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Summary 

 

The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato 

and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the 

Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis 

thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. 

The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. 

laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling 

of P. infestans genes during infection revealed a significant overlap in the sets of secreted-

protein genes that are induced in P. infestans upon colonization of potato and susceptible 

Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the 

two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the 

same Arabidopsis cells. This Arabidopsis - A. laibachii - P. infestans tripartite interaction 

opens up various possibilities to dissect the molecular mechanisms of P. infestans infection 

and the processes occurring in co-infected Arabidopsis cells. 

 

Introduction 

 

Plants have evolved diverse and effective mechanisms to protect against attack by microbial 

pathogens. Indeed, a central tenet of plant pathology is that resistance is the rule and 

disease the exception (Briggs, 1995). Although broad host-range pathogens do occur, most 

plant pathogens are adapted to a limited number of taxonomically related host species and 

cause disease on only a few host plants. Those pathogens may not fare well on plants 

unrelated to their hosts due to adaptive evolution, which tends to drive organisms towards 

specialization, for example through the accumulation of mutations that enhance virulence on 

one host but impair it on another (Tosa et al., 2006, Borhan et al., 2008, Ma et al., 2010, 

Raffaele et al., 2010, Dong et al., 2014, Dong et al., 2015). In addition, nonhost resistance 

and species-specific resistance serve to restrict the host range of plant pathogens (Schulze-

Lefert et al., 2011, Senthil-Kumar et al., 2013, Lee et al., 2014). Physical barriers, such as 

fortified cell walls and a waxy cuticle, production of antimicrobial secondary metabolites, and 

cell-autonomous immunity all contribute to nonhost resistance (Fellbrich et al., 2002, 

Bettgenhaeuser et al., 2014, Miedes et al., 2014, Piasecka et al., 2015). Further, cell 

autonomous immunity is multi-layered, involving pre-invasive defences as well as cell 

surface and cytoplasmic immune receptors that perceive pathogens (Dodds et al., 2010, Win 

et al., 2012). Thus, a pathogen’s ability to colonize a certain plant species includes its 

capacity to suppress or tolerate host immunity.  
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The oomycete plant pathogens comprise numerous host-specific species (Lamour et al., 

2009, Thines et al., 2010, Fawke et al., 2015, Kamoun et al., 2015). These filamentous 

microorganisms are some of the most destructive plant pathogens and remain persistent 

threats to both farmed and native plants (Akrofi et al., 2015, Enzenbacher et al., 2015, 

Hansen, 2015, Roy, 2015). For example, the Irish potato famine pathogen Phytophthora 

infestans, the causal agent of late blight, recurrently endangers global food security (Fisher 

et al., 2012, Fry et al., 2015). P. infestans is thought to have a relatively narrow host range, 

infecting a few wild Solanum species in their native habitats of central Mexico and the 

Andes, as well as cultivated potato and tomato in most regions where these crops are grown 

(Grunwald et al., 2005, Fry et al., 2009, Goss et al., 2014). In compatible hosts, P. infestans 

proliferates an extensive host-intercellular hyphal network and projects digit-like haustoria 

into single host cells (Blackwell, 1953). P. infestans can also infect other solanaceous plants, 

such as petunia and the experimental host Nicotiana benthamiana (Becktell et al., 2006, 

Chaparro-Garcia et al., 2011). However, this pathogen is not known to complete its full 

infection cycle on plants outside the Solanaceae. For example, the model plant Arabidopsis 

thaliana, a member of the Brassicaceae family, is fully resistant to P. infestans and is 

considered a nonhost (Vleeshouwers et al., 2000, Huitema et al., 2003, Lipka et al., 2005, 

Stein et al., 2006).  

 

On Arabidopsis leaves, as on other nonhost plants such as tobacco and parsley, P. 

infestans cysts germinate, form appressoria, and directly penetrate epidermal cells to form 

infection vesicles and occasionally secondary hyphae (Colon et al., 1992, Schmelzer et al., 

1995, Naton et al., 1996, Vleeshouwers et al., 2000, Huitema et al., 2003). However, this 

early interaction is followed by the hypersensitive response, a localized cell death reaction of 

plants that restricts the spread of the pathogen (Vleeshouwers et al., 2000, Huitema et al., 

2003). In the Arabidopsis pen2 mutant, which is deficient in the hydrolysis of 4-methoxyindol-

3-ylmethylglucosinolate (4MO-I3M) into antimicrobial metabolites, the frequency of P. 

infestans penetration of epidermal cells increases, resulting in markedly enhanced 

hypersensitive cell death (Westphal et al., 2008). However, P. infestans does not complete 

its full infection cycle on pen2 mutants or pen2 mutants combined with mutations in other 

defense-related genes (Lipka et al., 2005, Westphal et al., 2008, Kopischke et al., 2013). In 

these mutants, P. infestans hyphae fail to colonize the Arabidopsis mesophyll to the extent 

seen in compatible interactions and do not develop haustoria, the specialized hyphal 

extensions that project into host cells and are thought to be sites where the pathogen 

secretes virulence proteins (effectors) (Whisson et al., 2007, Schornack et al., 2010). To 

date, there are no published reports of Arabidopsis mutants that are fully deficient in nonhost 



 

 
This article is protected by copyright. All rights reserved. 

resistance to P. infestans, and thus enable extensive biotrophic colonization and sporulation 

of this pathogen (Stegmann et al., 2013, Geissler et al., 2015). 

 

One oomycete pathogen that can infect Arabidopsis thaliana is Albugo laibachii, one of 

several specialist Albugo species that cause white blister rust disease (Kemen et al., 2011, 

Kamoun et al., 2015) by extensively colonizing host-intercellular spaces, projection of knob-

like haustoria into host cells (Soylu, 2004) and by forming visible blister-like dispersal 

pustules of sporangia on the lower side of leaves. Albugo spp. are obligate biotrophic 

parasites that are phylogenetically distinct from other oomycetes, such as Phytophthora, and 

thus have independently evolved the ability to colonize plants (Thines et al., 2010, Kemen et 

al., 2012). Albugo are widespread as endophytes in asymptomatic natural populations of 

Brassicaceae and likely influence the biology and ecology of their host species (Ploch et al., 

2011). Remarkably, Albugo can suppress host immunity to enable colonization by other 

races of pathogens and subsequent genetic exchange between specialized genotypes with 

non-overlapping host ranges (McMullan et al., 2015). Prior infection by Albugo enhances 

susceptibility to plant pathogens such as downy and powdery mildews (Bains et al., 1985, 

Cooper et al., 2008). For instance, pre-infection with A. laibachii enables avirulent races of 

the Arabidopsis downy mildew Hyaloperonospora arabidopsidis to grow and sporulate on 

resistant Arabidopsis accessions (Cooper et al., 2008). A. laibachii suppresses the runaway 

cell death phenotype of the Arabidopsis lesion simulating disease1 mutant, further 

supporting the view that this pathogen is an effective suppressor of plant immunity (Cooper 

et al., 2008). The mechanisms by which Albugo spp. suppress immunity remain unknown, 

but probably involve suites of effector genes like those identified in the Albugo candida and 

Albugo laibachii genomes (Kemen et al., 2011, Links et al., 2011). 

 

Here, we aimed to determine the degree to which A. laibachii would enable maladapted 

pathogens to colonize Arabidopsis. Pre-infection with A. laibachii did not alter resistance of 

Arabidopsis to the Asian soybean rust pathogen (Phakopsora pachyrhizi) or the powdery 

mildew pathogen (Blumeria graminis f. sp. hordei (Bgh)). However, we discovered that pre-

infection with A. laibachii enables the potato pathogen P. infestans to fully colonize and 

sporulate on Arabidopsis, a plant that is considered to be a nonhost of this Solanaceae 

specialist. Our results show that when exposed to A. laibachii colonized tissues, P. infestans 

carries the potential to infect other plant species outside its natural host spectrum employing 

a conserved set of transcriptionally induced effector encoding genes. The interaction of 

Arabidopsis - A. laibachii - P. infestans will be an excellent model to examine how co-

infection of host cells enables infection by P. infestans.  
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Results 

 

Albugo laibachii infection enables P. infestans colonization of the nonhost plant 

Arabidopsis 

 

Previous work indicated that the potato late blight pathogen P. infestans can penetrate 

epidermal cells of its nonhost Arabidopsis resulting in hypersensitive cell death but little 

ingress beyond the infection site (Vleeshouwers et al., 2000, Huitema et al., 2003). To 

determine the extent to which A. laibachii alters the interaction between Arabidopsis and P. 

infestans, we carried out serial inoculations with the two pathogens. First, we infected rosette 

leaves of 5-week-old Arabidopsis Col-0 with spores of A. laibachii strain Nc14 (Kemen et al., 

2011). Successful infections were identified based on the formation of white 

sporangiophores on the abaxial side of rosette leaves 10 days after inoculation. At that 

stage, we detached the infected leaves, inoculated them with zoospores of P. infestans 

88069 and monitored symptom development (Fig. 1A-B). Within 5 days after inoculation with 

P. infestans, we observed water-soaked tissue, necrosis, and ultimately sporulation in co-

infected leaves (Fig. 1B). As controls we also applied P. infestans zoospores to uninfected 

leaves of A. thaliana Col-0, and also monitored mock- and A. laibachii-inoculated leaves 

(Fig. 1 A-B). No necrosis was observed in these negative controls (Fig. 1 A-B). To further 

investigate the degree to which P. infestans colonizes pre-infected Arabidopsis leaves, we 

repeated the experiment with P. infestans 88069td, a transgenic strain that expresses the 

cytoplasmic red fluorescent protein (RFP) marker tandem dimer, and monitored pathogen 

ingress by microscopy. This revealed an extensive network of red fluorescent P. infestans 

hyphae and unlabeled A. laibachii hyphae in the co-infected leaves that extended to most of 

the leaf within just 3 days after P. infestans inoculation and sharply contrasted with the P. 

infestans-only treatment (Fig. 2). We also repeated the experiment with whole plants to 

ensure that the observed effect was not an artifact of the detached leaf assay. Here also, P. 

infestans triggered severe disease symptoms and formed an extensive hyphal network only 

in the mixed-infection leaves (Fig.  1 C-E).  

 

Next, we quantified pathogen biomass during infection using kinetic PCR as previously 

described (Judelson et al., 2000, Mauch et al., 2009) (Fig 3). We amplified the P. infestans 

gene PiO8 to estimate relative levels of P. infestans DNA in infected plant tissue and 

observed a continuous increase over time in Arabidopsis leaves pre-infected with A. laibachii 

(Fig. 3). We quantified A. laibachii biomass upon P. infestans co-infection by using read data 

from our RNA sequencing experiment. We found numbers of reads matching to established 

constitutively expressed A. laibachii genes do not change upon infection with P. infestans 
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(Fig. S1) suggesting that co-colonization does not have a detrimental effect on A. laibachii 

colonization. Overall, the pathology, microscopy, and molecular biology experiments indicate 

that P. infestans becomes able to fully colonize nonhost Arabidopsis plants upon pre-

infection of those plants with A. laibachii (Fig. 1-3, Fig. S1). 

 

Cellular dynamics of P. infestans colonization of pre-infected Arabidopsis 

 

To study the interaction between P. infestans and pre-infected Arabidopsis in more detail, 

we performed confocal microscopy on leaves inoculated with P. infestans strain 88069td. 

We conducted side-by-side comparisons of the subcellular interactions of P. infestans in A. 

laibachii- and mock-infected leaves. In both cases, we observed germinated P. infestans 

cysts on the leaf surface as well as appressoria (Fig. 4A, Fig. 4B) and infection vesicles 

within the plant epidermal cells (Fig. 4C, Fig. 4D). The difference between the two 

treatments became apparent at 1 day post infection (dpi) with the activation of host cell 

death (the hypersensitive response, HR) visible through accumulation of autofluorescent 

material in epidermal cell walls at sites of attempted infection by P. infestans in mock-treated 

leaves only (Fig. 4E-F). Arabidopsis pre-infected with A. laibachii did not display an HR at 

sites of penetration of P. infestans (Fig 4G, Fig 4H). To independently validate these data, 

we inoculated P. infestans strain 88069td on leaves that were mock treated or pre-infected 

with A. laibachii, and then stained the leaves to quantify dead cells and monitor the invasion 

process at two different time points (6 hours post infection, hpi, and 24 hpi) (Fig. 4I). This 

again confirmed that penetration of P. infestans was not associated with the HR in samples 

that were pre-infected with A. laibachii, at both 6 and 24 hpi (Fig 4I). 

 

The ingress of P. infestans beyond its infection site became apparent starting at 36 hpi (1.5 

dpi) in the A. laibachii pre-infected leaves, with intercellular hyphae spreading from the 

penetration site (Fig. S2). In contrast to mock-treated samples, the hyphae extended at 3 dpi 

to colonize the mesophyll and most of the leaf (Fig. S2). Branching hyphae with narrow, 

digit-like haustoria expanded from the site of penetration to neighboring cells through the 

intercellular space (Fig. S3). Starting at 3 dpi, the mycelium developed sporangiophores that 

released numerous sporangia to produce zoospores (Fig. S4).  Thus, the P. infestans 

colonization of Arabidopsis pre-infected with A. laibachii  resembles, in behavior and speed, 

the P. infestans infection reported on susceptible potatoes (Vleeshouwers et al., 2000). 
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A. laibachii and P. infestans haustoria within a single Arabidopsis cell 

 

A. laibachii forms haustoria in Arabidopsis cells (Caillaud et al., 2012). Since we observed 

the formation of haustoria by P. infestans in Arabidopsis pre-infected with A. laibachii, we 

searched for cells that harboured haustoria of both oomycetes. We recorded numerous 

events where single or multiple digit-like P. infestans haustoria co-occurred with multiple 

knob-like A. laibachii haustoria in the same Arabidopsis cells (Fig. 5). In 45% of all assessed 

Arabidopsis mesophyll and epidermal cells with P. infestans haustoria we observed A. 

laibachii haustoria within the same confocal plane (Nobs=17; 2 independent experiments). 

Thus, haustorium formation by A. laibachii or P. infestans does not trigger processes that 

prevent secondary penetration by another species. This observation will enable us to study 

how focal redirection of cellular compartments is affected by secondary penetration and how 

the two microbial pathogens vary in recruiting plant secretory processes to their haustoria. 

 

In planta expression dynamics of P. infestans secreted protein genes are similar on 

Arabidopsis and potato  

 

Expression analyses have identified a significant set of P. infestans effector genes, which 

are transcriptionally induced during biotrophy in host-plant infections (Haas et al., 2009, 

Cooke et al., 2012, Pais et al., 2013). These studies have been limited to infections of potato 

and tomato, which both belong to the nightshade family (Solanaceae). To test whether the 

induced effector gene set is different in Arabidopsis pre-infected with A. laibachii, we 

collected A. laibachii-infected and mock-infected Arabidopsis leaves at different time points 

following application of zoospores of P. infestans strain 06_3928A (13_A2 clonal lineage, 

(Cooke et al., 2012)). To compare sets of differentially regulated P. infestans genes in 

Arabidopsis with those differentially regulated in potato, we also infected and harvested 

potato leaves. Extracted RNA from all samples was subjected to Illumina RNA-seq. 

 

We found that during colonization of potato, the steady-state transcript levels of 10,698 P. 

infestans genes were significantly altered. Of those, 7118 transcripts were also altered the 

same direction in A. laibachii pre-infected Arabidopsis. In contrast, 776 transcripts were 

exclusively altered in the P. infestans – A. laibachii – Arabidopsis interaction (see 

Supplementary Table 1 for details). 

 

We next examined changes in transcripts encoding secreted proteins and found 196 induced 

sequences, of which 136 (66%) were shared, 40 were uniquely induced in Arabidopsis/A. 

laibachii, and 20 uniquely induced in potato (Fig. S5A, Fig. 6A). We found a strong 
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correlation between Arabidopsis/A. laibachii and potato in the degree of gene expression 

induction both at 2 and 3 dpi with P. infestans (Fig. 6B, Fig S5). Out of a total of 96 induced 

effector gene transcripts, a common set of 78 (81%) were induced in both plant species, 

whereas 12 and 6 effector transcripts where induced in a host-specific manner during 

colonization of Arabidopsis and potato, respectively. Seven RXLR effector genes with known 

avirulence activity in specific potato cultivars were similarly induced in both host species 

(Fig. 6C). In summary, we conclude that the induction of secreted protein genes of P. 

infestans during colonization of potato and Arabidopsis/A. laibachii leaves do not greatly 

differ. 

 

Arabidopsis leaves pre-infected with Albugo laibachii do not become susceptible to 

barley powdery mildew fungus or Asian soybean rust fungus  

 

To determine the degree to which the effect of A. laibachii on P. infestans extends to other 

maladapted pathogens, Arabidopsis leaves pre-infected with A. laibachii were inoculated 

with the fungal pathogens Blumeria graminis f. sp. hordei (Bgh) and Phakopsora pachyrhizi, 

the agents of barley powdery mildew and Asian soybean rust, respectively. In both cases we 

observed no alteration of the interactions (Fig. S6 and S7). Both of these fungal pathogens 

failed to penetrate leaves of both mock- and A. laibachii pre-infected Arabidopsis plants. 

 

Discussion 

 

In this study, we demonstrated that the potato blight pathogen P. infestans becomes capable 

of colonizing Arabidopsis when this nonhost plant is pre-infected by the obligate parasite A. 

laibachii. This is surprising, given that P. infestans is a Solanaceae specialist that is 

seemingly maladapted to plants from other botanical families. We took advantage of this 

tripartite interaction to perform comprehensive cellular and molecular analyses. On A. 

laibachii-infected Arabidopsis, P. infestans goes through its full infection cycle to a degree 

that has not been observed to date with pre- and post-invasive mutants (Lipka et al., 2005, 

Kobae et al., 2006, Stein et al., 2006, Westphal et al., 2008, Stegmann et al., 2013, Geissler 

et al., 2015). This includes the formation of haustoria, rapid hyphal proliferation, and profuse 

sporulation (Fig. 1-5, Fig. S1-S4). Expression dynamics of P. infestans genes encoding 

secreted proteins and effectors on susceptible (i.e., pre-infected) Arabidopsis were generally 

similar to those on potato, indicating that this pathogen colonizes pre-infected Arabidopsis in 

a similar manner as it colonizes its usual host plant (Fig. 6, Fig. S5B). In this study we used 

two different P. infestans isolates (88069td and 06_3928A) and obtained convergent results 
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from transcriptome analysis and cell biological studies. Therefore, colonization of Albugo-

infected Arabidopsis is not strain specific. 

  

P. infestans is a hemibiotroph and as such will initially colonize tissues biotrophically but will 

subsequently kill the tissue and feed on the remains. The initial biotrophic colonization 

including formation of haustoria is essential to colonization of host plants. We observed 

haustoria during colonization of A. laibachii-infected Arabidopsis. Furthermore, 

autofluorescence monitoring using fluorescence microscopy and cell death trypan blue 

staining (Fig. 4) show presence of cell death only upon P. infestans singular infection, but 

not upon A. laibachii/P. infestans co-infection. The induced expression of effector encoding 

genes previously associated with biotrophy in the P. infestans-potato host system lends 

further support to an initial biotrophic growth. In conclusion, there are no data supporting an 

immediate necrotrophy when applying P. infestans spores to A. laibachii-preinfected tissues. 

Instead, P. infestans exerts a hemibiotrophic lifestyle on potato as well as on A. laibachii 

colonized Arabidopsis. 

 

The finding that P. infestans can fully colonize immunosuppressed plants distantly related to 

its hosts indicates that pathogen host range may not be fully determined by a lack of 

essential factors in the nonhost, one of several resistance mechanisms generally thought to 

determine host specificity (Agrios, 2005). Indeed, there is little evidence that nonhost 

resistance results primarily from the absence of taxon-specific factors in the plant. For 

example, Garber’s nutritional theory, which postulates that resistant plants provide a 

“nutritional environment that is inadequate for a parasite” (Garber, 1956), has received little 

support over the years. By contrast, a greater understanding of the versatility and efficacy of 

the plant immune system has led to the view that active pre- and post-invasive defenses 

play a preponderant role in protecting most plants against most pathogens, and therefore in 

ultimately delimiting pathogen host range (Jones et al., 2006, Dodds et al., 2010).  

 

Our findings are consistent with the evolutionary history of the P. infestans lineage, which 

reflects significant plasticity in host range. This lineage, also known as clade 1c, consists of 

a tightknit group of closely related species that have specialized on host plants from four 

different botanical families as a consequence of a series of host jumps (Grunwald et al., 

2005, Raffaele et al., 2010, Dong et al., 2014). This indicates that on a macroevolutionary 

scale, the P. infestans lineage has the capacity to generate variants that can infect divergent 

host plants (Dong et al., 2015). The split between P. infestans and its sister species P. 

mirabilis is estimated to have occurred relatively recently ~1300 years ago (Yoshida et al., 

2013), providing some indication of the frequency of host jumps within the clade 1c lineage.  
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Albugo laibachii converts Arabidopsis into a fully susceptible host of P. infestans to a degree 

that has not been observed to date with genetic mutants. The pen2 and pen3 mutants, which 

are deficient in penetration resistance, display enhanced responses to P. infestans, 

exhibiting a macroscopically visible hypersensitive cell death that results from increased 

frequency of epidermal cell penetration (Lipka et al., 2005, Kobae et al., 2006, Stein et al., 

2006). However, the extent to which Arabidopsis penetration resistance to P. infestans is 

effective at stopping pathogen ingress is debatable given that penetration events can also be 

observed on wild-type Arabidopsis (Vleeshouwers et al., 2000, Huitema et al., 2003). In this 

study, we confirmed that penetration of Arabidopsis epidermal cells by P. infestans 

germinated cysts is commonly observed on wild-type Arabidopsis (Fig. 4). Thus, although 

pen mutants enable increased plant cell penetration, pre-invasive barriers do not fully block 

P. infestans infection, given that infection vesicles can be readily observed on mock-treated 

wild-type Arabidopsis at 16 hpi (Fig. 4). This view is consistent with the dramatic effect we 

observed on plants pre-infected with A. laibachii, which did not display P. infestans-triggered 

hypersensitivity probably as a consequence of post-invasive immunosuppression. 

Consistent with a post-invasive effect, A. laibachii did not alter Arabidopsis resistance to 

pathogens such as barley powdery mildew (Fig. S6) and Asian soybean rust fungi (Fig. S7), 

which cannot penetrate wild-type Arabidopsis cells, in sharp contrast to P. infestans (Fig. S2 

and S3).  

 

In P. infestans, as in many other filamentous pathogens, the expression of a subset of 

genes, notably secreted protein genes, is markedly induced during host infection (Haas et 

al., 2009, Cooke et al., 2012, Jupe et al., 2013, Pais et al., 2013). The mechanisms that 

underpin host signal perception by these pathogens, and the nature of these signals, remain 

largely unknown. We noted that the set of P. infestans effector genes induced on susceptible 

Arabidopsis largely overlaps with the genes induced in the host plant potato (Fig. 6). 

Patterns of effector gene expression displayed similar dynamics on both plants, with a peak 

during the biotrophic phase at 2 dpi. These results indicate that it is unlikely that P. infestans 

perceives a host-specific plant signal to trigger in planta gene induction. One possibility is 

that as the pathogen progresses from host cell penetration to intercellular hyphal growth to 

haustorium formation, it undergoes a developmental program that regulates gene 

expression. 

 

Thines (Thines, 2014) recently put forward the theory that Albugo-infected plants could serve 

as a bridge that enables other oomycetes to shift from one host plant to another. Indeed, 

repeated cycles of co-infection may facilitate the selection of genotypes of the maladapted 
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pathogen that are virulent on the nonhost, eventually leading to a host jump. This scenario 

may have occurred with downy mildew species of the genus Hyaloperonospora, which tend 

to share Brassicaceae hosts with Albugo spp. (Thines, 2014). However, the degree to which 

Albugo has affected the ecological diversification of P. infestans and possibly other 

Phytophthora is unclear. First, it is not known whether the two pathogens are sympatric in 

central and south America, the natural geographic range of P. infestans and its sister 

species (Grunwald et al., 2005, Goss et al., 2014). Second, unlike P. infestans, most 

Phytophthora spp. are soil pathogens that do not spread aerially and are thus unlikely to 

colonize Albugo-infected leaves. Nonetheless, the possibility that biotic agents, such as A. 

laibachii, have facilitated host jumps in the P. infestans lineage should not be disregarded 

and deserve to be studied, for example by genome sequencing of environmental leaf 

samples. Our study further highlights the importance of studying multitrophic interactions in 

order to fully understand the biology and ecology of plant pathogens (Kemen, 2014). 

 

Few diseases rival the effect of P. infestans on humankind (Fisher et al., 2012; Yoshida et 

al., 2013). Long after it triggered the Irish potato famine, this pathogen is still regarded as a 

threat to global food security and is an active subject of research (Kamoun et al., 2015). To 

date, P. infestans research has focused mainly on its interaction with Solanacaeous plants. 

Little progress has been achieved using model systems such as Arabidopsis thaliana, and 

work on Arabidopsis-P. infestans has been limited to studies of nonhost resistance (Huitema 

et al., 2003; Lipka et al., 2005; Kopischke et al., 2013). Other Phytophthora spp., e.g. P. 

brassicae, P. cinnamomi, P. parasitica, and P. capsici, have been shown to infect 

Arabidopsis but they have been exploited to a lesser extent in research (Roetschi et al., 

2001; Robinson and Cahill, 2003; Belhaj et al., 2009; Wang et al., 2011; Wang et al., 2013). 

The Arabidopsis - A. laibachii - P. infestans tripartite interaction opens up several new 

avenues of research: 1) to address the genetic diversity of Arabidopsis resistance towards P. 

infestans; 2) to define the degree to which Albugo spp. have influenced the ecological 

diversification of P. infestans and enabled host jumps throughout evolution; 3) to dissect the 

molecular mechanisms, and focal retargeting of plant secretory pathways of co-infected host 

cells, a situation that is likely to occur frequently under natural conditions. 

 

Experimental procedures 

 

Biological material:  

Arabidopsis thaliana plants were grown on an “Arabidopsis mix” (600 L F2 compost, 100 L 

grit, 200g Intercept insecticide) in a controlled environment room (CER) with a 10 h day and 
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a 14 h night photoperiod and at a constant temperature of 22°C. A. thaliana Col-0 ecotype 

was used for all experiments.  

 

P. infestans isolate 88069 expressing a cytosolic tandem RFP protein (88069td) and P. 

infestans strain 06_3928A (13_A2 clonal lineage) were cultured on rye sucrose agar at 18°C 

in the dark as described earlier (Chaparro-Garcia et al., 2011, Cooke et al., 2012). A. 

laibachii strain Nc14 was used in pre-infection experiments in this study (Kemen et al., 

2011). This strain was maintained on the Arabidopsis thaliana Col-5 line containing multiple 

insertions of the RPW8 powdery mildew resistance gene (Col-gl RPW8.1 RPW8.2) (Xiao et 

al., 2001). The infected plants were kept overnight in a cold room (5°C) then transferred to a 

growth cabinet under 10-h light and 14-h dark cycles with a 21°C day and 14°C night 

temperature as described (Kemen et al., 2011). Besides P. infestans and A. laibachii we 

used two obligate fungal parasites: Blumeria graminis f.hordei CH4.8 (IPKBgh) and 

Phakopsora pachyrhizi isolate PPUFV02. A summary of fungal isolates used in this study 

and how they were maintained is provided in Supplementary Table 2. 

 

Sequential infection assays 

All infection assays were performed on four- or five-week-old Arabidopsis plants of ecotype 

Col-0. Plants were pre-inoculated with a zoospore suspension of A. laibachii (7.5 x 105 

spores/ml) obtained from zoosporangia released from 14-day-old treated Col-gl RPW8.1 

RPW8.2 plants with A. laibachii isolate NC14 as described above. Briefly, whole Arabidopsis 

plants were sprayed with a zoospore suspension using a spray gun (1.25 ml/plant). They 

were incubated overnight in a cold room (5°C) in the dark and transferred later to a growth 

cabinet under 10-h light and 14-h dark cycles with a temperature of 21°C/14°C per day/night. 

Control plants were mock-treated with cold water. Plants pre-infected with A. laibachii NC14 

were then used for second infections eight to ten days after inoculation with the pathogens 

listed in Supplementary Table 2. Co-infection assays with P. infestans were performed on 

detached leaves or whole plants as described earlier (Chaparro-Garcia et al., 2011). Briefly, 

a zoospore suspension of P. infestans (1 × 105 spores ml−1) droplet was applied to the 

abaxial side of the leaf. Leaves were incubated on a wet paper towel in 100% relative 

humidity conditions with a 14 h/10 h day/night photoperiod and at a constant temperature of 

18°C.  

Co-infection assays with powdery mildew pathogen (Blumeria graminis f. sp. hordei isolate 

CH 4.8) were performed on detached Arabidopsis leaves. Three-centimeter leaf strips were 

cut from the cotyledon or 1st leaf of the barley cultivar and used as a control. Leaves were 

placed into agar plates containing 100 mg/l benzimidazole. Powdery mildew spores were 

collected from the barley-infected leaves on a piece of paper. Infection was made in a 
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settling tower by tapping and blowing the inoculum. Plates were allowed to settle for 10 min 

after infection in the tower before incubation in a growth cabinet at 15°C (16 h light / 8 h dark 

with 18°C light / 13°C dark) (Brown et al., 1990).  

Co-infection assays with the Asian soybean rust were performed on detached leaves with P. 

pachyrhizi isolate PPUFV02 as described (Langenbach et al., 2013). Briefly, uredospores 

from P. pachyrhizi-infected soybean leaves were collected at 14 days-post inoculation (dpi), 

suspended in 0.01% (v/v) Tween-20 at 1 mg/ml and used for inoculation. Spore suspension 

of P. pachyrhizi was sprayed on Arabidopsis leaves until the droplets covered the whole leaf 

surface. To allow fungal spore germination, infected leaves were maintained in moist 

conditions (100% humidity) and in the dark for the first 24 hpi. 

 

Cytological analysis of infected material 

Arabidopsis leaves infected with the red fluorescent P. infestans 88069td were visualized 

with a Fluorescent Stereo Microscope Leica M165 FC (Leica Microsystems Milton Keynes, 

UK) and an excitation wavelength for RFP: 510-560 nm. For confocal microscopy, patches 

of A. thaliana leaves were cut, mounted in water, and analyzed with a Leica DM6000B/TCS 

SP5 confocal microscope (Leica Microsystems) with the following excitation wavelength for 

the GFP and the RFP channels: 458 nm and 561 nm, respectively. Identical microscope 

settings were applied to all individuals.  

 

To quantify the HR cell death response in infected samples, leaves were stained with 

lactoglycerol-trypan blue and washed in chloral hydrate as described earlier (Belhaj et al., 

2009). Specimens were mounted on microscope slides and analyzed with a Leica 

DM2700 M microscope (Leica Microsystems). 

 

Powdery mildew structures were stained with lactoglycerol-trypan blue as described earlier 

(Vogel et al., 2000). Briefly, excised leaves were destained in ethanol overnight than washed 

thoroughly with in water and placed in lactoglycerol (1:1:1 lactic acid: glycerol: water). 

Specimens were mounted on microscope slides with a few drops of 0.1 % lactoglycerol-

trypan blue staining on top. Fungal structures were imaged with a Leica DM2700 M 

microscope (Leica Microsystems). 

 

Asian soybean rust-infected tissues were stained as described earlier in (Ayliffe et al., 2011). 

Briefly, Arabidopsis leaf tissue was placed in 1M KOH, then neutralized in 50 mM Tris, pH 

7.0. The leaf was then stained with wheat germ agglutinin conjugated to fluorescein 

isothiocyanate (WGA-FITC, Sigma-Aldrich, UK) at 20 g/ml. Specimens were mounted on a 
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microscope slide and analyzed with a Leica DM6000B/TCS SP5 confocal microscope (Leica 

Microsystems) with an excitation wavelength for GFP of 458 nm. 

All microscopy images acquired for the various infections were analysed by using the Leica 

LAS AF software, ImageJ (2.0) and Adobe PHOTOSHOP CS5 (12.0). 

 

Pathogen quantification  

Genomic DNA was extracted from infected tissues using the DNeasy Plant Mini KIT 

(Qiagen, UK), following the manufacturer’s protocol. Quantification of pathogen growth in 

planta was performed by quantitative PCR using a rotor gene 6000 apparatus (Corbett 

Research, UK) as previously described (Mauch et al., 2009). The PiO8 gene from P. 

infestans was used as a measure of in planta infection intensities of P. infestans with the 

following primers pair: PiO8-3-3F (5’-CAATTCGCCACCTTCTTCGA-3’) and PiO8-3-3R (5’-

GCCTTCCTGCCCTCAAGAAC-3’) (Judelson et al., 2000). SYBR Green (Qiagen, UK) was 

used as fluorescent reporter dye to amplify the PiO8 gene and was normalized to the 

Arabidopsis SAND gene (At2g28390) which was amplified with the following primer pairs 

SAND-F (5'-AACTCTATGCAGCATTTGATCCACT-3’) and SAND-R (5'-

TGATTGCATATCTTTATCGCCATC-3’) (Mauch et al., 2009). The following LightCycler 

experimental protocol was used: denaturation at 95°C for 15 min, amplification and 

quantification program repeated 40 times (94°C for 20s, 58°C for 20s and 72°C for 20s with 

two fluorescence measurements at 72°C for 20s (acquisition A on SYBR Green) and 77°C 

for 15s (acquisition B on SYBR Green)). A melting curve analysis was conducted from 60°C-

95°C in 0.5°C steps and 5s dwell time. Data were analyzed with the Rotor-Gene 4.4. 

Software package. The specificity of the amplification was confirmed by melting curve 

analysis. The amplification value (Efficiency) of each reaction was calculated. The ratio 

between P. infestans and Arabidopsis genomic DNA was calculated using the REST method 

as described (Pfaffl et al., 2002). 

 

Statistical analysis 

All data were analyzed using the Prism software version 6.01 (GraphPad Software, USA). A 

one-way ANOVA and repeated measures two-way-ANOVA were performed. Post hoc 

comparisons were conducted using the Fisher LSD test. A P value ≤ 0.001 or 0.05 was 

considered to be statistically significant. 

 

RNA sequencing and analysis of the P. infestans and A. laibachii transcriptome  

We sequenced the following samples: i) 1 RNA sample from P. infestans isolate 06_3928A 

mycelia grown on RSA media, ii) 2 RNA samples from the dual interaction of S. tuberosum 

(potato cv. Desiree) infected with P. infestans isolate 06_3928A and iii) 3 RNA samples from 
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the tripartite interaction of A. thaliana Col-0 sequentially infected with Albugo laibachii isolate 

NC14 and P. infestans isolate 06_3928A (Supplementary Table 3). These samples were 

labeled as: 1) Phytophthora infestans isolate 06_3928A mycelia grown on rye sucrose agar 

RSA (Pinf_mycRSA), 2) P. infestans isolate 06_3928A infecting Solanum tuberosum cv. 

Desiree and collected at 2 days post-incoculation (dpi) (Pinf_Stub_2dpi), 3) P. infestans 

isolate 06_3928A infecting S. tuberosum and collected at 3 dpi (Pinf_Stub_3dpi), 4) Albugo 

laibachii isolate NC14 colonizing Arabidopsis thaliana Col-0 sequentially infected with P. 

infestans isolate 06_3928A and collected at 1 dpi (Alai_Atha_Pinf_1dpi), 5) A. laibachii 

isolate NC14 colonizing A. thaliana sequentially infected with P. infestans isolate 06_3928A 

and collected at 2 dpi (Alai_Atha_Pinf_2dpi) and 6) A. laibachii isolate NC14 colonizing A. 

thaliana sequentially infected with P. infestans isolate 06_3928A and collected at 3 dpi 

(Alai_Atha_Pinf_3dpi). Mycelium was harvested after being grown in liquid Plich media for 

15 days. It was washed with distilled water, vacuum dried, and ground in liquid nitrogen for 

RNA extraction. Detached leaves of both plant species were inoculated with 10   of a 

zoospore solution of P. infestans isolate 06_3928A at 1 × 105 spores ml−1. Leaf discs were 

collected at 2 and 3 days post inoculation (dpi) using a cork borer No. 4. Infected leaf 

samples were ground in liquid nitrogen until a fine powder was obtained and stored at -80°C 

prior to RNA extraction. We used the RNeasy Plant Mini Kit (Qiagen, Cat No. 74904), 

following the manufacturer’s instructions, to extract total RNA for all samples. cDNA libraries 

were prepared from total RNA using the TruSeq RNA sample prep kit v2 (Cat No. RS-122-

2001). Library quality was confirmed before sequencing using the Agilent 2100 Bioanalyzer 

(Agilent Technologies). Sequencing was carried out using an Illumina Genome Analyzer II 

(Illumina Inc) with TruSeq Cluster generation kit v5  (Cat No. FC-104-5001) and TruSeq 

Sequencing kit v5 (Cat No. PE-203-5001). We performed read quality control by removing 

reads containing Ns and reads with abnormal read length (other than 76 bases) using 

FASTX-Toolkit version 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit). Total reads (76 bp 

paired-end) that that passed the parameters mentioned above for quality control were used 

for downstream analyses (Supplementary Table 3). All RNAseq reads are available at 

European Nucleotide Archive under the accession number PRJEB12248. 

To describe the gene expression of coding genes of Phytophthora infestans isolate 

06_3928A from the infected samples, we aligned each RNAseq experiment to the fasta 

nucleotide genome assembly of P. infestans strain T30-4 version 2_2 (Haas et al., 2009) 

using TopHat software package version 2.0.6 (Kim et al., 2013) with 200 bp as the insertion 

length parameter. The alignments we obtained in sam format from TopHat software (Kim et 

al., 2013) were used for extract the expression of genes in P. infestans (Supplementary 

Table 3). A two-stage analysis of the pathogen reads was applied to rescue multi-mapped or 

ambiguous reads that cannot be uniquely assigned to groups of genes. First, we generated 

http://hannonlab.cshl.edu/fastx_toolkit
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Reads Per Kilo Base per Million (RPKM) values for each gene by using the htseq-count 

script that is part of the HTSeq python module (Anders et al., 2014). Next, we rescued reads 

that were enriched for gene families using multi-map group (MMG) approach and 

customized perl scripts (Robert et al., 2015). In brief, we allocated multi-mapped reads 

based on probability of multi-mapped reads derived from particular locus that was calculated 

from RPKM, and then estimated final RPKM according to a published method (Mortazavi et 

al., 2008). The adjusted-RPKM values of all reads after rescues were transformed into Log2 

fold values by dividing the RPKM data to the RPKM values from mycelium of P. infestans 

isolate 06_3928A (Wagner et al., 2012). In planta-induced genes exhibiting at least two-fold 

gene induction between averaged media and infected sample (at 2 and/or 3 dpi) were 

considered induced during infection. Log2 values were loaded in Mev4_8 version 10.2 TM4 

microarray software suite (Saeed et al., 2003) and analysed using hierarchical clustering 

method, gene tree selection, average linkage method and Pearson correlation for distance 

metric selection. The gene expression heatmap obtained with Mev4_8 shows fold-induction 

for P. infestans (PITG) genes with gene descriptions that are color-coded and highlight 

effector type custom annotations (supplementary figure 5). We have also extracted read 

expression data of Albugo laibachii strain NC14 from the infected samples by aligning each 

time point to the A. laibachii NC14 reference genome (Kemen et al., 2011) using TopHat 

software v 2.0.6 and by generating RPKM values from read counts. 
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Figure Legends 

 

 

Figure 1. Albugo laibachii enables Phytophthora infestans to colonize Arabidopsis on 

detached leaves and on whole plants. (A) Control leaves (Mock) or leaves from A. 

thaliana Col-0 plants pre-infected with A. laibachii were detached and droplets of water (H20) 

or P. infestans spore solution were applied to their abaxial sides and incubated for 4 days in 

high humidity. (B) A close up of (A) reveals P. infestans sporulation (arrowheads) as a dense 

cover of leaves pre-infected by A. laibachii only. (C) Albugo laibachii enables P. infestans to 

colonize leaves infected on a whole plant. A. thaliana Col-0 plants treated with water (H20) or 

pre-infected with A. laibachii were inoculated with droplets of water (H20) or P. infestans 

spore solution and incubated in high humidity. (A) Macroscopic observations of disease 

symptoms on whole plants at 3 days post inoculation. (D) A closeup of (C) reveals P. 

infestans disease symptoms only on leaves pre-colonized by A. laibachii (right panel). (E) 

The extent of P. infestans hyphal colonization (under RFP illumination) was assessed 3 days 

post inoculation using epifluorescence microscopy. Scale bar= 250 m. All experiments 

were performed at least twice with similar results. 
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Figure 2. A. laibachii pre-infection supports extensive hyphal growth of P. infestans in 

Arabidopsis. (A) Abaxial sides of control leaves of A. thaliana Col-0 (left column) and 

leaves pre-infected with A. laibachii (right column) have been infected with red fluorescent P. 

infestans 88069td. The extent of A. laibachii sporulation (under GFP illumination visible as 

green autofluorescent pustules, upper row) and P. infestans hyphal colonization (visible 

under RFP illumination as red hyphal network, middle row) was assessed 3 days post 

inoculation using epifluorescence microscopy. Bottom row represents merged fluorescence 

pictures. (B) Abaxial sides of co-infected leaves at 2 dpi exhibiting dual colonization of P. 

infestans (in red) and by A. laibachii hyphae (not fluorescently labelled, indicated by yellow 

arrowheads) within the same area. 

All experiments were performed twice with similar results. Abbreviations: ps: pustules, h: 

hyphae; s: spores, gc: germinating cyst. Scale bars = 250 m (A) or 50 m (B). 
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Figure 3. Quantification of P. infestans biomass upon infection of A. thaliana pre-

infected with A. laibachii. Five-week old leaves of A. thaliana Col-0 pre-infected with A. 

laibachii were detached and drop-inoculated with a zoospore suspension of P. infestans 

isolate 06_3928A or mock-treated with water applied to their abaxial sides and incubated for 

4 days under high humidity. DNA was extracted at 0, 1, 2, 3, and 4 days post inoculation and 

used for quantitative PCR (qPCR) for PiO8 with gene-specific primers for P. infestans. 

Pathogen DNA levels were normalized to the Arabidopsis SAND gene (At2g28390) and the 

relative amount of Pi08 was normalized to the DNA level in mock-inoculated samples. Data 

are representative of one biological replicate with three technical replicates of qPCR 

reaction. Bars represent ratio between mean normalized expression of the infected samples 

with P. infestans and A. laibachii and the mock-treated sample with A. laibachii and water 

(calibrator) (Mean ± SE). Data was analyzed using repeated measures two way-ANOVA (P 

<0.0001). Letters indicate significant results of Fisher’s LSD post-hoc test. Experiment was 

performed twice with similar results.  
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Figure 4. Hypersusceptibility of A. thaliana to P. infestans in leaves pre-infected with 

A. laibachii is accompanied by a loss of the hypersensitive response 

Five-week-old leaves of A. thaliana Col-0 mock-treated or pre-infected with A. laibachii were 

drop-inoculated with a zoospore suspension of red fluorescent P. infestans 88069td 

Pathogen structures and autofluorescent dead epidermal cells were visualized with confocal 

laser scanning microscopy at 16 hpi (A-D) and at 24 hpi (E-H) in samples treated with P. 

infestans only (A, C, E, F) and in co-infection experiments with A. laibachii (B, D, G, H). 

Panel F represents a maximum projection of images produced from 18 Z stacks showing a 

hypersensitive response of the same area as panel E. All experiments were performed twice 

with similar results. (I) Counts of dead cells per leaf after infection with P. infestans in the 

presence or absence of pre-infection with A. laibachii. Data are representative of two 

biological replicates. Each replicate consists of counts from 8 independent leaves. Bars 

represent mean ± SD. Data was analyzed using one-way-ANOVA (P <0.0001). Letters 

indicate significant results of Fisher’s LSD post-hoc test. The two light microscopy inserts 

show examples of an HR cell death in infected leaves with P. infestans only (top panel) and 

of absence of HR cell death in co-infection experiments with A. laibachii and P. infestans 

(low panel) at 24 hpi.  

Abbreviations: sp: spores, gt: germ tube, ap: appressorium, ec: empty cyst, pp: penetration 

peg, iv: infection vesicle, HR: hypersensitive cell death, max. proj.: maximum projection. 

Scale bar = 25 m (A-F) or 7.5 m (G-H). 
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Figure 5. Phytophthora infestans and Albugo laibachii can form haustoria in the same 

Arabidopsis cell. (A) A. thaliana Col-0 precolonized with A. laibachii was infected with red 

fluorescent P. infestans 88069td. Inspection by microscopy at 2 dpi revealed the presence of 

haustoria. (B) Frequently, plant cells were observed to harbor digit-like, red fluorescent P. 

infestans 88069td haustoria as well as knob-like A. laibachii haustoria. All experiments were 

performed twice with similar results. 

Abbreviations: #: haustoria of A. laibachii, *: haustoria of P. infestans. Scale bar = 25 m (A) 

or 7.5 m (B). 
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Figure 6. Similar sets of effectors are induced during P. infestans colonization of 

potato (Solanum tuberosum) and Arabidopsis pre-infected with A. laibachii. (A) 

Numbers of commonly and uniquely induced genes encoding secreted P. infestans proteins 

and effectors (a subset of the secreted proteins). (B) Dot blot comparing the transcript levels 

of P. infestans effector-encoding genes between S. tuberosum and Arabidopsis pre-infected 

with A. laibachii  at 2 (left panel) and 3 days post infection (right panel). (C) Gene expression 

intensities relative to the average expression intensity in media (Rye sucrose) are shown for 

genes encoding avirulence proteins (Gene IDs in parentheses) during the interaction of P. 

infestans with A. laibachii pre-infected Arabidopsis leaves (left panel) and S. tuberosum 

leaves (right panel) induced at 2 dpi and 3 dpi. Genes encoding ubiquitin ligases, Elongation 

factor 2 and Actin are shown as uninduced controls. All expression intensities are log2 

transformed. 
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Supplementary Figure 1. Gene expression as reads per kilobase per million mapped reads 

(RPKM) values for two ubiquitin control genes in P. infestans strain 3928A and Albugo 

laibachii strain NC14 during co-infection in A. thaliana Col-0. RPKM values were obtained 

from RNAseq reads counts using HTSeq program. RPKM values show that the expression 

of two P. infestans ubiquitin control genes PITG_08025 and PITG_03199 increases over 

time but the expression of two other similar control genes in A. laibachii AlNc14C187G8343 

and AlNc14C38G3321 are maintained. The expression of these ubiquitin genes was used as 

markers to measure accumulation of biomass of Phytophthora infestans and Albugo laibachii 

during co-infection on A. thaliana. 

 

Supplementary Figure 2. A. laibachii pre-colonization supports formation of P. 

infestans infection structures in Arabidopsis beyond the surface penetration stage. 

Time course of red fluorescent P. infestans 88069td infection on A. thaliana Col-0 pre-

infected with A. laibachii or mock-treated with water. (A) A. laibachii pre-colonized A. 

thaliana shows the first hyphae of P. infestans 88069td inside the leaf at 1.5 dpi and 

extensive intercellular colonization of A. thaliana Col-0 leaf mesophyll at 2 and 3 dpi. (B) P. 

infestans does not grow on A. thaliana control leaves. Scale bars = 250 m (A, C) or 50 m 

(B). Experiment was performed twice with similar results. Abbreviations: h: hyphae of P. 

infestans; gc: germinating cyst of P. infestans; ps: pustules of A. laibachii.  

 

Supplementary Figure 3. P. infestans can form haustoria in the nonhost plant 

Arabidopsis pre-treated with A. laibachii. A. thaliana Col-0 precolonized with A. laibachii 

was inoculated with red fluorescent P. infestans 88069td. Inspection by microscopy at 2 dpi 

revealed the presence of digit-like haustoria of P. infestans independently of A. laibachii. 

Experiment was performed twice with similar results. 

Abbreviations: #: haustoria of A. laibachii, *: haustoria of P. infestans. Scale bar = 10 m. 

 

Supplementary Figure 4. P. infestans can extensively colonize and sporulate on 

nonhost Arabidopsis precolonized with A. laibachii. A. thaliana Col-0 precolonized with 

A. laibachii was inoculated with red fluorescent P. infestans 88069td and imaged at 3 days 

post inoculation with confocal laser scanning microscopy. The upper panel shows confocal 

micrographs of hyphal extension and sporulation of P. infestans in A. laibachii pre-treated 

Arabidopsis leaves. The lower panel is a closeup of the region highlighted by the dotted 

square in the upper panel and shows P. infestans emerging sporangiophores from the leaf 

surface, giving rise to lemon-shaped zoosporangia. Experiment was performed twice with 

similar results. 

Scale bar = 100 m (upper panel) or 10 m (lower panel). 
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Supplementary Figure 5. P. infestans genes encoding secreted proteins during 

infection of potato and Arabidopsis precolonized with A. laibachii.  

The heat map (A) illustrates 325 genes encoding secreted proteins; these genes were 

induced at least 2-fold during the interaction of P. infestans with S. tuberosum leaves at 2 dpi 

and 3 dpi and during the interaction with Arabidopsis leaves colonized with A. laibachii at 1, 

2, and 3 dpi. These genes were mean-centered and hierarchically clustered by Euclidean 

distance. (B) Expression dynamics of selected P. infestans AVR genes and constitutively 

expressed control genes at 1, 2, and 3 days post inoculations (dpi). 

 

Supplementary Figure 6. A. laibachii does not enable the nonhost powdery mildew 

pathogen to infect nonhost Arabidopsis. A. thaliana Col-0 mock-treated (control) or 

precolonized with A. laibachii was inoculated with Blumeria graminis f.sp hordei (Bgh) isolate 

CH4.8. The susceptible Barley cv. Golden Promise was used as a control for the infection. 

(A) Macroscopic phenotype of disease symptoms two weeks post inoculation with Bgh 

isolate CH4.8. (B) Maximum projection of images produced by light microscopy from 14 Z-

stacks from infected tissues. Micrographs show fungal structures 2 weeks post infection in 

both control (right panel) and samples pre-colonized with A. laibachii (left panel) and reveal 

that the fungus was stopped at the penetration stage in both interactions. Experiment was 

performed twice with similar results. 

Abbreviations: c: conidium, pgt: primary germ tube, sgt: secondary germ tube, 

ap:appressorium, pa: papillae, ha: haustoria of A. laibachii, #: conidiospores of A. laibachii. 

Scale bar = 10 m. 

 

Supplementary Figure 7. A. laibachii does not enable the nonhost Asian soybean rust 

to infect nonhost Arabidopsis Five-week-old A. thaliana Col-0 mock-treated (control) or 

precolonized with A. laibachii was inoculated with spore suspension of Phakopsora 

pachyrhizi isolate PPUFV02 and incubated in high humidity. Pathogen structures were 

visualized with confocal laser scanning microscopy under GFP illumination at 6 days post 

inoculation. The micrographs show uredisniospores germinating on the leaf surface, 

producing an appressorium with no further growth in both control (upper panel) and pre-

colonized samples with A. laibachii (middle and lower panels). All experiments were 

performed twice with similar results. 

Abbreviations: u: urediniospore, ap:appressorium, st: stomata, #: conidiospores of A. 

laibachii. Scale bar = 10 m. 
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Supplementary Table 1. List of expressed genes in both potato/P.infestans and A. 

thaliana/A. laibachii-P. infestans interactions. The file compiles three different worksheets 

containing lists (list 1-3) of genes of P. infestans and their expression profiles during infection 

in potato (List 1) and/or in A. thaliana preinfected with A. laibachii (List 2-3). List 1 comprises 

10,698 coding genes of P. infestans on potato. List 2 comprises 7118 coding genes that are 

expressed in A. thaliana preinfected with A. laibachii only when compared to potato - P. 

infestans interaction. List 3 is a set of 325 in planta-induced genes encoding secreted 

proteins in both treatments (potato and pre-infected A. thaliana with A. laibachii). 

Abbreviations: GSR: gene sparse region, GDR: gene dense region, InBW: in between in 

between gene sparse and gene dense, NA: not applicable. If an NA is present in a column 

with annotations, this refers to no annotation to that type or description. If NA is present in a 

column with expression data this refers to a lower expression than 2-fold (or log2 <1) and in 

consequence it was not considered as in planta induced for that particular gene.  

 

Supplementary Table 2. Summary of pathogen isolates and media or susceptible plants 

used for maintaining pathogens. 

 

Supplementary Table 3. Alignment statistics of P. infestans isolate 06_3928A RNA 

sequences in infected materials. Pair-end reads of 06_3928A isolate were aligned to the 

reference genome strain T30-4 with the TopHat software package.  

 


