO68309_51
wsnp_Ex_c19_38763
RAC875-c871-1345
BobWhite_c3385_6
TA005127-0595

- BS00066479_
|ACX7721
TA005284-0990
wsnp_JD_c13673_13606066
wsnp_Ex c323 629581
RAC875_c66200_288
RAC875_rep_c78007_425
Excalibur_c 3698 _739
RAC875_rep_c78007_394
Tdurum_contig81587_90
CAP7_c2649_283
Tdurum_contig28358_287 Excalibur_c16245_801 Excalibur c61587 70^{-1}
CAP12_c1587_142
Tdurum contig8402_460
IACX8900
BS00104760_51
Tdurum_contig61884_836
$\begin{array}{lll}\text { RAC875_c11283-379 } \\ \text { Excalibur c44924 } & 265\end{array}$
Excalibur_c ca4924 Tdurum contig28368 89
IACX9217 106
Kukri_c21255-1106
Excalibur c31649 215
Kukri_c35975_593
Tdurum_contig44206_1503
RAC875 c34012_1139
wsnp_RFL_Contig2315_1788036
CAP7_C3950_160
BS00025724-51
Excalibur c $3 \overline{3} 26753$
RAC875_rep_c110526_324
GENE-1079- 403
BSO0003609 51
Excalibur_c82295_645
Tdurum _contig62213_423
BS00097529_51
tplb0040b02_534
BSOOO57650-51
Ku c2728 1882
Ku_c2728_1882

Excalibur_c24639
BS00040070

Excalibur_c5 $\overline{8} 51$ _1661
Excalibur_c1688-43
Kukri_c57138_106
CAP7 c2121 239
Ra_c $\overline{74878}$-265
GENE-4710_573
Tdurum_contig61899_397

A5. 1 (continued)

1A Akh.
[BobWhite_c48447_529 RAC875_rep_c105697 366 BS00031289_51 BS00059422-51 - RAC875_c38756_141 BS00060796 51 JD_c26750_37 BS00022943_5
BS00083340_51
Excalibur_rep_c113950_132
RAC875_c20875_753
BobWhite_c46501_92
BS00029416_5
BS00062578_51
Excalibur_c55677_217
IAAV2838
BS00105601_5
RAC875_c14926_589
GENE-0 002 _ 856
Tdurum_contig50355_685
Ra_c22663_367
wsnp_BE490041A_Ta_2_1
Kukri_rep c69697_207
Excalibur c7190 2995
Excalibur_c7190_2995
RAC875_c
IAAV4243
IAAV8777
TA001042-0912
BS00004399 51
Excalibur_c15098 591
BobWhite_c30109_240
Tdurum_contig49788_1162 TA005242-0705
Ex_c28144_1843
Ra_c6038_588
RACB75_c42285_977
wsnp_Ra_c16080_24638622
Excalibur_rep_c82767_175
Tdurum contig $32437-\overline{2} 7$
BS00094553 51
wsnp_Ex_rep_c108951_91954190
TA003063-0097
BSOOO22173-51
Jagger_c5280_407
RAC875
RAC875_c32979_440
Kukri_c37343_250
CAP $\overline{2}$ _c3602_91
RFL_Contig47 $\overline{8} 1$ _1792
BobWhite_c3319_14
BS00065750_51
Excalibur_c39257_634
Tdurum_contig57566_1035
GENE-0262_431
RAC875_rep_c72890_63
RAC875 c677771 805

- BS00023203_51

BS00078085_51
Kukri_c55266_242
RAC875_c11363_527
BobWhite_rep_c49755_131
BobWhite_rep_c49755_131
RAC875_rep_c119761_111
wsnp_Ex_rep_c68171_66944702
RAC875_c47930_448
Tdurum_contig51167_390
Kukri_c24753_460
Kukri_c2338_533
Excalibur_rep_c101018_254
Kukri_c20480_121
BS00011521_51
wsnp_Ex_rep_c69932_68893867
BS00056823_51
BS00063847-5
BS00070951-5
wsnp_CAP11_c1827_988367
RFL_Contig858 2219
Kukri_c18608_135

1B Akh.
Excalibur_c71158_117
Kukri_c18951_493
BSO0094570_5
Ra_C40444_302
GENE-1322_33
BS00000487_51
D GB5Y7FA01D7RZC_302
B $\bar{S} 00023004$ _51
BobWhite_c17559_105
BS00065487_51
BS00067097-51
Excalibur_c810_328
Tdurum_contig505555_944
BS00074962_51
BS00022304-5
BobWhite_c15522 625
Tdurum_contig95782_945
wsnp_Ex_c14273_22 $\overline{2} 30844$
wsnp_Ex_c14273
JD c11168 452
JD_c11168_452
Excalibur_rep_c1
GENE-3653_580
Kukri c40439 366
Tdurum_contiḡ17609_117
Excalibur_c3510_159
BS000229022 51
BS00067169_51 BobWhite_c15522_250
BSO0084304-51
BS00063573_51
Kukri_c6135_150
BobWhite_c $\overline{1602} 139$
Tdurum_contig31130_148
Excalibur_c27675_1815
BS00067247_51
Ku_c42700 2798
Bob̄White_c1318 691
BobWhite_c1146̄̄291
BS00071082_51
Kukri_c30661_231
BS00110052_51
Excalibur_rep_c66946_110
BS00023142_51
Excalibur_c57881_200
BobWhite_rep_c66̄020_333
Ra_c11232_655
BS0̄0022742_51
Excalibur_c24217_1151
BS00066006_51
BobWhite_c41673_67
wsnp_Ex_c7447_12751589
BS00107749_51
Tdurum_contig8158_269
BobWhite c11044 322
BS00062880_51

- Tdurum_contig13117_1316

BS00036778_51
BS00036778_51
RSOO_Contig2826_1367
RFL_Contig2826_-
BS000023071-51
Excalibur_c40808_534
Excalibur
IAAV8693
IACX11634
RFL_Contig734_455
Tdurum_contig65853_534
RAC875_c50684_155
BobWhite_c13124__430
Kukri_c633̄36_577
Kukri_c16994_1482 BS00089790_5
Excalibur_c34765_1023
wsnp_Ex_rep_c67747_66422078
BS0000637̄21_51
BS00032077-51
BS00002484-51
Kukri c25512 53
Kukri_c25512_53
Tdurum_contig11046_318
Tdurum_contig11
BS00032037 51
BSOOO32037-51
Tdurum_contig29087_280
Tdurum_contig29087_280
Tdurum_contig4904_2923
Tdurum_contig49
BS00060612 51
BS00060612_51
wsnp_Ex_c48407_53323801
wsnp_Ex_c11461_18489681
tplb0049h18_765
RAC875_c116678_242
IAAV5776
Kukri_c67939_649
Tdurum_contig41999_2908
Tdurum_contig42108_958
BobWhite_rep_c49533_93
Excalibur_c14806_1091

1D Akh.

BS00000744_51
BobWhite_rep_c55507_100
-Ku_c14149 _2240
Ex_c8052_-811
Kukri_c2464_560
Excalibur_c55959_651 CAP12-c4-333
D_GA8KES402HUUGV_172
D_contig13475_402
BS00049071_51
Ra_c5198_843
BS0̄009447̄1_51
RAC875_rep_c114690_214
Excalibur_c61765_220
Excalibur_c54055_694
RAC875_c33279_526
Kukri_c19768_568

- BS00038418_51 BS00092585 5
- IAAV7745

BS00058554 51
RAC875_c25212_173
tplb0051k19_89
TA001371-0399
Ra c15730 3403
D_GA8KES402FQP8F_206
tplb0057o06 134
(pib0057006_134
目 B $\bar{S} 00089270$ _51
Tdurum_contig20987_1241
RAC875_c17367_549
IACX310

- BobWhite_c12960_168

BS00065891_51

- RAC875_c24317_1015

Excalibur_c5838_110
Kukri_rep_c106578_67
RAC875_c5882_307

- BobWhite_c42696 188

Tdurum_contig46389_1540
D_contig14466_410
[BS00010669_51

2A Akh.

Excalibur_c1787_1199
Excalibur_rep_c66982_699
Excalibur_c30167_531

- Jagger_c $\overline{5} 341 _12 \overline{6}$
wsnp_Ku_c2 $\overline{3598} 33524490$
BobWhite_c13373_250
Excalibur_c12980-2392
Kukri_c12804_676
RAC875_c42847_141
wsnp_Ex_c342_670243
D_GDRF1KQ01AXOPH_169
Tdurum_contig10785_103
- BobWhite_c48552_673

Kukri_c16577_529
BS00068050_51
BobWhite_rep_c64012_389
CAP11_c2293_200
D_GA8KES402̄GRIFZ_148
BōbWhite_c19433_329
wsnp_Ex_rep_c103̄167_88181968
Excalibur_c43811_527 wsnp_Ex_c19556_28530231 - Tdurum contig32692_271 Ku_c8180_291 BS000044272_51
 BS00091830_51
wsnp_JD_rep_c48914_33168544 Tdurum_contig66015_346 Tdurum_contig93115_517 BS00036767-51

- BobWhite_c11178_914
- Tdurum_contig59369-133

BobWhite_c28819_787
Excalibur_c84687_-
Tdurum contig59860_836
RAC875_c99803_148
BS00000297-51
言 wsnp_Ex_c21409_30544027
Excalibur_rep_c102052_72
RAC875_c77565_298
wsnp_Ex_rep_c66358_64543218
Jagen
D_GDRF1KQ02G1C3M_196
BSOO-094574-51

- RFL_Contig3509_229

GFL_Contig3509_-
GENE-1908-331
RAC875_c53342_192
GENE-1288 $114{ }^{-}$
tplb0046b02-872
BS00022265-51
Kukri c6944-1636

- Kdurum_contig31185_456

BS00062732_51

- Excalibur_c18514_238

RAC875 c1758 373
TA004785-1734
Kukri c78358 12
Excalibur c211117 300
BS00087932 51

- Tdurum_contig56321_232

CAP8 c3129 381
BS00072462-51
Excalibur_c15671_87
D_GBUVF̄FX02GK̄WUA_343
Ku_c68144_972
BS000095525 51
RAC875_c48891_476
4 GENE-1258_171 Excalibur_rep_c66399_930
_

2B Akh.
RAC875_c30620_323
BS00061187_51
BS00046019 51
Excalibur_c43̄376_59
Excalibur_c61319_274
Kukri c3249 806
Kukri_c3249_806 Excalibur_c32789_440
Ra c609 $17 \overline{9} 2$

- RobWhite_c25359_132

BS00070050_51
BS00072620-51
wsnp_Ra_c43̄21_7860456
Wsnp_Ra_C
|BS00100939_51 BobWhite_c30520_323
BS00010446 51
BobWhite_rep_c51388_185
BS00064658 $\overline{5} 1$
wsnp_Ex_c14711 22789762
Wsnp_Ex_c14711
BSOOO22950_51
GENE-1768_130
Excalibur_c20196_264
RAC875_c17720 436
Kukri_c26288_419
Excalibur_c9093_1469
Excalibur_c6502_397
RFL_Contig914_2390
Kukri_c62277_80
BSOOO71690 51

- Tdurum_contig53156_111

RAC875_c57_1178
RFL_Contig4542_1281
wsnp_JG_c609_370792
Jagger_c7206_101
wsnp_Ex_c42̄̄16_48926687
Excalibur_rep_c102657_575
BS00065418_51
Kukri_c6973_344
Kukri_c36783_91
BS00041921_51
Kukri_rep_c84808_109
BobWhite_c8113_532
RAC875_c46735_674
RAC875_c3102 2050
RAC875_c63112_460
BobWhite_c21705_196
CAP11_c1670_150
BobWhite_c130 $\mathbf{0} 66$ _776
BS00038705-51
Ex_c7958_1923
Excalibur_c84741_99
Kukri_c1-8664_551
$\left\{\begin{array}{l}\text { Excalībur_c1147791_328 } \\ \text { BS00100 } 53351\end{array}\right.$
BS00100563_51

- Tdurum_contig54925_20

RAC875_c36104_356
BSO0012036_51

- BobWhite_c22728_78

Kukri_c64930_353
Excalibur_c76598_427
Excalibur_c10071_213
BSOC875 C20093
RAC875_c20093_318
BS00047073_51
Excalibur_c80601_278
Ex_c13213_2594
Tdurum_contig96648_192
RAC875-c68903-159
BSOO069047 51-5
BSO0069047-51
BS00076000-51
RAC875 c146 452
BobWhite_c10864_436
BS00063589_51
Excalibur_c7051_1115
RAC875_c37540_583 RAC875_c22463_494
Ex_c7795_2122
Ex-c7795
Excalibur_c5438 274
BobWhite_rep_c64068 241
Excalibur_c56550 425
Excalibur_c910_1312
BS00100118_51
BS00039187-51
BS00022478-51

- Excalibur_c5193_64

GENE-1089_436
RAC875_rep_c71149_738
(Excalibur_c48871_625 Kukri_rep_c68139_172
IACX7581
BS00026032 51
RAC875_c53742_109
RAC875_c3259_673
JD_c52237_348
BS000054751_51
Ku_c25908_277
Kukri_c10173_1468

2D Akh. .
2
Akh

号

IAAV298

Excalibur_rep_c109101_94
D_contig74612_253
Kūkri_rep_c102899_426
Ex_c 3802 _40 BSOOO67698_51
Excalibur_c5592_178
BSOOO22234_51
Excalibur_rep_c101288_130
BSO0004040_51
t tplb0053n05_793
D_Contig39560_387
BS00022276_51
D_GBF1XID02F00C8_123
Excalibur_c48050 258
D_GA8KES401DAEOJ 64
wsnp_Ex_c6400_11123059
D_contig 31797 _313
BobWhite_rep_c51612_864
BS00011313_51
BSO0067584-51
GENE-0875-88
Kukri c33486 128
BS00027456-51
D_contig10690_305
W_ wsnp_Ex_c8303_14001708
Wsnp_Ex_c8303_140017
Excalibur_s112934_637
Excalibur_c55975-231
RAC875_c12803_16
$\left(\begin{array}{l}\text { Kukri_C26421_142 } \\ \text { D_F5XZDLFO1AKOX3_216 } \\ \text { RAC875 c8286 } 432\end{array}\right.$
GENE-0684 212
GENE-0684_212
BobWhite_c24021_254
Bolb0058k20 1741-
Kukri_c411_251
RFL_Contig5204_503
BobWhite_c13295_69 GENE-0808_728
BS00011096_51
RAC875_c30919_311
Tdurum_contig47101_301
GENE-2400 153
BobWhite_c5392_324
RAC875_c66820-684
Excalibur_c6681_580
Kukri_c7605_181
BSOOO $98312-51$
RFL_Contig4790_1091
D_contig30281_64
Excalibur_c4553̄2_282
Ra_c319_327
Kukri_c365_345
Ex_c 10574 -102
Tdurum_contig60619_283
Excalibur_rep_c116214_5
BobWhite_c8155_562
Kukri_c16667_132
Excalibur_c23239_961
Tdurum_contig13957_864

A5.1 (continued)

3A Akh.

 Kukn_-rep_c69028_1398 CAP12 2940 Kukri rep c848-20 251 Kukri_rep_c84820_25 CAP11_66193-1 | Ra_cbWhite_c29706_369 Tdurum contig75764 146 TobWhite_s67516 159 Excalibur_c55759-282 Excalinur_c5459-98 BobWhite_c20673_447 - Tdurum_contig91865_242 Kukri_c64268_101 Excalibur_c16197_748 Tdunum =onitige ${ }_{50} 206$ D-conitig 27192.52 wsnp_Ex_rep_c102478_87635370 Excalibur_c9811_131 - BobWhite_c26893_161 Ku_c56370_1155 BS00040798_51 Ra_c63818_731 BS00064039-51
Excalibur_c63̄733_173
wsnp_Ex_c11297_18254062
Jagger_c 736 _109
BS00066319_51
BS00021909_51
BS00048355_51
Tdurum_contig48522_295
RAC875_c47550_43 tplb0040h02

Excalibur_c12735_380

- BENE-0477-241

GENE-0477- 24
Ex_c4465_882
wsnp_Ku_c10468_17301216
RAC875_c21944_117
BS00065734-51
BobWhite_c31562_95
BS00023028 51
BS000230649-51
wsnp_BE426418A_Ta_2_1
WSnp_BE4264181
BS00097939_51
BS00074926-51

- Excalibur_c71730_105
- Jagger_c $\overline{8} 695$ _16 $\overline{8}$
- JaggWhite_c8852_116
- RFL_Contig2394_439

Tdurum_contig3547_212

3B Akh.
RAC875_c27986_1460
Excalibur_rep_c114249_187
Kukri_c32803_150
Kukri_c1771_715
wsnp_JD c396_603720
WSnp_JD_c396_603
BS00023188_51
Jagger_c8905_84

- Excalibur_c11505_806

Excalibur_c11505_806 63123941
wsnp_Ex_rep_c66766_651
Ra_c327_599
Tdūrum_contig6645_443
BS00010849_51
wsnp_Ra_c16̄264_24873670
Excalibur_rep_c104498_168
BS00070455 51
BobWhite_c12908_381
CAP12 c680 202
wsnp_CAP11_c232_211960
[Kukri_rep_c75764_261
RAC875_c19475_61 RFL_Contig3455_700
BobWhite rep c6̄6224-103
BS00065934_51
Kukri_c7132_387
Kukri_c 6549 - 770
CAP8_c7323-170
Kukri_c6549
wsnp_Ex_c47078_52393295
BSOOO22242 51 -
Kukri_c16792_662
BobWhite_c828_329
BS00011243_51
Excalibur_c41747_398
BS00003822_51
Excalibur_c2820_889
Tdurum_contig21329_326
Excalibur_c26622_502
BS00060247_51
wsnp_Ex_c11246_18191331
BS00066149_51
IAAV8901
wsnp_JD_c30422_23944042
Tdurum_contig30304_151
RAC875_c6064_746
wsnp_Ex_c19982_29009504
wsnp_Ex_c14321_22290028
JD_c $919 \overline{3} _412$
Kukri_c4345_83
TA00 $4900-0524$
RFL_Contig304_729
BS00073407_51
BS00026295_51
BobWhite_c59494_113
BobWhite_c59494_1
Tdurum_contig67750_272
Tdurum_contig67750_272
BS00089166 51
BobWhite_c4233_180
BS00043664_51-
BobWhite_c40455_116
Ra c9061_2115
RACB75_c10595_473
RAC875-65292-58
RAC875-c65292
wsnp Ex_c16378_24870688
tplb0044g23 1061
RAC875_c26̄639_367
RAC875_c26639-
Excalibur_c3341_519
Excalibur_c3341_519
RAC875_c42186_335
BS00052057_51
BS00040742-51
Kukri c66862_96
RAC8775_c6060_362
BS00105878_51
IAAV6088
Tdurum_contig46030_580
RAC875_c26805_837 Ex_c74049_545

- TA002877-1220

BS00068473_51
BS00095515_51
RFL_Contig4186_914

- BSO0065291_51

BS00070210_51
wsnp_CAP11_c59_99317 BS00064227_51
Kukri_c2227-583
wsnp_CAP11_c59 99702
RAC875_c7158_687
wsnp_Ra_c7158_12394405
TA00 $\overline{6} 10 \overline{3}-0916$
BobWhite_c15763_205
BS00068372 51
Kukri_c21041_263
RAC875 c34484 67
RAC875_c34484
Ra c33766 656
Ra_c33766_656
Kukri_c11944_1316 BS00064673
BobWhite_rep_c50492_500
Kukri_c32139_1124

103

\square

3D Akh.

3D Ak

 $+$| | Excalibur_c12875_1643
 BS00098161_51
 Excalibur_rep_c114271_334
 wsnp_Ex_c6833_11782875
 D_GBUVHFX01D $\mathrm{D} E 4 \mathrm{~L}$ _262
 Excalibur_c62735_71
 BS00093856_51
 RAC875_c101793_136
 wsnp_Ex_c18250_27065775
 GENE-1771_525
 D_GDRF1KQ̄02GV96X_70
 wsnp_Ex_rep_c101732_87042471
 Kukri_rep_c71523_81
 RAC875_rep_c69683_702
 wsnp_Ex_c36364_44338188
 RAC875_c33823_279
 D_contig31972_421
 BobWhite_c37236 219
 D_GDEEḠVY01BH̄5E8_94
 ABobWhite_c16071_165 BS00028997_51
 D_GB5Y7FA01BMVS5_180
 Tdurum_contig1015_131
 BS00009399_51
 D_contig37392_445
 Excalibur_rep_c93332_58
 Kukri_rep_c103999_1758
 Kukri_c38868_427
 D_F5MV3MU0̄1D5Z65_148
 Ku__c6080_1667
 D_contig15036_462
 BōWhite_c10116_389
 Kukri_c133̄2_2383
 - BSOOO67163_51
 - RAC875_c30644_1031
 CAP11_c $1051 _12 \overline{2} 1$
 - Excalibur_c37296_317
 - RFL_Contig2974_483
 - BSO0̄080821_51
 Kukri_c4636_1032
 Ex_c17749_6̄27
 D_GDS7LZNNO2IJRXZ_309 Kukri c61606 58 |
| :---: | :---: |

Kūkri_c61606_58

A5.1 (continued)

4A Akh.
tplb0043j11 1190
BS00035307 51
BS00003914-51
Kukri c2963-272
BS00065863-51
Ex c883 2618
Ex_c883_2618
Excalibur_c40618_182
BS00011060-51
wsnp_Ex_c5690_9994334
Ra_c11465_827
Kukri_c6199_1183
RAC875_rep_c70
GENE-2354_155
D_GBB4FNX̄01CME5L_131
Excalibur_c18575_310
BobWhite_c4089_73
Tdurum_contig17378_1113
Excalibur_c5010_1002
BS00040 $\overline{6} 48$ _51
IAAV8200
Ex_c50812 379
BS00066413_51
Ex_c66324-1151
wsnp_Ku_c3237 6024936
Tdurum_contig98808_554 BS00075233_51 Excalibur_c30̄378_673 Excalibur_c30378_679 wsnp_Ex_c41074
Ex c57499 296 BobWhite_c20282_164 IAAV8190
Excalibur_c10696_3390
I wsnp_Ex_rep_c106527_90571247
BobWhite_c33898_150
RAC875_c7016_20039

- BobWhite_c2217̄6_230 Excalibur_c64860_102 BobWhite_c46381_91 BS00066989_51
RAC875_c6939_1042
BobWhite_c32574_139
BS00021957_51
Excalibur_c21464_490
BS00039641 51
BobWhite_s66966_118
Tdurum_contig7992-173
Kukri c276̄48 350
Kukri_c2764 48 - 350
Excalibur_c42538_186
BobWhite_c20322_183
Kukri_rep_c109530_300
Kukri_rep_c109
BS00022932_51
BS00021122-51
Excalibur_c95579_465
BobWhite_c17524_242
RAC875_c1126_1769
RAC875_rep_c117027_137 BS00049695_51 BS00063943_5
BobWhite_c20382_117 BobWhite_c8436_450 wsnp_Ex_c10955_17793951 Tdurum_contig28493_778
Ex_c14241_2055
BSŌ008221̄ 51 Tdurum_contig14123_802

4B Akh.
RAC875_c86104_111
RFL_Contig4708_1477 BSOŌ022183_51
Tdurum_contig49608_1323
Excalibur_c49061_138
CAP11_c 864 _214
BS00068537_51
Tdurum_contig97386_207
Kukri c6̄6885 230
Excalibur_c31953_382
Excalibur_c31953
Kukri c49506 396
Tdurum_contig31514_449
Tdurum_contig31514_449
wsnp_Ku_c8075_13785546
wsnp_Ku_c8075_1378
RAC875_c65971_127
Tdurum_contig64772_41
Tdurum_contig64772_417
RAC875_c27536_611
CAP11_c601_120
RAC875_c14859_64
BobWhite c38340 243
Excalibur_rep_c67779_2380
Kukri c44967-60
CAP7_rep_c10494_158
BS00064142_51
IAAV5175

- Tdurum_contig42307_2647

Tdurum contig69405 332
Ra_c27465_564
BS000022177 51
Kukri_c89906_197
$=-$ BSO0058659_51
RAC875_c39427
Ku c462_1417
Ku_C462_1417
BS00022364_51
BobWhite c177899 1160
BobWhite_c17899_1160
CAP8_rep_c3658_272
Excalibur_c27349-166
D_contig26179_372
Kūkri_c36627_140
wsnp_Ku_c12503_20174234
Excalibur_rep_c103202_402
BS00023179_51
Excalibur_c9901_163
Kukri_rep_c72548_1170
Excalibur_c38704_1423
GENE-2826_154
Tdurum_contig9893_571
Tdurum_contig51521_90
RAC875_c51375_238
RAC875_c37166_290
Excalibur_c29255_366
RAC875_c10029_341
wsnp_Ra_c2277732275954

- wAD_875 rep c117991 66

RAC875_rep_c1
GENE-2640 270
GENE-2640_270
BobWhite_c1552
JD c48945 490
JD_c48945_490
Ku _c9134_782

4D Akh.

BS̄00022283 51 (D_contig26950_309 - Excalibur_c91022 193 - D_GDEEGVY01CODWI_390 D_contig02035_177 D_F1BEJMU02GBDRY_220

- BōbWhite_c3975_995
- Ex_c2226̄̄3 454

Excalibur_rep_c106790_155
BS00067484_51
D_contig29825_215
Ex_c41034 812
RFL Contig $3 \overline{3} 0 \quad 772$
IACX1867
D contig79405 40
BobWhite c573̄89 267
D_GBUVHFX02FL2EB_186
RAC875_c67855_529
BobWhite_c28101_376

A5.1 (continued)

5A Akh.
5B Akh.
5D Akh.
BS00064297_51
BS00011480_51
Excalibur_rep_cc110121_63
RAC875_c103396_446
IAAV731
BS00065732_51
Tdurum_contig9387_219
CAP8_c909_312
RAC875_rep_c116173_605
RAC875_c44613_84
Kukri_rep_c106411_137
Excalibur_c36906_58
wsnp_Ex_c10486_17145111
Ra_c439_1537
Kukri_c7872_96
Excalibur_rep_c68035_128
Tdurum_contig 42516_-491
wsnp_Ku_c51284_56622767
BS000670̄72_51
ACX4548
BS00045446_51
BSOOOOO7437_51
Kukri c37442 1002
wsnp_Ex_c1630_3105100
BSOOO56147_51
BobWhite_c8048_663
BS00028183_51
BS00070507 51
BS00070507_51
Excalibur_rep_ct
Kukri c47057_758
Kukri_c47057-75

- BSO0022716_51

Excalibur_c54941 571
wsnp_Ex_c974_1864971
wsnp_Ra_c15297_23684845
Kukri_c12288_858
BS00021949_51
BobWhite_c11861_535
Kukri_rep_c69515_183
GENE-3574_643
Tdurum_contig43523_359
RFL_Contig2304_1569
wsnp_Ex_c35742-43830556
BobWhite_c6633_179

- Jagger_c5859_114

Kukri_c52_225
Tdurum_contig29771_76
Kukri_c94990_140
Kukri_c22607- 242
Ex_c 29928 _1020
Bob̄White_č34759_227
Tdurum_contig10268_545
BS00062762_51
BS00036434_51
CAP8_c890_220
Tdurum_contig32812_255
BS00084096_51
BS00065128_51
RAC875_c96862_121
BS00005860_51
Kukri_c57954_369
Kukri_c16554_697
RFL_Contig1506_815
Tdurum_contig47071_1322
Tdurum_contig13773_321
BS00022065_51
Kukri_c718_285
BobWhite_c22036_399 Tdurum_contig50731_96
Tdurum_contig7459_1061
BS00025795_51
wsnp_Ex_c21875_31045200
CAP12_c2984-189
RAC875_c58574_262
BS00041168_51
BobWhite_c36154_81
Excalibur_c17489_804
AAV5014
BobWhite_c2694_494
RAC875_c1148_609
Tdurum_contig98215_420
RAC875_c49370_205
IACX751
Excalibur_c9543_1268
TA002682-0717
BobWhite_rep_c51744_51
Jagger_c4951_122
Kukri_c1214_825
BobWhite_c7818_278
Ku_c16351_717 Ťdurum_contig97942_163
Excalibur_c72450_483
BobWhite_c32785 874
Excalibur_c6346_266
BobWhite_c8037_1135
Excalibur_rep_c68362_135
RAC875_rep_c106589_784
wsnp_Ex_c16100_24532343

A5.1 (continued)

6A Akh.

[^1]6B Akh.
IACX9397
RAC875_rep_c69836_475
BobWhite_c12846_389
RAC875_c63707_140
Tdurum_contig42655_703
RAC875_c2260_1274
RFL_Contig3110 2172
Excalibur_c55093_143
BS000111̄31_51
RAC875_rep_c101299_88
RFL_Contig4853_1435
RAC875_rep_c90117_481
BSO0023196-51
Kukri_rep_c103613_253
Tdurum_contig11641_1008
wsnp_Ex_c2936_5416̄717
RFL_Contig5294_1413
Excalibur_c99745_169
TA003528-0548
BS00075406 51
wsnp_Ex_c6057_10611952
IAAV8967
Excalibur_c48499_250
BobWhite_c18550_159
Kukri_c38732_246
BSOOO63608_51
BSO0014588 51
BobWhite_c686_387
Excalibur_c47748_83
BobWhite_c15059_241
BobWhite_c17137_358
Kukri c29337 649
Excalibur_c1483_171
Jagger_c 555 _81 $\overline{8}$
BS000008727-51
IAAV8279
BobWhite_c1059_1825
Excalibur_c11245_880
Kukri_c62696_270
BobWhite_c36416_56

- Ra_c18593_802
-wsnp_CAP11_c1432_806102
Kukri_c12602 861
Excalibur_c23296_820
Excalibur_c32739_698
Kukri_c49331_77
BSOOO37462 51
Tdurum_contig29013_239
wsnp_Ku_c43368_50890819
Kukri c75359 152
BobWhite_c3514_717
RFL_Contig2206_1694
BSOOOO27770_51
BSO0067417-51
Kukri_c85856_60
IAAV5595
Ku_c410_346
Jagger c1231 85
RAC875_c22494_231
wsnp_Ex_c54772_57527555
Ra_c 6429 - 1157
BobWhite_c21218_649
Kukri_c14511_1046
Kukri_rep_c69487_142
Kukri_rep_c100520_195
TA002907-0816
BobWhite_c13202_462
tplb0045b0̄9_1555

6D Akh.

RAC875_c2102_3487
wsnp Ex c14439 22426200
Excalibur_c1991_1504
BobWhite_c7090_778
RAC875 c 3996 - 851
CAP8 c2̄184 $6 \overline{2}$
RAC875_c16218_534
tplb0025k 19_1539
Kukri c61725 160
Excalibur_c99104_213
Kukri_c30988_208

- D_contig18510 788

Excalibur_c3228_841
Kukri_c22301_153
Ku_c̄273_132̄7
RAC̄875-c40403_313
IAAV8527
D_F5XZDLF02HW3JD_131
CĀP11_rep_c6864_291
D_GDS̄̄LZZ̄02F6LZ̄B_202
Ra_c3332_1111
wsnp_RFL_Contig2937_2798959
Ex_c25390_404
RAC875 c 23461286
D GA8KES401DAG15 124
wssp_Ex_c4942_87930029
wsnp_Ex-c2161-4059916
D_GD̄S7L̄ZN01D̄U929_63

A5.1 (continued)

7A Akh.
xcalibur_c57160_208
Excalibur_c1904_282 Ex_c23000_640 RAC875_c $\overline{55517-1067}$ RAC875_c48202_231 Excalibur_c26682_394 BS00091003_51 RAC875_c23310_217 Ku c173̄ 2299 RAC875 c19631 269 RAC875_c17331_79 wsnp_Ex_c30239-39179460 Kukri_c19436_405
tplb0027d07_633
RAC875_c6 6 60_1186
BS00022970_51
BS00065020_51
Excalibur_rep_c68955_213
BS00063549_51
CAP12_c2255_265
Ra_c19331_603 Tdurum_contig82572 293 Kukri rep c110670 553 IAAV-1940
GENE-4632_640
BSNE-4632_640
wsnp_RFL_Contig2789_2553657
wsnp_RFL_Contig2789_2553
WSnp_Ra_c312301_484
GENE-4375_382
RAC875_c68005_1347
IACX9283
BS00099804_51
BobWhite_rep_c51665_281
RAC875_c52124_90
Excalibur_c987 197
-CAP8_c7 $\overline{0} 237 \overline{7}$
BS0006577 $\quad 51$
IAAV5054
BobWhite_c24063 231
wsnp_CAP11_c651_429138
BS000076379_51
BS00024619_51
BobWhite_c 3670 = 657
BobWhite_c15497_609
wsnp_Ex_c12102_19361467
Kukri_c19696_60
Excalibur_c40881_182
CAP7_c2350_105
Ku c11884 1220 wsn̄p JD c̄149 241276 IAAV9161
Jagger_c6297_88
Jagger_c6297_88
Excalibur_c49272_174
Excalibur_c113078_320
GENE-4958_453
CAP7_rep_c10402_310
Ra_c3331_241
Kukri_c396̄14_977 Tdurum_contig30886_109
Excalibur_c61603 1052
BobWhite_c34068 833
Excalibur_c18228-286
Excalibur c1935 $\overline{1} 762$ GENE-0788 212 wsnp_CAP8_c760_519914 Kukri_rep c79716-729 Kukri_rep_c79716_729
Tdurum contig66023 89 - Tdurum_contig66023_89 wsnp_JD_c19925_17854 BobWhite_c18917_6 BS00004348_51 BobWhite_c25703_160 BS00110894_51 RAC875_c18550_228

7B Akh.
7D Akh.
BobWhite_c20735 255
BSOO222127-51
wsnp_CĀP8_c3 34 _304253
Kukri_c67849 109
Wukno-CAP7 C44 26549
wsnp_CAP7_C44_26549
Excalibur_c41298_-3947695
WSnp_Ex_c2103_3
RAC875_c10672_440
BSO0035630_51
Tdurum_contig13022_853
wsnp_Ex_c11106_18003332
RAC875_c16839_188
Ku_c884_736
GENE-4273_67
GENE-4598-467
BS00021695 $\overline{5} 1$
Excalibur_c41318_159
Excalibur_c41318
BS000022550_51
BS00022498_51
Ra_c16791_1910
BSŌ0067599_51
GENE-1477_748
Kukri_c5556_2323
Ex_c68356 553
tplb0046106 716
BS00088495 51
RAC875_c5965_317
BobWhite_c21469 302
wsnp_JD_c9940_10709615
WobWhite rep c63008 468
Tdurum_contig29488_109
RAC875_s118395_76 BobWhite_c11161_270
RAC875_c7947_1288
Tdurum_contig35073_183
Tdurum_contig29238_371
Kukri_rep_c69312_647
Ku_c6047_1228
BS000001144 51
Kukri_rep_c71173_2043
Tdurum_contig9966_646
BobWhite_rep_c52876_72
BobWhite_c12256_96
BS00089938_51
tplb0059a12_588
BSOOO25286_51
BS00035559-51
Excalibur_c7552_1933
RAC875_c48766_224
Excalibur_c48976_396
BS000149946_51
BS00022700-51
BS00080621-51
Excalibur_c3 $\overline{3} 267 _263$
Kukri_c15912 860
Excalibur_c42588_225
BS00047083_51
BS00047083-51
Tdurum contig15734 221
Tdurum_contig15734_-221
BobWhite_c42536 235
BobWhite_c42536_235
BobWhite_c14966_231
BobWhite c29089_108
BobWhite_c29089_108
RAC875_c60191_114
Tdurum_contig55961_384
Kukri_c24148_254
BobWhite_c26534_532
BS00010134_51
BS00110528-51
Kukri_c53852_177
RAC875_c136̄64 264
Tdurum contig75127 589
Tdurum_contig75127_- 289
Tdurum_contig285
Kukri c7284 1859
Kukri_c7284_1859
RAC875_rep_c72959_1
RAC875_rep_c72959_187
wsnp_Ex_c16577_25095267
RFL_Contig5480_408
RAC875_c31851_711
Kukri_c34272_174
BS00028935_51
Tdurum_contig29880_329
RAC875_c5744_115
Tdurum_contig42584_1190
BS00011767_51
BS00004350-51
Kukri_c20875-997
tplb00 40 b 02 - 681
tplb0040b02_681

RAC875_c31483_117
Kukri_c61884 166
Excalibur_c16775_1833
BS00059 $\overline{457}$ _51
IACX11794
GENE-4592 95
D_GBF1XID01D0H1S_134
D_contig16583_91
D_GBF1XID01ĒMISV_148
D_GDEEGVY01EKCKO_134
D_contig63536_65
D_contig05479_265
D_contig11371_376
Kukri_c45568_188
D_contig45163 68
D_F5XZDLF01ĀMC4K_200
Kukri_c36591_332
D_contig70596_342
D_contig06507_653
D-contig07330 330
D_GA8KES401D3GU4_112
TĀ001920-0510
Ex_c305_686
D_contig10442_151
RĀC875_c53629_483
D_F5XZD̄LF01DXXADO_231
BobWhite_c14588_84
D_GB5Y7F̄FA01CLĀK3_45
Kukri_c27122_654
D contig31840 68
CA-P11 c1250 312
[D_GBUVVHFX02JIASD_46
LD_contig16143_690

- Ex_contig16143_690
(Ex_C875_c-14195_183
D_contig30228_111
D_F1BEJMU02FCNGT_125
D_GDS7LZN01CWBG5_74
RĀC875_c83928_162
RAC875_c10023_831
Ku_c47803_245
BS000022610_51
RFL_Contig2 257 _810 D_F1̄BEJMU02ITZ̄OM_281
Kükri_c101311_72
Excalibur_c1768̄6588
Excalibur_c17686
D_GDS7LZNO2F6AEK_164
D_GDS7LZN02F
Ra_c31292_886
D_contig04769_205
D_contig81157_154
B $\bar{S} 00074121 _51$
Excalibur_c61318_467
D_GA8KĒS401EL25F_420
BobWhite_c4134_711
RAC875 c54166- 317
D contig69150 243
Kukri_rep_c105287_31
Cukn_rep_ction287_
BSContig65328_393

A5. 1 (continued)

Barley			SSR		KASP									
			UniGene	v3.3		Array		$\frac{\text { BD }}{\text { Gene }}$						
Gene	position	2DS hit			Tested	Marker	SNP		Marker	SNP	marker	Select	Axiom	Gene
MLOC_57507	15589004	2DS_3524440									Bradi5903590	Os07g0534000		
MLOC_57508	15592532	2DS_5354706									Bradi5g03600	Os04g0212200		
MLOC 5957	15601547	2DS_5377037									Bradi5g03460	Os04g0209200		
MLOC_62798	15618954	2DS_5321865									Bradi4g21260	Os11g0215100		
MLOC_71963	15624566	2DS_5319467									Bradi2g42760	Os04g0208400		
MLOC_11990	15656891	2DS_5352598									Bradi5g03810	Os04g0224900		
MLOC_61793	17392210	2DS_5369305									Bradi5g04000	Os04g0227200		
MLOC_58539	17416166	2DS_5390396									Bradi5g03960	Os06g0587200		
MLOC_58540	17420938	2DS_5316778									Bradi5g03950	Os08g0110100		
MLOC_52767	17428728	2DS_5390004									Bradi5g03860	Os05g0295300		
MLOC 5849	17457414	2DS_5352525									Bradi5g03882	Os05g0553400		
MLOC_63757	17478781	2DS_5327480									Bradi5g03710	Os04g0223500		
MLOC_16798	17487159	2DS_5324300									Bradi3g20960	Os06g0203200		
MLOC_67319	17502873	2DS_5389716									Bradi5g04030	Os04g0227500		
MLOC_48019	17525526	2DS_5341587									Bradi5g03577	Os11g0691100		
MLOC_74610	17556696	2DS_5363870									Bradi5g03697	Os04g0224600		
MLOC_14804	17591628	2DS_5375380									Bradi5g03640	Os04g0223300		
MLOC_21811	17599756	2DS_5339156									Bradi4g08800	Os12g0291400		
MLOC_18415	17679159	2DS_5335120									Bradi5g04020	Os07g0406300		
MLOC_10026	17688253	-									Bradi5g03977	Os02g0210700		
MLOC_63015	17699255	2DS_5381312									Bradi5g04050	Os04g0228000		
MLOC_63016	17703692	-									Bradi5g04057	Os04g0228100		
MLOC_56367	17709336	2DS_5390981									Bradi1g21320	Os07g0622100		
MLOC_65574	17713531	2DS_5384527									Bradi4g06970	Os 10g0136100		
MLOC_71561	17728883	2DS_5374739									Bradi5g04630	Os 10 g 0150400		
MLOC_37479	18924902	2DS_5379098									Bradi5g04340	Os 10 g 0558900		
MLOC_9931	18943132	2DS_5347513									Bradi5g04567	Os09g0252700		
MLOC_56278	18975015	2DS_1805600									Bradi3g56020	Os04g0233400		
MLOC_60079	18990753	2DS_5374739									Bradi3g37067	Os08g0436700		
MLOC_69463	19016685	2DS_5390752									Bradi5g04550	Os04g0244400		
MLOC_56660	19027873	-									Bradi5g04560	Os04g0244800		
MLOC_62246	19048502	2DS_5320736									Bradi5g04590	-		
MLOC_48245	19071820	-									Bradi5g04130	Os04g0229100		
MLOC_81380	19149532	2DS_5374739									Bradi5g04630	Os 10g0150400		
MLOC_10439	19171497	-									Bradi4g36976	Os11g0684700		
MLOC_4350	19440192	2DS_5366894									Bradi5g04673	Os 04 g 0252200		
MLOC_72777	19455074	2DS_5364728									Bradi5g04686	Os04g0252400		
MLOC_59732	19468483	2DS_4338395									Bradi1916097	Os03g0594700		
MLOC_34868	19476019	-									Bradi1g16097	Os03g0594700		
MLOC_58466	19491674	-									Bradi5g04660	Os02g0319800		
MLOC_68321	19511497	2DS_5368388									Bradi3g36320	Os08g0427900		
MLOC_12182	19521133	2DS_5366894									Bradi5g04673	Os04g0252200		
MLOC_32207	19532277	2DS_5330382									Bradi5g04630	Os 10 g 0150400		
MLOC_81869	19752473	2DS_5388293									Bradi3g22850	Os02g0113200		
MLOC_55119	19928531	-									Bradi5g04730	Os04g0258900		
MLOC_55120	19945311	2DS_5388494									Bradi4g07480	Os04g0255600		
MLOC_60943	19981189	2DS_5349408									Bradi5g04640	Os05g0304900		

A5.2.1: Barley zipper used for mining variation on 2DS CSS contigs in the syntenic interval. The interval was defined as in Table 5.4. The annotation shows how the sequence space was searched. In the SSR columns, microsatellite variation identified on the CSS contig which could be tested is in green. No variation is shaded red. In the marker column a polymorphic marker between the parent NILs is shaded green; monomorphic markers are in red. The same colours apply to the UniGene and v3.3 cDNA columns. Orange cells indicate SNPs identified in the UniGene data where only one sample called a SNP (low concordance). Orange shading in the iSelect column indicates the corresponding SNP marker was on the array but monomorphic between the parent NILs. The shading in the axiom column indicates a marker on the array corresponding to the 2DS CSS contig in that row had a SNP between the Rht8 NIL and Paragon.

				KASP							
Brachypodium		SSR		UniGene		v3.3		Array		Barley Gene	
Gene	2DS hit	Tested	Marker	SNP	Marker	SNP	marker	iSelect	Axiom		Gene
Bradi5g03460	2DS_5377037									MLOC_5957	Os04g0209200
Bradi5g03477	2DS_5368504									-	Os04g0209300
Bradi5g03520	-									MLOC_73392	Os11g0691400
Bradi5g03530	2DS_5292808									-	Os04g0220300
Bradi5g03540	-									MLOC_41224	
Bradi5g03550	2DS_5341587									MLOC_15303	Os04g0220300
Bradi5g03560	-									MLOC_8686	Os12g0156200
Bradi5g03577	2DS_5292808									-	Os04g0220300
Bradi5g03600	2DS_5354706									MLOC_57508	Os04g0212200
Bradi5g03627	-									MLOC_9245	-
Bradi5g03632	-									-	Os04g0220300
Bradi5g03640	2DS_5375380									MLOC_14804	Os04g0223300
Bradi5g03662	-									-	Os04g0376200
Bradi5g03720	2DS_5358023									MLOC_25063	Os04g0212450
Bradi5g03767	-									MLOC_37709	Os04g0276600
Bradi5g03780										MLOC_63786	Os02g0271000
Bradi5g03800	-									MLOC_50364	
Bradi5g03820	-									MLOC_55406	
Bradi5g03840	-									MLOC_67288	
Bradi5g03850	2DS_5363769									MLOC_45846	Os04g0274400
Bradi5g03882	2DS_5352525									MLOC_5849	-
Bradi5g03890	-									-	Os11g0289700
Bradi5g03897	2DS_5319959									MLOC_39510	Os10g0136400
Bradi5g03930	2DS_5319959									MLOC_39510	Os10g0136400
Bradi5g03960	2DS_5390396									MLOC_58539	Os04g0226340
	2DS_5385061										
Bradi5g03977	2DS_5343181									MLOC_61794	-
Bradi5g03990	-									MLOC_9079	
Bradi5g04000	2DS_5367475									MLOC_61793	Os04g0226800
	2DS_5369305										
Bradi5g04030	2DS_5389716									MLOC_67319	Os04g0227500
Bradi5g04057	2DS_5381312									MLOC_63016	Os04g0228100
Bradi5g04340	2DS_5390977									MLOC_37479	Os03g0856000
	2DS_5379098										
	2DS_5383642										
	2DS_5355519										
Bradi5g04540	2DS_5390977									MLOC_23980	Os04g0243700
Bradi5g04560	-									MLOC_56660	Os04g0244800
Bradi5g04577	2DS_5358467									MLOC_81817	Os04g0221600
Bradi5g04600	2DS_5341487										Os04g0250700
Bradi5g04630	2DS_5341846									MLOC_71561	Os10g0150300
	2DS_5374739									MLOC_81380	Os10g0150300
Bradi5g04640	2DS_5349408									MLOC_60943	Os05g0304900
Bradi5g04650	-									MLOC_10443	Os02g0288925
Bradi5g04660	2DS_5371750									MLOC_58466	Os02g0319800
Bradi5g04730	-									MLOC_55119	Os04g0258900
Bradi5g04750	-									MLOC_75680	Os01g0273900
Bradi5g05090	-									MLOC_5422	Os04g0284500

A5.2.2 Brachypodium zipper used for mining variation on 2DS CSS contigs in the syntenic interval. The interval was defined as in Table 5.4. The annotation shows how the sequence space was searched. In the SSR columns, microsatellite variation identified on the CSS contig which could be tested is in green. No variation is shaded red. In the marker column a polymorphic marker between the parent NILs is shaded green; monomorphic markers are in red. The same colours apply to the UniGene and v3.3 cDNA columns. Orange cells indicate SNPs identified in the UniGene data where only one sample called a SNP (low concordance). Orange shading in the iSelect column indicates the corresponding SNP marker was on the array but monomorphic between the parent NILs. The shading in the axiom column indicates a marker on the array corresponding to the 2DS CSS contig in that row had a SNP between the Rht8 NIL and Paragon.

				KASP								
Rice		SSR		UniGene		v3.3		Array		Barley		BD
Gene	2DS hit	Tested	Marker	SNP	Marker	SNP	marker	iSelect	Axiom	Gene	Pos	Gene
Os04g0209200	2DS_5377037									MLOC_5957	15601547	Bradi5g03460
Os04g0212200	2DS_5354706									MLOC_57508	15592532	Bradi5g03600
Os04g0220300	2DS_5341587									MLOC_48019	17525526	Bradi5g03530
Os04g0223300	2DS_5375380									MLOC_14804	17591628	Bradi5g03640
Os04g0223500	-									MLOC_63757	17478781	Bradi3g20960
Os04g0224600	2DS_5363870									MLOC_74610	17556696	Bradi5g03697
Os04g0224900	2DS_5352598									MLOC_11990	15656891	Bradi5g03810
Os04g0226340	2DS_5390396									MLOC_58539	17416166	Bradi5g03960
Os04g0226800	2DS_5323988									MLOC_61793	17392210	Bradi5g04000
	2DS_5389048											
Os04g0227200	2DS_5367475									MLOC_61793	17392210	Bradi5g04000
	2DS_5369305											
Os04g0227500	2DS_5389716									MLOC_67319	17502873	Bradi5g04030
Os04g0228000	2DS_5381312									MLOC_63015	17699255	Bradi5g04050
Os04g0228100	2DS_5381312									MLOC_63016	17703692	Bradi5g04057
Os04g0229100	2DS_5318296									MLOC_48245	19071820	Bradi5g04130
Os04g0233400	2DS_5390752									MLOC_56278	18975015	
Os04g0244400	-									MLOC_69463	19016685	Bradi5g04550
Os04g0244800	2DS_5366894									MLOC_56660	19027873	Bradi5g04560
Os04g0252200	2DS_5364728									MLOC_4350	19440192	Bradi5g04673
Os04g0252400	2DS_5388494									MLOC_72777	19455074	Bradi5g04686
Os04g0255600	-									MLOC_55120	19945311	Bradi4g07480
Os04g0258900	2DS_5390725									MLOC_55119	19928531	Bradi5g04730
Os04g0266400	2DS_5390725									MLOC_4181	20626998	Bradi5g05225

A5.2.3: Rice zipper used for mining variation on 2DS CSS contigs in the syntenic interval. The interval was defined as in Table 5.4. The annotation shows how the sequence space was searched. In the SSR columns, microsatellite variation identified on the CSS contig which could be tested is in green. No variation is shaded red. In the marker column a polymorphic marker between the parent NILs is shaded green; monomorphic markers are in red. The same colours apply to the UniGene and v3.3 cDNA columns. Orange cells indicate SNPs identified in the UniGene data where only one sample called a SNP (low concordance). Orange shading in the iSelect column indicates the corresponding SNP marker was on the array but monomorphic between the parent NILs. The shading in the axiom column indicates a marker on the array corresponding to the 2DS CSS contig in that row had a SNP between the Rht8 NIL and Paragon.

MIPS Genome Zipper 2015							iSelect array																	
Marker	cM	Bd	Os	Contig - marker	Contig - Bd	Contig - Os	BS code	Pseudo	Ch	cM		HV	BD	OS	CD		TB	T1	T2	T3	SB	S1	S2	S3
GDEEGVY01B0QLN	30.99	Bradi5g03460	Os04g0209200	2DS_5377037	2DS_5377037	2DS_5377037	BS00123480	929466	2Dx	12.39	-	-	-	-	NC	BB	NC	BB	BB	BB	BB	NC	NC	NC
contig21659	31.27	-	-	2DS_5318940	-	-	BS00120582	6154698	2Dx	12.87		-	-	-	BB									
contig10675	31.41	-	-	2DS_5375260	-	-	BS00120104	7783207	2Dx	12.31	2	22260307	-	-	AA	NC	AA	NC	NC	NC	NC	AA	AA	AA
contig19895	31.41	Bradi5g03477	Os04g0209300	2DS_5354001	2DS_5368504	2DS_3766997	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	Bradi5g03500	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	Bradi5g03530	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	Os04g0252000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F5XZDLF01C5J20	32.41	-	-	2DS_5340329	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F5XZDLF02IRQG9	33.83	-	-	2DS_5325019	-	-	BS00122201	-	-	-	-	-	-	-	BB									
GA8KES401CIV9Z	35.34	-	-	-	-	-	BS00122273	1277507	2Dx	15.62	2	19442600	Bradi5g04673	-	AA									
contig14543	35.34	Bradi5g04673	Os04g0252200	2DS_5366894	2DS_5366894	2DS_5366894	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	Bradi5g04686	Os04g0252400	-	2DS_5364728	2DS_5364728	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	Bradi5g04710	Os04g0261400	-	2DS_5389857	2DS_5389857	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

A5.3: Genome zipper based on IWGSC-2 and 90K iSelect array data (Wang et al., 2014a) compiled by MIPS and downloaded from URGI in March 2015 (URGI, 2015a). New 2DS CSS contigs anchored into the zipper that were searched for SSRs are shaded grey.

A5.4: Prioritising high-confidence variants in SNPs between the parent NILs in the UniGene dataset according to concordance. The base call at each SNP position (Pos) in each of the CD ($\mathrm{P} 1 / 3 / 5 / 7$) and RIL4 samples ($\mathrm{P} 2 / 4 / 6 / 8$) is shown. The sample details are in Table 5.1. The UniGenes were annotated with information from syntenic species: HV: the barley chromosome and position; the Brachypodium (BD), rice (OS) and Sorghum (SB) genes.

	Q		く	く \vdash	－		厅＜	く	৩	厅	0	－		৩O	0	৩	\bigcirc	0	0	O	$1-$	＜	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	く	く	\vdash	O	＜	৩	\vdash	O	0	\vdash	＜
	0	\vdash	＜	$<\vdash$	－		\bigcirc	く	৩	$\bigcirc \vdash$	－0	－＜	＜ 0	OU	0	－-	\bigcirc	0	0	O	－	＜	৩	O	O	\vdash	O	－	＜	＜	\vdash	0	＜	৩	\vdash	O	0	－	＜
¢	家	\vdash	＜	$<\vdash$	－		৩く	＜	৩	\checkmark	0	＜	O	Ј		－	\bigcirc	0	0	O	－	＜	O	O	O	1	0	－	＜	＜	\vdash	0	＜	－	\vdash	0	0	\vdash	＜
	\％	－	＜	く \vdash	－	৩	¢ く	\＆	৫	\checkmark	－ 0	＜	৩	৩ 0	0	৩	\bigcirc	0	0	O	$1-$	＜	0	O	O	\vdash	0	0	く	＜	\vdash	0	＜	৩	\vdash	0	0	\vdash	＜
\bigcirc	へ	ט	\checkmark	৩	৫	＜	«	0	－	0	ט	\bigcirc		＜	－	＜＜				0	৩	৩	0	$1-$	\vdash	0	৩	＜	\bigcirc	\bigcirc	0	\checkmark	৩	$<$	0	－	৩	৩	U
		0	\bigcirc	৩	\bigcirc	＜	«	0	＜	＜ 0	O	）		＜	\vdash－	＜	く		－	0	৩	－	0	\vdash	\vdash	ט	－	＜	\bigcirc	－	0	\checkmark	－	$<$	0	\vdash	O	৩	O
	¢	0	৫	৩	৩	＜	«	ט	＜	＜ 0	\bigcirc	\bigcirc		＜	\vdash－	＜		\vdash	\vdash	ט	\checkmark	－	0	\vdash	\vdash	ט	৩	＜	\bigcirc	\bigcirc	0	\checkmark	৩	$<$	0	\vdash	O	－	－
	$\bar{\square}$	0	\checkmark	৩	৫	＜	＜	0	$<$	40	ט	$\bigcirc \vdash$		＜	＜	＜	く	－	1	O	৩	৩	0	\vdash	\vdash	0	৩	$<$	\checkmark	\bigcirc	0	\checkmark	\bigcirc	$<$	0	\vdash	\checkmark	৩	U
	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \boldsymbol{\omega} \\ & \boldsymbol{\rho} \end{aligned}$				0 					$\begin{array}{\|l} \hline 0 \\ 0 \\ 00 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \\ \hline \end{array}$								0	$\begin{aligned} & \stackrel{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \stackrel{0}{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$							$\begin{aligned} & 0 \\ & 0 \\ & \hat{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ \text { of } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline \text { og } \\ \text { o } \\ \text { } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \text { O } \\ \text { O } \\ 0 \\ 0 \\ \hline 0 \\ 0 \\ 0 \\ \hline \mathbf{C} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \overline{0} \\ 0.0 \\ \hline 0 \end{array}$		웅 O O 0 0 0 0		$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{array}$		$\begin{aligned} & 0 \\ & \substack{寸 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \end{aligned}$	（o）
	$\begin{aligned} & 0 \\ & C_{0}^{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\left\|\begin{array}{c} 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$													$\begin{array}{\|l\|l} \stackrel{n}{0} \\ \tilde{0} \\ \tilde{O} \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{0}{0} \\ & \frac{1}{5} \end{aligned}$						$\left\|\begin{array}{l\|l} 00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	O	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	－	－	$\left\|\begin{array}{l} \circ \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ i n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \hline \\ \hline \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$\left\|\begin{array}{c} 0 \\ \frac{0}{n} \\ \stackrel{y}{0} \\ \frac{0}{c} \\ 0 \end{array}\right\|$	N	－	$\begin{aligned} & 0 \\ & \frac{0}{9} \\ & \frac{1}{5} \\ & \frac{N}{\infty} \\ & \hline 0 \end{aligned}$	$\stackrel{\circ}{2}$
	$\begin{aligned} & 0 \\ & \mathbf{c} \\ & 00 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$																	$\begin{aligned} & \stackrel{8}{0} \\ & 0 \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\pi}{0} \end{aligned}$	$\begin{gathered} \frac{9}{2} \\ \hat{N} \\ \stackrel{0}{0} \\ \stackrel{6}{0} \\ \stackrel{\pi}{0} \end{gathered}$											$\begin{array}{\|c\|} \hline \frac{9}{4} \\ \stackrel{y}{0} \\ 0 \\ \frac{0}{0} \\ \stackrel{0}{0} \\ \hline \dot{0} \end{array}$			$\begin{array}{\|c\|} \hline \stackrel{\rightharpoonup}{0} \\ 0 \\ 0 \\ 0 \\ \stackrel{0}{0} \\ 0 \\ \\ \hline \end{array}$						
\geq										$\left\lvert\, \begin{aligned} & \text { on } \\ & \stackrel{0}{\mathrm{~N}} \\ & \hline \end{aligned}\right.$			$\stackrel{\stackrel{\rightharpoonup}{\|c\|}}{\sim}$									N					$\stackrel{¢}{\square}$		$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ 0 \\ \hline \\ \underset{\sim}{N} \\ \tilde{N} \end{array}$	$\begin{array}{\|l\|} \hat{\sim} \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{N}{\tilde{N}} \\ \end{array}$		$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{0} \\ \stackrel{0}{7} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		N			
				－	\sim		$\sim \sim$			N	\sim	，	\sim	\sim	\sim	\sim	，					\sim							\sim	\sim	\sim	\sim	\sim	\sim		\sim		，	
	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & n \\ & N \\ & i \\ & i / \\ & i / \\ & 0 \\ & 0 \\ & \end{aligned}$					$\underset{\sim}{c}$										－	N N en 0 0 \sim		O	N			N	$\begin{array}{ll} 3 \\ 3 \end{array}$	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ n_{n} \\ n \\ n \\ n \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ \\ \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	co	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ N \\ N \\ 0 \\ 0 \\ 0 \\ 0 \\ n \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{N}{m} \\ \underset{m}{0} \\ \tilde{n} \\ \omega_{1} \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bar{o} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} \bar{\infty} \\ \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \sim \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \overline{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hat{N} \\ \hline \end{array}$	0 0	N	N00		（10｜c
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$					O			$\begin{array}{c\|c\|c} 0 & 0 \\ & \stackrel{N}{N} \\ \hline \end{array}$			Non							$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\infty} \\ & \underset{\sim}{4} \end{aligned}$		$\stackrel{+}{\infty}$		잉			O	O	－	－	－	$\begin{array}{\|c\|} \hline 0 \\ \hline \mathbf{c} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \stackrel{o}{\hat{N}} \\ \hat{N} \\ \stackrel{n}{n} \end{array}$	$\left.\begin{array}{\|c\|c} \infty \\ \stackrel{0}{0} \\ \stackrel{N}{N} \\ \stackrel{心}{心} \end{array} \right\rvert\,$	$\begin{array}{\|l} \hline \stackrel{8}{\circ} \\ \stackrel{N}{0} \\ \stackrel{y}{\sim} \\ \hline \end{array}$	$\left\|\begin{array}{l} \stackrel{\circ}{0} \\ \\ \stackrel{0}{0} \end{array}\right\|$	$\left\|\begin{array}{l} 8 \\ 0 \\ \hline \end{array}\right\|$			$\begin{gathered} n \\ \hat{m} \\ \frac{0}{m} \\ \hline \end{gathered}$	
	\bar{u}				\sim		～	～	\sim	～	\sim	\sim	\sim	$\sim \sim$	$\sim \sim$	～	N	\sim	～	ค		\sim			～	～	入	～	～	～	～	\sim	～	\sim	\wedge	～	\sim	～	
	9	\bigcirc	\％	\％	뇽	ก	is	\％ 8	厄	$\bigcirc 8$	\＆$\widehat{6}$	$\%$	8	8 ก	N	®	\bigcirc	¢	\％	的	in	ल	N	$\stackrel{\infty}{\sim}$															
					$\begin{array}{ll} 0 & .0 .0 \\ \hline \end{array}$																\square																		
						$$				$$			\square				\square									들	틍	E		응	등	들	E	E	$\stackrel{\text { E }}{ }$	앙	앙	등	듣
	$\overline{\boldsymbol{Z}}$	00 $\stackrel{0}{3}$ \vdots 0 0 0 0 0 0																				0 $\stackrel{N}{7}$ \vdots \vdots 0 0 0 0 0 0 0 0 0 0 0 0 0 0										0 0 0 \vdots \vdots 0	0 \vdots \vdots \vdots 0 0 0 0 0 \vdots 0						

A5．5．1：The concordant SNPs mapping to 2DS from the UniGene data．The base call at the SNP position（Pos）in each of the CD（P1／3／5／7）and RIL4 samples （ $\mathrm{P} 2 / 4 / 6 / 8$ ）is shown．The UniGenes were aligned to the IWGSC CSS contigs （Contig）and annotated with information from syntenic species：HV：the barley chromosome and position；the Brachypodium（BD），rice（OS）and Sorghum（SB） genes．The SNP－type（varietal or homoeologous）was output from the PolyMarker alignments to Chinese Spring and the SNP validated as polymorphic or monomorphic between the parent NILs，RIL4 and CD．

A5.5.1 (continued): UniGene position along chromosome 2DS of the 38 concordant SNPs from the previous page, identified in the UniGene data.

A5.5.2: The SNPs mapping to the barley chromosome 2:14,500,000-18,000,000 from the UniGene data. The base call at the SNP position (Pos) in each of the CD (P1/3/5/7) and RIL4 samples (P2/4/6/8) is shown. The UniGenes were aligned to the IWGSC CSS contigs (Contig) and annotated with information from syntenic species: HV: the barley chromosome and position; the Brachypodium (BD), rice (OS) and Sorghum (SB) genes. The SNP-type (varietal or homoeologous) was output from the PolyMarker alignments to Chinese Spring and the SNP validated as polymorphic or monomorphic between the parent NILs, RIL4 and CD.

A5.5.3: The SNPs from the UniGene data identified from synteny to Brachypodium (Bd), relaxing stringency of concordance criteria (Relaxed) and retrospectively using the delimited 2D interval on the ordered v3.3 cDNAs (Informed). The base call at the SNP position (Pos) in each of the CD ($\mathrm{P} 1 / 3 / 5 / 7$) and RIL4 samples ($\mathrm{P} 2 / 4 / 6 / 8$) is shown. The UniGenes were aligned to the IWGSC CSS contigs (Contig) and annotated with information from syntenic species: HV: the barley chromosome and position; the Brachypodium (BD), rice (OS) and Sorghum (SB) genes. The SNP-type (varietal or homoeologous) was output from the PolyMarker alignments to Chinese Spring and the SNP validated as polymorphic or monomorphic between the parent NILs, RIL4 and CD.

\％				\＄${ }^{\text {¢ }}$	\％	\％	\％			｜${ }^{\frac{1}{4}}$	4	｜	4				：				¢		
¢			5	¢	．	\％	\％		0	8	－	\％	8	\＄${ }^{4}$	¢	®）	8	1\％	¢ \％	$\stackrel{\square}{8}$	®		
ら			®	® \％	\because	\％			®）	\％	\＄	－	\％	\＄	¢	＠）	0 \％	¢	¢ \％	\because	\％		
¢	¢	8	－	\＄	\％	O	¢	0					8					¢ $8^{\frac{2}{4}}$		0			
f	0	\＆	¢		®	$8{ }^{1}$	®\％	\％				2	\％					8		\％			
F	\％	$\frac{8}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	\％	$8{ }^{9}$－	®\％	\％				2	\％							๕			
F	0	－	\checkmark	¢	－	$3{ }^{1}$	®\％	®					\％							® 2			
\＆			$\frac{1}{1}$	¢ $¢$	$\stackrel{\square}{0}$	20	2		＠	8	4	¢	4	8	48	$0 \times$	0	） 4°	® 0	\bigcirc	－	®	
$\begin{array}{\|l\|} \hline \stackrel{x}{x} \\ \Sigma \\ \Sigma \\ \hline \end{array}$		¢			¢		®	＠¢	毋	\％	¢	\％	毎	¢	号		2	\＆	¢ ¢	\％			
$\stackrel{\Sigma}{\dot{x}}$		¢		4	号		）	＠¢	¢		\％	¢	¢ ${ }_{\text {¢ }}^{4}$	攵发	发这	¢	¢	\＄	ロ ¢	¢	¢ ${ }_{8}^{\text {¢ }}$		
\bigcirc				¢		回め	\％		¢	¢	¢	¢	¢	\＆	¢	）${ }_{\text {® }}$	脑		m	－	）	－	
o																	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \\ 0 \\ \hline 0 \end{array}$		．				
0																							
조									－	N｜c｜c	－							，			－		
$\left\|\begin{array}{c} \vec{u} \\ 0 \end{array}\right\|$																							
\sum_{0}			－ 0					¢ \ddagger	F	－		\％	\％						年				
$\begin{array}{\|l\|} \hline \frac{E}{4} \\ \hline \end{array}$												∞						－	－				
¢			＜	析				¢	๔	－			¢	\％				$\varangle \$$	§			，	
$\frac{0}{0}$			迷	－			尔	N	N											$\left\|\begin{array}{\|c} \stackrel{e}{0} \\ \stackrel{e}{6} \\ \end{array}\right\|$			
\square			珨	－			会		$\stackrel{\sim}{0}$					㓣会	N		－	－	\％	O			
응	－	$\stackrel{0}{5}$	－	骨年		－	－	（2）	－									$\stackrel{0}{0}$	\％	$\stackrel{\sim}{N}$			
$\left\|\begin{array}{l} \frac{0}{5} \\ \frac{0}{10} \\ \frac{2}{70} \end{array}\right\|$																		－	（1）	cren			
$\stackrel{0}{2} \mid$			El\|c	e							$\stackrel{E}{c}$	\hat{E}_{2}^{E}	E	E\|	틍	${ }_{\square}^{\text {E }}$	E	E E	\square			E E	
$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \end{array}$						\square		No															
SaZ																		Kuәךuイs					

A5．6．1：iSelect SNPs between parent NILs，selected on 2DS and synteny criteria as described in the text．Data from the short and tall recombinants was added later when available（shaded columns）．Columns left to right：BS code：unique（Bristol code）identifier from the array；Type：the SNP type（homoeologous or varietal）as returned from PolyMarker alignments；Validation：the result of markers screened on RIL4 and CD and the ID of those markers tested；Pseudo：the wheat pseudomolecule chromosome and position from Martin Trick＇s UniGene reference； Akhunov assignment of chromosome（Ch），long（L）or short（S）arm（Arm）and genetic map position on the chromosome（cM）；Contig：the IWGSC CSS best hit；HV：the barley chromosome and position；the Brachypodium（BD）and rice（OS）genes；TB：pooled DNA from T1／T2／T3 recombinants； $\mathrm{SB}=$ pooled DNA from S1／S2／S3 recombinants（details in Methods）．Missing data in the SNPs is represented by＇NC＇or otherwise＇- ＇．

¢	吅		四区	¢ $¢$	¢ ${ }_{\text {c }}$	\＄既を	\＄		\＄			＠			㭡邑	啰を	\＄${ }^{\text {d }}$													¢
¢	）	\％		\％	号	¢	¢	\％	¢	¢ ${ }_{\text {¢ }}^{4}$		）		\％${ }_{0}^{1}$	¢	¢	詈	¢	\％	\％	\％	）	）	－	¢	\％	邑品	0）	）	\％ 0
幺	\％	\％	吅区	¢ ¢	¢	¢	§	）	匋区	8		\％		\％	\％	睰を	¢	¢	¢	¢	\％	）	0	－	）	¢ $<$	§	员	＜	
∞	\＄	吅嘪				－	）		蜀区	旡		\％		\％${ }^{\text {¢ }}$	を	¢	号	¢	\％	買	¢	¢	¢	¢	\＄	吅品	员を	¢		¢ ¢
\mathfrak{F}	¢	员监			m	\％	睌		¢	缶		\％		¢	を	¢	\％	¢	\％	\％		¢			¢	员啰	员 $\mathbb{4}$	¢		¢
N	\％	品鹵					\％	）	䍖を	¢	\％	\％		品を	\＄	\＄	\％	を	）		を	\＄				回啰	\％	¢		吅を
F	\％	靣罪					靣	品	号を			¢		吅	\＄	\＄	¢	8	ロ	员	を	8	¢	¢	¢	回啰	品を	¢		既を
$\stackrel{\square}{7}$	）	\％	2	¢	\＄	¢	¢	\％	足			\％		）			¢	¢		2 O	\％	䛜䍐	品				）	号		2 Z
$$	\＆	毋め®		¢		\％	\％	＠	¢	¢	＠	¢		\％	¢ ${ }_{\text {¢ }}$	§	\％	¢	¢	¢	¢	$\mathbb{4} \mathbb{4}$					\％$¢$	¢		¢
\bar{y}	¢	¢	监を	¢	¢	\％	\％ Q	2 ${ }^{\text {¢ }}$	¢ \％	－	®邑	¢		¢ ${ }_{\text {¢ }}$	＠	¢	\＄$\$$	¢	品 $¢$	\＄	毋®®	\％）¢	\％		\％	¢ ${ }^{\text {d }}$	\＄${ }^{\text {¢ }}$	员		¢ ${ }^{\text {¢ }}$
\bigcirc	）		¢	\＆	\＆	¢	2 Z	2	¢	$4^{\frac{1}{4} \times 1}$				员	¢	を	m	¢	n	¢	¢		－	－		¢ ¢	员品	）		2
$\left.\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$											｜oty							（	（1）											
$\left\|\begin{array}{l} 0 \\ \mathbf{0} \\ \mathbf{0} \\ 0 \\ 0 \end{array}\right\|$																		为竒	｜ras											
交							商茄荷			\qquad	\square					$\begin{array}{\|c} \hline \begin{array}{l} \mathbf{e} \\ \mathbf{e} \\ 0 \\ \vdots \\ \hline \end{array} \\ \hline \end{array}$			Non								苍	－		
$\left\|\begin{array}{l} \text { 을 } \\ \dot{0} \\ 0 \end{array}\right\|$																														
\sum_{0}	ㅇor	のの®	® ®	¢	윽	$=\sim$	F－	－	ธั	\％		∞		®®	\％in	in 6	\％		\％	－	\％へ	へ へ					®			
$\begin{array}{\|l\|} \hline \frac{\mathrm{E}}{4} \\ \hline \end{array}$				∞				，－	－						os	0			c		－so	の心				cos	¢ 0			
Ј	ล		，	珨気	晾网		䂭	入		m		¢ $¢$				$\mathfrak{R} \cong$		\％	mp		人	\bigcirc				${ }^{\text {® }}$ ㅇ	ํ，	人		
$\left\|\begin{array}{l} 0 \\ \stackrel{0}{0} \\ \stackrel{\omega}{0} \end{array}\right\|$																	Oio			\square										
						珨造	珨	気	会㐌	m^{m} ¢	を			を	¢	¢	珨	¢	$\mathrm{m}^{\prime} \cdot$	员先	会员	为造			先		\％		n	岕
\bigcirc		我乐乐	${ }_{\text {¢ }}^{\infty}$					－	鲑知	0	\％	\％		\％	－	争	O2	¢	\％	－¢ ¢	－	¢								
																				茙		育䓂								
$\left\|\begin{array}{l} \stackrel{0}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$				틍						觡								$\begin{array}{ll} \\ \hline \end{array}$		気						E	E E			
$\left.\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$														\mathfrak{l}		高高商										Be				
SQZ $0+$ sdew								Yınq 8 łuəıed snsuəsu0〕																						

A5．6．2：iSelect SNPs between the short and tall bulks，selected on 2DS and consensus between parent and bulk data on SNPs outside 2DS．Columns left to right：BS code： unique（Bristol code）identifier from the array；Type：the SNP type（homoeologous or varietal）as returned from PolyMarker alignments；Validation：the result of markers screened on RIL4 and CD and the ID of those markers tested；Pseudo：the wheat pseudomolecule chromosome and position from Martin Trick＇s UniGene reference； Akhunov assignment of chromosome（Ch），long（L）or short（S）arm（Arm）and genetic map position on the chromosome（cM）；Contig：the IWGSC CSS best hit；HV：the barley chromosome and position；the Brachypodium（BD）and rice（OS）genes；TB：pooled DNA from T1／T2／T3 recombinants；SB：pooled DNA from S1／S2／S3 recombinants（details in Methods）．Missing data in the SNPs is represented by＇NC＇or otherwise＇- ＇．

A5.6.3: iSelect SNPs in the barley syntenic interval. Columns left to right: BS code: unique (Bristol code) identifier from the array; Type: the SNP type (homoeologous or varietal) as returned from PolyMarker alignments; Validation: the result of markers screened on RIL4 and CD and the ID of those markers tested; Pseudo: the wheat pseudomolecule chromosome and position from Martin Trick's UniGene reference; Akhunov assignment of chromosome (Ch), long (L) or short (S) arm (Arm) and genetic map position on the chromosome (cM); Contig: the IWGSC CSS best hit; HV: the barley chromosome and position; the Brachypodium (BD) and rice (OS) genes; TB: pooled DNA from T1/T2/T3 recombinants; SB: pooled DNA from S1/S2/S3 recombinants (details in Methods). Missing data in the SNPs is represented by 'NC' or otherwise ' - '.

A5.7.1: Putative SNPs from v3.3 cDNA data selected on criteria of mapping to 2DS and synteny with barley and Brachypodium. Columns left to right: Ref: reference base at SNP position; Var: variant at SNP position; Validation: the result of markers screened on RIL4 and CD and the Marker name of those tested; BFR: calculated from RA_1/RA_2; Inf: the parent enriched ta the SNP; CO: coverage, total number of reads mapping to the SNP; RA: ratio, relative contribution of reads that call the SNP from the total reads mapping to that position, C: count (coverage x ratio); Contig: the IWGSC CSS best hit; ID: \% nucleotide identity of the gene to Contig; HV: barley chromosome and position; Bd: Brachypodium gene annotation; 2DS: 2DS contig for which PolyMarker designed primers to be specific to; Primer: outcome of specificity to 2DS contig.

$\left\|\begin{array}{l} 0 \\ \mathbf{0} \\ 0 \\ 0 \\ 0 \\ \hline \mathbf{0} \end{array}\right\|$							$\begin{array}{l\|l\|} \hline 0 \\ \vdots & 0 \\ \hline \end{array}$																$\begin{aligned} & 5 \\ & 5 \end{aligned}$		
齐	$$					1 				M O O O 0 0 0										$\begin{aligned} & \text { ob } \\ & \stackrel{4}{6} \\ & \stackrel{\sim}{0} \\ & \stackrel{N}{0} \end{aligned}$			$\begin{aligned} & \text { ơ } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{4} \\ & \text { on } \end{aligned}$	$\begin{array}{\|c\|} \hline \infty \\ \tilde{y} \\ \infty \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	（en
	N	－			\sim	\sim	\sim	\sim		m	m	m	m	m	6	L	\llcorner	\llcorner		\llcorner				N	
으	8	\bigcirc	안	\bigcirc	응	은	안		운	\％		O	앙		응	8	8	앙	앙	앙	－	은	앙	앙	웅
$\begin{aligned} & \text { 을 } \\ & 0 \\ & 0 \end{aligned}$												\circ 0			0 0 0 0 $\stackrel{0}{0}$ $\stackrel{\rightharpoonup}{0}$										
$\begin{array}{\|l\|} \hline N \\ 0 \end{array}$	－	－	\sim	$\stackrel{\wedge}{\infty}$	－	$\stackrel{\sim}{\square}$	\pm	\％ 0	\pm	\pm ¢	\bigcirc	$\stackrel{\sim}{\sim}$	ल	N	\bigcirc	－	m	\bigcirc	－	－	－	－	∞	入	－
0	ले	ल	$\stackrel{\infty}{\infty}$	の	¢	－	－	$\stackrel{+}{\bullet}$	－	－ 7	¢	－	－	－	0	ర	앙	¢	\cdots	N	d	®	－	$\stackrel{\circ}{+}$	$\stackrel{\square}{\sim}$
$\begin{array}{\|l\|} \hline \mathbf{N} \\ \mathbb{区} \\ \hline \end{array}$	0	0	$\begin{aligned} & \mathrm{t} \\ & 0 \end{aligned}$	0	－	$\underset{0}{\sim}$	$\stackrel{\cong}{0}$	0	$\stackrel{0}{\circ}$	$0 .$	$\begin{gathered} 5 \\ \hline \end{gathered} \underset{O}{O}$	$\stackrel{n}{0}$	$\stackrel{N}{0}$	2	$\stackrel{\cong}{0}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	0	\bigcirc	$\begin{gathered} 0 \\ 0 \\ \hline \end{gathered}$	－	$\stackrel{\sim}{\infty}$	$\begin{gathered} 5 \\ 0 \\ \hline \end{gathered}$	N	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \hline \end{array}$	\bigcirc
$\mathbb{\nwarrow}$	0	$\stackrel{m}{0}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\sim}{\circ}$	0	0	0	0	\bigcirc	$\stackrel{n}{0}$	0		\bigcirc	0	\bigcirc	$\begin{array}{\|c\|} \hline 0 \\ 0 \end{array}$	$\stackrel{O}{\mathrm{O}}$	$\stackrel{\substack{0}}{\substack{0}}$	$\underset{\sim}{N}$	N	$\underset{o}{\hat{c}}$	${ }_{\square}^{\circ}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\infty}{0}$
$\begin{array}{\|l\|} \hline \mathrm{N}_{1} \\ \mathrm{O} \\ \hline \end{array}$	$\stackrel{\circ}{6}$	$\stackrel{\circ}{\circ}$	$\%$	$\begin{aligned} & \stackrel{\infty}{\sim} \\ & \sim \end{aligned}$	¢	¢	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	\sim_{\sim}^{∞}	$\stackrel{\circ}{m}$	\％	¢	－	¢	$\stackrel{\circ}{\circ}$	¢	ले	－	\sim	O	$\stackrel{\circ}{\circ}$	\％	$\bar{\infty}$	N
O	$\stackrel{e}{\sim}$	$\stackrel{\square}{2}$	$\stackrel{\circ}{\sim}$	$\stackrel{\otimes}{\oplus}$	®	N	০	¢	－	－	$\stackrel{\circ}{\stackrel{\circ}{-} \text { }}$	ㅇ	$\stackrel{\sim}{\circ}$	\sim	$\stackrel{\sim}{\circ}$	－	8	is	우	¢	$\bar{\sim}$	$\stackrel{\square}{\circ}$	∞	\＆	－
\pm	$\stackrel{J}{\bar{x}}$	$\stackrel{J}{\bar{x}}$	$\stackrel{J}{\bar{x}}$	0	$\stackrel{\forall}{\bar{\sim}}$	\bigcirc	\bigcirc	$\stackrel{y}{3}$	\bigcirc	$\stackrel{y}{\overline{\mathrm{I}}}$		\bigcirc	\bigcirc	$\stackrel{+}{\text { ¢ }}$	\bigcirc	$\stackrel{+}{\bar{\sim}}$	$\stackrel{\text { d }}{\text { d }}$	$\stackrel{\text { d }}{\text { ¢ }}$	$\overrightarrow{\underline{r}}$		\bigcirc	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{x}} \\ & \hline \end{aligned}$	0	$\begin{aligned} & \stackrel{y}{\vec{x}} \\ & \hline \end{aligned}$	宸
$\left\|\begin{array}{l} \mathbf{q} \\ \mathbf{1} \end{array}\right\|$	$\dot{\sim}$	$\underset{\sim}{\mathrm{O}}$	$\begin{gathered} \substack{c \\ c \\ c} \\ \hline \end{gathered}$	$1 \begin{gathered} \text { O } \\ \vdots \\ 1 \\ \hline \end{gathered}$	$\left\|\begin{array}{c} \stackrel{N}{N} \\ \stackrel{N}{2} \end{array}\right\|$	$\begin{array}{\|l} \text { 新 } \\ \text { 至 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 豙 } \\ \underline{\underline{4}} \\ \hline \end{array}$				$\stackrel{\substack{2 \\ \sim \\ \infty \\ \infty \\ \hline \\ \hline}}{ }$		$\stackrel{\infty}{\sim}$				$\begin{aligned} & 8 \\ & \stackrel{y}{\|c\|} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { O} \\ & \\ & \hline \end{aligned}$		$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \underset{N}{\prime} \end{gathered}$	\bigcirc	$\begin{aligned} & \circ \\ & \stackrel{8}{\dot{\theta}} \end{aligned}$	－
	$\begin{gathered} \sim \\ \sim \end{gathered}$	$\begin{gathered} N \\ N \\ \underset{N}{n} \end{gathered}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} N \\ N \end{gathered}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{N}{\sim}$	N	$\mathbf{v}_{0} \left\lvert\, \begin{gathered} c \\ \hline \end{gathered}\right.$	$\sim_{0} 1 \times$	 0 \sim 0	은	\sim	\cdots	\pm	$\stackrel{\square}{\square}$	\bigcirc	－	$\stackrel{\infty}{\sim}$	N	N	N	N	N	N
	$\left\lvert\, \begin{gathered} 0 \\ \hline \mathbf{o} \\ \frac{0}{0} \\ \frac{2}{2} \\ 0 \end{gathered}\right.$		$\begin{aligned} & 0 \\ & \hline ⿳ 亠 口 冋 口 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$											 0 							$\begin{aligned} & 0 \\ & \hline ⿳ 亠 口 冋 口 10 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & .0 \\ & \hline \frac{0}{0} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { O} \\ & \text { ò } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	（1）
$\stackrel{\otimes}{2}$			$\begin{gathered} \underline{E} \\ \\ \dot{c} \\ \dot{c} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \underline{0} \\ \\ \dot{c} \\ \hline \mathbf{c} \\ \hline \end{array}$			$\begin{array}{l\|l\|} \hline \\ \hline \end{array}$								E 둔 힐									¢
$\begin{array}{\|l\|} \hline \frac{1}{\pi} \\ \hline \end{array}$	\vdash	\vdash	\vdash	＜	\checkmark	\vdash	\checkmark	0	O	\bigcirc	¢ 0	－	－	－-	－	－	৫	\checkmark	O	\checkmark	0	－	O	\bigcirc	\vdash
$\begin{array}{\|l\|} \hline \begin{array}{\|c} \mathbf{0} \\ \text { (} \end{array} \\ \hline \end{array}$	0	0	O	O	\sim	๘	ธ	\sim	\％${ }^{+}$	O	O 0	\％๙	0	0	O	0	－	ธ	＋	＋	－	0	๘	0	ธ
$\frac{\square}{\mathbf{2}}$																									（1）
										Өр															

A5．7．2：Putative SNPs from v3．3 cDNA data selected on criteria of high BFR． Columns left to right：Ref：reference base at SNP position；Var：variant at SNP position；Validation：the result of markers screened on RIL4 and CD and the Marker name of those tested；BFR：calculated from RA＿1／RA＿2；Inf：the parent enriched at the SNP；CO：coverage，total number of reads mapping to the SNP； RA：ratio，relative contribution of reads that call the SNP from the total reads mapping to that position，C：count（coverage x ratio）；Contig：the IWGSC CSS best hit；ID：\％nucleotide identity of the gene to Contig；HV：barley chromosome and position；Bd：Brachypodium gene annotation．

A5.8: Putative SNP distribution over the v3.3 cDNA 2D interval reference (a total of 59 cDNAs), with the genes ordered from left to right as they are anchored in the ordered v3.3 cDNA reference. The varietal SNPs between the parent NILs/ bulks and the reference are shown.

		Parent NILs				Bulks			
		Mapped reads			Coverage	Mapped reads			Coverage
Gene	Gene length	CD	RIL4	Combined		short	tall	Combined	
mrna126380	1056	44092	34935	79027	1273	14945	16693	31638	510
mrna090625	1015	18905	12844	31749	492	1778	2191	3969	61
mrna074113	732	3640	3238	6878	77	1463	1644	3107	35
mrna040847	2625	72138	51289	123427	4942	10341	11685	22026	882
mrna064977	621	6323	3491	9814	93	1151	1193	2344	22
mrna066573	282	1225	753	1978	9	532	557	1089	5
mrna026970	1404	67	405	472	10	35	72	107	2
mrna105132	1728	34918	8910	43828	1155	4362	4770	9132	241
mrna009588	1515	522	419	941	22	182	224	406	9
mrna121627	330	0	2	2	0.01	3	0	3	0.02
mrna074509	1674	183	110	293	7	67	68	135	3
mrna028105	1323	12956	10150	23106	466	6462	6315	12777	258
mrna121338	459	822	624	1446	10	401	384	785	5
mrna107490	363	229	18	247	1	8	0	8	0
mrna093230	295	1354	1095	2449	11	887	1042	1929	9
mrna070632	496	4277	2958	7235	55	2484	2634	5118	39
mrna093698	807	29555	18855	48410	596	5367	6079	11446	141
mrna084787	1230	119	37	156	3	15	8	23	0.43
mrna139758	2001	59124	61852	120976	3692	23993	25503	49496	1511
mrna071578	888	11254	16581	27835	377	2770	4181	6951	94
mrna048555	417	2769	2069	4838	31	2167	2216	4383	28
mrna091757	177	1323	844	2167	6	444	504	948	3
mrna015009	455	3177	1795	4972	35	58	109	167	1
mrna004763	1483	14171	9888	24059	544	4531	4776	9307	211
mrna098230	390	5668	4897	10565	63	2751	3116	5867	35
mrna053306	717	29591	23949	53540	586	11857	12582	24439	267
mrna035375	375	2214	1506	3720	21	1627	1602	3229	18
mrna002983	6936	379116	332147	711263	75244	106269	119995	226264	23936
mrna096393	3122	1789	1030	2819	134	953	916	1869	89
mrna016294	390	91	58	149	1	56	46	102	1
mrna106738	683	1892	1251	3143	33	1034	1106	2140	22
mrna096003	1038	3230	2046	5276	84	1536	1546	3082	49
mrna124385	355	6500	3461	9961	54	5647	4908	10555	57
mrna118007	271	795553	338824	1134377	4689	8089	11850	19939	82
mrna105093	573	5690130	2083915	7774045	67942	52859	76813	129672	1133
mrna057813	495	17502	13136	30638	231	9375	9785	19160	145
mrna043662	1704	67923	52517	120440	3130	25493	27019	52512	1365
mrna007120	315	47	46	93	0	9	13	22	0.11
mrna096121	1909	23127	15818	38945	1134	11159	11762	22921	667
mrna029953	435	4876	3706	8582	57	2247	2506	4753	32
mrna001012	633	38544	96913	135457	1308	964	3080	4044	39
mrna023290	1101	226	114	340	6	88	79	167	3
mrna079612	3980	72053	46633	118686	7205	35116	33653	68769	4175
mrna066175	618	3753	2970	6723	63	2444	2449	4893	46
mrna110666	321	5486	4444	9930	49	1947	1878	3825	19
mrna064310	2470	6572	6384	12956	488	3769	6522	10291	388
mrna139098	2557	8104	7684	15788	616	5436	8671	14107	550
mrna072920	465	834	674	1508	11	470	580	1050	7
mrna077126	2166	22912	11994	34906	1153	14854	13630	28484	941
mrna024572	753	6367	6037	12404	142	3125	3477	6602	76
mrna131003	504	1829	1687	3516	27	693	748	1441	11
mrna054831	2104	2185	1389	3574	115	947	1022	1969	63
mrna053564	369	1470	1110	2580	15	861	974	1835	10
mrna007148	2183	6151	4522	10673	355	3851	3826	7677	256
mrna014279	825	1799	1284	3083	39	893	920	1813	23
mrna066730	366	1052	793	1845	10	1406	1939	3345	19
mrna058994	732	9429	4746	14175	158	1682	1602	3284	37
mrna098363	165	15193	9486	24679	62	9657	10394	20051	50
mrna057019	168	40	34	74	0.19	33	30	63	0.16
	Total	7556391	3330367	10886758		413643	473887	887530	

A5.9: Mapped reads and coverage statistics for the 2D v3.3 cDNAs. Gene length refers to number of nucleotides in sequence. Coverage was calculated using: (combined mapped reads x gene length)/total length of reference $(65,564$).

A5.10: Schematic diagram of the strategies to prioritise SNPs for validation from putative SNPs identified by aligning to the 2D interval from the v3.3 cDNAs.

A5.11: Venn diagrams showing the overlap in SNPs from 2D v3.3 cDNAs between the filtered varietal SNPs in (A) the parent NILs and the short bulk (B) the parent NILs and the tall bulk. Numbers are SNPs including SNPs on duplicated genes. Italics indicate SNPs prioritised for validation.

| | Coverage | | Reads1 | | Reads2 | | Frequency (\%) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gene | Position | Ref | Var | RIL4 | Short | RIL4 | Short | RIL4 | Short | RIL4 | Short |
| mrna002983 | 1 | A | G | 143 | 17 | 107 | 10 | 33 | 6 | 23.08 | 35.29 |
| mrna053564 | 111 | T | C | 216 | 131 | 163 | 104 | 53 | 27 | 24.54 | 20.61 |
| mrna054831 | 1630 | A | G | 66 | 34 | 52 | 27 | 14 | 7 | 21.21 | 20.59 |
| mrna064310 | 2179 | G | A | 262 | 214 | 204 | 159 | 58 | 55 | 22.14 | 25.70 |
| mrna106738 | 85 | C | T | 236 | 248 | 185 | 196 | 51 | 52 | 21.61 | 20.97 |
| mrna106738 | 610 | G | A | 53 | 55 | 40 | 44 | 13 | 11 | 24.53 | 20.00 |
| mrna106738 | 627 | G | T | 40 | 43 | 26 | 28 | 9 | 9 | 22.50 | 20.93 |
| mrna110666 | 144 | C | T | 1181 | 489 | 925 | 381 | 256 | 108 | 21.68 | 22.09 |

				Coverage		Reads1		Reads2		Frequency (\%)	
Gene	Position	Ref	Var	CD	Tall	CD	Tall	CD	Tall	CD	Tall
mrna096003	492	G	A	450	214	358	164	92	50	20.44	23.36
mrna096393	2189	T	A	86	51	68	37	18	14	20.93	27.45
mrna007148	409	A	G	289	165	228	130	61	35	21.11	21.21
mrna105132	690	C	T	862	143	678	108	183	35	21.23	24.48
mrna077126	2051	T	C	964	821	757	646	206	174	21.39	21.19
mrna077126	917	T	C	952	475	748	375	204	100	21.43	21.05
mrna007148	169	G	A	280	136	219	107	61	29	21.79	21.32
mrna007148	168	T	C	278	138	217	108	61	30	21.94	21.74
mrna007148	352	C	T	340	178	264	142	76	36	22.35	20.22
mrna096393	2184	A	G	80	46	62	34	18	12	22.50	26.09
mrna007148	351	T	C	336	173	260	137	76	36	22.62	20.81
mrna096003	489	T	C	444	212	342	164	102	48	22.97	22.64
mrna096003	438	C	T	385	170	296	136	89	34	23.12	20.00
mrna007148	349	T	C	341	176	261	138	80	38	23.46	21.59
mrna066573	224	A	G	150	46	114	27	36	19	24.00	41.30
mrna096003	1002	C	T	56	33	42	22	14	11	25.00	33.33
mrna090625	232	C	G	754	75	561	57	193	18	25.60	24.00
mrna007148	2043	G	T	76	62	52	49	24	13	31.58	20.97
mrna098363	5	A	T	126	109	9	8	49	44	38.58	40.37
mrna053564	1	G	C	10	11	0	2	9	9	90.00	81.82
mrna057019	62	T	A	11	8	0	0	11	8	100.00	100.00
mrna057019	70	T	C	11	8	0	0	11	8	100.00	100.00

A5.12: The statistics of the overlapping putative varietal SNPs shown in A5.11 between (top) the short parent NIL and short bulk and (bottom) the tall parent NIL and tall bulk. Coverage: total depth of coverage; Reads1: number of reads supporting the reference; Reads2: number of reads supporting the SNP; Frequency: the SNP frequency from the read count (Reads2/total count).

A5.13: SNPs identified for validation by steps shown in A5.10 (1). Columns left to right: Ref: reference base at SNP position; Var: variant at SNP position; Validation: the result of the marker screened on RIL4 and CD; Coverage: total number of reads mapping to the SNP; Reads: number of reads mapping with the reference or variant call at the SNP position; Freq: the SNP frequency from the read count (Reads of variant/total count); Contig: 2DS contig which the SNP maps to for which PolyMarker designed primers to be specific to; Primer: outcome of specificity to 2DS contig.

A5.14: The frequencies of the putative varietal SNPs, relative to the calls supporting the reference, from alignments to the 2D v3.3 cDNA interval. The total SNPs between parent NILs and the reference (top panel) and both short and tall bulks (bottom panel) are shown.

产									0 0 0 0 0 0 0 0 0 0	$\begin{array}{\|l\|l\|} \hline 0 \\ : 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	－		（e）
$\begin{aligned} & \text { 을 } \\ & 0 \\ & 0 \end{aligned}$				2DS_5342238							－		
	$\left\|\begin{array}{c} \underset{\sim}{\wedge} \\ \stackrel{y}{*} \end{array}\right\|$	$\left\|\begin{array}{\|c} 8 \\ 0 \\ 0 \end{array}\right\|$	$$	$\begin{aligned} & 8 \\ & 0 \\ & \hline 1 \end{aligned}$				B-		$\begin{array}{\|c} \hline \mathrm{O} \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \end{array}$	－		¢
$\begin{aligned} & \text { 㐫 } \\ & \boldsymbol{\sim} \end{aligned}$	～	아	$\bigcirc \stackrel{\infty}{\sim}$	\bigcirc	앙	앙	00	$๑ \circ$	－	\ldots	$\stackrel{\sim}{\circ}$		$\stackrel{\text { d }}{ }$
	入	\bigcirc	－	－	0	－	0	$\bigcirc \sim$	\sim	\bigcirc			$\stackrel{\sim}{\sim}$
Z	－	아	$\bigcirc \mathfrak{N}$	$\stackrel{\square}{\bullet}$	은	\bigcirc	\bigcirc	∞	～	～	～		응
	\％		¢ \％	\％			－	（\％）	\％	\％	令		（1）
$\begin{aligned} & \text { ㅇ, } \\ & \sum_{\Omega} \end{aligned}$	$\left\|\begin{array}{c} \bar{\pi} \\ \stackrel{r}{2} \end{array}\right\|$			$\begin{aligned} & \stackrel{+}{\stackrel{\rightharpoonup}{4}} \\ & \stackrel{0}{L} \end{aligned}$	0						F		N \sim O U
											토토․		
$\underset{\sim}{2}$	术		彦	彦	\％	衰	5	牙	\％	彦	彦		त
＞	0	\vdash	－ 0	－	－	＜	＜ 0	00	＜	$<$	＜		0
$\begin{aligned} & \hline \stackrel{\text { ® }}{2} \\ & \hline \end{aligned}$	\bigcirc	0	－ 1	0	－	＜	－ 1	$\vdash \vdash$	－	\checkmark	O		＜
$\frac{0}{2}$				$\begin{array}{lc} 0 \\ 0 & \tilde{y} \\ \hline \end{array}$							－		c｜c
$\dot{3}$ © ©	\bigcirc	$\stackrel{ \pm}{\text { ¢ }}$	$\stackrel{ \pm}{\vec{x}} \stackrel{y}{\bar{\sim}}$	0	0		0	00	\bigcirc	\bigcirc	$\stackrel{\square}{\text { c }}$		\bigcirc

A5．15：SNPs identified for validation by steps shown in A5．10（2）．Columns left to right：Source：Informative parent of the variant call；Ref：reference base at SNP position；Var：variant at SNP position；Validation：the result of the marker （SNP＿ID）screened on RIL4 and CD；Cov：total number of reads mapping to the SNP；R：number of reads mapping with the reference or variant call at the SNP position；Freq：the SNP frequency from the read count（Reads of variant／total count）；Contig：2DS contig which the SNP maps to for which PolyMarker designed primers to be specific to；Primer：outcome of specificity to 2DS contig．

A5.16: The 2D RIL marker classes based on graphical genotypes in A5.17.

No. markers in class			32	22	25		410	1	6	6	1	1	2	1	2	4	1	2	1	1	62
2D RIL class		12	34	45	67	789	910	11	12	13	14	15	16	17	18	19	20	21	22	23	
RIL1	b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b		b	
RIL2	b	b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL3	b	b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
Ril4		b b	b b	b b	b b	b b b	b	b	b	b	b	a	b	b	b	b	b	b	a	b	
RIL5	a	a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL6	b	b b	b b	b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL7	b	b	b b	b b	b b	b b b	b b	b	b	b	b	b	a	b	b	b	b	b	b	b	
RIL8	b	b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL9	b	b b	b b	b a	$a \mathrm{~b}$	-	a	b	b	b	b	a	b	b	b	b	b	b	b	b	
RiL10	a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RiL11	a	a a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL12	a	a	a a	a a	a a	a a	a a	a	a	a	a	a	b	a	a	a	a	a	a	a	
RIL13	b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RiL14	b	b b	b b	b b	b b	b b	b	b	b	b	b	b	a	b	b	b	b	b	b	b	
Rill15	b	b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL16		a a	a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL17	a	a a	a a	a a	a a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL18	b	b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RLL19	a	a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL20		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL21	b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL22	a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL23		a a	$a \mathrm{~b}$	b b	b b	b b	b b	b	b	b	a	b	a	b	b	b	b	b	b	b	
RIL24	b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL25		a a	a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL26		a a	a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL27	a	a a	a a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL28		b b	b b	b b	b b	a b	b b	b	b	b	b	a	b	b	b	b	b	b	b	b	
RIL29		a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL30		a a	a a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL31		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
Rill33		a a	a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
Rill3		a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	b	a	a	b	
RIL35		a b	b b	b b	b b	b	b b	b	b	b	b	b	a	a	a	b	a	b	b	a	
RIL36		a b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL37		b b	b b	b b	b b	b b	b b	a	b	b	b	b	b	b	b	b	b	b	b	b	
RIL38		a	a a	a a	a a	b a	a	a	a	a	a	a	a	b	a	a	a	a	a	a	
Rill39		b b	b b	b b	b b	b b	b b	b	b	b	b	a	b	b	b	b	b	b	b	b	
Rill40		b b	b b	b b	b b	b b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RLL41		a b	b b	b b	b b	b b b	b b	b	b	b	b	b	b	a	a	b	a	b	b	a	
RIL42		a a	a a	$a \mathrm{~b}$	b b	b	b	b	a	b	a	b	a	a	a	a	b	a	b	b	
RIL43		a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL44		a a	$a b$	b b	b b	b	b b	b	b	b	a	a	a	b	b	b	b	b	b	b	
RIL45		a b	b b	b b	b b	b	b	b	b	b	b	b	a	b	b	b	b	b	b	b	
Ril46		b b	b b	b a	a a	a a	a a	a	a	a	b	a	b	b	a	b	a	b	a	a	
RIL47		b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL48		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL49		a	a a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL50		a a	a a	a b	b b	b b	b b	b	a	b	a	b	a	a	a	a	b	a	a	a	
RiL51		b b	b b	b b	b b	b b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RilL5		a a	a a	a a	a a	a	a	a	a	a	a	a	b	a	a	a	a	a	a	a	
RIL53		o	b b	b b	b b	b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL54		a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL55		b b	b b	b b	b b	b b	b b	b	b	b	b	b	a	b	b	b	b	b	b	b	
RIL56		b b	b b	b b	b b	b b	b b	b	b	b	b	b	a	b	b	b	b	b	b	b	
RIL57		a a	a a	a a	a a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RiL59		a b	b b	b a	b b	b b	b b	b	b	b	a	b	a	b	b	b	b	b	b	b	
RIL60		a a	a a	a a	a a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL61		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
Rilc62		a a	$a \mathrm{a}$	a a	a a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL63		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RiL64		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RiL65		a b	b b	b b	b b	b b b	b b	b	b	b	b	b	a	b	b	b	b	b	b	b	
RIL66		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
Rill67		b	b b	b b	b b	b b	b b	b	b	a	b	b	b	b	b	b	b	b	b	b	
RIL68		b	b b	b a	a a	a	a a	a	b	b	b	a	b	b	b	b	a	b	b	b	
RIL70		b b	b b	b b	b b	b b	b b	b	b	a	b	b	b	b	b	b	b	b	b	b	
RIL71		a a	a a	a b	b a	b a	a	a	a	a	a	b	a	a	a	a	a	a	a	a	
RIL73		a a	a a	a a	a a	a a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL74		b b	b b	b a	a a	a a	a a	a	b	a	b	a	b	b	b	b	a	b	a	b	
RIL75		a	a a	a a	a a	a ${ }^{\text {a }}$	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL77		a	a	a a	a a	b a	a a	a	a	a	a	b	a	a	a	a	a	a	a	a	
Ril79		a a	a	a a	a a	b a	a a	a	a	a	a	b	a	a	a	a	a	a	a	a	
RIL80		a a	a a	a b	a a	b a	a a	a	a	a	a	b	a	a	a	a	a	a	a	a	
RiL81		a a	a a	a b	b b	b b	b b	b	b	b	a	b	a	b	b	b	b	b	b	b	
RIL82		b b	b a	a a	a a	a a	a a	a	a	a	b	a	b	a	a	a	a	a	a	a	
RiL83		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RiL84		b	$b b$	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RIL85		b b	b b	b b	b b	b b	b b	b	b	b	b	b	b	b	b	b	b	b	b	b	
RLL86		a a	a a	a a	a a	a	a a	a	a	a	a	a	a	a	a	a	a	a	a	a	
RIL87		b b	b b	b b	b b	b	b b	b	b	b	b	b	b	b	b	b	b	b	b		
RiL88		b b	b b	b a	a a	a a	a a	a	b	a	b	a	b	b	b	b	a	b			

A5.17: The graphical genotype of each marker class to the 2D RIL population used for coarse mapping. The assignment of markers to classes is shown in A5.16. The total markers in each class are shown on the top row.

Marker	Source	2D RIL class	$\begin{aligned} & \text { gwm } \\ & \text { class } \end{aligned}$	$\begin{gathered} \text { FM } \\ \text { class } \end{gathered}$	POPSEQ bin	IWGSC contig	Barley		Brachypodium	Rice	v3.3 cDNAs	
2DS_137	IWGSC-1	1	7	-	-	2DS_5309868	-	-	-	-	mrna112293	-
AX-2	Axiom	1	7	-	-	2DS_5389432	MLOC_5618	9705271	Bradi5g02037	Os04g0107900	mrna105701	562484
AX-4	Axiom	1	7	-	-	2DS_5389432	MLOC_5618	9705271	Bradi5g02037	Os04g0107900	mrna105701	562484
2DS_278	IWGSC-2	2	10	-	33.06	2DS_5360680	-	-	-	-	-	-
2DS_242	v3.3 cDNAs	3	9	-	-	2DS_5388557	MLOC_66130	12806286	Bradi5g02400	Os04g0102500	mrna126380	704896
2DS_243	v3.3 cDNAs	3	9	-	-	2DS_5388557	MLOC_66130	12806286	Bradi5g02400	Os04g0102500	mrna126380	704896
76_uni	UniGenes	3	11	-	12.03	2DS_5330846	MLOC_15183	10865622	Bradi1g48432	Os07g0133100	mrna099460	-
2DS_235	v3.3 cDNAs	4	2	-	13.83	2DS_5365907	MLOC_62712	9685835	-	-	mrna074113	734103
2DS_280	IWGSC-2	4	12	-	18.14	2DS_5323734	AK365704	-	-	-	-	-
2DS_66	IWGSC-1	5	25	F	33.06	2DS_5357871	MLOC_26534	608666509	-	-	mrna102226	-
2DS_138	IWGSC-1	5	27	F	33.06	2DS_5318296	MLOC_48245	19071820	Bradi5g04130	Os04g0229100	-	-
2DS_15	IWGSC-1	6	25	F	33.06	2DS_5390752	MLOC_69463	19016685	Bradi5g04550	Os04g0244400	-	1189621
2DS_26	IWGSC-1	6	26	F	33.06	2DS_5390977	MLOC_37479	18924902	Bradi5g04340	Os03g0856000	mrna057813	1161159
2DS_88	IWGSC-1	7	17	A	17.34	2DS_5321770	MLOC_24124	15296824	Bradi5g03400	Os04g0206450	-	-
2DS_89	IWGSC-1	7	17	A	17.34	2DS_5321770	MLOC_24124	15296824	Bradi5g03400	Os04g0206450	-	-
2DS_95	IWGSC-1	7	17	A	17.34	2DS_5341322	MLOC_522	15276497	Bradi5g03340	-	-	-
55_uni	UniGenes	7	18	C	-	2DS_5375260	MLOC_52188	22256327	Bradi5g05140	Os03g0804300	mrna102641	7779113
2DS_105	IWGSC-1	7	23	A	17.34	2DS_5390456	-	-	Bradi5g02900	-	-	-
2DS_293	Chapman	8	30	-	33.06	2DS_5363870	MLOC_74610	-	Bradi5g03697	Os04g14760	-	-
2DS_187	Limagrain	9	28	E	17.34	2DS_5354335	-	-	Bradi5g15565	-	-	-
2DS_192	Limagrain	9	28	E	16.95	2DS_5378845	MLOC_76709	39057764	Bradi1g69730	Os10g0399100	-	-
2DS_201	Limagrain	9	28	E	17.34	2DS_5389660	MLOC_5590	Chr_1	-	-	-	-
2DS_208	Limagrain	9	28	E	17.34	2DS_5389857	MLOC_58453	18521524	-	Os04g0261400	mrna074899	-
2DS_3	IWGSC-1	7	13	A	-	2DS_5337443	MLOC_81137	15280265	Bradi5g03380	Os04g0204000	mrna103570	-
2DS_4	IWGSC-1	7	13	A	-	2DS_5337443	MLOC_81137	15280265	Bradi5g03380	Os04g0204000	mrna103570	-
2DS_1	IWGSC-1	7	14	A	17.34	2DS_5359909	-	-	-	Os10g21560	mrna008489	-

A5.18: The total markers developed in Chapter 5 which were likely to map to Rht8 based on mapping with the 2D RIL population. These markers were used in Chapter 6 in the final step to fine-map Rht8. Markers are annotated by marker class at each mapping step and with comparative genomic data from syntenic species. Wheat annotation is shown in terms of the POPSEQ bin the 2DS CSS contig was mapped to in the IWGSC-2 and Chapman datasets. No information indicates the contig is not in the POPSEQ data. Each contig was also anchored on the v3.3 cDNAs where possible. Anchoring of DG279 and DG371 is shown fully in Chapter 5 but included here for ease of comparison between all markers.

Marker	Source	$\left\lvert\, \begin{gathered} \text { 2D RIL } \\ \text { class } \end{gathered}\right.$	gwm class	$\begin{gathered} \mathrm{FM} \\ \text { class } \end{gathered}$	$\begin{gathered} \text { POPSEQ } \\ \text { bin } \end{gathered}$	IWGSC contig	Barley		Brachypodium	Rice	v3.3 cDNAs	
2DS_222	Limagrain	7	19	C	17.34	2DS_5342594	MLOC_70393	22198957	Bradi3g16570	Os04g0652600	-	-
2DS_223	Limagrain	7	19	C	17.34	2DS_5342594	MLOC_70393	22198957	Bradi3g16570	Os04g0652600	-	-
8_uni	UniGenes	7	21	A	-	2DS_5388088	-	-	Bradi4g02250	Os04g12560	-	881779
2DS_540403	IWGSC-2	7	22	A	17.34	2DS_540403	MLOC_81137	15280265	Bradi5g03380	Os04g0204000	-	-
2DS_5375260	IWGSC-2	7	18	D	-	2DS_5375260	MLOC_52188	22256327	Bradi5g05140	Os03g0804300	mrna102641	7779113
BFR_46	v3.3 cDNAs	7	25	F	17.34	2DS_5371750	MLOC_58466	19491674	Bradi5g04660	Os02g0319800	-	1264216
16_uni	UniGenes	7	28	E	17.34	2DS_5364728	MLOC_72777	19455074	Bradi5g04686	Os04g0252400	mrna103168	7646108
2DS_6	IWGSC-1	10	14	A	17.34	2DS_5321865	MLOC_62798	15618954	Bradi4g21260	Os11g0215100	mrna052919	-
2DS_145	IWGSC-1	11	3	-	12.93	2DS_5366858	MLOC_54461	12602333	-	Os08g0105600	mrna046956	-
2DS_79	IWGSC-1	11	3	-	18.14	2DS_5317970	MLOC_17561	14075639	Bradi5g02830	-	mrna095026	-
2DS_94	IWGSC-1	11	3	-	16.56	2DS_5338366	MLOC_56811	12508948	Bradi5g02860	-	mrna009588	801887
AX-25	Axiom	11	3	-	13.83	2DS_5358861	MLOC_38821	9984398	Bradi5g02520	Os03g0363600	mrna026970	766690
AX-28	Axiom	11	3	-	13.83	2DS_5358861	MLOC_38821	9984398	Bradi5g02520	Os03g0363600	mrna026970	766690
AX-29	Axiom	11	3	-	13.83	2DS_5358861	MLOC_38821	9984398	Bradi5g02520	Os03g0363600	mrna026970	766690
2DS_149	IWGSC-1	12	15	A	17.34	2DS_5319467	MLOC_43355	15293278	-	Os04g0208400	-	-
2DS_210	Limagrain	12	16	A	17.34	2DS_5337059	MLOC_16024	475472562	-	-	-	-
2DS_211	Limagrain	12	16	A	17.34	2DS_5337059	MLOC_16024	475472562	-			-
2DS_212	Limagrain	12	16	A	17.34	2DS_5337059	MLOC_16024	475472562	-	-	-	-
2DS_217	Limagrain	12	16	A	-	2DS_5319965	-	-	-	-	-	-
2DS_215	Limagrain	12	22	A	-	2DS_5379317	-	-	-			-
AX-30	Axiom	13	8	-	9.2	2DS_5388293	MLOC_81869	19752473	Bradi3g22850	Os02g0113200	-	-
2DS_275	IWGSC-2	14	29	G	33.06	2DS_5344159	-	-	-	-	-	-
50_uni	UniGenes	15	6	-	0	2DS_4514573	MLOC_10286	5751998	-	-	mrna095302	237336
21_uni	UniGenes	15	6	-	0	2DS_5353487	MLOC_53593	532316057	Bradi5g18940	Os04g0574100	-	-
6 iS	iSelect	16	5	-	13.83	2DS_5354297	MLOC_38340	10177219	-	Os09g0479600	mrna123420	-
5 i	iSelect	17	2	-	17.34	2DS_5316382	MLOC_63202	14025380	Bradi5g02810	Os04g0188500	mrna060003	-
4iS	iSelect	17	2	-	17.34	2DS_5343763	MLOC_51927	-	Bradi5g02890	Os12g0277500		
1_al	2D v3.3 cDNAs	18	2	-	16.56	2DS_5338366	MLOC_56811	12508948	Bradi5g02860	-	mrna009588	801887
66_uni	UniGenes	18	2	-	13.83	2DS_5362023	MLOC_65493	12625788	Bradi5g02490	Os07g0474600	mrna040847	752563
27_uni	UniGenes	18	4	-	13.83	2DS_5358861	MLOC_38821	9984398	Bradi5g02520	Os03g0363600	mrna064977	766685
Freq_2	2D v3.3 cDNAs	18	4	-	13.83	2DS_5358861	MLOC_38821	9984398	Bradi5g02520	Os03g0363600	mrna026970	766690
52i	iSelect	19	20	B	-	2BS_4748675	MLOC_5957	15601547	Bradi5g03460	Os04g0209200	-	-
11iS	iSelect	20	2	-	16.56	2DS_5343186	-	-	-	-	mrna123373	-
63_uni	UniGenes	20	14	A	17.34	2DS_5359909	-	15266465	-	Os10g21560	mrna008489	-
72 uni	UniGenes	21	2	-	17.34	2DS_5343763	MLOC_51927	-	Bradi5g02890	Os 12g0277500	-	-
10 iS	iSelect	22	1	-	-	1BS_3467454	-	-	-	-	-	-

A5. 18 (continued)

Gene	Base	Pos	SNP	BFR	Cov_1	Cov_2	Bulk	Ratio_1	Ratio_2	Count_1	Count_2	Contig	Identity
mrna140874	t	1815	C	20.04	67	107	tall	0.01	0.3	1	32	5BL_10805975	100
mrna019699	C	139	G	20.29	46	34	tall	0.02	0.44	1	15	1AL_3848105	100
mrna132275	c	75	A	20.34	265	55	short	0.74	0.04	196	2	1BS_3432767	99.72
mrna132275	g	73	T	20.45	256	56	short	0.73	0.04	187	2	1BS_3434134	99.72
mrna119531	g	173	A	20.83	75	71	short	0.29	0.01	22	1	7BL_6742592	100
mrna015649	c	429	T	21.17	254	42	tall	0.02	0.5	6	21	5BL_10789463	99.63
mrna063321	a	504	G	21.72	157	159	tall	0.01	0.14	1	22	7AS_4249929	100
mrna023899	t	636	G	21.74	68	1463	short	0.1	0	7	7	2DS_5382207	88.92
mrna041746	a	425	T	21.98	41	58	short	0.36	0.02	40	1	2BL_8075479	99.19
mrna063321	t	489	G	22	147	147	tall	0.01	0.15	1	22	7AS_4249929	100
mrna053652	c	977	T	22.04	190	166	short	0.13	0.01	32	1	1BL_3805529	100
mrna022149	c	819	T	23.34	109	636	short	0.04	0	4	1	4AL_7159326	100
mrna121159	g	237	A	23.5	681	705	short	0.1	0	68	3	7DS_3961038	100
mrna022149	c	821	A	23.63	108	638	short	0.04	0	4	1	4AL_7159326	100
mrna021588	g	455	C	23.89	27	828	short	0.11	0	4	4	3B_10456072	100
mrna055972	c	192	T	24.29	56	85	short	0.29	0.01	16	1	7BS_3065836	100
mrna065695	c	499	G	24.7	220	209	short	0.12	0	26	1	7DS_3906205	99.12
mrna004362	g	556	A	25.29	328	237	short	0.11	0	35	1	2BL_8020296	100
mrna015649	c	489	T	25.8	258	42	tall	0.04	1	10	42	5BL_10789463	99.63
mrna074847	g	162	C	25.82	72	290	tall	0.01	0.36	1	104	4DL_14465849	100
mrna016481	g	1383	A	26	1168	833	short	0.25	0.01	291	8	7BS_3139798	99.84
mrna084023	c	30	T	26.2	233	165	short	0.16	0.01	37	1	7BS_3121441	98.35
mrna056418	c	264	T	26.32	124	48	short	0.55	0.02	68	1	2BL_8033240	100
mrna021868	t	2411	C	26.48	542	598	short	0.09	0	48	2	7BS_3139798	99.47
mrna074551	a	1569	G	28.02	52	47	short	0.6	0.02	31	1	5BL_10925653	100
mrna052020	c	1520	T	28.5	61	121	tall	0.02	0.47	1	57	4BL_7012682	100
mrna052020	c	1522	G	28.95	61	118	tall	0.02	0.47	1	56	4BL_7012682	100
mrna011230	a	269	G	29.73	83	67	tall	0.01	0.36	1	24	5AS_419734	100
mrna127203	c	72	T	30.32	178	3598	short	0.29	0.01	51	34	1BS_3182035	99.42
mrna013892	c	1518	A	30.68	93	74	tall	0.01	0.33	1	64	1AL_3889910	99.72
mrna086098	c	1217	T	31.14	370	505	short	0.68	0.02	251	11	1BL_3867748	98.7
mrna136711	a	1707	G	31.25	166	84	tall	0.01	0.19	1	16	7AL_4525468	99.33
mrna132278	c	537	T	31.83	183	23	tall	0.01	0.17	1	4	1DS_1902038	99.72
mrna036503	c	666	A	32.22	1150	25	tall	0	0.11	4	4	2AL_6401311	99.71
mrna078757	c	183	T	35	361	259	short	0.14	0	80	1	3AS_3338466	70.97
mrna049576	c	444	G	39.42	69	68	short	0.58	0.01	40	1	5BL_10896624	100
mrna092193	t	562	C	39.79	237	205	short	0.19	0	46	1	2AL_6421201	100
mrna017960	g	468	A	44.95	126	118	short	0.38	0.01	48	1	7BS_3164331	100
mrna014319	a	348	G	45.58	300	318	short	0.14	0	43	1	7AS_4211701	99.48
mrna098108	t	541	C	48.52	371	300	short	0.16	0	60	1	2AS_5237913	98.41
mrna040324	g	621	A	56.9	552	487	short	0.23	0	129	2	1BS_3469575	100
mrna076686	g	337	A	57.64	1696	1788	tall	0.01	0.3	9	877	1DL_2263471	99.62
mrna112463	t	1116	C	67.89	454	557	short	0.37	0.01	166	3	2DL_9908256	99.78
mrna003724	c	42	T	72.39	186	198	short	0.37	0.01	68	1	7AS_4246344	100
mrna004363	a	1006	G	79.25	283	267	short	0.3	0	84	1	2AL_6416883	100
mrna107518	t	420	C	79.31	64	94	short	0.84	0.01	54	1	1DL_2243205	100
mrna025486	a	860	T	129.11	304	223	short	0.58	0	176	1	7BS_3150559	100

A5.19: SNPs in the v3.3 cDNAs with highest non-infinity BFRs (with a cut-off at BFR>20). Only two out of 47 were localised to 2 (shaded in grey). One of the SNP assays to validate these was monomorphic, whilst the marker on the other SNP mapped outside the Rht8 linkage group, to group A (Figure 5.11). One SNP assay was developed for the SNP on 7BS, which mapped to group C in Figure 5.11. Columns left to right: Base: reference base at SNP position; Pos: position on gene model; SNP: variant at SNP position; BFR: calculated from Ratio_1/Ratio_2; Coverage: total number of reads mapping to the SNP; Bulk: the bulk contributing the variant; Ratio: relative contribution of reads that call the SNP from the total reads mapping to that position; Count: coverage x ratio; Contig: IWGSC CSS best hit; Identity: \% nucleotide identity of the gene to Contig.

Appendix to Chapter 6

Glasshouse 2012-13	Church Farm 2013-14	Morley 2013-14

F4 rec	BSA	Consensus Rht8 score	$\begin{gathered} \text { Height } \\ \text { (cm) } \end{gathered}$	Score	N	St. error	$\begin{array}{\|c\|} \hline \text { Height } \\ \text { (cm) } \end{array}$	Score	N	St. error	$\begin{gathered} \text { Height } \\ \text { (cm) } \end{gathered}$	Score	N	St. error
F4-1-1-7-3		a	82.3	a	8	3.0	97.5	a	5	1.8	109.2	a	5	1.3
F4-2-3-2-1		a*	71.0	b	8	2.7	96.7	a	5	2.2	-	-	-	-
F4-1-2-4-3	B2	a	84.1	a	8	1.8	96.6	a	5	2.0	108.0	a	4	1.5
F4-2-7-2-1		a	82.3	a	8	1.4	96.5	a	5	0.9	-	-	-	-
F4-1-1-12-1		a	80.6	a	9	1.4	96.1	a	5	0.8	111.0	a	4	1.4
F4-3-7-14-3		a	83.4	a	8	2.0	96.0	a	5	1.4	109.6	a	5	1.3
CD		a	82.3	a	16	1.2	95.8	a	35	0.7	110.5	a	49	0.4
F4-2-7-6-2		a	81.3	a	8	1.7	95.7	a	5	1.2	108.0	a	5	1.2
F4-1-6-16-1	B6	a	82.1	a	5	1.0	95.0	a	5	0.8	106.0	a	5	2.2
F4-2-7-9-2		a	81.3	a	8	1.0	95.0	a	5	1.3	110.1	a	5	0.7
F4-2-3-7-1		a*	79.7	a	9	1.5	94.8	a	5	1.6	98.2	b	5	1.1
F4-1-9-2-1		a	79.9	a	8	0.7	94.7	a	5	0.8	108.2	a	5	1.7
F4-1-9-3-1		a	78.6	a	8	1.1	94.7	a	5	1.9	108.6	a	5	2.0
F4-2-2-7-1		a	82.7	a	9	1.3	94.7	a	5	0.7	107.7	a	5	2.2
F4-2-2-2-3		a	79.1	a	8	0.9	94.4	a	5	2.6	106.3	a	5	1.5
F4-3-3-15-1		a	79.1	a	8	1.3	93.9	a	5	2.4	107.4	a	4	0.7
F4-1-7-7-1		a	78.8	a	8	1.0	93.7	a	5	1.3	109.3	a	5	1.7
F4-3-2-13-1	B2	a	82.3	a	8	1.4	93.7	a	5	2.2	109.2	a	5	1.0
F4-2-1-16-3	B6	a	82.6	a	7	1.7	93.6	a	5	2.3	112.5	a	5	1.1
F4-2-7-3-6	B6	a	82.9	a	8	1.1	93.6	a	5	1.9	109.6	a	4	1.4
F4-1-6-13-2	B4	a	85.2	a	7	1.2	93.5	a	5	1.8	109.8	a	5	1.7
F4-1-6-17-1	B4	a	83.9	a	8	1.2	93.4	a	5	1.8	104.5	a	4	2.2
F4-2-1-11-4		a	82.9	a	8	2.0	93.3	a	5	0.5	106.0	a	5	1.4
F4-3-7-9-1		a	80.0	a	8	1.5	93.3	a	5	1.0	108.6	a	5	1.8
F4-3-7-13-3		a	80.1	a	8	1.2	93.1	a	5	1.4	107.0	a	5	0.8
F4-1-7-4-1		a	83.6	a	8	1.3	92.8	a	5	0.5	112.0	a	5	0.8
F4-3-8-5-2		a	82.1	a	8	1.3	92.6	a	5	2.0	107.6	a	5	1.4
F4-1-6-19-2		a	79.6	a	8	1.0	92.2	a	5	1.9	109.1	a	5	0.8
F4-3-8-3-3		a	77.7	a	8	1.4	92.1	a	5	2.1	108.0	a	5	1.8
F4-3-2-7-2	B4	a	84.4	a	8	1.5	91.8	a	5	0.9	111.3	a	5	0.9
F4-2-8-6-1		a	80.8	a	8	0.9	91.3	a	5	3.2	106.8	a	5	1.6
F4-3-7-7-2		a	82.4	a	8	1.0	91.0	a	5	1.9	106.9	a	5	0.7
F4-3-7-6-1		a	79.8	a	8	1.7	90.8	a	5	1.3	106.0	a	4	1.3
F4-2-3-8-1		a	80.1	a	8	2.0	90.6	a	5	2.7	105.5	a	5	0.7
F4-1-2-9-1		a	79.5	a	8	1.4	90.5	a	5	1.7	106.1	a	5	0.6
F4-1-9-1-1	B2	a	82.0	a	8	1.6	90.4	a	5	0.8	109.1	a	5	1.4
F4-1-7-18-3		a	81.3	a	8	1.0	89.8	a	5	1.8	109.3	a	5	1.4
F4-1-6-11-1		a	80.8	a	8	1.5	89.7	a	5	1.2	105.0	a	5	1.6
F4-3-2-12-1		a	81.6	a	8	1.3	89.6	a	5	1.5	108.4	a	5	0.5
F4-3-8-2-2		a*	75.4	b	8	0.8	89.5	a	5	2.0	107.5	a	4	1.6
F4-3-1-3-6		a	83.7	a	8	2.0	89.3	a	5	1.4	-	-	-	-
F4-3-7-1-2		a*	78.2	a	7	1.3	81.6	b	5	2.1	104.8	a	4	0.8

A6.1

Glasshouse 2012-13	Church Farm 2013-14	Morley 2013-14

F4 rec	BSA	Consensus Rht8 score	Height (cm)	Score	N	St. error	Height (cm)	Score	N	$\begin{array}{\|c\|} \hline \text { St. } \\ \text { error } \end{array}$	Height (cm)	Score	N	$\begin{array}{c\|} \hline \text { St. } \\ \text { error } \end{array}$
F4-1-7-1-1	B3	b	75.0	b	7	1.8	88.4	b	5	0.8	-	-	-	-
F4-3-2-8-1	B5	b	72.5	b	9	1.3	87.9	b	5	1.6	102.1	b	4	1.5
F4-3-2-15-1		b^{*}	76.4	b	8	2.0	87.8	b	5	1.0	105.6	a	5	3.3
F4-1-7-17-1		b	76.2	b	8	2.5	87.6	b	5	1.2	102.5	b	4	2.3
F4-2-2-6-1		b^{*}	78.3	a	8	1.4	87.6	b	5	2.1	103.6	b	5	2.0
F4-3-8-6-3	B1	b	71.1	b	9	1.6	87.6	b	5	1.6	101.3	b	5	1.4
F4-2-7-4-1		b	75.9	b	8	0.9	87.4	b	5	1.5	101.8	b	5	2.0
F4-2-8-5-2		b^{*}	77.3	a	8	1.5	87.1	b	5	1.9	101.5	b	5	2.2
F4-3-2-5-1		b	72.5	b	7	0.9	87.1	b	5	2.9	100.4	b	5	1.3
F4-3-1-2-6	B5	b	74.1	b	8	0.5	87.0	b	5	1.6	102.8	b	4	1.4
F4-1-6-12-1		b^{*}	79.2	a	8	2.0	86.9	b	5	1.5	102.9	b	4	1.8
RIL4		b	75.7	b	14	1.2	86.9	b	40	0.5	100.8	b	53	0.3
F4-1-6-3-1		b	75.5	b	8	1.2	86.8	b	5	1.9	102.3	b	4	1.7
F4-3-7-5-3		b	74.5	b	8	2.4	86.5	b	5	1.3	-	-	-	-
F4-1-7-15-1		b^{*}	78.1	a	8	1.9	86.3	b	5	1.4	102.7	b	5	0.9
F4-3-7-8-2		b^{*}	78.4	a	8	1.6	86.2	b	5	1.7	102.0	b	4	1.9
F4-2-7-12-2	B1	b	73.9	b	8	1.6	86.1	b	5	1.1	103.2	b	5	1.8
F4-1-2-7-1		b	75.1	b	8	0.9	86.0	b	5	3.0	102.6	b	5	1.5
F4-2-2-10-1		b^{*}	77.6	a	8	2.3	86.0	b	5	0.9	101.3	b	4	1.0
F4-3-1-1-6		b	75.9	b	8	1.1	86.0	b	5	2.3	102.4	b	5	1.6
F4-2-8-1-2		b^{*}	74.3	b	9	1.5	85.8	b	5	1.7	106.2	a	5	1.6
F4-1-1-9-7	B5	b	74.8	b	8	1.2	85.6	b	4	2.0	101.9	b	4	1.0
F4-1-1-11-1		b	76.4	b	7	1.0	85.6	b	5	2.5	101.1	b	5	1.6
F4-1-6-9-1		b	75.7	b	8	2.0	85.6	b	5	1.9	100.9	b	5	1.0
F4-3-7-10-1		b	71.5	b	8	1.1	85.4	b	5	1.5	-	-	-	-
F4-3-8-1-1	B1	b	75.0	b	8	1.7	85.1	b	5	2.0	99.6	b	5	1.7
F4-2-1-4-1		b^{*}	73.5	b	8	0.8	84.7	b	5	1.5	104.9	a	5	3.0
F4-2-1-12-1	B3	b	74.3	b	8	1.8	84.6	b	5	1.8	102.4	b	4	2.2
F4-2-8-4-1		b	75.3	b	8	1.1	84.3	b	5	1.1	100.9	b	5	1.2
F4-2-1-8-4		b	76.1	b	8	1.6	84.2	b	5	1.3	102.6	b	5	1.4
F4-3-2-16-1	B3	b	71.8	b	8	1.9	84.1	b	5	1.6	103.2	b	5	1.2
F4-3-2-2-1		b	73.8	b	8	2.6	82.8	b	5	1.2	100.4	b	5	1.7
F4-1-2-2-1		b	64.7	b	8	3.1	70.4	b	5	1.9	94.8	b	4	6.6

group	location	Height (cm)	\mathbf{N}	St. error
short	gh	74.8	32	0.5
	cf	85.6	32	0.5
	mor	102.1	29	0.4
tall	gh	81.0	41	0.4
	cf	92.9	41	0.4
	mor	107.8	38	0.4
BSA	Short	69.3	204	0.4
	Tall	78.0	213	0.3

A6.1 continued: Mean heights of the fine-mapping recombinants and parent NILs grown at the three locations indicated. The score at each location is shown, along with the consensus score which was based on the score at two out of three locations where conflicts arose. The conflicts are coloured darker and marked with an asterisk.
data: subset of 32 recombinants from glasshouse 2012
ANOVA for linear model spike length ~ genotype + sterility

Response: spike length					
	Df	Sum Sq	Mean Sq	F-value	P-value
genotype	31	27.936	27.9355	38.4907	1.99E-08
sterility	1	2.95	2.9501	4.0647	0.04698
Residuals	84	60.965	0.7258		

data: Total 73 recombinants from glasshouse 2013
ANOVA for linear model height \sim genotype*sterility

Response: height					
	Df	Sum Sq	Mean Sq	F-value	P -value
genotype	31	11648.6	375.76	20.7553	$2.20 \mathrm{E}-16$
sterility	1	370.5	370.54	20.4666	7.14E-06
genotype:sterility	31	886.6	28.6	1.5797	0.02464
Residuals	690	12492.1	18.1		

A6.2: ANOVA for sterility measured in glasshouse 2012 (top) and 2013 (bottom).

A6.3: Fan plot showing the sterility of the subset of 32 recombinants ($\mathrm{N}=880$) grown in the glasshouse in 2013. A 0-5 scale was used (no plant was totally sterile (5)). The slices are re-arranged to overlap with each other and the radii have been modified so that each slice is visible, with the width of each slice relative to the sample size.

A6.4: Temperature recorded at canopy level in the glasshouse 2013 experiment. Temperature was measured at 30 minute intervals. Approximate growth stages of the plants, estimated from heading date data are superimposed.

							－
	$\begin{aligned} & \overrightarrow{\Xi_{ŋ ㇒}^{\prime}} \\ & \end{aligned}$	-1					の
\cdots	$\begin{array}{\|c\|} \hline \begin{array}{c} m \\ 0^{\prime} \\ \mathrm{N} \end{array} \\ \hline \end{array}$						\sim
\cdots							－
$=\begin{aligned} & \text { ¢ } \\ & = \\ & \bar{S} \\ & 0 \\ & 0\end{aligned}$							－
\cdots							－
$0 \cdot \|$m \sim \sim 0 \sim	$\begin{aligned} & \underset{\sim}{N} \\ & \mathscr{N}_{1} \end{aligned}$						\sim
							－
\cdots	年	$\left\lvert\, \begin{aligned} & \underset{y}{x} \\ & \end{aligned}\right.$					m
$\bigcirc \cdot \stackrel{\bar{S}}{\square}$							\sim
－ 0							－
$\pm$$*$	cich						\sim
	$\begin{aligned} & \pm \\ & 0 \\ & \omega^{\prime} \\ & \end{aligned}$	$\begin{gathered} \stackrel{0}{f} \\ 0^{\prime} \\ \stackrel{y}{2} \end{gathered}$		$\underset{\sim}{\infty}$	$\left\|\begin{array}{c} \stackrel{N}{N} \\ \underset{\varangle}{\chi} \end{array}\right\|$		\bigcirc
	$\stackrel{\varrho}{\square}$	$\stackrel{9}{\square}$		$\left\lvert\, \begin{aligned} & \bar{s} \\ & s_{1} \\ & 0 \\ & 0 \end{aligned}\right.$	$\stackrel{\text { ¢ }}{\sim}$	\％ 0	\wedge
－							－
$\begin{array}{\|c} \substack{0 \\ \frac{0}{0} \\ 0 \\ \vdots \\ ⿹ 勹 巳 \\ \hline \\ \hline} \\ \hline \end{array}$							

A6．5：Gwm recs used in step 2 of fine－mapping．The assignment of markers to classes is shown above，along with the totals within each class．The graphical genotype of each marker class is shown overleaf．The score at Rht8 was taken from Gasperini＇s（2010）assignation．Classes 1 － 12 were discarded，as described in the text．

A6.5 continued: Graphical genotypes of gwm rec marker classes.

FM class	A	B	\mathbf{C}	\mathbf{D}	\mathbf{G}	\mathbf{F}	\mathbf{E}
	2DS_1	52i	2DS_223	2DS_5375260	2DS_275	2DS_138	16_uni
	2DS_95		2DS_222			2DS_66	2DS_192
	2DS_149		55_uni			2DS_26	2DS_201
	2DS_217					2DS_15	2DS_187
	2DS_212					BFR_46	2DS_208
	2DS_88						
	2DS_89						
	2DS_6						
	2DS_3						
	2DS_4						
	2DS_211						
	2DS_210						
	2DS_540403						
	2DS_105						
	2DS_215						
	8_uni						
	63_uni						
	Total						

A6.6: FM recombinants used in step 3 of fine-mapping. The assignment of markers to classes is shown above, along with the totals within each class. The graphical genotype of each marker class is shown overleaf. The score at Rht8 was from the consensus score as described in 6.2.

A6.6 continued: Graphical genotpyes of FM marker classes.

A6.7.1

		SNP marker extended ctg			$\begin{aligned} & \hline \text { BAC } \\ & \text { ctg } \\ & \hline \end{aligned}$							
Chr	Linkage (cM)	ID	Start	End	으는	$\begin{array}{\|c} \stackrel{N}{\omega} \\ \hline \end{array}$	B. distachyon homologue	Comments	Rice homologue	Gene ontology	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$	DEG?
2D	35.339	AT2D1070_1	236	8123	¢	$\stackrel{\sim}{N}$	Bradi5g04673	$\begin{aligned} & \hline \text { 2DS_19/ } \\ & \text { 2DS_96 } \\ & \hline \end{aligned}$	Os04g18010	cleavage and polyadenylation specificity factor 160	N	N
	35.385	AT2D1071_1	76	351			No Hit		No Hit			
		AT2D1071_2	4510	4680			No Hit		No Hit			
		AT2D1071_3	4739	5323			Bradi4g34520		Os03g63270	Nucleotide-diphospho-sugar transferase family protein	N	N
		AT2D1071_4	5787	6758			Bradi2g16396		Os05g49070	6-phosphogluconate dehydrogenase family protein	N	N
	35.657	AT2D1072_1	88	4559			Bradi5g04660	BFR_46	Os02g21490	Transducin/WD40 repeat-like superfamily protein	N	N
		AT2D1072_2	4915	5469			Bradi1g48292		Os12g14440	Mannose-binding lectin superfamily protein	N	N
	35.93	AT2D1073_1	2872	3131			Bradi3g01060		Os02g01940	Transcription factor jumonji (jmjC) domain-containing protein	$\begin{array}{\|c\|} \hline \mathrm{Y}, \\ \hline \text { untested } \\ \hline \end{array}$	N
	36.203	AT2D1074_1	5372	6522			Bradi5g03200		Os10g12620	protein serine/threonine kinase	N	N
		AT2D1074_2	8717	8974			Bradi4g22590		No Hit	plant U-box 13	N	N
	36.339	AT2D1075_1	2407	3136	$\begin{aligned} & n \\ & N \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\stackrel{\infty}{\sim}$	No Hit		No Hit			
		AT2D1075_5	4467	5144			Bradi5g20420		Os04g51090	P-loop containing nucleoside triphosphate hydrolase		$\begin{gathered} \mathrm{Y}, \mathrm{x} 1.87 \\ \text { short } \end{gathered}$
	36.566	AT2D1076_1	215	566			Bradi4g14070		Os11g12410	Serine protease inhibitor (SERPIN) family protein	N	N
	37.112	AT2D1078_1	786	10484	$\left\|\begin{array}{c} 0 \\ \hline \\ \hline 0 \\ \hline 0 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	Bradi5g04567	2DS_14	Os02g01170	HEAT repeat, HECT-domain (ubiquitin-transferase)	N	N
		AT2D1078_2	10490	10828			Bradi5g04567	2DS_14	No Hit		N	N
		AT2D1077_1	2088	4075			Bradi5g04577	2DS_5358467	Os04g14510	RING/FYVE/PHD zinc finger superfamily protein	N	N
	37.294	AT2D1079_1	914	3648			Bradi5g04340	2DS_26	Os01g24980	2-oxoglutarate \& Fe(II)-dependent oxygenase superfamily protein	N	N
	37.385	AT2D1080_2	8990	11232	$\frac{\bar{N}}{N}$	$\begin{aligned} & \stackrel{1}{2} \\ & \stackrel{1}{N} \\ & \stackrel{N}{N} \end{aligned}$	Bradi1g62430		Os03g22730	NOP56-like pre RNA processing ribonucleoprotein	N	N
		AT2D1080_3	12231	12473			Bradi1g36300		Os01g24980	2-oxoglutarate \& Fe(II)-dependent oxygenase superfamily protein	N	N
		AT2D1081_1	913	1184			No Hit		No Hit			
		AT2D1081_2	1494	1765			No Hit		No Hit			
		AT2D1081_3	6154	7134			Bradi5g04340	2DS_26	Os01g24980	2-oxoglutarate \& Fe(II)-dependent oxygenase superfamily protein	N	N
		AT2D1081_5	11376	11647			No Hit		No Hit			
	37.933	AT2D1082_1	1056	1428	$\begin{aligned} & 0 \\ & 0 \\ & \substack{0 \\ \hline \\ \hline 0 \\ \hline} \end{aligned}$	N N	Bradi2g09095		No Hit		N	N
	37.978	AT2D1083_1	2	229			Bradi2g58600		Os09g38170	Ribonuclease H-like superfamily protein	N	N
		AT2D1083_2	921	1997			Bradi5g04130	2DS_138	Os04g15920	cinnamyl alcohol dehydrogenase 9	N	N
	38.069	AT2D1084_1	119	319			No Hit		No Hit			
		AT2D1084_2	5420	6788			Bradi4g08800		Os12g19470	RuBisCO small chain 1A	$\begin{array}{\|c\|} \hline \mathrm{Y}, \\ \text { untested } \\ \hline \end{array}$	N

A6.7.1 continued

List of genes surrounding the Rht8 interval in the Ae. tauschii physical map with homology to syntenic species and gene ontology. The interval was delimited to the region between the bins highlighted in yellow. Comments: indicates attempt at marker development and variant identification. Shaded green indicates a successful (polymorphic marker). Shaded red are markers which were tested but were monomorphic between RIL4 and Cappelle-Desprez. If the gene was in the UniGene SNP data, this is indicated. Differential expression is also indicated (direction and magnitude as fold difference). The gene list was downloaded from http://probes.pw.usda.gov/WheatDMarker/downloads/.

A6.7.2

A6.7.2 continued

Gene Zipper surrounding the Rht8 interval in the Ae. tauschii physical map with homology to syntenic species. The interval was delimited to the region between the bins highlighted in yellow. Comments: indicates attempt at marker development and variant identification. Shaded green indicates a successful (polymorphic marker). Shaded red are markers which were tested but were monomorphic between RIL4 and Cappelle-Desprez. If the gene was in the UniGene SNP data, this is indicated. Differential expression is also indicated (direction and magnitude as fold difference). The zipper was downloaded from http://probes.pw.usda.gov/WheatDMarker/downloads/.

$\dot{\mathbf{x}}$	$\stackrel{\sim}{\sim}$																											$\stackrel{\stackrel{N}{M}}{\stackrel{1}{+}}$
	「																			$\begin{aligned} & \mathrm{N} \\ & \dot{0} \end{aligned}$								
	은																	$\stackrel{+}{\text { ¢ }}$										
	の																											
	∞																											
	N	$\begin{aligned} & \hline \text { M } \\ & \text { N } \end{aligned}$																										
	0																											
	10										으루N																	
	＊			$\frac{\stackrel{N}{\pi}}{N}$	$\frac{10}{\mathrm{~N}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$				$\stackrel{\Gamma}{ल}$			$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$					$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$		$\underset{\infty}{\circ}$						O	
	\cdots								¢																			
	N											$\stackrel{N}{N}$					－					$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline 0 \end{aligned}$						
	r																						－		$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \sim \\ \hline}}$			
	10			$\left\|\begin{array}{l} \infty \\ 0 \\ m \end{array}\right\|$	$\left.\begin{aligned} & 10 \\ & 0 \\ & m \end{aligned} \right\rvert\,$	$\begin{aligned} & \mathrm{m} \\ & \hline \\ & \dot{\sim} \end{aligned}$			$\left\|\begin{array}{l} \overline{0} \\ \dot{0} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 寸 \end{array}\right\|$			$\left\|\begin{array}{l} \infty \\ \infty \\ 10 \end{array}\right\|$	$\begin{aligned} & 9 \\ & \infty \\ & 10 \end{aligned}$		$\left\|\begin{array}{c} \infty \\ \infty \\ 1 \\ \hline \end{array}\right\|$		$\begin{aligned} & \stackrel{尺}{\mathrm{~N}} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} \\ & \text { N్ర } \end{aligned}$		$\begin{array}{\|l} 0 \\ \stackrel{0}{0} \end{array}$	$\underset{i \circ}{ \pm}$	$\left\|\begin{array}{l} 10 \\ 10 \\ 10 \end{array}\right\|$	$\begin{aligned} & \mathbf{3} \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathbf{+} \\ & \stackrel{0}{2} \end{aligned}$		¢	
	\pm	$\stackrel{\stackrel{1}{\circ}}{\underset{\sim}{2}}$										$\begin{aligned} & \text { M } \\ & \text { ́․ } \\ & \hline \end{aligned}$								$\xrightarrow[\sim]{1}$								$\xrightarrow{\text { d }}$
	\cdots							$\left\|\begin{array}{l} 10 \\ \end{array}\right\|$									$\stackrel{N}{0}$											
	N										$\begin{aligned} & \mathbf{~} \\ & \underset{\sim}{N} \\ & \end{aligned}$															$\stackrel{+}{\text { O}}$		
	r		$\begin{aligned} & 9 \\ & \stackrel{9}{0} \\ & \stackrel{0}{2} \end{aligned}$																									
		$\frac{\Gamma}{6}$										O్ల	$\underset{\sim}{\circ}$						$\frac{\mathbb{N}}{\boldsymbol{N}}$		$\begin{array}{\|l\|l\|} \hline 1 \\ \text { N } \\ \text { N } \end{array}$			$\begin{array}{\|l} \hline 10 \\ 10 \\ \stackrel{N}{N} \\ \hline \end{array}$		악		
	$\begin{aligned} & \hline 7 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\downarrow 6 \downarrow$ ¢										ャ9196ı	SLLLがっ						ELLG610		97 ¢ 6			レてレてচ゙っ		ع9Eヶ6ıワ		
	\sum	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { O- } \end{aligned}$	$\begin{aligned} & \hline \stackrel{y}{i} \\ & \stackrel{0}{9} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\sim}{\square} \\ \stackrel{9}{e} \\ \hline \end{array}$	$$		$\begin{array}{\|l\|} \hline \dot{9} \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{N}{\mathrm{y}} \\ \stackrel{y}{m} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \underset{\sim}{\dot{m}} \\ \hline \end{array}$	$\begin{aligned} & \underset{\sim}{\underset{N}{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ल్ } \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{d} \\ & \mathrm{~m} \\ & \mathrm{C} \\ & \mathrm{~m} \end{aligned}$		$\begin{aligned} & \text { M } \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{l\|} \hline \varrho \\ \varrho \\ \varrho \\ \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline ल \\ \\ \\ \hline \end{array}$	$\begin{aligned} & \hline \stackrel{O}{n} \\ & \underset{\sim}{e} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \underset{\sim}{\Gamma} \\ & \underset{M}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{\Gamma} \\ & \stackrel{N}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{N} \\ & \underset{M}{2} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{\sim}{\mathrm{~m}} \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} n \\ \underset{m}{2} \\ \hline \end{array} \end{aligned}$	｜r｜	－
		$\left\lvert\, \begin{aligned} & \infty \\ & \substack{0 \\ \hline \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \hline} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \stackrel{O}{0} \\ & \frac{1}{2} \\ & \stackrel{\rightharpoonup}{4} \\ & \frac{1}{4} \end{aligned}\right.$	$\begin{aligned} & \bar{e} \\ & \frac{0}{2} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{N}{0} \\ & \stackrel{O}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{M} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$			$\left\lvert\, \begin{aligned} & \circ \\ & \hline 0 \\ & \stackrel{O}{2} \\ & \stackrel{y}{4} \end{aligned}\right.$		$\begin{aligned} & \infty 0 \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \stackrel{\rightharpoonup}{\mathrm{C}} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{n}{N} \\ \stackrel{0}{2} \\ \underset{\sim}{\mathbf{N}} \end{array}\right\|$			$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{N}{6} \end{aligned}$	$\begin{aligned} & \stackrel{N}{\hat{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{0}{\mathrm{O}} \\ & \underset{\mathrm{~N}}{2} \end{aligned}\right.$	$\begin{aligned} & \mathrm{O} \\ & \text { O } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathrm{~K}} \end{aligned}$		$\left\lvert\, \begin{gathered} \underset{\sim}{0} \\ 0 \\ \underset{\sim}{2} \\ \underset{4}{2} \end{gathered}\right.$	㐌	
	こ	승																										

A6．7．3 Comparative map of the linkage and physical maps of Ae．tauschii surrounding the Rht8 interval．B．distachyon and rice genes with highest homology for each Ae．tauschii marker are shown．The delimited interval in Ae． tauschii is indicated by yellow．Cells containing B．distachyon and rice genes that are collinear with the Ae．tauschii genes are a shade of green．Cells that contained genes that were non－collinear received no colour．If no corresponding gene was detected，the cell was left empty．Light green was used for genes showing progression on the B．distachyon and rice pseudomolecules that were in the same orientation as on the linkage map of Ae．tauschii，either increasing or decreasing．Dark green was used for regions with changed progression due to an inversion or translocation．The comparative map was downloaded from http：／／probes．pw．usda．gov／WheatDMarker／downloads／．

A6.8.1 (continuing overleaf over multiple pages)

Differentially expressed genes between the parent NILs in the UniGene dataset. Genes are annotated if they overlapped with SNP data. Raw RPKM values are shown, as well as log-transformed data used to set the 1.5 -fold threshold as a DEG. The data is sorted according to the magnitude of the fold difference, with the exception of the first row.

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Ril4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (\mathrm{CD}) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \\ & \hline \end{aligned}$
D_comp269261_c0_seq1	4	21331017	Bradi4g14000	Os11g39370	BRASSINOSTEROID INSENSTIVE 1-associated receptor kinase 1 precursor	0.11	0.35	-3.20	-1.53	1.67	short	N
D_comp85949_c0_seq1	7	13762683	Bradi3g21070	Os 10g05720	lipid binding protein	0.63	145.21	-0.67	7.18	7.85	short	N
D_comp287929_c0_seq1	4	38272418	Bradi1973800	Os03g07250	cytochrome P450 86A2	0.44	61.43	-1.18	5.94	7.12	short	N
B_comp3722_c1_seq14	2	12873029	Bradi1924410	Os07g37850	-	0.16	20.19	-2.61	4.34	6.94	short	N
B_comp286_c0_seq1	6	23663505	Bradi3g56660	Os02g48900	aspartic proteinase nepenthesin-1 precursor	0.13	14.36	-2.89	3.84	6.74	short	N
D_comp276122_c0_seq1	4	19846598	Bradi4g15260	Os11g37280	protease inhibitor/seed storage/LTP family protein	0.14	12.80	-2.85	3.68	6.53	short	N
B_comp3228_c0_seq4	7	7979175	Bradi3g40290	Os08g40440	dihydroflavonol-4-reductase	1.37	87.02	0.45	6.44	5.99	short	N
B_comp50536_c0_seq1	5	11579581	Bradi4g25600	Os12g02110	conserved hypothetical protein	1.48	94.26	0.56	6.56	5.99	short	Y
B_comp68504_c0_seq1	5	21040141	Bradi4g34010	Os09g32020	ubiquitin fusion degradation protein	1.16	72.25	0.22	6.17	5.96	short	N
D_comp891_c0_seq1	4	12536436	Bradi4g20200	Os11g18690	beta-xylosidase putative	0.16	9.50	-2.65	3.25	5.90	short	N
D_comp27648_c0_seq1	3	11233321	Bradi2g12870	Os01g26000	acyltransferase/ catalytic	0.38	18.61	-1.39	4.22	5.61	short	N
D_comp572116_c0_seq1	6	4994809	Bradi3g06780	Os08g05620	cytochrome P450 89A2	0.38	16.60	-1.41	4.05	5.46	short	N
A_comp24242_c0_seq1	3	17156	Bradi2g00220	Os01g06580	fasciclin-like arabinogalactan protein 7 precursor	0.28	8.66	-1.85	3.12	4.97	short	N
D_comp4308_c0_seq1	1	26290168	Bradi3g14150	Os08g03350	LHT1	0.19	5.69	-2.37	2.51	4.88	short	N
B_comp85844_c0_seq1	4	41175127	Bradi1977990	Os03g01800	xyloglucan endotransglucosylase/hydrolase protein 32 precursor	0.18	5.20	-2.49	2.38	4.87	short	N
D_comp35107_c0_seq1	1	9699531	Bradi3g27810	Os10g31330	glycine-rich cell w all structural protein 2 precursor	0.24	6.50	-2.09	2.70	4.79	short	N
B_comp736_c1_seq9	1	39365389	Bradi2g60500	Os05g41610	glucan endo-13-beta-glucosidase GVI precursor	0.20	5.15	-2.34	2.37	4.70	short	Y
B_comp88_c0_seq2	5	2997960	Bradi4g03730	Os12g38810	-	0.10	2.66	-3.28	1.41	4.69	short	N
B_comp6469_c0_seq5	3	10384146	Bradi2g12060	Os01g21630	carboxylic ester hydrolase	0.11	2.85	-3.13	1.51	4.64	short	N
A_comp92957_c0_seq1	3	17510688	Bradi2g44420	Os01g44130	aspartic proteinase oryzasin-1 precursor	0.20	4.88	-2.29	2.29	4.57	short	Y
D_comp228299_c0_seq1	7	32599870	Bradi1943820	Os06g15760	aspartic proteinase Asp1 precursor	0.31	6.93	-1.70	2.79	4.50	short	N
D_comp552498_c0_seq1	6	11405087	Bradi3g44990	Os09g08072	beta-fructofuranosidase insoluble isoenzyme 7 precursor	0.14	2.94	-2.86	1.56	4.42	short	N
B_comp4421_c0_seq1	7	22152709	Bradi3g13030	Os04g58860	VAMP protein SEC22	0.53	11.17	-0.92	3.48	4.40	short	N
B_comp35694_c0_seq1	7	20957003	Bradi3g14430	Os08g04140	glucan endo-13-beta-glucosidase precursor	1.09	22.87	0.12	4.52	4.40	short	N
A_comp137166_c0_seq1	1	13899958	Bradi3g30870	Os10g37400	-	0.62	12.86	-0.69	3.69	4.38	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \text { CD } \\ \text { raw } \end{gathered}$	RIL4 raw	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RiL4) } \end{aligned}$	Fold diff	Upreg	In SNP data?
D_comp61734_c0_seq1	7	34960256	Bradi1g45710	Os06g11490	blue copper protein precursor	0.78	15.94	-0.36	3.99	4.35	short	N
B_comp49996_c0_seq1	4	3054097	Bradi1g10270	Os03g51430	-	0.15	3.06	-2.71	1.61	4.32	short	N
B_comp27789_c0_seq1	5	3250661	Bradi1g32380	Os07g01214	potassium transporter 16	0.10	2.06	-3.26	1.04	4.30	short	N
A_comp9240_c0_seq1	2	40149034	Bradi5g17320	Os04g45960	serine proteinase	3.05	56.15	1.61	5.81	4.20	short	N
B_comp23174_c0_seq1	1	30285759	Bradi2g28380	Os05g28730	PIT1	0.16	2.94	-2.61	1.55	4.17	short	N
B_comp22716_c0_seq5	1	24379584	Bradi2g33380	Os07g26540	hexokinase-1	0.54	9.68	-0.88	3.28	4.16	short	Y
B_comp54013_c0_seq1	7	2769475	Bradi1g49010	Os06g06250	alpha-L-fucosidase 2 precursor	1.24	21.94	0.31	4.46	4.14	short	N
D_comp144488_c0_seq1	7	23802210	Bradi1g36990	Os06g39390	3-N-debenzoyl-2-deoxytaxol N-benzoyltransferase	0.12	2.01	-3.10	1.01	4.10	short	N
B_comp7760_c0_seq1	4	31772379	Bradi1g65780	Os03g17790	-	0.17	2.95	-2.53	1.56	4.09	short	Y
D_comp497706_c0_seq1	4	18490609	Bradi1g24840	Os10g17260	flavonoid 3-monooxygenase	0.10	1.65	-3.31	0.73	4.03	short	N
D_comp288047_c0_seq1	4	9341384	Bradi4g22250	Os11g10870	dirigent-like protein pDIR3	0.12	1.89	-3.09	0.92	4.01	short	N
D_comp72743_c0_seq1	7	21010579	Bradi3g14390	Os08g03682	flavonoid 3-monooxygenase	0.19	2.97	-2.38	1.57	3.96	short	N
A_comp707567_c0_seq1	2	7506671	Bradi1g17670	Os07g48229	vacuolar sorting receptor 1 precursor	0.18	2.78	-2.47	1.48	3.94	short	N
B_comp1755_c0_seq1	7	31388623	Bradi1g42970	-		1.41	21.28	0.50	4.41	3.92	short	N
B_comp371_c0_seq2	4	8706807	Bradi4g22660	Os11g10460	peroxidase 43 precursor	0.63	9.40	-0.67	3.23	3.90	short	N
D_comp176653_c0_seq1	2	6464928	Bradi1g22290	Os03g30830	glucan endo-13-beta-glucosidase 4 precursor	0.11	1.59	-3.23	0.67	3.90	short	N
A_comp14906_c0_seq1	3	2951804	Bradi2g04230	Os01g07420	hydrolase	0.12	1.77	-3.07	0.82	3.89	short	N
B_comp29229_c0_seq2	6	20231120	Bradi3g58560	Os02g52180	uclacyanin-2 precursor	0.13	1.86	-2.99	0.90	3.89	short	N
B_comp71716_c0_seq1	3	13506208	Bradi2g40620	Os01g36460	myb-related protein Hv33	0.67	9.76	-0.59	3.29	3.87	short	N
B_comp32069_c0_seq2	6	6941358	Bradi3g08820	Os02g13660	meiosis 5	0.31	4.49	-1.70	2.17	3.86	short	N
A_comp1592163_c0_seq1	3	28290748	Bradi2g57570	Os01g67090	SF16 protein	0.33	4.56	-1.61	2.19	3.79	short	N
A_comp429700_c0_seq1	4	40447265	Bradi1g76970	Os03g03164	homeobox protein HD1	0.10	1.43	-3.26	0.52	3.78	short	Y
D_comp19616_c0_seq1	1	30590069	Bradi2g28100	Os05g28830	-	0.29	3.82	-1.77	1.93	3.70	short	N
D_comp211234_c0_seq1	6	5592676	Bradi3g07450	Os02g10770	pre-mRNA-processing ATP-dependent RNA helicase PRP5	0.23	2.97	-2.12	1.57	3.69	short	N
A_comp522846_c0_seq1	5	11877780	Bradi4g44930	Os12g01490	DNA binding protein	0.23	2.90	-2.15	1.54	3.68	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{r} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (\mathrm{CD}) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RIL4) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \\ & \hline \end{aligned}$
D_comp625666_c0_seq1	7	33231562	Bradi1944170	Os06g14420	nudix hydrolase 4	1.42	0.12	0.50	-3.07	3.57	tall	N
B_comp15071_c0_seq6	2	1274379	Bradi5g01360	Os09g38239	flavonol sulfotransferase-like	0.22	2.50	-2.21	1.32	3.53	short	N
B_comp100451_c0_seq1	5	18119763	Bradi4g30540	Os09g25490	CESA9 - cellulose synthase	0.20	2.24	-2.36	1.16	3.52	short	N
A_comp71803_c0_seq1	2	44579682	Bradi5g22800	Os04g53920	leucoanthocyanidin reductase putative	0.28	3.16	-1.85	1.66	3.51	short	N
D_comp87309_c0_seq4	3	9643340	Bradi2g11380	Os01g19170	polygalacturonase precursor	0.12	1.34	-3.09	0.42	3.51	short	N
B_comp15763_c0_seq12	7	8818592	Bradi3g39300	Os08g38810	RAFTIN1a protein	3.18	35.20	1.67	5.14	3.47	short	N
D_comp2818_c0_seq1	1	24235837	Bradi2g33510	Os05g09280	ischemia related factor NYW-1	1.24	0.12	0.31	-3.11	3.42	tall	N
B_comp10437_c0_seq1	7	16176561	Bradi3g19020	Os08g15060	ATP binding protein	0.30	3.15	-1.76	1.65	3.41	short	N
B_comp1585_c0_seq1	5	31742116	Bradi1902940	Os03g61670	calreticulin precursor	3.00	31.48	1.59	4.98	3.39	short	N
B_comp6072_c0_seq7	1	10452549	Bradi3g28350	Os 10g32980	CESA7 - cellulose synthase	0.26	2.71	-1.94	1.44	3.38	short	N
A_comp61049_c0_seq1	5	12778912	Bradi3g06550	Os09g04710	anther-specific proline-rich protein APG precursor	0.78	8.17	-0.35	3.03	3.38	short	N
D_comp19734_c0_seq1	4	34784897	Bradi1969220	Os03g12990	phytosulfokine precursor protein containing protein	0.15	1.53	-2.75	0.62	3.37	short	N
B_comp84187_c0_seq1	5	17974597	Bradi1953470	Os09g25690	conserved hypothetical protein	0.32	3.18	-1.65	1.67	3.32	short	N
D_comp305238_c0_seq1	6	246519	Bradi3g00510	Os04g41490	DNA-directed RNA polymerase III largest subunit	2.23	0.22	1.16	-2.16	3.32	tall	N
D_comp97709_c0_seq1	5	27779787	Bradi1908410	Os03g54050	circumsporozoite protein precursor	1.32	13.06	0.40	3.71	3.31	short	Y
D_comp58960_c0_seq2	3	7877732	Bradi2g09580	Os01g15770		0.23	2.29	-2.10	1.20	3.30	short	N
D_comp9793_c0_seq1	1	15163893	Bradi1977140	Os08g02110	peroxidase 47 precursor	0.12	1.16	-3.09	0.21	3.30	short	N
A_comp11837_c0_seq1	2	20628906	Bradi1956940	Os07g06800	3-oxo-5-alpha-steroid 4-dehydrogenase 2	0.17	1.65	-2.57	0.72	3.29	short	N
B_comp76815_c0_seq1	5	11523029	Bradi4g44390	Os11g02440	chalcone--flavonone isomerase	0.60	5.87	-0.73	2.55	3.29	short	N
B_comp2591_c0_seq2	2	1159118	Bradi5g01240	Os11g31090	transferase	0.29	2.82	-1.79	1.50	3.28	short	N
D_comp35664_c0_seq1	2	19270510	Bradi1955770	Os07g07930	lipid transfer protein	0.10	0.99	-3.28	-0.01	3.27	short	N
A_comp20593_c4_seq4	2	31884324	Bradi5g09130	Os04g33450	-	1.23	11.82	0.29	3.56	3.27	short	N
D_comp186430_c0_seq1	2	15107801	Bradi1926760	Os07g32620	anthocyanidin 53-O-glucosyltransferase	0.21	2.00	-2.23	1.00	3.23	short	N
B_comp27865_c0_seq1	6	20211751	Bradi3g58590	Os06g11610	heat shock 22 kDa protein mitochondrial precursor	0.14	1.27	-2.88	0.34	3.22	short	N
D_comp73459_c0_seq1	4	24456693	Bradi4g11540	Os11g42550	disease resistance response protein 206	0.58	5.39	-0.78	2.43	3.22	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \text { CD } \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Log2 } \\ \text { (CD) } \end{array}$		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp206156_c0_seq2	7	28492254	Bradi1941000	Os06g35410	grow th regulator	0.11	0.97	-3.24	-0.04	3.20	short	N
A_comp344259_c0_seq1	3	26120719	Bradi2g54680	Os01g62480	L-ascorbate oxidase precursor	0.16	1.47	-2.62	0.56	3.17	short	N
B_comp43777_c0_seq1	1	9154373	Bradi3g27430	Os10g30310	protein binding protein	0.16	1.47	-2.61	0.56	3.17	short	N
D_comp55423_c0_seq1	7	39815910	Bradi1 935570	Os02g09850		0.25	2.27	-1.97	1.18	3.15	short	N
A_comp81542_c0_seq1	2	32539187	Bradi5g09670	Os02g33550	VAMP protein SEC22	1.72	15.06	0.78	3.91	3.13	short	Y
B_comp49764_c0_seq1	4	27228235	Bradi2g03240	Os11g47809	metallothionein-like protein 1	0.11	0.92	-3.25	-0.12	3.13	short	N
A_comp1890793_c0_seq1	2	14384002	Bradi1925990	Os07g34020		0.26	2.24	-1.95	1.17	3.11	short	N
D_comp37530_c0_seq1	5	11526288	Bradi4g44400	Os11g02424		1.57	13.38	0.65	3.74	3.09	short	N
A_comp353515_c0_seq1	3	22513163	Bradi2g49910	Os01g54620	CESA4 - cellulose synthase	0.45	3.76	-1.16	1.91	3.07	short	N
B_comp39660_c0_seq3	5	20917704	Bradi4g33890	Os09g31502	dihydroflavonol-4-reductase	0.47	3.99	-1.07	2.00	3.07	short	Y
B_comp76192_c0_seq1	1	39610420	Bradi2g20820	Os07g01370	peroxidase 1 precursor	0.17	1.42	-2.56	0.50	3.06	short	N
D_comp632320_c0_seq1	3	19795691	Bradi2g46770	Os01g49160	myb-like DNA-binding domain containing protein	0.13	1.09	-2.91	0.13	3.04	short	N
D_comp127_c0_seq1	5	3584347	Bradi4g04380	Os01g33204	retrotransposon protein unclassified	0.12	0.94	-3.11	-0.09	3.03	short	Y
B_comp31251_c0_seq1	3	5234025	Bradi2g07000	Os01g11810		0.36	2.96	-1.46	1.56	3.02	short	N
B_comp15235_c0_seq1	5	31799850	Bradi1 g02820	Os09g32230	vignain precursor	0.31	2.56	-1.67	1.35	3.02	short	Y
B_comp482_c0_seq1	6	12571065	Bradi5g15980	Os02g14150	transposon protein Ac/Ds sub-class	0.18	1.47	-2.46	0.56	3.02	short	N
A_comp3243_c0_seq8	2	38852918	Bradi5g15850	Os06g30950	integral membrane protein like	3.81	30.72	1.93	4.94	3.01	short	N
D_comp567835_c0_seq1	5	9159998	Bradi4g41340	Os12g07580	disease resistance response protein 206	0.18	1.48	-2.44	0.57	3.01	short	N
D_comp269_c0_seq1	7	1497444	Bradi1952210	Os02g01590	beta-fructofuranosidase 1 precursor	0.12	0.99	-3.00	-0.02	2.99	short	Y
B_comp10384_c0_seq1	7	3733596	Bradi1950060	Os06g04090	NAM protein	0.16	1.27	-2.64	0.35	2.99	short	N
D_comp519283_c0_seq1	7	16575286	Bradi3g18680	Os11g17504	retrotransposon protein Ty 1-copia subclass	0.11	0.90	-3.13	-0.15	2.98	short	N
A_comp540781_c0_seq1	5	18668835	Bradi4g30010	Os09g24520	pentatricopeptide repeat protein PPR868-14	2.12	0.27	1.09	-1.89	2.98	tall	N
B_comp3687_c0_seq1	2	7980041	Bradi1918270	Os07g47400	SRC2	0.11	0.86	-3.18	-0.22	2.96	short	N
D_comp648133_c0_seq1	7	23470842	Bradi1936790	Os10g36848	cytochrome P450 84A1	0.13	1.00	-2.95	0.00	2.95	short	N
D_comp418526_c0_seq1	2	35779899	Bradi2g40590	Os07g49360	peroxidase 21 precursor	0.25	1.89	-2.03	0.92	2.95	short	Y

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline C D \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{l\|} \hline \text { Log } 2 \\ (C D) \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \end{aligned}$	Fold diff	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp32647_c0_seq5	5	24382988	Bradi1922750	Os04g57490	cysteine protease 1 precursor	0.19	1.46	-2.39	0.55	2.94	short	N
D_comp27038_c0_seq1	7	40090217	Bradi1935340	Os06g43044	anther-specific proline-rich protein APG	0.11	0.85	-3.16	-0.24	2.92	short	N
A_comp853438_c0_seq1	1	20566547	Bradi2g36910	Os05g04584	3-N-debenzoyl-2-deoxytaxol N -benzoyltransferase	0.22	1.67	-2.18	0.74	2.91	short	N
B_comp12157_c0_seq1	5	30450300	Bradi1g04930	Os03g58940	lipid binding protein putative	0.41	3.03	-1.29	1.60	2.89	short	Y
A_comp21677_c0_seq1	1	12065328	Bradi3g29310	Os10g34480	cytochrome P450 86A2	0.64	4.73	-0.65	2.24	2.89	short	N
B_comp1755_c0_seq2	3	649518	Bradi2g01050	Os01g02150	sulfated surface gly coprotein 185 precursor	0.16	1.21	-2.60	0.27	2.87	short	N
D_comp548087_c0_seq1	4	36242528	Bradi1971040	Os03g10440	14-beta-xylanase	1.13	8.30	0.18	3.05	2.87	short	N
D_comp186644_c0_seq1	4	32582100	Bradi1966720	Os03g16610	L-ascorbate oxidase precursor	0.13	0.95	-2.95	-0.08	2.87	short	N
A_comp172908_c0_seq2	2	5184615	Bradi5g04030	Os04g15690	DSBA-like thioredoxin domain containing protein	0.14	1.03	-2.83	0.04	2.87	short	Y
D_comp43281_c0_seq1	2	2616946	Bradi5g02460	Os04g01140	cytochrome P450 93A2	0.20	1.43	-2.32	0.51	2.83	short	Y
B_comp4796_c0_seq18	7	30587517	Bradi1942470	Os06g30130	serine/threonine-protein kinase receptor precursor	0.12	0.89	-3.00	-0.17	2.83	short	N
B_comp21600_c0_seq3	1	2187276	Bradi2g37930	Os04g58830	ribosome biogenesis regulatory protein	1.01	0.14	0.02	-2.81	2.82	tall	N
B_comp28678_c0_seq4	1	16824218	Bradi3g33690	Os10g41490	serine/threonine-protein kinase SAPK3	0.14	0.99	-2.82	-0.01	2.81	short	N
D_comp7849_c0_seq1	4	3510376	Bradi1909690	Os08g13920	xyloglucan endotransglycosylase/hydrolase protein 8 precursor	5.00	34.89	2.32	5.12	2.80	short	N
A_comp1221538_c0_seq1	2	45659660	Bradi5g23910	Os04g55250		0.71	4.90	-0.50	2.29	2.79	short	N
D_comp284076_c0_seq1	4	26124166	Bradi3g43670	Os02g29140	ankyrin-like protein	19.86	2.88	4.31	1.53	2.79	tall	N
B_comp27246_c1_seq2	3	11627536	Bradi2g13190	Os01g28030	peroxidase 24 precursor	0.89	6.12	-0.17	2.61	2.78	short	Y
B_comp20431_c0_seq1	5	29390782	Bradi1906430	Os03g57220	hydroxyacid oxidase 1	0.12	0.82	-3.05	-0.29	2.76	short	Y
D_comp45307_c0_seq1	3	20970735	Bradi2g48050	Os01g51550	peroxidase family protein	0.23	1.56	-2.12	0.64	2.75	short	N
A_comp1030985_c0_seq1	2	47020593	Bradi5g16570	Os04g58570	elicitor-responsive protein 3	0.45	3.01	-1.16	1.59	2.75	short	Y
B_comp13012_c0_seq1	1	35728888	Bradi2g24330	Os05g35650	peptide transporter PTR2-B	0.10	0.68	-3.29	-0.56	2.72	short	N
D_comp52295_c0_seq1	7	24856893	Bradi1937870	Os06g36560	inositol oxygenase	0.35	2.32	-1.51	1.21	2.72	short	N
D_comp863707_c0_seq1	7	10860683	Bradi4g04550	Os11g45400	glycerol-3-phosphate acyltransferase 1	0.18	1.15	-2.51	0.20	2.71	short	N
B_comp25969_c0_seq1	5	420912	Bradi4g00830	Os12g43750		0.16	1.02	-2.68	0.03	2.71	short	N
D_comp314734_c0_seq1	4	18489897	Bradi3g04750	Os10g16974	flavonoid 3-monooxygenase	0.25	1.63	-2.00	0.70	2.70	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c\|} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Log2 } \\ \hline \text { (CD) } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
A_comp3243_c1_seq3	3	4438846	Bradi2g04510	Os05g07890	lipase/lipooxygenase PLAT/LH2	0.28	1.81	-1.85	0.86	2.70	short	Y
A_comp328999_c0_seq1	2	9661754	Bradi1920460	Os07g43800	EF hand family protein	0.15	0.95	-2.77	-0.07	2.70	short	N
A_comp410675_c0_seq1	3	2622505	Bradi2g03650	Os05g01280		0.30	1.94	-1.74	0.96	2.70	short	N
A_comp299418_c0_seq1	2	8701758	Bradi1919230	Os07g46350	serine carboxypeptidase 1 precursor	0.15	0.95	-2.77	-0.07	2.70	short	Y
B_comp16917_c0_seq1	6	13851258	Bradi3g47750	Os02g38290	cytochrome P450 94A2	0.22	1.44	-2.16	0.53	2.69	short	N
D_comp508294_c0_seq1	5	11593898	Bradi4g44510	Os12g02080	peroxidase 52 precursor	1.13	7.18	0.18	2.84	2.66	short	N
B_comp21388_c0_seq4	5	33174699	Bradi1900710	Os03g64230		0.21	1.31	-2.26	0.39	2.65	short	N
A_comp20593_c3_seq4	2	19212934	Bradi1955720	Os03g58110	systemin receptor SR160 precursor	0.12	0.75	-3.04	-0.41	2.63	short	N
D_comp282431_c0_seq1	2	8858877	Bradi1919470	Os07g19000		0.10	0.62	-3.32	-0.69	2.63	short	Y
B_comp60866_c0_seq1	5	30123068	Bradi1 g05310	Os03g58490		0.10	0.64	-3.27	-0.64	2.63	short	N
B_comp9200_c0_seq1	6	13335108	Bradi3g49250	Os05g35290	phenylalanine ammonia-lyase	1.58	9.63	0.66	3.27	2.61	short	N
D_comp379766_c0_seq1	3	19983764	Bradi2g47000	Os01g49510	esterase/lipase/thioesterase	0.10	0.62	-3.28	-0.68	2.60	short	N
B_comp25551_c0_seq1	6	15413474	Bradi3g49590	Os02g42310	lysosomal protective protein precursor	0.19	1.13	-2.42	0.18	2.60	short	N
D_comp196635_c0_seq1	4	37528205	Bradi1972760	Os03g08100	catalytic/ hydrolase	0.54	3.22	-0.90	1.69	2.59	short	Y
B_comp21388_c0_seq1	5	14727403	Bradi4g28000	Os09g15330	sugar transport protein 14	0.27	1.60	-1.91	0.67	2.59	short	N
A_comp215512_c0_seq1	2	1760470	Bradi5g01740	Os10g02210	peptide transporter PTR2 putative	0.20	1.23	-2.29	0.29	2.58	short	N
D_comp23134_c0_seq1	7	8762076	Bradi3g39420	Os08g38920	caffeoyl-CoA O-methyltransferase 2	2.86	17.09	1.52	4.09	2.58	short	Y
D_comp31791_c0_seq1	1	31083116	Bradi2g27870	Os07g47700	UDP-glucuronic acid decarboxylase 1	0.16	0.93	-2.68	-0.10	2.58	short	N
D_comp392_c0_seq1	7	23240299	Bradi1936590	Os06g40150	ethylene responsive element	0.69	4.13	-0.53	2.05	2.57	short	N
B_comp67227_c0_seq1	1	42644644	Bradi2g17070	Os05g48270	dopamine beta-monooxygenase	1.02	6.04	0.03	2.60	2.57	short	Y
D_comp260323_c0_seq1	7	6640904	Bradi3g42070	Os08g43290	LIM1 protein precursor	12.40	73.41	3.63	6.20	2.57	short	N
D_comp565894_c0_seq1	4	14331670	Bradi4g18910	Os11g30360	-	2.60	15.38	1.38	3.94	2.56	short	N
B_comp53515_c0_seq1	5	8303523	Bradi4g40100	Os12g12170	cytochrome b5 isoform2	2.56	15.11	1.36	3.92	2.56	short	N
B_comp43428_c0_seq1	7	2734714	Bradi1950970	Os06g05550	anther-specific proline-rich protein APG precursor	0.37	2.16	-1.42	1.11	2.54	short	N
D_comp97892_c0_seq1	3	11469772	Bradi2g13060	Os01g27360	glutathione S-transferase GSTF1	0.15	0.88	-2.73	-0.19	2.53	short	Y

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c\|} \hline C D \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp305536_c0_seq1	4	38650168	Bradi1974320	Os11g48060	monocopper oxidase-like protein SKS1 precursor	0.10	0.60	-3.27	-0.74	2.52	short	N
D_comp280274_c0_seq1	7	13797719	Bradi3g21020	Os02g14630	hydroquinone glucosyltransferase	0.14	0.78	-2.88	-0.36	2.52	short	N
B_comp53793_c0_seq1	6	20102111	Bradi3958800	Os02g51770	TLD family protein	0.41	2.36	-1.27	1.24	2.51	short	N
B_comp59909_c0_seq1	5	13409075	Bradi4g27030	Os09g10740	protein translocase/ protein transporter putative	0.18	1.03	-2.46	0.04	2.50	short	N
B_comp56262_c0_seq1	7	15237436	Bradi4g08650	Os08g17500	dihydroflavonol-4-reductase	0.11	0.63	-3.16	-0.67	2.49	short	N
B_comp22775_c0_seq1	7	21578726	Bradi3g09520	Os08g02300	NAM like protein	0.25	1.38	-2.02	0.47	2.49	short	N
A_comp36143_c0_seq1	2	4585429	Bradi3g20960	Os04g14690	monooxygenase/ oxidoreductase	0.11	0.61	-3.21	-0.72	2.49	short	N
D_comp409261_c0_seq1	6	1180492	Bradi3g01960	Os02g02870	glycine-rich protein 2	0.34	1.91	-1.55	0.93	2.48	short	N
D_comp84864_c0_seq1	5	8719990	Bradi4g40680	Os 12g08920	peroxidase 43 precursor	0.19	1.07	-2.38	0.10	2.48	short	N
D_comp36241_c0_seq4	4	31581938	Bradi1965530	Os03g18140	-	0.22	1.24	-2.16	0.31	2.47	short	N
D_comp412827_c0_seq1	5	14786789	Bradi4g28070	Os 10g09860	chalcone synthase 8 putative	0.27	1.50	-1.88	0.59	2.47	short	N
D_comp85890_c0_seq1	1	12540230	Bradi3g29710	Os 10g34920	secretory protein	1.01	5.60	0.02	2.49	2.46	short	N
D_comp33251_c0_seq1	4	30987387	Bradi1964710	Os03g19070	long cell-linked locus protein	0.84	0.15	-0.24	-2.71	2.46	tall	N
B_comp87048_c0_seq1	4	1562563	Bradi1911990	Os03g48626		0.19	1.07	-2.36	0.10	2.46	short	N
A_comp261568_c0_seq1	3	16434092	Bradi2g43330	Os05g51050	acyl-protein thioesterase 2	0.35	1.92	-1.52	0.94	2.46	short	Y
D_comp5243_c0_seq1	3	20370676	Bradi2g47410	Os01g50160	multidrug resistance protein 8	0.12	0.66	-3.05	-0.60	2.46	short	N
B_comp60794_c0_seq1	1	16286879	Bradi3g33150	Os 10g40730	beta-expansin 1a precursor	2.18	11.96	1.13	3.58	2.45	short	Y
A_comp76801_c0_seq1	1	35675912	Bradi2g24400	Os05g35500	mybHv5	0.13	0.69	-2.98	-0.54	2.44	short	N
A_comp208468_c0_seq1	2	23796961	Bradi1922030	Os03g30250	phytochelatin synthetase-like conserved region family protein	0.32	1.72	-1.65	0.78	2.43	short	N
B_comp29655_c0_seq1	5	11596342	Bradi4g44530	Os11g02130	peroxidase 52 precursor	1.21	6.51	0.28	2.70	2.43	short	Y
B_comp81942_c0_seq1	4	555036	Bradi1913090	Os03g45920	tubulin beta-8 chain	0.33	1.75	-1.61	0.81	2.42	short	N
B_comp85068_c0_seq1	5	4961587	Bradi4g05980	Os12g34524	peroxidase 24 precursor	0.37	1.99	-1.42	1.00	2.42	short	N
B_comp65814_c0_seq1	4	1367513	Bradi1g12190	Os03g48180	peptide transporter PTR2	4.06	21.55	2.02	4.43	2.41	short	Y
A_comp552861_c0_seq1	2	14316243	Bradi1925930	Os01g10990	nodulin-like protein	0.38	2.02	-1.39	1.01	2.41	short	N
A_comp467430_c0_seq1	4	41075723	Bradi1g77840	Os03g02040	remorin	3.61	19.04	1.85	4.25	2.40	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{aligned} & \hline \mathrm{CD} \\ & \text { raw } \end{aligned}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l} \hline \log 2 \\ (C D) \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \\ & \hline \end{aligned}$	Fold diff	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp73457_c0_seq1	6	21940265	Bradi1947580	Os02g55480	protein binding protein	0.31	1.65	-1.67	0.72	2.39	short	Y
D_comp726375_c0_seq1	3	26335001	Bradi2g54960	Os01g62970	-	0.12	0.61	-3.09	-0.70	2.39	short	N
D_comp930_c0_seq1	5	31391586	Bradi1903500	Os03g60850	peptide transporter PTR2	0.13	0.67	-2.96	-0.58	2.38	short	N
B_comp57763_c0_seq1	7	37892013	Bradi3g21150	Os11g39420	jacalin-like lectin domain containing protein	0.16	0.84	-2.62	-0.25	2.37	short	N
B_comp423_c1_seq2	5	19271612	Bradi4g32220	Os09g28550	-	0.12	0.63	-3.03	-0.66	2.37	short	N
D_comp297189_c0_seq1	4	31450374	Bradi1965340	Os03g18370	ATP binding protein	0.10	0.52	-3.30	-0.93	2.36	short	N
D_comp28929_c1_seq1	4	35458159	Bradi1969910	Os03g11590	-	0.17	0.87	-2.55	-0.20	2.35	short	N
B_comp95118_c0_seq1	4	6201098	Bradi4g24460	Os11g07060	receptor protein kinase CLAVATA1 precursor	0.53	2.70	-0.91	1.44	2.34	short	N
A_comp742863_c0_seq1	1	17705819	Bradi3g34600	Os10g42900	peptide transporter PTR2	0.44	2.22	-1.19	1.15	2.34	short	N
B_comp9885_c0_seq1	1	41517321	Bradi3g14100	Os04g03579	ATP binding protein	0.32	1.59	-1.66	0.67	2.33	short	N
D_comp32215_c0_seq1	2	3121526	Bradi5g02360	Os06g47800	disease resistance protein RGA3	1.93	9.68	0.95	3.28	2.33	short	Y
A_comp28323_c1_seq1	2	36846706	Bradi1922860	Os07g46980	sex determination protein tasselseed-2	0.26	1.29	-1.95	0.37	2.32	short	N
B_comp20797_c0_seq7	3	14981616	Bradi2g41940	Os01g40070		2.57	0.51	1.36	-0.96	2.32	tall	N
A_comp79766_c0_seq1	2	28186656	Bradi5g06620	Os04g28280	BHLLH transcription factor	0.32	1.59	-1.64	0.67	2.31	short	N
B_comp43500_c0_seq1	4	29768767	Bradi 196350	Os03g21230	protein kinase	0.34	1.67	-1.56	0.74	2.31	short	N
B_comp28882_c0_seq2	4	37310739	Bradi1972510	Os03g08390		0.13	0.63	-2.97	-0.67	2.31	short	N
B_comp131_c0_seq2	7	37422489	Bradi1947710	Os02g55560	DNA-binding protein phosphatase 2C	1.67	0.34	0.74	-1.56	2.31	tall	Y
D_comp4797_c0_seq1	6	19942422	Bradi3g59060	Os02g51570	FKBP-type peptidyl-prolyl cis-trans isomerase 4 chloroplast precursor	0.14	0.68	-2.87	-0.56	2.31	short	N
D_comp5318_c0_seq4	3	1035840	Bradi2g01480	Os01g02930	gly cosyltransferase	0.11	0.56	-3.14	-0.84	2.30	short	N
D_comp915_c1_seq1	6	1954791	Bradi3g03060	Os02g04120	bifunctional coenzyme A synthase	0.85	4.20	-0.23	2.07	2.30	short	N
D_comp878527_c0_seq1	3	28844024	Bradi2g58310	Os01g68269		0.14	0.67	-2.86	-0.57	2.29	short	N
B_comp51319_c0_seq1	3	26161041	Bradi2g54740	Os01g62600	laccase putative	0.15	0.74	-2.73	-0.44	2.29	short	N
D_comp26897_c0_seq1	5	20519739	Bradi4g33490	Os09g30486	fasciclin-like arabinogalactan protein 7 precursor	0.50	2.44	-1.00	1.29	2.29	short	N
B_comp9810_c0_seq2	1	36940498	Bradi2g54690	Os05g38410	L-ascorbate oxidase precursor	0.44	2.16	-1.18	1.11	2.29	short	N
A_comp22036_c0_seq2	3	29887192	Bradi2g59660	Os01g70520	beta-glucosidase homolog precursor	0.30	1.48	-1.72	0.57	2.29	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \text { CD } \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{l\|} \hline \text { Log } 2 \\ (C D) \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \end{aligned}$	Fold diff	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp39701_c1_seq3	3	9223760	Bradi2g11010	Os05g13940	early nodulin 75 protein	0.79	3.83	-0.35	1.94	2.28	short	N
D_comp757_c0_seq1	3	1361089	Bradi2g02430	Os04g02280	F-box domain containing protein	0.18	0.86	-2.49	-0.21	2.28	short	N
D_comp444388_c0_seq1	3	12001504	Bradi2g13520	Os01g33420	alpha-galactosidase/ hydrolase hydrolyzing O-glycosyl compounds	0.18	0.87	-2.47	-0.19	2.27	short	N
B_comp8161_c0_seq1	1	470389	Bradi2g39930	Os05g01290	-	0.34	1.62	-1.57	0.70	2.27	short	Y
D_comp759259_c0_seq1	5	8206352	Bradi4g39980	Os04g41960	NADP-dependent oxidoreductase P1	0.65	3.14	-0.62	1.65	2.27	short	N
A_comp116782_c0_seq1	2	42055062	Bradi5g21590	Os04g52320	QRT3	2.76	13.28	1.46	3.73	2.27	short	N
B_comp25960_c0_seq5	6	15492015	Bradi3g49730	Os04g44530	-	0.39	1.87	-1.36	0.91	2.27	short	N
B_comp98223_c0_seq1	5	21311914	Bradi4g34300	Os09g32470	membrane protein	0.46	2.22	-1.11	1.15	2.26	short	N
B_comp16151_c0_seq1	6	16336175	Bradi3g50720	Os02g44102	remorin C-terminal region family protein	0.17	0.81	-2.56	-0.30	2.26	short	N
D_comp7140_c0_seq1	6	7587795	Bradi3g09470	Os02g15230	esterase precursor	1.39	6.65	0.47	2.73	2.26	short	N
D_comp12230_c0_seq1	3	7592711	Bradi2g09300	Os01g15320	rapid alkalinization factor 1 precursor	1.71	8.17	0.78	3.03	2.25	short	N
B_comp2117_c0_seq1	5	8212095	Bradi4g39990	Os12g12590	NADP-dependent oxidoreductase P1	0.20	0.94	-2.35	-0.09	2.25	short	N
B_comp97658_c0_seq1	5	6401246	Bradi4g07520	Os12g29400	ABA-responsive protein	0.12	0.58	-3.04	-0.79	2.25	short	Y
D_comp95949_c0_seq1	1	17338906	Bradi3g34140	Os10g42390	RING-H2 finger protein ATL1G	0.23	1.08	-2.13	0.12	2.25	short	Y
D_comp121909_c0_seq1	6	11316365	Bradi3g44870	Os02g32970	catalytic/ hydrolase	0.21	1.01	-2.22	0.02	2.24	short	N
D_comp101996_c0_seq1	7	42838092	Bradi1932660	Os06g46270	NAC domain-containing protein 21/22	0.14	0.67	-2.82	-0.58	2.24	short	N
D_comp62589_c0_seq2	3	21553825	Bradi2g49490	Os01g53980	calmodulin binding protein	0.11	0.50	-3.24	-1.00	2.24	short	N
A_comp33929_c0_seq1	1	42251266	Bradi2g17540	Os05g47700	nonspecific lipid-transfer protein precursor	0.97	4.57	-0.04	2.19	2.23	short	N
D_comp23667_c0_seq2	3	18976213	Bradi2g45980	Os05g49040	-	0.42	1.98	-1.24	0.98	2.23	short	Y
A_comp941694_c0_seq1	1	36625224	Bradi2g23650	Os05g37880	axi 1 like protein	0.14	0.67	-2.80	-0.57	2.22	short	N
A_comp270863_c0_seq1	2	6987307	Bradi1917050	Os12g24580	negatively light-regulated protein	2.11	9.83	1.08	3.30	2.22	short	N
B_comp13005_c0_seq3	4	38703457	Bradi1g74410	Os03g06570	calmodulin binding protein	0.46	2.11	-1.14	1.07	2.21	short	N
B_comp45144_c0_seq1	5	22401587	Bradi4g35710	Os09g35690	protein binding protein	0.12	0.54	-3.10	-0.89	2.21	short	N
D_comp414476_c0_seq1	6	920158	Bradi4g09460	Os11g39450	stem rust resistance protein	1.10	0.24	0.13	-2.07	2.20	tall	N
A_comp310675_c0_seq1	3	22635731	Bradi2g50090	Os01g54950	-	0.27	1.21	-1.92	0.27	2.19	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{r} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RilL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \log 2 \\ (C D) \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	Fold diff	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp41425_c0_seq1	4	28778654	Bradi1962490	Os03g22680	RING finger and CHY zinc finger domain-containing protein 1	2.27	10.35	1.19	3.37	2.19	short	N
B_comp740_c0_seq1	6	19639247	Bradi3g59500	Os02g50990	RING-H2 finger protein ATL1Q	0.10	0.47	-3.26	-1.08	2.18	short	N
D_comp45143_c0_seq1	4	17526436	Bradi4g17230	Os11g32650	chalcone synthase	0.57	2.57	-0.80	1.36	2.17	short	N
D_comp507709_c0_seq1	5	1456476	Bradi4g02250	Os04g12560	receptor-like protein kinase	0.22	0.97	-2.22	-0.05	2.17	short	Y
D_comp89039_c0_seq1	5	16799813	Bradi1944070	Os06g14670	odorant 1 protein	0.12	0.53	-3.09	-0.93	2.17	short	N
A_comp549410_c0_seq1	2	5280233	Bradi5g04080	Os12g19394	ribulose bisphosphate carboxylase small chain C chloroplast precursor	0.64	2.89	-0.63	1.53	2.16	short	Y
A_comp2011678_c0_seq1	1	22147668	Bradi2g35450	Os05g06140	lipase	0.69	3.09	-0.53	1.63	2.16	short	N
D_comp427260_c0_seq1	1	41864091	Bradi2g47590	Os05g46610	myb-related protein Hv33	0.16	0.71	-2.66	-0.50	2.16	short	N
D_comp120050_c0_seq1	4	33927334	Bradi1968330	Os03g14030	thaumatin-like protein 1 precursor	0.45	2.03	-1.14	1.02	2.16	short	Y
B_comp83466_c0_seq1	5	11842840	Bradi4g44860	Os11g01570	-	2.04	9.11	1.03	3.19	2.16	short	N
B_comp6072_c0_seq6	1	16258915	Bradi3g33110	Os03g01260	beta-expansin 1a precursor	8.99	39.98	3.17	5.32	2.15	short	Y
A_comp1372120_c0_seq1	2	46789083	Bradi5g26170	Os04g58100	-	0.19	0.87	-2.36	-0.21	2.15	short	N
B_comp71039_c0_seq1	7	24267412	Bradi1937450	Os06g37560	beta-galactosidase precursor	3.01	13.32	1.59	3.74	2.15	short	Y
A_comp508006_c0_seq1	5	24338582	Bradi4g37990	Os09g38777	mo-molybdopterin cofactor sulfurase	0.20	0.89	-2.31	-0.17	2.14	short	N
A_comp1183223_c0_seq1	2	35808572	Bradi5g12740	Os04g39150	major latex protein 22	23.79	104.93	4.57	6.71	2.14	short	N
A_comp250842_c0_seq1	2	7111111	Bradi1917260	Os07g48750	alpha- N -arabinofuranosidase 1 precursor	0.16	0.72	-2.61	-0.48	2.14	short	N
B_comp51635_c0_seq1	4	31749237	Bradi1965750	Os03g17850	beta3-glucuronyltransferase	1.34	5.89	0.42	2.56	2.14	short	N
A_comp44872_c0_seq1	4	37426699	Bradi1972660	Os03g08250	-	0.25	1.09	-2.01	0.12	2.14	short	N
D_comp304007_c0_seq1	5	20617423	Bradi4g33550	Os08g39370	tonoplast dicarboxylate transporter	0.55	2.41	-0.86	1.27	2.13	short	Y
D_comp51840_c0_seq5	2	37272794	Bradi5g14300	Os04g41540	calmodulin	0.31	1.34	-1.71	0.42	2.13	short	N
B_comp30129_c0_seq2	6	16369655	Bradi3g50740	Os02g44108	beta-expansin 4 precursor	0.70	3.06	-0.52	1.61	2.13	short	N
D_comp90520_c0_seq1	1	14775098	Bradi2g47110	Os10g38720	glutathione S-transferase GSTU6	7.22	31.31	2.85	4.97	2.12	short	N
A_comp29980_c0_seq26	2	10996983	Bradi1922040	Os07g41310	COBRA-like protein 4 precursor	0.66	2.83	-0.60	1.50	2.10	short	N
B_comp4172_c0_seq2	5	21848997	Bradi4g34930	Os09g33680	cyanogenic beta-glucosidase precursor	0.26	1.10	-1.96	0.14	2.10	short	N
A_comp706481_c0_seq1	2	45007727	Bradi5g24830	Os04g56500	-	0.20	0.84	-2.35	-0.26	2.09	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \text { CD } \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \end{aligned}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (CD) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RIL4) } \end{array}$	Fold diff	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp386325_c0_seq1	3	25183692	Bradi2g53470	Os05g25640	trans-cinnamate 4-monooxygenase	0.65	2.78	-0.62	1.47	2.09	short	N
D_comp170811_c0_seq1	2	7281367	Bradi1917450	Os07g48500	stress responsive protein	0.40	1.70	-1.33	0.76	2.09	short	N
D_comp162468_c0_seq1	4	33643334	Bradi1968010	Os03g14590	calcium ion binding protein	0.19	0.81	-2.39	-0.30	2.09	short	Y
A_comp20_c0_seq30	2	47541900	Bradi4g09590	Os07g19320	stripe rust resistance protein Yr10 putative	0.18	0.75	-2.50	-0.42	2.09	short	N
A_comp1085031_c0_seq1	2	42929166	Bradi5g20400	Os04g51070	helix-loop-helix DNA-binding domain containing protein	1.02	4.31	0.03	2.11	2.08	short	N
B_comp17825_c0_seq1	6	3691330	Bradi3g05290	Os02g07480	transglycosylase SLT domain containing protein	0.43	1.81	-1.22	0.86	2.08	short	N
D_comp674392_c0_seq1	4	8608056	Bradi4g22730	Os11g10130	myb-like DNA-binding domain containing protein	0.13	0.56	-2.91	-0.84	2.08	short	N
A_comp3243_c0_seq11	2	37219855	Bradi5g14210	Os04g41340	4 -nitrophenylphosphatase	1.34	5.66	0.42	2.50	2.08	short	N
A_comp745771_c0_seq1	3	28857239	Bradi2g58350	Os01g68300		1.52	6.42	0.61	2.68	2.08	short	N
D_comp491241_c0_seq1	7	4481788	Bradi3g44260	Os02g30910	MTN3	2.30	9.68	1.20	3.27	2.07	short	Y
A_comp315660_c0_seq2	3	18287969	Bradi2g45320	Os01g46350		1.17	4.92	0.23	2.30	2.07	short	N
B_comp64596_c0_seq1	5	19375815	Bradi4g32330	Os09g28730	gibberellin receptor GID1L2	0.62	2.63	-0.68	1.39	2.07	short	N
D_comp91511_c0_seq1	5	9846389	Bradi4g42070	Os12g06180	pathogenicity protein PATH531-like protein	0.13	0.56	-2.90	-0.83	2.07	short	N
B_comp63772_c0_seq1	7	6522372	Bradi3g42240	Os08g43700	OsSAUR36 - Auxin-responsive SAUR gene family member	1.25	5.23	0.32	2.39	2.07	short	N
D_comp229880_c0_seq1	7	2321601	Bradi2g62420	Os01g66830	carboxylic ester hydrolase	0.69	2.88	-0.54	1.52	2.07	short	N
D_comp454438_c0_seq1	4	27544816	Bradi4g08950	Os09g08190	flavonol 4-sulfotransferase	0.49	0.12	-1.03	-3.09	2.06	tall	Y
A_comp490021_c0_seq1	2	5823605	Bradi5g04640	Os05g23924	hydrolase hydrolyzing O-glycosyl compounds	0.41	1.70	-1.29	0.76	2.06	short	N
D_comp205768_c0_seq1	6	20052569	Bradi3g58910	Os02g51720		0.13	0.53	-2.97	-0.92	2.05	short	N
B_comp62722_c0_seq1	7	7430049	Bradi3g40990	Os09g32730	zinc finger-like protein	0.11	0.44	-3.24	-1.19	2.05	short	N
D_comp1082113_c0_seq1	5	11266851	Bradi3g06420	Os11g25330	nucleoside-triphosphatase	0.43	1.76	-1.22	0.82	2.04	short	N
D_comp69179_c0_seq1	3	20490974	Bradi2g47480	Os01g50370	mitogen-activated protein kinase kinase kinase 1	0.11	0.46	-3.15	-1.11	2.04	short	N
D_comp6584_c0_seq1	7	6646606	Bradi4g35680	Os08g43270	protein binding protein	1.07	4.37	0.09	2.13	2.03	short	N
D_comp17578_c0_seq1	7	1712408	Bradi3g16540	Os06g01960	retrotransposon protein unclassified	0.73	3.01	-0.44	1.59	2.03	short	N
B_comp4386_c1_seq1	6	7401873	Bradi3g09290	Os06g14310	potassium channel AKT1 putative	0.16	0.66	-2.63	-0.60	2.03	short	N
D_comp94454_c0_seq1	3	10176207	Bradi2g11860	Os01g21034	pectinesterase-2 precursor	1.87	7.65	0.90	2.94	2.03	short	Y

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{r} \hline \text { CD } \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \hline \mathrm{Log} 2 \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \\ \hline \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp63329_c0_seq3	4	24142860	Bradi3g02290	Os11g42200	laccase LAC2-1	0.55	2.25	-0.86	1.17	2.03	short	N
D_comp359860_c0_seq1	2	15507770	Bradi1g27120	Os07g30970	nucleoside diphosphate kinase 1	1.81	7.39	0.86	2.88	2.03	short	N
B_comp56832_c0_seq1	7	22032091	Bradi3g13260	Os08g01600	polygalacturonase	0.31	1.27	-1.68	0.34	2.02	short	Y
B_comp32034_c0_seq1	5	28549102	Bradi1 O 07330	Os03g55980		0.10	0.41	-3.29	-1.27	2.02	short	N
D_comp12048_c0_seq1	5	2761440	Bradi4g03460	Os12g39220	zinc finger protein 7	0.34	1.39	-1.54	0.47	2.02	short	N
A_comp758825_c0_seq1	1	17483096	Bradi3g34280	Os10g42620	dihydroflavonol-4-reductase	3.14	12.69	1.65	3.67	2.01	short	N
D_comp106405_c0_seq4	5	14658840	Bradi4g27950	Os03g36080		0.14	0.57	-2.84	-0.82	2.01	short	N
A_comp8310_c0_seq1	1	13155943	Bradi3g30300	Os10g36170	nonspecific lipid-transfer protein precursor	2.36	9.53	1.24	3.25	2.01	short	N
D_comp116464_c0_seq1	7	19111653	Bradi3g16530	Os08g06100	quercetin 3-O-methyltransferase 1	10.89	43.95	3.44	5.46	2.01	short	N
D_comp330792_c0_seq1	6	14694377	Bradi3g48800	Os02g40260	protein binding protein	0.64	2.56	-0.65	1.36	2.01	short	Y
B_comp59071_c0_seq1	1	14952636	Bradi3g31970	Os10g38920	ATP binding protein	0.50	2.02	-1.00	1.01	2.01	short	N
D_comp3893_c0_seq1	3	29180623	Bradi2g58790	Os01g68890	w iscott-Aldrich syndrome C-terminal	0.53	2.13	-0.91	1.09	2.00	short	N
A_comp10324_c0_seq1	2	32832451	Bradi5g10030	Os04g34600	ABA/WDS induced protein	0.21	0.84	-2.25	-0.25	2.00	short	Y
D_comp382592_c0_seq 1	2	24629990	Bradi1960320	Os03g28330	sucrose synthase 2	24.89	99.73	4.64	6.64	2.00	short	N
A_comp2187_c0_seq1	2	41806613	Bradi5g19240	Os04g49194	naringenin2-oxoglutarate 3-dioxygenase	0.13	0.53	-2.92	-0.92	2.00	short	N
B_comp75905_c0_seq1	1	14874206	Bradi3g31870	Os10g38780	glutathione S-transferase GSTU6	0.12	0.48	-3.05	-1.05	2.00	short	N
D_comp141170_c0_seq1	7	2706319	Bradi1950950	Os09g04210	hydrolase/ zinc ion binding protein	5.27	1.32	2.40	0.40	2.00	tall	Y
B_comp63675_c0_seq1	7	3731090	Bradi1 g 38730	Os08g40030	nam-like protein 16 putative	0.24	0.95	-2.06	-0.07	1.99	short	N
D_comp19205_c0_seq1	4	26598655	Bradi2g35770	Os04g53496	NBS-LRR disease resistance protein	0.46	1.85	-1.11	0.89	1.99	short	N
A_comp639293_c0_seq1	2	44590298	Bradi5g22830	Os04g53800	leucoanthocyanidin reductase	0.10	0.41	-3.27	-1.28	1.99	short	N
D_comp219169_c0_seq1	6	7186130	Bradi3g09080	Os02g14160	peroxidase 52 precursor	2.97	11.78	1.57	3.56	1.99	short	N
B_comp12069_c0_seq1	7	41476467	Bradi1 g33860	Os06g48250	cell Division Protein AAA ATPase family	0.28	1.11	-1.83	0.15	1.98	short	N
D_comp10779_c0_seq1	1	9404181	Bradi3g27610	Os10g30560	cytokinin-O-glucosyltransferase 2	0.12	0.46	-3.10	-1.12	1.98	short	Y
D_comp217601_c0_seq1	6	21333076	Bradi3g60160	Os02g54254	alpha-aminoadipic semialdehyde synthase	0.34	1.33	-1.56	0.42	1.98	short	N
D_comp98557_c0_seq1	6	17281782	Bradi3g51780	Os02g45710	RING zinc finger protein-like	1.47	0.37	0.56	-1.42	1.98	tall	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Log2 } \\ \text { (RILL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \\ & \hline \end{aligned}$
B＿comp16872＿c0＿seq1	1	40397409	Bradi2g19860	Os12g25450	O－methytransferase ZRP4	0.26	1.03	－1．93	0.05	1.98	short	N
B＿comp67279＿c0＿seq1	4	5558469	Bradi4g25020	Os11g06020	B⿴⿱冂一⿱一一厶儿，1－like homeodomain transcription factor	0.48	1.89	－1．05	0.92	1.97	short	Y
D＿comp296330＿c0＿seq1	4	12574724	Bradi4g20180	Os11g19480	ATP binding protein	0.42	1.66	－1．24	0.73	1.97	short	N
A＿comp101603＿c0＿seq1	2	15199243	Bradi1g26850	Os07g31720	ZAC	2.90	11.34	1.54	3.50	1.97	short	N
B＿comp20451＿c0＿seq1	5	4511676	Bradi4g05450	Os01g01660	isoflavone reductase homolog IRL	14.42	56.28	3.85	5.81	1.96	short	N
B＿comp40890＿c0＿seq1	4	37850540	Bradi1g73170	Os 10g26470	sucrose transporter 1	1.03	4.00	0.04	2.00	1.96	short	Y
B＿comp47325＿c0＿seq1	4	4850636	Bradi4g25560	Os11g05530	－	0.15	0.57	－2．78	－0．82	1.96	short	N
B＿comp3707＿c0＿seq4	5	32852870	Bradi1g01310	Os03g63540	in cucumber hypocotyls	0.54	2.10	－0．89	1.07	1.96	short	N
B＿comp80940＿c0＿seq1	7	19544967	Bradi3g16100	Os08g06640	－	0.16	0.62	－2．64	－0．68	1.96	short	N
A＿comp224323＿c0＿seq1	3	25332892	Bradi2g53600	Os01g60800	－	0.22	0.85	－2．20	－0．24	1.96	short	N
D＿comp449046＿c0＿seq1	7	24995038	Bradi1g37960	Os06g36270	receptor－like protein kinase 5 precursor	0.48	0.12	－1．07	－3．03	1.96	tall	N
B＿comp9526＿c0＿seq4	6	17445617	Bradi3g51980	Os02g46100	RING－H2 finger protein ATL1R	0.26	1.02	－1．92	0.03	1.95	short	N
D＿comp348637＿c0＿seq1	7	3747587	Bradi1g50070	Os04g01690	arginine decarboxylase	1.36	5.25	0.44	2.39	1.95	short	N
A＿comp7974＿c0＿seq1	2	9518895	Bradi1g20280	Os07g44060	catalytic／hydrolase	0.74	2.87	－0．43	1.52	1.95	short	N
D＿comp914036＿c0＿seq1	2	40137340	Bradi5g17300	Os06g35650	reticuline oxidase precursor	0.12	0.46	－3．07	－1．12	1.94	short	N
B＿comp5020＿c0＿seq1	4	36633459	Bradi1971580	Os03g09850	dopamine beta－monooxygenase	0.44	1.70	－1．18	0.76	1.94	short	N
D＿comp59091＿c0＿seq1	2	14579170	Bradi1g26220	Os07g33320	－	0.47	1.82	－1．08	0.86	1.94	short	N
B＿comp14988＿c0＿seq3	3	5527809	Bradi2g06620	Os08g27840	phosphoenolpyruvate carboxylase 2	0.38	1.46	－1．39	0.54	1.93	short	N
B＿comp16121＿c0＿seq2	5	27994738	Bradi1g08120	Os03g55070	UDP－glucose 6－dehydrogenase	16.42	62.62	4.04	5.97	1.93	short	N
A＿comp46003＿c0＿seq1	2	39386302	Bradi5g16480	Os04g44750	arabinose－proton symporter	0.11	0.42	－3．17	－1．24	1.93	short	N
D＿comp313443＿c0＿seq1	7	39762318	Bradi1g35600	Os06g42560	tryptophan synthase beta chain 2	0.59	2.24	－0．76	1.16	1.92	short	N
B＿comp22537＿c0＿seq1	2	33026673	Bradi5g10210	Os04g35140	subtilisin－like protease precursor	0.11	0.42	－3．16	－1．24	1.92	short	N
B＿comp7797＿c0＿seq8	7	6121818	Bradi3g43000	Os08g44620	－	0.37	1.41	－1．42	0.49	1.91	short	N
A＿comp318255＿c0＿seq1	3	6697123	Bradi2g08300	Os08g44270	vignain precursor	0.15	0.54	－2．78	－0．88	1.91	short	Y
B＿comp30921＿c0＿seq1	5	22154774	Bradi4g35360	Os09g34230	indole－3－acetate beta－glucosyltransferase	0.16	0.60	－2．65	－0．74	1.91	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \mathrm{CD} \\ \text { raw } \end{array}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RILL4) } \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp417618_c0_seq1	3	27440492	Bradi2g56520	Os11g07890	transposon protein CACTA En/Spm sub-class	0.24	0.89	-2.08	-0.18	1.91	short	N
D_comp6252_c0_seq1	2	16480283	Bradi1928060	Os07g29600	RING-H2 finger protein ATL2B	0.43	1.62	-1.21	0.69	1.90	short	Y
B_comp14070_c0_seq2	4	7730497	Bradi4g23280	Os11g09150	-	0.26	0.97	-1.94	-0.04	1.90	short	N
D_comp835674_c0_seq1	6	3390667	Bradi3g04930	Os12g42090	inner envelope membrane protein chloroplast precursor	3.44	12.85	1.78	3.68	1.90	short	Y
B_comp10632_c0_seq1	5	18604835	Bradi4g30110	Os06g01610	vacuolar processing enzyme precursor putative	0.14	0.51	-2.86	-0.96	1.90	short	N
A_comp104971_c0_seq1	2	33433385	Bradi5g10590	Os04g35580	-	0.59	2.21	-0.75	1.14	1.90	short	N
D_comp401857_c0_seq1	1	39304298	Bradi1929940	Os 10g37620	retrotransposon protein unclassified	0.19	0.72	-2.37	-0.47	1.89	short	N
B_comp13109_c0_seq1	6	4475680	Bradi3g06200	Os02g09080	-	0.23	0.85	-2.12	-0.23	1.89	short	N
B_comp52945_c0_seq2	4	30383559	Bradi1964120	Os03g20120	galactinol synthase 3	0.65	2.41	-0.62	1.27	1.89	short	N
B_comp58710_c0_seq1	5	24128740	Bradi4g37670	Os09g38510	ATPUP5	0.11	0.42	-3.14	-1.26	1.88	short	N
D_comp33971_c0_seq1	7	36712782	Bradi1947220	Os07g23150	anthocy anin 5-aromatic acyltransferase	0.22	0.80	-2.20	-0.32	1.88	short	N
B_comp15763_c0_seq30	1	3032176	Bradi1914350	Os 10g11860	transparent testa 12 protein	0.50	1.84	-1.00	0.88	1.88	short	N
D_comp79096_c0_seq1	5	11374740	Bradi4g44170	Os12g02760	-	0.18	0.67	-2.47	-0.59	1.88	short	N
B_comp19519_c0_seq1	5	32465323	Bradi1901850	Os03g62850	acyl-CoA synthetase-like protein	0.13	0.47	-2.96	-1.08	1.88	short	N
D_comp23_c5_seq1	6	23893607	Bradi3g60470	Os02g58260	Zn -dependent hydrolases including glyoxylases	0.10	0.37	-3.30	-1.43	1.87	short	N
A_comp199297_c0_seq1	2	42904382	Bradi5g20420	Os04g51090		2.90	10.59	1.54	3.40	1.87	short	Y
D_comp221030_c0_seq1	2	34937153	Bradi5g11900	Os04g37760	-	0.18	0.64	-2.51	-0.64	1.87	short	N
B_comp67534_c0_seq1	1	36744264	Bradi2g23570	Os05g37950	guanylyl cyclase	0.11	0.41	-3.16	-1.29	1.87	short	N
A_comp14999_c0_seq47	3	23130189	Bradi2g50790	Os07g02200	blue copper protein precursor	0.34	1.25	-1.54	0.33	1.87	short	N
D_comp464196_c0_seq1	3	17739827	Bradi2g44820	Os01g45110	cytokinin-O-glucosyltransferase 1	0.23	0.84	-2.12	-0.25	1.87	short	Y
B_comp21732_c0_seq1	3	11204609	Bradi2g12830	Os01g26120	plant integral membrane protein TIGR01569 containing protein	0.88	3.22	-0.18	1.69	1.87	short	Y
A_comp24186_c0_seq1	3	4467335	Bradi2g04440	Os01g07720	dolichyl-P-Man Man-PP-dolichyl mannosyltransferase	3.59	0.99	1.84	-0.02	1.86	tall	Y
A_comp3243_c1_seq7	2	42603463	Bradi1921920	Os07g41460	flavonol 4-sulfotransferase	2.02	0.56	1.02	-0.84	1.86	tall	N
D_comp111674_c0_seq1	7	44514004	Bradi1930910	Os06g44040	DOMON domain containing protein	0.16	0.56	-2.69	-0.83	1.86	short	N
D_comp1078126_c0_seq1	1	39484138	Bradi2g21010	Os08g08980	germin-like protein subfamily 1 member 7 precursor	0.15	0.55	-2.73	-0.87	1.86	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{r} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \\ & \hline \end{aligned}$
D_comp33537_c0_seq2	4	35130406	Bradi1969540	Os03g12260	cytochrome P450 86A2	0.39	1.42	-1.35	0.50	1.86	short	N
A_comp76698_c0_seq3	5	5454509	Bradi4g06490	Os12g32640	haemolysin-III related family protein	0.28	0.99	-1.86	-0.01	1.85	short	N
B_comp4082_c0_seq3	5	11816391	Bradi4g44810	Os11g01730	L-ascorbate oxidase precursor putative	0.11	0.41	-3.14	-1.29	1.85	short	N
A_comp69771_c0_seq1	5	16372527	Bradi4g29530	Os09g21710	AN1-type zinc finger protein 2B	0.15	0.55	-2.70	-0.85	1.85	short	Y
D_comp598953_c0_seq1	7	35554941	Bradi1946190	Os03g20290	aspartic proteinase nepenthesin-1 precursor	0.92	3.33	-0.12	1.73	1.85	short	N
A_comp416_c0_seq1	2	9494006	Bradi1g20250	Os07g44090	myb-related protein Hv33	0.63	2.28	-0.66	1.19	1.85	short	Y
A_comp72814_c0_seq1	1	19968679	Bradi2g14250	Os05g51670	UDP-glucose 4-epimerase GEP48	1.46	5.23	0.55	2.39	1.84	short	N
D_comp390388_c0_seq1	1	25367503	Bradi2g32590	Os01g10890	CBL-interacting serine/threonine-protein kinase 15	0.27	0.95	-1.91	-0.08	1.84	short	Y
B_comp10636_c0_seq1	5	11223041	Bradi4g43960	Os11g03420	zinc finger homeodomain protein 1	0.61	2.19	-0.70	1.13	1.84	short	N
A_comp3243_c1_seq4	3	29894877	Bradi2g59690	Os01g70550	-	0.12	0.43	-3.05	-1.22	1.84	short	Y
D_comp15327_c0_seq1	1	997830	Bradi2g38790	Os08g42670	resistance protein	0.52	1.84	-0.95	0.88	1.84	short	N
A_comp926345_c0_seq1	3	18236795	Bradi2g45280	Os01g46210	esterase precursor putative	0.20	0.72	-2.31	-0.48	1.84	short	Y
B_comp16121_c0_seq5	4	32018733	Bradi1966100	Os03g29920		0.81	2.87	-0.31	1.52	1.83	short	N
D_comp640957_c0_seq1	5	7675245	Bradi4g39350	Os 10g01110	serine carboxypeptidase 1 precursor	0.11	0.41	-3.12	-1.29	1.83	short	Y
A_comp76801_c0_seq2	1	14568748	Bradi3g31560	Os 10g37870	hypothetical protein	0.60	2.13	-0.74	1.09	1.83	short	N
B_comp33566_c0_seq6	6	15913626	Bradi3g50200	Os02g43280	aldehyde dehydrogenase 3B1	1.37	4.87	0.46	2.28	1.83	short	N
B_comp468_c0_seq5	7	7984783	Bradi3g40270	Os08g40420	ternary complex factor MP1	0.93	3.30	-0.10	1.72	1.83	short	N
A_comp631960_c0_seq1	5	17671995	Bradi4g30990	Os09g26370	-	7.19	25.48	2.85	4.67	1.83	short	N
A_comp540052_c0_seq1	2	40662509	Bradi5g17990	Os04g46940	copper-transporting ATPase 3	0.37	1.32	-1.42	0.40	1.82	short	N
A_comp570175_c0_seq1	5	18585080	Bradi4g30130	Os09g24620	-	0.29	1.03	-1.78	0.04	1.82	short	N
D_comp165610_c0_seq1	2	34382565	Bradi5g11280	Os05g20050	ras-related protein RGP2	0.30	1.06	-1.73	0.09	1.82	short	N
D_comp1153_c0_seq1	7	9911667	Bradi3g38060	Os08g37040	gibberellin receptor GID1L2	0.12	0.42	-3.08	-1.26	1.82	short	Y
B_comp27953_c0_seq1	5	5982745	Bradi4g07100	Os12g31000	maternal protein pumilio	0.34	1.19	-1.57	0.25	1.82	short	Y
B_comp24014_c0_seq3	7	7546171	-	Os08g41280	membrane protein	0.75	0.21	-0.41	-2.23	1.82	tall	N
A_comp1364396_c0_seq1	2	39647582	Bradi5g16820	Os04g45170	ATP binding protein	0.48	1.68	-1.07	0.75	1.81	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { Log2 } \\ \text { (RIL4) } \end{array}$	Fold diff	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
A_comp667017_c0_seq1	5	31153064	Bradi1903840	Os03g60509		1.19	4.17	0.25	2.06	1.81	short	N
A_comp46479_c0_seq1	2	38499178	Bradi5g15590	Os04g43560	NAC domain-containing protein 21/22	0.24	0.84	-2.07	-0.26	1.81	short	N
D_comp8085_c0_seq2	4	27779754	Bradi1961320	Os03g25790	glycosyl hydrolases family 17 protein	0.31	1.09	-1.68	0.13	1.81	short	N
B_comp30649_c0_seq1	5	19700224	Bradi4g32690	Os08g04370	uclacyanin-2 precursor putative	0.33	1.16	-1.59	0.22	1.81	short	N
D_comp226017_c0_seq1	5	25406189	Bradi1914020	Os06g24404	anther-specific proline-rich protein APG precursor	2.47	8.64	1.30	3.11	1.81	short	Y
B_comp36787_c0_seq1	4	32413128	Bradi1966590	Os03g16860	heat shock cognate 70 kDa protein 2	7.33	25.61	2.87	4.68	1.80	short	Y
B_comp26577_c0_seq1	2	46321512	Bradi5g25440	Os04g57200	metal ion binding protein	0.11	0.37	-3.24	-1.44	1.80	short	N
B_comp27756_c0_seq2	6	17211495	Bradi3951660	Os02g45520	beta-lactamase class A	3.21	0.92	1.68	-0.12	1.80	tall	N
B_comp42428_c0_seq1	7	41516156	Bradi1933840	Os06g48200	xyloglucan endotransglucosylase/hydrolase protein 23 precursor	7.20	25.03	2.85	4.65	1.80	short	N
D_comp6730_c0_seq5	5	33025107	Bradi1901000	Os11g31900	acyl carrier protein 2 chloroplast precursor	2.38	8.29	1.25	3.05	1.80	short	N
D_comp67431_c0_seq1	7	13003430	Bradi3g21680	Os02g47110	ADP-ribosylation factor	0.18	0.63	-2.45	-0.66	1.80	short	Y
B_comp22812_c0_seq8	6	22594878	Bradi3g55020	Os02g56800	ATPP2-B2 putative	0.59	2.06	-0.75	1.05	1.80	short	N
B_comp100962_c0_seq1	4	30766206	Bradi1964480	Os03g19452		0.85	2.96	-0.23	1.56	1.79	short	Y
D_comp277554_c0_seq1	1	410432	Bradi2g39790	Os05g01470	methionine S-methy Itransferase	0.45	0.13	-1.14	-2.93	1.79	tall	N
D_comp21994_c0_seq1	6	20668411	Bradi3g58020	Os02g52650	chlorophyll a-b binding protein 4 chloroplast precursor	0.17	0.58	-2.57	-0.78	1.79	short	N
D_comp445643_c0_seq1	4	24088611	Bradi3g02300	Os01g61160	L-ascorbate oxidase precursor	0.35	1.21	-1.51	0.28	1.79	short	N
D_comp139229_c0_seq1	6	8563900	Bradi3g10370	Os02g18070	NBS-LRR type disease resistance protein Hom-B	2.49	0.72	1.32	-0.47	1.79	tall	Y
B_comp46745_c0_seq2	1	25426943	Bradi2g32520	Os05g11950	esterase precursor	0.58	1.99	-0.80	0.99	1.79	short	N
A_comp984152_c0_seq1	2	32840943	Bradi5g10050	Os04g34610		0.43	0.13	-1.20	-2.99	1.79	tall	N
B_comp1741_c0_seq2	7	5975495	Bradi3g43150	Os02g26720	inositol-tetrakisphosphate 1-kinase 1	0.14	0.49	-2.82	-1.04	1.79	short	N
D_comp62133_c0_seq1	5	9323826	Bradi4941550	Os11g06900	N -acylethanolamine amidohydrolase	2.09	7.19	1.06	2.85	1.78	short	Y
B_comp3925_c0_seq1	7	38372850	Bradi1948700	Os06g06440	multidrug resistance-associated protein 14	0.66	2.29	-0.59	1.19	1.78	short	N
D_comp622478_c0_seq1	1	18216045	Bradi3g35120	Os08g28970	-	0.27	0.94	-1.88	-0.10	1.78	short	N
A_comp311499_c0_seq2	3	21880373	Bradi2g49100	Os01g53420	anthocyanidin 53-O-glucosyltransferase	0.37	0.11	-1.44	-3.22	1.78	tall	N
B_comp23340_c0_seq8	4	40950254	Bradi1977610	Os03g02240	AT-GTL1	1.53	5.27	0.62	2.40	1.78	short	Y

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \text { CD } \\ \text { raw } \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Log2 } \\ \text { (RIL4) } \end{gathered}$	$\begin{aligned} & \text { Fold } \\ & \text { diff } \end{aligned}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp49139_c0_seq1	1	20830772	Bradi2g36730	Os05g04820	MYB2	0.19	0.64	-2.42	-0.64	1.78	short	N
B_comp3980_c0_seq1	5	2256356	Bradi4g03000	Os12g40070	B3 DNA binding domain containing protein	0.43	0.13	-1.21	-2.99	1.78	tall	N
B_comp29233_c0_seq1	5	19565357	Bradi4g32570	Os09g29120	FIP1	0.39	1.34	-1.35	0.42	1.78	short	N
B_comp8119_c0_seq5	4	37143876	Bradi1972350	Os03g08600	transferase transferring glycosyl groups	0.38	1.30	-1.40	0.38	1.78	short	Y
B_comp17413_c0_seq1	4	3581435	Bradi1909610	Os03g52239	homeodomain protein JUBE, 1	0.42	1.44	-1.25	0.52	1.77	short	N
D_comp10420_c1_seq1	6	3055368	Bradi3g04460	Os02g06380	plant-specific domain TIGR01627 family protein	0.10	0.35	-3.28	-1.51	1.77	short	Y
D_comp133241_c0_seq1	5	8956680	Bradi4g23340	Os12g08160	conserved hypothetical protein	0.44	1.50	-1.18	0.59	1.77	short	N
A_comp8261_c0_seq1	1	35996456	Bradi2g24090	Os01g64660	fructose-16-bisphosphatase cytosolic	0.11	0.38	-3.18	-1.41	1.77	short	N
A_comp194334_c0_seq1	2	11463836	Bradi1922660	Os07g40620	saccharopine dehydrogenase	0.14	0.49	-2.79	-1.02	1.77	short	N
A_comp29421_c0_seq7	2	40252044	Bradi5g17420	Os04g46110	fibroin heavy chain precursor putative	4.55	15.44	2.19	3.95	1.76	short	Y
A_comp1877225_c0_seq1	1	14875540	Bradi3g31880	Os10g38740	glutathione S-transferase GSTU6	0.25	0.83	-2.02	-0.26	1.76	short	N
B_comp41209_c0_seq1	4	205300	Bradi4g38460	Os09g39410	male sterility protein 2	0.33	1.10	-1.62	0.14	1.76	short	N
B_comp52893_c0_seq1	5	28782089	Bradi1907060	Os03g56430		0.12	0.41	-3.03	-1.28	1.76	short	Y
A_comp1172672_c0_seq1	2	10979721	Bradi1921990	Os07g41360	alpha-14-glucan-protein synthase 1	2.97	10.04	1.57	3.33	1.76	short	Y
A_comp501953_c0_seq1	2	21271443	Bradi1957510	Os07g03180		0.47	1.58	-1.09	0.66	1.76	short	N
D_comp514690_c0_seq1	5	25677777	Bradi2g51490	Os03g43010		0.48	1.62	-1.06	0.70	1.76	short	N
D_comp90422_c0_seq8	1	17660753	Bradi3g34520	Os01g32830	-	0.22	0.73	-2.22	-0.46	1.76	short	N
A_comp79766_c0_seq2	6	646988	Bradi3g01100	Os02g01980	anther-specific proline-rich protein APG precursor	2.34	7.90	1.23	2.98	1.75	short	N
B_comp5888_c0_seq1	5	2097480	Bradi4g02850	Os12g40419	WAK-like kinase	0.12	0.41	-3.05	-1.30	1.75	short	N
B_comp45870_c0_seq1	7	4383637	Bradi3g44290	Os02g31030	glycerophosphodiester phosphodiesterase	29.14	8.65	4.86	3.11	1.75	tall	Y
B_comp1770_c0_seq3	3	1972990	Bradi2g02800	Os01g04920	glycosyl transferase group 1 family protein	2.60	0.77	1.38	-0.37	1.75	tall	N
D_comp326848_c0_seq1	4	509947	Bradi5g21880	Os04g52670	OsSAUR21 - Auxin-responsive SAUR gene family member	1.76	5.91	0.81	2.56	1.75	short	N
D_comp756003_c0_seq1	6	8739781	Bradi3g10560	Os02g37010	disulfide oxidoreductase/monooxygenase	0.40	1.36	-1.30	0.44	1.75	short	N
A_comp268616_c0_seq1	3	22013408	Bradi2g48940	Os01g53090	pathogen-related protein	0.13	0.42	-2.99	-1.25	1.75	short	N
B_comp22084_c0_seq1	6	15028040	Bradi3g49160	Os02g41480	OsWAK12 - OsWAK receptor-like cytoplasmic kinase (OsWAK-RLCK)	0.16	0.54	-2.63	-0.89	1.74	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c\|} \hline \mathrm{CD} \\ \text { raw } \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RIL4) } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Fold } \\ \text { diff } \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
A_comp1027983_c0_seq1	3	27609751	Bradi2g56750	Os01g65650	receptor-like protein kinase 5 precursor	0.35	1.15	-1.53	0.21	1.74	short	Y
B_comp4566_c0_seq3	5	30768254	Bradi1 g04340	Os03g59360	remorin	0.62	2.07	-0.69	1.05	1.74	short	N
B_comp26290_c0_seq7	3	28712195	Bradi2g58090	Os01g67950	$\mathrm{BCL}-2$ binding anthanogene-1	0.13	0.42	-3.00	-1.26	1.74	short	N
D_comp211217_c0_seq1	6	4736608	Bradi1935390	Os02g09630	nitrate-induced NOI protein	0.68	2.26	-0.56	1.18	1.74	short	N
B_comp22716_c0_seq1	1	8881916	Bradi3g27180	Os02g58610	serine/threonine-protein kinase NAK	0.15	0.49	-2.76	-1.02	1.73	short	N
A_comp54243_c0_seq1	2	23306672	Bradi1959180	Os07g02060	OsWRKY29 - Superfamily of rice TFs having WRKY and zinc finger domains	0.78	2.60	-0.35	1.38	1.73	short	N
D_comp30014_c0_seq1	7	36055379	Bradi1946540	Os06g09900	-	0.15	0.50	-2.74	-1.01	1.73	short	N
A_comp216644_c0_seq4	3	27325843	Bradi2g56390	Os01g65200	peptide transporter PTR2	0.11	0.35	-3.24	-1.50	1.73	short	N
B_comp17581_c0_seq1	6	18016927	Bradi3g52650	Os02g47450	-	0.12	0.40	-3.06	-1.34	1.73	short	N
B_comp34319_c0_seq1	5	14994445	Bradi4g28280	Os09g16510	OsWRKY74 - Superfamily of rice TFs having WRKY and zinc finger domains	1.92	0.58	0.94	-0.78	1.73	tall	N
D_comp65978_c0_seq1	5	7599228	Bradi4g39260	Os12g16410	isoflavone reductase	0.86	2.84	-0.22	1.51	1.73	short	Y
B_comp4760_c0_seq9	3	24362895	Bradi2g52370	Os01g58420	ethylene-responsive transcription factor 4	0.57	0.17	-0.80	-2.53	1.73	tall	N
D_comp305871_c0_seq1	1	16563287	Bradi5g22380	Os09g03860	retrotransposon protein unclassified	0.27	0.88	-1.91	-0.18	1.73	short	N
D_comp284932_c0_seq1	4	40045079	Bradi1975600	Os03g04890	protein binding protein	0.11	0.37	-3.17	-1.45	1.72	short	N
A_comp509935_c0_seq1	1	18441061	Bradi3g35390	Os08g30770	ATATH6	0.21	0.69	-2.26	-0.54	1.72	short	N
D_comp84830_c0_seq1	2	42312426	Bradi5g21170	Os06g11270	anthocyanidin 3-O-glucosyltransferase	0.18	0.59	-2.49	-0.77	1.72	short	N
D_comp139322_c0_seq1	3	13769911	Bradi2g40870	Os05g51590	N -rich protein	1.78	5.85	0.83	2.55	1.72	short	Y
D_comp636527_c0_seq1	3	18026119	Bradi2g45060	Os01g45700	-	1.67	5.49	0.74	2.46	1.72	short	Y
D_comp114034_c0_seq1	7	37178957	Bradi3g18790	Os06g08310	ATPase 8 plasma membrane-type	0.14	0.46	-2.83	-1.11	1.72	short	Y
D_comp65233_c0_seq1	4	7983311	Bradi4g23170	Os11g09180	-	0.18	0.58	-2.50	-0.78	1.72	short	N
A_comp24674_c0_seq1	1	16047966	Bradi3g32880	Os10g40360	proline oxidase mitochondrial precursor	2.74	9.00	1.46	3.17	1.71	short	N
D_comp328221_c0_seq1	6	20611917	Bradi3g58110	Os02g52480	cyclin-dependent kinase inhibitor 2	0.43	1.41	-1.22	0.50	1.71	short	Y
D_comp165815_c0_seq1	2	29795303	Bradi5g07760	Os08g30150	desacetoxyvindoline 4-hydroxylase	0.11	0.37	-3.16	-1.45	1.71	short	N
B_comp7750_c0_seq1	7	35143872	Bradi1945880	Os06g11280	12-oxophytodienoate reductase 2	0.11	0.36	-3.17	-1.46	1.71	short	N
B_comp41872_c0_seq1	6	23758584	Bradi3g56790	Os02g54030	endo-polygalacturonase precursor	1.68	5.50	0.75	2.46	1.71	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \text { CD } \\ \text { raw } \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Log } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \end{aligned}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp91277_c0_seq1	7	30752022	Bradi1942540	Os06g30480		0.19	0.61	-2.42	-0.71	1.71	short	N
D_comp349931_c0_seq1	7	8216829	Bradi3g40010	Os09g31410	beta-glucosidase chloroplast precursor	0.96	3.12	-0.07	1.64	1.71	short	N
B_comp11944_c0_seq4	5	19471665	Bradi4g32450	Os08g37150	plant-specific domain TIGR01570 family protein	0.17	0.56	-2.54	-0.84	1.71	short	N
A_comp302900_c0_seq1	3	24726891	Bradi2g52870	Os01g59360	calcium-dependent protein kinase isoform2	0.40	1.31	-1.32	0.39	1.70	short	N
D_comp34716_c0_seq1	5	8505396	Bradi4g40400	Os12g10320	plant-specific domain TIGR01627 family protein	1.68	5.48	0.75	2.45	1.70	short	N
D_comp1057964_c0_seq1	6	19998591	Bradi3g58980	Os02g51670	AP2 domain-containing protein	0.15	0.49	-2.73	-1.02	1.70	short	N
A_comp443500_c0_seq1	1	24898106	Bradi2g32950	Os05g11250		0.15	0.50	-2.71	-1.01	1.70	short	N
D_comp354002_c0_seq1	1	24482488	Bradi2g33320	Os05g10330	HAD superfamily phosphatase containing protein	0.30	0.97	-1.75	-0.05	1.70	short	N
D_comp51840_c0_seq3	7	26625249	Bradi1939110	Os06g34830	cationic amino acid transporter 4	0.15	0.50	-2.70	-1.00	1.70	short	N
D_comp5232_c0_seq1	3	4442154	Bradi2g04490	Os01g07770	peroxidase 25 precursor putative	0.28	0.91	-1.83	-0.13	1.70	short	Y
D_comp272596_c0_seq1	7	8771345	Bradi3g39400	Os08g38910	caffeoyl-CoA O-methyltransferase 2	0.50	1.63	-0.99	0.71	1.70	short	N
B_comp65047_c0_seq1	7	41524609	Bradi1933830	Os06g48180	xyloglucan endotransglucosylase/hydrolase protein 23 precursor	0.79	2.54	-0.35	1.35	1.69	short	N
B_comp21834_c0_seq1	6	7198475	Bradi3g09090	Os02g14170	peroxidase precursor	0.11	0.35	-3.22	-1.52	1.69	short	N
D_comp849145_c0_seq1	1	8317589	Bradi3g26790	Os10g28030	acylamino-acid-releasing enzyme	0.30	0.98	-1.72	-0.03	1.69	short	N
B_comp9085_c0_seq7	2	36663277	Bradi5g13610	Os04g40560	nucleotide binding protein	0.15	0.47	-2.78	-1.09	1.69	short	N
D_comp10867_c0_seq1	7	3762277	Bradi1950090	Os06g04200	granule-bound starch synthase 1 chloroplast precursor	0.81	2.62	-0.30	1.39	1.69	short	N
D_comp118744_c0_seq1	5	9063194	Bradi4g41190	Os12g07810	aldehyde dehydrogenase dimeric NADP-preferring	1.50	4.83	0.58	2.27	1.69	short	N
B_comp15107_c0_seq1	7	8481097	Bradi3g39750	Os08g39300	serine--glyoxylate aminotransferase	0.22	0.71	-2.18	-0.49	1.69	short	N
D_comp1039907_c0_seq1	1	43509408	Bradi4g37210	Os01g41710	chlorophyll a-b binding protein 2 chloroplast precursor	0.30	0.96	-1.74	-0.06	1.69	short	N
B_comp48560_c0_seq1	4	34894099	Bradi1969380	Os03g12414	cyclin N -terminal domain containing protein	1.00	0.31	-0.01	-1.69	1.68	tall	N
A_comp3243_c1_seq10	2	6801007	Bradi1916760	Os03g18770	w ound-induced protein 1	1.96	6.27	0.97	2.65	1.68	short	N
B_comp1520_c0_seq1	4	27934847	Bradi1961470	Os03g25440	-	0.28	0.89	-1.84	-0.16	1.68	short	N
A_comp310201_c0_seq1	3	26827973	Bradi2g55690	Os01g64170	glucan endo-13-beta-glucosidase 7 precursor	0.58	1.85	-0.79	0.88	1.68	short	N
A_comp330929_c0_seq1	2	38784338	Bradi3g49260	Os02g41650	phenylalanine ammonia-lyase	0.45	1.44	-1.15	0.53	1.68	short	N
D_comp34300_c0_seq1	5	30517259	Bradi1904830	Os03g59080	acyl-activating enzyme 18	0.12	0.37	-3.11	-1.44	1.67	short	Y

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \text { CD } \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { Ril4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RIL4) } \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp20406_c0_seq1	5	15884388	Bradi3g35610	Os09g20480	carbohydrate transporter/ sugar porter/ transporter	0.39	0.12	-1.37	-3.04	1.67	tall	N
B_comp21726_c0_seq5	4	33527494	Bradi1967870	Os03g14880		0.75	2.39	-0.42	1.26	1.67	short	N
B_comp27263_c0_seq14	4	41375097	Bradi1978240	Os10g40510	cortical cell-delineating protein precursor	34.33	109.29	5.10	6.77	1.67	short	N
D_comp725208_c0_seq1	3	30737536	Bradi4g30530	Os11g07960	anthranilate N -benzoyltransferase protein 1	0.16	0.49	-2.69	-1.02	1.67	short	N
B_comp8538_c0_seq1	3	17992550	Bradi2g45010	Os01g45620	OsMPK21-2 - putative MAPK based on amino acid sequence homology	0.11	0.36	-3.16	-1.49	1.67	short	N
B_comp2501_c0_seq1	5	29567748	Bradi1906200	Os03g57690	aldehyde oxidase 1	0.13	0.42	-2.91	-1.24	1.67	short	N
D_comp117361_c0_seq1	1	41988583	Bradi2g17860	Os05g46720	phosphatidy linositol transfer-like protein III	1.10	3.51	0.14	1.81	1.67	short	Y
B_comp91354_c0_seq1	6	12197929	Bradi3g45700	Os02g34810	OsA Px8 - Thylakoid-bound Ascorbate Peroxidase encoding gene	0.86	2.73	-0.22	1.45	1.66	short	Y
A_comp661022_c0_seq1	2	9611233	Bradi1920370	Os07g43940	glucan endo-13-beta-glucosidase 4 precursor	0.59	1.88	-0.75	0.91	1.66	short	N
D_comp566816_c0_seq1	5	13859231	Bradi4g27360	Os06g27560	HGA4	0.14	0.45	-2.81	-1.15	1.66	short	N
D_comp255515_c0_seq1	3	9475321	Bradi2g11220	Os05g04550	CBL-interacting serine/threonine-protein kinase 1	0.48	1.53	-1.05	0.62	1.66	short	N
D_comp26808_c0_seq1	5	18188111	Bradi3g45580	Os11g37300	F-box domain containing protein	0.23	0.74	-2.09	-0.43	1.66	short	N
A_comp27887_c0_seq1	2	46594650	Bradi5g25880	Os04g57730	uracil-DNA glycosylase	10.06	3.18	3.33	1.67	1.66	tall	N
B_comp65453_c0_seq1	6	21778650	Bradi3g54010	Os02g55134	cytochrome c oxidase copper chaperone	0.10	0.32	-3.31	-1.65	1.66	short	N
A_comp147709_c0_seq1	2	47817383	Bradi5g27530	Os04g59520	phosphoribosylanthranilate transferase	0.40	1.27	-1.31	0.35	1.66	short	Y
A_comp1660323_c0_seq1	2	46098222	Bradi5g23280	Os04g54390	nuclease PA3	0.85	2.68	-0.24	1.42	1.66	short	N
B_comp8259_c0_seq4	5	19019937	Bradi4g31920	Os09g27990	fiber annexin	0.17	0.53	-2.58	-0.92	1.66	short	N
D_comp653301_c0_seq1	3	15040443	Bradi2941970	Os01g40190	-	0.12	0.39	-3.03	-1.38	1.66	short	N
B_comp14075_c0_seq2	3	12946371	Bradi2g40400	Os01g34700	protein usf	0.73	2.29	-0.46	1.20	1.66	short	Y
B_comp1117_c0_seq1	6	4757966	Bradi3g06580	Os02g09720	multidrug resistance protein 13	0.22	0.70	-2.17	-0.51	1.65	short	N
D_comp656987_c0_seq1	2	25149440	Bradi1960800	Os03g27210	LOL3	0.11	0.36	-3.13	-1.48	1.65	short	Y
D_comp139988_c0_seq1	7	37846593	Bradi1948250	Os09g20980	RING-H2 finger protein ATL5I	0.12	0.37	-3.08	-1.42	1.65	short	N
B_comp423_c1_seq5	7	25623863	Bradi1938360	Os01g12190	-	0.30	0.93	-1.75	-0.10	1.65	short	N
B_comp26971_c0_seq1	4	28008021	Bradi2g11620	Os03g25150	flavonoid 35-hydroxylase 2	0.26	0.83	-1.93	-0.28	1.65	short	N
D_comp591749_c0_seq1	2	46381671	Bradi5g25570	Os04g57340	ethylene-responsive transcription factor 3	1.85	0.59	0.89	-0.76	1.65	tall	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{r} \hline \mathrm{CD} \\ \text { raw } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { RilL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \\ \hline \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
A_comp480408_c0_seq1	4	37386331	Bradi1972600	Os03g08320	pnFL-2	0.18	0.56	-2.48	-0.83	1.65	short	N
A_comp537028_c0_seq1	2	41401196	Bradi5g18750	Os04g48130	membrane protein	0.14	0.43	-2.88	-1.23	1.65	short	N
D_comp625975_c0_seq1	2	40868427	Bradi5g18280	Os04g47360	prolyl endopeptidase	0.41	1.30	-1.27	0.38	1.65	short	Y
A_comp221946_c0_seq1	3	28520771	Bradi2g57860	Os01g67530	4-coumarate--CoA ligase 2	0.13	0.41	-2.92	-1.27	1.65	short	Y
B_comp29229_c0_seq4	6	24110169	Bradi3g60790	Os06g51270	CALS1	0.17	0.54	-2.54	-0.90	1.65	short	N
B_comp27578_c0_seq1	3	29873310	Bradi2g59640	Os08g03700	glycerol-3-phosphate acyltransferase 1 putative	0.23	0.73	-2.09	-0.45	1.65	short	Y
B_comp7827_c0_seq2	6	18395087	Bradi3g53140	Os06g30400	-	0.90	2.83	-0.15	1.50	1.64	short	Y
B_comp2856_c0_seq1	5	12938427	Bradi4g08760	Os09g04790	plastid-lipid-associated protein 2 chloroplast precursor	1.10	3.44	0.14	1.78	1.64	short	N
B_comp94493_c0_seq1	4	39656950	Bradi1976180	Os03g04110	receptor-like GPl-anchored protein 2	0.19	0.58	-2.43	-0.79	1.64	short	Y
D_comp258287_c0_seq1	7	8211849	Bradi3g00650	Os09g31430	non-cyanogenic beta-glucosidase precursor	22.05	68.71	4.46	6.10	1.64	short	Y
D_comp101371_c0_seq1	7	969368	Bradi1952750	Os07g17330	B12D protein	1.07	3.32	0.09	1.73	1.64	short	N
B_comp28678_c0_seq1	1	9141819	Bradi3g27410	Os05g39220	anther-specific proline-rich protein APG	0.25	0.77	-2.01	-0.37	1.64	short	N
D_comp5707_c0_seq1	6	2936967	Bradi3g04270	Os01g32330	farnesylated protein 2	0.12	0.37	-3.08	-1.44	1.64	short	N
D_comp58187_c0_seq1	6	19691094	Bradi3g59390	Os02g51110	aquaporin NIP4.2	0.21	0.65	-2.25	-0.61	1.64	short	N
D_comp3581_c0_seq1	6	47768	Bradi3g00250	Os02g01060	VAMP protein SEC22	0.12	0.38	-3.02	-1.38	1.64	short	N
D_comp38760_c0_seq1	5	4964768	Bradi4g05990	Os05g03760	zinc finger transcription factor-like protein	2.48	0.80	1.31	-0.32	1.63	tall	Y
D_comp352859_c0_seq1	7	43535713	Bradi1931990	Os06g45500	copper-transporting ATPase RAN1	0.82	2.54	-0.29	1.34	1.63	short	Y
B_comp28396_c0_seq2	4	13632358	Bradi1g30610	Os11g26880	RALFL33	1.60	4.97	0.68	2.31	1.63	short	N
B_comp7484_c1_seq5	5	23249049	Bradi4g36740	Os02g55020	-	0.44	0.14	-1.17	-2.80	1.63	tall	N
D_comp241064_c0_seq1	7	37181029	Bradi1947560	Os06g08300	oxidoreductase	0.27	0.83	-1.90	-0.27	1.63	short	Y
B_comp55358_c0_seq1	5	19342003	Bradi4g32270	Os09g28600	-	0.11	0.33	-3.23	-1.60	1.63	short	N
D_comp81954_c0_seq1	2	29994144	Bradi3g44010	Os02g30320	drought-induced protein 1	0.19	0.58	-2.41	-0.78	1.63	short	N
A_comp789196_c0_seq1	1	23017351	Bradi2g34790	Os01g22640	alpha-L-fucosidase 2 precursor	1.88	5.83	0.91	2.54	1.63	short	Y
A_comp929600_c0_seq1	2	47836181	Bradi5g27540	Os04g59540	phosphatidy linositol-4-phosphate 5 -Kinase family protein	0.23	0.71	-2.12	-0.50	1.63	short	Y
D_comp460260_c0_seq1	2	33158982	Bradi5g10360	Os04g35280	neutral/alkaline invertase	0.12	0.37	-3.08	-1.45	1.63	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \end{aligned}$	$\begin{aligned} & \text { Fold } \\ & \text { diff } \end{aligned}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp28216_c0_seq4	5	11629057	Bradi4g44550	Os11g37870	stripe rust resistance protein Yr10	0.16	0.49	-2.65	-1.02	1.63	short	N
D_comp79740_c0_seq1	6	15688141	Bradi5g16700	Os02g42860	ATP-dependent RNA helicase dhh1	0.75	0.24	-0.42	-2.04	1.63	tall	N
D_comp497843_c0_seq1	5	5047966	Bradi4g06080	Os03g44880	rhicadhesin receptor precursor	0.24	0.75	-2.04	-0.41	1.63	short	N
D_comp353824_c0_seq1	4	34512187	Bradi1968980	Os03g12570	DNA cytosine methyltransferase MET2a	0.48	0.16	-1.05	-2.68	1.63	tall	N
A_comp16514_c0_seq1	1	32705829	Bradi2g26520	Os05g32590	methylase	4.69	1.52	2.23	0.61	1.63	tall	N
D_comp7129_c0_seq1	3	22915247	Bradi2g50410	Os01g55410		0.71	2.20	-0.48	1.14	1.62	short	N
D_comp23979_c0_seq5	3	10245159	Bradi2g11930	Os01g21240	MLA6 protein	0.43	1.31	-1.23	0.39	1.62	short	Y
D_comp53967_c0_seq1	4	22237060	Bradi4g13290	Os11g40570	plant viral-response family protein	0.38	1.16	-1.40	0.22	1.62	short	N
D_comp285659_c0_seq1	1	23685831	Bradi2g34120	Os05g08420	-	0.88	0.29	-0.18	-1.80	1.62	tall	N
A_comp268755_c0_seq1	3	6298838	Bradi2g07940	Os01g13210	DREPP4 protein	5.78	17.79	2.53	4.15	1.62	short	Y
D_comp94389_c0_seq1	5	7102971	Bradi4g08130	Os12g22284	ATP-binding cassette sub-family G member 2	0.28	0.87	-1.82	-0.20	1.62	short	N
B_comp1375_c1_seq5	7	37483120	Bradi1947820	Os06g07941	iron/ascorbate-dependent oxidoreductase putative	0.57	1.75	-0.81	0.80	1.62	short	N
D_comp750138_c0_seq1	2	7139244	Bradi1917310	Os01g16120	zinc finger C3HC4 type family protein	0.25	0.77	-2.00	-0.39	1.62	short	N
B_comp15202_c0_seq1	7	13037707	Bradi3g21600	Os04g48230	ankyrin protein kinase-like	1.64	5.04	0.71	2.33	1.62	short	N
B_comp18604_c0_seq1	5	18995799	Bradi4g31870	Os06g10670	aspartic proteinase nepenthesin-1 precursor	4.09	12.55	2.03	3.65	1.62	short	N
D_comp230166_c0_seq1	5	4291592	Bradi1918080	Os07g47620	universal stress protein	0.14	0.42	-2.86	-1.25	1.62	short	N
D_comp60979_c0_seq1	5	7646138	Bradi4g39310	Os12g16200	glutathione synthetase chloroplast precursor	0.17	0.53	-2.54	-0.93	1.61	short	N
B_comp85537_c0_seq1	5	7975034	Bradi4939620	Os12g13300	ATP binding protein	0.49	1.51	-1.02	0.60	1.61	short	Y
A_comp128339_c0_seq1	2	40699423	Bradi5g18050	Os04g47010	-	0.38	0.12	-1.39	-3.01	1.61	tall	N
B_comp16121_c0_seq1	4	38520073	Bradi1974170	Os03g06760	exocyst complex subunit Sec 15-like family protein	0.13	0.39	-2.96	-1.35	1.61	short	N
D_comp48991_c0_seq1	4	33573398	Bradi1967930	Os03g14730	gibberellin receptor GID1L2	0.33	1.02	-1.58	0.03	1.61	short	N
B_comp20108_c0_seq4	5	7317752	Bradi4g38860	Os08g44850	SRC2	0.14	0.43	-2.83	-1.22	1.61	short	N
D_comp43032_c0_seq1	5	7085895	Bradi1909300	Os12g22030	serine hydroxymethyltransferase mitochondrial precursor	3.92	11.95	1.97	3.58	1.61	short	N
A_comp9799_c0_seq1	7	30588485	Bradi3g53070	Os02g48080	serine/threonine-protein kinase receptor precursor	0.11	0.33	-3.22	-1.61	1.61	short	N
D_comp731388_c0_seq1	7	36722582	Bradi1947240	Os06g08600	versicolorin reductase	0.12	0.37	-3.04	-1.43	1.61	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \mathrm{CD} \\ \text { raw } \end{array}$	$\begin{aligned} & \hline \text { RLL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Log2 } \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { Log } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \end{aligned}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp22812_c0_seq2	4	2967628	Bradi1910410	Os03g51180		0.20	0.60	-2.33	-0.73	1.61	short	N
D_comp38175_c0_seq1	4	32555749	Bradi1966700	Os11g42500	disease resistance response protein 206	1.03	3.15	0.05	1.65	1.61	short	Y
B_comp15931_c0_seq2	5	23234933	Bradi4g36720	Os09g37012	aspartic-type endopeptidase/ pepsin A	0.54	1.63	-0.90	0.71	1.61	short	N
A_comp119189_c0_seq1	2	13655163	Bradi1925110	Os07g36630	CSLF8 - cellulose synthase-like family F; beta $13 ; 14$ glucan synthase	0.11	0.32	-3.25	-1.64	1.61	short	N
D_comp3591_c0_seq2	7	3621010	Bradi2g10300	Os01g16750	disulfide oxidoreductase/ monooxygenase	0.28	0.86	-1.83	-0.22	1.60	short	N
A_comp39052_c0_seq18	1	35391218	Bradi2g24680	Os05g35340	-	0.20	0.61	-2.32	-0.72	1.60	short	Y
B_comp6420_c0_seq1	5	16113365	Bradi4g29290	Os09g20880	ATP binding protein	0.11	0.33	-3.19	-1.59	1.60	short	N
D_comp5963_c0_seq1	6	661664	Bradi3g01110	Os02g02000	cytochrome P450 74A4	0.24	0.72	-2.07	-0.47	1.60	short	N
A_comp44568_c0_seq1	4	31740185	Bradi1965740	Os06g11190	acyl-peptide hydrolase-like	0.13	0.38	-2.99	-1.39	1.60	short	N
B_comp9925_c0_seq1	5	22154509	Bradi4g35350	Os09g34250	indole-3-acetate beta-glucosyltransferase	0.20	0.60	-2.34	-0.74	1.60	short	N
A_comp1720606_c0_seq1	2	10273161	Bradi1921100	Os07g42740	calmodulin binding protein	0.17	0.51	-2.56	-0.96	1.60	short	N
B_comp59951_c0_seq1	7	40374176	Bradi1935010	Os06g49860	ankyrin-like protein	0.21	0.62	-2.28	-0.68	1.60	short	N
A_comp722_c1_seq1	2	769185	Bradi5g00830	Os04g10350	1-aminocyclopropane-1-carboxylate oxidase	0.23	0.70	-2.11	-0.51	1.60	short	N
A_comp234423_c0_seq1	1	14736394	Bradi5g19400	Os10g38189	glutathione S-transferase GSTU6	0.47	1.41	-1.10	0.50	1.60	short	Y
D_comp13204_c0_seq1	4	17891382	Bradi4g17020	Os11g33120	respiratory burst oxidase protein D	0.18	0.55	-2.47	-0.87	1.60	short	N
A_comp536848_c0_seq1	5	20313948	Bradi4g33180	Os09g30200		0.33	0.11	-1.59	-3.19	1.59	tall	N
A_comp151986_c0_seq1	2	42649735	Bradi5g20760	Os04g51400	zinc finger C3HC4 type family protein	0.17	0.52	-2.54	-0.95	1.59	short	Y
D_comp724157_c0_seq1	6	12136376	Bradi3g45610	Os01g59840	cyanogenic beta-glucosidase precursor	1.92	0.64	0.94	-0.65	1.59	tall	N
B_comp2312_c0_seq1	1	724758	Bradi2g39220	Os05g01940	zinc finger RING-type	1.54	0.51	0.63	-0.96	1.59	tall	N
A_comp245571_c0_seq1	3	19149144	Bradi2g46120	Os01g47780	fasciclin-like arabinogalactan protein 7 precursor	1.16	3.48	0.21	1.80	1.59	short	N
B_comp3794_c0_seq38	1	972695	Bradi2g38850	Os03g58764	F-box domain containing protein	0.12	0.36	-3.05	-1.46	1.59	short	N
A_comp932825_c0_seq1	2	13960173	Bradi1925440	Os07g35940	beta-amylase putative	7.13	21.47	2.83	4.42	1.59	short	N
A_comp6024_c0_seq1	2	40591514	Bradi5g17900	Os04g46780	structural molecule	0.19	0.57	-2.39	-0.80	1.59	short	N
B_comp35213_c0_seq1	4	31172259	Bradi1964920	Os03g18850	pathogenesis-related protein 1	0.27	0.81	-1.89	-0.30	1.59	short	Y
D_comp188633_c0_seq1	1	43313591	Bradi2g16550	Os05g48930	OsGrx_S2 - glutaredoxin subgroup III	0.11	0.32	-3.22	-1.63	1.59	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{aligned} & \hline \mathrm{CD} \\ & \text { raw } \end{aligned}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \text { Log2 } \\ \text { (RIL4) } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Fold } \\ \text { diff } \end{array} \\ \hline \end{array}$	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp31719_c0_seq1	4	37261015	Bradi1972450	Os03g08500	ethylene-responsive element binding protein 2	6.09	2.03	2.61	1.02	1.59	tall	Y
A_comp329423_c0_seq1	1	32737293	Bradi2g26510	Os05g32600	CDC2+/CDC28-related protein kinase R2	35.16	11.70	5.14	3.55	1.59	tall	N
A_comp621932_c0_seq1	5	17368112	Bradi4g31260	Os09g26810	chlorophyll a-b binding protein chloroplast precursor	0.24	0.72	-2.06	-0.47	1.59	short	N
A_comp275727_c0_seq1	3	29712605	Bradi2g59410	Os01g70180	secondary cell w all-related glycosyltransferase family 47	1.60	4.81	0.68	2.27	1.59	short	Y
A_comp222347_c0_seq1	2	32507021	Bradi5g09610	Os04g33920	lipid binding protein	2.54	7.63	1.35	2.93	1.58	short	N
A_comp1762213_c0_seq1	2	23798251	Bradi1959880	Os07g41320	phytochelatin synthetase-like conserved region family protein	0.23	0.67	-2.15	-0.57	1.58	short	N
D_comp3866_c0_seq3	6	9787089	Bradi3g11340	Os02g22380	glycosyltransferase	0.56	1.66	-0.85	0.73	1.58	short	Y
A_comp11432_c0_seq1	2	37583167	Bradi5g14580	Os04g41970	glycoside transferase six-hairpin subgroup	0.91	2.73	-0.13	1.45	1.58	short	N
D_comp455014_c0_seq1	7	18701008	Bradi3g16940	Os08g05820	monocopper oxidase-like protein SKS1 precursor	2.50	7.48	1.32	2.90	1.58	short	N
D_comp37973_c0_seq1	2	38783872	Bradi5g15830	Os04g43800	phenylalanine ammonia-lyase	0.73	2.18	-0.46	1.12	1.58	short	N
D_comp6987_c0_seq1	2	8406349	Bradi1918890	Os08g04100	hypothetical protein	0.11	0.34	-3.13	-1.55	1.58	short	N
D_comp23979_c0_seq7	7	19564189	Bradi3g16060	Os06g19130	conserved hypothetical protein	0.32	0.11	-1.63	-3.21	1.58	tall	Y
D_comp89169_c0_seq1	2	13299040	Bradi1924770	Os01g22710	carbohydrate transporter/ sugar porter	1.02	3.06	0.03	1.61	1.58	short	N
D_comp415476_c0_seq1	3	22400193	Bradi2g48420	Os01g52230	phosphatase phospho1	5.05	1.69	2.34	0.76	1.58	tall	N
A_comp37581_c0_seq1	4	32333791	Bradi1g66470	Os03g16920	heat shock cognate 70 kDa protein	0.79	2.35	-0.35	1.23	1.58	short	N
D_comp320850_c0_seq1	6	2918417	Bradi3g04250	Os06g07932	flavonol synthase/flavanone 3-hydroxylase	0.20	0.61	-2.30	-0.72	1.58	short	N
B_comp22221_c0_seq2	5	435387	Bradi4g00860	Os 12 g 43720	RXW8	0.60	0.20	-0.73	-2.31	1.58	tall	N
B_comp22372_c0_seq3	6	19960076	Bradi3g59020	Os02g51620	beta-D-xylosidase	3.63	10.85	1.86	3.44	1.58	short	N
B_comp21675_c0_seq35	3	5405079	Bradi2g06770	Os01g11340	CYP710A1	0.19	0.58	-2.36	-0.78	1.58	short	N
B_comp16761_c0_seq1	6	3816280	Bradi3g05410	Os02g07690	VQ motif family protein	0.11	0.34	-3.13	-1.55	1.58	short	N
D_comp34422_c0_seq19	7	37443492	Bradi1947750	Os06g08110	nodulin-like protein	0.88	0.30	-0.18	-1.76	1.58	tall	N
D_comp15126_c0_seq1	1	40396965	Bradi2g19850	Os11g33300	O-methytransferase ZRP4 putative	0.61	1.81	-0.72	0.86	1.58	short	N
B_comp9937_c0_seq1	5	17568637	Bradi4g31080	Os09g26590	OsSAUR37 - Auxin-responsive SAUR gene family member	0.90	2.68	-0.15	1.42	1.58	short	N
B_comp24014_c0_seq1	2	20257682	Bradi1956640	Os07g07060	prolyl-tRNA synthetase	0.40	0.13	-1.32	-2.89	1.57	tall	N
D_comp198343_c0_seq1	3	17359916	Bradi2g44260	Os05g25780	rhodanese like protein	0.33	0.11	-1.61	-3.18	1.57	tall	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RLL4) } \end{aligned}$	Fold diff	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
D_comp385941_c0_seq1	3	20144596	Bradi2g47210	Os06g51050	basic endochitinase 1 precursor	2.55	7.60	1.35	2.93	1.57	short	N
D_comp13319_c0_seq1	5	28721823	Bradi1g23770	Os03g51600	tubulin alpha-3 chain	0.37	1.11	-1.43	0.15	1.57	short	N
B_comp169_c0_seq1	3	1408499	Bradi2g02320	Os01g04300	endo-14-beta-xylanase	0.70	2.09	-0.51	1.06	1.57	short	Y
A_comp54735_c0_seq1	5	33279204	Bradi1g00540	Os03g64340	copper ion binding protein	0.46	1.37	-1.12	0.45	1.57	short	N
A_comp289011_c0_seq3	3	27508886	Bradi2g56600	Os05g35360	beta-galactosidase/ sugar binding protein	1.13	3.36	0.18	1.75	1.57	short	N
B_comp59906_c0_seq2	4	27249256	Bradi4g09250	Os11g35580	disease resistance protein RPM1 putative	0.15	0.46	-2.69	-1.12	1.57	short	N
A_comp196510_c0_seq1	2	22318538	Bradi1958530	Os07g05880	kelch motif family protein	0.69	2.03	-0.55	1.02	1.57	short	Y
B_comp736_c1_seq4	1	25409263	Bradi2g32540	Os05g11910	esterase precursor	0.57	1.68	-0.82	0.75	1.57	short	Y
B_comp89002_c0_seq1	7	42161989	Bradi1g33150	Os06g47130	calcium lipid binding protein-like	0.42	0.14	-1.26	-2.83	1.57	tall	Y
B_comp32021_c0_seq2	6	14443983	Bradi3g48530	Os02g39850	anthranilate N -benzoyltransferase protein 1	0.59	1.75	-0.76	0.81	1.57	short	N
B_comp7998_c0_seq1	6	4355589	Bradi3g06070	Os02g08440	OsWRKY71 - Superfamily of rice TFs having WRKY and zinc finger domains	2.89	0.98	1.53	-0.03	1.57	tall	N
A_comp16217_c0_seq1	3	20281521	Bradi2g47330	Os01g50080	multidrug resistance protein 4	0.13	0.39	-2.93	-1.37	1.56	short	N
B_comp41547_c0_seq1	1	43987602	Bradi2g15650	Os05g50100	-	0.15	0.45	-2.71	-1.15	1.56	short	N
B_comp34088_c0_seq1	5	23823142	Bradi1954640	Os06g13110	retrotransposon protein unclassified	0.44	1.30	-1.18	0.38	1.56	short	N
D_comp15298_c0_seq1	7	21952156	Bradi3g13390	Os08g01830	receptor protein kinase CRINKLY4 precursor	0.12	0.37	-3.01	-1.44	1.56	short	N
A_comp1046997_c0_seq1	3	5558174	Bradi2g06590	Os01g10950	peptide-N4-asparagine amidase A	0.88	2.59	-0.19	1.37	1.56	short	N
A_comp53426_c0_seq2	5	10823655	Bradi4g43410	Os01g24430	-	0.51	1.51	-0.97	0.60	1.56	short	N
D_comp370751_c0_seq1	3	18511879	Bradi2g45530	Os01g46870	ap2 domain protein	0.88	0.30	-0.18	-1.75	1.56	tall	N
D_comp85705_c0_seq1	5	6264582	Bradi4g07380	Os09g17740	chlorophyll a-b binding protein 1 chloroplast precursor	0.39	1.15	-1.36	0.21	1.56	short	N
D_comp832187_c0_seq1	2	16509004	Bradi1 128090	Os07g29410	electron transporter/ thiol-disulfide exchange intermediate	1.17	3.46	0.23	1.79	1.56	short	N
A_comp35775_c0_seq3	3	23862304	Bradi2g51690	Os01g57040	-	1.31	3.87	0.39	1.95	1.56	short	N
D_comp271282_c0_seq1	6	2703132	Bradi3g03990	Os02g05660	ATP-dependent RNA helicase DDX41	0.14	0.40	-2.88	-1.32	1.56	short	N
A_comp7797_c0_seq1	2	35834313	Bradi3g47050	Os02g37070	-	0.50	1.48	-1.00	0.56	1.56	short	N
A_comp44274_c0_seq5	4	35803685	Bradi1g70350	Os03g11290	-	0.19	0.55	-2.43	-0.87	1.56	short	Y
B_comp20801_c0_seq8	7	33632332	Bradi1g44470	Os06g13760	transferase transferring glycosyl groups	2.29	0.78	1.19	-0.36	1.56	tall	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	RLL4 raw	$\begin{array}{\|c} \hline \log 2 \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RLL4) } \end{array}$	Fold diff	Upreg	In SNP data?
D_comp165585_c0_seq1	4	28593926	Bradi1962270	Os12g42910	K-exchanger-like protein	0.22	0.65	-2.18	-0.63	1.56	short	N
D_comp98340_c0_seq1	2	11737990	Bradi1922980	Os07g39920	actin binding protein	0.61	1.79	-0.72	0.84	1.56	short	Y
B_comp9806_c0_seq1	6	8929449	Bradi3g10730	Os02g22020	DNA binding protein	4.09	1.39	2.03	0.48	1.55	tall	N
D_comp848455_c0_seq1	6	23039630	Bradi3g55670	Os02g57480	anthocyanin 5-aromatic acyltransferase	0.47	1.39	-1.08	0.47	1.55	short	Y
D_comp7654_c0_seq1	6	24170551	Bradi3g60920	Os02g58790		0.40	1.18	-1.31	0.24	1.55	short	Y
D_comp302784_c0_seq1	4	40729936	Bradi1953090	Os03g62410	phospholipase D gamma 3	0.13	0.39	-2.91	-1.35	1.55	short	N
B_comp19224_c0_seq11	1	42520129	Bradi2g17230	Os05g48060	phosphatidylserine synthase 2	0.62	1.83	-0.69	0.87	1.55	short	N
D_comp710_c0_seq1	5	21041831	Bradi4g34000	Os05g31010	hypothetical protein	0.52	1.54	-0.93	0.62	1.55	short	Y
D_comp548173_c0_seq1	1	3668665	Bradi3g23360	Os03g09070	protein binding protein	0.12	0.36	-3.01	-1.46	1.55	short	N
B_comp10709_c0_seq1	7	45465251	Bradi1930010	Os06g50910	serine/threonine-protein kinase ATR	0.42	0.14	-1.24	-2.79	1.55	tall	N
B_comp18062_c0_seq1	4	40741817	Bradi1977290	Os03g02710	hydroxymethylglutaryl-CoA synthase	5.18	15.18	2.37	3.92	1.55	short	Y
A_comp807118_c0_seq1	6	7609231	Bradi3956990	Os02g57940	F-box domain containing protein	0.17	0.51	-2.53	-0.98	1.55	short	N
B_comp74740_c0_seq1	3	26771149	Bradi2g55570	Os01g64020	transcription factor HBP-1b	0.43	0.15	-1.23	-2.78	1.55	tall	N
B_comp12944_c0_seq2	1	3227081	Bradi3g23150	Os10g13940	antiporter/ drug transporter	0.28	0.82	-1.84	-0.29	1.55	short	N
D_comp456000_c0_seq1	6	21433496	Bradi3g53610	Os02g48870	aspartic proteinase nepenthesin-2 precursor	0.13	0.38	-2.95	-1.40	1.55	short	N
D_comp302704_c0_seq1	5	23758624	Bradi3g42620	Os01g52240	chlorophyll a-b binding protein 2 chloroplast precursor	1.16	3.39	0.21	1.76	1.55	short	Y
D_comp139920_c0_seq1	5	28834029	Bradi1g06980	Os03g56540	mitochondrial import inner membrane translocase subunit TIM14	0.16	0.48	-2.61	-1.06	1.55	short	Y
B_comp64820_c0_seq1	1	9868841	Bradi3g27900	Os10g31850	RING finger and CHY zinc finger domain-containing protein 1	0.47	1.37	-1.09	0.46	1.55	short	N
A_comp162096_c0_seq1	2	44435313	Bradi5g22550	Os06g49360	NBS-LRR disease resistance protein	0.10	0.30	-3.27	-1.72	1.55	short	N
A_comp651751_c0_seq1	2	46809770	Bradi5g26190	Os04g58130	katanin p80 WD40-containing subunit B1 homolog 1	0.12	0.35	-3.05	-1.50	1.54	short	N
B_comp4852_c0_seq1	6	15706670	Bradi3g50000	Os02g42880	remorin	0.56	1.63	-0.84	0.71	1.54	short	N
A_comp64791_c0_seq1	5	15523604	Bradi4g28770	Os09g19820	aminopeptidase-like protein	0.15	0.44	-2.71	-1.17	1.54	short	N
B_comp20108_c0_seq3	2	25068817	Bradi1960680	Os03g27370	phospholipase D alpha 1	0.13	0.37	-2.97	-1.43	1.54	short	N
D_comp322420_c0_seq1	4	18763206	Bradi4g16280	Os11g35400	acyl CoA synthetase	3.76	10.95	1.91	3.45	1.54	short	Y
B_comp38245_c0_seq1	6	15917722	Bradi3g50210	Os02g43290	protein kinase APK1A chloroplast precursor	0.25	0.72	-2.03	-0.48	1.54	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	$\begin{aligned} & \hline \text { RIL4 } \\ & \text { raw } \end{aligned}$	$\begin{array}{\|l} \hline \text { Log2 } \\ \text { (CD) } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Log2 } \\ & \text { (RIL4) } \end{aligned}$	$\begin{aligned} & \text { Fold } \\ & \text { diff } \end{aligned}$	Upreg	$\begin{aligned} & \hline \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp31628_c0_seq2	5	27683514	Bradi1908550	Os03g53790	periplasmic beta-glucosidase precursor	0.22	0.64	-2.19	-0.65	1.54	short	Y
B_comp29017_c0_seq1	6	3185127	Bradi3g04640	Os02g06580	formin homology 2 domain-containing protein 5	0.11	0.33	-3.13	-1.59	1.54	short	N
A_comp303859_c1_seq1	3	14344005	Bradi2g41510	Os01g39000		7.07	20.56	2.82	4.36	1.54	short	N
B_comp60276_c0_seq1	1	31890893	Bradi2g27180	Os05g31020	eukaryotic peptide chain release factor subunit 1-1	0.11	0.31	-3.22	-1.68	1.54	short	N
B_comp77118_c0_seq1	5	212451	Bradi1912080	Os03g48480	acyl-CoA thioesterase/ catalytic/ hydrolase acting on ester bonds	0.37	1.08	-1.43	0.11	1.54	short	Y
B_comp26928_c0_seq2	4	39254691	Bradi1976770	Os 12g23280	GMFP5	0.23	0.68	-2.09	-0.56	1.54	short	N
D_comp663158_c0_seq1	4	189005	Bradi4g38490	Os09g39440	pyrimidine-specific ribonucleoside hydrolase rihB	0.51	1.49	-0.97	0.57	1.54	short	N
D_comp89024_c0_seq1	4	29414335	Bradi1963120	Os07g48150	plant-specific domain TIGR01568 family protein	0.33	0.95	-1.61	-0.07	1.54	short	N
A_comp12998_c0_seq1	2	44079646	Bradi5g22060	Os04g52880		9.75	28.27	3.29	4.82	1.54	short	Y
B_comp25805_c0_seq1	3	27310686	Bradi2g56360	Os01g65110	POT family protein	0.16	0.47	-2.64	-1.10	1.53	short	N
B_comp14969_c0_seq1	7	4548348	Bradi3g44220	Os11g06190		0.41	0.14	-1.30	-2.84	1.53	tall	N
D_comp285548_c0_seq1	1	32759411	Bradi2g26490	Os01g27890	cytochrome P450 71D10	0.11	0.31	-3.22	-1.69	1.53	short	N
D_comp535818_c0_seq1	1	18369518	Bradi3g35310	Os08g31030	protein HOTHEAD precursor	1.21	3.51	0.28	1.81	1.53	short	N
D_comp408389_c0_seq1	5	11366968	Bradi2g58760	Os11g02820	-	0.13	0.37	-2.98	-1.45	1.53	short	N
A_comp345322_c0_seq1	1	27878364	Bradi2g30390	Os05g27790	start codon	0.21	0.62	-2.22	-0.69	1.53	short	N
D_comp724367_c0_seq1	7	47004350	Bradi1907770	Os07g02460		0.12	0.35	-3.06	-1.53	1.53	short	N
B_comp64277_c0_seq1	3	26195269	Bradi2g54800	Os01g62670	avr9/Cf-9 rapidly elicited protein 137	0.15	0.42	-2.78	-1.25	1.53	short	N
A_comp20066_c0_seq1	2	10629734	Bradi1921510	Os07g42324		11.94	4.13	3.58	2.05	1.53	tall	N
A_comp208261_c0_seq1	2	7983031	Bradi1g18280	Os03g14620	-	0.48	1.38	-1.07	0.47	1.53	short	Y
A_comp296991_c0_seq1	3	27542190	Bradi2g56650	Os01g65510	F-box protein interaction domain containing protein	0.12	0.36	-3.00	-1.47	1.53	short	N
B_comp7846_c0_seq2	5	16053897	Bradi4g29260	Os09g20830	heat shock factor-binding protein 1	0.41	0.14	-1.29	-2.82	1.53	tall	N
D_comp500288_c0_seq1	6	12388751	Bradi3g45940	Os02g35190	chloride channel protein CLC-c	0.21	0.61	-2.24	-0.71	1.53	short	N
D_comp106993_c0_seq1	2	22046707	Bradi1958200	Os06g12100	mTERF family protein	1.46	0.51	0.55	-0.98	1.53	tall	N
B_comp21129_c0_seq7	7	34399257	Bradi1945200	Os06g12310	aquaporin NP4.1	0.17	0.48	-2.58	-1.06	1.53	short	N
A_comp24039_c0_seq1	3	16809426	Bradi2g43730	Os01g43140	triacylglycerol lipase	1.30	3.75	0.38	1.91	1.53	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{array}{\|c} \hline \mathrm{CD} \\ \text { raw } \end{array}$	RLL4 raw	$\begin{array}{\|c} \hline \log 2 \\ (C D) \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RLL4) } \end{array}$	Fold diff	Upreg	In SNP data?
A_comp309104_c0_seq1	3	31215969	Bradi2g61590	Os01g73250	bundle sheath cell specific protein 1	0.40	1.15	-1.33	0.20	1.53	short	Y
B_comp47777_c0_seq1	7	37469749	Bradi1947790	Os06g08060	leucoanthocyanidin dioxygenase	0.17	0.49	-2.57	-1.04	1.52	short	Y
D_comp20997_c0_seq2	7	400752	Bradi1953310	Os07g14590	IAA-amino acid hydrolase ILR1 precursor	0.52	1.50	-0.94	0.58	1.52	short	N
A_comp3243_c0_seq7	3	17613377	Bradi2g44550	Os01g44960	catalytic/ hydrolase	0.13	0.37	-2.94	-1.42	1.52	short	N
A_comp285784_c0_seq1	3	17481079	Bradi2g55290	Os01g44069	glycerol-3-phosphate acyltransferase 1	0.11	0.31	-3.23	-1.70	1.52	short	N
B_comp2550_c2_seq15	2	43541454	Bradi5g19720	Os04g49748	ATPUP11	0.13	0.37	-2.97	-1.45	1.52	short	Y
B_comp28179_c0_seq3	5	22566856	Bradi4g35940	Os09g36080	cytochrome P450 71A2	0.13	0.38	-2.90	-1.38	1.52	short	N
B_comp44975_c0_seq2	5	14804849	Bradi4g28100	Os09g15670	protein phosphatase 2 C	0.25	0.71	-2.02	-0.50	1.52	short	N
A_comp10039_c2_seq7	2	41556572	Bradi5g18880	Os04g48390	beta-lactamase class A	1.74	4.98	0.80	2.32	1.52	short	N
B_comp33583_c0_seq2	2	10058792	Bradi1920870	Os07g42440	hydroxyacid oxidase 1	0.35	1.00	-1.52	0.00	1.52	short	N
B_comp37925_c0_seq3	4	6256099	Bradi4g24410	Os11g07260	leucine-rich repeat receptor protein kinase EXS precursor	0.57	1.64	-0.80	0.72	1.52	short	N
D_comp40099_c0_seq1	4	39548276	Bradi1976330	Os03g03910	catalase-1	0.20	0.58	-2.31	-0.79	1.52	short	Y
D_comp12706_c0_seq1	7	35038857	Bradi1945790	Os06g11310	copper ion binding protein	0.13	0.36	-2.98	-1.46	1.52	short	N
B_comp1851_c0_seq3	3	28834491	Bradi2g58290	Os01g68140		0.62	1.77	-0.70	0.82	1.52	short	N
B_comp42092_c0_seq1	6	928259	Bradi3g01470	Os02g02400	catalase isozyme A	6.38	18.24	2.67	4.19	1.52	short	N
A_comp3243_c0_seq1	1	30620984	Bradi2g28040	Os05g28980	fiber protein Fb2	0.47	0.17	-1.08	-2.59	1.51	tall	N
D_comp9741_c0_seq1	3	23673345	Bradi2g51480	Os05g43310	photosystem II reaction center W protein chloroplast precursor	0.35	1.00	-1.51	0.00	1.51	short	N
D_comp416079_c0_seq1	2	40649738	Bradi1903760	Os03g60580	actin-depoly merizing factor 4	3.08	8.80	1.62	3.14	1.51	short	N
A_comp77030_c1_seq10	5	4491489	Bradi4g05440	Os12g43490	alpha-amylase/tryps in inhibitor	0.16	0.45	-2.68	-1.17	1.51	short	N
D_comp66207_c0_seq1	4	13268470	Bradi4g19660	Os11g22404	catalytic/ protein phosphatase type 2C	0.50	0.18	-1.00	-2.51	1.51	tall	N
A_comp3243_c0_seq3	3	3835909	Bradi2g05200	Os01g08670		0.16	0.46	-2.65	-1.14	1.51	short	N
B_comp31266_c0_seq2	3	7113546	Bradi2g08790	Os01g14670	nectarin-1 precursor	1.62	4.63	0.70	2.21	1.51	short	N
B_comp8751_c0_seq1	4	3391360	Bradi1g09820	Os03g52080	SNG2	0.78	2.23	-0.35	1.16	1.51	short	Y
B_comp64797_c0_seq1	5	5174598	Bradi4g06170	Os02g55550	ubiquitin-protein ligase	0.35	0.12	-1.53	-3.04	1.51	tall	N
D_comp723038_c0_seq1	3	28066222	Bradi2g25150	Os08g02160	NAC domain-containing protein 68	0.18	0.51	-2.47	-0.96	1.51	short	N

Unigene	Chr	Pos	Brachy	Rice	Annotation	$\begin{gathered} \hline \mathrm{CD} \\ \text { raw } \end{gathered}$	RIL4 raw	$\begin{array}{\|l} \hline \log 2 \\ \text { (CD) } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Log2 } \\ \text { (RIL4) } \end{array}$	Fold diff	Upreg	$\begin{aligned} & \text { In SNP } \\ & \text { data? } \end{aligned}$
B_comp55250_c0_seq1	5	6477854	Bradi4907570	Os 12g29220	MTN3	0.37	1.05	-1.43	0.07	1.51	short	N
D_comp103726_c0_seq2	7	7514289	Bradi3g40860	Os08g41320	BHLH transcription factor	0.16	0.44	-2.68	-1.17	1.51	short	N
B_comp12069_c0_seq5	7	38084766	Bradi1948510	Os06g06760	protein kinase	0.46	0.16	-1.13	-2.64	1.51	tall	N
B_comp423_c1_seq3	3	22954141	Bradi2g50480	Os11g04010	caspase	0.45	1.27	-1.16	0.34	1.51	short	N
B_comp23373_c0_seq1	7	45155493	Bradi1930390	Os06g43520	cytochrome P450 71D7	0.21	0.60	-2.24	-0.73	1.51	short	N
B_comp3169_c1_seq6	5	3366862	Bradi4g04140	Os12g38100	-	0.79	2.25	-0.34	1.17	1.50	short	N
A_comp289011_c0_seq23	3	28253025	Bradi2g57520	Os01g66970	zinc finger protein	0.61	1.72	-0.72	0.78	1.50	short	N
D_comp629373_c0_seq1	3	6176104	Bradi2g07830	Os01g13130	aquaporin TIP4.1	0.11	0.30	-3.22	-1.72	1.50	short	N
D_comp418048_c0_seq1	4	22621034	Bradi4g12950	Os11g41120	pistil-specific extensin-like protein precursor	0.60	1.70	-0.74	0.77	1.50	short	Y
B_comp47912_c0_seq 1	3	24066717	Bradi2g51940	Os01g57510	receptor protein kinase	0.11	0.32	-3.16	-1.66	1.50	short	N
B_comp23761_c0_seq2	2	42273173	Bradi5g21250	Os04g52090	ethylene-responsive transcription factor 4	1.40	0.49	0.48	-1.02	1.50	tall	Y

A6.8.2: Annotation of the 1735 differentially expressed genes in the UniGene dataset in A6.8.1 by biological process (top) and molecular function (bottom). The DEG count is in blue bars. A relative measure is made against the reference library of 25,219 annotated Brachypodium genes (green bars) (Du et al., 2010).

A6.8.3: Enrichment of most prominent GO molecular function categories in the DEG dataset from A6.8.1. Most highly represented categories are highlighted in red, with the lowest in white. Networks of related function are linked by arrows. A relative measure is made against the reference library of 25,219 annotated Brachypodium genes (Du et al., 2010).

	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{\grave{t}}{6} \\ \hline \frac{0}{\omega} \\ \hline \end{array}$	$\frac{\stackrel{\rightharpoonup}{\mathrm{t}}}{\frac{\mathrm{c}}{\infty}}$	$\begin{aligned} & \hline \frac{7}{0} \\ & \frac{0}{\infty} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \frac{1}{\infty} \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ \frac{0}{\infty} \end{array}$	$\begin{aligned} & \hline \frac{7}{0} \\ & \frac{0}{\infty} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\mathrm{t}} \\ & \frac{\mathrm{c}}{\infty} \end{aligned}$	$\frac{\mathrm{t}}{\mathrm{~L}}$	$\overline{\bar{T}}$	$\overline{\bar{T}}$	$\frac{\stackrel{\rightharpoonup}{0}}{\infty}$	$\overline{\bar{T}}$	$\overline{\bar{T}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{\omega} \end{aligned}$	$\overline{\overline{1}}$	$\begin{array}{\|l\|} \hline \frac{\mathrm{t}}{9} \\ \frac{\mathrm{C}}{9} \end{array}$	$\overline{\bar{T}}$	$\overline{\overline{1}}$	$\overline{\bar{T}}$
	$\left\lvert\, \begin{aligned} & \hat{N} \\ & \underset{N}{ } \end{aligned}\right.$	$\stackrel{\infty}{\sim}$	$\stackrel{\bar{\circ}}{\sim}$	$\stackrel{\circ}{\mathrm{N}} \mid$	$\stackrel{0}{\mathrm{~N}}$	$\stackrel{\mathscr{N}}{\stackrel{\circ}{i}}$	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\stackrel{+}{\mathbf{~}} \underset{\sim}{\mid}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\square}{+}$	$\stackrel{8}{-}$	$\stackrel{\stackrel{8}{\mathrm{~N}}}{ }$	$\stackrel{\underset{\sim}{U}}{\stackrel{\sim}{i}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{-\infty}{\underset{\sim}{0}}$	$\left\|\begin{array}{c} \underset{\sim}{c} \\ \dot{\sim} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { 员 } \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \mathrm{J} \\ \text { in } \end{gathered}\right.$	$\stackrel{\sim}{\sim}$
	$\left\|\begin{array}{c} \text { d } \\ \infty \end{array}\right\|$	$\stackrel{\stackrel{8}{\wedge}}{\stackrel{1}{2}}$	$\stackrel{\leftrightarrow}{\infty}$	$\underset{\dot{\theta}}{\hat{N}}$	$\stackrel{0}{i}$	$\stackrel{\infty}{\stackrel{\infty}{\dot{q}}}$	$\stackrel{\sim}{\dot{f}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{8}{\mathrm{e}} \underset{\mathrm{~m}}{ }$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\stackrel{8}{\stackrel{\rightharpoonup}{\mathrm{i}}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{+}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\stackrel{\infty}{\sim}}$	$\underset{i}{\mathrm{I}}$	$\stackrel{\infty}{\square}$	$\left\|\begin{array}{c} \circ \\ \underset{C}{0} \end{array}\right\|$	$\stackrel{\text { U }}{\sim}$
	$\stackrel{\sim}{c}$	$\stackrel{5}{6}$	$\stackrel{\sim}{+}$	$\stackrel{\underset{\sim}{\dot{O}}}{\stackrel{+}{2}}$	$\stackrel{\circ}{\circ}$	$\underset{\substack{\text { Hen }}}{ }$	$\begin{aligned} & \infty \\ & \vdots \\ & i \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\stackrel{1}{2}}$	$\stackrel{\Gamma}{\dot{F}}$	$\underset{\substack{\mathrm{N}}}{ }$	$\stackrel{\forall}{\grave{O}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\bullet}{\stackrel{\circ}{\mathrm{u}}} \mid$	$\stackrel{セ}{6}$	$\underset{\underset{N}{\mathrm{~N}}}{ }$	$\begin{gathered} \tilde{N} \\ \underset{i}{2} \end{gathered}$	$\stackrel{N}{9}$	$\left\lvert\, \begin{array}{l\|} \infty \\ \hline 0 \\ \hline \end{array}\right.$	－
	${ }_{0}^{0}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\stackrel{1}{1}}$	$\stackrel{\circ}{\circ}$	$\stackrel{n}{\Gamma}$	$\stackrel{N}{\mathrm{M}}$	$\stackrel{\sim}{N}$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\stackrel{o}{0}$	$\stackrel{\stackrel{O}{̣}}{\stackrel{1}{1}}$	$\underset{\substack{\mathrm{i}}}{\mathbf{N}}$	$\stackrel{-}{0}$	$\underset{\sim}{\underset{\sim}{f}}$	$\stackrel{0}{0}$	$\underset{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & 8 \\ & 0 \\ & i \end{aligned}$	$\left\|\begin{array}{c} \stackrel{n}{\mathrm{O}} \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\substack{9 \\ \Gamma}}{ }$	$\begin{aligned} & \stackrel{N}{\mathrm{~N}} \\ & \hline \end{aligned}$	$\stackrel{\sim}{+}$
	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{\infty}{\infty}$	$\underset{\dot{f}}{\underset{\sim}{2}}$	$\stackrel{\circ}{\dot{\sim}}$	$\stackrel{m}{\dot{d}}$	$\stackrel{\stackrel{N}{\mathrm{O}}}{\substack{2}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{c}$	$\begin{aligned} & \stackrel{m}{\dot{p}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \end{aligned}$	No	$\stackrel{\stackrel{\circ}{\mathrm{i}}}{\substack{\mid}}$	$\begin{aligned} & \mathrm{N} \\ & \text { Ni } \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{gathered} \infty \\ \hline 1 \\ \hline \end{gathered}$	$\stackrel{\otimes}{\mathrm{i}}$	$\begin{array}{\|l\|} \hline \text { O } \\ \hline \end{array}$	$\begin{aligned} & \bar{m} \\ & \underset{j}{2} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{n}{\mathrm{~N}} \\ \hline \end{array}$	＋
ƠO	$\left\lvert\, \begin{gathered} \text { d } \\ \hline \end{gathered}\right.$	$\stackrel{\substack{0 \\ 0}}{ }$	$\underset{\sim}{\infty}$	$\stackrel{\bar{\sigma}}{\underset{1}{2}}$	$\stackrel{\infty}{\Gamma}$	$\underset{\substack{\mathfrak{N}}}{ }$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \end{gathered}$	$\stackrel{\infty}{\infty}$	$\stackrel{t}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\stackrel{\infty}{1}}$	$\left\lvert\, \begin{aligned} & n \\ & \vdots \\ & \hline \end{aligned}\right.$	$\stackrel{\circ}{0}$	$\stackrel{N}{\underset{1}{1}}$	$\underset{\substack{\mathrm{N}}}{ }$	$\stackrel{\Gamma}{\underset{1}{\prime}}$	$\begin{array}{\|c\|} \hline \infty \\ \\ \hline \end{array}$	$\stackrel{\text { d }}{\substack{\text { O}}}$	$\begin{array}{\|l\|} \hline \frac{\infty}{\vdots} \\ \underset{1}{2} \\ \hline \end{array}$	$\stackrel{\square}{\square}$
	$\left\|\begin{array}{c} \infty \\ \stackrel{\circ}{\circ} \end{array}\right\|$	$\stackrel{\hat{e}}{\stackrel{\rightharpoonup}{+}}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$	$\stackrel{\stackrel{+}{\mathrm{i}}}{ } \mid$	$\underset{\sim}{\underset{\sim}{+}}$	$\stackrel{̊}{\substack{0}}$	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\circ}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{m}{\dot{O}}$	$\dot{\sigma}$	Ṃ	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\stackrel{L}{4}}{\dot{\gamma}}$	$\stackrel{\bullet}{\circ}$	$\stackrel{L}{\circ}$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	$\stackrel{8}{-8} \underset{-}{ }$	$\stackrel{\circ}{\circ}$
	$\|\underset{\sim}{\hat{G}}\|$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\stackrel{\substack{0 \\ 0}}{ }$	$\stackrel{+}{\mathbf{N}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	\div	$\underset{\sim}{\mathrm{N}}$	$\stackrel{m}{0}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\underset{0}{\dot{\sigma}}$	$\underset{\sim}{\sim}$	$\stackrel{\otimes}{-}$	$\stackrel{\infty}{\infty}$		$\stackrel{n}{0}$	$\stackrel{R}{0}$	\div	$\stackrel{\overline{\mathrm{O}}}{\mathrm{~N}}$	$\begin{array}{\|c} \stackrel{0}{9} \\ \underset{子}{2} \end{array}$	$\stackrel{9}{N}$
迷	$\begin{array}{\|l\|l} \hline \stackrel{0}{2} \\ \stackrel{\Gamma}{5} \\ \hline \end{array}$	※	$\begin{aligned} & \stackrel{\sim}{n} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\mathrm{N}} \end{gathered}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{n}}} \underset{\sim}{2}$		$\stackrel{\infty}{\infty}$	$\stackrel{\stackrel{n}{\mathrm{~N}}}{\stackrel{1}{0}}$	$\underset{0}{\square}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\stackrel{\circ}{\square}}$	$\frac{0}{0}$		$\underset{\sim}{\mathrm{N}}$	$\stackrel{5}{5}$	$\stackrel{m}{0}$	$\begin{array}{\|c} \hat{g} \\ \dot{O} \end{array}$	\div	$\stackrel{n}{\circ}$	
8 O	$\stackrel{\text { O}}{-}$	$\stackrel{\bar{c}}{\stackrel{1}{c}}$	$\begin{aligned} & \text { tu } \\ & 0 \end{aligned}$	Nin	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \hline \end{array}$	$\stackrel{N}{0}$	$\begin{array}{\|c\|c\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \dot{o} \\ & \hline \end{aligned}$	$\stackrel{\text { ¢ }}{+}$	$\begin{aligned} & \text { N్ర } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{8}{-}$	$\begin{aligned} & \hline 8 \\ & \dot{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \frac{n}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{3} \end{aligned}$	$\stackrel{\sim}{0}$	¢	$\begin{aligned} & \dot{G} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$
$\stackrel{0}{\sim}$													8 0 0 0 0 0 0 0 0			$\begin{array}{\|l\|} \hline \frac{0}{i} \\ 0 \\ 0 \\ \hline 0 \\ 0 \\ 00 \\ 0 \\ \hline \end{array}$	．			
$\begin{aligned} & \frac{1}{0} \\ & \stackrel{\ddot{m}}{\dot{\omega}} \end{aligned}$																				
$\stackrel{\circ}{2}$		$\begin{aligned} & \text { ob } \\ & \stackrel{6}{2} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathbf{N}} \\ & \underset{\sim}{\mathbf{o}} \end{aligned}$	$\begin{gathered} \hat{\infty} \\ \stackrel{\infty}{\ddagger} \\ \stackrel{\infty}{\sim} \end{gathered}$	$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{N}{N} \end{aligned}$		®． N N N 	$\begin{aligned} & \stackrel{\circ}{\mathbf{O}} \\ & \stackrel{0}{8} \\ & \stackrel{e}{2} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & \hline \stackrel{\circ}{6} \end{aligned}$			$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{0}{n} \\ & \underset{\sim}{n} \end{aligned}$	O 0 0 0 0 0	$\begin{aligned} & \frac{n}{\tilde{f}} \\ & \frac{5}{i} \end{aligned}$	$\left\|\begin{array}{l} \circ \\ 0 \\ 0 \\ 0 \\ \stackrel{0}{\circ} \end{array}\right\|$	$\begin{array}{\|l\|l} \hline \stackrel{\infty}{n} \\ i n \\ \text { N } \\ \hline \mathbf{O} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\substack{0 \\ \hline\\ }}{ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{7} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{0} \\ 0 \\ 0 \\ 0 . \\ \hline 0 \end{array}$	N
딩	\leqslant	$\stackrel{\square}{\sim}$	\bigcirc	¢	，	令	～	$\stackrel{\text { ® }}{\sim}$	$\stackrel{3}{6}$	¢	¢	¢	§	§	¢	$\stackrel{3}{4}$	$\stackrel{3}{5}$	$\stackrel{\sim}{\sim}$	㝰	号
	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ \underset{\sim}{e} \\ 1 \\ \stackrel{\rightharpoonup}{5} \end{array}\right\|$		\bar{o} $\stackrel{\circ}{2}$ $\bar{\sim}$ 0 0 0	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{0} \\ & \stackrel{0}{\mathrm{~N}} \\ & \omega_{0}^{\prime} \end{aligned}$			$\begin{aligned} & \stackrel{\sim}{n} \\ & \stackrel{y}{\sim} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{\sim} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \underset{\sim}{\circ} \end{aligned}$			$\begin{aligned} & 0 \\ & \underset{N}{N} \\ & \underset{\infty}{1} \\ & 0 \\ & 0 \end{aligned}$								
$\begin{aligned} & \stackrel{0}{\mathbf{0}} \\ & \stackrel{0}{5} \\ & \hline \end{aligned}$												$\begin{array}{ll} \hline 0 \\ \hline & 0 \\ \hline \end{array}$					$\begin{array}{\|c} \hline \stackrel{N}{\hat{0}} \\ \hat{0} \\ 0 \\ 0 \\ \tilde{c} \\ \hline \end{array}$			O

A6．8．4：Differentially expressed genes between the parent NILs and BSA in the v3．3 cDNAs．Genes are annotated if they overlapped with SNP data．Raw RPKM values are shown，as well as log－transformed data used to set the 1.5 －fold threshold as a DEG．

A6.9 (continued across three pages)

Wheat gene models from CSS contigs anchored into the 17.3 cM bin by POPSEQ data. Gene models were extracted from Ensemb/Plants and annotated. Genes which were duplicated (based on BLASTP results) are annotated in the 'Dup' column. Genes which were tested with markers are indicated. Shaded red are markers which were developed and were monomorphic between the parents to the fine-mapping population. Genes on contigs which had no variation are shaded red. The BLASTP Annotation is from the NCBI database, with the top hit used for the annotation in terms of peptide identity and accession number, using the peptides to the genes as queries. The species from which the annotation derives is indicated. Tauschii: Ae. tauschii; BD: Brachypodium; Urartu: T. Urartu; Aestivum: T. aestivum. The Interpro, GO annotations and synteny information were obtained from Ensemb/Plants. If the Brachypodium gene had a putative SNP between parent NILs in the UniGene data, this is indicated. The gene is also marked if it was in the differentially expressed genes (DEGs) in A6.8.1. Finally, if the Brachypodium gene could be anchored in the Ae. tauschii gene list/zipper in A6.7, the bin is indicated in the final column. Shaded red means a cM bin that was outside the Rht8 interval. Shaded green is a cM bin within the defined interval.

A6.9.1: Genes within the 17.3 cM bin and anchored within the $R h t 8$ interval in $A e$. tauschii or not found in the Ae. tauschii data.

A6.9.2: Genes within the 17.3 cM bin and anchored outside the Rht8 interval in Ae. tauschii.

Wheat gene (Traes)	Dup	$\begin{gathered} \text { Previously } \\ \text { tested } \end{gathered}$		BlastP NCBI Annotation	Species	$\begin{array}{c\|} \hline \% \\ \text { Query } \end{array}$	$\underset{\text { \% }}{\text { id }}$	GenBank	InterPro	GO term name	HV gene	$\begin{gathered} \text { HV pos } \\ \text { (Mb) } \end{gathered}$	BD gene	Os gene	$\stackrel{\text { SNP }}{?}$	DEG?	Tauschii
2DS_5D0D6CE9A 2DS_77EE9D5CB 2DS_31BABEFBA 2DS_87ABEEA3D 2DS_CC0A98FBC 2DS_6BFAA38F7 2DS_B1CD8F65A	7	yes	$\begin{gathered} \text { 2DS_46,51, } \\ 60,76 \end{gathered}$	Proline-rich protein 4-like	BD	93	69	XP_003571659	Pollen Ole e 1 allergen/extensin	-	MLOC_32207	18.55	Bradi5904630	Os 10g0150800	N	N	35.34
2DS_0E850F4E2		yes	$\begin{aligned} & \text { 2DS_19, } \\ & \text { 2DS_196 } \end{aligned}$	Ccleavage/polyadenylation specificity factor subunit 1	Tauschii	97	95	EMT25361	Cleavage/polyadenylation specificity factor	cyosol	MLOC_12182	18.49	Bradi5904673	Os04g0252200	N	N	35.339
2DS_2B31E631C		yes	2DS_118-20	$\begin{gathered} \text { Acyl-CoA-sterol } \\ \text { O-acyltransferase } 1 \text {-like } \end{gathered}$	BD	95	78	XP_003581182	-	-	MLOC_77446	104.77	Bradi5909000	Os04g0277400	N	N	31.41
2DS_7478A1CD1		2DS_5364728		Probable protein transport Sec 1a	BD	99	86	XP_010239737	Sec - -ike protein	vesicle docking involved in exocytosis	MLOC_72777	217.52	Bradi5904686	Os04g0252400	N	N	31.41
2DS_1E247C42B		yes	2DS_103	MRP-like ABC trans porter	os	99	79	CAD59594	ABC transporter-like	ATP binding		-	Bradi5g03477	Os04g0209300	N	N	31.41
2DS_C50053547				Momilactone A synthase-like	BD	99	59	XP_003581367	$\begin{gathered}\text { Short-chain } \\ \text { dehydrogenase SDR }\end{gathered}$	oxidoreductase activity	-	-	Bradi 1922860	Os0790665000	N	$\left.\begin{aligned} & \text { short } \\ & \times 2.32 \end{aligned} \right\rvert\,$	-
2DS_886DB2397				LRR extensin-like protein 2	BD	37	70	XP_003559819	C2 domain	protein binding	MLOC_69091	220.26	Bradi1918280	Os0790670300	N	$\begin{array}{\|l\|} \hline \text { short } \\ \times 1.53 \end{array}$	
2DS_05DCEB6801		yes	2DS_68, $\text { 2DS } 104$	Reticuline oxidase-like protein	Tauschii	99	96	EMT18490	FAD linked oxdase	flavin adenine dinucleotide binding	MLOC_63480	214.56	Bradi5902900	Os06g0549600	N	N	
2DS_985CFD29C				Cytochrome P450 71 D11	Tauschii	94	99	EMT05295	Cylochrome P450	iron ion binding			Bradi4g09000	Os0690642300	N	N	
2DS_7EDB434AD				Cyochrome P450 71 D8	Tauschii	98	92	EмT05296	Cytochrome P450	iron ion binding			Bradi3g15020	Os0690641800	N	N	
2DS_5C01 AE66B		yes	2DS_72, $2 D S 114$	Isoflavone 3-hydrox/lase-like	BD	82	80	XP_010238949	Cylochrome P450	iron ion binding	MLOC_55120	219.95	Bradi4907480	Os04g0255600	N	N	
2DS_8917CF955				UDP-glycosyltransferase 74 E 1	Uratu	99	96	EMS60126	UDP-glucuronosy/ UDP-glucos yltransferase	$\underset{\substack{\text { transferase, } \\ \text { transferring hexosyl } \\ \text { gips }}}{ }$	MLOC_37045	2602.21	Bradi5902780	Os04g0206700	N	N	-
2DS_203132448				Wall-as sociated receptor	Tauschii	100	100	емт31734	Protein kinase-like domain	ATP binding	-	-	-	-	-	-	
2DS_CB771B9DF				Receptor-like SerThrprotein kinase SD1-8	BD	96	75	XP_010227301	Protein kinase domain	ATP binding	MLOC_60096	214.60		Os0790301500	-		-
2DS_8E5665A3E		2DS_5342238		Vacuolar amino acid transporter 1	Tauschii	99	99	EMT21150	Amino acid transporter, transmembrane	integral component of membrane	MLOC_61723	15.26	Bradi5902920	Os04g0201800	N	N	-
2DS_OF3296166				Bidirectional sugar transporter SWEET6a	BD	68	71	XP_003569319	-	-	.			Os 0990259200	-	-	.

A6.9.1

Wheat gene (Traes)	Dup	Previously tested		BlastP NCBI Annotation	Species	$\begin{array}{\|c\|} \hline \% \\ \text { Query } \end{array}$	$\begin{gathered} \% \\ \text { Id } \end{gathered}$	GenBank Accession	InterPro	GO term name	HV gene	$\begin{gathered} \mathrm{HV} \text { pos } \\ (\mathrm{Mb}) \end{gathered}$	BD gene	Os gene	$\begin{gathered} \text { SNP } \\ ? \end{gathered}$	DEG?	Tauschii
2DS_86B38D3CF 2DS 7E56EEE5F	2			Cystathionine gammasynthase, chloroplastic	Tauschii	99	100	Emt09613	Cys/Met metabolism, pyridoxal pho-dependent	catalyic activity	-	- .	Bradi 1969730	Os 10g0399200	N	N	
2DS_562B4B7BF				Cyclopropane-fatty-acylphospholipid synthase	Urartu	99	77	EMS55075	$\begin{array}{\|c\|} \hline \text { Mycolic acid } \\ \text { cyclopropane synthase } \\ \hline \end{array}$	$\begin{gathered} \hline \begin{array}{c} \text { lipid bios ynthetic } \\ \text { process } \end{array} \\ \hline \end{gathered}$	-	.	Bradi5909110		N	N	-
2DS_BD1D507B5				Putative methyltrans ferase DDB G0268948	BD	56	89	XP_003567596	-	-	MLOC_3492	11.79	Bradi2911740	Os0190307686	N	N	-
2DS_59A6D76F6				Cytos olic sulfotransferase 5 -like	BD	99	69	XP_003575593	Sulfortansferase domain	sulfortransferase activity	MLOC_7130	22.43	Bradi3g09500		N	N	-
2DS_4D186BBBF				$\begin{gathered} \text { Caffeic acid } \\ \text { 3-O-methyltransferase } \\ \hline \end{gathered}$	Tauschii	99	90	EMT13959	O-methyltransferase	\bigcirc-methyltransferase	-	.	Bradi1914870	Os08g0157500	N	N	-
2DS_6C351FD1B				Cation-chloride	BD	99	91	XP_003565703	Amino acid permease	integral component	MLOC_5064	19.95	Bradi2911652	Os0190304100	N	N	-
2DS_677AECF17				$\begin{gathered} \text { Pleiotropic drug resistance } \\ \text { protein 5-like } \end{gathered}$	BD	99	89	XP_003563012	ABC transporter-like	membrane	-	-	-	Os02g0318450		-	-
2DS_ABAA92C8B				THO complex subunit 4	Urartu	99	98	EMS62008				.					
2DS_9AE3D3114				Endo-1,4-beta-xylanase Z	Tauschii	55	100	EmT25110						Os0590305000		-	.
2DS_E88D10893				Putative nuclease HARBII	Urartu	100	92	EMS68915	-	-	-	-				-	-
2DS_8C3F6A558 2DS E2F2E9EAF	2	yes	$\begin{aligned} & \text { 2DS_46, } \\ & \text { 2DS } 60 \end{aligned}$	Protein FEZ-like	BD	99	78	XP_003574551	NAC domain	DNA binding	MLOC_60079	$2{ }^{17.55}$	Bradi3937067	Os08g0436700	N	N	-
2DS_FA94FABBC				Xaa-Pro dipeptidase	Tauschii	100	84	EmT28716	Peptidase M24, structural domain	aminopeptidase activity	MLOC_37956	${ }^{6} 176.76$	Bradi3g08420	Os02g0224400	N	N	
2DS_01082F3EE		2DS_5341322		Senescence-specific cysteine protease SAG39-like	BD	76	72	XP_003581047	Peptidase C1A	$\begin{gathered} \hline \text { cysteine-type } \\ \text { peptidase activity } \end{gathered}$	-	.	Bradi5903340		N	N	-
2DS_A181DDC76				$\begin{gathered} \text { Disease resistance } \\ \text { protein RPM1 } \\ \hline \end{gathered}$	Tauschii	-	-	-	-	-	-	.	Bradi4909577		N	N	-
2DS_F632F903F				$\begin{gathered} \text { Disease resistance } \\ \text { protein RPM1 } \\ \hline \end{gathered}$	Tauschii	100	100	EмT03313	-	-	-	-			N	N	-
2DS_D264DB414				Dirigent protein 5-ike	BD	87	68	XP_003562603	Plant disease resistance response protein	-	MLOC_18373	278.22	Bradi 1920185	Os07g0638500	N	N	-
2DS_FB2531322				Dirigent protein 22-like	BD	89	67	XP_003578856	Plant disease resistance response protein	-	MLOC_12325	3544.03	Bradi4941300	Os 1290174700	N	N	-
2DS_FDF701AA7				no annotation	.	-	-	-	Uncharacterised protein	-		-	Bradi2913280	Os0190389200	N	N	.
2DS_F3B9AEBCA				no annotation	-	-	-	-	-	methylation-dependent chromatin silencing	MLOC_59733	18.22	Bradi1916097	Os03g0594700	N	N	-
2DS_5B2DCCCBD				no annotation	.	.	-	.	-	-	MLOC_43355	215.34	-	-		-	.
2DS_E298FC27B				no annotation	-	-	-	-		-	MLOC_58453	218.52	Bradi5904710	Os04g0261400	N	N	-
2DS_85F3A47F8				no annotation	-	-	-	-	Nucleotide-diphosphosugar transterase	-	MLOC_61444	609.30	Bradi4934530	-	N	N	-
2DS_7392B6ED9				no annotation		.	-	.	-	.	-	.	-	-	-	-	.
2DS_DD6E4E269				no annotation		.	-	.	.	.	-	.	-	.	-	-	-
2DS_17C0B823A1				no annotation													

A6.9.1 (continued)

Wheat gene		Previously tested		BlastP NCBI Annotation	Species	$\begin{array}{\|c\|} \hline \% \\ \text { Query } \\ \hline \end{array}$	$\begin{aligned} & \hline \% \\ & \text { Id } \\ & \hline \end{aligned}$	GenBank Accession	InterPro	GO term name	HV gene		$\begin{aligned} & \hline \text { NV pos } \\ & \text { (Mb) } \end{aligned}$	BD gene	Os gene	SNP	DEG?	Tauschii
2DS_6384C3FE1		2DS_5364496 2DS 5388088		G-type lectin S-receptor-like Ser/Thr-protein kinase RLK1	BD	98	98	XP_003581087	Protein kinase domain	ATP binding	MLOC_75639	2	1.66	Bradi5g02980	Os04g0202500	N	N	30.17
2DS_CA46F5E71 2DS_EC4BBF5CF	2			Ubiquitin thioesterase otubain-like isoform X3	BD	99	72	XP_010234388	Peptidase C65, otubain	-	MLOC_70393	2	16.07	Bradi3g16570	Os04g0652600	N	N	31.23
2DS_7ED349BCA1		yes	2DS_6	Dirigent protein 21-like	BD	99	64	XP_003577661	Plant disease resistance response protein	-	MLOC_62798		15.49	Bradi4g21260	Os11g0215100	N	N	30.22
2DS_5CE0A969D 2DS_48FB7EC2D	2	yes	2DS_88	UDP-glycos yltransferase 74 E 2	Urartu	99	86	EMS63799	UDP-glucuronosy// UDP-glucosyltransferase	transferase, transferring hexosyl grps	MLOC_24124		15.42	Bradi5g03400	Os04g0203600	N	N	30.45
2DS_44A7F70FB		yes	52i	ABC transporter C family member 14-like	BD	99	94	XP_003581195	ABC transporter-like	ATP binding	MLOC_5957	2	15.45	Bradi5g03460	Os04g0209200	N	N	30.99
2DS_A8B23EC52				ABC transporter G family member 24-like	BD	99	91	XP_003581016	ABC transporter-like	ATP binding	MLOC_52698	2	12.65	Bradi5g02870	Os04g0194500	Y	Y	27.23
2DS_62F241B7E		2DS_5371750		WD repeat-containing protein 25 is oform X1	BD	97	86	XP_003579310	WD40 repeat	Photoperiodism	MLOC_58466	2	17.56	Bradi5g04660	Os02g0319800	Y	N	35.66
2DS_FB16AB9A8		yes	$\begin{gathered} \hline \text { 2DS_86/7, } \\ 91 / 2 \end{gathered}$	Peptidyl-prolyl cis-trans isomerase FKBP19	BD	98	99	XP_003581090	Peptidyl-prolyl cis-trans isomerase, FKBP-type	protein folding	MLOC_6969	2	15.51	Bradi5g02990	Os07g0133700	Y	N	30.17
2DS_3D2C53D93				RuBisCO large subunitbinding protein subunit alpha	Aestivum	99	99	P08823	Chaperonin Cpn60	cytoplasm	MLOC_51927		14.66	Bradi5g02890	Os 12g0277500	N	N	27.41

A6.9.2

A6.10 (continued across three pages)

Wheat gene models from CSS contigs anchored into the 18.1-33.1 cM bins by POPSEQ data. Gene models were extracted from Ensemb/Plants and annotated. Genes which were duplicated (based on BLASTP results) are annotated in the 'Dup' column. Genes which were tested with markers are indicated. Shaded red are markers which were developed and were monomorphic between the parents to the fine-mapping population. Genes on contigs which had no variation are shaded red. The BLASTP Annotation is from the NCBI database, with the top hit used for the annotation in terms of peptide identity and accession number, using the peptides to the genes as queries. The species from which the annotation derives is indicated. Tauschii: Ae. tauschii; BD: Brachypodium; Urartu: T. Urartu; Aestivum: T. aestivum. The Interpro, GO annotations and synteny information were obtained from Ensemb/Plants. The gene is also marked if it was in the differentially expressed genes (DEGs) in A6.8.1. Finally, if the Brachypodium gene could be anchored in the Ae. tauschii gene list/zipper in A6.7, the bin is indicated in the final column. Shaded red means a cM bin that was outside the Rht8 interval.

Wheat gene	$\begin{gathered} \text { Previously } \\ \text { tested } \\ \hline \end{gathered}$		BlastP NCBI Annotation	Species	$\begin{array}{\|c\|} \hline \% \\ \text { Query } \end{array}$	$\begin{aligned} & \hline \% \\ & \text { Id } \\ & \hline \end{aligned}$	GenBank	InterPro	GO term name	HV gene		HV pos (Mb)	BD gene	OS gene	DEG?	Tau
2DS_5EDDE822C			Cys-rich receptor-like protein kinase 10	Tauschii	61	100	EMT21144	Bulb-type lectin domain	-	-	-	-	-	-	N	-
2DS_45F8CE226			F-box only protein 7	Urartu	72	93	EMS67273	F-boxdomain	protein binding	-	-	-	Bradi2g38850	Os03g0802100	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { short } \\ \text { x1.59 } \end{array} \\ \hline \end{array}$	3D
2DS_476DD6E63			no annotation	-	0	0	-	-	-	-	-	-	Bradi5g10350	-	N	107.4
2DS_6182EF594	yes	2DS_54	no annotation	-	0	0	-	-	-	-	-	-	Bradi5g02830	-	N	27.2
2DS_212E10376	yes	2DS_280	Brassinosteroid-regulated protein BRU1	Tauschii	95	56	EMT00455	-	-	-	-	-	-	-	N	-
2DS_0BFF3B23D			Cys-rich receptor-like protein kinase 6	Tauschii	100	100	EMT24053	Protein kinase domain	ATP binding	-	-	-	-	Os07g0301500	N	-
2DS_45F92FDF3	yes	$\begin{array}{\|c\|} \hline \text { 2DS_76, 121-123, } \\ 124,125 \\ \hline \end{array}$	Ubiquitin thioesterase otubain-like is oform X1	BD	71	63	XP_003581187	Peptidase C65, otubain	-	MLOC_8298	2	22.47	Bradi5g09076	Os04g0652600	N	-
2DS_A57A221DE	2DS_5341122		Cytochrome P450 71D7	Tauschii	78	96	BMT07521	Cytochrome P450	iron ion binding	MLOC_21415	7	323.57	-	-	N	-
2DS_554CD5259	2DS_5292808		Wall-as sociated receptor kinase 3	Tauschii	52	99	EMT08949	EGF-type aspartate hydroxylation site	ATP binding	MLOC_48019	2	16.12	Bradi5g03577	Os04g0220300	N	40.9
2DS_625B3FD77	2DS_5319489		IAA-amino acid hydrolase ILR1-like protein 8	Tauschii	100	98	EQT05755	Peptidase M20	hydrolase activity	MLOC_37301	2	22.36	-	Os07g0249800	N	-
2DS_071650798	2DS_5342673		NAD-dependent deacetylase sirtuin-6	Tauschii	98	85	EMT21754	Sirtuin family	NAD + binding	MLOC_295	2	22.53	Bradi5g02940	Os04g0271000	N	44.9
2DS_DE678DC0D			$\begin{gathered} \text { FBD-associated F-box } \\ \text { protein At3g50710 } \\ \hline \end{gathered}$	BD	98	62	XP_010229605	-	-	MLOC_60987	2	22.24	-	-	N	-
2DS_2E5286F5D			Germin-like protein 8-14	Urartu	100	99	EMS51 159	Germin	extracellular region	MLOC_55453	2	22.16	Bradi3g37680	Os08g0460000	N	-
2DS_3F5D36630	yes	2DS_8-10	Transcription factor RAX2-like	BD	100	67	XP_003581397	SANTMyb domain	DNA binding	MLOC_5849	2	17.22	Bradi5g03882	-	N	112.4
2DS_B6AFE40D4	yes	2DS_7, 32-35	Glycerol-3-pho dehydrogenase SDP6, mitochondrial	Tauschii	100	100	EQT06126	FAD-dependent glycerol-3pho dehydrogenase	glycerol-3-pho dehydrogenase activity	MLOC_11990	2	16.13	Bradi5g03810	Os04g0225001	N	39.3
2DS_05F454C37	yes	2DS_151-2	Thylakoid lumenal 15.0 kDa protein 2, chloroplastic	Tauschii	94	99	EMT07626	Vps54-like	retrograde transport, endosome to Golgi	MLOC_57508	2	15.72	Bradi5g03600	Os04g0212200	N	41.3
2DS_BEDDCAAOF	yes	2DS_26	S-norcoclaurine synthase 1	Tauschii	90	98	EMT07772	Oxoglutarate/iron-dependent dioxygenase	oxidoreductase activity	-	-	-	Bradi5g04340	Os03g0856000	N	37.3
2DS_DB37EBC5E			Acyl-carrier-desaturase, chloroplastic	Tauschii	100	99	EMT08285	Fatty acid desaturase, type 2	fatty acid metabolic process	MLOC_62967	2	22.21	Bradi3g17670	Os08g0199400	N	44.1
2DS_A7B538273			no annotation	-	-	-	-	-	-	MLOC_6116	2	568.49	-	-	N	-
2DS_7CF3C36BA			no annotation	-	-	-	-	F-boxdomain	protein binding	-	-	-	Bradi3g61000	Os02g0288925	N	3D
2DS_DE390194C	2DS_5358467		no annotation	-	-	-	-	-	-	MLOC_81817	2	18.23	Bradi5g04577	Os04g0221600	N	37.1

A6.10

Wheat gene	Previously tested		BlastP NCBI Annotation	Species	$\begin{gathered} \% \\ \text { Query } \end{gathered}$	$\begin{aligned} & \% \\ & \text { Id } \end{aligned}$	GenBank	InterPro	GO term name	HV gene		HV pos (Mb)	BD gene	OS gene	DEG?	Tau
2DS_A3DACD282			Strictosidine synthase	Tauschii	97	84	EMT28724	Six-bladed beta-propeller, ToIB-like	biosynthetic process	-	-	- -	Bradi4g40305	Os 08g0442200	N	5D
2DS_708D33A0C			ATP-dependent helicase	Tauschii	100	85	епт 33029	-	-	-	-	- -	-	-	N	-
2DS_6C34B489A	2DS_5363769		INO80 complexsubunit C	BD	100	90	XP_003581371	YL1 nuclear, C-terminal	regulation of transcription	MLOC_45846	2	16.21	Bradi5g03850	Os 04g0274400	N	39.3
2DS_0D126BAD7	yes	2DS_40, 293-5	no annotation	-	-	-	-	His phosphatase superfamily, clade-1	-	MLOC_74610	2	17.29	Bradi5g03697	Os 04g0224600	N	40.9
2DS_C4237A91B	2DS_5364388		Transketolase, chloroplastic	Tauschii	100	90	ВМт08283	Transketolase, N -terminal	catalytic activity	MLOC_21709		22.64	Bradi5g07190	Os 04g0266900	N	44.1
2DS_2F8D8BB67			Glutamate dehydrogenase	Aestivum	83	94	ADW95819	Glu/Leu/Val dehydrogenase, C-terminal	oxidoreductase activity	MLOC_69020		518.04	Bradi 1905680	Os03g0794500	N	5D
2DS_F37207649			Zn finger BED domain, RICESLEEPER 2-like	BD	67	82	XP_010237819	HAT dimerisation domain, C-terminal	nucleic acid binding	-	-	- -	Bradi3g15846	-	N	7D
2DS_915D15B39	yes	2DS_36-7	LRR receptor-like Ser/Thr-protein kinase	Tauschii	99	94	EMT21841	Protein kinase domain	ATP binding	MLOC_61793		17.20	Bradi5g04000	Os04g0227200	N	38.6
2DS_E593E738D	yes	2DS_53	L-ascorbate peroxidase 3	Tauschii	100	100	EMT31421	Haem peroxidase	heme binding	MLOC_14804		16.17	Bradi5g03640	Os 04 g 0223300	N	41.1
2DS_64BD8DBC0	2DS_5390981		LRR receptor-like Ser/Thr-protein kinase	Tauschii	100	99	EMT21840	LRR	protein binding			-	-	-	N	-
2DS_8993BF910	yes	2DS_150	GDT1-like protein 2, chloroplastic	BD	98	85	XP_010236049	Uncharacterised protein	membrane	MLOC_68294		15.58	Bradi5g03610	Os11g0544500	N	40.9
2DS_F04F1D341			Cys-rich receptor-like protein kinase 29	Tauschii	34	98	EMT16696	Protein kinase domain	ATP binding			-	-	Os11g0212900	N	-
2DS_E070E0B04	yes	2DS_58,59	no annotation	-	-	-	-		histone phosphorylation	MLOC_63016		17.25	Bradi5g04057	Os 04g0228100	N	38.2
2DS_DF1680D79	yes	$\begin{array}{\|c\|} \hline \text { D_comp239028_c0 } \\ \text { (hom) } \\ \hline \end{array}$	Aspartic proteinase-like protein 1	Tauschii	100	99	EMT21844	Aspartic peptidase	as partic-type endopeptidase	MLOC_63015		17.24	Bradi5g04050	Os04g0228000	N	38.2
2DS_F43C1EB35			Lipoamide acyltransferase	Tauschii	100	92	EMT06110	2-oxoacid dehydrogenase acyltransferase, catalytic	transferase activity, transferring acyl groups	MLOC_55450		22.15	Bradi2g11900	Os01g0314100	N	43.9
2DS_E29509E47	yes	2DS_288-9	Disease resistance protein RPM1	Tauschii	100	99	EMT11677	NB-ARC	ADP binding	MLOC_65574		18.31		Os 10g0136100	N	-
2DS_3017E946B	2DS_5385535		Primary amine oxdase-like	BD	99	83	XP_003581494	Copper amine oxidase	quinone binding	MLOC_17390		22.29	Bradi5g04070	Os04g0269600	N	44.5
2DS_9DA0399BC			Obtusifoliol 14-alpha demethylase	Tauschii	80	91	BMT25993	Cytochrome P450	iron ion binding	MLOC_59386		10.93	Bradi1924340	Os05g0211100	N	97.8
2DS_698DAD811	yes	$\begin{gathered} \hline \text { 2DS_47-50, } \\ 308-9 \\ \hline \end{gathered}$	no annotation	-	-	-	-	Thioredoxin-like fold		MLOC_67319	2	17.42	Bradi5g04030	Os04g0227500	$\begin{array}{\|l\|} \hline \text { short } \\ \times 2.87 \\ \hline \end{array}$	38.2
2DS_0D00D7A76			no annotation	-	-	-	-	PMR5 N -terminal domain				-		Os 05g0587700	N	-
2DS_10E998B46			Protein trichome birefringence-like 3	BD	98	81	XP_003566882	PC-Esterase		MLOC_20162	2	22.59	Bradi2g43447	Os01g0614300	N	3D
2DS_53A082B2C	yes	$\begin{gathered} \hline \text { D_comp6_co } \\ \text { (hom) } \end{gathered}$	RuBisCO small chain PW9, chloroplastic	Tauschii	100	100	EMT21846	RuBisCO domain	chloroplast	MLOC_21811	2	18.58	Bradi4g08500	Os12g0291200	N	5D

A6.10 (continued)

Wheat gene	Previously tested		BlastP NCBI Annotation	Species	$\begin{array}{\|c\|} \hline \% \\ \text { Query } \\ \hline \end{array}$	\%	CenBank	InterPro	GO term name	HV gene	$\begin{array}{\|c} \text { HV pos } \\ \text { (Mb) } \end{array}$	BD gene	OS gene	DEG?	Tau
2DS_328D63DC4			SWISNF-related	Tauschii	100	99	EMT07824	SNF2-related	DNA binding	MLOC_71318	215.76	Bradi5900770		N	12.9
2DS_032B64A46	2DS_5390396	$\begin{array}{\|c} \hline \text { D_comp244592_co } \\ \text { (hom) } \end{array}$	LRR receptor-like Ser/Thr-protein kinase	Tauschii	100	93	емт30323	Protein kinase domain	ATP binding	MLOC_58539	216.03	Bradi5903960		N	38.6
2DS_AB825FECC	2DS_5390725		$\begin{gathered} \text { AHM2 Cd/Zn } \\ \text { transporting ATPase } 2 \end{gathered}$	Aestivum	67	92	BAA89308	HMG-/HMG-Y, DNA-binding	DNA binding	MLOC_4181	222.42	Bradi5905225	Os04g0266400	N	1D
2DS_46AF4C8FE	yes	2DS_15	Prostaglandin E synthase 2	Tauschii	88	91	Emтог260	Glutathione S-transferase	protein binding	MLOC_69463	218.34	Bradi5904550	Os04g0244400	N	37.1
2DS_EE20139F8	yes	no	RING finger protein 165	Tauschii	100	99	Емт 32136	Zn finger, RING-type	Zn ion binding	MLOC_23980	218.47	Bradi5904540	Os04g0243700	N	37.1
2DS_4AODEDDA9			mRNA-capping enzyme-like	BD	99	93	P_00357880	Dual specificity phosphatase, catalytic domain	nucleus		-	Bradi4940600	Os 1290193200	N	5D
2DS_A441EECD9	yes	no	40S ribosomal protein S6	Tauschii	98	99	EMT1 1004	Ribosomal protein S6e	structural constituent of ribosome	MLOC_56367	217.57	Bradil921320	Os0790622100	N	90.9
2DS_EFFD49EF0	2DS_2728767		Cytochrome P450 71D7	Tauschii	89	99	EMT28726	Cytochrome P450	iron ion binding					N	
2DS_8213F86B4			Nitrate transporter	Tauschii	82	97	EMT06111	$\begin{gathered} \text { Major facilitator } \\ \text { superfamily domain } \\ \hline \end{gathered}$	-			-	Os02g0112100	N	
2DS_F9104B72E			$\begin{aligned} & \hline \text { FACT complex } \\ & \text { subunit SPT16 } \\ & \hline \end{aligned}$	Tauschii	99	99	EmT18870	Peptidase M24, structural domain	-	MLOC_78789	216.11	Bradi 1959940	Os 0890404350	N	7D
2DS_875B9CA1A	2DS_2780239		Cinnamyl alcohol dehydrogenase 6	BD	61	85	_00358154	Alcohol dehydrogenase superfamily, Zn-type	Zn ion binding	MLOC_48245	217.58	Bradi5904130	Os04g0229100	N	38.0
2DS_82C34F5AF			NADP-dependent oxidoreductase P1	Tauschii	100	91	EMT16695	Alcohol dehydrogenase superfamily, Zn -type	Zn ion binding		-	Bradi4939980	Os 12g0225900	$\begin{array}{\|l\|} \hline \text { short } \\ \times 2.27 \\ \hline \end{array}$	39.5
2DS_795D042B8	yes	2DS_11, 43-4	Flavin-containing monooxygenase 1	Tauschii	100	99	EmT31048	Dimethylaniline monooxygenase	N,N-dimethylaniline monooxygenase activity	MLOC_63757	217.23	Bradi5903710	Os04g0223901	N	40.9
2DS_072F43960			F-boxLLRR-repeat protein 23	BD	99	62	P_010234168	F-boxdomain	protein binding		-	Bradi3g10990	Os02g0317300	N	40.9
2DS_86F47AEE8			no annotation	-				Unknown function	-				Os 12g0242200	N	
2DS_4D393CDD0			Poly(A) polymerase	Tauschii	76	70	EmT04732	Nucleotidyl transferase domain	nucleus					N	
2DS_67E848060			Chloroplast envelope membrane protein	Tauschii	50	97	WP_00847431	Chloroplast envelope membrane protein, CemA	$\begin{gathered} \text { integral component } \\ \text { of membrane } \\ \hline \end{gathered}$		-			N	
2DS_86C131DEE	2DS_5339566		GTP-binding protein	Aestium	100	99	ABF48401	Elongation factor, GTP-binding domain	GTPase activity	MLOC_70274	222.38	Bradi5905200	Os04g0270100	N	44.6
2DS_7E4AADF01			$\begin{gathered} \hline \text { O-glucosyltransferase } \\ \text { 1-like } \\ \hline \end{gathered}$	BD	97	89	P_003569968	Lipopolysaccharidemodifying protein	-	-	-	Bradi3950030	Os02g0642700	N	120.1
2DS_1208A147B			Rho GTPase-activating protein 22	Tauschii	100	91	EMT1 1006	CRIB domain	intracelluar	MLOC_5009	14.77	Bradi 1952540	Os07g0408500	N	-
2DS_22445CE9E	yes	D_comp42657_co	G6PD 2, chloroplastic	Tauschii	100	99	EMT21843	G6PD	NADP binding	MLOC_18415	216.14	Bradi5904020	Os0790406300	N	38.4

A6.10 (continued)

A6.11: Delimited interval in v3.3 cDNAs. The markers used to delimit the interval are highlighted in grey. The gene is marked if it was in the differentially expressed genes (DEGs) in A6.8.1. If the Brachypodium gene could be anchored in the Ae. tauschii gene list/zipper in A6.7, the bin is indicated. Shaded red are cM bins outside the Rht8 interval. Shaded green is a cM bin within the defined interval in Ae. tauschii. The final column indicates if the Brachypodium gene was in the 17.34 cM or 18.3 - 33.1 cM bin in the IWGSC data, shown in A6.9 and A6.10. Shaded green is the 17.3 cM bin within the defined Rht8 interval in IWGSC-2. Shaded red is outside the IWGSC-2 Rht8 interval.

Appendix to Chapter 7

A7.1: Allelic variation at Xgwm261. The arrows show the calculated size of each DNA fragment. (A) Maringa \times Mercia 4-2: top = donor (Maringa, 219-bp), middle = parent (Mercia, 191-bp), bottom = heterozygous. (B) Klein $157 \times$ Mercia 4-4: top $=$ donor (Klein 157, 231-bp), middle = parent (Mercia, 191-bp), bottom = heterozygous.

References

Abramoff, M. D., Magalhaes, P. J. \& Ram, S. J. 2004. Image Processing with ImageJ. Biophotonics International, 11, 36-42.
Acreche, M. M. \& Slafer, G. A. 2006. Grain weight response to increases in number of grains in wheat in a Mediterranean area. Field Crops Research, 98, 52-59.
Acreche, M. M. \& Slafer, G. A. 2011. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 122, 40-48.
Adamski, N. M., Bush, M. S., Simmonds, J., Turner, A. S., Mugford, S. G., Jones, A., Findlay, K., Pedentchouk, N., Von Wettstein-Knowles, P. \& Uauy, C. 2013. The Inhibitor of wax 1 locus (IW1) prevents formation of - and OH--diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant Journal, 74, 989-1002.
Addisu, M., Snape, J. W., Simmonds, J. R. \& Gooding, M. J. 2009a. Effects of reduced height (Rht) and photoperiod insensitivity (Ppd) alleles on yield of wheat in contrasting production systems. Euphytica, 172, 169-181.
Addisu, M., Snape, J. W., Simmonds, J. R. \& Gooding, M. J. 2009b. Reduced height (Rht) and photoperiod insensitivity (Ppd) allele associations with establishment and early growth of wheat in contrasting production systems. Euphytica, 166, 249-267.
Ahmad, M. \& Sorrells, M. E. 2002. Distribution of microsatellite alleles linked to Rht8 dwarfing gene in wheat. Euphytica, 123, 235-240.
Akpinar, B. A., Lucas, S. J., Vrana, J., Dolezel, J. \& Budak, H. 2015. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum). Plant Biotechnology Journal, 13, 740-752.
Alghabari, F., Lukac, M., Jones, H. E. \& Gooding, M. J. 2014. Effect of Rht Alleles on the Tolerance of Wheat Grain Set to High Temperature and Drought Stress During Booting and Anthesis. Journal of Agronomy and Crop Science, 200, 36-45.
Allen, A. M., Barker, G. L. A., Berry, S. T., Coghill, J. A., Gwilliam, R., Kirby, S., Robinson, P., Brenchley, R. C., D'amore, R., Mckenzie, N., Waite, D., Hall, A., Bevan, M., Hall, N. \& Edwards, K. J. 2011. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnology Journal, 9, 1086-1099.
Allen, A. M., Barker, G. L. A., Wilkinson, P., Burridge, A., Winfield, M., Coghill, J., Uauy, C., Griffiths, S., Jack, P., Berry, S., Werner, P., Melichar, J. P. E., Mcdougall, J., Gwilliam, R., Robinson, P. \& Edwards, K. J. 2013. Discovery and development of exome-based, codominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnology Journal, 11, 279-295.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W. \& Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
Ariyadasa, R., Mascher, M., Nussbaumer, T., Schulte, D., Frenkel, Z., Poursarebani, N., Zhou, R., Steuernagel, B., Gundlach, H., Taudien, S., Felder, M., Platzer, M., Himmelbach, A., Schmutzer, T., Hedley, P. E., Muehlbauer, G. J., Scholz, U., Korol, A., Mayer, K. F. X., Waugh, R., Langridge, P., Graner, A. \& Stein, N. 2014. A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms. Plant Physiology, 164, 412-423.
Asplund, L., Leino, M. W. \& Hagenblad, J. 2012. Allelic variation at the Rht8 locus in a 19th century wheat collection. The Scientific World Journal, 2012, \#385610.
Asseng, S., Foster, I. \& Turner, N. C. 2011. The impact of temperature variability on wheat yields. Global Change Biology, 17, 997-1012.

Austin, R. S., Vidaurre, D., Stamatiou, G., Breit, R., Provart, N. J., Bonetta, D., Zhang, J., Fung, P., Gong, Y., Wang, P. W., Mccourt, P. \& Guttman, D. S. 2011. Next-generation mapping of Arabidopsis genes. Plant Journal, 67, 715-725.
Babiker, E. M., Gordon, T. C., Chao, S., Newcomb, M., Rouse, M. N., Jin, Y., Wanyera, R., Acevedo, M., Brown-Guedira, G., Williamson, S. \& Bonman, J. M. 2015. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theoretical and Applied Genetics, 128, 605-612.
Badaeva, E. D., Dedkova, O. S., Gay, G., Pukhalskyi, V. A., Zelenin, A. V., Bernard, S. \& Bernard, M. 2007. Chromosomal rearrangements in wheat: their types and distribution. Genome, 50, 907-926.
Bai, G. H., Das, M. K., Carver, B. F., Xu, X. Y. \& Krenzer, E. G. 2004. Covariation for microsatellite marker alleles associated with Rht8 and coleoptile length in winter wheat. Crop Science, 44, 1187-1194.
Bak, S., Beisson, F., Bishop, G., Hamberger, B., Höfer, R., Paquette, S. \& Werck-Reichhart, D. 2011. Cytochromes P450. The Arabidopsis Book / American Society of Plant Biologists, 9, e0144.
Bakshi, S. \& Bhagwat, S. G. 2012. Allelic Variations at Xgwm261 Locus, Sequence Determination and Agronomic Evaluation in Indian Bread Wheat Genotypes. Cereal Research Communications, 40, 34-43.
Barraclough, P. B., Howarth, J. R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C. E. \& Hawkesford, M. J. 2010. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. European Journal of Agronomy, 33, 1-11.
Barrett, B. A. \& Kidwell, K. K. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Science, 38, 1261-1271.
Beales, J., Turner, A., Griffiths, S., Snape, J. W. \& Laurie, D. A. 2007. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 115, 721-33.
Bennett, D., Izanloo, A., Edwards, J., Kuchel, H., Chalmers, K., Tester, M., Reynolds, M., Schnurbusch, T. \& Langridge, P. 2012. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theoretical and Applied Genetics, 124, 697-711.
Berkman, P. J., Lai, K., Lorenc, M. T. \& Edwards, D. 2012a. Next-generation sequencing applications for wheat crop improvement. American Journal of Botany, 99, 365-371.
Berkman, P. J., Skarshewski, A., Manoli, S., Lorenc, M. T., Stiller, J., Smits, L., Lai, K., Campbell, E., Kubalakova, M., Simkova, H., Batley, J., Dolezel, J., Hernandez, P. \& Edwards, D. 2012b. Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theoretical and Applied Genetics, 124, 423432.

Berry, P. M. \& Spink, J. 2012. Predicting yield losses caused by lodging in wheat. Field Crops Research, 137, 19-26.
Berry, P. M., Spink, J. H., Gay, A. P. \& Craigon, J. 2003. A comparison of root and stem lodging risks among winter wheat cultivars. Journal of Agricultural Science, 141, 191-202.
Berry, P. M., Sterling, M., Spink, J. H., Baker, C. J., Sylvester-Bradley, R., Mooney, S. J., Tams, A. R. \& Ennos, A. R. 2004. Understanding and reducing lodging in cereals. Advances in Agronomy, Vol 84, 84, 217-271.
Berry, P. M., Sylvester-Bradley, R. \& Berry, S. 2007. Ideotype design for lodging-resistant wheat. Euphytica, 154, 165-179.
Biesiekierski, J. R. \& Iven, J. 2015. Non-coeliac gluten sensitivity: piecing the puzzle together. United European Gastroenterology Journal, 3, 160-165.
Bivand, R. \& Lewin-Koh, N. 2015. maptools: Tools for Reading and Handling Spatial Objects. . R package version 0.8-36 ed.

Bolser, D. M., Kerhornou, A., Walts, B. \& Kersey, P. 2015. Triticeae Resources in Ensembl Plants. Plant and Cell Physiology, 56.
Borner, A., Worland, A. J., Plaschke, J., Schumann, E. \& Law, C. N. 1993. Pleiotropic effects of genes for reduced height (rht) and day-length insensitivity (ppd) on yield and its components for wheat grown in middle europe. Plant Breeding, 111, 204-216.
Borojevic, K. \& Borojevic, K. 2005. The transfer and history of "reduced height genes" (Rht) in wheat from Japan to Europe. The Journal of heredity, 96, 455-9.
Borrill, P. 2014. The NAM-B1 transcription factor and the control of grain composition in wheat.
Borrill, P., Adamski, N. \& Uauy, C. 2015. Genomics as the key to unlocking the polyploid potential of wheat. New Phytologist, 4, 1008-22.
Bottley, A., Xia, G. M. \& Koebner, R. M. D. 2006. Homoeologous gene silencing in hexaploid wheat. Plant Journal, 47, 897-906.
Botwright, T. L., Rebetzke, G. J., Condon, A. G. \& Richards, R. A. 2005. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Annals of botany, 95, 631-9.
Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L. A., D'amore, R., Allen, A. M., Mckenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.-C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., Mccombie, W. R., Hall, A., Mayer, K. F. X., Edwards, K. J., Bevan, M. W. \& Hall, N. 2012. Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature, 491, 705-710.
Brouns, F. J. P. H., Van Buul, V. J. \& Shewry, P. R. 2013. Does wheat make us fat and sick? Journal of Cereal Science, 58, 209-215.
Brown, P. R., Singleton, G. R., Tann, C. R. \& Mock, I. 2003. Increasing sowing depth to reduce mouse damage to winter crops. Crop Protection, 22, 653-660.
Bucksch, A., Burridge, J., York, L. M., Das, A., Nord, E., Weitz, J. S. \& Lynch, J. P. 2014. ImageBased High-Throughput Field Phenotyping of Crop Roots. Plant Physiology, 166, 470486.

Burney, J. A., Davis, S. J. \& Lobell, D. B. 2010. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 107, 12052-12057.
Busemeyer, L., Mentrup, D., Moeller, K., Wunder, E., Alheit, K., Hahn, V., Maurer, H. P., Reif, J. C., Wuerschum, T., Mueller, J., Rahe, F. \& Ruckelshausen, A. 2013. BreedVision - A Multi-Sensor Platform for Non-Destructive Field-Based Phenotyping in Plant Breeding. Sensors, 13, 2830-2847.
Butler, J. D., Byrne, P. F., Mohammadi, V., Chapman, P. L. \& Haley, S. D. 2005. Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels. Crop Science, 45, 939-947.
Cabello-Hurtado, F., Zimmerlin, A., Rahier, A., Taton, M., Derose, R., Nedelkina, S., Batard, Y., Durst, F., Pallett, K. E. \& Werckreichhart, D. 1997. Cloning and functional expression in yeast of a cDNA coding for an obtusifoliol 14 alpha-demethylase (CYP51) in wheat. Biochemical and Biophysical Research Communications, 230, 381-385.
Casal, J. J., Sanchez, R. A. \& Deregibus, V. A. 1987. Tillering responses of lolium-multiflorum plants to changes of red far-red ratio typical of sparse canopies. Journal of Experimental Botany, 38, 1432-1439.
Casson, S. A. \& Hetherington, A. M. 2012. GSK3-Like Kinases Integrate Brassinosteroid Signaling and Stomatal Development. Science Signaling, 5.
Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Mare, C., Tondelli, A. \& Stanca, A. M. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105, 1-14.
Cavanagh, C. R., Chao, S., Wang, S., Huang, B. E., Stephen, S., Kiani, S., Forrest, K., Saintenac, C., Brown-Guedira, G. L., Akhunova, A., See, D., Bai, G., Pumphrey, M., Tomar, L., Wong, D., Kong, S., Reynolds, M., Da Silva, M. L., Bockelman, H., Talbert, L., Anderson,
J. A., Dreisigacker, S., Baenziger, S., Carter, A., Korzun, V., Morrell, P. L., Dubcovsky, J., Morell, M. K., Sorrells, M. E., Hayden, M. J. \& Akhunov, E. 2013. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110, 8057-8062.
Cecilia Ugarte, C., Ariel Trupkin, S., Ghiglione, H., Slafer, G. \& Jose Casal, J. 2010. Low red/farred ratios delay spike and stem growth in wheat. Journal of Experimental Botany, 61, 3151-3162.
CerealsDB. 2015a. Available: http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/blast_WGS.php.
Cerealsdb. 2015b. 820K Axiom ${ }^{\circledR}$ Array [Online]. Available: http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_820K_search.php.
Chao, S., Sharp, P. J., Worland, A. J., Warham, E. J., Koebner, R. M. D. \& Gale, M. D. 1989. RFLPbased genetic maps of wheat homologous group-7 chromosomes. Theoretical and Applied Genetics, 78, 495-504.
Chapman, J. A., Mascher, M., Buluc, A., Barry, K., Georganas, E., Session, A., Strnadova, V., Jenkins, J., Sehgal, S., Oliker, L., Schmutz, J., Yelick, K. A., Scholz, U., Waugh, R., Poland, J. A., Muehlbauer, G. J., Stein, N. \& Rokhsar, D. S. 2015. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16, 17.
Chapman, S. C., Mathews, K. L., Trethowan, R. M. \& Singh, R. P. 2007. Relationships between height and yield in near-isogenic spring wheats that contrast for major reduced height genes. Euphytica, 157, 391-397.
Charmet, G. 2011. Wheat domestication: Lessons for the future. Comptes Rendus Biologies, 334, 212-220.
Chauveau, P., Fouque, D., Combe, C. \& Aparicio, M. 2013. Evolution of the diet from the paleolithic to today: Progress or regress? Nephrologie \& Therapeutique, 9, 202-208.
Chebotar, S. V., Korzun, V. N. \& Sivolap, Y. M. 2001. Allele distribution at locus WMS261 marking the dwarfing gene Rht8 in common wheat cultivars of southern Ukraine. Russian Journal of Genetics, 37, 894-898.
Chen, L., Hao, L., Condon, A. G. \& Hu, Y.-G. 2014. Exogenous GA3 Application Can Compensate the Morphogenetic Effects of the GA-Responsive Dwarfing Gene Rht12 in Bread Wheat. Plos One, 9.
Chen, L., Phillips, A. L., Condon, A. G., Parry, M. a. J. \& Hu, Y.-G. 2013. GA-Responsive Dwarfing Gene Rht12 Affects the Developmental and Agronomic Traits in Common Bread Wheat. Plos One, 8.
Chen, S. L., Gao, R. H., Wang, H. Y., Wen, M. X., Xiao, J., Bian, N. F., Zhang, R. Q., Hu, W. J., Cheng, S. H., Bie, T. D. \& Wang, X. E. 2015. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 203, 583-594.
Chevalier, D. \& Walker, J. C. 2005. Functional genomics of protein kinases in plants. Briefings in Functional Genomics \& Proteomics, 3, 362-371.
Choulet, F., Alberti, A., Theil, S., Glover, N., Barbe, V., Daron, J., Pingault, L., Sourdille, P., Couloux, A., Paux, E., Leroy, P., Mangenot, S., Guilhot, N., Le Gouis, J., Balfourier, F., Alaux, M., Jamilloux, V., Poulain, J., Durand, C., Bellec, A., Gaspin, C., Safar, J., Dolezel, J., Rogers, J., Vandepoele, K., Aury, J.-M., Mayer, K., Berges, H., Quesneville, H., Wincker, P. \& Feuillet, C. 2014. Structural and functional partitioning of bread wheat chromosome 3B. Science, 345.
Cloutier, S., Mccallum, B. D., Loutre, C., Banks, T. W., Wicker, T., Feuillet, C., Keller, B. \& Jordan, M. C. 2007. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Molecular Biology, 65, 93-106.

Colmsee, C., Beier, S., Himmelbach, A., Schmutzer, T., Stein, N., Scholz, U. \& Mascher, M. 2015. BARLEX - the Barley Draft Genome Explorer. Molecular Plant, 8, 964-966.

Crook, M. J. \& Ennos, A. R. 1995. The effect of nitrogen and growth-regulators on stem and root characteristics associated with lodging in 2 cultivars of winter-wheat. Journal of Experimental Botany, 46, 931-938.
Cui, F., Ding, A., Li, J., Zhao, C., Wang, L., Wang, X., Qi, X., Li, X., Li, G., Gao, J. \& Wang, H. 2012. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 186, 177-192.
Daoura, B. G., Chen, L., Du, Y. Y. \& Hu, Y. G. 2014. Genetic effects of dwarfing gene Rht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL analysis on its linked traits. Field Crops Research, 156, 22-29.
David, C., Abecassis, J., Carcea, M., Celette, F., Friedel, J. K., Hellou, G., Hiltbrunner, J., Messmer, M., Narducci, V., Peigné, J., Samson, M. F., Schweinzer, A., Thomsen, I. K. \& Thommen, A. 2012. Organic Bread Wheat Production and Market in Europe. In: LICHTFOUSE, E. (ed.) Sustainable Agriculture Reviews. Springer Netherlands.
De Punder, K. \& Pruimboom, L. 2013. The Dietary Intake of Wheat and other Cereal Grains and Their Role in Inflammation. Nutrients, 5, 771-787.
Dean, J. V. \& Delaney, S. P. 2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417425.

DEFRA 2015. Agriculture in the United Kingdom 2014.
Deng, W., Nickle, D. C., Learn, G. H., Maust, B. \& Mullins, J. I. 2007. ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user's datasets. Bioinformatics, 23, 2334-2336.
Devos, K. M., Dubcovsky, J., Dvorak, J., Chinoy, C. N. \& Gale, M. D. 1995. Structural evolution of wheat chromosomes 4A,5A, and 7B and its impact on recombination. Theoretical and Applied Genetics, 91, 282-288.
Devos, K. M. \& Gale, M. D. 1992. The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics, 84, 567-572.
Doebley, J. F., Gaut, B. S. \& Smith, B. D. 2006. The molecular genetics of crop domestication. Cell, 127, 1309-1321.
Dolezel, J., Vrana, J., Capal, P., Kubalakova, M., Buresova, V. \& Simkova, H. 2014. Advances in plant chromosome genomics. Biotechnology Advances, 32, 122-136.
Downie, H. F., Adu, M. O., Schmidt, S., Otten, W., Dupuy, L. X., White, P. J. \& Valentine, T. A. 2015. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell and Environment, 38, 1213-1232.
Du, Z., Zhou, X., Ling, Y., Zhang, Z. \& Su, Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38, W64-W70.
Duan, J., Xia, C., Zhao, G., Jia, J. \& Kong, X. 2012. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. Bmc Genomics, 13.
Dubcovsky, J. \& Dvorak, J. 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 316, 1862-1866.
Duran, C., Edwards, D. \& Batley, J. 2009. Molecular Marker Discovery and Genetic Map Visualisation. In: DAVID EDWARDS, J. S., DAVID HANSEN (ed.) Bioinformatics: Tools and Applications. 2009 ed.: Springer.
Dvorak, J., Akhunov, E. D., Akhunov, A. R., Deal, K. R. \& Luo, M. C. 2006. Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Molecular Biology and Evolution, 23, 1386-1396.
Dvorak, J., Luo, M. C., Yang, Z. L. \& Zhang, H. B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657-670.
Ellis, M. H., Bonnett, D. G. \& Rebetzke, G. J. 2007. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 157, 209-214.

Ellis, M. H., Rebetzke, G. J., Chandler, P., Bonnett, D., Spielmeyer, W. \& Richards, R. A. 2004. The effect of different height reducing genes on the early growth of wheat. Functional Plant Biology, 31, 583-589.
Ensemblplants. 2015. Ensembl Plants. Available: http://plants.ensembl.org/index.html.
Evans, L. T. 1998. Feeding the Ten Billion. Plant and Population Growth.
Food and Agriculture Organisation of the United Nations (FAO) 2009. FAO's Director-General on How to Feed the World in 2050. Population and Development Review, 35, 837-839.
Food and Agriculture Organisation of the United Nations (FAO) 2012. http://www.fao.org/corp/statistics/en/ [Online].
Faris, J. D., Fellers, J. P., Brooks, S. A. \& Gill, B. S. 2003. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 164, 311-321.
Faris, J. D. \& Gill, B. S. 2002. Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome, 45, 706-718.
Faris, J. D., Zhang, Q. J., Chao, S. M., Zhang, Z. C. \& Xu, S. S. 2014a. Analysis of agronomic and domestication traits in a durum x cultivated emmer wheat population using a highdensity single nucleotide polymorphism-based linkage map. Theoretical and Applied Genetics, 127, 2333-2348.
Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J. P., Meinhardt, S. W., Rasmussen, J. B., Xu, S. S., Oliver, R. P., Simons, K. J. \& Friesen, T. L. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences of the United States of America, 107, 13544-13549.
Faris, J. D., Zhang, Z. C. \& Chao, S. M. 2014b. Map-based analysis of the tenacious glume gene Tg-B1 of wild emmer and its role in wheat domestication. Gene, 542, 198-208.
Faris, J. D., Zhang, Z. C., Garvin, D. F. \& Xu, S. S. 2014c. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Molecular Genetics and Genomics, 289, 641-651.
Feldman, M. 2001. Origin of culitvated wheat. In: BONJEAN A.P. \& J., A. W. (eds.) The world wheat book: a history of wheat breeding. Paris, France: Lavoisier Publishing.
Ferrante, A., Savin, R. \& Slafer, G. A. 2013. Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. Journal of Experimental Botany, 64, 169-184.
Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A. \& Keller, B. 2003. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253-15258.
Fischer, R. A. \& Quail, K. J. 1990. The effect of major dwarfing genes on yield potential in spring wheats. Euphytica, 46, 51-56.
Fischer, R. A. \& Stapper, M. 1987. Lodging effects on high-yielding crops of irrigated semidwarf wheat. Field Crops Research, 17, 245-258.
Fleet, C. M. \& Sun, T. P. 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology, 8, 77-85.
Flintham, J. E., Borner, A., Worland, A. J. \& Gale, M. D. 1997. Optimizing wheat grain yield: Effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science, 128, 11-25.
Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S. \& Shewry, P. R. 2009. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 114, 329-342.
Fox, S. E., Geniza, M., Hanumappa, M., Naithani, S., Sullivan, C., Preece, J., Tiwari, V. K., Elser, J., Leonard, J. M., Sage, A., Gresham, C., Kerhornou, A., Bolser, D., Mccarthy, F., Kersey,
P., Lazo, G. R. \& Jaiswal, P. 2014. De Novo Transcriptome Assembly and Analyses of

Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum. Plos One, 9.
Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T. \& Dubcovsky, J. 2009. A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science, 323, 1357-1360.
Gale, M. D. \& Devos, K. M. 1998. Comparative genetics in the grasses. Proceedings of the National Academy of Sciences of the United States of America, 95, 1971-1974.
Gale, M. D. \& Marshall, G. A. 1976. Chromosomal location of gai-1 and rht-1, genes for gibberellin insensitivity and semi-dwarfism, in a derivative of Norin-10 wheat. Heredity, 37, 283-289.
Gale, M. D. \& Youssefian, S. 1985. Dwarfing genes in wheat, London, Butterworth Co.
Ganeva, G., Korzun, V., Landjeva, S., Tsenov, N. \& Atanasova, M. 2005. Identification, distribution and effects on agronomic traits of the semi-dwarfing Rht alleles in Bulgarian common wheat cultivars. Euphytica, 145, 305-315.
Gasperini, D. 2010. Genetic and Physiological Characterisation of Rht8 in Hexaploid Wheat.
Gasperini, D., Greenland, A., Hedden, P., Dreos, R., Harwood, W. \& Griffiths, S. 2012. Genetic and physiologcial analysis of Rht8 in bread wheat: an alternative source of semidwarfism with a reduced sensitivty to brassinosteroids. Journal of experimental botany, 63, 4419-4436.
Gegas, V. C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J. H. \& Snape, J. W. 2010. A Genetic Framework for Grain Size and Shape Variation in Wheat. Plant Cell, 22, 1046-1056.
Gilissen, L. J. W. J., Van Der Meer, I. M. \& Smulders, M. J. M. 2014. Reducing the incidence of allergy and intolerance to cereals. Journal of Cereal Science, 59, 337-353.
Gilsinger, J., Kong, L., Shen, X. \& Ohm, H. 2005. DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theoretical and Applied Genetics, 110, 1218-1225.
Giorgi, D., Farina, A., Grosso, V., Gennaro, A., Ceoloni, C. \& Lucretti, S. 2013. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. Plos One, 8.
Girin, T., David, L. C., Chardin, C., Sibout, R., Krapp, A., Ferrario-Mery, S. \& Daniel-Vedele, F. 2014. Brachypodium: a promising hub between model species and cereals. Journal of Experimental Botany, 65, 5683-5696.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. \& Toulmin, C. 2010. Food Security: The Challenge of Feeding 9 Billion People. Science, 327, 812-818.
Goncharov, N. P. \& Gaidalenok, R. F. 2005. Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russian Journal of Genetics, 41, 1262-1267.
Gooding, M. J., Addisu, M., Uppal, R. K., Snape, J. W. \& Jones, H. E. 2012. Effect of wheat dwarfing genes on nitrogen-use efficiency. Journal of Agricultural Science, 150, 3-22.
Gower, B. A. \& Goss, A. M. 2015. A Lower-Carbohydrate, Higher-Fat Diet Reduces Abdominal and Intermuscular Fat and Increases Insulin Sensitivity in Adults at Risk of Type 2 Diabetes. Journal of Nutrition, 145, 177-183.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N. \& Regev, A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-U130.
Griffiths, S., Sharp, R., Foote, T. N., Bertin, I., Wanous, M., Reader, S., Colas, I. \& Moore, G. 2006. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 439, 749-752.

Griffiths, S., Simmonds, J., Leverington, M., Wang, Y., Fish, L., Sayers, L., Alibert, L., Orford, S., Wingen, L. \& Snape, J. 2012. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Molecular Breeding, 29, 159-171.
Griffiths, S., Wingen, L., Pietragalla, J., Garcia, G., Hasan, A., Miralles, D., Calderini, D. F., Ankleshwaria, J. B., Waite, M. L., Simmonds, J., Snape, J. \& Reynolds, M. 2015. Genetic Dissection of Grain Size and Grain Number Trade-Offs in CIMMYT Wheat Germplasm. Plos One, 10.
GRIS. 2015. Available: http://wheatpedigree.net/ [Accessed 2015.
Gul, A. \& Allan, R. E. 1972. Relation of club gene with yield and yield components of nearisogenic wheat lines. Crop Science, 12, 297-\&.
Gupta, P. K., Varshney, R. K., Sharma, P. C. \& Ramesh, B. 1999. Molecular markers and their applications in wheat breeding. Plant Breeding, 118, 369-390.
Hadjichristodoulou, A., Della, A. \& Photiades, J. 1977. Effect of sowing depth on plant establishment, tillering capacity and other agronomic characters of cereals. Journal of Agricultural Science, 89, 161-167.
Harper, A., Trick, M., He, Z., Clissold, L., Fellgett, A., Griffiths, S. \& Bancroft, I. 2015. Genome distribution of differential homoeologue contributions to leaf gene expression in bread wheat. Plant Biotechnology Journal, Accepted.
Haudry, A., Cenci, A., Ravel, C., Bataillon, T., Brunel, D., Poncet, C., Hochu, I., Poirier, S., Santoni, S., Glemin, S. \& David, J. 2007. Grinding up wheat: A massive loss of nucleotide diversity since domestication. Molecular Biology and Evolution, 24, 1506-1517.
Hawkesford, M. J. 2014. Reducing the reliance on nitrogen fertilizer for wheat production. Journal of Cereal Science, 59, 276-283.
He, C., Holme, J. \& Anthony, J. 2014. SNP genotyping: the KASP assay. Methods in molecular biology (Clifton, N.J.), 1145, 75-86.
Hedden, P. 2003. The genes of the Green Revolution. Trends in genetics : TIG, 19, 5-9.
Hedden, P. \& Kamiya, Y. 1997. Gibberellin biosynthesis: Enzymes, genes and their regulation. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 431-460.
Helguera, M., Rivarola, M., Clavijo, B., Martis, M. M., Vanzetti, L. S., Gonzalez, S., Garbus, I., Leroy, P., Simkova, H., Valarik, M., Caccamo, M., Dolezel, J., Mayer, K. F. X., Feuillet, C., Tranquilli, G., Paniego, N. \& Echenique, V. 2015. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Science, 233, 200-212.
Herrera, J. M., Verhulst, N. \& Govaerts, B. 2012. Strategies to identify genetic diversity in root traits. In: REYNOLDS, M., PASK, AJD. AND MULLAN DM. (ed.) Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation. Mexico: D.F.: CIMMYT.
Home-Grown Cereals Authority (HGCA) 2008. The wheat growth guide.
Houston, K., Mckim, S. M., Comadran, J., Bonar, N., Druka, I., Uzrek, N., Cirillo, E., GuzyWrobelska, J., Collins, N. C., Halpin, C., Hansson, M., Dockter, C., Druka, A. \& Waugh, R. 2013. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 110, 16675-16680.
Http://Aegilops.Wheat.Ucdavis.Edu/Atgsp/. 2015. "Sequencing the Aegilops tauschii Genome" Project [Online]. Available: http://aegilops.wheat.ucdavis.edu/ATGSP/data.php [Accessed July 2015.
Hu, Z., Han, Z., Song, N., Chai, L., Yao, Y., Peng, H., Ni, Z. \& Sun, Q. 2013. Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat (Triticum aestivum). New Phytologist, 197, 1344-1352.
Huang, L., Brooks, S. A., Li, W. L., Fellers, J. P., Trick, H. N. \& Gill, B. S. 2003. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics, 164, 655-664.
Husar, S., Berthiller, F., Fujioka, S., Rozhon, W., Khan, M., Kalaivanan, F., Elias, L., Higgins, G. S., Li, Y., Schuhmacher, R., Krska, R., Seto, H., Vaistij, F. E., Bowles, D. \& Poppenberger,
B. 2011. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. Bmc Plant Biology, 11.
Hwang, C., Ross, V. \& Mahadevan, U. 2014. Popular Exclusionary Diets for Inflammatory Bowel Disease: The Search for a Dietary Culprit. Inflammatory Bowel Diseases, 20, 732-741.
International Brachypodium Initiative (IBI), Vogel, J. P., Garvin, D. F., Mockler, T. C., Schmutz, J., Rokhsar, D., Bevan, M. W., Barry, K., Lucas, S., Harmon-Smoth, M., Lail, K., Tice, H., Grimwood, J., Mckenzie, N., Huo, N., Gu, Y. Q., Lazo, G. R., Anderson, O. D., You, F. M., Luo, M.-C., Dvorak, J., Wright, J., Febrer, M., Idziak, D., Hasterok, R., Lindquist, E., Wang, M., Fox, S. E., Priest, H. D., Filichkin, S. A., Givan, S. A., Bryant, D. W., Chang, J. H., Wu, H., Wu, W., Hsia, A.-P., Schnable, P. S., Kalyanaraman, A., Baarbazuk, B., Michael, T. P., Hazen, S. P., Bragg, J. N., Laudencia-Chingcuanco, D., Weng, Y., Haberer, G., Spannagl, M., Mayer, K., Rattei, T., Mitros, T., Lee, S.-J., Rose, J. K. C., Mueller, L. A., York, T. L., Wicker, T., Buchmann, J. P., Tanskanen, J., Schulman, A. H., Gundlach, H., De Oliveira, A. C., Maia, L. D. C., Belknap, W., Jiang, N., Lai, J., Zhu, L., Ma, J., Sun, C., Pritham, E., Salse, J., Murat, F., Abrouk, M., Bruggmann, R., Messing, J., Fahlgren, N., Sullivan, C. M., Carrington, J. C., Chapman, E. J., May, G. D., Zhai, J., Ganssmann, M., Gurazada, S. G. R., German, M., Meyers, B. C., Green, P. J., Tyler, L., Wu, J., Thomson, J., Chen, S., Scheller, H. V., Harholt, J., Ulvskov, P., Kimbrel, J. A., Bartley, L. E., Cao, P., Jung, K.-H., Sharma, M. K., Vega-Sanchez, M., Ronald, P., Dardick, C. D., De Bodt, S., Verelst, W., Inze, D., et al. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763-768.
International Barley Genome Sequencing Consortium (IBGSC), Mayer, K. F. X., Waugh, R., Langridge, P., Close, T. J., Wise, R. P., Graner, A., Matsumoto, T., Sato, K., Schulman, A., Muehlbauer, G. J., Stein, N., Ariyadasa, R., Schulte, D., Poursarebani, N., Zhou, R., Steuernagel, B., Mascher, M., Scholz, U., Shi, B., Langridge, P., Madishetty, K., Svensson, J. T., Bhat, P., Moscou, M., Resnik, J., Close, T. J., Muehlbauer, G. J., Hedley, P., Liu, H., Morris, J., Waugh, R., Frenkel, Z., Korol, A., Berges, H., Graner, A., Stein, N., Steuernagel, B., Taudien, S., Groth, M., Felder, M., Platzer, M., Brown, J. W. S., Schulman, A., Platzer, M., Fincher, G. B., Muehlbauer, G. J., Sato, K., Taudien, S., Sampath, D., Swarbreck, D., Scalabrin, S., Zuccolo, A., Vendramin, V., Morgante, M., Mayer, K. F. X. \& Schulman, A. 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature, 491, 711.
International Wheat Genome Ssequencing Consortium (IWGSC), Mayer, K. F. X., Rogers, J., Dolezel, J., Pozniak, C., Eversole, K., Feuillet, C., Gill, B., Friebe, B., Lukaszewski, A. J., Sourdille, P., Endo, T. R., Dolezel, J., Kubalakova, M., Cihalikova, J., Dubska, Z., Vrana, J., Sperkova, R., Simkova, H., Rogers, J., Febrer, M., Clissold, L., Mclay, K., Singh, K., Chhuneja, P., Singh, N. K., Khurana, J., Akhunov, E., Choulet, F., Sourdille, P., Feuillet, C., Alberti, A., Barbe, V., Wincker, P., Kanamori, H., Kobayashi, F., Itoh, T., Matsumoto, T., Sakai, H., Tanaka, T., Wu, J., Ogihara, Y., Handa, H., Pozniak, C., Maclachlan, P. R., Sharpe, A., Klassen, D., Edwards, D., Batley, J., Olsen, O.-A., Sandve, S. R., Lien, S., Steuernagel, B., Wulff, B., Caccamo, M., Ayling, S., Ramirez-Gonzalez, R. H., Clavijo, B. J., Steuernagel, B., Wright, J., Pfeifer, M., Spannagl, M., Mayer, K. F. X., Martis, M. M., Akhunov, E., Choulet, F., Mayer, K. F. X., Mascher, M., Chapman, J., Poland, J. A., Scholz, U., Barry, K., Waugh, R., Rokhsar, D. S., Muehlbauer, G. J., Stein, N., Gundlach, H., Zytnicki, M., Jamilloux, V., Quesneville, H., Wicker, T., Mayer, K. F. X., Faccioli, P., Colaiacovo, M., Pfeifer, M., Stanca, A. M., Budak, H., Cattivelli, L., Glover, N., Martis, M. M., Choulet, F., Feuillet, C., Mayer, K. F. X., Pfeifer, M., Pingault, L., Mayer, K. F. X., Paux, E., Spannagl, M., Sharma, S., Mayer, K. F. X., Pozniak, C., et al. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345.
Ishikawa, G., Nakamura, K., Ito, H., Saito, M., Sato, M., Jinno, H., Yoshimura, Y., Nishimura, T., Maejima, H., Uehara, Y., Kobayashi, F. \& Nakamura, T. 2014. Association Mapping and

Validation of QTLs for Flour Yield in the Soft Winter Wheat Variety Kitahonami. Plos One, 9.

James, G. V., Patel, V., Nordstroem, K. J. V., Klasen, J. R., Salome, P. A., Weigel, D. \& Schneeberger, K. 2013. User guide for mapping-by-sequencing in Arabidopsis. Genome Biology, 14.
Jantasuriyarat, C., Vales, M. I., Watson, C. J. W. \& Riera-Lizarazu, O. 2004. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 108, 261-273.
Jia, J., Zhao, S., Kong, X., Li, Y., Zhao, G., He, W., Appels, R., Pfeifer, M., Tao, Y., Zhang, X., Jing, R., Zhang, C., Ma, Y., Gao, L., Gao, C., Spannagl, M., Mayer, K. F. X., Li, D., Pan, S., Zheng, F., Hu, Q., Xia, X., Li, J., Liang, Q., Chen, J., Wicker, T., Gou, C., Kuang, H., He, G., Luo, Y., Keller, B., Xia, Q., Lu, P., Wang, J., Zou, H., Zhang, R., Xu, J., Gao, J., Middleton, C., Quan, Z., Liu, G., Wang, J., Yang, H., Liu, X., He, Z., Mao, L., Wang, J. \& Int Wheat Genome Sequencing, C. 2013. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 496, 91-95.
Jiang, Y., Zhao, Y., Rodemann, B., Plieske, J., Kollers, S., Korzun, V., Ebmeyer, E., Argillier, O., Hinze, M., Ling, J., Roder, M. S., Ganal, M. W., Mette, M. F. \& Reif, J. C. 2015a. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity, 114, 318326.

Jiang, Y., Zhao, Y., Rodemann, B., Plieske, J., Kollers, S., Korzun, V., Ebmeyer, E., Argillier, O., Hinze, M., Ling, J., Roeder, M. S., Ganal, M. W., Mette, M. F. \& Reif, J. C. 2015b. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.). Heredity, 114, 318-326.
Johnson, E. B., Nalam, V. J., Zemetra, R. S. \& Riera-Lizarazu, O. 2008. Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica, 163, 193-201.
Jones, H., Gosman, N., Horsnell, R., Rose, G. A., Everest, L. A., Bentley, A. R., Tha, S., Uauy, C., Kowalski, A., Novoselovic, D., Simek, R., Kobiljski, B., Kondic-Spika, A., Brbaklic, L., Mitrofanova, O., Chesnokov, Y., Bonnett, D. \& Greenland, A. 2013. Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theoretical and Applied Genetics, 126, 1793-1808.
Jones, S. S. \& Cadle, M. M. 1997. Effect of variation at Glu-D1 on club wheat end-use quality. Plant Breeding, 116, 69-72.
Kasperbauer, M. J. \& Karlen, D. L. 1986. Light-mediated bioregulation of tillering and photosynthate partitioning in wheat. Physiologia Plantarum, 66, 159-163.
Kasprzyk, A. 2011. BioMart: driving a paradigm change in biological data management. Database, 2011.
Kato, K. \& Yokoyama, H. 1992. Geographical variation in heading characters among wheat landraces, Triticum-aestivum L, and its implication for their adaptability. Theoretical and Applied Genetics, 84, 259-265.
Kawahara, Y., De La Bastide, M., Hamilton, J. P., Kanamori, H., Mccombie, W. R., Ouyang, S., Schwartz, D. C., Tanaka, T., Wu, J., Zhou, S., Childs, K. L., Davidson, R. M., Lin, H., Quesada-Ocampo, L., Vaillancourt, B., Sakai, H., Lee, S. S., Kim, J., Numa, H., Itoh, T., Buell, C. R. \& Matsumoto, T. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 6.
Kerber, E. R. \& Rowland, G. G. 1974. Origin of free threshing character in hexaploid wheat. Canadian Journal of Genetics and Cytology, 16, 145-154.
Kjaer, K. H. \& Ottosen, C.-O. 2015. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments. Sensors, 15, 13533-13547.
Klement, R. J. \& Kaemmerer, U. 2011. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutrition \& Metabolism, 8.

Klonoff, D. C. 2009. The beneficial effects of a Paleolithic diet on type 2 diabetes and other risk factors for cardiovascular disease. Journal of diabetes science and technology, 3, 122932.

Knight, E., Binnie, A., Draeger, T., Moscou, M., Rey, M. D., Sucher, J., Mehra, S., King, I. \& Moore, G. 2015. Mapping the 'breaker' element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4S of Aegilops sharonensis. Theoretical and Applied Genetics, 128, 1049-1059.
Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., Mclellan, M. D., Lin, L., Miller, C. A., Mardis, E. R., Ding, L. \& Wilson, R. K. 2012. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research, 22, 568-576.
Kohorn, B. D. \& Kohorn, S. L. 2012. The cell wall-associated kinases, WAKs, as pectin receptors. Front Plant Sci, 3, 88.
Korzun, V., Roder, M. S., Ganal, M. W., Worland, A. J. \& Law, C. N. 1998. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 96, 1104-1109.
Kosuge, K., Watanabe, N., Melnik, V. M., Laikova, L. I. \& Goncharov, N. P. 2012. New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat. Genetic Resources and Crop Evolution, 59, 1115-1124.
Krasileva, K. V., Buffalo, V., Bailey, P., Pearce, S., Ayling, S., Tabbita, F., Soria, M., Wang, S., Akhunov, E., Uauy, C., Dubcovsky, J. \& Consortium, I. 2013. Separating homeologs by phasing in the tetraploid wheat transcriptome. Genome Biology, 14.
Krattinger, S., Wicker, T. \& Keller, B. 2009a. Map-Based Cloning of Genes in Triticeae (Wheat and Barley). In: MUEHLBAUER, G. J. \& FEUILLET, C. (eds.) Genetics and Genomics of the Triticeae. Springer US.
Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., Mcfadden, H., Bossolini, E., Selter, L. L. \& Keller, B. 2009b. A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 323, 1360-1363.
Lamport, D. T. A., Kieliszewski, M. J., Chen, Y. \& Cannon, M. C. 2011. Role of the Extensin Superfamily in Primary Cell Wall Architecture. Plant Physiology, 156, 11-19.
Langmead, B. \& Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-U54.
Lanning, S. P., Martin, J. M., Stougaard, R. N., Guillen-Portal, F. R., Blake, N. K., Sherman, J. D., Robbins, A. M., Kephart, K. D., Lamb, P., Carlson, G. R., Pumphrey, M. \& Talbert, L. E. 2012. Evaluation of Near-Isogenic Lines for Three Height-Reducing Genes in Hard Red Spring Wheat. Crop Science, 52, 1145.
Laperche, A., Le Gouis, J., Hanocq, E. \& Brancourt-Hulmel, M. 2008. Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Euphytica, 161, 259-271.
Lassmann, T., Hayashizaki, Y. \& Daub, C. O. 2011. SAMStat: monitoring biases in next generation sequencing data. Bioinformatics, 27, 130-131.
Law, C. C. \& Worland, A. J. 1973. Aneuploidy in wheat and its uses in genetic analysis. UK, Plant Breeding Institute: Annual report 1972., 25-65.
Law, C. N. 1966. Location of genetic factors affecting a quantitative character in wheat. Genetics, 53, 487.
Law, C. N. 1967. Location of genetic factors controlling a number of quantitative characters in wheat. Genetics, 56, 445.
Law, C. N., Snape, J. W. \& Worland, A. J. 1978. Genetic relationship between height and yield in wheat. Heredity, 40, 133-151.
Law, C. N. \& Worland, A. J. 1997. The control of adult-plant resistance to yellow rust by the translocated chromosome 5BS-7BS of bread wheat. Plant Breeding, 116, 59-63.

Leach, L. J., Belfield, E. J., Jiang, C., Brown, C., Mithani, A. \& Harberd, N. P. 2014. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics, 15.
Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., Yan, J., Jiang, X., Zhang, L., Wu, J., Yin, L., Zhang, R., Wu, L., Zheng, Y. \& Mao, L. 2014. mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat. Plant Cell, 26, 1878-1900.
Li, A., Yang, W., Lou, X., Liu, D., Sun, J., Guo, X., Wang, J., Li, Y., Zhan, K., Ling, H.-Q. \& Zhang, A. 2013. Novel Natural Allelic Variations at the Rht-1 Loci in Wheat. Journal of Integrative Plant Biology, 55, 1026-1037.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. \& Genome Project Data, P. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.
Li, H., Ruan, J. \& Durbin, R. 2008. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851-1858.
Li, W. \& Gill, B. S. 2006. Multiple genetic pathways for seed shattering in the grasses. Functional \& Integrative Genomics, 6, 300-309.
Liang, Y., Zhang, D.-Y., Ouyang, S., Xie, J., Wu, Q., Wang, Z., Cui, Y., Lu, P., Zhang, D., Liu, Z.-J., Zhu, J., Chen, Y.-X., Zhang, Y., Luo, M.-C., Dvorak, J., Huo, N., Sun, Q., Gu, Y.-Q. \& Liu, Z. 2015. Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MIIW170 in Triticum dicoccoides and Aegilops tauschii. Theoretical and Applied Genetics, 128, 1617-1629.
Lim, E. K., Doucet, C. J., Li, Y., Elias, L., Worrall, D., Spencer, S. P., Ross, J. \& Bowles, D. J. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. Journal of Biological Chemistry, 277, 586-592.
Lin, P. Y. \& Czuchajowska, Z. 1997. General characteristics and milling performance of club wheat vs. soft white winter wheat. Cereal Foods World, 42, 861-867.
Ling, H.-Q., Zhao, S., Liu, D., Wang, J., Sun, H., Zhang, C., Fan, H., Li, D., Dong, L., Tao, Y., Gao, C., Wu, H., Li, Y., Cui, Y., Guo, X., Zheng, S., Wang, B., Yu, K., Liang, Q., Yang, W., Lou, X., Chen, J., Feng, M., Jian, J., Zhang, X., Luo, G., Jiang, Y., Liu, J., Wang, Z., Sha, Y., Zhang, B., Wu, H., Tang, D., Shen, Q., Xue, P., Zou, S., Wang, X., Liu, X., Wang, F., Yang, Y., An, X., Dong, Z., Zhang, K., Zhang, X., Luo, M.-C., Dvorak, J., Tong, Y., Wang, J., Yang, H., Li, Z., Wang, D., Zhang, A. \& Wang, J. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496, 87-90.
Liu, C. J., Atkinson, M. D., Chinoy, C. N., Devos, K. M. \& Gale, M. D. 1992. Nonhomologous translocations between group-4, group-5 and group-7 chromosomes within wheat and rye. Theoretical and Applied Genetics, 83, 305-312.
Liu, X., Khajuria, C., Li, J., Trick, H. N., Huang, L., Gill, B. S., Reeck, G. R., Antony, G., White, F. F. \& Chen, M.-S. 2013. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nature Communications, 4.
Liu, Y., Liu, D. C., Zhang, H. Y., Wang, J., Sun, J. Z., Guo, X. L. \& Zhang, A. M. 2005. Allelic variation, sequence determination and microsatellite screening at the XGWM261 locus in Chinese hexaploid wheat (Triticum aestivum) varieties. Euphytica, 145, 103-112.
Lorenzetti, R. 2000. La scienza del grano. L'esperienza scientifica di Nazareno Strampelli e la granicoltura italiana dal periodo giolittiano al secondo dopoguerra, Rome, Ministero per i beni e le attivita culturali.
Lu, Y., Wu, X., Yao, M., Zhang, J., Liu, W., Yang, X., Li, X., Du, J., Gao, A. \& Li, L. 2015. Genetic mapping of a putative Agropyron cristatum-derived powdery mildew resistance gene by a combination of bulked segregant analysis and single nucleotide polymorphism array. Molecular Breeding, 35.
Luo, M.-C., Gu, Y. Q., You, F. M., Deal, K. R., Ma, Y., Hu, Y., Huo, N., Wang, Y., Wang, J., Chen, S., Jorgensen, C. M., Zhang, Y., Mcguire, P. E., Pasternak, S., Stein, J. C., Ware, D., Kramer, M., Mccombie, W. R., Kianian, S. F., Martis, M. M., Mayer, K. F. X., Sehgal, S.
K., Li, W., Gill, B. S., Bevan, M. W., Šimková, H., Doležel, J., Weining, S., Lazo, G. R., Anderson, O. D. \& Dvorak, J. 2013. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proceedings of the National Academy of Sciences, 110, 7940-7945.
Luo, M. C., Yang, Z. L., You, F. M., Kawahara, T., Waines, J. G. \& Dvorak, J. 2007. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theoretical and Applied Genetics, 114, 947-959.
Lynch, J. P. 2007. Turner review No. 14: Roots of the Second Green Revolution. Australian Journal of Botany, 55, 493-512.
Ma, J., Stiller, J., Wei, Y., Zheng, Y.-L., Devos, K. M., Dolezel, J. \& Liu, C. 2014. Extensive Pericentric Rearrangements in the Bread Wheat (Triticum aestivum L.) Genotype "Chinese Spring" Revealed from Chromosome Shotgun Sequence Data. Genome Biology and Evolution, 6, 3039-3048.
Ma, J., Stiller, J., Zheng, Z., Wei, Y., Zheng, Y.-L., Yan, G., Dolezel, J. \& Liu, C. 2015a. Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homoeologous chromosomes. BMC Evolutionary Biology, 15.
Ma, J., Wingen, L. U., Orford, S., Fenwick, P., Wang, J. K. \& Griffiths, S. 2015b. Using the UK reference population Avalon 3 Cadenza as a platform to compare breeding strategies in elite Western European bread wheat. Molecular Breeding, 35.
Ma, Z., Zhao, D., Zhang, C., Zhang, Z., Xue, S., Lin, F., Kong, Z., Tian, D. \& Luo, Q. 2007. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F-2 populations. Molecular Genetics and Genomics, 277, 31-42.
Mahdi, L., Bell, C. J. \& Ryan, J. 1998. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depths in a semi-arid Mediterranean environment. Field Crops Research, 58, 187-196.
Manickavelu, A., Kawaura, K., Imamura, H., Mori, M. \& Ogihara, Y. 2011. Molecular mapping of quantitative trait loci for domestication traits and beta-glucan content in a wheat recombinant inbred line population. Euphytica, 177, 179-190.
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z. T., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., Mcdade, K. E., Mckenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P. G., Begley, R. F. \& Rothberg, J. M. 2005. Genome sequencing in microfabricated highdensity picolitre reactors. Nature, 437, 376-380.
Martins, W. S., Lucas, D. C. S., Neves, K. F. D. S. \& Bertioli, D. J. 2009. WebSat--a web software for microsatellite marker development. Bioinformation, 3, 282-3.
Mascher, M. 2014. Genetic positions and consensus genotypes of 437,973 scaffolds. [Online]. //scholz@IPK-GATERSLEBEN.DE/W7984_WGS_assembly_SNPbased_genetic_positions_and_consensus_genotypes_of_scaffolds: IPK. Available: https://doi.ipk-gatersleben.de/DOI/7f5bebea-357c-4515-8f44-eb3885bb764f/a79c04d1-23d5-42b3-9c24-a0c765a42f6f/2 [Accessed 23rd April 2015].
Mascher, M., Muehlbauer, G. J., Rokhsar, D. S., Chapman, J., Schmutz, J., Barry, K., MunozAmatriain, M., Close, T. J., Wise, R. P., Schulman, A. H., Himmelbach, A., Mayer, K. F. X., Scholz, U., Poland, J. A., Stein, N. \& Waugh, R. 2013. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant Journal, 76, 718-727.
Massa, A. N., Wanjugi, H., Deal, K. R., O'brien, K., You, F. M., Maiti, R., Chan, A. P., Gu, Y. Q., Luo, M. C., Anderson, O. D., Rabinowicz, P. D., Dvorak, J. \& Devos, K. M. 2011. Gene Space Dynamics During the Evolution of Aegilops tauschii, Brachypodium distachyon,

Oryza sativa, and Sorghum bicolor Genomes. Molecular Biology and Evolution, 28, 25372547.

Mayer, K. F. X., Martis, M., Hedley, P. E., Simkova, H., Liu, H., Morris, J. A., Steuernagel, B., Taudien, S., Roessner, S., Gundlach, H., Kubalakova, M., Suchankova, P., Murat, F., Felder, M., Nussbaumer, T., Graner, A., Salse, J., Endo, T., Sakai, H., Tanaka, T., Itoh, T., Sato, K., Platzer, M., Matsumoto, T., Scholz, U., Dolezel, J., Waugh, R. \& Stein, N. 2011. Unlocking the Barley Genome by Chromosomal and Comparative Genomics. Plant Cell, 23, 1249-1263.
Mcintosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, W. J., Morris, C., Appels, R. \& Xia, X. Catalogue of gene symbols for wheat Proceedings of 12th International wheat genetics Symposium, 2013 Yokohama, Japan. 12.
Mcvittie, J. A., Gale, M. D., Marshall, G. A. \& Westcott, B. 1978. The intra-chromosomal mapping of the Norin 10 and Tom Thumb dwarfing genes. Heredity, 40, 67-70.
Michelmore, R. W., Paran, I. \& Kesseli, R. V. 1991. Identification of markers linked to diseaseresistance genes by bulked segregant analysis - a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828-9832.
Middleton, C. P., Senerchia, N., Stein, N., Akhunov, E. D., Keller, B., Wicker, T. \& Kilian, B. 2014. Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe. Plos One, 9.
Millet, E. 1986. Relationships between grain weight and the size of floret cavity in the wheat spike. Annals of Botany, 58, 417-423.
Miralles, D. J., Katz, S. D., Colloca, A. \& Slafer, G. A. 1998. Floret development in near isogenic wheat lines differing in plant height. Field Crops Research, 59, 21-30.
Mochida, K., Yoshida, T., Sakurai, T., Ogihara, Y. \& Shinozaki, K. 2009. TriFLDB: A Database of Clustered Full-Length Coding Sequences from Triticeae with Applications to Comparative Grass Genomics. Plant Physiology, 150, 1135-1146.
Moore, G., Devos, K. M., Wang, Z. \& Gale, M. D. 1995. Cereal genome evolution - grasses, line up and form a circle. Current Biology, 5, 737-739.
Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R. \& Schaffer, A. A. 2008. Database indexing for production MegaBLAST searches. Bioinformatics, 24, 1757-64.
Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L. \& Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621-628.
Muramatsu, M. 1963. Dosage effect of spelta gene Q of hexaploid wheat. Genetics, 48, 469-\&.
Muramatsu, M. 1986. The vulgare super gene, Q - its universality in durum-wheat and its phenotypic effects in tetraploid and hexaploid wheats. Canadian Journal of Genetics and Cytology, 28, 30-41.
Mustalahti, K., Catassi, C., Reunanen, A., Fabiani, E., Heier, M., Mcmillan, S., Murray, L., Metzger, M.-H., Gasparin, M., Bravi, E. \& Maki, M. 2010. The prevalence of celiac disease in Europe: Results of a centralized, international mass screening project. Annals of Medicine, 42, 587-595.
Nalam, V. J., Vales, M. I., Watson, C. J. W., Kianian, S. F. \& Riera-Lizarazu, O. 2006. Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theoretical and Applied Genetics, 112, 373-381.
Narayanan, S., Mohan, A., Gill, K. S. \& Prasad, P. V. V. 2014. Variability of Root Traits in Spring Wheat Germplasm. Plos One, 9.
Nelson, D. R. 2009. The cytochrome p450 homepage. Human genomics, 4, 59-65.
Nelson, J. C., Sorrells, M. E., Vandeynze, A. E., Lu, Y. H., Atkinson, M., Bernard, M., Leroy, P., Faris, J. D. \& Anderson, J. A. 1995. Molecular mapping of wheat - major genes and rearrangements in homoeologous group-4, group-5, and group-7. Genetics, 141, 721731.

Noir, S., Brautigam, A., Colby, T., Schmidt, J. \& Panstruga, R. 2005. A reference map of the Arabidopsis thaliana mature pollen proteome. Biochemical and Biophysical Research Communications, 337, 1257-1266.
O'Donovan, J. T., Blackshaw, R. E., Harker, K. N., Clayton, G. W. \& Mckenzie, R. 2005. Variable crop plant establishment contributes to differences in competitiveness with wild oat among cereal varieties. Canadian Journal of Plant Science, 85, 771-776.
Oono, Y., Kobayashi, F., Kawahara, Y., Yazawa, T., Handa, H., Itoh, T. \& Matsumoto, T. 2013. Characterisation of the wheat (triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pistressed wheat. BMC Genomics, 14.
Ortiz-Monasterio, J. I., Manske G., Van Ginkel, M. 2012. Nitrogen and phosphorus use efficiency. In: REYNOLDS, M., PASK, AJD. AND MULLAN DM. (ed.) Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation. Mexico: D.F.: CIMMYT.
Ostrowski, M. \& Jakubowska, A. 2014. Udp-Glycosyltransferases of Plant Hormones. Advances in Cell Biology.
Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-Nissen, F., Malek, R. L., Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J. \& Buell, C. R. 2007. The TIGR Rice Genome Annotation Resource: Improvements and new features. Nucleic Acids Research, 35, D883-D887.
Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., Sourdille, P., Abderhalden, O., Keller, B. \& Schachermayr, G. 2003. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 107, 1235-1242.
Pallotta, M. A., Asayama, S., Reinheimer, J. M., Davies, P. A., Barr, A. R., Jefferies, S. P., Chalmers, K. J., Lewis, J., Collins, H. M., Roumeliotis, S., Logue, S. J., Coventry, S. J., Lance, R. C. M., Karakousis, A., Lim, P., Verbyla, A. P. \& Eckermann, P. J. 2003. Mapping and QTL analysis of the barley population Amagi Nijo x WI2585. Australian Journal of Agricultural Research, 54, 1141-1144.
Pastore, R. L., Brooks, J. T. \& Carbone, J. W. 2015. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations. Nutrition Research, 35, 474-479.
Paterson, T. \& Law, A. 2013. ArkMAP: integrating genomic maps across species and data sources. BMC Bioinformatics, 14.
Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Bergès, H., Eversole, K., Appels, R., Safar, J., Simkova, H., Dolezel, J., Bernard, M. \& Feuillet, C. 2008. A physical map of the 1-gigabase bread wheat chromosome 3B. Science (New York, N.Y.), 322, 101-4.
Peel, C. H. 1987. A rising disc apparatus for the measurement of turfgrass sward heights. Journal of the Sports Turf Research Institute, 63, 153-156.
Peltonen-Sainio, P., Kangas, A., Salo, Y. \& Jauhiainen, L. 2007. Grain number dominates grain weight in temperate cereal yield determination: Evidence based on 30 years of multilocation trials. Field Crops Research, 100, 179-188.
Peng, J. R., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D. \& Harberd, N. P. 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature, 400, 256-261.
Periyannan, S., Moore, J., Ayliffe, M., Bansal, U., Wang, X., Huang, L., Deal, K., Luo, M., Kong, X., Bariana, H., Mago, R., Mcintosh, R., Dodds, P., Dvorak, J. \& Lagudah, E. 2013. The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99. Science, 341, 786-788.
Pingali, P. L. 2012. Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States of America, 109, 12302-12308.

Poland, J. A., Brown, P. J., Sorrells, M. E. \& Jannink, J.-L. 2012. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-bySequencing Approach. Plos One, 7.
Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. \& Benfey, P. N. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant Journal, 18, 111-119.
Quarrie, S. A., Lazic-Jancic, V., Kovacevic, D., Steed, A. \& Pekic, S. 1999. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany, 50, 1299-1306.
R Development Core Team 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Ramirez-Gonzalez, R. H., Segovia, V., Bird, N., Fenwick, P., Holdgate, S., Berry, S., Jack, P., Caccamo, M. \& Uauy, C. 2014. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal, 5, 613-24.
Ramirez-Gonzalez, R. H., Uauy, C. \& Caccamo, M. 2015. PolyMarker: A fast polyploid primer design pipeline. Bioinformatics, 31, 2038-2039.
Rao, M. V. P. 1972. Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Information Service, 35, 9-9.
Rao, M. V. P. 1977. Mapping of the sphaerococcum gene S on chromosome 3D of wheat. Cereal Research Communications, 5, 15-17.
Raun, W. R. \& Johnson, G. V. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91, 357-363.
Ray, D. K., Mueller, N. D., West, P. C. \& Foley, J. A. 2013. Yield Trends Are Insufficient to Double Global Crop Production by 2050. Plos One, 8.
Rebetzke, G. J., Appels, R., Morrison, A. D., Richards, R. A., Mcdonald, G., Ellis, M. H., Spielmeyer, W. \& Bonnett, D. G. 2001. Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Australian Journal of Agricultural Research, 52, 1221-1234.
Rebetzke, G. J., Bonnett, D. G. \& Ellis, M. H. 2012a. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Research, 127, 17-25.
Rebetzke, G. J., Ellis, M. H., Bonnett, D. G., Mickelson, B., Condon, A. G. \& Richards, R. A. 2012b. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Research, 126, 87-96.
Rebetzke, G. J. \& Richards, R. A. 1999. Genetic improvement of early vigour in wheat. Australian Journal of Agricultural Research, 50, 291-301.
Rebetzke, G. J. \& Richards, R. A. 2000. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Australian Journal of Agricultural Research, 51, 235-245.
Rebetzke, G. J., Richards, R. A., Fettell, N. A., Long, M., Condon, A. G., Forrester, R. I. \& Botwright, T. L. 2007. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Research, 100, 10-23.
Reif, J. C., Zhang, P., Dreisigacker, S., Warburton, M. L., Van Ginkel, M., Hoisington, D., Bohn, M. \& Melchinger, A. E. 2005. Wheat genetic diversity trends during domestication and breeding. Theoretical and Applied Genetics, 110, 859-864.
Roder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. \& Ganal, M. W. 1998. A microsatellite map of wheat. Genetics, 149, 2007-2023.

Rona, R. J., Keil, T., Summers, C., Gislason, D., Zuidmeer, L., Sodergren, E., Sigurdardottir, S. T., Lindner, T., Goldhahn, K., Dahlstrom, J., Mcbride, D. \& Madsen, C. 2007. The prevalence of food allergy: A meta-analysis. Journal of Allergy and Clinical Immunology, 120, 638-646.

Rubio-Tapia, A., Kyle, R. A., Kaplan, E. L., Johnson, D. R., Page, W., Erdtmann, F., Brantner, T. L., Kim, W. R., Phelps, T. K., Lahr, B. D., Zinsmeister, A. R., Melton, L. J., lii \& Murray, J. A. 2009. Increased Prevalence and Mortality in Undiagnosed Celiac Disease. Gastroenterology, 137, 88-93.
Ruiz-Nunez, B., Pruimboom, L., Dijck-Brouwer, D. a. J. \& Muskiet, F. a. J. 2013. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional Biochemistry, 24, 1183-1201.
Safar, J., Bartos, J., Janda, J., Bellec, A., Kubalakova, M., Valarik, M., Pateyron, S., Weiserova, J., Tuskova, R., Cihalikova, J., Vrana, J., Simkova, H., Faivre-Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Dolezel, J. \& Chalhoub, B. 2004. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal, 39, 960-968.
Saintenac, C., Zhang, W., Salcedo, A., Rouse, M. N., Trick, H. N., Akhunov, E. \& Dubcovsky, J. 2013. Identification of Wheat Gene Sr35 That Confers Resistance to Ug99 Stem Rust Race Group. Science, 341, 783-786.
Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R. \& Martin, W. 2002. Genetics and geography of wild cereal domestication in the Near East. Nature Reviews Genetics, 3, 429-441.
Salvi, S., Porfiri, O. \& Ceccarelli, S. 2013. Nazareno Strampelli, the 'Prophet' of the green revolution. Journal of Agricultural Science, 151, 1-5.
Scheible, W.-R., Torjek O \& Altmann, T. 2005. From Markers to Cloned Genes: Map-Based Cloning. In: LORZ H \& G, W. (eds.) Biotechnology in agriculture and forestry. Berlin, Germany: Springer.
Schmidt, A. L., Gale, K. R., Ellis, M. H. \& Giffard, P. M. 2004. Sequence variation at a microsatellite locus (XGWM261) in hexaploid wheat (Triticum aestivum) varieties. Euphytica, 135, 239-246.
Schneeberger, K. 2014. Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nature Reviews Genetics, 15, 662-676.
Schneeberger, K., Ossowski, S., Lanz, C., Juul, T., Petersen, A. H., Nielsen, K. L., Jorgensen, J.E., Weigel, D. \& Andersen, S. U. 2009. SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nature Methods, 6, 550-551.
Schneeberger, K. \& Weigel, D. 2011. Fast-forward genetics enabled by new sequencing technologies. Trends in plant science, 16, 282-8.
Sears, E. R. 1947. The sphaerococcum gene in wheat. Genetics, 32, 102-103.
Sears, E. R. 1952. Misdivision of univalents in common wheat. Chromosoma, 4, 535-550.
Sears, E. R. 1966. Nullisomic-tetrasomic combinations in hexaploid wheat. In: RILEY, R. \& LEWIS, K. R. (eds.) Chromosome Manipulation and Plant Genetics. Edinburgh: Oliver \& Boyd.

Semenov, M. A. \& Shewry, P. R. 2011. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 1.
Semenov, M. A., Stratonovitch, P., Alghabari, F. \& Gooding, M. J. 2014. Adapting wheat in Europe for climate change. Journal of Cereal Science, 59, 245-256.
Shewry, P. R. 2009. Wheat. Journal of Experimental Botany, 60, 1537-1553.
Simkova, H., Svensson, J. T., Condamine, P., Hribova, E., Suchankova, P., Bhat, P. R., Bartos, J., Safar, J., Close, T. J. \& Dolezel, J. 2008. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics, 9.
Simonetti, M. C., Bellomo, M. P., Laghetti, G., Perrino, P., Simeone, R. \& Blanco, A. 1999. Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genetic Resources and Crop Evolution, 46, 267-271.
Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z. C., Tai, Y. S., Gill, B. S. \& Faris, J. D. 2006. Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547-555.

Šíp, V., Chrpová, J., Žofajová, A., Pánková, K., Užík, M. \& Snape, J. W. 2009. Effects of specific Rht and Ppd alleles on agronomic traits in winter wheat cultivars grown in middle Europe. Euphytica, 172, 221-233.
Slafer, G. A. 2003. Genetic basis of yield as viewed from a crop physiologist's perspective. Annals of Applied Biology, 142, 117-128.
Slafer, G. A. 2012. Wheat development: its role in phenotyping and improving crop adaptation. In: REYNOLDS, M., PASK, AJD. AND MULLAN DM. (ed.) Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation. Mexico: D.F.: CIMMYT.
Slafer, G. A., Savin, R. \& Sadras, V. O. 2014. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Research, 157, 7183.

Sorrells, M. E., Gustafson, J. P., Somers, D., Chao, S., Benscher, D., Guedira-Brown, G., Huttner, E., Kilian, A., Mcguire, P. E., Ross, K., Tanaka, J., Wenzl, P., Williams, K. \& Qualset, C. O. 2011. Reconstruction of the Synthetic W7984 x Opata M85 wheat reference population. Genome, 54, 875-882.
Sourdille, P., Tixier, M. H., Charmet, G., Gay, G., Cadalen, T., Bernard, S. \& Bernard, M. 2000. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Molecular Breeding, 6, 247-255.
Sparkes, D. L. \& King, M. 2008. Disentangling the effects of PAR and R : FR on lodging-associated characters of wheat (Triticum aestivum). Annals of Applied Biology, 152, 1-9.
Sreenivasulu, N. \& Schnurbusch, T. 2012. A genetic playground for enhancing grain number in cereals. Trends in Plant Science, 17, 91-101.
Sun, H., Guo, Z., Gao, L., Zhao, G., Zhang, W., Zhou, R., Wu, Y., Wang, H., An, H. \& Jia, J. 2014. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytologist, 204, 682-692.
Taenzler, B., Esposti, R. F., Vaccino, P., Brandolini, A., Effgen, S., Heun, M., Schafer-Pregl, R., Borghi, B. \& Salamini, F. 2002. Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genetical Research, 80, 131-143.
Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. \& Conesa, A. 2011. Differential expression in RNA-seq: A matter of depth. Genome Research, 21, 2213-2223.
Trethowan, R. M., Singh, R. P., Huerta-Espino, J., Crossa, J. \& Van Ginkel, M. 2001. Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Research, 70, 167-176.
Trick, M., Adamski, N. M., Mugford, S. G., Jiang, C.-C., Febrer, M. \& Uauy, C. 2012. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC plant biology, 12, 14.
Tulpan, D., Leger, S., Tchagang, A. \& Pan, Y. 2015. Enrichment of Triticum aestivum gene annotations using ortholog cliques and gene ontologies in other plants. Bmc Genomics, 16.
U.S. Department of Agriculture (USDA) 1923. The Club Wheats. 1303 ed

Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. \& Dubcovsky, J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 12981301.

Uauy, C., Paraiso, F., Colasuonno, P., Tran, R. K., Tsai, H., Berardi, S., Comai, L. \& Dubcovsky, J. 2009. A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. Bmc Plant Biology, 9.
UC Davis Plant Science \& USDA 2015. Aegilops tauschii genome database [Online]. Available: http://probes.pw.usda.gov/WheatDMarker/downloads/ 2015].
Unrau, J. 1950. The use of monosomes and nullisomes in cytogenetic studies of common wheat. SCI AGRIC [OTTOWA], 30, 66-89.
Unité de Recherche Génomique Info (URGI). 2013. Available: https://urgi.versailles.inra.fr/blast/blast.php.

Unité de Recherche Génomique Info (URGI). 2015a. Genome Zipper 2015 [Online]. Available: http://wheat-urgi.versailles.inra.fr/Seq-Repository/Genes-annotations.
Unité de Recherche Génomique Info (URGI). 2015b. IWGSC-2 POPSEQ [Online]. Available: http://wheat-urgi.versailles.inra.fr/About-us/News/3B-survey-seq-POPSEQ-GenomeZipper-data-available.
Van Ooijen, J. W. \& Voorrips, R. E. 2001. JoinMap ${ }^{\circledR}$ 3.0, Software for the calculation of genetic linkage maps [Online]
Vazquez, F., Legrand, S. \& Windels, D. 2010. The biosynthetic pathways and biological scopes of plant small RNAs. Trends in Plant Science, 15, 337-345.
Villalba, M., Batanero, E., López-Otín, C., Sánchez, L. M., Monsalve, R. I., González De La Peña, M. A., Lahoz, C. \& Rodríguez, R. 1993. The amino acid sequence of Ole e I, the major allergen from olive tree (Olea europaea) pollen. European journal of biochemistry / FEBS, 216, 863-869
Voorrips, R. E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77-78.
Vrana, J., Simkova, H., Kubalakova, M., Cihalikova, J. \& Dolezel, J. 2012. Flow cytometric chromosome sorting in plants: The next generation. Methods, 57, 331-337.
Wang, M., Wang, S. \& Xia, G. 2015a. From genome to gene: a new epoch for wheat research? Trends in Plant Science, 20, 380-387.
Wang, S. C., Wong, D. B., Forrest, K., Allen, A., Chao, S. M., Huang, B. E., Maccaferri, M., Salvi, S., Milner, S. G., Cattivelli, L., Mastrangelo, A. M., Whan, A., Stephen, S., Barker, G., Wieseke, R., Plieske, J., Lillemo, M., Mather, D., Appels, R., Dolferus, R., BrownGuedira, G., Korol, A., Akhunova, A. R., Feuillet, C., Salse, J., Morgante, M., Pozniak, C., Luo, M. C., Dvorak, J., Morell, M., Dubcovsky, J., Ganal, M., Tuberosa, R., Lawley, C., Mikoulitch, I., Cavanagh, C., Edwards, K. J., Hayden, M., Akhunov, E. \& Int Wheat Genome, S. 2014a. Characterization of polyploid wheat genomic diversity using a highdensity 90000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12, 787-796.
Wang, Y., Chen, L., Du, Y., Yang, Z., Condon, A. G. \& Hu, Y.-G. 2014b. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Research, 162, 39-47.
Wang, Y., Du, Y., Yang, Z., Chen, L., Condon, A. G. \& Hu, Y.-G. 2015b. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Research, 179, 35-43
Wang, Z., Gerstein, M. \& Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics, 10, 57-63.
Wang, Z., Wu, X., Ren, Q., Chang, X., Li, R. \& Jing, R. 2010. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 174, 447-458.
Warden, C. D., Yuan, Y. \& Wu, X. 2013. Optimal Calculation of RNA-Seq Fold-Change Values. International Journal of Computational ioinformatics and In Silico Modeling, 2, 285-292.
Weichselbaum, E. 2012. Does bread cause bloating? Nutrition Bulletin, 37, 30-36.
Wilhelm, E. P., Mackay, I. J., Saville, R. J., Korolev, A. V., Balfourier, F., Greenland, A. J., Boulton, M. I. \& Powell, W. 2013. Haplotype dictionary for the Rht-1 loci in wheat. Theoretical and Applied Genetics, 126, 1733-1747.
Wojciechowski, T., Gooding, M. J., Ramsay, L. \& Gregory, P. J. 2009. The effects of dwarfing genes on seedling root growth of wheat. Journal of Experimental Botany, 60, 2565-2573.
Wolfe, M. S., Baresel, J. P., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loeschenberger, F., Miedaner, T., Ostergard, H. \& Van Bueren, E. T. L. 2008. Developments in breeding cereals for organic agriculture. Euphytica, 163, 323-346.
Worland, A. J. 1999. The importance of Italian wheats to worldwide varietal improvement. Journal of Genetics and Breeding, 53, 165-173.

Worland, A. J., Borner, A., Korzun, V., Li, W. M., Petrovic, S. \& Sayers, E. J. 1998a. The influence of photoperiod genes on the adaptability of European winter wheats (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica, 100, 385-394.
Worland, A. J., Korzun, V., Ro, M. S., Ganal, M. W. \& Law, C. N. 1998b. Genetic analysis of the dwarfing gene Rht8 in wheat . Part II . The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. 1110-1120.
Worland, A. J. \& Law, C. N. 1986. Genetic-analysis of chromosome 2D of wheat .1. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Zeitschrift Fur Pflanzenzuchtung-Journal of Plant Breeding, 96, 331-345.
Worland, A. J., Sayers, E. J. \& Korzun, V. 2001. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 119, 155-159.
Wu, R. L. \& Lin, M. 2006. Opinion - Functional mapping - how to map and study the genetic architecture of dynamic complex traits. Nature Reviews Genetics, 7, 229-237.
Wuerschum, T., Liu, W., Busemeyer, L., Tucker, M. R., Reif, J. C., Weissmann, E. A., Hahn, V., Ruckelshausen, A. \& Maurer, H. P. 2014. Mapping dynamic QTL for plant height in triticale. BMC Genetics, 15.
Yahiaoui, N., Srichumpa, P., Dudler, R. \& Keller, B. 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant Journal, 37, 528-538.
Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S. \& Dubcovsky, J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 103, 19581-19586.
Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T. \& Dubcovsky, J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 100, 6263-6268.
Yan, L. L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., Sanmiguel, P., Bennetzen, J. L., Echenique, V. \& Dubcovsky, J. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 303, 1640-1644.
Yediay, F. E., Andeden, E. E., Baloch, F. S., Borner, A., Kilian, B. \& Ozkan, H. 2011. The allelic state at the major semi-dwarfing genes in a panel of Turkish bread wheat cultivars and landraces. Plant Genetic Resources-Characterization and Utilization, 9, 423-429.
Yendrek, C. R., Ainsworth, E. A. \& Thimmapuram, J. 2012. The bench scientist's guide to statistical analysis of RNA-Seq data. BMC research notes, 5, 506-506.
Zadoks, J. C., Chang, T. T. \& Konzak, C. F. 1974. Decimal code for growth stages of cereals. Weed Research, 14, 415-421.
Zanke, C. D., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., Argillier, O., Stiewe, G., Hinze, M., Neumann, K., Ganal, M. W. \& Roeder, M. S. 2014. Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.). Plos One, 9.

Zhang, Z., Belcram, H., Gornicki, P., Charles, M., Just, J., Huneau, C., Magdelenat, G., Couloux, A., Samain, S., Gill, B. S., Rasmussen, J. B., Barbe, V., Faris, J. D. \& Chalhoub, B. 2011. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 108, 18737-18742.
Zhang, Z., Zhu, H., Gill, B. S. \& Li, W. 2015. Fine mapping of shattering locus Br 2 reveals a putative chromosomal inversion polymorphism between the two lineages of Aegilops tauschii. Theoretical and Applied Genetics, 128, 745-755.
Zwer, P. K., Sombrero, A., Rickman, R. W. \& Klepper, B. 1995. Club and common wheat yield component and spike development in the Pacific-Northwest. Crop Science, 35, 15901597.

[^0]:

[^1]: BS00071351_51 BobWhite_c39821_195
 BSOOO10458 51
 Kukri_s104077_62 wsnp_Ex_c431_848310
 BSOOO83630_51
 BS00003786 51 RAC875_c106584_747
 Kukri_c24795_75
 RAC875_c22627_315
 Jagger_c8372_125
 Kukri_c25727-139
 BSOOO23192_51
 wsnp_Ra_rep_c79566_75592262
 Kukri c10377 3453
 CAP $\overline{12}$ _c4447_280
 tplb0039917_2125
 BobWhite_c24981_409
 RFL_Contig2954_-659
 GENE-1388 21
 Excalibur_c14222_179
 BS00010467 51
 GENE-1530 548

 Excalibur_c12383_251
 Excalibur_c8399_584
 Kukri_rep_c112782_72
 IAAV4950
 Tdurum_contig7557_723
 wsnp_Ex_c14692_22766127
 wsnp_JD_rep_c65080_41454656
 BS00066438_51
 BSOOO46964-51
 RAC875_c64560_111
 BSO0041481 51
 BobWhite c19647 159
 BS00036878_51
 BS00010221-51
 wsnp_Ex_c341_667884
 Kukri_c44260_577
 Excalibur_rep_c105491_144
 BS00082211 51
 BS00074432 51
 BobWhite_c23839_119
 BobWhite_c32372_186
 IAAV151

 - BobWhite_c47143_592

 BobWhite_c26503_61
 BS00065700_51
 IAAV3609
 Tdurum_contig14676_637
 Tdurum_contig29357-338
 Excalibur_rep_c69981 75
 wsnp_Ex_c34597_42879693
 Tdurum_contig296̄45_685
 GENE-4118_142
 BobWhite_c5872_589

 - BobWhite_c35035_85

 RAC875_c 10648 - $\overline{8} 6$
 BS00090826_51
 GENE-4222_1088
 Kukri_c40994_61
 IAAV5620
 Excalibur_rep_c67100_635
 CAP8_c950_198
 BSOOŌ64970 51
 Excalibur_c35871_596
 Excalibur_c16566_485
 BS00064558 51
 Excalibur_c37062_65

