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Highlights

• Accurate and efficient numerical solver for the full nonlinear problem.
• Reduction of the original problem to a lower-dimensional system of equations.
• Series expansion for the Dirichlet-Neumann operator in the axisymmetric case.
• Study of head-on and overtaking collisions of axisymmetric solitary waves.
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Abstract

We present a new numerical method to simulate the time evolution of axisym-

metric nonlinear waves on the surface of a ferrofluid jet. It is based on the

reduction of this problem to a lower-dimensional computation involving surface

variables alone. To do so, we describe the associated Dirichlet–Neumann op-

erator in terms of a Taylor series expansion where each term can be efficiently

computed by a pseudo-spectral scheme using the fast Fourier transform. We

show detailed numerical tests on the convergence of this operator and, to illus-

trate the performance of our method, we simulate the long-time propagation

and pairwise collisions of axisymmetric solitary waves. Both depression and

elevation waves are examined by varying the magnetic field. Comparisons with

weakly nonlinear predictions are also provided.

Keywords: Dirichlet–Neumann operator, ferrofluid jet, pseudo-spectral

method, series expansion, solitary waves

1. Introduction

Due to surface tension, it is well-known that an inviscid liquid jet (in the ab-

sence of gravity) is unstable to long-wave disturbances with wavelength greater
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than the jet circumference, eventually leading to the formation of disconnected

droplets (Rayleigh, 1878). It has been observed however that a magnetic field

can be used to suppress this Rayleigh instability for a jet composed of a ferrofluid

(Arkhipenko and Barkov, 1980).

Ferrofluids are colloidal liquids made of ferromagnetic nano-particles sus-

pended in a carrier Newtonian fluid (e.g. an organic solvent or water). There-

fore, in the presence of an external magnetic field, they become strongly mag-

netized and experience a body force. Ferrofluids have been a topic of intense

research for the last few decades because of their potential commercial applica-

tions in various sectors. Industrial applications include 100% leak-free sealants,

optical filters, heat sinks for loud speakers and transformers, viscous dampers,

separators, magnetic fluid inks, actuators, acceleration and position probes, etc.

(Raj et al., 1995). There are also medical applications exploiting the extreme

relative size difference between magnetic nano-particles and living cells. Exam-

ples include blood flow tracing in non-invasive circulatory measurements and

magnetic drug targeting. In the latter case, the drugs would be enclosed by a

ferrofluid layer and injected into the patient’s body where they could be released

at a specific location and time by turning off the magnetic field (Scherer and

Figueiredo Neto, 2005). In addition, ferrofluids have been employed to study

many intriguing phenomena and fundamental aspects of fluid mechanics, e.g. to

obtain insight into colloidal forces and their role in the stabilization of colloidal

suspensions, which has led to new applications for ferrofluid-based emulsions

(Philip et al., 2002).

Of particular interest here is the set-up where a ferrofluid jet is exposed to an

azimuthal magnetic field generated by a thin current-carrying wire positioned

along the jet axis. The induced axisymmetric body force has a stabilizing effect

and allows long-wave disturbances to develop on the jet surface (Bashtovoi and

Foigel, 1983; Bashtovoi et al., 1983). In this configuration, Rannacher and

Engel (2006) confirmed via a linear stability analysis that the jet can indeed

be stabilized and derived the cylindrical Korteweg–de Vries (KdV) equation

describing axisymmetric weakly nonlinear disturbances in the long-wave limit.
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These authors identified soliton solutions to this model and showed that they

are elevation waves (with a central hump) if 1 < B < 3/2 and are depression

waves (with a central dip) if 3/2 < B < 9, where B denotes the magnetic Bond

number. For B < 1, the jet is unstable (Arkhipenko and Barkov, 1980). More

recently, Bourdin et al. (2010) reported the first experimental observation of

such axisymmetric waves and found a good agreement with the KdV predictions.

Blyth and Părău (2014) subsequently revisited this ferrofluid problem by solving

the fully nonlinear equations numerically. After a hodograph transformation

of these equations, a finite-difference scheme was used to discretize them over

the entire fluid domain. Comparisons with results of Rannacher and Engel

(2006) and Bourdin et al. (2010) were made, and new nonlinear branches of

solitary wave solutions were found. These include limiting cases such as a static

wave with zero phase speed and overhanging waves with a trapped toroidal-

shaped bubble. It should be pointed out however that Blyth and Părău (2014)

only computed steadily progressing solutions whose profile is fixed in a moving

reference frame.

In the present paper, we extend the results of Rannacher and Engel (2006)

and Blyth and Părău (2014) by solving the full time-dependent nonlinear prob-

lem. For this purpose, we propose a new numerical approach based on the re-

duction of the original Laplace problem to a lower-dimensional system involving

quantities evaluated only at the jet surface. No conformal or hodograph trans-

formation is required, so the resulting equations are still written in terms of the

physical Eulerian coordinates. This reduction is accomplished by introducing

the Dirichlet–Neumann operator (DNO) which, in light of its analyticity prop-

erties, is expressed via a convergent Taylor series expansion about the uniform

cylindrical geometry of the jet. Each term in this Taylor series is determined

recursively as a sum of concatenations of Fourier multipliers with powers of

the surface deformation, and thus is efficiently computed by a pseudo-spectral

method using the fast Fourier transform. This computational efficiency is the

key benefit of our surface formulation as compared to a volumetric one (Blyth

and Părău, 2014) and thus makes our numerical method particularly suitable
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for simulating the time evolution. Extensive numerical tests on the convergence

of the DNO and on the accuracy of the time-integration scheme are provided.

Although the present algorithm is applicable to a wide range of nonlinear wave

phenomena, we focus here on solitary wave solutions, motivated by the above-

mentioned literature. Numerical simulations of solitary wave collisions in var-

ious magnetic regimes are performed to illustrate their characteristics in this

ferrofluid problem and to demonstrate the effectiveness of our numerical ap-

proach. Solutions from the finite-difference method of Blyth and Părău (2014)

are used to initialize our time-dependent computations, and the ensuing solitary

wave collisions are compared with KdV predictions.

To our knowledge, this is the first time that such a numerical model is ap-

plied to investigating the present problem. In particular, the surface formulation

as well as the derivation of the DNO in its series form and the corresponding

numerical testing have previously never been reported for this axisymmetric

cylindrical configuration. Earlier papers on DNO expansions have dealt with

various examples from acoustics, electromagnetics and hydrodynamics featuring

irregular domains (Milder, 1991; Craig and Sulem, 1993; Nicholls and Nigam,

2004; Fang et al., 2007; Fang and Nicholls, 2014) but they have only consid-

ered cases where the bulk equations and boundary conditions are linear in the

field variables or where the reference geometry is rectangular with Cartesian

coordinates. In addition, most of these previous studies only examined the

time-harmonic regime and thus did not explicitly solve the time-evolution prob-

lem. The only exception that we are aware of is de la Llave and Panayotaros

(1996) who proposed a Hamiltonian formulation for nonlinear gravity waves

on the surface of a sphere and derived a series expansion of the corresponding

DNO in terms of spherical coordinates. This however was a theoretical work

of different nature than ours and it did not produce any numerical result. As

will be shown below, the series expansion of our DNO is established by using

a harmonic solution to the Laplace equation whose form depends of course on

the geometry of the problem. We also conduct here the first study of axisym-

metric solitary wave collisions in the highly nonlinear regime and find notable
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qualitative differences compared to e.g. water waves in the classical rectangular

configuration. This follows upon Bourdin et al. (2010)’s conclusions suggesting

that such a study would be of interest.

The remainder of the paper is organized as follows. In Section 2, we present

the mathematical formulation of this axisymmetric ferrofluid problem, including

the reduction to surface variables and the Taylor series expansion of the DNO.

In Section 3, we describe the numerical methods for spatial and temporal dis-

cretization of the governing equations, including the procedures for generating

the initial conditions, for de-aliasing and filtering. Section 4 shows numerical

tests on the convergence of the DNO as well as applications to solitary waves,

including their long-time propagation and pairwise collisions. Both depression

and elevation waves are examined depending on B. Finally, concluding remarks

are given in Section 5.

2. Mathematical formulation

2.1. Governing equations

Following Rannacher and Engel (2006) and Blyth and Părău (2014), we con-

sider the inviscid, incompressible and irrotational flow of a liquid jet of density

ρ along the outside of a cylindrical metal rod of radius b. The liquid flows in

the z-direction of a cylindrical coordinate system (r, θ, z). Moreover, we assume

conditions of axisymmetry so that all variables are independent of θ. In the

basic steady configuration, the jet surface is a circular cylinder of radius r = a.

The jet liquid is taken to be a ferrofluid, i.e. a liquid that can be magnetized

and thereby experience a body force in the presence of an external magnetic

field. The axial rod carries a current I in the z-direction which generates an

azimuthal magnetic field

B =
μ0Ieθ
2πr

,
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where eθ is the unit vector in the θ-direction. The magnetic field induces a

radial body force per unit volume in the ferrofluid, given by

F =
χ

μ0
B · ∇B = −μ0χI

2

4π2r3
er ,

where er is the unit vector in the r-direction, χ is the magnetic susceptibility

of the ferrofluid and μ0 = 4π × 10−7 H m−1 is the magnetic permeability in a

vacuum.

For convenience, we introduce the dimensionless spatial and temporal vari-

ables

r̃ =
r

a
, z̃ =

z

a
, t̃ =

√
γ

a3ρ
t ,

so that a = 1 and γ/ρ = 1, where γ is the surface tension at the free surface of

the jet. Dropping the tildes, the jet surface is located at r = S(z, t) = 1+η(z, t),

where η denotes the surface deformation relative to the basic configuration r = 1.

The flow in the ferrofluid is described by a velocity potential Φ(z, r, t) so that the

velocity field is given by u = ∇Φ. This velocity potential satisfies the Laplace

equation

∇2Φ = 0 , for z ∈ R , b < r < S(z, t) , (1)

where ∇ = (∂z, ∂r)
�. At the axial rod r = b, a no-flux condition is imposed,

namely

∂rΦ = 0 . (2)

At the free surface r = S(z, t), the two nonlinear boundary conditions are the

kinematic condition

∂tS + (∂zΦ)(∂zS) = ∂rΦ , (3)

and the dynamic (or Bernoulli) condition

∂tΦ+
1

2
|∇Φ|2− ∂2

zS

(1 + (∂zS)2)3/2
+

1

S
√
1 + (∂zS)2

−1− B

2

(
1

S2
− 1

)
= 0 , (4)
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where

B =
μ0χI

2

4π2γa
,

is the magnetic Bond number. To preserve the axial symmetry of the problem,

gravity is neglected. The third, fourth and fifth terms on the left-hand side

of (4) represent the capillary pressure, while the last group of terms involving

B represents the magnetic stress. The two latter equations govern the time

evolution of the jet surface.

Mass (or volume) as defined by

V =

∫ ∞

−∞
η dz , (5)

is a simple invariant of motion for (1)–(4), which will be established in a sub-

sequent section. We remark however that Eq. (5) is not the actual volume

integral in this axisymmetric cylindrical setting, which would be given by

W =

∫ ∞

−∞

∫ 2π

0

∫ 1+η

0

rdr dθ dz = π

∫ ∞

−∞
(1 + η)2 dz ,

or simply

W =

∫ ∞

−∞
(1 + η)2 dz , (6)

if the coefficient π is omitted. Although not crucial, we may subtract unity from

the integrand of (6) to ensure that the integral exists in the limit η → 0. As

shown below, our numerical simulations suggest that Eq. (6) is also an invariant

of motion but we have no mathematical proof for this fact. Apart from these two

quantities, we are unaware of any conserved energy for this system. Hereafter,

for simplicity, we will restrict ourselves to the case b = 0 corresponding to a

very thin conducting rod, as in Bashtovoi and Foigel (1983) and Rannacher and

Engel (2006). The more realistic case 0 < b < 1 simply changes the geometry of

the domain, would make the algebra more tedious and accordingly would lead

to more complicated equations, but the proposed approach remains the same in

principle.
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2.2. Linearized problem

Because we are interested in waves propagating at the jet surface, we first

examine the linearized problem. The dispersion relation for solutions of the

form

S = 1 + εAei(kz−ωt) , Φ = εf(r)ei(kz−ωt) ,

where ε � 1 is a small parameter, and A and f(r) are unknowns to be deter-

mined, reads

c2 =
(k2 +B − 1)I1(k)

kI0(k)
, (7)

where I0, I1 are modified Bessel functions of the first kind and c = ω/k is the

phase speed of linear waves. In the long-wave limit k → 0, this phase speed

reduces to

c0 =

(
B − 1

2

)1/2

. (8)

A key observation to be made from (7) is that the jet is unstable if B < 1, in

which case there is a range of wavenumbers k <
√
1−B for which c is purely

imaginary and disturbances are amplified. If B ≥ 1, then the wave speed c

is real and neutral waves exist for arbitrary wavenumber k. It follows that a

magnetic field of sufficient intensity can stabilize the Rayleigh capillary mode

responsible for jet breakup under normal conditions (Rayleigh, 1878). Hence,

the latter range of B is the regime of interest where we will look for nonlinear

wave solutions. A more detailed linear analysis can be found in Rannacher and

Engel (2006).

2.3. Surface formulation

Similarly to other free-surface flow problems such as water waves (Craig

and Sulem, 1993; Craig and Nicholls, 2002; Guyenne and Nicholls, 2007; Xu

and Guyenne, 2009), we can reduce the dimensionality of the Laplace problem

(1)–(4) by introducing

ξ(z, t) = Φ(z, 1 + η(z, t), t) , (9)
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the trace of the velocity potential on the free surface r = 1 + η(z, t), together

with the Dirichlet–Neumann operator (DNO)

G(η)ξ =
√

1 + (∂zη)2 ∂nΦ
∣∣∣
r=1+η

= (−∂zη, 1)
� · ∇Φ

∣∣∣
r=1+η

, (10)

which is the singular integral operator that takes Dirichlet data ξ on r = 1 +

η(z, t), solves the Laplace equation (1) for Φ subject to (2), and returns the

corresponding Neumann data (i.e. the normal velocity ∂nΦ on the free surface).

Note that ∂tS = ∂tη and ∂zS = ∂zη. It is also pointed out that the DNO is

linear in ξ but depends nonlinearly on η.

With these definitions, we are able to express the boundary conditions (3)–

(4) in terms of surface variables alone. Recall that the jet surface is where the

dynamics of interest takes place. In particular, all the spatial and temporal

derivatives of Φ on r = 1 + η(z, t) can be explicitly written in terms of η and ξ

(and their derivatives) together with G(η)ξ. For this purpose, we use a number

of identities namely

∂tξ = ∂tΦ+ (∂rΦ)(∂tη)
∣∣∣
r=1+η

, ∂zξ = ∂zΦ+ (∂rΦ)(∂zη)
∣∣∣
r=1+η

, (11)

by differentiating (9) and using the chain rule, as well as

G(η)ξ = ∂rΦ− (∂zΦ)(∂zη)
∣∣∣
r=1+η

,

by virtue of (10). This implies

∂zΦ = ∂zξ − (∂rΦ)(∂zη)
∣∣∣
r=1+η

, (12)

and

∂rΦ = G(η)ξ + (∂zΦ)(∂zη) = G(η)ξ +
[
∂zξ − (∂rΦ)(∂zη)

]
(∂zη)

∣∣∣
r=1+η

,

= G(η)ξ + (∂zξ)(∂zη)− (∂rΦ)(∂zη)
2
∣∣∣
r=1+η

,
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which yields

∂rΦ
∣∣∣
r=1+η

=
1

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
. (13)

Then, by substituting (13) back into (12) and (11), we obtain

∂zΦ
∣∣∣
r=1+η

= ∂zξ − ∂zη

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
,

=
1

1 + (∂zη)2

[
∂zξ − (∂zη)G(η)ξ

]
, (14)

and

∂tΦ = ∂tξ − (∂rΦ)(∂tη)
∣∣∣
r=1+η

,

= ∂tξ − G(η)ξ

1 + (∂zη)2

[
G(η)ξ + (∂zξ)(∂zη)

]
.

For the latter equation, we have also used the fact that

∂tη = ∂rΦ− (∂zΦ)(∂zη)
∣∣∣
r=1+η

= G(η)ξ ,

according to the kinematic condition (3) and the definition (10) of the DNO.

Moreover, adding up the squares of (13) and (14),

(∂rΦ)
2
∣∣∣
r=1+η

=
1

(1 + (∂zη)2)2

[
(G(η)ξ)2 + 2(∂zη)(∂zξ)G(η)ξ + (∂zη)

2(∂zξ)
2
]
,

(∂zΦ)
2
∣∣∣
r=1+η

=
1

(1 + (∂zη)2)2

[
(∂zξ)

2 − 2(∂zη)(∂zξ)G(η)ξ + (∂zη)
2(G(η)ξ)2

]
,

leads to

(∂zΦ)
2 + (∂rΦ)

2
∣∣∣
r=1+η

=
1

(1 + (∂zη)2)2

[
(1 + (∂zη)

2)(∂zξ)
2 + (1 + (∂zη)

2)(G(η)ξ)2
]
,

=
1

1 + (∂zη)2

[
(∂zξ)

2 + (G(η)ξ)2
]
.
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Inserting these expressions in (3)–(4) gives a closed system of two equations

∂tη = G(η)ξ , (15)

∂tξ = − 1

2(1 + (∂zη)2)

[
(∂zξ)

2 − 2(∂zη)(∂zξ)G(η)ξ − (G(η)ξ)2
]

(16)

+
∂2
zη

(1 + (∂zη)2)3/2
− 1

(1 + η)
√
1 + (∂zη)2

+ 1 +
B

2

[
1

(1 + η)2
− 1

]
,

for the two surface variables η and ξ, which is completely equivalent to the

original formulation (1)–(4). Recall that, by construction, the solution of the

Laplace equation (1) subject to the no-flux condition (2) at r = 0 is encoded in

the DNO. Details are provided in the next section.

2.4. Dirichlet–Neumann operator

As shown by Coifman and Meyer (1985), Craig et al. (1997) and Craig

(2008) for data defined on the whole hyperplane, and by Nicholls and Reitich

(2001a) and Hu and Nicholls (2005) for periodic data, the DNO has a number

of properties including:

(i) it is self-adjoint,

(ii) it is analytic in η,

under certain (relatively mild) regularity conditions on the free surface (say η ∈
C1). It is reasonable to assume that these properties hold in our axisymmetric

cylindrical configuration although we leave the details of their rigorous analysis

outside the scope of this paper. We refer the interested reader to Nicholls and

Nigam (2004) and Fang et al. (2007) who rigorously established the analyticity

of the DNO in the two-dimensional circular and three-dimensional spherical

settings, respectively.

Property (i) can be used to easily prove the conservation of V in time as

stated above. We first remark that G(η)1 = 0 which directly follows from the

definition (10) of the DNO by substituting Φ with 1. From (5), we have

dV

dt
=

∫ ∞

−∞
∂tη dz .
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Then using (15) and integrating by parts lead to

dV

dt
=

∫ ∞

−∞
G(η)ξ dz =

∫ ∞

−∞
ξ G(η)1 dz = 0 .

The question now is, given η and ξ at time t, how to evaluate G(η)ξ so that

Eqs. (15)–(16) can be completed and then solved. To this aim, we proceed

as outlined earlier when defining the DNO. Considering harmonic functions of

the form Φ = f(r)eikz associated with wave propagation in the z-direction,

where the t-dependence is omitted since the domain is fixed at a given time,

and inserting this expression into (1) yield the modified Bessel’s equation

κ2f ′′ + κf ′ − κ2f = 0 , (17)

where κ = kr and the primes represent differentiation with respect to κ. The

general solution of (17) can be written as a linear combination of modified Bessel

functions of the first and second kinds, I0 and K0 respectively. Here we only

need to consider I0 because the no-flux condition (2) at r = 0 cannot be enforced

with K0. Hence the choice of harmonic solution

Φ = I0(kr)e
ikz , (18)

is sufficient for the purposes of our derivation since the DNO is linear in ξ. It

readily follows from (18) that

∂rΦ = kI ′0(kr)e
ikz = kI1(kr)e

ikz , ∂zΦ = ikI0(kr)e
ikz ,

which confirms that ∂rΦ|r=0 ∼ I1(0) = 0. An extensive review on the modified

Bessel functions and their properties can be found in e.g. Abramowitz and

Stegun (1972).
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Next we will take advantage of the analyticity property (ii) to derive a Taylor

series expansion in η,

G(η) =
∞∑
j=0

Gj(η) , (19)

for evaluating the DNO. Each term Gj in (19) is homogeneous of degree j in η,

and thus its action on the basis function eikz can be characterized recursively

in the following way. Substituting (18) and (19) into (10) gives

( ∞∑
j=0

Gj(η)
)
I0
(
k(1 + η)

)
eikz =

[
I1
(
k(1 + η)

)− i(∂zη)I0
(
k(1 + η)

)]
keikz ,

which becomes

( ∞∑
j=0

Gj(η)
)( ∞∑

n=0

(kη)n

n!
I
(n)
0 (k)

)
eikz =

∞∑
n=0

(kη)n

n!

[
I
(n)
1 (k)−i(∂zη)I

(n)
0 (k)

]
keikz ,

after Taylor expanding I0
(
k(1+η)

)
and I1

(
k(1+η)

)
about η = 0. The functions

I
(n)
0 , I

(n)
1 denote the n-th derivatives of I0, I1 with respect to their arguments.

Then identifying terms of the same degree in η provides a recursion formula for

the various Gj ’s in (19). For j = 0 (i.e. η = 0), we obtain

G0(0)I0(k)e
ikz = kI1(k)e

ikz , so G0(0)e
ikz =

kI1(k)

I0(k)
eikz ,

which can be viewed as the Fourier symbol of the pseudo-differential operator

G0(0) =
DI1(D)

I0(D)
,

acting in the physical z-space, where D = −i∂z is defined in such a way that

its Fourier symbol is k (the factor i represents the imaginary unit). Note that

I0(0) = 1 	= 0 for k = 0, so G0 is well-defined for all values of k. The pseudo-

differential operators D and G0 are also called Fourier multipliers due to their

multiplicative action in the Fourier k-space.
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Similarly, for j > 0, we find

Gj(η) =
1

j!
(kη)jk

I
(j)
1 (k)

I0(k)
− 1

(j − 1)!
(i∂zη)(kη)

j−1k
I
(j−1)
0 (k)

I0(k)

−
j−1∑
�=0

1

(j − )!
G�(η)(kη)

j−� I
(j−�)
0 (k)

I0(k)
,

=

(
1

j!
ηjkj+1 +

1

(j − 1)!
(Dη)ηj−1kj

)
I
(j−1)
0 (k)

I0(k)

+
1

j!
ηjkj+1

(
I
(j)
1 (k)− I

(j−1)
0 (k)

I0(k)

)

−
j−1∑
�=0

1

(j − )!
G�(η)η

j−�kj−� I
(j−�)
0 (k)

I0(k)
,

and again its action in the physical space can be formulated in terms of D as

Gj(η) =
1

j!
DηjDj I

(j−1)
0 (D)

I0(D)
+

1

j!
ηjDj+1

(
I
(j)
1 (D)− I

(j−1)
0 (D)

I0(D)

)

−
j−1∑
�=0

1

(j − )!
G�(η)η

j−�Dj−� I
(j−�)
0 (D)

I0(D)
, (20)

after noting that

1

j!
DηjDj =

1

j!
ηjDj+1 +

1

(j − 1)!
(Dη)ηj−1Dj .

For example, the first two contributions from (20) are

G1(η) = DηD + ηD2

(
I ′1(D)− I0(D)

I0(D)

)
−G0ηD

I ′0(D)

I0(D)
,

= DηD −G0ηG0 − ηG0 , (21)

since

I ′0(D) = I1(D) , I ′1(D) = I0(D)−D−1I1(D) ,
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and

G2(η) =
1

2
Dη2D2 I

′
0(D)

I0(D)
+

1

2
η2D3

(
I ′′1 (D)− I ′0(D)

I0(D)

)
−1

2
G0η

2D2 I
′′
0 (D)

I0(D)
−G1ηD

I ′0(D)

I0(D)
,

=
1

2
Dη2DG0 +

1

2
η2D2G0 − 1

2
η2D2 + η2G0

−1

4
G0η

2D2 − 1

4
G0η

2D2 I2(D)

I0(D)
−G1ηG0 , (22)

since

I ′′0 (D) =
1

2

(
I0(D) + I2(D)

)
, I ′′1 (D) =

(
1 + 2D−2

)
I1(D)−D−1I0(D) .

By virtue of the self-adjointness property (i), the order of application of the

various operators in (20) can be switched to arrive at

Gj(η) =
1

j!

I
(j−1)
0 (D)

I0(D)
DjηjD +

1

j!
ηjDj+1

(
I
(j)
1 (D)− I

(j−1)
0 (D)

I0(D)

)

−
j−1∑
�=0

1

(j − )!

I
(j−�)
0 (D)

I0(D)
Dj−�ηj−�G�(η) . (23)

Equation (23) forms the basis of our numerical method to compute the DNO

and thus to solve (15)–(16). As pointed out by Craig and Nicholls (2002) and

Xu and Guyenne (2009), the adjoint recursion formula (23) is equivalent to (20)

but it is computationally more efficient since it allows us to save and re-use the

Gj ’s as vector operations on ξ, without having to re-compute them at each order

j when applied to concatenations of Fourier multipliers and powers of η. The

various derivatives of I0 and I1 in (23) can be calculated as linear combinations

of modified Bessel functions, namely

I
(n)
0 (D) =

1

2n

n∑
m=0

Cn
mI2m−n(D) , (24)

=
1

2n

[
Cn

0 I−n(D) + Cn
1 I2−n(D) + · · ·+ Cn

nIn(D)
]
,
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and

I
(n)
1 (D) =

1

2n

n∑
m=0

Cn
mI2m+1−n(D) , (25)

=
1

2n

[
Cn

0 I1−n(D) + Cn
1 I3−n(D) + · · ·+ Cn

nI1+n(D)
]
,

where

Cn
m =

n!

m!(n−m)!
,

represents the binomial coefficient (Abramowitz and Stegun, 1972, Chap. 9).

The values of modified Bessel functions of the first kind are tabulated; for ex-

ample, these functions are denoted by the command besseli in Matlab.

It should be pointed out that the surface formulation (15)–(16) together

with the series expansion (19) of the DNO require that the free surface η be

a single-valued graph of z. Therefore, overturning waves (with a multi-valued

profile) are not permitted with the present algorithm.

3. Numerical methods

3.1. Space discretization

For space discretization, we assume periodic boundary conditions in z (with

zmin ≤ z ≤ zmax) and use a pseudo-spectral method based on the fast Fourier

transform (FFT). This is a particularly suitable choice for the computation of

the DNO since each term (23) in its Taylor series expansion consists of concate-

nations of Fourier multipliers with powers of η.

More specifically, both functions η and ξ are expanded in truncated Fourier

series ⎛⎝ η

ξ

⎞⎠ =
∑
k

⎛⎝ η̂k

ξ̂k

⎞⎠ eikz .

Spatial derivatives and Fourier multipliers are evaluated in the Fourier space,

while nonlinear products are calculated in the physical space on a regular grid of

N collocation points (Canuto et al., 1987). For example, if we wish to apply the
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zeroth-order operator G0 to a function ξ in the physical space, we first transform

ξ to the Fourier space via FFT, apply the diagonal operator kI1(k)/I0(k) to the

Fourier coefficients ξ̂k of ξ, and then transform back to the physical space.

In practice, the Taylor series of the DNO is also truncated to a finite number

of terms,

G(η) ≈ GM (η) =

M∑
j=0

Gj(η) , (26)

where the truncation order M is chosen according to the physical regime under

consideration and/or the level of accuracy desired. In its adjoint form (23),

the computational cost for evaluating (26) is estimated to be O(M2N logN)

by using the FFT. The choice of M will be discussed in more detail below

but, thanks to the analyticity property (ii), it is usually sufficient to select a

relatively small number of terms (M < 10 � N) for satisfactory results. This

cost estimate is an indicator of how efficient our numerical method potentially

is as compared to other elliptic solvers such as boundary-integral methods or

volumetric finite-difference/element methods.

3.2. De-aliasing and ill-conditioning

Two major sources of numerical error in the present algorithm are alias-

ing and ill-conditioning. Typically the larger the wave amplitude or steepness,

the more significant these effects. Aliasing is inherent to the pseudo-spectral

approach when applied to nonlinear equations (Press et al., 1992). As com-

monly observed in operator expansion methods (Nicholls and Reitich, 2001b),

ill-conditioning is related to the evaluation of the DNO in its series form (26)

which relies heavily on cancellations of terms to ensure convergence. In practice,

terms are not cancelled exactly due to round-off errors which are then amplified

through the recursive process, most severely in the highest Fourier modes, to

eventually ruin the accuracy of the numerical calculation. As shown in (23),

the presence of many Fourier multipliers Dj (equivalent to derivatives) whose

order increases with the series order, can dramatically amplify numerical errors

and thus may promote numerical instabilities during the time evolution. This

17



ill-conditioning issue will be discussed in more detail below when presenting

numerical tests.

Here aliasing occurs primarily in the computation of the DNO. The j-term

Gjξ in (26) involves nonlinearities of order j + 1, so aliasing errors may ac-

cumulate quickly for large j. Complete de-aliasing may be achieved by the

zero-padding technique which, for the DNO truncated at order M , requires in-

creasing the size of the spectra of η and ξ by a factor of up to M +1. The extra

modes are then set to zero to prevent aliasing errors from arising. In fact, since

the FFT is used, the nearest power of 2 greater than or equal to M + 1 should

be chosen. This de-aliasing procedure was also used in Craig et al. (2006), Xu

and Guyenne (2009) and Guyenne and Părău (2012, 2014) for simulations of

gravity and flexural-gravity waves. Note that it is accompanied by an increase

in computer memory storage and run time but, in the present axisymmetric

situation, this was not found to be a serious issue.

3.3. Time integration

Time integration of (15)–(16) is performed in the Fourier space so that the

linear terms can be solved exactly by the integrating factor technique, thus

lessening the stiffness of the problem (Canuto et al., 1987; Craig and Sulem,

1993; Craig et al., 2012a). For this purpose, we first separate the linear and

nonlinear parts in (15)–(16). Defining v = (η, ξ)�, these equations can be

expressed as

∂tv = Lv +N (v) , (27)

where the linear part L is defined by

Lv =

⎛⎝ 0 G0

∂2
z + 1−B 0

⎞⎠⎛⎝ η

ξ

⎞⎠ ,

with ∂2
zη+(1−B)η being the leading-order linear contributions from the capil-

lary and magnetic terms in (16), and the nonlinear part N = (N1,N2)
� is given
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by

N1 =
(
G(η)−G0

)
ξ ,

N2 = − 1

2(1 + (∂zη)2)

[
(∂zξ)

2 − 2(∂zη)(∂zξ)G(η)ξ − (G(η)ξ)2
]
− ∂2

zη

+
∂2
zη

(1 + (∂zη)2)3/2
− η − 1

(1 + η)
√
1 + (∂zη)2

+ 1 +Bη +
B

2

[
1

(1 + η)2
− 1

]
.

Subtraction of the terms G0ξ in N1 and ∂2
zη + (1 − B)η in N2 is meant to

compensate for their presence in the linear part Lv. Then, by taking the Fourier

transform of (27) and making the change of variables

v̂k(t) = Θ(t)ŵk(t) , (28)

where

Θ(t) =

⎛⎝ cos
(
t
√

(k2 +B − 1)G0

) √
G0

k2+B−1 sin
(
t
√

(k2 +B − 1)G0

)
−
√

k2+B−1
G0

sin
(
t
√

(k2 +B − 1)G0

)
cos

(
t
√
(k2 +B − 1)G0

)
⎞⎠ ,

we obtain the following nonlinear system

∂tŵk = Θ(t)−1N̂k

[
Θ(t)ŵk

]
,

for ŵk, which is solved numerically in time using the fourth-order Runge–Kutta

scheme with constant step Δt. In terms of the original variables v̂k, by inverting

(28), this scheme reads

v̂n+1
k = Θ(Δt)v̂n

k +
Δt

6
Θ(Δt)

(
f1 + 2f2 + 2f3 + f4

)
, (29)
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where

f1 = N̂k

(
v̂n
k

)
,

f2 = Θ

(
−Δt

2

)
N̂k

[
Θ

(
Δt

2

)(
v̂n
k +

Δt

2
f1

)]
,

f3 = Θ

(
−Δt

2

)
N̂k

[
Θ

(
Δt

2

)(
v̂n
k +

Δt

2
f2

)]
,

f4 = Θ(−Δt)N̂k

[
Θ(Δt)

(
v̂n
k +Δtf3

)]
,

for the solution at time tn+1 = tn + Δt. The integrating factor Θ(t) is the

fundamental matrix of the linear system

∂tv̂k = L̂kv̂k =

⎛⎝ 0 G0

1−B − k2 0

⎞⎠⎛⎝ η̂k

ξ̂k

⎞⎠ ,

and, in the limit k → 0, it reduces to

Θ(t) =

⎛⎝ 1 0

−(B − 1)t 1

⎞⎠ ,

as given by l’Hôpital’s rule. In establishing (29), we have used the fact that

Θ(t) is a semigroup and satisfies

Θ(a+ b) = Θ(a)Θ(b) , Θ−1(a) = Θ(−a) .

These identities can be easily checked by direct calculation. Note that the coef-

ficient of t in the argument of the cosine and sine functions for the fundamental

matrix Θ(t) is nothing but the linear dispersion relation in terms of the angular

frequency

ω =
√
(k2 +B − 1)G0 =

√
(k2 +B − 1)kI1(k)

I0(k)
,

which is related to the phase speed (7) by ω = ck.
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3.4. Filtering and initial condition

In our simulations, we have typically used Δt = 0.001 as a good compromise

between accuracy, stability and computational cost. For reference, this time

step is thousands times smaller than the linear wave period τ = 2π/ω � 6 for

B = 2.5 and k = 1. Given the fourth-order accuracy of our time-integration

scheme, this value of Δt is quite reasonable. We have also observed that using

a smaller time step does not generally yield much better results partly because,

to reach the same simulation time, more computations of the DNO are required,

thus introducing more numerical errors.

In the case of large-amplitude or highly deformed waves, we have found

it necessary to apply filtering in order to stabilize the numerical solution so

that it can be computed over a sufficiently long time. Otherwise, spurious high-

wavenumber instabilities tend to develop, eventually leading to the computation

breakdown. This issue may be related to ill-conditioning of the DNO as men-

tioned earlier (which will be further discussed in Section 4.1) but it may also

be related to the specific nonlinearity and stiffness of the problem, hence use of

prohibitively small time steps may be required to ensure stability. As a remedy,

we apply a hyperviscosity-type filter of the form

exp

(
−36

∣∣∣∣ k

kmax

∣∣∣∣36
)

,

to the Fourier coefficients η̂k and ξ̂k at each time step, where kmax is the largest

wavenumber of the resolved spectrum. Such a filter has been commonly em-

ployed in direct numerical simulations of nonlinear fluid flows by spectral meth-

ods (Canuto et al., 1987; Hou et al., 1994; Hou and Li, 2007; Xu and Guyenne,

2009) and its form ensures that only energy levels at high wavenumbers are

significantly affected. Therefore, if a sufficiently fine resolution is specified, this

filtering procedure should be able to suppress instabilities while preserving the

overall solution.

To initialize our simulations of (15)–(16) for solitary waves, we use the finite-
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difference method of Blyth and Părău (2014) which computes such solutions in

a reference frame moving with the wave speed. For the reader’s convenience, we

present a brief description of their finite-difference method in the next section

and refer to their paper for more details.

3.5. Finite-difference method for solitary waves

Solitary waves traveling at constant speed c > 0 are considered. In a ref-

erence frame moving with speed c, the boundary conditions (3) and (4) at the

free surface r = S(Z) = 1 + η(Z) where Z = z − c t, become

∂rΦ = (∂ZΦ)(∂Zη) ,

and

1

2
(∂ZΦ)

2
[
1 + (∂Zη)

2
]
− ∂2

Zη

(1 + (∂Zη)2)3/2
+

1

(1 + η)
√
1 + (∂Zη)2

− B

2(1 + η)2

=
1

2
c2 + 1− B

2
.

To compute solitary waves on an axisymmetric jet, we employ the numerical

method initially described by Jeppson (1970) and subsequently used by Vanden-

Broeck et al. (1998) for capillary waves. It is based on finite differences and

requires solving for the unknowns r(Φ, ψ) and z(Φ, ψ) in the inverse plane (Φ, ψ),

where ψ is the Stokes streamfunction defined as

−∂Zψ

r
= ∂rΦ ,

∂rψ

r
= ∂ZΦ .

The advantage of this approach is that the fluid domain is rectangular and fixed

in the inverse plane, as given by

−∞ < Φ < ∞ , 0 ≤ ψ ≤ ψS ,
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where ψS = c/2. The derivatives of the new unknowns can be written as

∂ψZ = −∂Φr

r
, ∂ψr =

∂ΦZ

r
. (30)

In terms of these new variables, the Laplace equation (1) becomes

r3(∂2
ψr) + r(∂2

Φr) + r2(∂ψr)
2 − (∂Φr)

2 = 0 , (31)

and the Bernoulli condition at ψ = ψS reads

1/2

r2(∂ψr)2 + (∂Φr)2
− r(∂ψr)(∂

2
Φr)− (∂Φr)

2(∂ψr)− r(∂Φr)(∂
2
Φψr)

[(∂Φr)2 + r2(∂ψr)2]
3/2

− |∂ψr|
[(∂Φr)2 + r2(∂ψr)2]

1/2
− B

2r2
=

1

2
c2 + 1− B

2
. (32)

We are interested in symmetric solutions and truncate the variable Φ at some

point Φ∞ > 0, so our rectangular computational domain reduces to

0 ≤ Φ ≤ Φ∞ , 0 ≤ ψ ≤ ψS .

Together with these equations, we impose the no-flux condition

r = 0 , (33)

at the axial rod ψ = 0, 0 ≤ Φ ≤ Φ∞. The symmetry condition at Φ = 0,

0 ≤ ψ ≤ ψS and the truncation condition at Φ = Φ∞, 0 ≤ ψ ≤ ψS are specified

by

∂Φr = 0 . (34)

The exact solution corresponding to a uniform stream with velocity c is given

by Φ = c Z and η = 0, and can be re-written in terms of the new variables as

r =
√

2ψ/c. To avoid the singularity of ∂ψr at ψ = 0, we introduce another

variable ψ = Ψ2. The partial derivatives on ψ can be easily replaced with

derivatives on Ψ in the equations to be solved.
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We use a regular grid with Np equally spaced points in Φ between 0 and Φ∞,

and Mp equally spaced points in Ψ between 0 and ΨS =
√
ψS to perform the

computations. We discretize the equivalent of (31) in terms of Φ and Ψ using

centered differences at the interior points of this mesh and enforce the boundary

conditions (32)–(34). Given B and c, the Np×Mp nonlinear algebraic equations

obtained for the Np ×Mp unknowns r(Φi,Ψj), i = 1, . . . , Np, j = 1, . . . ,Mp are

solved iteratively using Newton’s method. The free-surface location is extracted

from the converged solution as r(Φ,ΨS). The unknown Z(Φ) is determined

by integrating numerically the second equation of (30) at Ψ = ΨS , using the

trapezoidal rule. The accuracy of the numerical solution was checked by varying

the numbers of grid points Np and Mp, and by varying the truncation point Φ∞.

Most of the results presented here were obtained with Np = 77, Mp = 20 and for

various values of Φ∞, ΨS ranging from 5 to 20. We have also used a version of

this numerical method where the wave amplitude is fixed as the (Np×Mp+1)-st

equation and the speed c is found as the (Np ×Mp +1)-st unknown. Typically,

a forced solution of small amplitude is first calculated by applying a Gaussian

pressure at the free surface and then is prescribed as an initial guess to look for

the branch of pure solitary waves by continuation in amplitude.

Because this finite-difference scheme generates a non-uniform spatial grid in

Z, the resulting data are fitted onto the pseudo-spectral uniform grid in z by

using cubic interpolation to provide the initial solution at t = 0. Furthermore, to

comply with the periodic boundary conditions imposed by the pseudo-spectral

method, the interpolated data on velocity potential Φmin ≤ Φ ≤ Φmax are made

periodic (with zero boundary conditions) over zmin ≤ z ≤ zmax via a linear

harmonic transformation such that the initial conditions are

η(z, 0) = r(Φ,ΨS)− 1 , ξ(z, 0) = Φ− Φmin +
Φmax − Φmin

zmax − zmin
(zmin − z) .

The interpolated data on the free surface r are spatially localized and thus need

not be further periodized.
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4. Numerical results

4.1. Convergence of the DNO

The DNO has been shown to be analytic in η under certain regularity con-

ditions on the free surface, which implies that it can be written in terms of a

convergent Taylor series expansion in η and its convergence is expected to be

exponential with the truncation order. We have examined this property with

the present algorithm by comparing the numerical approximation (26) of the

DNO with an exact expression, based on the harmonic solution

Φ = I0(kr) sin(kz) , (35)

where, again, the time dependence is omitted because the domain is fixed in

this test. Given η, an exact expression of the DNO can be obtained by inserting

(35) into (10), yielding

GE(η)ξ = ∂rΦ− (∂zΦ)(∂zη)
∣∣∣
r=1+η

,

= k
[
I1
(
k(1 + η)

)
sin(kz)− (∂zη)I0

(
k(1 + η)

)
cos(kz)

]
.

We will present convergence tests for two types of surface profiles, namely a

sinusoidal one

η = ε cos(kz) , (36)

mimicking periodic waves, and a Gaussian one

η = εe−αz2

, (37)

mimicking solitary waves.

Figure 1 shows the relative L∞ error between GE and GM , i.e.

Error =
‖GE −GM‖∞

‖GE‖∞ ,

as a function of M for different values of ε in the case of a slowly varying
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sinusoidal profile (k = 1) and a rougher one (k = 10). The computational

domain is [−π, π] with resolution N = 1024 (i.e. grid size Δz = 0.006). A first

observation is that convergence with respect to ε is clearly demonstrated: the

lower the amplitude ε, the lower the error for a fixed M . This error falls down to

near machine precision for very small values of ε. However, although the errors

remain overall small, their decay quickly stagnates pastM � 2. We also see that,

for large amplitudes, the convergence deteriorates leading to a dramatic error

growth past some critical value of M . The larger the amplitude or steepness of

η (i.e. the larger ε or k), the smaller this critical value. Such a phenomenon

is an illustration of numerical ill-conditioning of the series expansion (19) for

the DNO that we mentioned earlier and it has been observed in other physical

contexts (Nicholls and Reitich, 2001b; Fang et al., 2007; Xu and Guyenne, 2009).

The rapid stagnation of convergence is also related to this ill-conditioning

but is more peculiar to the present axisymmetric case. Unlike the rectangular

geometry with Cartesian coordinates as adopted in previous studies of the water

wave problem, where the harmonic solution (18) involves a hyperbolic sine (i.e.

sinh) function in the vertical direction and hence its successive derivatives are

simply either a cosh or sinh function, here each derivative of I0 or I1 in (23)

contains several terms whose number increases with the differentiation order. As

a consequence, the number of contributions to each Gj is also further increased

and, for example, we can already see that many more terms are produced in

(21)–(22) when going from G1 to G2. Via recursion, the expression of each

Gj is expected to grow fast in complexity with the order j, which may explain

why the convergence saturates so early at M � 2 as revealed in Fig. 1. This

pinpoints the recursion formulas (24)–(25) for I
(n)
0 and I

(n)
1 as an additional

aggravating contributor to ill-conditioning of the DNO by promoting numerical

errors due to non-exact cancellation of terms. Unfortunately, we are unaware of

alternate efficient ways to compute the derivatives of modified Bessel functions.

The same features are observed for a localized Gaussian profile in Fig. 2.

Moreover, as illustrated with a sinusoidal profile in Fig. 3, the convergence

versus M also deteriorates with increasing resolution N (while fixing ε and
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k). This is consistent with our previous statement that the presence of Fourier

multipliers in (23) tend to amplify numerical errors in the high Fourier modes.

For fine resolutions, this error amplification is particularly severe past some

critical value of M . Below this critical value, the convergence rate quickly

stagnates as noted before and is pretty much identical in all cases. For low

resolutions or low amplitudes, it is nonetheless a little comfort that the errors

only stagnate and remain small rather than quickly growing with M . This

helps justify that our numerical method could still be employed to simulate

the present ferrofluid problem with reasonable accuracy by specifying suitable

values of M and N .

We have also examined the influence of de-aliasing on the convergence of

the DNO, as depicted in Fig. 4 for ε = 0.1, k = 10 and N = 1024. It can

be seen that the loss of convergence in the aliased computation occurs sooner

(at M � 10) than in the de-aliased one. This indicates that the zero-padding

technique is effective at reducing aliasing errors in the evaluation of the DNO.

Needless to say that it is important to minimize errors as much as possible at

this stage since they may quickly accumulate during the time integration owing

to the nonlinearity in the governing equations.

4.2. Solitary waves

Solitary waves on the surface of a ferrofluid jet have been the subject of

several recent studies ranging from theoretical (Rannacher and Engel, 2006) to

experimental (Bourdin et al., 2010) and numerical (Blyth and Părău, 2014). In

particular, Rannacher and Engel (2006)) derived a KdV equation for the present

ferrofluid problem and examined a case of overtaking collision with the two-

soliton solution of this weakly nonlinear model. Here we extend their results to

the highly nonlinear regime by performing time-dependent simulations of (15)–

(16). Doing so helps validate not only the proposed algorithm that solves the

time-evolution problem but also the finite-difference method of Blyth and Părău

(2014) which independently generates the initial condition. Because the present

paper is focused on the development and testing of our DNO approach, we only
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show illustrative examples and postpone a more in-depth study of solitary wave

collisions to a future publication. For the interested reader, such an investigation

in the context of water waves can be found in Craig et al. (2006). Based on the

convergence tests shown in the previous section, we have found it sufficient to

use M = 2 (with de-aliasing) for all the numerical simulations to be presented

below. We have checked that using a higher value of M gives similar results.

Following the KdV analysis (Bashtovoi and Foigel, 1983; Rannacher and

Engel, 2006), we first consider the range 3/2 < B < 9 that supports solitary

waves of depression with speed c < c0 and then the narrower range 1 < B < 3/2

for solitary waves of elevation with c < c0. The first experiment concerns the

free propagation of a single solitary wave, in which case the solution is expected

to evolve in time without change of shape and speed. Figure 5 plots the initial

condition of η at t = 0 together with its counterpart at a much later time

t = 1000 � τ from the simulation of a depression solitary wave with amplitude

ε = 0.3 for B = 2.5. The spatial resolution is Δz = 0.15 (N = 256 grid points

over −20 ≤ z ≤ 20). Apart from the translation in z, we see that the two profiles

look pretty much identical. It is because of the periodic boundary conditions

that the initial and final pulses end up being located relatively close together.

Over the time interval [0, 1000], the solution has actually traveled several times

through the computational domain [−20, 20]. Figure 5 also indicates that mass

(5) and volume (6) are well conserved throughout the entire simulation, with

relative errors

ΔV (t)

V0
=

∣∣∣∣V (t)− V0

V0

∣∣∣∣ , ΔW (t)

W0
=

∣∣∣∣W (t)−W0

W0

∣∣∣∣ ,
of order O(10−4) and O(10−5) respectively, where V0 and W0 denote the initial

values of V and W at t = 0, and furthermore these errors exhibit no global

increasing or decreasing trend over time. The integrals in (5) and (6) were eval-

uated by the trapezoidal rule. Because this long computation required filtering

(which is typically needed for ε > 0.1), it supports the fact that our filtering

technique is effective at suppressing numerical instabilities while keeping the so-
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lution’s spectrum essentially unaffected. The small reduction in wave amplitude

discernible from Fig. 5 at t = 1000 is partly attributable to filtering.

To more closely check the numerical preservation of solitary wave profiles

over time, Fig. 6 shows their superposition in such a way that their troughs

coincide. For ε = 0.3, the two profiles at t = 0 and t = 1000 are pretty much

indistinguishable to graphical accuracy while, for ε = 0.4, small discrepancies

are noticeable at the bottom and on both sides of the wave trough. As ε is

increased, the computed wave tends to decay and lose coherency over time by

emitting radiation. More quantitatively, the relative L2 error between the two

profiles at t = 0 and t = 1000 is found to be 1.4× 10−2, 4.3× 10−2 for ε = 0.3,

0.4 respectively. For lower wave amplitudes, the errors on wave profile and

mass/volume conservation are even smaller, so the results are not shown here

for convenience. For ε > 0.4 in this magnetic regime, the numerical solution

was observed to disperse or the code broke down after a short run time.

We further examine properties of solitary waves in this ferrofluid problem

by simulating their pairwise collisions. From the existing literature, it was not

known whether such collisions are elastic in the fully nonlinear case and, if

not, to what extent they are inelastic. Physically, this has implications for the

nonlinear stability of ferrofluid jets and their potential applications. Figure 7

depicts the (z, t)-diagram for the head-on collision of two solitary waves moving

in opposite directions. Two situations are considered: a symmetric collision

of two waves with equal amplitude ε = 0.3, and an asymmetric collision of

two waves with different amplitudes ε = 0.1 and 0.3. For clarity, the reversed

profile of these depression solitary waves is shown in Fig. 7. In both cases,

the spatial resolution is Δz = 0.11 (N = 1024 grid points over 0 ≤ z ≤ 120),

and the initial condition is simply the superposition of two individual solutions

generated by the finite-difference scheme. This is justified by the fact that their

initial locations are chosen to be sufficiently well separated from each other.

Note that the direction of wave propagation (left or right) can be set initially

by simply changing the sign of the velocity potential ξ. At first glance, the

collision patterns look similar to those occurring in e.g. the water wave problem
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(Craig et al., 2006) but there are notable differences as discussed in more detail

next.

Closer examination of the symmetric head-on collision with ε = 0.3 is pre-

sented in Fig. 8 displaying snapshots of the free surface at various times. As

a reference, the numerical solution is compared with the superposition of two

individual counter-propagating KdV solitons

η(z, t) =
3c1
κ

sech2
[√

c1
4σ

(
z − z1 − (c1 + c0)t

)]
+
3c2
κ

sech2
[√

c2
4σ

(
z − z2 + (c2 + c0)t

)]
, (38)

where z1, z2 are the initial locations of the two pulses, c0 is given by (8),

κ =
2B − 3

4c0
, σ =

B − 9

32c0
, ci = sgn(σ)

∣∣∣εiκ
3

∣∣∣ , i = {1, 2} ,

and here ε1 = ε2 = 0.3 (Rannacher and Engel, 2006). Equation (38) reveals

why solitary waves are expected to be of depression in the range 3/2 < B < 9

since κ > 0 and σ < 0, while they should be of elevation for 1 < B < 3/2 since

both κ < 0 and σ < 0. This formula also predicts that the solitary wave speed

should be less than the linear phase speed c0 in both ranges of B since σ < 0

and hence ci < 0 for B < 9, which implies that ci + c0 < c0. In particular, the

lower the wave amplitude, the higher the speed which gets closer to c0.

These weakly nonlinear predictions are qualitatively verified by our numer-

ical simulations (see also the discussion for elevation waves below). However,

on the quantitative level, “fully nonlinear” solutions tend to be steeper than

KdV solitons for the same amplitude. As expected from the superposition (38),

the KdV approximation can reach a maximum amplitude twice as large as the

initial one (at t = 37 in Fig. 8), while the numerical solution does not get so

deep. This phenomenon contrasts with the water wave problem where colliding

solitary waves attain a maximum amplitude slightly higher than the sum of the

initial ones. Moreover, consistent with a previous statement, the interaction is

inelastic and induces small-amplitude long residual waves that develop ahead of
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(rather than trailing behind) the two separating pulses because they travel faster

at the linear speed c0. These residual waves can be clearly seen at t = 70 in Fig.

8 and their wake-like pattern can also be identified in the (z, t)-diagram of Fig.

7. We believe their nature is physical, rather than being spurious numerical

excitations, because the collision takes place over a relatively short interval of

time and these residual waves distinctively arise after it. We have also checked

their presence in computations with a finer resolution or a higher value of M .

Not surprisingly, another observation from Fig. 8 is the occurrence of a phase

shift due to the interaction, which is indicated by the slight mismatch between

KdV and numerical profiles at t = 70. Similar results were obtained for the

asymmetric head-on collision and, understandably, a more pronounced residual

wave tends to develop near the larger pulse as depicted in Fig. 7.

In addition to head-on interactions, we have also simulated overtaking cases

where both solitary waves move in the same direction, and an example is pro-

vided in Fig. 9. Clearly, the two waves must now be of different amplitudes so

that their speeds are different otherwise one cannot overtake the other. Figure

9 shows snapshots of such a collision for ε = 0.1 and ε = 0.3. This time, the

computation is compared with the one-way KdV two-soliton solution

η(z, t) = 4
δ1γ

2
1 + δ2γ

2
2 + 2δ1δ2(γ1 − γ2)

2 + (δ1δ
2
2γ

2
1 + δ21δ2γ

2
2)(γ1 − γ2)

2/(γ1 + γ2)
2[

1 + δ1 + δ2 + δ1δ2(γ1 − γ2)2/(γ1 + γ2)2
]2 ,

where

δ1 = exp

[
−
√

c1
σ

(
(z − z1 − (c1 + c0)t

)]
, δ2 = exp

[√
c2
σ

(
(z − z2 − (c2 + c0)t

)]
,

and γ2
i = 3ci/κ (i = 1, 2) as derived by Rannacher and Engel (2006). The

parameters ci, κ and σ are the same as those defined in (38). As stated earlier

(unlike water waves), it is the smaller solitary wave that catches up with the

larger one and overtakes it. The first snapshot of Fig. 9 also confirms the ex-

pectation that the lower the wave amplitude, the closer the KdV approximation

to the numerical solution. Because overtaking collisions take place over a longer
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time scale than head-on collisions, differences between KdV and “fully non-

linear” evolutions get more pronounced. In particular, the interaction process

predicted by the KdV equation is significantly delayed compared to the numer-

ical one: it is delayed both in the overall evolution and propagation. However,

apart from this delay, Fig. 9 suggests that the main features are well repro-

duced by the KdV solution. The two interacting waves seem to pass each other

without amplitude increase. When they merge at t = 425, the resulting profile

looks like being their average rather than a superposition. After the collision,

they tend to separate into two individual solitary waves resembling the initial

ones, with negligible residual. This close resemblance with the initial condition

is clearly displayed in Fig. 9 at the late time t = 1000 and further demonstrates

the good performance of our algorithm.

We turn our attention to solitary waves of elevation for B = 1.25 in the range

1 < B < 3/2. We have again checked that a single wave of this type propagates

with negligible change in shape and speed if its amplitude is not too large, and

this is not reported here for convenience. Note that, for a given amplitude, a

solitary wave of elevation for B = 1.25 is found to be significantly broader than

the depression one for B = 2.5. Figure 10 displays snapshots during the head-

on collision of two elevation waves with equal amplitude ε = 0.1. The spatial

resolution is Δz = 0.14 (N = 2048 grid points over 0 ≤ z ≤ 300), and the initial

condition is set up as before. We first observe that the KdV formula (38) is

quite a good approximation to these solitary waves at t = 0. It also reproduces

well their shape during the early stages of the interaction and later during the

separation. However, in contrast to the previous regime B = 2.5, the numerical

solution can now reach a maximum amplitude > 0.2 (well beyond the sum of

the two initial amplitudes), as illustrated in Fig. 10 at t = 236. Small residual

waves are again produced by the collision but are barely discernible in front of

each exiting pulse.

An example of overtaking collision between two solitary waves of elevation

with amplitudes ε = 0.1 and ε = 0.5 is provided in Fig. 11. Note that ε = 0.5

is quite a large amplitude relative to the mean fluid depth a = 1 (in dimension-
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less units), nonetheless the corresponding pulse is seen to still match the KdV

approximation well at t = 0. Observations similar to those for B = 2.5 can

be made here and, in particular, the solution’s amplitude turns out to be less

than the largest initial amplitude at the time of complete merging, as shown in

Fig. 11 at t = 1150 when ‖η‖∞ � 0.4 < 0.5. A major difference with the de-

pression case is that, although the numerical process of interaction occurs faster

than the one predicted by the KdV equation, its overall propagation is slower

(i.e. the mean location of the numerical profile tends to trail behind that of

the KdV profile). When looking at Fig. 11, recall that the waves have traveled

multiple times through the computational domain due to the periodic bound-

ary conditions. The asymptotic state as t → +∞ is again two separate solitary

waves almost identical to the initial ones coexisting with some small radiative

background. Many features occurring here bear close resemblance with those

observed in the water wave problem (Craig et al., 2006) and, for future work, it

would be worth identifying more clearly the various mechanisms and scenarios

involved. Finally, it is emphasized that simulation of overtaking collisions is a

particularly discriminating test because the numerical model must be able to

accurately capture both the dispersive and nonlinear effects over a long period

of time.

5. Conclusions

We have the explored the possibility of using a boundary-perturbation tech-

nique to simulate the propagation of axisymmetric nonlinear waves on the sur-

face of a ferrofluid jet. Our new numerical approach is based on the reduction

of the original Laplace problem to a lower-dimensional system involving surface

variables alone. This is achieved by introducing the DNO which is expressed

in terms of a convergent Taylor series expansion about the uniform cylindrical

geometry of the jet. A recursion formula was derived to evaluate this Taylor

series up to an arbitrary order, with each term being given as a sum of con-

catenations of Fourier multipliers with powers of the surface deformation. This
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allows the DNO to be efficiently computed by a pseudo-spectral method us-

ing the FFT, and thus makes our boundary-perturbation approach especially

suitable for time-evolution simulations. In the axisymmetric case, these Fourier

multipliers involve modified Bessel functions in the radial direction.

We have shown extensive numerical tests on the convergence of the DNO

as a function of the truncation order M for various surface profiles, surface

amplitudes and spatial resolutions. Effects of de-aliasing were also investigated.

Although the errors remain overall small, their decrease is not found to be

exponential in M , unlike what could be expected from the analyticity property

of the DNO. Rather, our tests indicate that the convergence quickly stagnates

past M � 2 and even deteriorates past a critical higher value of M for large

surface deformations or fine spatial resolutions. Although the latter behavior is

known to be related to ill-conditioning of the DNO in its series form, the former

behavior is an issue believed to be more peculiar to the present axisymmetric

case. Indeed, the recursion formula for our DNO involves derivatives of modified

Bessel functions that are themselves determined recursively and this tends to

amplify numerical errors as M increases.

Despite these numerical issues on the DNO, we have found that our algorithm

gives quite satisfactory results when applied to solving the initial-value problem.

We have extended the results of Rannacher and Engel (2006) and Blyth and

Părău (2014) by simulating the long-time propagation and pairwise collisions

of solitary wave solutions in the highly nonlinear regime. Both depression and

elevation waves were examined by varying the magnetic Bond number B, and

comparisons with KdV predictions were also made. In all cases that we have

considered, the collisions are found to be inelastic, generating small residual

waves ahead of the separating pulses. The significance of these residual waves

depends on the collision type and on the initial amplitude of the colliding solitary

waves. In the overtaking case, the interaction is relatively weak and produces

residual waves that are barely noticeable. In the head-on case, the interaction

is typically stronger leading to more radiation but the maximum amplitude

reached may be slightly less or more than the sum of the two initial amplitudes
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depending on whether the solitary waves are of depression or elevation.

Our preliminary results together with those of Blyth and Părău (2014) sug-

gest that this ferrofluid problem has a rich physical nature and thus further

investigation is called for to better characterize the observed phenomena. A

magnetic regime that we have not described here is B ≥ 9 where solutions are

particularly nonlinear and solitary waves may be unstable. Their numerical

simulation requires special care and is envisioned for future work. In addition,

it would be of interest to extend our numerical model to the more realistic situ-

ation 0 < b < 1 (i.e. an inner conducting wire of small but finite thickness) and

explore whether there are major differences in dynamical behavior as compared

with b = 0. Adapting the procedure of Craig et al. (2005, 2012b), we might

also consider the configuration where the jet surface lies between two fluid lay-

ers (rather than assuming vacuum in the outer region) so as to more closely

describe the experimental set-up of Bourdin et al. (2010) and possibly compare

with their data.
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Figure 1: Relative L∞ error on the DNO as a function of M for a sinusoidal surface profile η of
varying amplitude ε with wavenumber k = 1 (left) and k = 10 (right). The spatial resolution
is N = 1024.
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Figure 2: Relative L∞ error on the DNO as a function of M for a Gaussian surface profile η
of varying amplitude ε with decay rate α = 5. The spatial resolution is N = 1024.
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Figure 3: Relative L∞ error on the DNO as a function of M for a sinusoidal surface profile η
of amplitude ε = 0.2 and wavenumber k = 1 with varying resolution N . The numbers of grid
points N = 64, 128, 256, 512, 1024 correspond to grid sizes Δz = 0.098, 0.049, 0.024, 0.012,
0.006 respectively.
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Figure 9: Overtaking collision of two solitary waves of depression with amplitudes ε = 0.1
and ε = 0.3 for B = 2.5. The numerical solution is represented by a solid line while the KdV
two-soliton solution is represented by a dashed line. Wave propagation is from left to right.
Profiles at t = 0 (a), 365 (b), 425 (c), 590 (d), 700 (e) and 1000 (f) are shown.
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Figure 10: Head-on collision of two solitary waves of elevation with equal amplitude ε = 0.1
for B = 1.25. The numerical solution is represented by a solid line while the superposition of
two KdV solitons is represented by a dashed line. Profiles at t = 0 (a), 176 (b), 220 (c), 236
(d), 276 (e) and 500 (f) are shown.
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Figure 11: Overtaking collision of two solitary waves of elevation with amplitudes ε = 0.1 and
ε = 0.5 for B = 1.25. The numerical solution is represented by a solid line while the KdV
two-soliton solution is represented by a dashed line. Wave propagation is from left to right.
Profiles at t = 0 (a), 1010 (b), 1150 (c), 1900 (d), 2170 (e) and 2500 (f) are shown.
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