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Highlights  

 Exposure of columnar and slab-like structures in the modern shallow subtidal of 

Greece promoted research into possible classical archaeological remains. 

 This research shows the structures are actually exhumed fossil hydrocarbon seep 

concretions. 

 Ferroan dolomite mineralogy and stable carbon isotopes are diagnostic of methane 

oxidation and authigenesis in the sulphate-methane transition zone. 

 A rare example of hydrocarbon-seep authigenic carbonates in a shallow shelf setting. 

Abstract  

In Zakynthos Island (Greece), authigenic cementation of marine sediment has formed pipe-

like, disc and doughnut-shaped concretions. The concretions are mostly composed of 

authigenic ferroan dolomite accompanied by pyrite. Samples with >80% dolomite, have 

stable isotope compositions in two groups. The more indurated concretions have δ18O around 

+4‰ and δ13C values between -8 and -29‰ indicating dolomite forming from anaerobic 

oxidation of thermogenic methane (hydrocarbon seep), in the sulphate-methane transition 

zone. The outer surfaces of some concretions, and the less-cemented concretions, typically 

have slightly heavier isotopic compositions and may indicate  that concretion growth 

progressed from the outer margin in the ambient microbially-modified marine pore fluids, 

inward toward the central conduit where the isotopic compositions were more heavily 

influenced by the seep fluid. Sr isotope data suggest the concretions are fossil features, 

possibly of Pliocene age and represent an exhumed hydrocarbon seep plumbing system. 

Exposure on the modern seabed in the shallow subtidal zone has caused confusion, as 

concretion morphology resembles archaeological stonework of the Hellenic period. 

 

Keywords: Dolomite, Concretions, Stable isotopes, Hydrocarbon-seep, Marine archaeology, 

Zakynthos 

 

 

 



1. Introduction 

This study discusses concretion-like structures found in shallow subtidal waters of the Ionian 

island of Zakynthos (Fig. 1). These structures were discovered by snorkelers and divers and 

sparked interest as they bear superficial resemblance to archaeological stonework, as the 

labelling on Google Earth v7.1 (2014) amateur photographs attests (see also Fig. 2). While 

archaeological sites are ubiquitous in Greece, they are not well documented in the shallow 

offshore. Such discoveries are therefore carefully examined in situ by the Ephorate of 

Underwater Antiquities of Greece, in this case assisted by one of the authors (M.G. 

Stamatakis). However, these investigations did not reveal any further supporting evidence for 

antiquities at this site. A geological origin is therefore explored here as the structures look 

like  concretions formed by localised authigenic cementation of sediment (cf. Angeletti et al., 

2015; Nyman et al., 2010; Wirsig et al., 2012). Our interpretations and conclusions while of 

obvious interest to geologists also have significance for archaeologists and even tourists who 

enjoy snorkelling. We summarise our findings with the maxim ‘all that glistens is not gold’ or 

in this case ‘columns and pavements in the sea, not always antiquities will be’. 

2. Study site, concretion morphology and geological setting  

The study site is in the modern subtidal (2-5 m water depth) zone of Alikanas Bay on the E 

coast of Zakynthos (37˚ 50' 50.80'' N; 20˚46' 46.54'' E; Fig. 1). The concretions are found on, 

and in, the modern seabed sediments (Fig. 2) in a zone 20-30 m wide and about 180 m long, 

on two sub-parallel WSE –ENE arrays. Within this zone concretion density is patchy, with 

local areas 15-20 m2 containing up to 5 large structures (dimensions given below), 

interspersed with apparently barren areas. The larger concretions are detached from the 

sediment and appear to have slumped from a low ridge structure (P. Tsampourakis, diver & 

member of the Ephorate of Underwater Antiquities, pers. comm. 2014).  

The concretions are mostly: (1) pipe-like structures up to 70 cm long, with external diameters 

5-30 cm, and central hole diameters of 1-2 cm (Fig. 3); or (2), disk or doughnut-shaped (Figs 

2 and 4) up to 60 cm thick with external diameters 30-100 cm, and with an central hole, 1 to 

30 cm diameter. The central holes in the pipes and doughnuts are usually open, although one 

pipe had a cavity filling of off-white sparry carbonate cement of coarser crystallinity than the 

chimney wall (Fig 5a). A few rectilinear ‘slab-like’ concretions were also observed (Fig. 2b). 

Pipe-like concretions are mostly heavily lithified with outer surfaces bored and encrusted by 



modern marine organisms (Fig. 5b), whereas some doughnuts/disks are less-heavily 

cemented and clearly display laminae inherited from the host sediment. 

The local bedrock is Plio-Pleistocene marl, claystone and sandstone (Papanikolaou et al., 

2010) resting unconformably on the Paxos Unit, the tectonic foreland of the Hellenic Orogen, 

here comprising Mesozoic to Paleogene aged limestones, dolostones, cherts, porcelanites and 

evaporites (Dermitzakis 1978, Perry and Temple 1980, Brooks and Ferentinos 1984, 

Nikolaou 1986, Stamatakis et al., 1988, Triantaphyllou et al., 1997, Papanikolaou et al., 2010, 

Kokkalas et al., 2012). The Zakynthos Canyon, E of the island (Fig. 1), occupies a broad 

structural depression trending parallel to the local tectonic zones of the External Hellenides. 

The canyon contains the local NW-SE trending Zakynthos Basin, its geometry controlled by 

reverse faults or thrusts with associated diapirism in Triassic evaporites (Brooks and 

Ferentinos 1984). The area is seismically active, a 7.2 magnitude (Richter scale) event in 

1953 destroying most buildings on the island.  

3. Methods 

Petrography was done using polished thin sections under normal light and 

cathodoluminescence (CL) and by scanning electron microscopy (SEM). Mineralogy was 

determined by powder X-ray diffraction with a Bruker 5005 X-ray diffractometer, using 

Rietveld Quantitative Analysis to calculate mineral percentages. Mineralogical 

determinations were augmented with SEM energy dispersive microanalysis using a JEOL 

JSM-5600 LINK ISIS. For stable isotopes an aliquot between 10 and 30 mg (depending on 

sample composition) of fine powder was reacted at 25°C with 1.5 ml of 102% ortho-

phosphoric acid. The evolved CO2 after 1 hour’s reaction was taken to represent calcite, 

while continued reaction for a further week represented CO2 from slower reacting ferroan 

dolomite (see Walters et al., 1972). Isotopic measurements were made on MIRA (Multi 

Isotope Ratio Analyser), the laboratory standard (UEACMST) giving a precision of 0.05‰ 

for both δ18O and δ13C. The carbonate-carbon dioxide acid fractionation factors for 

calculating δ18Ocalcite and δ18Odolomite were 1.01025 and 1.01182 respectively (Rosenbaum and 

Sheppard 1986). Results are in delta notation on the VPDB scale unless stated otherwise. 

The phosphoric acid separation technique is imperfect (Walters et al., 1972) as reaction rates 

vary with grain size, proportions of phases and degree of mineral stoichiometry such that 

some cross-contamination of evolved gases is unavoidable. We thus only attempted calcite 

http://en.wikipedia.org/wiki/Surface_wave_magnitude


separations on four samples where the percentage calcite was >10% (Table 1). Precision for 

co-existing mineral pairs is probably no better than ± 1‰. 

Sr isotope analysis of four representative samples began with a 10% acetic acid leach to 

dissolve mainly calcite, followed by a 6M HCl leach to characterise dolomite. Sr was 

separated using Sr-SPEC resin and loaded on single Re filaments using a TaO activator.  

Samples were analysed using a Thermo-Electron Triton mass spectrometer in multidynamic 

mode.  Six analyses of the NBS987 standard gave a value of 0.710252 ± 0.000006 (8.1ppm, 

1-sigma) at the time of analysis. 

4. Results 

4.1 Mineralogy and microstructure 

 

The seafloor sediment is a mixed siliciclastic-carbonate (~5-20% calcite; table 1) silty-mud 

with fine-sand laminae (mm scale) with abundant foraminifera.  Clay-minerals are mostly 

illite and chlorite (Table 1) while silt and sand grains are quartz, albite, mica and calcite 

mineralogies (Table 1). Concretion mineralogy differs from the host sediment mainly by the 

presence of between 43-89% of calcium-magnesium-iron carbonates (Mg-calcite, and ferroan 

dolomite, Table 1) depending on the degree of cementation. There is no systematic difference 

between the carbonate mineralogy of the more- and less-cemented concretions. The ferroan 

dolomite identification was confirmed by the presence of XRD ordering reflections (Fig. 6) 

as discussed in Gregg et al. (2015). 

 

In thin sections the main body of the concretions comprise orange luminescing micrite to 

microspar (Fig. 7a) with coeval pyrite aggregates. In the less-cemented concretions the main 

body preserves host sediment laminae, typically either denser micrite with peloids and 

intraclasts or variously silty to fine-sand rich (50-200 m grains) with abundant benthic 

foraminifers (Fig. 7b) and micritic patches with pyrite. SEM shows that coccolith plates and 

foraminifer tests and are well-preserved (Fig. 8) and open space in foraminifer chambers is 

partially cemented by (1) brightly orange luminescing micritic-microspar (Fig. 9) and then 

(2) dull-brown luminescing euhedral microspar (Fig 9) succeeded by pyrite framboids (Fig. 

10a). In a few instances foraminifer chambers are completely filled by pyrite. The carbonate 

cement sequence in foraminifer chambers is also present in small fractures of the concretion 

body (Fig. 10b) and the brightly orange luminescing micritic-microspar is also present as 



coronas (10-20 m wide; Fig. 10b) around many siliciclastic grains and pyrite aggregates. No 

pyrite has been observed in the fractures. 

 

4.2 Isotopes 

The calcite has δ18O values between +0.3 and +3.8‰ (Table 1), although the total amount of 

calcite in most cemented samples is <12% which means the gases derived for isotopes are 

almost certainly contaminated with gas from fast reacting fine-grained ferroan dolomite. In 

the sample with the most calcite (ZC40C) δ18Ocalcite is 0.3‰ (Table 1) which may be the best 

indicator of the actual calcite values.  Similarly the calcite in ZC40C has the least negative 

δ13C value of -1.7‰, whereas samples with <12% calcite have δ13C values between -5 and -

17‰ (Table 1). Samples with dolomite mostly contain >80% dolomite, such that their 

isotopic values should be indicative of actual compositions. Dolomite isotope values fall into 

two clear isotopic groups: group 1 (Figs 11 and 12), mainly the less indurated doughnut 

concretions, with δ18O between +2 and +3‰ and with δ13C values >0‰; and group 2 (Table 

1; Figs 11 and 12), with δ18O mostly around +4‰ (ZO is an exception) and δ13C values 

between -8 and -29‰. The four samples selected for 87Sr/86Sr analysis, two from less 

cemented concretions and two from more indurated material have 10% acetic acid leach 

values between 0.708867-0.708966 and 6M HCl leach values between 0.709038-0.709091 

(Table 1). ZSR has an anomalously radiogenic 6M HCl leach value: this sample contained 

57% non-carbonate minerals such that the 6M HCl probably leached radiogenic Sr from clay 

minerals and because of this it is discarded from further interpretation. 

 

5. Interpretation of sedimentary, morphological and isotopic data 

 

The shallow shelf location determines that if these concretions are marine, they must have 

formed during sea-level highstand when the shelf sediments were submerged. Moreover, the 

linear distribution of the concretions, and their association with a low sea-bed ridge suggests 

the possible presence of a blind fault below the recent sea bed muds, which might be related 

to fluid flow. The pipe-like, disk and doughnut morphology and the size of the concretions is 

typical of authigenic carbonates associated with hydrocarbon-seeps seen both in modern 

seafloor and palaeo-settings (e.g., Angeletti et al., 2015; Kocherla et al. 2015; Reitner et al., 

2015). Pipe-like concretions, are considered by Reitner et al. (2015) to be formed by micro 



seepage of hydrocarbon-rich fluids and slab-like morphologies have been related to more 

diffuse flows (Naehr et al., 2007; Suess 2014). 

 

The petrography suggests that authigenic carbonates mainly cemented open-space in the host 

sediment as micritic to microsparitic cements to form the body of the concretions. The mainly 

orange CL colours suggest that ferroan dolomite cementation occurred while pore water Fe2+ 

concentrations were below 3.0 wt% FeCO3 (Fairchild 1983) with Mn2+ concentrations 

probably >0.03 wt% MnCO3 (Fairchild 1983). As pore water Mn2+/ Fe2+ ratio is thought to 

control dolomite CL colour intensity (higher ratio causing brighter CL; Miller 1988) it is 

likely that the bright orange luminescing cements formed when the pore water Mn2+/ Fe2+ 

ratio was at its highest, perhaps when rapid pyrite precipitation reduced dissolved Fe2+ 

concentrations, followed by duller CL colour in the later euhedral microspars as Mn2+ 

concentrations became limiting. 

 

The presence of pyrite indicates active sulphate reduction in the sediment throughout the 

cementation history. The ferroan dolomite mineralogy points to ‘in-sediment’ cementation 

where sulphate-reduction has lowered dissolved sulphate concentrations favouring dolomite 

precipitation (Baker and Kastner 1981), rather than the commonly observed aragonite or 

calcite seafloor cementation described in many hydrocarbon seep settings (e.g. Aloisi et al., 

2000; Gontharet et al., 2007). 

Authigenic carbonate concretions with δ13C below -20‰ suggest strongly the influence of 

bacterial methane oxidation (see e.g. Hovland et al., 1987). Anaerobic oxidation of methane 

(AOM) is thought to be mediated by a consortium of methanotrophic archaea and sulphate 

reducing bacteria (e.g. Boetius 2000; Joye, 2012; Miluka et al. 2012) at the base of the 

sulphate reduction zone (sulphate-methane transition zone). The simplified reaction, 

 CH4 + SO4
2- → HCO3

- +HS- + H2O  

increases pore water alkalinity (Reeburgh 1983; Raiswell 1987, 1988) and reduces dissolved 

sulphate concentrations, both features that facilitate formation of authigenic dolomite (Baker 

and Kastner 1981; Magalhães et al., 2012; Wirsig et al., 2012). The availability of iron for 

incorporation into the dolomite is also consistent with concretion formation in the sulphate-

methane transition zone (Rodriguez et al. 1999), as iron in the overlying sulphate reduction 

zone is preferentially precipitated as iron sulphide.  The Zakynthos δ13C values between -8 



and -29‰, are consistent with authigenic carbonates forming in hydrocarbon seep 

environments, overlapping for example (Fig. 12), with dolomite data from Monterey Bay, the 

Santa Barbara and Eel River Basins (Naehr et al., 2007) the Gulf of Cadiz (Magalhães et al., 

2012) and the south eastern Adriatic (Angeletti et al., 2015). The most negative δ13C values, 

are not below -30‰ which suggests oxidation of thermogenic methane rather than biogenic 

methane (Naehr et al. 2007), consistent with the findings of Etiope et al. (2013) from nearby 

Katakolon Bay (Fig. 1).  Dolomite δ13C values between -8 and -20‰ probably indicate a 

component of bicarbonate from methane oxidation mixed with pore water dissolved 

inorganic carbon (DIC) modified by sulphate reduction, or methanogenesis-impacted pore 

water bicarbonate (see below). 

The 6M HCl leaches (representing dolomite) have Sr isotope values, which if interpreted as 

marine precipitates, suggest a Pliocene Age of ~3-4 Ma (McArthur et al., 2001) for 

concretion growth, which is consistent with the local bedrock sediment age. This age is not 

tightly constrained as the 10% acetic acid leach ‘calcite’ treatment will have altered the bulk 

value somewhat, as will potential leaching of radiogenic Sr from siliciclastic detritus in the 

samples. However, it is also possible that the Sr isotope values represent a mixture of 

seawater and a basinal fluid that had equilibrated with Mesozoic basement carbonates or 

Neogene carbonate sediments with 87Sr/86Sr values between ~0.7072 and 0.7088 (McArthur 

et al., 2001). In a mixing scenario the data would allow the seawater to be of any age from 

Pliocene to Modern, dependent on the degree of mixing with basinal fluid. The range of 

87Sr/86Sr values for these dolomite-bearing sediments (Table 1) is similar to other 

hydrocarbon seep fluids and authigenic dolomites for which the interpretation is either 

ambiguous  (e.g. Naehr et al, 2007) or indicative of basinal fluids equilibrated with deeper 

seated sediments (Martin et al., 1996).  

If the authigenic carbonates formed ‘in-sediment’ in the marine sulphate-methane transition 

zone then the stable isotope compositions should be indicative of the early diagenetic 

conditions. Regardless of the precise age for authigenic carbonate growth, i.e., Late Pliocene 

sea-level highstand or younger, modern seawater isotopic compositions serve as a robust 

starting point for interpretation, as interglacial (highstand) seawater stable isotopic 

composition has not changed more than ~ 0.3‰ over the last 4 Ma (Rohling 2007). Modern 

Ionian Sea surface water has δ18O values around +1.3‰VSMOW (based on data in Stenni et 

al., 1995; López Correa et al., 2010). We cannot be sure of the temperatures at which the 

concretions formed, but the sulphate-methane transition zone is typically at least -5 m below 



the sea bed. At this depth temperatures should be slightly above (~0.2 ˚C) sea bottom water 

temperatures (inferred from data in Erickson and Von Herzen 1978; Feseker et al., 2009). 

The mean annual modern seawater temperature at the site is ~20˚C 

(www.seatemperature.org/europe/greece, using NOAA data). Calcite in equilibrium with 

seawater-derived pore water of this composition at ~20˚C would have δ18O ~ +0.4‰ and 

dolomite ~ +3.5 to +4.5‰ (using a ∆δ18Odol-cal of ~+3 to +4‰ from Horita (2014), based on a 

review of experimental and theoretical data).  The calcite in ZC40C (outer edge of concretion) 

has a δ18O of +0.3‰, (Fig. 11), and the Group 1 less cemented dolomitic concretions have 

δ18O between +2 and +3‰. These are near-equilibrium (~20˚C) values based on modern 

seawater, indicating that the pore-waters were marine-derived. 

The crust calcite (ZC40c) with a δ13C of -1.7‰ (Fig. 11) is the only calcite sample where 

contamination from isotopically-negative fast reacting dolomite is not possible, because the 

co-existing dolomite in the sample has a more positive δ13C composition. It should therefore 

be representative of the heaviest likely δ13C composition for calcite. While the other three 

calcite values are potentially compromised by isotopically negative carbon from fast reacting 

dolomite during sample preparation (see Results), taken together with ZC40c they constrain 

calcite δ13C between approximately -2 and -8‰.  This is much more negative than an 

equilibrium seawater value (Fig. 11) but consistent with modified marine pore-water DIC in 

the sulphate reduction zone (Raiswell and Fisher 2000), or with a small component of 

isotopically negative carbon from methane oxidation. 

Sample ZI (Group 1 dolomites) has a δ13C of +4.9‰ which is probably indicative of 

methanic environments where isotopically enriched pore water DIC results from partially 

closed system methanogenesis. For example, Naehr et al. (2007) interpret δ13C values > +5‰ 

from the Eel River Basin dolomites as methanic-related. The other Group 1 dolomites have 

δ13C between +1.9 and +2.5‰ which may similarly indicate influence of methanic-

conditions, albeit mixed with isotopically more negative DIC, e.g. from sulphate reduction. 

While the Group 1 dolomite values plot close to marine equilibrium values (Fig. 11), this is 

probably coincidental, given their likely early diagenetic formation in the sulphate-methane 

transition zone. 

Three of five Group 2 ferroan dolomite samples with δ13C below -8‰ have δ18O up to 1‰ 

enriched relative to the Group 1 dolomites. One source of  18O-rich fluids in hydrocarbon-

seep settings is oxygen from gas hydrate dissociation at depth in formation waters (Martin et 

http://www.seatemperature.org/europe/greece


al., 1996), although this not likely in water depths less than 400 m where such hydrates are 

unstable (Foucher et al., 2009). Another possible source is from upward-migrating formation 

waters where fluid-rock interactions at burial temperatures above 50 ˚C can produce fluids 

with δ18O >+8‰ (e.g. Land and Prezbindowski 1981; Moore 1989 p.265). Alternatively these 

slightly enriched δ18O values may simply be evidence of cooler fluid temperatures as 

favoured by Angeletti et al. (2015) for their eastern Adriatic site. 

The outer surfaces of some concretions (and the less-cemented concretions) typically have 

the heavier isotopic compositions. This may suggest that cementation in these outer horizons 

was the least influenced by methane oxidation of the ‘seep fluid’ isotopic composition. This 

may point to early concretion growth starting at the outer edge in the ambient modified 

marine pore fluids of the sulphate-methane transition zone, and constraining lateral spreading 

of the seep fluid (Nyman et al., 2010). The cementation then proceeded inward toward the 

central conduit where the isotopic compositions were more heavily influenced by the ‘seep 

fluid’ (see e.g., Clari et al., 2004; Nyman et al., 2010). Most concretion central conduits 

remain open, but the example with a coarser-grained sparry carbonate fill attests to some 

mineralization as a final stage in cementation. 

 

6. Wider interpretation and discussion 

 

Modern deep-sea sediments on the eastern margin of the Zakynthos Canyon and in the nearby 

Gulf of Patras show active fluid venting and thermogenic and biogenic gases associated with 

pockmarks (Fig. 1; Hasiotis et al., 1996, 2005). Seepage of natural gas was also documented 

by Etiope et al. (2013) from an oilfield offshore of the Katakolon peninsula, 50 km SE of the 

study site (Fig. 1). There is however, no clear evidence of active fluid venting at the site 

today. There are no reports from snorklers of shimmering water or thermal anomalies often 

encountered with submarine springs and no distinctive fauna as commonly observed at active 

hydrocarbon seeps (e.g., Olu-Le Roy et al., 2004).  Overall the evidence suggests the 

concretions are fossil features, possibly of Pliocene age based on the simplest interpretation 

of the Sr isotope data. The ferroan dolomite mineralogy points to in-sediment concretion 

growth in the sulphate-methane transition zone, probably around -5 m below sea floor. The 

combined mineralogy and isotopic compositions of the concretions are therefore inconsistent 

with their current seafloor exposure (as outlined by Naehr et al. 2007), demonstrating that 



they have been exhumed by seabed erosion. Upon exposure in the modern shallow subtidal 

the hard substrates were then bored and encrusted by modern marine organisms.  We thus 

interpret these concretions as part of an extinct and partially exhumed hydrocarbon seep 

‘plumbing system’ (cf. Angeletti et al., 2015; Magalhães et al., 2012; Wirsig et al., 2012; 

Nyman et al., 2010),  the linear seabed distribution suggesting a genetic relationship to 

faulting. Hydrocarbon seepage elsewhere in the region has been linked to earthquake 

triggering (Hasiotis et al., 1996, 2002; Etiope et al., 2013). 

The nearshore shallow shelf sea setting of these exhumed concretions contrasts with many 

published descriptions of hydrocarbon seep authigenic carbonates, both locally in the eastern 

Mediterranean and Adriatic (e.g. Aloisi et al., 2000; Angeletti et al., 2015; Gontharet et al., 

2007; Zitter et al., 2008) and further afield. Most of these sites are in deep sea settings in 

many hundreds and often thousands of metres water depth. In deep sea settings the 

hydrocarbon-bearing fluid is always basinal or marine; however, in nearshore settings fluid 

pathways could also be affected by circulating groundwater sourced form an onshore 

hydrogeological head, such as coastal mountains, particularly where faulting is active. 

In our study area there is evidence for active hydrogeological activity associated with 

hydrocarbons. An onshore borehole at Alikanas (Fig. 1) encountered asphalt and meteoric-

sourced groundwater at -800 m, driven by a hydrological head in the Vrachiona Mountains to 

the west (K. Nikolaou pers. comm. 2014) and water supply drilling has also encountered 

liquid and gaseous hydrocarbons in the faulted zone between the Mesozoic limestones and 

Neogene sediments. Four km N of the study site at Xygia Bay, H2S-rich meteoric water-

sourced springs emanate in shallow seawater, forming a turbid yellow-brown sea-surface 

plume with sulphur efflorescence of several km2 extent. Tar seeps, known since antiquity, 

also occur at Limni Keri (Tar Lake) beach (Fig. 1) 18 km S of Alikanas Bay. 

As meteoric water is clearly a component of some onshore hydrocarbon-bearing fluids that 

could be routed through faults in the shallow offshore, we here consider its possible 

involvement in the fluids that formed the concretions, again using stable isotope 

compositions as a tracer. Modern Zakynthos meteoric water recharge has δ18O of -5.2‰ 

(mean annual) to -5.7‰VSMOW (mean winter; calculated from OIPC v.2.2 (Bowen and 

Wilkinson 2002; Bowen and Revenaugh 2003; see also Dotsika et al., 2010). Meteoric-

sourced shallow groundwater in this part of Greece has a temperature ~15˚C (based on data 

in Brasier et al., 2010). Carbonate minerals in equilibrium with such a groundwater would 



have δ18Ocalcite of -5.5‰, and δ18Odolomite of -2.5 to -1.5‰ (using a ∆δ18Odol-cal of ~+3 to +4‰ 

from Horita, 2014). These values are ~ 5-6‰ lower than those measured in the concretions. 

This probably means that local meteoric-water circulation is shallow and not involved in the 

fluids that formed these concretions. However, pending further research, we remain open to 

the possibility that meteoric-water influence in the plumbing system could have been mixed 

with isotopically enriched basinal fluids to generate low positive δ18O values and 87Sr/86Sr 

values that resulted from equilibration of fluids with basement limestones (see above). 

7. Conclusions 

Although some of the earliest hydrocarbon seep authigenic carbonate discoveries were 

reported from relatively shallow shelf sea sediments (see overview in Hovland et al., 1987) 

their continued documentation in modern shallow water settings is not that common (but see 

Taviani et al., 2015; Viola et al., 2015), most discoveries being reported from many hundreds 

and often thousands of metres water. In this study we describe authigenic carbonates from the 

shallow subtidal of the Ionian Sea and show: 

1. The concretions are fossil features possibly of Pliocene age based on Sr isotope data. 

2. The dolomitic mineralogy and stable isotope geochemistry show these carbonates 

formed in anoxic marine sediments of the sulphate-methane transition zone, probably 

around -5 m below the sea floor. Anaerobic methane-oxidation is clearly identified by 

characteristically negative δ13C values. 

3. Given their ‘in-sediment’ formation the concretions have been exhumed by erosion to 

be exposed on the seabed today. 

4. There is no clear evidence that either basinal fluids or meteoric water was involved in 

concretion formation. 

5. Exhumed sediment-hosted concretions exposed in shallow marine settings can be 

readily confused with archaeological artefacts in countries like Greece which are rich 

in submerged antiquities, but the extent of which are still poorly known. 
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Figure captions 

Fig. 1. Map locating the study site and other features mentioned in the text. The pecked line 

shows the axis of the fault bounded Zakynthos submarine canyon system where water depths 

are >400 m; the open circle marks the deep water pockmark field of Hasiotis et al. (2005).  

Arrow on inset map shows the position of the study site in Greece.   

Fig. 2. Submarine site photographs: a) doughnut concretion with superficial resemblance to 

column shaft elements often found in classical ruins in Greece; black and white scale bar is 

30 cm total length; red arrow marks sampled area; b) slabs of cemented sediment resembling 

paving seen in classical Greek ruins; black and white scale bar is 30 cm total length. 

Fig. 3. Submarine field photographs of: a) hard pipe-like conical concretion, 30 cm high 30 

cm diameter at base; b) pipe-like concretion, black and white scale bar is 30 cm total length. 

Fig. 4. Submarine field photographs (a-c) of a ‘less cemented’ doughnut concretion; black 

and white scale bar is 30 cm total length. a) Shows clear differential cementation in the outer 

wall, (b and c) show an ‘unbored’ inner ring, 5 cm in diameter, amongst fragments of 

concretion which are bored. This image was taken 24 hours after a diver cleaned out the 

central hole (P. Tsampourakis pers. comm. 2014), perhaps uncovering the inner ring from 

overlying sediment for the first time.  d) Laboratory photograph of a ‘less cemented’ disc 

concretion without borings; ruler is 8 cm long. 

Fig. 5. Laboratory photographs showing (a) part of a 15 cm long well-cemented pipe, 5 cm 

external diameter with 1 cm diameter internal off-white sparry cement filling of near identical 

mineralogy as the chimney wall (Table 1). b) Upper surface of concretion in Fig. 2a showing 



extensive boring and encrustation by marine organisms, showing it has been exposed on the 

seafloor for some considerable time. Field of view is 3.5 cm wide. 

Fig. 6 X-ray diffraction pattern of sample ZCI showing dolomite (d) reflections including 

ordering peaks (arrowed; d 101, d 015 and d 021). The basal reflections for calcite (c) and 

quartz (q) are also marked. 

Fig. 7. Cementation in a weakly cemented doughnut concretion (ZPU).  a) 

Cathodoluminescence (CL) photomicrograph showing bright orange luminescing concretion 

body composed mainly of ferroan dolomite (Table 1). Dark grains are of siliciclastic 

composition, mostly quartz. b) Plane polarized light photomicrograph showing micritic 

lamina with foraminifera toward base of image and silty lamina with micritic intraclast in 

middle to top of image.  

 

Fig. 8. Backscattered electron SEM images from pipe-like concretions. (a) Muddy coccolith-

rich detrital sediment from a chimney wall, showing intergrowth of euhedral authigenic 

dolomite crystals. b) Foraminifer test showing well-preserved chamber wall. Former open 

space in the chamber is filled with authigenic dolomite and pyrite (details in Figs 9a and 10a). 

Fig. 9. a) Backscattered electron SEM image showing mainly euhedral authigenic dolomite 

crystals filling space in a foraminifer chamber (detail from pecked box on Fig 8b). b) CL 

photomicrograph showing cement stratigraphy filling a foraminifer chamber in sample ZI. 

The test wall (T) has orange CL colour which is overgrown by a bright orange luminescing 

dolomite cement fringe (CF), followed by dull orange luminescing, coarser dolomite crystals 

(DC). These dull orange crystals comprise most of the image shown in (a) while the bright 

orange luminescing cement fringe corresponds with the micritic crystals at bottom and top 

left in (a). 

 Fig. 10. a) Backscattered electron SEM image showing pyrite framboids forming in a 

foraminifer chamber (detail from pecked box on Fig 8b). These framboids postdate the 

euhedral dolomite cements also shown in Fig. 9. B) CL photomicrograph showing cement 

stratigraphy filling a fracture (F) in sample ZI. The cement CL stratigraphy is identical to that 

in the nearby foraminifer chamber (FC) and to that described in Fig. 9. Note also the bright 

orange luminescing coronas around quartz grains labelled Q. 



Fig. 11.  Carbon and oxygen isotopic data for the Zakynthos samples (Table 1): tie bars 

connect mineral isotopic compositions from a single sample. Samples ZPL, ZPM and ZPU 

are from the lower middle and upper part of a single ‘less cemented’ concretion.  The 

dolomite data are separated into two groups, particularly for δ13C; group 1 mainly from the 

‘less cemented’ concretions with δ13C values >0‰, and group 2 with δ13C values below -8‰. 

Group 2 dolomite δ18O is also around +1‰ higher than that in group 1. δ13C values below-

8‰ are inferred to contain some isotopically light carbon from oxidation of thermogenic 

methane (see also Fig. 12). The star symbols represent theoretical equilibrium calcite and 

dolomite compositions from modern seawater at 20˚C (see text for discussion of δ18O). 

Modern seawater DIC δ13C is probably ~ +1.3‰ (based on Pierre et al. 1986; 1999) yielding 

a carbonate δ13C ~ +2.8‰.  

Fig. 12.  Carbon and oxygen isotopic summary for dolomite-bearing seafloor carbonates 

associated with methane oxidation and methane, based on data in Stakes et al. (1999), Naehr 

et al. (2007) and Magalhães et al. (2012). Where A = aragonite, HMC = high magnesium 

calcite and D = dolomite. The dark fields labelled 1 and 2 show the Zakynthos ferroan 

dolomite fields. Note that the group 2 data overlap negative δ13C fields for all sites except the 

Monterey Bay field with δ13C values below -30‰ which are probably sourced by isotopically 

negative biogenic methane (Naehr et al. 2007). δ13C values above -40‰ probably indicate 

oxidation of thermogenic methane, which, for the Zakynthos samples is consistent with the 

findings of Etiope et al. (2013) from nearby Katakolo Bay (W. Greece). Methanic dolomite 

fields have positive δ13C values that just coincide ~+5‰ with the most positive Zakynthos 

datum (Table 1). 

Table 1. Mineralogy and isotope data for the concretions and surrounding seabed sediments.  

Mineral percentages are semi-quantitative estimates. 

 


