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BACKGROUND: The diazabicyclooctane β-lactamase inhibitor OP0595 (RG6080) also acts as an 19 

antibiotic, targeting penicillin-binding protein 2 (PBP2) in Enterobacteriaceae but this activity is 20 

vulnerable to mutational resistance.  We used whole genome sequencing (WGS) to investigate the 21 

basis of this resistance.  METHODS: Twenty OP0595-selected mutants, comprising four derived from 22 

each of five different Escherichia coli strains, were sequenced on Illumina HiSeq. Reads from each 23 

mutant were mapped to the assembled genome of the corresponding parent. A variant-calling file 24 

generated with Samtools was parsed to determine genetic alterations.  RESULTS: Besides OP0595, the 25 

mutants consistently showed decreased susceptibility to mecillinam, which likewise targets PBP2, and 26 

grew as stable round forms in the presence of subinhibitory concentrations of OP0595. Among the 20 27 

mutants, 18 had alterations in genes encoding tRNA synthase and modification functions liable to 28 

induce expression of the RpoS sigma factor through activation of the stringent response or had 29 

mutations suppressing inactivators of RpoS or the stringent response signal-degrading enzyme, 30 

SpoT.  TolB was inactivated in one mutant: this activates RscBC regulation and was previously 31 

associated with mecillinam resistance. The mechanism of resistance remained unidentified in one 32 

mutant. Both the RpoS and RscBC systems regulate genes of cell division, including ftsAQZ that can 33 

compensate for loss or inhibition of PBP2, allowing survival of the challenged bacteria as stable round 34 

forms, as seen.  CONCLUSIONS: WGS identified the global stringent response signal, entailing 35 

induction of RpoS, as the main mediator of mutational resistance to OP0595 in E. coli. 36 

  37 



Introduction 38 

Production of β-lactamases is the prevalent mode of resistance to -lactam antibiotics in Gram-39 

negative bacteria. To counter this, several new β-lactamase inhibitors are under clinical development, 40 

including several diazabicyclooctanes, such as OP0595 (RG6080).1   41 

 OP0595 inhibits Class A and C serine β-lactamases and, also acts as an antibiotic, targeting 42 

penicillin-binding protein 2 (PBP2) of Enterobacteriaceae as with mecillinam. Furthermore, and 43 

independently of -lactamase inhibition, OP0595 acts as an ‘enhancer,’ synergising β-lactams that 44 

bind to PBP-3.1 Its antimicrobial activity is vulnerable to high-frequency mutational resistance and we 45 

used WGS to investigate its genetic basis.1, 2  46 

Materials and methods 47 

Selection and characterisation of OP0595-resistant mutants 48 

OP0595-resistant mutants from five different E. coli strains were selected by applying overnight broth 49 

culture on Muller-Hinton agar containing OP0595 at 16 mg/L.2 Parent and mutant cell shapes were 50 

investigated under microscopy after 2h incubation in broth supplemented with OP0595 at multiples 51 

of MICs for the parent strains. Images were taken after bacterial staining with 1.5% phosphotungstic 52 

acid, using a JEM-1400 transmission electron microscope (JEOL, Peabody, MA, USA) fitted with an 53 

AMTX XR60 camera. Susceptibility testing was performed by agar dilutions according to BSAC 54 

guidelines.3 55 

Sequencing and bioinformatics 56 

Parent and mutant DNA were extracted on the QIAsymphony automated platform (QIAGEN, Hilden, 57 

Germany) used according to the manufacturer’s instruction. Paired-end reads of 2 x 100 nucleotides 58 

with over 30 times depth of coverage were generated for each sequenced DNA on a HiSeq Illumina 59 

instrument using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA, USA). Reads 60 



were trimmed to remove low-quality nucleotides using Trimmomatic 0.32 61 

(http://www.usadellab.org/cms/?page=trimmomatic), specifying a sliding window of 4 with average 62 

Phred quality of 30 and 50 as the minimum read length to be conserved. Trimmed reads for parents 63 

and mutants were assembled into contigs with VelvetOptimiser 2.1.9 software 64 

(http://bioinformatics.net.au/software.velvetoptimiser.shtml), using k-mer values from 55 to 75. Only 65 

contigs ≥ 300 bp were used in further analysis. Reads from the four mutants of each set were 66 

individually mapped to the assembled contigs of the corresponding parent, using Bowtie2 67 

(http://bowtie-bio.sourceforge.net/bowtie2) in a global alignment mode to generate a sequence 68 

alignment/map (SAM) file, which was used to generate a variant-calling file (VCF) using the Samtools 69 

0.1.18 algorithm (http://samtools.sourceforge.net) with default settings. Base polymorphisms and 70 

small indels were detected using an in-house Python script which parsed the VCF file line-by-line to 71 

determine the base calls at each nucleotide position, with filtering based on the read coverage (≥ 5 72 

reads), frequency of polymorphic bases (≥ 80 %) and the overall quality of the variant call (base 73 

mapping ≥ 25 Phred score).  Potential large deletions or insertions were checked in the VCF by filtering 74 

for the read coverage (≤ 2) and the frequency of the read- start and end information (≥ 50 %). All 75 

detected base polymorphisms were manually confirmed on Tablet 1.14 76 

(https://ics.hutton.ac.uk/tablet/) and suspect genomes carrying large genetic alterations were 77 

visualized using Mauve 2.3.1 software (http://darlinglab.org/mauve/mauve.html). The Illumina 78 

sequences generated in this study are deposited and available in the European Nucleotide Archive 79 

(ENA) under the study accession number PRJEB12745 (http://www.ebi.ac.uk/ena/data). 80 

Results and Discussion 81 

MICs of OP0595 for the twenty mutants exceeded 32 mg/L, compared with 0.5-1 mg/l for their 82 

susceptible parent strains.2 The mutants exhibited at least an eight fold increase in resistance to 83 

mecillinam, which also solely targets PBP2, whereas MIC shifts of β-lactam antibiotics targeting other 84 

PBPs were variable and lacked any consistent trend.2 To elucidate these resistance traits, parent and 85 

http://darlinglab.org/mauve/mauve.html


mutant genomes were sequenced and various alterations were identified in multiple regions of the 86 

chromosome. These ranged from single nucleotide substitutions to deletions or insertions of 2 to 3767 87 

nucleotides. Based on the annotation of E. coli published genomes, we located alterations to coding 88 

fractions of the genome that were inferred to result in amino acid changes or loss in 19 of the 20 89 

mutants, including eight cases where replacements generated a premature translation-termination 90 

codon (Table 1). Only one mutant (EC-4 M2) had an alteration in a non-coding intergenic region, 91 

involving an insertion sequence 225 bp upstream from the transcription start of the global two-92 

component system arcA gene (Table 1).  93 

Fifteen different altered genes were detected among the twenty OP0595-resistant mutants.  These 94 

did not include pbp2, which encodes the OP0595 target, PBP2. Rather, seven genes, namely lysS, alaS, 95 

aspS, ileS, cca, hemL and mnmA, variously altered in 10/20 mutants, encoded aminoacyl tRNA 96 

synthesis and modification functions (Table 1). Alterations in the coding sequences of alaS, aspS and 97 

other (e.g.. argS, thrS, leuS and gltX) tRNA synthetase genes have previously been associated with 98 

mecillinam resistance, and are known to result in increased intracellular levels of the stringent 99 

response signal mediator guanosine-3’,5’-bisdiphosphate (ppGpp).4-6 The stringent response is a 100 

widespread global regulatory system, activated in response to various stresses. Production of ppGpp 101 

depends on the ribosome-associated protein RelA, which is activated under amino acid limitation, and 102 

when uncharged tRNAs bind the ribosomal A site.7, 8 Degradation of ppGpp, upon return of favourable 103 

conditions, is catalyzed by SpoT, a bifunctional enzyme that can also synthesize ppGpp in response to 104 

carbon, fatty acid and iron limitation, although less efficiently than RelA.7, 8 ppGpp primarily regulates 105 

gene transcription and is required for the expression of the sigma factor RpoS, which is known to 106 

regulate multiple genes and, in particular, those associated with cell division at stationary phase, 107 

including the ftsAQZ operon, activation of which may be the effector mechanism for resistance to 108 

PBP2-targeted agents.9, 10 The alterations identified in genes encoding aminoacyl tRNA synthesis and 109 

modification functions in these 10 OP0595-resistant mutants (Table 1) would be expected to decrease 110 



the aminoacyl tRNA levels in the cell, mimicking the amino acid starvation stress conditions that 111 

activate RelA to produce ppGpp. 112 

Five of the remaining 10 mutants had alterations in the coding sequence or potential regulatory region 113 

of the global two-component systems arcA or the cytochrome D-ubiquinol oxidase subunit cydA (Table 114 

1). Inactivation of either arcA or cydA has been shown to increase the expression of the sigma 115 

regulator factor rpoS.11, 12 Of the final five mutants, one had an alteration in the ppGpp degrading 116 

enzyme SpoT and one had the 50S rRNA methyltransferase Rlm inactivated, together with a possibly 117 

insignificant mutation in ribE. Mutations in rRNA methyltransferase result in a slow-growing 118 

phenotype, which also may induce the stringent response.13  Another mutant had alterations in the 119 

RNA polymerase subunit RpoC, which interacts with RpoS and, although the mechanism of linkage is 120 

uncertain, alteration to the second subunit of the RNA polymerase, RpoB, was previously associated 121 

with mecillinam resistance.14 Another mutant had inactivation of TolB, a periplasmic component of 122 

the Tol-Pal system involved in maintaining outer membrane integrity.15 Release of periplasmic 123 

components into the extracellular medium of tol-pal mutants leads to osmosensitivity and activates 124 

the sensor protein RcsC which, with RscB, regulates expression of ftsAQZ independently from the RpoS 125 

pathway.16-20 Alterations of RcsBC regulation have been associated with mecillinam resistance in E. 126 

coli mutants.21 The origin of resistance remained unclear in one mutant (EC-3 M-4), which had 127 

alteration only in bcsC, which encodes a cellulose synthase 128 

Induction of either the RpoS or RscCB regulatory pathways stimulates expression of FtsZ, the 129 

possible mediator. Of the six promoters identified upstream of ftsZ in E. coli, ftsQ1p is recognized by 130 

RpoS whereas ftsA1p is stimulated by the two-component system RcsBC.16, 22-25 FtsZ is widely 131 

conserved among prokaryotes and shares a common ancestor with eukaryotic tubulin.26 It can 132 

modulate membrane plasticity, and overexpression in E. coli has been reported to allow stable growth 133 

as round-cell shape to compensate PBP2 loss.27 All the OP0595-resistant mutants exhibited spherical 134 

forms after two hours incubation in broth supplemented with sub-MICs of OP0595 (Figure 1), an 135 



observation in keeping with previous data for mecillinam and with the view that resistance to these 136 

agents entails compensation for inhibition of PBP2, not modification or shielding of this target.28 137 

 Combining whole genome sequencing with published experimental data of altered genes in 138 

OP0595-resistant mutants is sufficient to elucidate the underlying molecular mechanisms (Figure 2). 139 

In brief, the main mechanism of resistance to OP0595 is activation of RpoS either: (i) through 140 

stimulation of the stress stringent response, or (ii) by inactivation of RpoS suppressors, such as AcrAB 141 

and CydA (Figure 2).  Activation of the RcsCB regulation system, previously identified in mecillinam-142 

resistant mutants, also can potentially lead to OP0595 resistance.5, 21 Both RpoS and RcsC regulate 143 

genes encoding cell division functions, specifically ftsAQZ, that can compensate for PBP2 loss or 144 

inhibition, allowing survival of the challenged bacteria as stable round forms.  This hypothesis is in 145 

keeping with the observed morphological effects and with the fact that OP0595 continues to act as a 146 

-lactamase inhibitor and as a β-lactamase-inhibition independent synergist ('enhancer') of PBP3-147 

targeted antibiotics against Enterobacteriaceae that are resistant to its direct antibacterial activity.1, 2  148 
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Table 1. Gene alterations associated with OP0595 resistance from this study. 228 

Isolate  Alterations Genes Functions 

  nucleotides Amino acids   

EC-1 M-1 T=>C R337C rpoC DNA-directed RNA polymerase 

 M-2 del-TGTTGCG L136* cca tRNA nucleotidyl transferase 

 M-3 A=>G G144S hemL glutamate-1-semialdehyde-2,1-aminomutase 

 M-4 A=>G G474S lysS lysine tRNA ligase 

EC-2 M-1 A=>C V54G ribE riboflavin synthase beta chain  

 M-1 G=>A W91* rlm 50S rRNA methyltransferase 

 M-2 C=>T T36A alaS alanyl-tRNA synthetase 

 M-3 G=>A Q192* tolB periplasmic protein, TonB-independent uptake of group A colicins 

 M-4 G=>A Q371* cydA cytochrome d ubiquinol oxidase, subunit I  

EC-3  M-1 del AG L351* arcB aerobic respiration control sensor protein 

 M-2 C=>A E335* mnmA tRNA (Gln, Lys, Glu)  5-methylaminomethyl-2-thiouridylase methyltransferase 

 M-3 del 3767 bp  lysS lysine tRNA ligase - isopentenyl-diphosphate isomerase$- hypothetical$- purine permease$ 

 M-4 C=>G P1019A bcsC cellulose synthase subunit 

EC-4  M-1 C=>T P555S aspS aspartyl-tRNA synthetase 

 M-2 IS insertion  intergenic 225-bp upstream arcA - potential regulatory region 

 M-3 A=>T V74E spoT guanosine-3',5'-bis(diphosphate) 

 M-4 G=>T E329* cydA cytochrome d ubiquinol oxidase, subunit I 

EC-5  M-1 T=>C F197L aspS aspartyl-tRNA synthetase 

 M-2 Ins-ACGCGTATT 133-LRV cca tRNA nucleotidyl transferase 

 M-3 Ins-TAC 153Y ileS isoleucyl-tRNA ligase 

 M-4 del-TGATGTCC I152* arcA DNA-binding response regulator in two-component regulatory system with ArcB 

 229 

All annotations were in relation to the published E. coli MG1665 genome (GenBank: U00096). 230 

Genes shown in bold font encode synthesis or modification of amino-acyl tRNAs. (*) indicated stop codon ($) genes in the deleted DNA fragment that are unlikely to be 231 

associated with resistance.  232 



Figure 1. Parent and their OP0595-selected mutants after two hours incubation with OP0595 at 2 x MIC for the parent strains (1-2 mg/L); these concentrations are < 1/16th 233 

the MIC for the mutants. The distinction is that the mutants conserve their round shapes in the absence of OP0595 and can survive the inhibition of PBP2, whereas their 234 

parents cannot. 235 



  236 



Figure 2. Proposed mechanism(s) of resistance to the antimicrobial activity of OP0595 237 
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