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Thesis abstract 
 

In this thesis, I investigated different evolutionary forces in shaping genetic variation within 

a bottlenecked population of an island species, the Seychelles warbler (Acrocephalus 

sechellensis). I specifically explore pathogen-mediated selection within this system by using 

avian beta-defensins and toll-like receptor genes to examine functional variation. First, I 

characterise variation within both gene groups in this population and show that this species’ 

demographic history has had an overriding effect on selection and random drift is the 

predominant evolutionary force. I characterise variation within these gene groups across 

several other Acrocephalus species, in addition to looking at a specific locus in a pre-

bottlenecked population in order to directly compare genetic variation pre- and post-

bottleneck. I use population genetic statistical methods to detect selection at several 

polymorphic genes and evaluate the robustness of these methods when applied to single-

locus sequence data, which may be lacking in power and not meet the demographic 

assumptions that come with these tests. To overcome this, I designed forward-in-time 

simulations based on microsatellite markers used in pre- and post-bottleneck populations of 

the Seychelles warbler. I am able to delineate the evolutionary effects of selection from drift 

and show that some toll-like receptor genes are indeed under positive balancing selection in 

spite of the recent bottleneck. I further explore how this variation is maintained by 

conducting association analyses investigating innate immune gene variation and its 

relationship with individual survival and malarial susceptibility / resistance. Environmental 

factors are also considered. By investigating the consequences of functional variation in a 

bottlenecked species we are able to assess its long-term viability and adaptive potential, 

whilst elucidating the evolutionary importance of maintaining genetic variation in natural 

populations. 
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1.1 Molecular Ecology 

Molecular ecology, in its broadest sense, is the application of molecular methods to 

ecological problems. It delves into the fields of population and evolutionary genetics, 

behavioural ecology and into conservation biology, which has developed into its own 

discipline since its emergence in the mid-1980s and it continues to grow (Beebee & Rowe 

2004). One of its main areas of focus is the understanding of evolutionary change in wild 

populations, and how it is differentially determined by evolutionary forces. It is fundamental 

that we elucidate the underlying mechanisms that influence genetic variation, particularly in 

fragmented or bottlenecked populations of conservation interest, if we want to conserve 

the evolvability or adaptive potential of a species in an unpredictable future (Frankel 1974). 

Genetic variation is fundamental to the long-term viability of a population. Molecular 

methods are proving increasingly useful in the field of conservation biology, particularly 

given the ever increasing rate of loss of global biodiversity, because they provide powerful 

methods and measures that can inform conservation practice (Rodriguez de Cara et al.; 

Hedrick 2001; Sommer 2005).   

 Genetic characteristics vary considerably within and among populations. The field of 

population genetics investigates a number of components of this variation, including genetic 

diversity, genetic differentiation and effective population size (Ne). Large populations tend 

to support higher levels of genetic diversity compared to smaller populations, because they 

are less prone to the stochastic loss of genetic variation due to genetic drift (Wright 1930; 

Frankham 1996). With more genetic variation, natural selection has a richer substrate to 

select from, which means that there is greater potential for the population to adaptively 

evolve (Fisher 1930). This is predicted by the early population genetic work of Fisher, and it 

is known as Fisher’s fundamental theorem. However, studies have shown that this is not 

always observed, and that small inbred populations can show a high adaptive potential 

(Franklin and Frankham 1998; Frankham et al. 1999; Lanfear et al. 2013). Therefore, we 

need to understand to what extent genetic drift and selection shape genetic variation within 

and among populations.  

 A number of methods have been developed in this field to characterise variation in 

populations, which often require combined data on sequence divergence between species 
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and polymorphism within species (Morin et al. 2004). We can then use direct evidence 

(relating to the sites which are targets of selection) and indirect evidence (from nearby 

regions) that selection is shaping variation within a population. Neutral markers are useful 

to estimate genetic diversity within a population, which can infer the evolutionary potential 

of that population / species. However, these estimates can differ from those gained when 

using functional markers. Measures of adaptive variation should be combined with those of 

neutral variation in order to truly understand the evolutionary potential of that gene pool. 

 Genetic differences among individuals are generated by a number of evolutionary 

forces, in particular mutation and recombination-like processes (which include gene 

duplication and gene conversion). The Neutral theory (Kimura 1968) states that drift and 

mutation are the main forces that explain genetic variation (Lande 1976).  Mutations are 

direct changes in the nucleotide sequence of DNA and there are many different types. Point 

mutations involve one nucleotide replacing another, while others can involve the insertion 

or deletion of a number of nucleotides. Some mutations can be the result of DNA replication 

slippage or by the movement of transposable elements within a sequence. These all act to 

increase individual variation and population differentiation. Mutation rates are highly 

variable across genes, taxa and developmental stages and subject to different types and 

strengths of selection (Kimura & Ohta 1969). Very few mutations are actually beneficial (ca. 

1-2%) and the rest are neutral i.e. synonymous substitutions where there is no change to 

the translation of the protein (Kumar & Subramanian 2002). Recombination, on the other 

hand, results in a restructuring of part of the genome, for example by the exchange of 

segments of homologous chromosomes during meiosis (Watterson 1975).  It is still a type of 

mutation that can generate novel genotypes and it is an important process to consider 

when characterising variation (for examples, see Padidam et al. 1999; Schaschl et al. 2006; 

Cizkova et al. 2011). 

 

1.1.1 Island models 

Island-endemic species have long been important to evolutionary research since Darwin’s 

HMS Beagle voyage around the Galapagos Islands eventually led to the publication of 

selection theory in the Origin of Species (1859). This is because oceanic islands make ideal 



Chapter 1: General Introduction 

4 
 

systems in which to investigate functional variation, due to a number of key features 

(Whittaker & Fernandez-palacios 1998). Firstly, islands create naturally fragmented study 

systems with discrete boundaries and so the island is readily-quantifiable. This is 

advantageous over continental systems in that they are more tractable (Emerson 2002). 

Secondly, islands are, to different degrees, isolated and consequently migration and gene 

flow between the populations that exist upon them is reduced. This can have consequences 

on the effective population size, thus leading to elevating levels of inbreeding and depleting 

genetic variation (Franklin & Frankham 1998) and because island populations tend to be 

small, genetic drift plays a particularly important role. Both demographic stochasticity 

(random variation among individuals in their survival and reproduction) and environmental 

stochasticity (containing a diversity of habitats despite their small geographical size, 

promoting local adaptation), will have much larger roles in shaping the genetic variation in 

island populations than they do on in large mainland populations (Emerson 2002). The 

attributes of islands combine to provide unusual research opportunities and the 

implications of these can stretch far beyond islands (Warren et al. 2015).  

 

1.2 Genetic variation 

It has long been debated about the role and importance of genetic variation in the drive, 

maintenance and long-term viability of populations (Lande 1988; Spielman et al. 2004; 

Frankham 2005; Pertoldi et al. 2007). While this debate has indeed been largely resolved 

and the importance of genetic variation widely established (Saccheri et al. 1998; 

Westemeier 1998; Reed & Frankham 2003; O’Grady et al. 2006), it is still proving difficult to 

gain a holistic understanding of the interaction between genetic, phenotypic, demographic 

and ecological factors in natural populations. The combination of these factors will lead to 

different genetic characteristics within and among populations. We can deduce the relative 

roles of the different evolutionary forces in natural populations using: i) population genetics, 

looking at the changes in allele, haplotype and genotype frequencies; ii) quantitative 

genetics, quantifying changes in fitness, behaviour or phenotype and iii) phylogenetics / 

macro-evolution that involves looking for footprints in the genome. While all evolutionary 

forces influence genetic variation, only natural selection and sexual selection act in a non-

random manner and is responsible for a species or population being able to adapt to 
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environmental factors (Darwin 1859). However, other evolutionary forces can override this 

and can be hard to disentangle from one another  and consequently, promote the loss of 

(Sutton et al. 2011).   

 Genetic drift is the predominant force responsible for the loss of genetic variation in 

small populations (Lacy 1987). This phenomenon is the random change in allele frequencies 

in a finite population with each generation, due to the random sampling of parental alleles 

under the laws of Mendelian inheritance (Wright 1930). In smaller populations, these 

random changes are greater and so smaller populations endure more genetic drift, which 

ultimately leads to the loss of alleles from the gene pool.  Any process that reduces the 

effective size of a population, such as inbreeding, population fluctuations and bottlenecks, 

will lead to heightened levels of drift (Masatoshi et al. 1975; Nei & Tajima 1981). In turn, the 

loss of genetic variation will result in increased homozygosity, resulting in the increased 

expression of deleterious recessive alleles (inbreeding depression) (Crow 1980). Although 

the vast majority of evolutionary changes at the molecular level are caused by drift, most 

mutants are selectively-neutral and so do not affect fitness (Kimura & Ohta 1969; Kimura 

1986). However, there are exceptions when drift can act so strongly. For example in small 

populations, positive mutations can be eliminated or mildly-negative mutations can reach 

fixation (for review, see Charlesworth 2009). 

 Gene flow among populations opposes genetic drift by increasing genetic variation. 

It is different to mutation and genetic drift in that it is not a random process because it can 

be phenotype or sex-dependant (Takahata & Palumbi 1985; Chesser 1991). The successful 

reproduction of individuals between two populations, allows the mixing of gene pools and 

the new individuals gain novel genotypes. By gaining variation, local adaptation is promoted 

and inbreeding is reduced. However, gene flow reduces coalescence time at the meta-

population level i.e. it quickens the time it takes for two spatially-distinct populations to 

interact and merge together (Slatkin 1987). Therefore, on a global scale, gene flow reduces 

genetic variation and can act as a constraining force (Mayr 1996). However, it does 

importantly introduce novel genetic variation available to selection but unlike mutation, it is 

a non-random process that can be phenotype or sex dependent (Slatkin 1987; Chesser 

1991).  
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 Natural selection is the main driver of adaptive evolutionary change (Darwin 1859). 

It acts on heritable genetic variation that confers a fitness advantage, thus allowing an 

organism adapt to their environment (Fisher 1930). In a constant environment, natural 

selection will keep a population stable, but if a new variation which is advantageous to the 

individual it will increase in frequency within that population through successful transfer to 

offspring. In contrast, less successful genetic variants will decrease in frequency as natural 

selection acts to remove them from the gene pool (Lande 1976b; Mousseau & Roff 1987). 

Directional selection occurs when natural selection favours one extreme of continuous 

variation, resulting in the opposing extreme becoming rare or even lost from the gene pool 

(Vousif & Skibinski 1982), and stabilising selection is when natural selection favours the 

intermediate states of continuous variation and so the extremes become lost (Barnes 1968; 

Gibson & Bradley 1974). An alternative mode of natural selection is disruptive or diversifying 

selection, which is when both extremes of continuous variation are favoured within a 

population. The intermediates are thus reduced or lost, and in extreme cases, this can lead 

to two new species (Wolstenholme & Thoday 1959; Thoday 1972). Balancing selection 

refers to a variety of selection regimes that act to maintain genetic variation within 

populations that are advantageous to the individual in promoting fitness (Hedrick 2006; 

Mitchell-Olds et al. 2007).  

 By these different modes of natural selection, populations are able to adapt and 

persist to a heterogeneous environment, and there are many examples of wild populations 

that have rapidly responded to novel (often anthropogenic) challenges through evolutionary 

change. Examples include: reproductive methods in plants (Morran et al. 2009), herbivorous 

insects rapidly responding to invasive plant species (Siemann et al. 2006) in addition to 

insects adapting their host associations in response to anthropogenic change (Singer et al. 

1993). Pink salmon populations have altered their life cycles (Waples et al. 2009), pocket 

mice can rapidly adapt their coat colours for camouflage (Nachman et al. 2003) and 

passerine birds rapidly evolve their singing in urban areas (Patricelli & Blickley 2006). It is the 

relative roles of adaptation versus non-adaptive forces in shaping the diversity of life within 

and between species that has become a key question which lies at the heart of biology. 
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1.3 Pathogens as evolutionary drivers 

Being able to elucidate what mechanisms are responsible for maintaining genetic variation 

in natural populations has received much attention in evolutionary biology because, in the 

words of Dobzhansky (1951 p.109), the ‘absolute equality of adaptive values of two 

biological forms is….highly unlikely.’ Essentially, one form will replace the other eventually 

and variation is lost. Balancing selection can be mediated by strong selective agents and a 

particularly strong driver of demographic and evolutionary change in natural populations 

are pathogens (Jeffery & Bangham 2000; Ford 2002; Bernatchez & Landry 2003). Pathogens 

exploit other organisms for their own growth and survival, and thus have detrimental 

effects on the intrinsic growth rates of their host at both an individual and population level 

(Anderson & May 1978). They encompass a vast variety of groups of organisms including 

protozoa, viruses, bacteria, fungi, flatworms, nematodes and arthropods (for review, see 

Noble et al. 1989). It is their intimate relationship with the host that is responsible for a 

continuous and cyclic co-evolutionary arms race. This concept is outlined in the Red Queen 

Hypothesis, which states that organisms need to constantly adapt evolve and proliferate 

against opposing organisms (Peters & Lively 1999). Therefore, pathogens can effectively 

mediate balancing selection through influencing their hosts ability to adapt and survive 

(Sorci & Moller 1997; Merino et al. 2000; Sol et al. 2003; Moller & Saino 2004; Worley et al. 

2010; la Puente et al. 2010).  

 Mortality caused by pathogens has been shown to drive the demographic structure 

of populations (Hudson 1986; Redpath et al. 2006; Deter et al. 2007; Pedersen & Greives 

2008; Llaurens et al. 2012). They also affect other factors like reproductive success (Brouwer 

et al. 2010; Knowles et al. 2011; Eizaguirre et al. 2012; Radwan et al. 2012), secondary 

sexual features and behavioural traits (for review, see Piertney & Oliver 2006). This makes 

pathogen-mediated selection (PMS) ideal to investigate a number of different balancing-

selection mechanisms in order to understand how polymorphisms are maintained. 

Previously, studies have treated these mechanisms as if they were mutually exclusive when 

in fact, they can act in concert. However, it is difficult to disentangle the effects of one 

mechanism from another (Spurgin & Richardson 2010).  
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 While a number of mechanisms have been put forward to explain pathogen-

mediated balancing selection (for reviews, see Potts & Slev 1995; Hedrick 2002; Garcia de 

Leaniz et al. 2007), there are three main mechanisms proposed: heterozygote advantage, 

rare allele advantage and fluctuating selection (Doherty & Zinkernagel 1975; Hill et al. 1991; 

Slade & McCallum 1992, respectively). Heterozygote advantage is arguably the simplest 

model of balancing selection, and often referred to as ‘overdominance’ since its initial 

proposal by plant geneticists (East 1908; Shull 1908) to explain observations of hybridisation 

and inbreeding depression (Darwin 1876; Crow 1948). Dobzhansky outlined overdominance 

as a key explanation for balanced polymorphism in populations based on an ‘adaptive 

superiority’ of heterozygotes (Dobzhansky 1951 p.132). The heterozygote advantage was 

further developed to apply to the extra-ordinarily high levels of polymorphism at the Major 

Histocompatibility Complex (MHC) in that selection would favour heterozygous individuals 

because they could recognise more different antigens and have better immune defence 

compared to homozygotes (Doherty & Zinkernagel, 1975). There are two principal forms of 

heterozygote advantage: over-dominance, and simple dominance. The MHC has been used 

to demonstrate over-dominance in that there is a superior fitness of heterozygous 

genotypes over homozygous genotypes at a single MHC locus (Shull 1908; Doherty & 

Zinkernagel 1975). Simple dominance involves the cancelling of deleterious or inferior 

recessive alleles inherited from a parent, by advantageous or superior dominant alleles 

contributed by another parent at different loci (Bruce 1910; Jones 1917). The two forms are 

under much examination and as it stands, there is still no consensus on the genetic basis 

underlying heterozygote advantage.  

 Frequency-dependant selection, also called rare allele advantage (Edwards & Hedrick 

1998) was first proposed when arguing the battle of the sexes, in that the total reproductive 

success of each sex is equal (Fisher 1930). For PMS, rare allele advantage occurs when 

common parasites evolve resistance to common host genotypes and thus the host with rare 

alleles have a selective advantage (Slade & McCallum 1992). This predicts that parasite and 

host genotypes would constantly evolve in cycles in relation to each other thus retaining 

polymorphisms (Jeffery & Bangham 2000; Hedrick et al. 2001). Fluctuating selection 

suggests that spatiotemporal variation in the pathogen fauna challenging a host, and thus 

the associated selection pressure contributes to increased immune-gene diversity (Hill et al. 
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1991). Geographical and temporal variation in pathogen type and prevalence within 

populations can cause differences in selection in space and time. The key points to this 

particular model is that (i) selection is directional rather than cyclical (like the rare allele 

advantage model) and that (ii) pathogen fluctuations are determined by external biotic and/ 

or abiotic factors, chance dispersal and extinction events (for review, see Botero & 

Rubenstein 2012). Theoretically, it has been shown that fluctuating selection could maintain 

diversity at the MHC, even in the absence of heterozygote and rare-allele advantage 

(Hedrick 2002). However, there is still little empirical work identifying balancing selection via 

fluctuating selection pressures. 

1.3.1 Avian-Malaria models 

A good host-pathogen system is needed in order to fully examine and understand how the 

mechanisms of balancing selection operate. Malaria is widely-studied because its parasites 

are responsible for some of the highest-impact diseases in humans, livestock and wildlife 

(Garnham 1980). The genus Plasmodium alone infects over a third of the world’s human 

population with 90% of cases originating in Africa (Snow et al. 2005) with an estimated 

584,000 deaths in 2013 alone (World Health Organisation 2015). They have a relatively 

complex life cycle involving indirect transmission by blood sucking insects (of the Dipteran 

order), for example mosquitoes, in which stages of development occur in both tissues and 

circulating red blood cells (Atkinson & van Riper 1991) (Fig 1). Despite being studied for over 

a century, malaria parasites have resisted all efforts of eradication. Studies on malaria 

parasite resistance have elucidated many sophisticated examples of evolution such as 

adaptive manipulation by the parasite of host behaviour and host sex (for excellent 

examples, see Lafferty & Kimo Morris 1996; Hurst et al. 1999, respectively).  

Avian malaria is an excellent host-pathogen study system and the presence of 

malaria blood parasites has been used specifically in birds to look at immune-competence 

(Marzal et al. 2005; Lee et al. 2006; Mendes et al. 2006; Hale & Briskie 2009). Field studies 

of avian malaria parasite-host systems commonly use two traits in hypotheses testing: (i) 

prevalence at the population level, and (ii) parasitaemia, the density of parasites within the 

infected host (for review, see Knowles et al. 2011). We can test specific predictions about 

the infection intensity and fitness parameters (Friedl & Groscurth 2012). For example, there 
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are some passerine studies that show significant fitness consequences of malaria infections 

in wild birds including survival (e.g. Atkinson et al. 1995; Bensch et al. 2007; Lachish et al. 

2011; Ferrer et al. 2014; Marzal et al. 2015) and more recently consequences of infection 

relating to the degradation of telomeres, the protective caps at the end of chromosomes 

(Asghar et al. 2015; Watson et al. 2015). Additionally, there has been a demonstrated trade-

off between reproduction and defence against Plasmodium infections (Bonneaud et al. 

2006; Podmokła et al. 2014, 2015; Staley & Bonneaud 2015). We must compare and 

contrast different immune responses of birds to novel pathogens and see how they 

associate with clinical symptoms, pathogen load and mortality or on the contrary, how they 

are linked to increased pathology and reduced host survival. 

 

 

 

 

 

 

 

 

 

Figure 1. Indirect transmission of malarial parasites via a Dipteran vector (mosquito) to its definitive 

host (Seychelles warbler).  

 

1.4 Candidate gene approach 

When assessing variation in finite natural populations, it is fundamental that the effects of 

drift and selection (including PMS) are combined. Drift can reduce the effectivity of natural 

selection because its random changes can override the effects that selection has on fitness 

(Lande & Terms 1976; Lacy 1987). In order to best assess the effects of both evolutionary 

forces, the genetic composition of natural populations needs to be characterised with a 
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focus on adaptive variation. This is a better correlate of mean individual fitness when 

wanting to understand the adaptive potential of a population and so molecular measures 

have shifted towards the focus on specific genes that are likely candidates to be under 

strong selective pressures. It is necessary to characterise variation at these ‘critical loci’ to 

measure variability at ecologically important traits, particularly in endangered species. 

However, there is no best method for detecting genetic variation in natural populations and 

it is often advised to combine these with neutral markers.  

 The ‘bottom-up’ candidate gene approach (CGA) in population genetics is one way 

that molecular ecologists can examine functional variation within and among populations. 

This approach involves identifying a gene(s) based on existing knowledge of its function 

from previous work and / or other species, ideally from model organisms and proceeding to 

investigate how they function in terms of the phenotype(s) expressed in your own model 

population (Fitzpatrick et al. 2005; Amos et al. 2011). However, this approach does present 

some challenges. For example, the relationship between the genetic variant and behaviour 

is not necessarily deterministic and there can be considerable phenotypic plasticity 

(Woltereck 1928). The success of CGA depends on a number of things including the 

individuals’ chosen, whether a gene has multiple effects (pleiotropy) or whether gene-gene 

interactions can affect the overall phenotype (epistasis) (for review, see Piertney & Webster 

2010). Nonetheless, this approach has many advantages in helping us to understand the 

function of variation at a specific locus. It allows the quantification of genetic diversity 

among populations in order to identify depauperate populations, and is in fact, more 

applicable to natural populations where pedigrees may be unavailable than the ‘top-down’ 

approach (Fitzpatrick et al. 2005).   

 Top-down approaches, such as examining quantitative trait loci, genome wide 

association studies (GWAS) and linkage disequilibrium, reverse the order of investigation by 

starting with a phenotype of interest and using genetic analysis to identify candidate genes. 

Both approaches mean that CGA can identify both the strength and mode of selection acting 

on specific genes being targeted. It also can shed light on direct mechanistic links between 

allelic richness, allelic variation at specific loci at single genes, and variation in individual 

fitness (Amos et al. 2011). Therefore, it is an ideal approach to take when investigating 



Chapter 1: General Introduction 

12 
 

functional variation in natural populations and considering PMS as the major explanatory 

force in question.  

 Immune-genes make ideal candidates for this approach, particularly since the 

association between health against infectious diseases and evolutionary fitness are well-

documented across a range of taxa (May & Anderson 1983; Ohlberger et al. 2011; 

McTaggart et al. 2012). This pre-requisite helps avoid the risk that comes with CGA that the 

candidate gene(s) in question may not be functional or indeed important in the study 

population. The major candidate gene group tested for evidence of pathogen-driven allelic 

variation is the most polymorphic vertebrate gene cluster, the Major Histocompatibility 

Complex (MHC). It has a pivotal role in recognising self from non-self molecules by binding 

to peptides and presenting them to T-cells. If the T-cells fail to recognise the peptide then 

the MHC triggers an appropriate immune response (Snell 1978; Klein 1986). There is 

exceptional evidence of the relationship between MHC variations and pathogen resistance 

(for some examples, see Aguilar et al. 2004; Bonneaud et al. 2006; Schwensow et al. 2007; 

Westerdahl et al. 2010; Eimes et al. 2011). Studies have shown that balancing selection can 

maintain variation at MHC loci, particularly by pathogen-mediated selection (for review, see 

Bernatchez & Landry 2003). This variation, in turn, affects many other key biological traits 

such as mate choice (Landry et al. 2001; Reusch et al. 2001; Richardson et al. 2005) kin 

recognition (Manning et al. 1992; Olsén et al. 1998; Zelano & Edwards 2002) and 

autoimmune disease (Akilesh et al. 2004; Fernando et al. 2008).  

 Whilst the MHC has major roles in adaptive immunity and a plethora of studies on 

this exist, its research has been weighted with problems given the MHC’s complex 

evolutionary history involving multiple duplications resulting in difficulties phasing MHC 

alleles (for review, see Garrigan & Hedrick 2003). There is also a large bias in the focus on 

MHC II B molecules, as highlighted in a meta-analysis by Sutton et al. (2011) where they 

found that 94% of bottleneck studies were based on MHC II polymorphisms. As it stands, 

there are many non-MHC immune genes which are just as important, if not more, to 

immune defence (Acevedo-Whitehouse & Cunningham 2006). It is thought that the focus 

should now shift towards innate immunity since it is our first line of defence (Kaiser 2007, 

2010). Furthermore, it would allow us to better understand the interplay between both the 

innate and adaptive arms of the immune system.  
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1.4.1 Defensins 

Defensin genes encode for antimicrobial peptides (AMPs (Table 1)), which have long been 

established as an important component of innate immune defence (Ganz et al. 1985; 

Selsted et al. 1985). These peptides kill a broad range of bacterial strains, as first shown with 

Escherichia coli in mammalian hosts (Lehrer et al. 1989). The AMPs can do this directly by 

physically attacking and disrupting the pathogen’s membrane, rendering the organisms 

inviable. This is done via their cationic and amphipathic properties (Hancock & Sahl 2006) 

and was well-shown in a population of great tits Parus major, where much of the allelic 

variation observed had an effect on amino acid composition and altered the net charge and 

hydrophilicity of the peptide produced (Hellgren 2015). As a result, this changed the 

properties associated with efficiency of being able to bind to and rupture pathogens. 

 
Table 1. Comparison of vertebrate defensin sub-families, modified from Sugiarto & Yu (2004). 

 
 

Table 2. Primers and corresponding annealing temperatures for amplification of nine different avian 

β-defensins from passerine species. Modified from Hellgren & Sheldon (2011). 

 

Name Structure Size (kDa) Residues Source 
α-defensins Beta-sheet dimer 3.5-4 29-35 Human, rabbit, rat, guinea pig, 

mouse 
β-defensins Beta-sheet dimer 4-6 38-42 Human, turkey, ostrich, chicken, 

king, penguin, pig, bovine 

 γ-defensins Cyclic 2 18 Rhesus monkey 

Gene Primer Anneal 
temp, (oC) 

Fragment length 
(bp) 

Number of polymorphic 
sites 

AvBD2 F2mat, R2mat 51 147 16 
AvBD4 F1, R1 55 120 21 
AvBD7 F2mat, R2 57 170-176 51 
AvBD8 F2, R1 50 153 31 
AvBD9 F1, R1 51 142 18 

AvBD10 F1, R1 52 133 32 
AvBD 11 F1mat, R1 60 157-209 53 
AvBD12 F2, R1 53 162-190 38 
AvBD13 F1mat, R1mat 60 137-140 21 
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Alternatively, they can carry out innate defence indirectly through cytokine production 

(Hancock & Scott 2000) and liaising with other immune defence components. For example, 

a recent study on the pigeon virus Paramyxovirus type 1 3 (PPMV-1), showed a correlation 

between the expression of different avian β-defensins and different toll-like receptors (Li et 

al. 2015).  

AMPs are characterised by having six cysteine residues defensin motifs and their 

evolutionary history is only just coming to light as more genomic data for different avian 

lineages becomes available for avian defensin genes. Chen et al. (2015) have just released 

genomic data for the golden pheasant Chrysolophus pictus (a Galliformes species) and the 

hwamei Garrulax canorus (a Passeriformes species) and found that by combining them with 

the model species of chicken and zebra finch, an evolutionary history of duplications and 

deletions have been found to give rise to the clearly different genomic structures (Chen et 

al. 2015). They further found that transposable elements were agents of their evolution, 

causing direct and indirect copy number variations in β-defensins via these duplication 

events. Different taxonomic groups have different classes and numbers of defensins in their 

immune repertoire (Selsted & Ouellette 2005). For example, birds have only  β-defensins, of 

which 14 different loci have been identified in the domestic chicken Gallus gallus 

domesticus (Lynn et al. 2004; Xiao et al. 2004), whereas mammals have both α and β-

defensins (Yang et al. 2002). The β-defensin number in a species has been shown to be 

highly relevant to the ever-changing microbial challenges from the environment in which 

the host inhabits (Tu et al. 2015). There is little information on how much natural genetic 

variation defensin genes exhibit in wild vertebrate populations, but the influence of allelic 

variation at these genes on infection outcome has been shown in a range of vertebrate 

hosts (Meredith et al. 2008; Mukherjee et al. 2009; Hellgren et al. 2010; Chow et al. 2012). 

Avian β-defensins (AvBDs) are ideal candidates for functional variation study, since in 

vitro tests have already showed that small nucleotide variations in sequence encoding the 

AMPs can change the peptide’s physical properties. Consequently, this alters efficiency (or 

effectiveness) in preventing microbial growth (Meade et al. 2008). Another in vitro test 

looked at the differences in the anti-microbial properties of the synthesised products of two 

alleles of avian β-defensin 7 (AvBD7) (Hellgren et al. 2010). Both alleles occur at high 

frequency in natural populations of great tits Parus major and were found to strongly inhibit 
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the growth of Escherechia coli among other closely-related gram-negative bacteria 

infections. This was the first demonstration of functional allelic variation in natural defensin 

genes having different effects on pathogens.  

Antimicrobial defensins are strong candidates for examining pathogen-mediated 

balancing selection, particularly in passerines, since a locus-specific protocol has now been 

set-up to amplify and investigate inter- and intra-specific genetic variation within AvBD loci 

in passerines (Hellgren & Sheldon 2011; Table 2). New sequence blocks are selected and 

amplified by aligning genomic sequences from the domestic chicken and zebra finch 

Taeniopygia guttata, and polymorphisms at critical loci (for AvBD genes) can be confirmed 

by 454-transcriptome sequencing (Fig 2). By directly comparing AvBD genes among the 

chicken and zebra finch genomes, it was found that whilst the galliformes-passeriformes 

split ~10 mya gave rise to 12 novel AvBD genes, there are still 10 genes which are highly 

conserved and orthologous out of the 22 investigated (Hellgren & Ekblom 2010). 

Furthermore, we can consider the findings from an analysis of immune genes in the zebra 

finch genome (n = 144) where several candidate gene groups including AvBDs had elevated 

ratios of non-synonymous substitutions to synonymous substitutions (Ekblom et al. 2010). 

This is indicative of positive selection acting at these genes, which in combination with being 

conserved across avian lineages, makes them ideal candidates for this research.  

 

 

 

 

 

 

 

 

Figure 2. Location of beta-defensin genes on chromosome 3 of genomic models, chicken Gallus 

gallus domesticus and zebra finch Taeniopygia guttata. Directly taken from Hellgren & Ekblom, 2010. 
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1.4.2 Toll-like receptors (TLRs) 

Toll-like receptors (TLRs) are membrane-bound sensors that play a key role in recognising 

distinctive molecular features of invading microbes, acting as part of the innate immune 

system (for review, see Jin & Lee 2008). They bind to pathogen-associated molecular 

patterns (PAMPs), thus triggering an intracellular signal cascade to activate an appropriate 

immune response (Belvin & Anderson 1996; Takeda & Akira 2005). They have an extra-

cellular domain that is characterised by varying numbers of leucine-rich repeats (LRRs) 

which form a ‘horse-shoe’ structure to interact with nucleic acids and proteinaceous ligands 

(for review, see Skevaki et al. 2015) (Fig 3).  Variants in the toll gene were first identified in 

Drosophila melanogaster and since then, 13 mammalian toll genes have been identified 

(Anderson et al. 1985). TLRs are divided into six families based on the types of PAMPs they 

bind to (Roach et al. 2005). These include TLRs which bind to bacterial lipoproteins, 

lipopolysaccharides or DNA motifs (Takeuchi et al. 2002; Bihl et al. 2003; Keestra et al. 

2010). TLRs link the innate immune system with the adaptive immune system in 

vertebrates, in that they identify the infectious agent as a first line of defence.  Furthermore, 

by recognising these specific PAMPs, they effectively inform other components of the 

immune repertoire (Schnare et al. 2001; Roach et al. 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Toll-like receptor molecule structure. 
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TLRs have proved to be good candidates already for investigating functional 

variation. A recent study looked at ten TLR genes in the Tasmanian devil Sarcophilus harrisii, 

a mammal of conservation interest where previous studies have revealed low genetic 

diversity at microsatellite and MHC loci, found diversity was also low at TLR loci (Cui et al. 

2015). By assessing their ‘insurance’ population that safeguards the species from extinction, 

they managed to show that they had captured all known TLR alleles in that species. The 

same ten TLR genes were screened in seven phylogenetically-diverse avian species and 

several alleles that appeared to confer low individual fitness, decreased in frequency across 

the different avian species examined (Alcaide & Edwards 2011). Slow rates of non-

synonymous substitution were also observed, which would indeed help to preserve their 

immunological function (Nei & Gojobori 1986; Ohta & Ina 1995). The same study then 

focuses on TLR polymorphism in wild populations of lesser kestrel Falco naumanni and 

house finch Carpodacus mexicanus. Results showed low to moderate levels of 

polymorphism and an excess of synonymous substitutions, indicative of negative (purifying) 

selection. This is surprising, given their similar structure and function to the MHC, which is 

the model candidate for positive (balancing) selection studies. A recent study supported this 

by investigating TLRs in the grey partridge Perdix perdix and despite finding non-

synonymous polymorphisms, they found the variation to have minor functional impact and 

assume that either negative selection or a bottleneck may have reduced TLR population 

viability in this species (Vinkler et al. 2015). 

Direct associations between polymorphisms within TLR loci and pathogen resistance 

and susceptibility have been established (see: Creagh & O’Neill 2006; Vinkler et al. 2009; 

Franklin et al. 2011), however, it is still unclear how TLR polymorphisms will compare among 

other immune genes in avian species. Regardless, they are excellent candidates for 

investigating the role of PMS in maintaining variation within this group and this is shown by 

the number of studies that have already been carried out in fish (Palti 2011), mammals 

(Nakajima et al. 2008; Areal et al. 2011; Tschirren et al. 2013) and in birds (Downing et al. 

2010; Grueber et al. 2013, 2014). Primers are readily available (Table 3) and by targeting 

conserved coding regions, specific roles in pathogen recognition and antimicrobial defence 

have been identified (Table 4). It has already been suggested that patterns of genetic 

variation at TLR loci would be particularly interesting to study in bottlenecked, fragmented 
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and decimated populations (Acevedo-Whitehouse & Cunningham 2006), in order to 

understand the evolutionary dynamics of TLR genes in organisms able to colonise new 

habitats. It can then be established that the genetic differentiation is indeed adaptive and 

related to survival and / or disease resistance. Furthermore, a recent study that looked at 

the relationship between microsatellite and TLR heterozygosity in a bottlenecked avian 

population, showed that the lack of a relationship is evidence that the predictive power of 

microsatellites in evaluating functional diversity is poor (Grueber & Carolyn 2015). This 

highlights the importance of adding data from putatively functional genomic regions, such 

as TLRs, in the study of genetic variation of endangered or threatened species. 

 

Table 3. Polymorphism statistics at ten TLR genes in house finches Carpodacus mexicanus. Modified 

from Alcaide & Edwards (2011). 

 

 

Table 4. Avian toll-like receptors. Modified from Brownlie & Allan, 2011. 

 

Gene Size (bp) Tajimas D SNPs (dS: dN) GenBank Accession Numbers 
TLR1LA 1,161 -0.93 44 (27:17) GU904709-70 
TLR1LB 951 -0.37 25 (19:6) GU904771-90 
TLR2A 560 -1.27 13 (8:5) GU904791-98 
TLR2B 513 0.11 11 (7:4) GU904799-803 
TLR3 952 -0.51 11 (5:6) GU904804-812 
TLR4 789 -0.95 16 (8:8) GU904813-826 
TLR5 951 n/a 2 (n/a) GU904827 
TLR7 982 -0.35 27 (15:12) GU904828-42 

TLR15 1,300 -0.17 37 (19:18) GU904843-58 
TLR21 831 n/a 2 (1:1) GU904859-60 

TLR 2nd name Agonist Pathogen 
TLR1LA TLR1.1   
TLR1LB TLR1.2 Lipoprotein Mycoplasma 
TLR2A TLR2.1 Peptidoglycan G+ bacteria 
TLR2B TLR2.2   
TLR3  dsRNA Viruses 
TLR4 LPS G- bacteria 
TLR5 Flagellin G- bacteria 
TLR7 Imiquimod, ssRNA Viruses 

TLR15 Unknown  
TLR21 CpG motifs, chromosomal DNA Bacteria and viruses 
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1.5 Conservation genetics 

Using the principles and tools of molecular ecology, we can seek to understand the causes 

and consequences of genetic variation within populations and, consequently, get an 

understanding of the genetic vulnerabilities of any wild populations and species (Grueber & 

Carolyn 2015). We need to understand what evolutionary forces have shaped this variation 

and it is particularly important to characterise variation in bottlenecked populations to 

assess whether they have become genetically depauperate as a consequence. Conservation 

genetics itself did not establish until ca 1980 when three consecutive books were published 

outlining the key principles as a branching off from molecular ecology (Soulé & Wilcox 1980; 

Frankel & Soulé 1981; Schonewald-Cox et al. 1983). It has become particularly important, 

when combining the study of selection and drift in natural populations as these forces 

interact and it makes natural selection more difficult to assess and predict. Therefore, a 

number of factors must be taken into account and no doubt the field of conservation 

biology will undoubtedly expand in the future (Allendorf et al. 2010 Fig 4; Avise 2010; 

Frankham 2010).  

 Pathogens are being increasingly cited as major threats in conservation (Tompkins & 

Poulin 2006). Naïve hosts are often susceptible to the introduction of exotic reservoir 

species that cause disease and the infection spreads rapidly throughout the host population 

(for examples, see Cunningham et al. 2003; Anderson et al. 2004). A well-known case is the 

infection by the malaria species, Plasmodium relictum, carried by exotic avian hosts that 

were introduced to endemic Hawaiian land birds, notably Hawaiian honey-creeper species. 

It had catastrophic consequences for the island population following the establishment of 

its mosquito vector, Culex quinquefasciatus (Atkinson & van Riper III 1991; Atkinson et al. 

1995). Whilst to date there is no empirical evidence that any global host extinction has been 

due to disease as a direct causation factor (De Castro & Bolker 2005),  the loss of individuals 

through parasite infections can accelerate genetic drift and result in a so-called extinction 

vortex (Shaffer 1981; Gilpin & Soulé 1986; Fagan & Holmes 2006). 

 When developing conservation plans and management for species and populations, 

the maintenance of pathogens is not often considered, despite their roles in maintaining 

overall biodiversity (Hall 1999). Pathogens can indeed have severe consequences in naïve 
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populations, but endemic pathogens play a greater role in maintaining genetic diversity than 

previously anticipated. If PMS is a sufficient form of balancing selection that can maintain 

diversity at immune genes, then a paucity of pathogens could have important consequences 

on the long-term genetic viability of a host population. This is exacerbated in translocated or 

populations which undergo a series of bottleneck events and already suffer from reduced 

genetic variability (Frankham 1995). If further variation is lost at their immune loci, they will 

be more vulnerable to infectious diseases in the long-term future (O'Brian & Evermann, 

1988). Therefore, it would be of value to maintain pathogen diversity in such populations 

and to always consider the overall biodiversity. 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic diagram of interacting factors in conservation of natural populations taken 

directly from Allendorf et al. (2010). Traditional conservation genetics, using neutral markers, 

provides direct estimates of some interacting factors (blue). Conservation genomics can address a 

wider range of factors (red).  

 

 The world is facing a biodiversity crisis at the hands of humans, where we are 

predicted to lose one quarter of all vertebrate species within the next century (Baillie et al. 

2010) as part of a current global mass extinction (Diamond 1989; Barnosky et al. 2011). This 

predicament is most evident on oceanic islands where native and endemic species are 
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under threat due to the effects of human colonisation (Butchart et al. 2010). Island 

populations have been shown to have a much higher risk of extinction than mainland 

populations for a number of different reasons in addition to human activity (Wilcox & 

Murphy 1985; Pimm et al. 1988; Case & Bolger 1991; Smith et al. 1993; Tilman et al. 1994). 

Whilst island species represent a minority of total species in all animal and plant groups, 

there are still a substantial proportion of extinctions that are island species (Frankham 

1997). An example is that even though only 20% of all bird species are on islands, 90% of 

bird species driven to extinction historically have been island species (Myers 1979). Human 

activity is the primary cause of island species becoming extinct over the last 50 000 years 

(Olson 1989), principally through over-exploitation, habitat loss / fragmentation and 

introducing species. These factors can cause population bottlenecks in wild populations, in 

addition to other underlying causes such as founder effects, disease, starvation, 

environmental change and other catastrophes (Wayne et al. 1991; Leakey & Lewin 1995; 

Frankham 1998).  

 The loss of genetic variation during a population bottleneck can reduce the 

population’s ability to adapt and evolve. It has been estimated theoretically that small 

populations with Ne <1000 are more likely to go extinct due to environmental change than 

larger populations (Burger & Lynch 1995). This emphasises the importance of population 

size, changes in both its duration and magnitude such as occurs with bottlenecks, that 

influence the extent to which population-level processes shape genetic variation (Fisher 

1930; Ellegren et al. 1993; Garza & Williamson 2001; Williamson-Natesan 2005). Pre- and 

post-bottleneck studies can directly assess this extent. For example, the northern elephant 

seal Mirounga angostirostris, was heavily exploited (over-hunted) during the nineteenth 

century and reduced to a bottleneck population size estimated to be 10–30 individuals 

(Bonnell & Selander 1974; Hoelzel et al. 1993). A comparison of genetic diversity in pre- 

bottleneck and post- bottleneck samples shows a 50% reduction in mitochondrial DNA-

haplotype diversity (Hoelzel et al. 2002). The reduction in heterozygosity at microsatellite 

loci, however, was less pronounced but still observed. Other studies have also 

demonstrated the direct genetic consequences of bottlenecks and its relationship with 

population size, and used this information to inform conservation practice (Eldridge et al. 

1999; Hedrick et al. 2001; Taylor et al. 2005; Spurgin et al. 2014). These studies have shown 
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that some species manage to persist and recover from their small numbers, thus making 

them ideal model systems for molecular ecology and on a broader scale, evolutionary study. 

 

1.6 The Seychelles warbler 

The Seychelles warbler Acrocephalus sechellensis (Fig 5) is a small (ca 12-15 g) insectivorous 

passerine endemic to the Seychelles archipelago (Safford & Hawkins 2013; Fig 4). It is 

currently listed as vulnerable on the IUCN red list since 2004, having been downgraded from 

critically endangered (IUCN 2015). Historically, it is thought that the Seychelles warbler 

existed on a number of islands within the archipelago, but the population distribution from 

when the islands were first settled in the 1770s, remains unclear (Komdeur 1991). However, 

human colonisation brought the removal of the native forest habitat in favour of coconut 

Cocos nucifera plantations. This had disastrous effects on the Seychelles warbler population 

(Crook 1960). The species’ global population was reduced with censuses reporting as few as 

26 individuals remaining on the single small island of Cousin (4o20’S, 55o40’E, 0.29 km2) by 

the 1960s (Collar & Stuart 1985) (Fig 5).  

 

 

 

 

 

 

 

 

 

Figure 5. Adult Seychelles warbler (Acrocephalus sechellensis).  

© Danielle Gilroy 
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The crisis was recognised by the International Council for Bird Preservation (now established 

as BirdLife International) and a consortium was led for the island’s successful purchase in 

1968. As a result of this intervention and the implementation of an intensive program of 

habitat restoration and conservation, the population recovered and reached saturation by 

1982 (Komdeur 1992), and has been relatively stable at ca 320 adults ever since (Brouwer et 

al. 2009; Wright et al. 2014). Four translocations have been undertaken from the source 

population on Cousin  (Komdeur 1994; Richardson et al. 2006; Wright et al. 2014a) as part of 

the conservation programme managed by Nature Seychelles (Richardson 2001). A total of 

29 birds was translocated to both Aride island (0.68 km2) in 1988 and to Cousine island (0.25 

km2) in 1990 (Komdeur 1994). A further 58 birds were translocated to Denis island (1.42 

km2) in 2004 (Richardson et al. 2006) and 59 birds to Frégate island (2.19 km2) in 2011 

(Wright et al. 2014) (Fig 6). The global population now stands at ca 3500 and continues to 

rise (Fig 7). There is practically no inter-island dispersal (0.1%), primarily thought to be 

because the species has evolved an aversion to crossing open bodies of water despite being 

physiologically capable (Komdeur et al. 2004). 

The Seychelles warbler has a complex cooperative breeding system where a male and 

female form long-term pair bonds and defend a well-defined territory all year-round 

(Komdeur 1992). If breeding opportunities are scarce, offspring of either sex  from previous 

years can delay their own breeding and become subordinates either within their natal 

territory or even in new territories (Komdeur 1991). As subordinates these individuals often, 

although not always, assist as helpers to the dominant breeding pair in the construction of 

nests, incubation of eggs (females only) or food provision for chicks in the nest (Komdeur 

1991; Richardson et al. 2001; Richardson et al. 2002). Parentage analysis has shown that in 

any given breeding season, 44% of female subordinates gain maternity by laying an egg in 

the dominant female’s nest (Richardson et al. 2001). Male subordinates rarely gain 

parentage (%) in spite of high levels of extra-pair paternity (EPP) in the system, with 40% of 

offspring being fathered by a male other than the dominant breeding male. The extra-pair 

males are nearly always from outside of that territory (Richardson et al. 2001; Hadfield et al. 

2006). Grandparental help also occurs within this breeding system: of the 14% of breeding 

females that were displaced before dying, 68% remained within the group as subordinate 

‘grandparent’ helpers (Richardson et al. 2007). The primary breeding season for the  
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Figure 6. Map of the inner granitic Seychelles islands (main) and their position with respect to Africa 

(inset). Arrows indicate the islands now containing Seychelles warbler populations (Cousin, Aride, 

Cousine, Denis and Frégate). Historic evidence shows a past population existing on Marianne 

(Oustalet 1878). 

© Danielle Gilroy 
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Seychelles warbler is between June-September, with a secondary smaller season between 

November to March (Komdeur & Daan 2005); although they are known to breed all year 

round. The Seychelles warblers species’ dynamic breeding system has been the focus of 

considerable study investigating the evolution of cooperative breeding, mate choice and 

other reproductive behaviours (Richardson et al. 2001; Richardson et al. 2002; Richardson et 

al. 2003; Komdeur 2003; Komdeur & Richardson 2007; Komdeur et al. 2014).   

Since 1997, >96% of the Cousin population has been caught, blood-sampled and marked 

with a unique combination of UV-resistant colour rings and a metal British Trust for 

Ornithology ring (Richardson et al. 2002). Blood-samples and census and reproductive data 

are collected at least once a year during the birds’ main summer breeding season, in 

addition to population and territory surveys. There are no natural predators for adult 

Seychelles warblers on Cousin Island, although a number of other species, including 

Seychelles fodies Foudia sechallarum, skinks (Mabuya spp.) and crabs (Ocypode spp.), have 

been known to prey on eggs and even nestlings (Veen et al. 2000). Given that there is no 

inter-island dispersal, if an individual is not seen for two consecutive years it is assumed to 

be dead (Komdeur 1994). This means that we have access to data over the entire lifetime 

over the majority of birds in the population and this survival data is not confounded by 

dispersal. Using the blood samples, we are able to use genetic techniques to identify 

individual genotypes, assign parentage and determine sex (Richardson et al. 2001).  

The Seychelles warbler makes an ideal evolutionary model because it is not confounded 

by gene flow and has undergone a recent severe bottleneck. Microsatellite analyses show 

that the Seychelles warbler has low genetic diversity as a result of the bottleneck, where the 

effective population size was reduced from ca 7000 in the early 1800s (as inferred from the 

genetic analysis of samples taken from museum specimens taken in 1877-1905) to less than 

50 in the contemporary population (Spurgin et al. 2014).  This means that the Seychelles 

warbler has a simpler more tractable genome of which to conduct ‘bottom up’ approach 

studies focusing on specific genes of interest. The patterns of neutral variation across 

individuals have been compared to that observed in functional markers i.e. MHC genes of 

the immune system. There is evidence that MHC class I genes have historically been under 

balancing selection in this species (Richardson & Westerdahl 2003). Furthermore, there is 

evidence of MHC-dependent extra-pair fertilisation (EPF) with females more likely to gain 
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EPF when their social mate had low MHC diversity. Therefore, the female would choose an 

extra-pair mate that had significantly higher MHC diversity than that of her social mate 

(Richardson et al. 2005). Direct associations between a specific MHC variant (Ase-ua4) and 

individual survival has also been shown (Brouwer et al. 2010). These significant interactions 

between MHC variation and fitness (mate choice and survival) give promise to further study 

into similar and parallel interactions of innate immune gene variation with survival (chapter 

6). 

 

 

 

 

 

 

 

 

Figure 7. Seychelles warbler population trends over time on the islands of Cousin, Aride, Cousine, 

Denis and Frégate. Figure in R (R Core Team 2014) by Dr David Wright and Prof David S Richardson. 

 The Seychelles warbler is also an ideal host-parasite model for evolutionary study 

because it only has one parasite identified to date in its system, which is a malaria strain of 

Haemoproteus ‘GRW1’ (Hutchings 2009). All individuals from 1997-2014 have been 

screened for Haemoproteus and Plasmodium malaria parasites, in addition to 

Leucocytozoan parasites. GRW1 prevalence has been found to be significantly higher in 

juveniles (75%) than in adults (37%) (Hutchings 2009). No other parasite has been identified 

in the circulatory system and there are no gastro-intestinal parasites to our knowledge, 

therefore we do not have the issue of mixed or co-infections and host-parasite complexity is 

more tractable. Therefore, we have a simplified avian-pathogen model for which we can 

investigate pathogen-mediated balancing selection, which we have already shown to have 
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maintained variation at specific functional genes (i.e. the MHC) despite the recent 

bottleneck. By understanding the relative roles of neutral and selective processes, both 

historic and contemporary, we are able to predict the long-term persistence of the species 

in terms of their evolutionary potential, in the face of new challenges in the future.  

 

1.7 Thesis outline 

In this thesis, I investigate the causes of functional variation at innate immune loci in a small 

bottlenecked population of the Seychelles warbler. In chapter 2, I characterise variation at 

avian beta-defensins (AvBDs) in the contemporary Seychelles warbler population and 

compare this to variation at the same loci in other Acrocephalus species with different 

demographic histories. Furthermore, I focus on a specific AvBD locus in the Seychelles 

warbler to make a pre- and post-bottleneck comparison and assess the relative roles of drift 

and selection in shaping variation at this locus across the bottleneck. In chapter 3, I 

characterise variation at toll-like receptors (TLRs) in both the Seychelles warbler and in other 

Acrocephalus species, to carry out a detailed population genetic analysis of the evolution of 

this multigene family using traditional statistical methods for single-locus sequence data to 

detect any signatures of selection. In chapter 4, I overcome the limitations imposed by the 

methods used in chapter 3 by taking a forward-in-time simulation strategy to delineate the 

effects of demography from selection when looking at TLR variation in the Seychelles 

warbler. I use microsatellite diversity measures from a previous study on museum-sourced 

samples of this species to simulate the ancestral population of Seychelles warblers. I then 

define a specific demographic scenario and several selection regimes in order to determine 

the most likely series of events to explain the TLR variation characterised in chapter 3. In 

chapter 5, I investigate if there are long-term population consequences of variation at a 

specific TLR locus identified as potentially being under selection in chapters 3 and 4, by 

testing for an association between specific TLR alleles and individual survival and malaria 

resistance. This analysis is extended by also considering ecological factors that may 

influence malaria infection within the natural population. Finally, in chapter 6 I discuss my 

overall findings, their significance to evolutionary biology and conservation, and ideas for 

further research. As this thesis has been written in the style of a series of manuscripts for 

publication, there is some repetition, e.g. in methodology, between chapters. 
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Abstract 

β-defensins are important components of the vertebrate innate immune system responsible 

for encoding a variety of anti-microbial peptides. Therefore, balancing selection is thought 

to act on these genes and maintain allelic variation in the face of other evolutionary forces. 

The Seychelles warbler, Acrocephalus sechellensis, is an endemic passerine that underwent 

a recent bottleneck in its last remaining population, resulting in a considerable reduction in 

genome-wide variation. We use contemporary and museum samples to investigate whether 

variation at avian β-defensin (AvBD) genes through this bottleneck. For comparison we 

examine AvBD variation across four other Acrocephalus species with varying demographic 

histories. No variation was detected at four of the six AvBD loci screened in the post-

bottleneck population of Seychelles warbler, but two silent nucleotide variations were 

identified at AvBD8 and one potentially functional amino-acid variation was observed at 

AvBD11. This level of variation was significantly lower than in the mainland migratory 

congeneric species investigated but similar to that found in other bottlenecked species. We 

were able to screen variation at one locus, AvBD7, in 15 museum specimens of Seychelles 

warblers taken prior to the bottleneck (1877-1905). Two alleles were observed in the pre-

bottleneck population compared to the single allele in the contemporary population.  

Overall, the results suggest that little AvBD variation remains in the Seychelles warbler as a 

result the genetic drift associated with its past demographic history.  While this limited 

immunogenetic variation may not be a problem in the face of the limited pathogen fauna 

that the isolated Seychelles warbler currently faces, it might be detrimental to the species’ 

long-term persistence if new pathogens reach the population in the future. 
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Introduction 

Genetic drift is the predominant evolutionary force shaping the genetic variation in small 

populations (Hedrick et al. 2001; Miller & Lambert 2004; Jensen et al. 2013), and its effects 

on genetic variation normally outweigh the influence of selection (Miller & Lambert 2004; 

Alcaide 2010; Grueber et al. 2014). Nevertheless, various studies have shown that within 

small natural populations, variation at specific key loci can be elevated above that of the 

genome-wide average, and be maintained across bottleneck events as a result of balancing 

selection (Aguilar et al. 2004; Tompkins 2007; van Oosterhout et al. 2006). Given that a loss 

of  genetic variation within a population impacts on both inbreeding depression and  

adaptive potential (for review, see Garrigan & Hedrick 2003), the maintenance of 

polymorphisms at key loci will be important to a populations’ long-term viability (Meyers & 

Bull 2002; Ellegren & Sheldon 2008; Zhu et al. 2013). 

 Genes that contribute to immune function are ideal candidates in which to assess 

the roles of drift and selection in maintaining functional genetic diversity within natural 

populations (for review, see Acevedo-Whitehouse & Cunningham 2006). Many such studies 

have focused on the highly polymorphic genes of the Major Histocompatibility Complex 

(MHC), which play a central role in the acquired immune system (Doherty & Zinkernagel 

1975; Klein 1986; Piertney & Oliver 2006). However, there are complex  interacting 

evolutionary forces acting upon the MHC, including the effects of epistasis and selection 

against the so-called 'sheltered load', which is the accumulation of recessive deleterious 

mutations next to genes under selection (van Oosterhout 2009). Additionally, frequent gene 

duplication (Eimes et al. 2011) and recombination-like processes i.e.  gene conversion (Ohta 

1995; Spurgin et al. 2011)  confound the interpretation of the population genetic 

mechanisms maintaining variation at these genes. In contrast, studies of variation within 

natural populations in genes that play a role in the innate immune system are relatively 

scarce (Sutton et al. 2011), despite the fact that these genes are often simpler in form and 

function than the MHC (for review, see Kaiser 2007). Variation in such genes may be crucial, 

given that the innate immune response is the first line of defence against pathogens. 

Moreover, a number of innate immune gene families, including the toll-like receptors (TLRs) 

and cytokines, have been shown to be targets of balancing selection (for examples, see 

Schlenke & Begun 2003; Ferrer-admetlla et al. 2008; Mukherjee et al. 2009).  
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 Anti-microbial peptides (AMPs) are effector molecules involved in the innate 

immune system and they include defensins and cathelecidins. AMPs directly kill invading 

pathogens via the disruption of membranes through cationic attack mechanisms (Hancock & 

Sahl 2006). All defensin molecules have six cysteine residues but are sorted into three 

classes based on their physical structure (Yang et al. 2002). Both α-defensins and β-

defensins form beta-sheet dimers but they have different residue lengths and pairing of 

cysteine linkages, whereas γ-defensins have a cyclic structure (Sugiarto & Yu 2004). 

Different taxonomic groups have different classes and numbers of defensins in their 

immune repertoire (Selsted & Ouellette 2005). For example, birds have only β-defensins, of 

which 14 different loci have been identified in the domestic chicken, Gallus gallus 

domesticus (Lynn et al. 2004; Xiao et al. 2004), whereas mammals have both α and β-

defensins (Yang et al. 2002). The number of β-defensins in a species has been shown to 

highly relevant to the ever-changing microbial challenges of the environment in which that 

species’ inhabits (Tu et al. 2015). The allelic variation which exists at these genes in a range 

of vertebrate hosts has been shown to have a large effect on pathogen infection in vitro 

(Meredith et al. 2008; Mukherjee et al. 2009; Hellgren et al. 2010; Chow et al. 2012). These 

studies show that the greater the variety of AMPs encoded, the greater the ability to 

combat a range of bacteria invasions. These studies therefore suggest that there could be an 

advantage to individuals (and populations) which are heterozygous at these loci. 

 Birds provide excellent systems in which to study the causes and consequences of 

innate immune gene variation, such as that observed within defensin genes, under natural 

conditions. Functional variation has been shown to exist within and among species (for 

review, see van Dijk et al. 2008) and now locus-specific protocols have been developed to 

screen for avian β-defensins (AvBDs) in passerines (Hellgren & Sheldon 2011). Importantly, 

variation within these loci has been shown to influence anti-microbial properties in vitro 

(Hellgren & Ekblom 2010; Hellgren et al. 2010). Specific defensin alleles have also been 

shown to be associated with different pathogen outcomes across various avian species 

(Higgs et al. 2007; Ma et al. 2012; Ramasamy et al. 2012), although assessing whether 

individual heterozygosity has a direct advantage has yet to be shown. 

 The Seychelles warbler, Acrocephalus sechellensis, is an ideal species in which to 

study the influence of different evolutionary forces on AvBD genes. As  a result of 
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anthropogenic factors- this population experienced a  bottleneck- during the last century 

when it was on the verge of extinction with ca 26 individuals remaining on a single island 

(Collar & Stuart 1985). As a result, considerable variation has been lost across the genome 

(Spurgin et al. 2014), although diversity appears to have been maintained at MHC class I loci 

(Richardson & Westerdahl 2003; Hansson & Richardson 2005) due to a combination of both 

natural and sexual selection (Richardson et al. 2005; Brouwer et al. 2010). Given these 

patterns, we hypothesise that genetic variation could also have been maintained at other 

immune loci. If our candidate loci have maintained variation, we can carry out association 

analysis between this immunogenetic variation and individual fitness parameters using data 

collected over the last two decades. This would allow the follow up of any initial evidence of 

important functional variation from this study at both individual and population levels. 

 Here, we screened six AvBD loci in the contemporary bottlenecked population of the 

Seychelles warbler. For one AvBD locus identified to be polymorphic in most other passerine 

species (Hellgren & Ekblom 2010), we used museum samples of the Seychelles warbler 

dating from 1877-1940 to assess variation that existed at this locus prior to the population 

bottleneck.  This enabled us to compare the variation in pre- and post-bottleneck 

populations, at least at this locus. We also screened AvBD variation for a small sample of 

individuals in four other Acrocephalus species to gain a comparison for the levels of AvBD 

variation observed in the Seychelles warbler, and to test for signatures of selection within 

the sequences of these genes across the genus. Therefore, this study assesses levels of AvBD 

variation in a wild population both pre- and post-bottleneck, and across other closely-

related congeneric species with different demographic histories in order to assess genetic 

variation across this genus. 

  

Materials and Methods 

Study species and sampling 

The Seychelles warbler is a small (ca 12-15 g) insectivorous passerine endemic to the 

Seychelles archipelago (Safford & Hawkins 2013). As a result of anthropogenic factors, the 

species’ global population was dramatically reduced to an estimated low of 26 individuals 

on the single small island of Cousin in the 1960s (Collar & Stuart 1985). This reduced the 
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species effective population size from 2600 - 9700 in the early 1800s to less than 50 in the 

contemporary population (Spurgin et al. 2014). After conservation intervention, the 

population on Cousin recovered and reached saturation by 1982 (Komdeur 1992) remaining  

relatively stable at ca 320 adults ever since (Brouwer et al. 2009; Wright et al. 2014). Four 

translocations have been undertaken from the original population on Cousin as part of a 

conservation programme. A total of 29 birds were translocated to both Aride in 1988 and to 

Cousine island in 1990 (Komdeur 1994). A further 58 birds were translocated to Denis in 

2004 (Richardson et al. 2006) and 59 to Frégate in 2011 (Wright et al. 2014). This species has 

since been intensively studied as a model system for evolutionary, ecological and 

conservation questions (Komdeur 1992; Richardson et al. 2003; van de Crommenacker et al. 

2011; Barrett et al. 2013). Since 1997, > 96% of the Cousin population has been caught, 

blood-sampled and marked with a unique combination of colour rings and a metal British 

Trust for Ornithology (BTO) ring (Richardson et al. 2002). 

The great reed warbler, A. arundinaceus, and Eurasian reed warbler, A. scirpaceus, 

are two mainland migratory species classified as ‘under least concern’ with estimated 

populations (Nc) in Europe of 950,000 and 3.1 million respectively (after Hagemeijer & Blair 

1997; BirdLife International 2015). In contrast, the Cape Verde warbler, A. brevipennis, and 

Henderson’s Island warbler, A. taiti, are two island species with restricted but stable 

populations of an Nc estimated at 1000-1500 (Schulze-Hagen & Leisler 2011) and ca 7000 

individuals (Brooke & Hartley 1995; Birdlife International 2015) respectively. The Cape 

Verde warbler is endemic to the Cape Verde islands and until recently, was thought to be 

confined to just Santiago island until small populations were discovered in São Nicolau and 

Fogo in 1998 and 2004, respectively (BirdLife International, 2015). All samples used in this 

study are from the Santiago population. The population of Henderson’s Island warbler 

appears to have remained stable despite the observed severe population bottlenecks in 

other endemic species during a human invasion of the Henderson Islands in the early 1900s 

(Brooke 2010).   

Estimates of effective population sizes (Ne) are available for the great reed warbler at 

ca 20 000 (Bensch & Hasselquist 1999). However, for the other warbler species with only a 

census population size (Nc) known, we can only estimate that the Ne will be ca 10% or less of 

the population size (Frankham 1995). Samples were taken from all Seychelles warbler 
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museum specimens known to exist (n = 26) (Spurgin et al. 2014) including 19 from Cousin 

Island and seven from Marianne Island, all collected between 1876 and 1940 (Table S1). A 

small (ca 1.5 x 1.5 x 3.0 mm) piece of skin was cut from the ventral surface of the foot and 

stored at room temperature in a sterile microfuge tube. All other Acrocephalus samples 

were from unrelated adults (> 1 year old) from single populations with details as follow: 23 

individuals were sampled for the Seychelles warbler between 2000 and 2008 from the 

Cousin Island population (ca 320 adults, 0.3 km2, Wright et al. 2014). The Cape Verde 

warbler samples (n = 5) were sourced from the Santiago Island population (ca 500 adults, 

991 km2, Batahla unpublished) and the Henderson’s Island warbler were from Henderson 

Island (n = 5) (ca 7200 adults, 41 km2, BirdLife International 2015) (Brooke & Hartley 1995). 

The two migratory Acrocephalus species A. scirpaceus (n = 5) and A. arundinaceus (n = 6), 

were both sampled from breeding areas in central Sweden and Belgium, respectively and 

used in previous studies (Hansson & Richardson 2005; Hansson et al. 2006). 

 

Molecular methods 

Genomic DNA was extracted from the Seychelles warbler blood samples using a salt 

extraction method (Richardson et al. 2001). The same procedure had been used for the 

Cape Verde warbler blood samples (provided by Juan-Carlos Illera) and the Eurasian reed 

warbler and the great reed warbler DNA samples (provided by Andrew Dixon and Bengt 

Hansson, respectively). The Henderson’s Island warbler DNA samples were provided by 

Mike Brooke and extracted by Ian Hartley using a phenol-chloroform protocol (Brooke & 

Hartley 1995). We extracted DNA from Seychelles warbler museum samples (Table S1) using 

a Qiagen DNeasy tissue kit (Qiagen, Crawley, UK) under the manufacturer’s instructions with 

the following changes: (i) each sample was finely chopped in a small volume of ATL buffer 

prior to digestion with proteinase K, (ii) 20 uL 1 M DTT (Dithiothreitol, Sigma-Aldrich, UK) was 

added at incubation; and (iii) 1 uL (Qiagen, final concentration = 20 pg/ml) was added during 

the precipitation phase. All extractions and PCRs based on historical DNA were carried out in 

a laminar flow cabinet in a ‘clean room’ isolated from the main laboratory with no record of 

passerine DNA use in that facility with contemporary sample controls (see Spurgin et al. 

2014, for further details). 
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 Locus-specific primers (Hellgren & Sheldon 2011) were used to screen six AvBD 

genes: AvBD4, AvBD7, AvBD8, AvBD9, AvBD11 and AvBD13. These loci were chosen based 

on their successful amplification in congeneric species (Table S2) (Hellgren & Sheldon 2011). 

AvBD7 was chosen for amplification in the museum samples because (i) it was polymorphic 

in most bird species examined (Hellgren et al. 2010), and (ii) the available primer set 

produced the shortest amplicon length and thus could be amplified in the degraded DNA we 

obtained from the museum samples, for which we have been unable to amplify fragments > 

200 bp (Spurgin et al. 2014). 

 For each locus, PCRs were carried out in volumes of 10 µl with genomic DNA at a 

concentration of 5-10 ng / µl. Taq PCR Master Mix was used (Qiagen, UK), which included: 

Taq-DNA Polymerase, QIAGEN PCR Buffer, MgCl2, and ultrapure dNTPs at optimised 

concentrations. PCRs were carried out using the following conditions: 30 s at 94oC, 30 s at 

the locus-specific annealing temperature of 55oC (AvBD4, AvBD7, AvBD8, AvBD9) and 60oC 

(AvBD11, AvBD13), 45 s at 72oC, all repeated for 39 cycles. All PCRs started with an 

incubation step of 3 min at 94oC and finished with an incubation step of 10 min at 72oC. PCR 

products were electrophoresed on a 2% agarose gel containing ethidium bromide to 

confirm successful amplification of the expected size fragment. Successful samples were 

submitted to the Genome Analysis Centre, Norwich, for Sanger-sequencing. All sequence 

variants were confirmed by sequencing in both the forward and reverse direction. All 

sequences were aligned against target sequences of the given loci from other passerine 

species available in the basic local alignment search tool (BLAST) nucleotide database (NCBI) 

using BioEdit (Hall 1999) via ClustalW codon alignment. Each chromatogram was examined 

by eye to identify single-nucleotide polymorphisms (SNPs) and haplotypes were phased in 

DnaSP (Librado & Rozas 2009). Amino acid sequences were translated in BioEdit (Hall 1999).  

Phylogenetic trees were constructed in Mega v6 (Tamura et al. 2013) using the 

Maximum-Likelihood method based on the general time reversible model (Nei & Kumar 

2000), to infer evolutionary history both within and between AvBD loci across the 

Acrocephalus genus. The trees with the highest log likelihood are presented, based on 

nucleotide variation given the short sequence sizes of < 150bp. All Acrocephalus sequences 

used originate from this study. Outgroup non-Acrocephalus passerine species sequences 

were obtained using the NCBI BLAST database and included: Eurasian blackcap, Sylvia 
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atricapilla, house sparrow, Passer domesticus, icterine warbler, Hippolais icterina, lesser 

redpoll, Carduelis cabaret and zebra finch, Taeniopygia guttata (Table S3). These trees were 

constructed to examine allelic richness at each locus for the Seychelles warbler, with further 

insight into AvBD loci evolution across the Acrocephalus genus. An overall tree was 

constructed to encompass all AvBD loci with the single most common allele at each locus 

used for each Acrocephalus species.  

 

Analyses 

Population size for each species was obtained from BirdLife International (2015) and their 

relationships with AvBD haplotype diversity was analysed using a simple linear regression in 

Sigmaplot from Systat Software Inc., San Jose California USA.   Haplotype diversity is a 

measure of the uniqueness of a given haplotype in a given subset / population of individuals 

where its formula includes a measure of the relative haplotype frequency (xi) in the sample 

of individuals and differences in sample size (N) (Nei 1987). Tests for linkage disequilibrium 

and deviation from the Hardy-Weinberg equilibrium (HWE) were carried out using GenePop 

(Raymond & Rousset 1995) and tests were based on (i) heterozygote excess and (ii) 

heterozygote deficiency. Polymorphism statistics and tests for neutrality were carried out in 

the Seychelles warbler, including: Tajima’s D statistic (Tajima 1989), Fu and Li’s D (Fu & Li 

1993) and Fu and Li’s F statistics (Fu 1996) in the program DnaSP (Librado & Rozas 2009). Z-

tests of selection based on phylogenetically-variable dN / dS rates were carried out for each 

locus across the Acrocephalus genus to identify selection based on dN / dS at the haplotype-

level. Site-specific dN/dS tests were then carried out using two different models (i) MEME 

and (ii) FUBAR to identify any individual codons under putative selection. MEME is a mixed 

effects model of evolution where the significance level  of 0.1 is used to classify a site as 

positively or negatively selected as this method tends to be more conservative than 

empirical Bayesian approaches  (Murrell et al. 2012). FUBAR is a fast unconstrained Bayesian 

approximation model using a Markov chain Monte Carlo routine which has a Bayes Factor / 

posterior probability set at 0.9 as a minimum value for inclusion in the inferred Bayesian 

graph (Murrell et al. 2013). Both models come highly recommended as part of the HyPhy 

package available for detecting individual sites under episodic diversifying selection using 

the DataMonkey web application (Delport et al. 2010). 
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Results 

Four out of six AvBD loci were found to be monomorphic in the contemporary Seychelles 

warbler population (Table 1). In the two that were variable- AvBD8 and AvBD11- we 

identified two synonymous single-nucleotide polymorphisms (SNPs) within AvBD8 and one 

non-synonymous SNP within AvBD11 (from 20 screened individuals) (Fig S1). Of the 26 

museum DNA samples screened, only 15 successfully amplified the AvBD7 locus. From 

these, two alleles were identified, but one allele was found in just one individual (Table S1). 

This novel allele, just one non-synonymous nucleotide different from the common allele, 

was confirmed by an independent PCR. Given the low levels of variation identified, no 

meaningful statistical analysis of the difference in AvBD7 variation between the pre- and 

post-bottleneck populations, or the intra-specific variation at AvBD8 and AvBD11, were 

possible. There was no evidence of selection at AvBD8 or AvBD11 based on the tests of 

neutrality or results from the Z-tests of selection based on dN/ dS (Table S4). There was no 

evidence found of linkage disequilibrium between all pairwise combinations of polymorphic 

loci. Furthermore, there was no evidence of significant deviation from Hardy-Weinberg 

equilibrium based on the observed allele frequencies (P > 0.1). 

Across the Acrocephalus genus there was considerable variation at the AvBD loci. 

Five out of six loci screened were polymorphic (Table 1; Fig S1) and only AvBD9 was 

monomorphic across all five Acrocephalus species screened. However, one of these 

polymorphic loci AvBD4, only had one SNP (and additional allele) in the Eurasian reed 

warbler and there was no other variation across the other species. In the Seychelles 

warbler, there was no evidence for selection within any of the six AvBD loci using Tajima’s D, 

Fu and Li’s F and D statistical tests (P > 0.1). However AvBD8, the most polymorphic locus 

observed, had significant evidence of purifying selection in the Z-test of selection looking 

across the Acrocephalus genus (Z = 1.72, P = 0.04) (Table S3).  

Site-specific dN / dS based tests were carried out on AvBD7, AvBD8 and AvBD11 as a 

minimum of three unique haplotype sequences are needed. The MEME model failed to 

detect any sites under episodic diversifying selection across the Acrocephalus genus, but the 

FUBAR model which focuses on putative selection detected one site under diversifying 

selection at the AvBD8 locus (posterior probability dN > dS = 0.90, dN - dS = 1.19). It also 
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detected two sites under purifying selection at the same locus (posterior probability dN < dS 

= 0.90 and 0.91, dN - dS = -2.89 and -0.86 respectively), in addition to one site each at 

AvBD7 (posterior probability dN < dS = 0.98, dN – dS = -4.04) and AvBD11 (posterior 

probability dN < dS = 0.98, dN – dS = -4.18).  

The mainland migratory species, A. arundinaceus and A. scirpaceus, had significantly 

more nucleotide variation observed across the AvBD gene family in comparison to the island 

endemic species, A. taiti, A. brevipennis and A. sechellensis (t = 2.90, df = 6, P = 0.027) (Table 

3). The mean number of alleles observed per locus for mainland migratory Acrocephalus 

species was 2 or 3, whereas the mean number of alleles was 1 or 2 for the island 

Acrocephalus species. Notably, A. sechellensis had the most variation observed across AvBD 

loci compared to the other island species. However, when only considering amino acid 

variation (only dN substitutions) the difference between mainland and island species loses 

its statistical significance (t = 2.35, df = 6, P = 0.057). When looking at the relationship 

between census population size and mean AvBD haplotype diversity, it was almost 

statistically significant for all nucleotide variation (t = 2.94, P = 0.06) (Fig 1a) but became less 

correlated for amino acid variation only (t = 2.14, P = 0.12) (Fig 1b). 

The neighbour-joining trees show the levels of functional polymorphism that occur 

within and between the Acrocephalus species for each locus (Fig 2). The other outgroup 

passerine species consistently cluster separately from the Acrocephalus species for each 

AvBD locus. The tree for all AvBD loci combined using the single most common haplotype 

for each Acrocephalus species and the reference sequences for outgroup species, shows 

definite segregation by locus and confirm the independent locus-specific evolution of these 

immune genes (Fig 3). 

Discussion 

We characterised variation within the AvBD gene group in the Seychelles warbler. Four out 

of the six AvBD loci examined were monomorphic in the contemporary post-bottleneck 

population while two loci had low levels of polymorphism, with only a single nucleotide 

polymorphism causing a change in the protein translated at one locus (AvBD11). In the 

historical samples, we detected only two alleles, diverging by a single nucleotide 

substitution, in the usually highly polymorphic AvBD7 locus (Hellgren & Ekblom 2010). 
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Table 1. Polymorphism indices for AvBD genes across five Acrocephalus species with different 

demographic histories. Table 1a is for the Seychelles warbler, Table 1b is for all other Acrocephalus 

species. Abbreviations include: N (number of individuals), SNP (single-nucleotide polymorphism), H 

(number of unique haplotypes), Hd (haplotype diversity), Pi (nucleotide diversity), dN (non-

synonymous SNPs) and dS (synonymous SNPs). Standard deviation is provided in brackets. 

Table 1a. 

 

 

 

           1b. 

Locus N Size (bp) SNPs H Hd (Sd) Pi (Sd) dN dS 
AvBD4 22 42 0 1 0.00 (0.00) 0.000 (0.000) 0 0 
AvBD7 20 102 0 1 0.00 (0.00) 0.000 (0.000) 0 0 
AvBD8 22 96 2 3 0.17 (0.07) 0.002 (0.001) 0 2 
AvBD9 20 66 0 1 0.00 (0.00) 0.000 (0.000) 0 0 
AvBD11 24 117 1 2 0.04 (0.04) 0.000 (0.000) 1 0 
AvBD13 18 78 0 1 0.00 (0.00) 0.000 (0.000) 0 0 

Locus N Species SNPs H Hd (Sd) Pi (Sd) dN dS 
AvBD4 4 A. arundinaceus 0 1 0 0 0 0 
 4 A. brevipennis 0 1 0 0 0 0 
 4 A. scirpaceus 1 2 0.25 (0.18) 0.005 (0.0033) 1 0 
 5 A. taiti 0 1 0 0 0 0 
 22 A. sechellensis 0 1 0 0 0 0 
AvBD7 4 A. arundinaceus 4 3 0.61 (0.16) 0.016 (0.0043) 3 1 
 4 A. brevipennis 3 3 0.71 (0.12) 0.014 (0.0035) 1 2 
 4 A. scirpaceus 1 2 0.43 (0.17) 0.004 (0.0012) 1 0 
 4 A. taiti 0 1 0 0 0 0 
 20 A. sechellensis 0 1 0 0 0 0 
AvBD8 4 A. arundinaceus 1 2 0.25 (0.18) 0.0025 (0.0018) 1 1 
 4 A. brevipennis 0 1 0 0 0 0 
 4 A. scirpaceus 6 7 0.96 (0.08) 0.019 (0.0032) 2 4 
 5 A. taiti 0 1 0 0 0 0 
 22 A. sechellensis 2 3 0.17 (0.07) 0.0022 (0.001) 0 2 
AvBD9 4 A. arundinaceus 0 1 0 0 0 0 
 3 A. brevipennis 0 1 0 0 0 0 
 4 A. scirpaceus 0 1 0 0 0 0 
 4 A. taiti 0 1 0 0 0 0 
 20 A. sechellensis 0 1 0 0 0 0 
AvBD11 4 A. arundinaceus 2 3 0.63 (0.07) 0.0063 (0.0011) 1 1 
 4 A. scirpaceus 1 2 0.40 (0.11) 0.0034 (0.0010) 0 1 
 4 A. taiti 0 1 0 0 0 0 
 25 A. sechellensis 1 2 0.04 (0.03) 0.0004 (0.0002) 1 0 
AvBD13 3 A. arundinaceus 0 1 0 0 0 0 
 4 A. brevipennis 0 1 0 0 0 0 
 4 A. scirpaceus 2 3 0.61 (0.16) 0.011 (0.0037) 1 1 
 1 A. taiti 0 1 0 0 0 0 
 18 A. sechellensis 0 1 0 0 0 0 
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Figure 1. Mean AvBD haplotype diversity (Hd) verses population size (Nc) (log-transformed) in five 

Acrocephalus species; A) All nucleotide variants, B) only haplotype variants resulting in different 

amino-acids (putatively functional variants). Standard errors are shown. The dashed lines represent 

the regression and adjusted R-squared values are given.  

Figure 1a. 
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Figure 2. Trees inferring intra-locus evolutionary history of AvBD genes across five Acrocephalus 

species, inferred by using the Maximum Likelihood method based on the General Time Reversible 

model with applied bootstrapping of 1000 repetitions. Bootstrap values are cut-off at a threshold of 

50%. Non-Acrocephalus passerine species are included as outgroups (see Methods). Trees are drawn 

to scale with haplotype number given in brackets and branch lengths measured in the number of 

substitutions per site. 
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(Figure 2 continued) 
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Figure 3. Phylogenetic tree inferring inter-locus evolutionary  

history across all AvBD genes across five Acrocephalus species,  

inferred by using the Maximum Likelihood method based on the  

General Time Reversible model with applied bootstrapping of 1000  

repetitions. Bootstrap values are cut-off at a threshold of 50%.  

Non-Acrocephalus passerine species are included as outgroups  

(see Methods). Trees are drawn to scale with haplotype  

number given in brackets and branch lengths measured 

in the number of substitutions per site. 
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These low levels of polymorphism meant we were unable to detect signatures of selection 

using traditional population genetic tests. In order to increase power, we characterised 

variation within the AvBD gene group in a small number (3-5) individuals from four other 

Acrocephalus species’ populations and looked at the same loci across the genus. One locus, 

AvBD8, was inferred to be under purifying selection, given its high ratio of synonymous 

substitutions (dS) compared to non-synonymous (dN) substitution across the haplotype. 

Looking at specific sites within the haplotype sequence, we identified one site to be under 

putative diversifying selection when all other loci failed to identify any sites under episodic 

or putative positive selection. Overall, the lack of variation at these loci in the Seychelles 

warbler (and other island species) indicates that balancing selection has not maintained 

AvBD variation in this bottlenecked population. 

Considerable AvBD variation was observed in the two outbred migratory species, the 

great reed warbler and Eurasian reed warbler, in contrast to the three island species i.e. the 

Seychelles warbler, Cape Verde warbler and Henderson’s Island warbler where there was 

little or no variation. The significant difference in nucleotide variation was almost the same 

for amino acid variation given there was only some difference in haplotype diversity for the 

mainland migratory species when only considering non-synonymous polymorphisms. This 

strong difference could not be explained by census population size alone and perhaps 

involves other demographic variables and the statistical tests may have been limited in 

power from the number of species included. It is clear though that being an island endemic 

species does reduce the ability to maintain variation. Interestingly, the recently 

bottlenecked Seychelles warbler has more variation at AvBD loci than the Henderson’s 

Island warbler, despite the fact that the former species now exists within a smaller 

population than the latter. Henderson’s Island is, however, an uplifted coral atoll at the end 

of a chain of small volcanic islands very isolated in the middle of the Pacific Ocean. 

Consequently it is highly likely that Henderson’s island warbler has undergone at least one 

bottleneck, if not multiple sequential bottleneck events, in colonising this island, resulting in 

the low levels of genetic variation observed in our study of AvBDs, and at neutral genetic 

markers (Brooke & Hartley 1995). In contrast, until recently the Seychelles warbler existed in 

a larger population across multiple islands (Spurgin et al. 2014) and only lost ca 25% of its 

variation in the recent bottleneck.   
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Our results showing that almost no functional variation exists at the AvBD loci in the 

Seychelles warbler refute our a priori hypothesis that pathogen-mediated selection would 

maintain variation at these immunologically important loci. Similar losses in diversity in 

immune defence genes associated with bottleneck events have been reported in other 

endangered vertebrates (Eimes et al. 2011; Jamieson 2011; Basu et al.. 2012; Zhu et al. 

2013). The majority of polymorphic Seychelles warbler individuals are heterozygous for the 

rare variants observed, which suggests there may be a selective advantage with 

heterozygosity. However, a lack of any deviation from Hardy-Weinberg proportions suggests 

that this is not the case, thus it is likely that the alternate variants are merely in the 

heterozygous form because they are rare (and so it is unlikely that both parents possess the 

same rare variant to pass onto offspring). Our results do not, therefore, confirm those from 

an outbred population of the blue tit, Parus major,  where all but one of 40 individuals 

screened showed functional heterozygosity within the exon coding for the mature defensin 

peptide of AvBD2, 4, 7, 9, 10 and 12, thus supporting a heterozygote advantage  (Hellgren 

2015).  

Given the near-absence of variation found in both pre- and post-bottleneck 

populations of this species, it is impossible to statistically assess the roles that drift and 

selection may have played in shaping AvBD variation through this particular bottleneck. The 

AvBD7 locus shows considerable intra-specific variation in other species with many 

nucleotide substitutions among  the Acrocephalus genus and entire codon insertions 

between different families in the Passeriformes (Hellgren et al. 2010). At this locus n the 

Seychelles warbler we only detected two alleles in the population prior to the bottleneck 

and one thereafter. Given the low frequency of the additional allele in the historical sample 

(1/15 individuals) a large sample would need to be screened to confirm its absence in the 

contemporary population. Here we screened 20 individuals, so if the allele is present it is 

probably at a frequency < 0.05. 

Pathogen-mediated selection (PMS) has been shown to be an important force in 

maintaining variation at immune genes such as the MHC and innate immune components 

like cytokines (Potts & Slev 1995; Jeffery & Bangham 2000; Spurgin & Richardson 2010; 

Turner et al. 2012). However, while a number of studies on β-defensins have been carried 

out on laboratory populations and in humans (Hollox & Armour 2008; Lazzaro 2008; Ardia et 
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al. 2011), to our knowledge there is as yet no information on PMS acting on β-defensins in 

wild populations. Furthermore, remote isolated populations often have fewer pathogens, as 

shown recently in a study of haematozoans, bacteria and viruses in avian populations 

(Vögeli et al. 2011). Indeed the diversity of pathogens in the Seychelles warbler population 

is very low; despite extensive screening efforts, no gastro-intestinal parasites or signs of 

virus infection have been detected, and only one strain of avian malaria (GRW1) has ever 

been observed (Hutchings 2009). This shows that stochastic processes which prevail with 

small island populations, not only erode immunogenetic variation (i.e. due to drift), but  can 

reduce pathogen biodiversity (Vögeli et al. 2011). The combination of increased drift and 

reduced pathogen-mediated selection may therefore explain why variation at the AvBD 

genes is lost in bottlenecked island populations, such as the Seychelles warbler. In addition, 

if the parasite biodiversity is reduced such that only one (or a few) parasite strains are 

retained, the effects of pathogen-mediated selection on immunogenetic variation might be 

reversed. For example, the AvBD alleles observed at each locus may have become fixed in 

the Seychelles warbler because they provided adequate defence against the limited 

pathogens remaining in the environment. In such a situation, directional selection may have 

acted in concert with neutral effects to eliminate variation. Several studies have found that 

immunogenetic variation eroded faster than (neutral) microsatellite variation in small 

isolated populations (Bollmer et al. 2011; Eimes et al. 2011; Sutton et al. 2011).  

In conclusion, our results show that the low levels of AvBD variation observed in the 

Seychelles warbler are in line with the low levels observed in other small island populations 

of Acrocephalus, and contrast to the higher levels found in mainland migratory congeneric 

populations. This suggests that drift may be the main force driving the patterns of variation 

seen these bottlenecked species. Nevertheless, it does not rule out the possibility that 

balancing selection may have attenuated the loss of variation caused by a reduction in 

population size. However in the Seychelles warbler the effect must be very limited as we 

only found one functional variant at just one of the five AvBD loci. It is important to report 

observations of invariant genes within natural populations, such as observed here in this 

bottlenecked species. Firstly, it prevents a publication-bias towards studies that outline 

where and when genes are polymorphic, potentially leading to erroneous conclusions. 

Secondly, studies that show depleted genetic variation at loci that are typically polymorphic 
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can be of conservation interest. This is because they may identify populations that are 

particularly vulnerable to future challenges such as pathogen infections (Frankel 1974; 

Hedrick 2001; Pertoldi et al. 2007) and can both inform and result in more effective 

management and prioritisation of populations and species (Schonewald-Cox et al. 1983; 

Soulé & Simberloff 1986; Frankham 2010). 

 

Acknowledgments 

Nature Seychelles kindly facilitate and support our long-term Seychelles warbler study on 

Cousin Island. The Seychelles Bureau of Standards and the Department of Environment gave 

permission for sampling and fieldwork. We thank Prof Terry Burke for the use of the NERC 

Biomolecular Analysis Facility at the University of Sheffield, and also would like to thank a 

number of collaborators for providing Acrocephalus DNA samples: Drs Deborah Dawson, 

Juan Carlos Illera, Andrew Dixon, Bengt Hansson, Michael Brooke and Ian Hartley.  

 

Data Accession Statement 

GenBank do not accept sequences which are < 200 bp, therefore, we have provided all 

sequences originating from this study in the supplementary material (Table S5) for easy and 

full access. 

 

References 

Acevedo-Whitehouse K, Cunningham AA (2006) Is MHC enough for understanding wildlife 
immunogenetics? Trends in Ecology & Evolution, 21, 433–438. 

Aguilar A, Roemer G, Debenham S et al. (2004) High MHC diversity maintained by balancing selection 
in an otherwise genetically monomorphic mammal. Proceedings of the National Academy of 
Sciences of the United States of America, 101, 3490–4. 

Alcaide M (2010) On the relative roles of selection and genetic drift in shaping MHC variation. 
Molecular Ecology, 19, 3842–4. 

Ardia DR, Parmentier HK, Vogel L (2011) The role of constraints and limitation in driving individual 
variation in immune response. Functional Ecology, 25, 61–73. 



Chapter 2: AvBDs in the Seychelles warbler 

64 
 

Barrett ELB, Burke T a, Hammers M, Komdeur J, Richardson DS (2013) Telomere length and dynamics 
predict mortality in a wild longitudinal study. Molecular Ecology, 22, 249–59. 

Basu M, Das T, Ghosh A et al. (2012) Gene-gene interaction and functional impact of polymorphisms 
on innate immune genes in controlling Plasmodium falciparum blood infection level. PLoS One, 
7, e46441. 

Bensch S, Hasselquist D (1999) Phylogeographic population structure of great reed warblers: an 
analysis of mtDNA control region sequences. Biological Journal of the Linnean Society, 66, 171–
185. 

Bisconti R, Canestrelli D, Nascetti G (2013) Has living on islands been so simple? Insights from the 
insular endemic frog Discoglossus montalentii. PLoS One, 8, e55735. 

Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO (2011) Drift and selection influence geographic 
variation at immune loci of prairie-chickens. Molecular Ecology, 20, 4695–4706. 

Brooke M (2010) Henderson Island. British Birds, 103, 428–444. 

Brooke MDL, Hartley IR (1995) Nesting Henderson Reed-Warblers (Acrocephalus vaughani taiti) 
Studied by DNA Fingerprinting : Unrelated Coalitions in a Stable Habitat? The Auk, 112, 77–86. 

Brouwer L, Barr I, van de Pol M et al. (2010) MHC-dependent survival in a wild population: evidence 
for hidden genetic benefits gained through extra-pair fertilizations. Molecular Ecology, 19, 
3444–3455. 

Brouwer L, Tinbergen JM, Both C et al. (2009) Experimental evidence for density-dependent 
reproduction in a cooperatively breeding passerine. Ecology, 90, 729–741. 

Chow BT, Soto M, Lo BL, Crosby DC, Camerini D (2012) Antibacterial Activity of Four Human Beta-
Defensins: HBD-19, HBD-23, HBD-27, and HBD-29. Polymers, 4, 747–758. 

Collar NJ, Stuart SN (1985) Threatened birds of Africa and related islands. tional Council for Bird 
Preservation, Cambridge. 

Van de Crommenacker J, Komdeur J, Burke T, Richardson DS (2011) Spatio-temporal variation in 
territory quality and oxidative status: a natural experiment in the Seychelles warbler 
(Acrocephalus sechellensis). Journal of Animal Ecology, 80, 668–680. 

Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of 
phylogenetic analysis tools for evolutionary biology. Bioinformatics (Oxford, England), 26, 
2455–7. 

Van Dijk A, Veldhuizen EJ, Haagsman HP (2008) Avian defensins. Vetinary Immunology & 
Immunopathology, 124, 1–18. 

Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at 
the H-2 gene complex. Nature, 256, 50–52. 



Chapter 2: AvBDs in the Seychelles warbler 

65 
 

Eimes J a, Bollmer JL, Whittingham L a et al. (2011) Rapid loss of MHC class II variation in a 
bottlenecked population is explained by drift and loss of copy number variation. Journal of 
Evolutionary Biology, 24, 1847–56. 

Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature, 
452, 169–175. 

Ferrer-admetlla A, Bosch E, Sikora M et al. (2008) Balancing Selection Is the Main Force Shaping the 
Evolution of Innate Immunity. Journal of Immunology, 181, 1315–1322. 

Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics, 78, 53–65. 

Frankham R (1995) Conservation genetics. Annual review of Genetics, 29, 305–327. 

Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. 
Biological Conservation, 143, 1919–1927. 

Fu Y-X (1996) New statistical tests of neutrality for DNA samples from a population. Genetics, 143, 
557–70. 

Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693–709. 

Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons 
from the MHC. Evolution, 57, 1707–22. 

Grueber CE, Wallis GP, Jamieson IG (2013) Genetic drift outweighs natural selection at toll-like 
receptor (TLR) immunity loci in a re-introduced population of a threatened species. Molecular 
Ecology, 22, 4470–4482. 

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for 
Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98. 

Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective 
therapeutic strategies. Nature Biotechnology, 24, 1551–7. 

Hansson B, Jack L, Christians JK et al. (2006) No evidence for inbreeding avoidance in a great reed 
warbler population. Behavioral Ecology, 18, 157–164. 

Hansson B, Richardson DS (2005) Genetic variation in two endangered Acrocephalus species 
compared to a widespread congener: estimates based on functional and random loci. Animal 
Conservation, 8, 83–90. 

Hedrick PW (2001) Conservation genetics: where are we now? Trends in Ecology & Evolution, 16, 
629–636. 

Hedrick PW, Gutierrez-Espeleta G a, Lee RN (2001) Founder effect in an island population of bighorn 
sheep. Molecular Ecology, 10, 851–7. 

Hellgren O (2015) Allelic variation at innate immune genes (avian β-defensins), within a natural 
population of great tits. Journal of Avian Biology, 46, 113–118. 



Chapter 2: AvBDs in the Seychelles warbler 

66 
 

Hellgren O, Ekblom R (2010) Evolution of a cluster of innate immune genes (beta-defensins) along 
the ancestral lines of chicken and zebra finch. Immunome Research, 6, 3. 

Hellgren O, Sheldon BC (2011) Locus-specific protocol for nine different innate immune genes 
(antimicrobial peptides: beta-defensins) across passerine bird species reveals within-species 
coding variation and a case of trans-species polymorphisms. Molecular Ecology Resources, 11, 
686–692. 

Hellgren O, Sheldon BC, Buckling A (2010) In vitro tests of natural allelic variation of innate immune 
genes (avian β-defensins) reveal functional differences in microbial inhibition. Journal of 
Evolutionary Biology, 23, 2726–2730. 

Higgs R, Lynn DJ, Cahalane S et al. (2007) Modification of chicken avian beta-defensin-8 at positively 
selected amino acid sites enhances specific antimicrobial activity. Immunogenetics, 59, 573–
580. 

Hollox EJ, Armour JA (2008) Directional and balancing selection in human beta-defensins. BMC 
Evolutionary Biology, 8, 113. 

Hutchings K (2009) Parasite-mediated selection in an island endemic , the Seychelles warbler 
(Acrocephalus sechellensis). University of East Anglia. 

Jamieson IG (2011) Founder effects, inbreeding, and loss of genetic diversity in four avian 
reintroduction programs. Conservation Biology, 25, 115–123. 

Jeffery KJM, Bangham CRM (2000) Do infectious diseases drive MHC diversity? Microbes and 
Infection, 2, 1335–1341. 

Jensen H, Moe R, Hagen IJ et al. (2013) Genetic variation and structure of house sparrow 
populations: is there an island effect? Molecular Ecology, 22, 1792–1805. 

Kaiser P (2007) The avian immune genome--a glass half-full or half-empty? Cytogenetic Genome 
Research, 117, 221–230. 

Klein J (1986) Natural History of the Major Histocompatibility Complex. John Wiley & Sons, New York. 

Komdeur J (1992) Importance of habitat saturation and territory quality for evolution of cooperative 
breeding in the Seychelles warbler. Nature, 358, 493–495. 

Komdeur J (1994) Conserving the Seychelles warbler Acrocephalus sechellensis by translocation from 
Cousin island to the islands of Aride and Cousine. Biological Conservation, 67, 143–152. 

Lazzaro BP (2008) Natural selection on the Drosophila antimicrobial immune system. Current 
Opinion in Microbiology, 11, 284–289. 

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism 
data. Bioinformatics, 25, 1451–2. 

Lynn DJ, Higgs R, Gaines S et al. (2004) Bioinformatic discovery and initial characterisation of nine 
novel antimicrobial peptide genes in the chicken. Immunogenetics, 56, 170–7. 



Chapter 2: AvBDs in the Seychelles warbler 

67 
 

Ma D, Zhou C, Zhang M et al. (2012) Functional analysis and induction of four novel goose (Anser 
cygnoides) avian beta-defensins in response to salmonella enteritidis infection. Comparative 
Immunology, Microbiology & Infectious Diseases, 35, 197–207. 

Meredith JM, Hurd H, Lehane MJ, Eggleston P (2008) The malaria vector mosquito Anopheles 
gambiae expresses a suite of larval-specific defensin genes. Insect Molecular Biology, 17, 103–
112. 

Meyers LA, Bull JJ (2002) Fighting change with change: Adaptive variation in an uncertain world. 
Trends in Ecology and Evolution, 17, 551–557. 

Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck 
major histocompatibility complex variation in New Zealand robins (Petroicidae). Molecular 
Ecology, 13, 3709–3721. 

Mukherjee S, Sarkar-roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not 
uniform across genes of innate immune system , but purifying. PNAS, 106, 7073–7078. 

Murrell B, Moola S, Mabona A et al. (2013) FUBAR: a fast, unconstrained bayesian approximation for 
inferring selection. Molecular Biology and Evolutioniology and evolution, 30, 1196–205. 

Murrell B, Wertheim JO, Moola S et al. (2012) Detecting individual sites subject to episodic 
diversifying selection. PLoS genetics, 8, e1002764. 

Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York. 

Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York. 

Ohta T (1995) Gene Conversion vs Point Mutation in Generating Variability at the Antigen 
Recognition Site of Major Histocompatibility Complex Loci. Journal of Molecular Evolution, 41, 
115–119. 

Van Oosterhout C (2009) A new theory of MHC evolution: beyond selection on the immune genes. 
Proceedings. Biological sciences / The Royal Society, 276, 657–65. 

Van Oosterhout C, Joyce DA, Cummings SA et al. (2006) Balancing Selection, Random Genetic Drift, 
and Genetic Variation at the Major Histocompatibility Complex in Two Wild Populations of 
Guppies (Poecilia reticulata). Evolution, 60, 2562–2574. 

Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: 
Present problems, paradoxes and future challenges. Biodiversity and Conservation, 16, 4147–
4163. 

Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. 
Heredity (Edinb), 96, 7–21. 

Potts WK, Slev PR (1995) Pathogen-based models favoring MHC genetic diversity. Immunological 
Reviews, 143, 181–97. 



Chapter 2: AvBDs in the Seychelles warbler 

68 
 

Ramasamy KT, Verma P, Reddy MR (2012) Differential gene expression of antimicrobial peptides 
beta defensins in the gastrointestinal tract of Salmonella serovar Pullorum infected broiler 
chickens. Vetinary Research Communications, 36, 57–62. 

Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population Genetics Software for Exact Tests 
and Ecumenicism. Heredity, 86, 248–249. 

Richardson DS, Bristol R, Shah NJ (2006) Translocation of the Seychelles warbler Acrocephalus 
sechellensis to establish a new population on Denis Island, Seychelles. Conservation Evidence, 
3, 54–57. 

Richardson DS, Burke T, Komdeur J (2002) Direct benefits and the evolution of female-biased 
cooperative breeding in Seychelles warblers. Evolution, 56, 2313–21. 

Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra-
group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). 
Molecular Ecology, 10, 2263–73. 

Richardson DS, Komdeur J, Burke T, Lusk C (2003) Altruism and infidelity among warblers. Nature, 
422, 580–581. 

Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-
pair mate choice in the Seychelles warbler. Proceedings of the Royal Society B, 272, 759–767. 

Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred Great 
reed warbler and the inbred Seychelles warbler. Molecular Evolution, 12, 3523–3529. 

Safford R, Hawkins F (2013) The Birds of Africa, Volume 8: The Malagasy Region. 

Schlenke TA, Begun DJ (2003) Natural Selection Drives Drosophila Immune System Evolution. 
Genetics, 164, 1471–1480. 

Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (1983) Genetics and Conservation: a 
reference for managing wild plant and animal populations. Benjamin/Cummings, Menlo Park, 
California. 

Schulze-Hagen K, Leisler B (2011) Reed Warblers: Diversity in a Uniform Bird Family. KNNV Uitgeverij; 
1 edition. 

Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nature 
Immunology, 6, 551–7. 

Soulé ME, Simberloff D (1986) What do genetics and ecology tell us about the design of nature 
reserves? Biological Conservation, 35, 19–40. 

Spurgin LG, van Oosterhout C, Illera JC et al. (2011) Gene conversion rapidly generates major 
histocompatibility complex diversity in recently founded bird populations. Molecular Ecology, 
20, 5213–5225. 

Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and 
misunderstandings. Proceedings of the Royal Society B, 277, 979–988. 



Chapter 2: AvBDs in the Seychelles warbler 

69 
 

Spurgin LG, Wright DJ, van der Velde M et al. (2014) Museum DNA reveals the demographic history 
of the endangered Seychelles warbler. Evolutionary Applications, 1–10. 

Sugiarto H, Yu PL (2004) Avian antimicrobial peptides: the defense role of beta-defensins. 
Biochemical & Biophysical Research Communications, 323, 721–727. 

Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection 
and genetic drift in shaping variation at MHC immunity genes. Molecular Ecology, 20, 4408–
4420. 

Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA 
polymorphism. Genetics, 123, 585–95. 

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis 
(MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–9. 

Tompkins DM (2007) Population bottlenecks and avian immunity: implications for conservation. 
Animal Conservation, 10, 11–13. 

Tu J, Li D, Li Q et al. (2015) Molecular Evolutionary Analysis of β -Defensin Peptides in Vertebrates. 
Evolutionary Bioinformatics, 105–114. 

Turner AK, Begon M, Jackson JA, Paterson S (2012) Evidence for selection at cytokine loci in a natural 
population of field voles (Microtus agrestis). Molecular Ecology, 21, 1632–1646. 

Vögeli M, Lemus J a, Serrano D, Blanco G, Tella JL (2011) An island paradigm on the mainland: host 
population fragmentation impairs the community of avian pathogens. Proceedings of the Royal 
Society B, 278, 2668–76. 

Wright DJ, Shah NJ, Richardson DS (2014a) Translocation of the Seychelles warbler Acrocephalus 
sechellensis to establish a new population on Frégate Island , Seychelles. Conservation 
Evidence, 11, 20–24. 

Wright DJ, Spurgin LG, Collar NJ et al. (2014b) The impact of translocations on neutral and functional 
genetic diversity within and among populations of the Seychelles warbler. Molecular Ecology, 
23, 2165–2177. 

Xiao Y, Hughes AL, Ando J et al. (2004) A genome-wide screen identifies a single beta-defensin gene 
cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC 
Genomics, 5, 56. 

Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than 
just microbicidal. Trends in Immunology, 23, 291–6. 

Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for 
plants. Trends in Ecology & Evolution, 11, 413–418. 

Zhu L, Hu Y, Qi D et al. (2013) Genetic consequences of historical anthropogenic and ecological 
events on giant pandas. Ecology, 94, 2346–57. 

 



Chapter 2: AvBDs in the Seychelles warbler 

70 
 

Supplementary material  

Table S1. Details of the Seychelles warbler museum samples used to amplify the AvBD7 gene 

(modified from Spurgin et al. 2014). 

* Polymorphism identified 

 

 

Year Sample 

ID 

Museum 

Reference 

Sex Island Successful 

MHC screen 

Successful 

AvBD7 screen 

1876 10 1876-377 - Marianne X  
1876 11 1876-574 - Marianne   
1878 12 1878-552 Male Marianne X X 
1878 13 1878-553 Male Marianne X X 
1877 23 27/Syl/11/b/1 Male Marianne X X 
1877 25 27/Syl/11/b/3 Female Marianne X X 
1878 17 1878.7.30.3 Male Marianne X X 
1888 18 1927.12.18.391 Female Cousin X X 
1888 19 1927.12.18.395 Female Cousin X X 
1888 24 27/Syl/11/b/2 Male Cousin X X 
1890 1 USNM 119752 Male Cousin X  
1890 2 USNM 119753 Female Cousin   
1904 3 SKIN 265502 Male Cousin X  
1904 4 SKIN 596991 Male Cousin X  
1904 5 SKIN 596992 Male Cousin X X 
1904 6 SKIN 596993 Female Cousin X  
1904 7 SKIN 596994 Female Cousin X  
1904 8 SKIN 596995 Male Cousin X  
1904 9 SKIN 596996 Male Cousin X  
1904 26 140287 Male Cousin X  
1905 14 CG1938-897 Male Cousin X X 
1905 15 CG1938-898 Male Cousin X X 
1905 16 CG1938-899 Male Cousin X X* 
1940 20 1946.75.23 Male Cousin X X 
1940 21 1946.75.24 Male Cousin X X 
1940 22 1946.75.25 Female Cousin X X 
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Table S2. AvBD genes screened in other passerine species* (modified from Hellgren et al. 2011).  

Key: X = successful amplification. Two individuals were screened for each non-Acrocephalus species 

and so haplotypes cannot be phased from this information given the sample size. 

* = non-synonymous SNPs that were found in the exon encoding for the anti-microbial peptide  

 

 

 

 

 

Species AvBD4 AvBD7 AvBD8 AvBD9 AvBD11 AvBD13 

Blue tit (Cyanistes caeruleus) X X  X   
Great tit (Parus major) X* X*  X   
Eurasian reed warbler (Acrocephalus 
scirpaceus) 

X X  X  X 

Great reed warbler (Acrocephalus 
arundinaceus) 

X X* X X X* X 

Chiffchaff (Phylloscopus collybita) X   X X  
Willow warbler (Phylloscopus 
trochilus) 

X  X X X* X 

Icterine warbler (Hippolais icterina) X X  X X X 
Garden warbler (Sylvia borin) X* X  X  X 
Blackcap (Sylvia atricapilla) X X X X  X 
House sparrow (Passer domesticus) X X X* X X X 
Blackbird (Turdus merula) X  X X   
Redwing (Turdus iliacus) X X*  X*   
Spotted flycatcher (Muscicapa striata)   X X   
Bluethroat (Luscinia svecica) X   X   
Redstart (Phoenicurus phoenicurus)  X X X  X 
Common Redpoll (Carduelis flammea)  X* X  X X X 
Siskin (Spinus spinus) X X X X X  
Zebrafinch (Taeniopygia guttata)  X  X X X 
Rock firefinch (Lagonisticta 
sanguinodorsalis) 

X X X X   

Red-backed shrike (Lanius collurio) X*  X X X X 
Total no. polymorphic sites 21 51 31 18 53 21 
Total no. variable amino acid sites 8 25 13 6 20 11 
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Table S3. Details of additional sequences used for alignments from the NCBI BLAST database. 

Locus Species Sequence Accession ID 
AvBD4 Icterine warbler  

(Hippolais icterina) 
GGAAATGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCC
TG 

GU551968.1 

House sparrow  
(Passer domesticus) 

GGAAATGCCCTCGTGGCAACGATTACCTGGGGTCGTGTCGTTC
TG 

GU551985.1 

Eurasian blackcap  
(Sylvia atricapilla) 

GGAAATGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCC
TG 

GU551988.1 

AvBD7 
 

Icterine warbler  
(Hippolais icterina) 
 

TTCTCCTTGTGCTGTGCAGGACAAGAAGTGTTTTCTAGGCTAGA
TAATTCCTGTTTGATCCAAAACGGACGCTGCTTCCCAGGGATTT
GTCGTCGCCCTTACTACTGGATTGGGGAGTGTAGCAATGGATA
TTCTTGCTGCAAAAGG  

GU552005.1 

House sparrow  
(Passer domesticus) 

TTCTCTTTGTGCTGTGCAGGACAAGTGTTTCCTAGGCTAGACAA
TTCTTGTTTTATCCAAAACGGACGCTGCTTCCCAGGGATTTGCC
GTCGCCCTTATTACTGGATTGGAACATGTAGCAATGGATATTCT
TGCTGCAAAAGG 

GU552013.1 

Zebrafinch 
(Taeniopygia guttata) 

TTCTCTTTGTGCTGTACAGCACAATTGTTTCCTAGGCTAAACAA
CCCTTGTTTGATGCAAAATGGACGCTGCTTCCGAGGGATTTGTC
GCCGCCCTTATTACTGGATTGGAACGTGTAGCAATGGATATTCT
TGCTGCAAAAGG 

GU552011.1 

AvBD8 
 

Lesser redpoll  
(Carduelis cabaret) 
 

CGTGCCCCCAGCACCGAGGTGCAGTGCAGACAAGCTGGGGGT
GTCTGTTCCCACCACTGCCCCCTGCCCCACAGGAGACCCTTTGG
AAGATGCCAGCAGGGAATTCCCTGCTGT 

GU552025.1 

House sparrow  
(Passer domesticus) 

CGTGCCCCCAACACCGAGGTGCAGTGCAGGAAGGCTGGGGGG
GTCTGTTCCGACCGCTGCCCCCCGCCCCACTCGAGGCCCTTTGG
GCGCTGCCAGCAGGGAATTCCCTGCTGT 

GU552030.1 

Eurasian blackcap  
(Sylvia atricapilla) 

CGTGCCCCCAACACCGAGGCACAGTGCAGCAAGGCTGGGGGG
GTCTGCTCCCACCACTGCCCTCAGCCCCACACCAGACCCTTTGG
ACGCTGCCAGCAGGGAATTCCCTGCTGT 

GU552031.1 

AvBD9 
 

Icterine warbler  
(Hippolais icterina) 

GCTGACACCCTTGCATGCCGGCAGAACCGGGGCTCCTGCTCCT
TCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGCACCTGCCGT
GGAGGGAAGCTG 

GU552044.1 

House sparrow  
(Passer domesticus) 

GCTGACACCCTCGCCTGCCGGCAGAGCCGGGGCTCCTGCTCCT
TCGTGCCCTGCTCTGCCCCTCTGGTTGACATCGGGACCTGCCGC
GGTGGGAAGCTA 

GU552054.1 

Zebrafinch  
(Taeniopygia guttata) 

GCTGACACCCTCGCATGCCGGCAGAGCCGGGGCTCCTGCTCCT
TCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGCACCTGCCGT
GGTGGGAAGCTA 

GU552052.1 

AvBD11 
 

Lesser redpoll  
(Carduelis cabaret) 

GTCCAGGGACACCTCACGTTGTTTGGAATACCACGGCTACTGC
TTCCACCTGAAATCCTGCCCGGAGCCCTTCGCTGCCTTTGGGAC
TTGCTATCGGCGCCGGAGGACCTGCTGCGT 

GU552089.1 

House sparrow  
(Passer domesticus) 

GCCCAGGGACACCTTGCGTTGTTTGGAATACCACGGATACTGC
TTCCACCTGAAATCCTGCCCAGAGCCCTTTGCTGCCTTTGGGAC
TTGCTATCGGCGCCGGAGGACCTGCTGTGT 

GU552093.1 

Zebrafinch  
(Taeniopygia guttata) 

GCCCAGGGACACCTTGCGTTGTTTGGAATACCACGGCTACTGC
TTCCACCTGAAATCCTGCCCAGAGCCGTTCGCTGCCTTTGGAAC
CTGCTATCGGCGCCGCAGGACCTGCTGCCT 

GU552092.1 

AvBD13 
 

Icterine warbler  
(Hippolais icterina) 

GCAGAAGCAACCGTGGGCACTGCCGGAGGCTCTGCTTCCACAT
GGAGCGCTGGGAGGGGAGCTGCAGCAACGGCCGCCTG 

GU551975.1 

House sparrow  
(Passer domesticus) 

GCAGAAGCAACCGTGGCCACTGCCGGAGGCTCTGCTTCCACAT
GGAGCGCTGGGAAGGGAGCTGCAGCAGCGGCCGCCTG 

GU552137.1 

Zebrafinch  
(Taeniopygia guttata) 

GCAGAAACAACCGTGGCCACTGCCGGAGGCTCTGCTTCCACAT
GGAGCGCTGGGAAGGGAGCTGCAGCAACGGACGCCTG 

GU552136.1 
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Table S4. Tests of neutrality and the dN / dS Z-tests of selection on polymorphic AvBD loci sequences 

in five Acrocephalus species including the Seychelles warbler. Table 4a presents results for the 

Seychelles warbler and table 4b for all Acrocephalus warblers screened including the Cape Verde 

warbler, Great reed warbler, Henderson’s Island warbler and Eurasian reed warbler. 

Table S4a. 

Locus Tajima’s D 
(P) 

Fu and Li’s F 
(P) 

Fu and Li’s F 
(D) 

Z (dN = dS) 
(P) 

Z (dN > dS) 
(P) 

Z (dN < dS) 
(P) 

AvBD8 -0.98 (> 0.1) -0.86 (> 0.1) -1.04 (> 0.1) -1.22 (> 0.1) -1.20 (> 0.1) 1.19 (> 0.1) 
AvBD11 -1.11 (> 0.1) -1.83 (> 0.1) -1.87 (> 0.1) 1.01 (> 0.1) 1.04 (> 0.1) -0.99 (> 0.1) 
 

Table S4b. 

Locus Z (dN = dS) 
(P) 

Z (dN > dS) 
(P) 

Z (dN < dS) (P) 

AvBD4 1.09 (> 0.1) 1.06 (> 0.1) -1.05 (> 0.1) 
AvBD7 -1.21 (> 0.1) -1.30 (> 0.1) 1.35 (>0.05) 
AvBD8 -1.84 (> 0.05) -1.86 (> 0.1) 1.72 (0.04)* 
AvBD11 0.31 (> 0.1) 0.31 (> 0.1) -0.32 (> 0.1) 
AvBD13 -0.17 (> 0.1) -0.18 (> 0.1) 0.17 (> 0.1) 
Significance: ** (P < 0.01) * (P < 0.05) 
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Table S5. Genomic DNA sequences for AvBD loci for all Acrocephalus species used in this study. 

AvBD4 
Species Genomic sequence 
A. sechellensis TGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
A. brevipennis TGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
A. arundinaceus TGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
A. taiti TGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
A. scirpaceus (1) TGCCCTCGTGGCAAGGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
A. scirpaceus (2) TGCCCTCGTGGCAACGATTACCTGGGGTCATGTCGTCCTGGGTACAGTTGCTGT 
AvBD7 
A. sechellensis GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAATGGACGCTGCTTCCCAGGGATTTGTC

GTCGCCCTTATTACTGGATTGGAGAGTGTAGCAAT 
A. brevipennis (1) GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGCCGCTGCCTCCCAGGGATTTGTC

GTCGCCCTTATTACTGGATTGGAGAGTGTAGCAAT 
A. brevipennis (2) GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGCCGCTGCTTCCCAGGGATTTGTC

GTCGCCCTTATTACTGGATTGGAGAGTGTAGCAAT 
A. brevipennis (3) GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAATGGACGCTGCTTCCCAGGGATTTGTC

GTCGCCCTTATTACTGGATTGGAGAGTGTAGCAAT 
A. arundinaceus 
(1) 

GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAATGGACGCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGACTGTAGCAAT 

A. arundinaceus 
(2) 

GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGACGCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGAGTGTGGCAAT 

A. arundinaceus 
(3) 

GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGACTCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGACTGTAGCAAT 

A. taiti GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGACGCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGAGTGTAGCAAT 

A. scirpaceus (1) GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGACTCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGAGTGTAGCAAT 

A. scirpaceus (2) GAAGTGTTTTCTAGGCTAGATAATTCCTGTTTGATCCAAAACGGATTCTGCTTCCCAGGGATTTGTC
GTCGCCCTTATTACTGGATTGGGGAGTGTAGCAAT 

AvBD8 
A. sechellensis (1) TGCAGACAGGCTGGAGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA

CGCTGCCAGCCGGGAATTCCCTGTTGTAGGACC 
A. sechellensis (2) TGCAGACAGGCTGGAGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA

CGCTGCCAGCCGGGAATTCCCTGTTGTAGGACC 
A. sechellensis (3) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA

CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 
A. brevipennis (1) TGCAGACATGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA

CGCTGCCAGCCAGGAATTCCCTGCTGTAGGACC 
A. brevipennis (2) TGCAGACATGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA

CGCTGCCAGCCAGGAATTCCCTGCTGTAGGACC 
A. arundinaceus 
(1) 

TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. arundinaceus 
(2) 

TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA
TGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. taiti TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. scirpaceus (1) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCTCTGCCTCCTACGCCACATGAGACCCTTTGGA
CGCTGCCAGCCAGGAATTCCCTGCTGTAGGACC 

A. scirpaceus (2) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCTCTGCCTCCTACGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. scirpaceus (3) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCGCTGCCTCCTGCGCCACATGAGACCCTTTGG
ACGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 



Chapter 2: AvBDs in the Seychelles warbler 

75 
 

A. scirpaceus (4) TGCAGACAGGCTGGGGGGGTCTGCTCCAGTGACCGCTGCCTCCTACGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. scirpaceus (5) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCCCTGCCTCCTTCGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

A. scirpaceus (6) TGCAGACAGGCTGGGGGGGTCTGCTCCAGCGACCTCTGCCTCCTTCGCCACATGAGACCCTTTGGA
CGCTGCCAGCCGGGAATTCCCTGCTGTAGGACC 

AvBD9 
A. sechellensis TCCTGCTCCTTCATGCCCTGCTCTGCTCCTCTGGTTGACATCGGGACCTGCCGCGGTGGGAAGCTA 
A. brevipennis TCCTGCTCCTTCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGGACCTGCCGCGGTGGGAAGCTA 
A. arundinaceus TCCTGCTCCTTCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGGACCTGCCGCGGTGGGAAGCTA 
A. taiti TCCTGCTCCTTCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGGACCTGCCGCGGTGGGAAGCTA 
A. scirpaceus  TCCTGCTCCTTCGTGCCCTGCTCTGCTCCTCTGGTTGACATCGGGACCTGCCGCGGTGGGAAGCTA 
AvBD11 
A. sechellensis (1) AGGGACACCTTGCGTTGCTTGGAATACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT

TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 
A. sechellensis (2) AGGGACACCTTGCGTTGCTTGGAATACCACGGCTACTGCTTCCATATGAAATCCTGCCCGGAGCCA

TTTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 
A. sechellensis (3) AGGGACACCTTGCGTTGCTTGGAATACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT

TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 
A. arundinaceus 
(1) 

AGGGACACCTTGAGTTGCTTGGAATACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCA
TTTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 

A. arundinaceus 
(2) 

AGGGACACCTTGCGTTGCTTGGAATACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT
TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 

A. arundinaceus 
(3) 

AGGGACACCTTGCGTTGCTTGGAATACCATGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT
TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 

A. taiti AGGGACACCTTGCGTTGCTTGGAATACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT
TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 

A. scirpaceus (1)  AGGGACACCTTGCGTTGCTTGGACTACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT
TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGTGTTGGT 

A. scirpaceus (2) AGGGACACCTTGCGTTGCTTGGACTACCACGGCTACTGCTTCCATCTGAAATCCTGCCCGGAGCCAT
TTGCTGCCTTTGGAACTTGCTATCGGCGCCGGAGGACCTGCTGCGTTGGT 

AvBD13 
A. sechellensis CAGAAGCACCGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCA

GCAACGGCCGCCTG 
A. brevipennis CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCAGCAACGGCC

GCCTG 
A. arundinaceus 
(1) 

CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCAGCAACGGCC
GCCTG 

A. arundinaceus 
(2) 

CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCAGCAACGGCC
GCCTG 

A. taiti CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCAGCAACGGCC
GCCTG 

A. scirpaceus (1)  CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGCAAGGGAGCTGCAGCAACGGCCG
CCTG 

A. scirpaceus (2) CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGGAAGGGAGCTGCAGCAACGGCC
GCCTG 

A. scirpaceus (3) CGTGGGCACTGCCGGAGGCTCTGCTTCCACATGGAGCGCTGGCAAGGGAGCTGCAGCAATGGCCG
CCTG 
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Figure 1. Allele frequencies at each polymorphic AvBD locus screened in the five Acrocephalus 

species. 
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Abstract 

In small populations loss of genetic variation due to drift can lead to inbreeding depression 

and a loss of adaptive potential, thus reducing short- and long-term viability. Under certain 

circumstances, balancing selection may be able to counteract drift and maintain variation at 

key loci. Characterising functional loci at which variation remains in small or in bottlenecked 

populations is important in potentially identifying loci critical to the persistence of these 

populations and providing candidates for investigations into the relative strength of 

different evolutionary forces in such situations. Toll-like receptor genes (TLRs) encode for 

molecules which play a pivotal role in innate immune defence in vertebrates. Here we 

characterise variation at TLR loci in the Seychelles warbler Acrocephalus sechellensis, an 

endangered passerine that recently went through a severe population bottleneck, resulting 

in a significant reduction in its genome-wide variation. In this species, we found that five of 

the seven TLR loci amplified were polymorphic, with one locus (TLR15) containing four 

functional variants. Haplotype-level tests of selection failed to detect selection at these 

TLRs, but site-specific tests detected signatures of negative (purifying) selection within two 

loci (TLR1LB and TLR5) and sites under positive (balancing) selection at TLR3 and TLR15. We 

characterised variation at the seven TLR loci in six other Acrocephalus species with varying 

demographic backgrounds and identified more sites showing signatures of selection across 

the genus. Finally, we found a positive correlation between population size and TLR 

variation across Acrocephalus populations, indicating that the species existing in small 

isolated populations had reduced variation at TLR loci. Our results show that TLR variation 

does still exist within the Seychelles warbler, thus providing candidate loci for further 

investigation into the strength and causes of selection at these loci. However, the 

depauperate TLR variation observed in this small bottlenecked population suggest that even 

at important immunogenetic loci like the TLRs, balancing selection may, at best, only 

attenuate the overriding effects of drift. 
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Introduction 

The analysis of genetic variation within and among populations can provide important 

insight into the evolutionary and demographic history of a species (Garrigan & Hedrick 2003; 

Piertney & Webster 2010; Sutton et al. 2011). Levels of variation also provide an indication 

of a population’s adaptive potential and viability (Frankham et al. 1999). In demographically 

stable populations, genetic variation will reach a mutation-selection-drift balance given 

sufficient evolutionary time (Kimura & Ohta 1969). However, balancing selection is said to 

have occurred when genetic variation at a locus is maintained at a higher level than 

expected based on the amount of drift affecting the population (Takahata, 1990; Takahata & 

Nei 1990; Takahata et al. 1992). Identifying when and where balancing selection occurs can 

provide insight into the function and importance of specific loci and help us to understand 

the evolutionary pressures affecting a population (Oleksiak et al. 2002; Mitchell-Olds & 

Schmitt 2006). Furthermore, understanding the potential for critical genetic variation to be 

maintained within small, isolated populations where drift is strong (Lacy 1987; Franklin & 

Frankham 1998; van Oosterhout et al. 2006) is important from a conservation perspective 

(Young et al. 1996; Tompkins 2007; Willi et al. 2007; Grueber et al. 2013).  

Pathogen-mediated selection (PMS) has been proposed to be a major driver of 

balancing selection given the strong co-evolutionary relationship between pathogens and 

their hosts (Jeffery & Bangham 2000; Bernatchez & Landry 2003). This idea is well-

supported by various studies that have identified elevated levels of variation at specific 

immune genes across a range of taxa (Hoelzel et al. 1993; Luikart et al. 1998; Frankham et 

al. 1999; Hansson & Richardson 2005). Three main none mutually-exclusive mechanisms of 

PMS  (i.e. heterozygote advantage, rare allele advantage and fluctuating selection) (Doherty 

& Zinkernagel 1975; Hill et al. 1991; Slade & McCallum 1992, respectively) have been put 

forward explain how genetic variation may be maintained at these immune genes (for 

reviews, see Potts & Slev 1995; Hedrick 2002; Spurgin & Richardson 2010). Other forces 

such as sexual selection (Fisher 1915; Andersson 1994) and selection against any mutational 

load associated with highly polymorphic genes (van Oosterhout 2009) can act on top of this, 

and have the potential to interact and exacerbate the overall effect on genetic variation (for 

examples, see Brouwer et al. 2010; Netea et al. 2012; Ejsmond et al. 2014). 
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 Most studies which use a candidate gene approach to investigate balancing selection 

have focused on Major Histocompatability Complex (MHC) genes (for reviews, see Piertney 

& Oliver 2006; Spurgin & Richardson 2010), both because of their central role in the 

acquired immune response and because of the exceptional levels of polymorphism 

observed (Hedrick 1994; Meyer & Thomson 2001). However, population genetic inference 

of selection is difficult in this multigene family because of the complications caused by 

various phenomena including  frequent gene duplication (Jeffery & Bangham 2000; Hess & 

Edwards 2002), gene conversion (Ohta 1995; Spurgin et al. 2011), epistasis, strong linkage 

and high mutational load (van Oosterhout 2009). In contrast, studies on variation at innate 

immune system genes within wild populations are relatively scarce (for review, see Sutton 

et al. 2011), yet these genes are thought to have a relatively simple genomic architecture 

and evolution, which reduces the confounding effects of the other factors outlined above. 

Furthermore, innate immune genes play a pivotal role as the first line of defence in 

vertebrate immunity and there is evidence that they can be under balancing selection 

(Schlenke & Begun 2003; Ferrer-admetlla et al. 2008; Mukherjee et al. 2009). 

 Toll-like receptors (TLRs) are membrane-bound sensors of the innate immune 

system that recognise distinctive molecular features of invading microbes (for review, see 

Jin & Lee 2008). They bind pathogen-associated molecular patterns (PAMPs), thus triggering 

an intracellular signal cascade to activate an appropriate immune response (Takeda & Akira 

2005). TLRs are divided into six families based on the types of PAMPs they bind to (Roach et 

al. 2005). These include TLRs which bind to bacterial lipoproteins, lipopolysaccharides or 

DNA motifs (Takeuchi et al. 2002; Bihl et al. 2003; Keestra et al. 2010). In vertebrates, TLRs 

link the innate and adaptive immune system, working with both modes of immune defence 

(Schnare et al. 2001; Roach et al. 2005). Recent studies show that polymorphisms at TLR loci 

can have a direct effect on resistance/ susceptibility to pathogen infection across a range of 

vertebrate groups (see: Creagh & O’Neill 2006; Vinkler et al. 2009; Franklin et al. 2011). 

Consequently, PMS is thought to maintain variation at these genes and positive selection at 

TLR genes has been shown in fish (Palti 2011), mammals (Nakajima et al. 2008; Areal et al.  

2011; Tschirren et al. 2013) and birds (Downing et al. 2010; Alcaide & Edwards 2011; 

Grueber et al. 2013, 2014). 
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 Wild birds have been the focus of a disproportionate number of evolutionary and 

ecological studies (for review, see Kaiser 2007). The samples and data from such studies 

now provide excellent systems in which to investigate the causes and consequences of 

innate immune gene variation under natural conditions. A recent study of variation at avian 

TLR genes across outbred passerines found evidence that balancing selection was 

responsible for maintaining variation at these loci (Alcaide & Edwards 2011). Another study 

on a bottlenecked population of a single species showed that TLR variation was elevated 

compared to overall genetic diversity (Grueber et al. 2013). 

Here we characterise variation at seven TLR genes in the Seychelles warbler 

Acrocephalus sechellensis (SW) and, for comparison, across six other Acrocephalus warbler 

species (OW). We use these data to investigate whether TLR variation exist despite the 

severe bottleneck that the SW population endured when its population was reduced to ca 

29 individuals in the last century (Collar & Stuart 1985). We assess whether there is any 

evidence that selection has influenced TLR variation in the SW, or across the Acrocephalus 

genus, and include a comparison of TLR variation in relation to population size across all of 

the Acrocephalus populations characterised. 

 

Materials and Methods 

Study species and sampling 

The Seychelles warbler (SW) is a small (ca 12-15 g) insectivorous passerine bird endemic to 

the Seychelles islands (Safford & Hawkins 2013). Due to anthropogenic effects, by the 1960s 

the SW was reduced to just one population of ca 26 individuals remaining on the island of 

Cousin (Collar & Stuart 1985). As a result, the SW effective population size was dramatically 

reduced from ca 6900 in the early 1800s to < 50 in the contemporary population (Spurgin et 

al. 2014). However, with effective conservation management, the population recovered to 

its carrying capacity of ca 320 adults on Cousin by 1982 (Komdeur 1992) and has since 

remained relatively stable (Brouwer et al. 2009; Wright et al. 2014). The SW has since 

proved to be an excellent study species for evolutionary, ecological and conservation 

question (Komdeur 1992; Richardson et al. 2003; van de Crommenacker et al. 2011; Barrett 

et al. 2013). Since 1997, > 96% of the Cousin population have been caught and each bird 
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rung with a unique combination of colour rings and a metal British Trust for Ornithology ring 

(Richardson et al. 2002). Birds are aged at first catch according to their eye-colour and 

behaviour: adult birds are > 10 months old with distinctive reddish-brown eyes compared to 

the light brown eyes of a sub-adult aged 5-10 months. Birds < 5 months old have grey eyes. 

Blood samples (ca 25 µl) are taken via brachial venipuncture, placed in absolute ethanol in a 

2 ml screw-top Eppendorf tube and stored at 4oC. 

Toll-like receptor (TLR) variation in the Seychelles warbler (SW) 

Samples were from unrelated adult birds (> 1 year old) chosen at random from the 

contemporary 2000-2008 population. Genomic DNA was extracted using a salt-extraction 

method (Richardson et al. 2001), and sex-confirmed using a molecular protocol (Griffiths et 

al. 1998). The TLR loci were selected based on their successful amplification in other 

passerine species - principally, the house finch Carpodacus mexicanus, and New Zealand 

robin Petroica australis raikura - using locus-specific primers (Alcaide & Edwards 2011; 

Grueber & Jamieson 2013) (Table S1). The seven TLR genes that amplified successfully 

(TLR1LA, TLR1LB, TLR3, TLR4, TLR5, TLR15 and TLR21) were screened in 22-33 Seychelles 

warblers. The number of samples required to identify all variation at each locus was 

calculated using rarefaction curves of the number of alleles discovered with increasing 

sample size until the curve reached an asymptote, using HPRare v1.0 (Kalinowski 2005).  

 For each locus, PCRs were carried out in 10 µl volume with genomic DNA at a 

concentration of ca 10 ng / µl. Taq PCR Master Mix was used (Qiagen, UK) which includes: 

Taq DNA Polymerase, QIAGEN PCR Buffer, MgCl2, and ultrapure dNTPs at optimised 

concentrations. PCRs were carried out using the following conditions: 40 s at 94oC, 40 s at 

the locus-specific annealing temperature (Table S1), 80 s at 72oC, all repeated for 34 cycles. 

All PCRs started with an incubation step of 3 mins at 94oC and finished with an incubation 

step of 10 mins at 72oC. All PCR products were electrophoresed on a 2% agarose gel 

containing ethidium bromide and visualised to determine successful amplification of the 

expected size fragment. Successful samples were submitted to MWG Operon (Eurofins, 

Germany) for Sanger sequencing. All unique sequences were confirmed by repeated 

sequencing across multiple individuals or, where identified in only one individual, multiple 

independent PCRs from that individual. 
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 All sequences were aligned against target sequences of the given loci/exon from 

other passerine species available in the National Centre for Biotechnology Information 

(NCBI) nucleotide database using BioEdit (Hall 1999) via ClustalW codon alignment. Each 

chromatogram was examined by eye to identify single nucleotide polymorphisms (SNPs). 

Sequences with multiple SNPs had their haplotypes inferred using Bayesian PHASE 

algorithms (Stephens & Donnelly 2003) in the program DnaSP (Librado & Rozas 2009).  

 

Toll-like receptor (TLR) variation across Acrocephalus species (OW) 

To help identify signatures of selection within TLR loci and assess variation at the genus-

level (Acrocephalus), the same TLR loci as above were screened in 4-8 individuals from each 

of the great reed warbler (A. arundinaceus), Eurasian reed warbler (A. scirpaceus), 

Australian reed warbler (A. australis), sedge warbler (A. schoenobaenus), Cape Verde 

warbler (A. brevipennis) and Henderson’s Island warbler (A. taiti); hereafter collectively 

referred to as ‘other warblers’ (OW). The sequencing protocols outlined above for the SW 

were used but with different optimised annealing temperatures for each OW species (Table 

S1). 

These Acrocephalus species have a range of demographic and evolutionary histories 

(for overview, see Schulze-Hagen & Leisler 2011). The great reed warbler, Eurasian reed 

warbler, Australian reed warbler and Sedge warbler are all migrant species from large 

outbred populations classified as ‘under least concern’. Estimated European populations are 

950’000, 3.1 million and 2.3 million for the great reed warbler, Eurasian reed warbler and 

sedge warbler respectively (after Hagemeijer & Blair 1997; BirdLife International 2015). The 

Australian Reed warbler is widespread across Australia, New Guinea and South-West Asia, 

therefore we have used an estimate of 1.5 million based on existing literature (del Hoyo et 

al. 2006; BirdLife International 2015). These four species can be categorised as ‘mainland’. 

The Cape Verde warbler and Henderson’s Island warbler are two other island species with 

restricted but- at the present time- stable populations estimated at 1000-1500 (Schulze-

Hagen & Leisler 2011) and ca 7000 individuals (Brooke & Hartley 1995; Birdlife International 

2015) respectively. These two species and the SW are categorised as ‘island’ species. 
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We tested for differences in variation between mainland and island species, in 

addition to investigating the relationship between consensus population size and TLR 

haplotype diversity using a logistical regression analysis. This was run for (i) all TLR variation 

observed and (ii) only TLR variation resulting in a change at the amino acid level (hereafter 

termed functional variation). Haplotype diversity is a measure of the uniqueness of a given 

haplotype in a given subset / population of individuals where its formula includes a measure 

of the relative haplotype frequency (xi) in the sample of individuals and can account for 

differences in sample size (N) (Nei 1987). 

In order to assess sequence evolution at each TLR locus within and across the 

different species, we constructed maximum-likelihood trees for each locus with 1000 

bootstrap replications. The trees were based on nucleotide variation (given the sequences 

were all < 1 kb) under the general time reversible substitution model (Nei & Kumar 2000). 

Sequences of non-Acrocephalus avian species, obtained from the NCBI database, were used 

to root the tree: Carpodacus mexicanus (house finch), Petroica australis raikura (Stewart 

Island robin), Taeniopygia guttata (zebrafinch), Picoides pubescens (downy woodpecker), 

Philesturnus carunculatus (saddleback), Accipiter cooperi (Cooper’s hawk), Falco naumanni 

(lesser kestrel), Anas platyrynchus (mallard) and Gallus gallus domesticus (domestic chicken) 

(Table S2). 

 

Signatures of selection 

Haplotype level tests: Amino acid sequences were translated using Mega v5.1 (Tamura et 

al. 2011). In the SW, all haplotype frequencies observed at each loci were tested for linkage 

disequilibrium using pairwise log likelihood ratio statistics, and were tested for deviation 

from Hardy-Weinberg proportions using the Markov chain method available in Genepop v.2 

(Raymond & Rousset 1995). Tests were based on allelic frequency measures of exact 

probability and should there be a deviation, subsequent testing for heterozygote deficiency 

/ excess were also carried out (Guo & Thompson 1992). FIS values are presented using 

Robertson and Hill’s estimates (1984), which have lower variance under the null hypothesis 

compared to the alternative Weir and Cockerham’s estimate ( 1984). DnaSP was used to 

calculate basic measures of genetic variation for each locus for each species: number of 

sequences (N), overall number of segregating sites (S), number of unique haplotypes (H), 
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haplotype diversity (Hd), nucleotide diversity (π) and ratio of synonymous (dS) to non-

synonymous (dN) substitutions.  

Neutrality tests were carried out on the SW sequences using DnaSP, including 

Tajima’s D (Tajima 1989), Fu and Li’s D (Fu & Li 1993) and the D-statistic (Fu 1996). Tajima’s 

D is based on the differences between the number of segregating sites and the average 

number of nucleotide differences. Fu and Li’s D statistic is based on the differences between 

mutations appearing only once among sequences and total number of mutations, whereas 

the F-statistic is based on s and the average number of nucleotide differences between 

pairs (k). These tests of selection are averaged over all sites in the sequence, thus they will 

be confounded if selection differs across sites. Moreover they lack power and are not able 

to detect relatively weak signatures of selection (Pond & Frost, 2005). 

 Z-tests of selection were carried out in Mega v5.1 (Tamura et al. 2007) in order to 

identify selection based on dN/dS across species (Kryazhimskiy & Plotkin 2008); first using 

the OW species and then also including the SW. This is a codon-based test that can account 

for selective waves with different direction or intensity on specific sites (for example, see 

Burgarella et al.  2012). The McDonald Kreitman test (MK) was also carried out for each 

locus comparing the ratio of dN to dS mutations both between and within pairwise species 

(McDonald & Kreitman 1991).  

Using the haplotype sequences for all Acrocephalus species, the occurrence of gene 

conversion was estimated for each locus in DnaSP, which incorporates an algorithm (Betrán 

et al. 1997) to detect gene conversion tracts from multiple differentiated populations 

(referred to as subpopulations). Recombination rates were also estimated using the 

recombination parameter R = 4Nr (for autosomal loci of diploid organisms) (Hudson 1987) 

where N is the population size and r is the recombination rate per sequence (per gene). The 

estimator is based on the variance of the average number of nucleotide differences 

between pairs of sequences, S2k (Hudson 1987, equation 1). The minimum number of 

recombination events is estimated based on these calculations (Hudson & Kaplan 1985).  

Site specific tests: We assessed evidence of selection at codons within each TLR locus across 

the Acrocephalus genus using phylogenetically-controlled selection tests. The HyPhy 

package available on DataMonkey (Delport et al. 2010) was used to run different models 
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(for review, see Kosakovsky Pond & Frost 2005) to identify individual sites under selection 

based on dN/dS ratios at each codon across: (i) SW (ii) OW and (iii) SW & OW. Two models 

were run: (i) MEME, a mixed effects model of evolution with a significance level threshold of 

0.1 and used to detect episodic positive selection (Murrell et al.  2012)and (ii) FUBAR, a fast 

unconstrained Bayesian approximation model using a Markov chain Monte Carlo routine 

which has a Bayes Factor / posterior probability set at 0.9 and detects sites under putative 

selection (Murrell et al. 2013).  

 
Results 
 

Table 1 characterises the variation observed at the seven loci amplified in the SW. TLR4 and 

TLR21 were monomorphic in the 30 individuals screened for these loci. TLR1LA, TLR1LB, 

TLR3, TLR5 and TLR15 showed polymorphisms (Fig S1). TLR15 was the only locus where all 

the variation observed (at three segregating sites) was non-synonymous, resulting in four 

different amino acid haplotypes. Table 2 characterises the variation observed at the same 

seven TLR loci in the other Acrocephalus species populations (OW). There was significantly 

more variation present at loci in the mainland species- A. australis, A. arundinaceus, A. 

schoenobaenus and A. scirpaceus- than observed in the island endemic species including A. 

brevipennis, A. sechellensis and A. taiti (Fig 1). This was the case for the number of 

segregating sites S (t = -2.75, df = 6, P = 0.032) and number of unique haplotypes H (t = -

2.99, df = 6, P = 0.023). Focusing on the species, post-hoc Tukey tests show that levels of 

variation averaged across all TLR loci (measured as S and H) observed in the SW differ to 

those observed in A. brevipennis (Tukey HSD: mean difference in S = -0.268, P = 0.076; mean 

difference in H = -0.308, P = 0.074) but not in A. taiti (Tukey HSD: mean difference in S =  

-0.052, P = 0.891; mean difference in H = -0.148, P = 0.496).  

Across the Acrocephalus species sampled, census population size significantly 

predicted mean haplotype diversity for all nucleotide variation (t = 3.20, df = 6, P = 0.02) (Fig 

2a) though this pattern became a non-significant trend when only considering amino acid 

variation i.e. dN substitutions only (t = 1.99, df = 6, P = 0.10) (Fig 2b) most likely due to a lack 

of power. Overall, the mainland species had more variation across the TLR gene family in 

comparison to the island endemic species with the mean number of alleles observed per 
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locus for mainland Acrocephalus species 3 - 4, but only 2 - 3 for the island Acrocephalus 

species.  

Table 1. Characterising variation at seven Toll-like receptor (TLR) loci in the Seychelles warbler (SW). 

Abbreviations: number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd) 

with standard deviations (sd), nucleotide diversity (π) with sd, number of non-synonymous 

polymorphisms (dN) and number of synonymous polymorphisms (dS). 

Locus N Fragment size S H Hd (sd) π (SD) dN ds 
TLR1LA 44 531 1 2 0.36 (0.07) 0.0007 (0.0001) 0 1 
TLR1LB 66 750 2 4 0.64 (0.04) 0.0011 (0.0001) 0 2 
TLR3 56 801 3 5 0.54 (0.06) 0.0012 (0.0001) 2 1 
TLR4 60 648 0 1 - - - - 
TLR5 46 741 2 3 0.13 (0.07) 0.0003 (0.0002) 1 1 
TLR15 60 528 3 4 0.69 (0.02) 0.0017 (0.0001) 3 0 
TLR21 60 462 0 1 - - - - 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Levels of variation observed across Toll-like receptor (TLR) loci in island (A. brevipennis, A. 

sechellensis and A. taiti) compared to mainland Acrocephalus species (A. arundinaceus, A. australis. 

A. scirpaceus and A. schoenobaenus): i) number of segregating sites (S), ii) number of unique 

haplotypes (H), iii) haplotype diversity (Hd) and iv) nucleotide diversity (Pi). 
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Table 2. Characterising variation at seven Toll-like receptor (TLR) loci in a range of other 

Acrocephalus species: A. arundinaceus, A. australis, A. brevipennis, A. scirpaceus, A. schoenobaenus 

and A. taiti. Abbreviations include: number of segregating sites (S), number of haplotypes (H), 

haplotype diversity (Hd) with standard deviations (sd), nucleotide diversity (π) with sd, number of 

synonymous polymorphisms (dS) and number of non-synonymous polymorphisms (dN). 

Locus Species N Fragment 
size* 

S H Hd (sd) π (SD) dN dS 

TLR1LA Acbr 10 918 3 3 0.38 (0.181) 0.0007 (0.00036) 3 0 
 Acar 10 756 4 2 0.36 (0.159) 0.0019 (0.00084) 3 1 
 Acta 12 915 0 1 0.00 (0.000) 0.0000 (0.00000) 0 0 
 Acau 16 843 6 7 0.82 (0.005) 0.0017 (0.00024) 5 1 
TLR1LB Acbr 10 948 3 3 0.51 (0.164) 0.0008 (0.00034) 2 1 
 Acar 8 558 6 3 0.71 (0.123) 0.0051 (0.00088) 3 3 
 Acta 12 951 1 2 0.49 (0.106) 0.0005 (0.00011) 1 0 
 Acsc 10 780 2 3 0.69 (0.104) 0.0011 (0.00023) 1 1 
 Acsch 8 792 1 2 0.49 (0.169) 0.0005 (0.00021) 1 0 
 Acau 16 954 5 7 0.74 (0.105) 0.0012 (0.00026) 5 0 
TLR3 Acbr 10 942 0 1 0.00 (0.000) 0.0000 (0.00000) 0 0 
 Acar 10 642 2 3 0.64 (0.101) 0.0011 (0.00026) 0 2 
 Acta 12 777 1 2 0.30 (0.147) 0.0004 (0.00019) 1 0 
 Acsc 8 720 1 2 0.25 (0.180) 0.0004 (0.00025) 0 1 
 Acsch 4 836 0 1 0.00 (0.000) 0.0000 (0.00000) 0 0 
 Acau 12 888 1 2 0.30 (0.147) 0.0003 (0.00017) 1 0 
TLR4 Acbr 8 659 6 3 0.46 (0.200) 0.0034 (0.00143) 0 6 
 Acar 4 660 1 2 0.50 (0.265) 0.0008 (0.00040) 0 1 
 Acta 12 672 1 2 0.17 (0.134) 0.0003 (0.00020) 1 0 
 Acsc 10 655 11 9 0.98 (0.054) 0.0059 (0.00076) 6 5 
 Acsch 6 617 6 5 0.93 (0.122) 0.0040 (0.00123) 2 4 
 Acau 16 660 2 3 0.51 (0.126) 0.0009 (0.00024) 2 0 
TLR5 Acbr 6 423 0 1 0.00 (0.000) 0.0000 (0.00000) 0 0 
 Acar 8 459 1 2 0.43 (0.169) 0.0009 (0.00037) 0 1 
 Acta 10 501 3 2 0.36 (0.159) 0.0021 (0.00100) 3 0 
 Acsc 4 504 1 2 0.67 (0.204) 0.0013 (0.00041) 0 1 
TLR15 Acbr 2 892 1 2 1.00 (0.500) 0.0011 (0.00056) 1 0 
 Acar 4 807 1 2 0.67 (0.204) 0.0008 (0.00025) 1 0 
 Acta 2 519 0 1 0.00 (0.000) 0.0000 (0.00000) 0 0 
 Acsc 2 901 1 2 1.00 (0.500) 0.0011 (0.00055) 1 0 
 Acsch 2 808 2 2 1.00 (0.500) 0.0025 (0.00124) 1 1 
TLR21 Acar 8 462 1 2 0.25 (0.180) 0.0006 (0.00046) 1 0 
 Acau 14 462 2 2 0.26 (0.136) 0.0011 (0.00059) 1 1 
 

Neighbour-joining trees showed distinct segregation to the level of genus in all the 

TLR loci. All Acrocephalus species screened were clearly out-grouped from all non-passerine 

species, including raptors and galliformes, but also from other passerine families like the 

finches and thrushes (Fig S2). Within the Acrocephalus, variation within each TLR locus did 

not separate out by individual species but all the branching at this level was supported by 
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low bootstrapping values. None of the loci showed evidence of gene conversion as no 

conversion events were identified for any of the pairwise combinations of alleles tested in 

any of the species for any of the loci. However, at least one recombination event appears to 

have occurred in each of four TLR genes in the evolution of these Acrocephalus warblers 

(TLR1LB, TLR3, TLR4 and TLR15) (minimum number of recombination events identified 

between specific sites = 2, 1, 2, 2 respectively).  

 

Figure 2a. 

 

 

 

 

 

 

 

 
 

Figure 2b. 

 

 

 

 

 

 

 

 

Figure 2. Mean Toll-like receptor (TLR) haplotype diversity (Hd) in relation to census population size 

across seven Acrocephalus species. Regression lines are denoted by dashed lines. 

Adj R2= 0.61 

Adj R2= 0.33 
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Haplotype-level selection tests: In the SW, three loci deviated from Hardy-Weinberg 

proportions: TLR1LB and TLR3 had heterozygote excess (TLR1LB:  FIS = 0.372, P = 0.002; 

TLR3: FIS = 0.186, P = 0.031) and TLR15 deviated based on Fisher’s exact test of allele 

frequency probabilities (FIS = -0.061, P = 0.017). By plotting observed and expected 

haplotype frequencies under Hardy-Weinberg equilibrium for TLR15 (and other loci), it is 

clear that TLR15 is the most variable locus and some alleles show signs of heterozygote 

deficiency whereas others show signs of heterozygote excess (Fig S1). None of the pairwise 

combinations of loci tested positive for linkage disequilibrium. At the haplotype level, none 

of the tests could reject neutral evolution when performed on the limited numbers of alleles 

found at each of the five polymorphic TLR loci within the SW (all tests P > 0.1) (Table S2). 

The z-tests based on dN / dS across whole sequences also failed to detect selection in both 

the SW and in OW (Table S3). The McDonald-Kreitman test, looking at pairwise dN / dS 

comparisons between each species, failed to detect any significant signatures of selection 

with the exception of TLR4 for the Seychelles warbler and the Australian reed warbler, 

which had five fixed synonymous substitutions between the two species (P = 0.048) (Table 

S4).  

Site-specific selection tests: The codon-based test of selection was performed at three 

levels: within the Seychelles warblers only (SW), across the other warblers excluding the 

Seychelles warbler (OW), and finally across the entire dataset (SW + OW). Using the SW TLR 

sequences, both TLR1LB and TLR5 each had a single site identified as being under putative 

purifying selection according to the FUBAR model, which also identified a single site at both 

the TLR3 and TLR15 loci under putative positive (balancing) selection (Table 3). 

 When the OW TLR sequences were examined (excluding the SW) the same site at 

TLR1LB was identified as being under purifying selection along with an additional site, and a 

total of three other sites were identified to be under putative positive selection in the 

FUBAR model (Table 3). One of these sites was confirmed using the episodic positive 

selection MEME model. As for TLR5, the one site under purifying selection identified in the 

SW was not identified in the OW, but re-appeared when considering all Acrocephalus 

species, so must be SW-specific . The one site under positive selection at TLR3 in the SW was 

also detected when considering OW, in addition to a couple of sites under purifying 

selection. Likewise, the site under positive selection at TLR15 in the SW was repeatedly 
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identified for OW and OW-including-SW by both MEME and FUBAR models (Table 3). 

Furthermore, an additional site under positive selection was identified in OW and a total of 

five sites under purifying selection, making TLR15 the locus under the most selection 

according to dN/dS – based signatures. 

Table 3. Site-specific dN/dS analysis of TLR loci to identify sites under putative selection using the 

fast unconstrained Bayesian approximation model (FUBAR) with a) in the Seychelles warbler, b) 

within and across other Acrocephalus species (OW) including A. arundinaceus, A. australis, A. 

brevipennis, A. scirpaceus, A. schoenobaenus and A. taiti, and c) combining both the SW with OW. 

Sites also identified by the mixed effects model of evolution (MEME) under episodic positive 

selection only, are denoted with *. 

Locus Group # Positive 
codons 

Mean 
dN-dS 

Mean post 
prob dN > dS 

# Negative 
codons 

Mean 
dN-dS 

Mean post 
prob dN < dS 

TLR1LA SW NA NA NA NA NA NA 
OW 1 7.07 0.96 4 -5.64 0.92 
ALL 1 6.28 0.95 4 -5.68 0.93 

TLR1LB SW 0 0 0 1 -7.25 0.97 
OW 3* 7.20 0.96 2 -5.51 0.92 
ALL 3* 5.82 0.95 3 -6.02 0.94 

TLR3 SW 1 6.33 0.93 0 0 0 
OW 1 3.89 0.91 2 -5.50 0.92 
ALL 1 5.29 0.92 2 -5.06 0.93 

TLR4 SW NA NA NA NA NA NA 
OW 0 0 0 1 -3.16 0.96 
ALL 0 0 0 4 -3.51 0.97 

TLR5 SW 0 0 0 1 -4.77 0.91 
OW 0 0 0 0 0 0 
ALL 0 0 0 1 -5.25 0.91 

TLR15 SW 1 6.38 0.93 0 0 0 
OW 1* 7.43 0.97 2 -5.36 0.91 
ALL 2* 7.33 0.95 5 -4.70 0.90 

TLR21 SW NA NA NA NA NA NA 
OW 0 0 0 2 -5.29 0.93 
ALL 0 0 0 2 -5.22 0.93 

 

The same analyses could not be done for TLR1LA since < 3 unique haplotype sequences 

were detected in the SW. However, in the OW including the SW, one site was identified to 

be under positive selection and four sites under purifying selection at this locus across the 

genus. At the loci TLR4 and TLR21 (monomorphic in the SW) no sites were identified as 

being under positive selection across the genus, but had a handful of sites were identified to 

be under purifying selection at each locus (Table 3). All sites detected by MEME under 

episodic positive selection were also detected by the putative selection FUBAR model. 
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Discussion 

We characterised variation at seven TLR innate immune genes in the bottlenecked 

population of the Seychelles warbler (SW), and compared this to the variation observed in 

six other congeneric species. In the SW, five out of seven TLR genes were polymorphic with 

2-5 alleles at each locus. This level of variation per locus is higher than that reported in a 

previous study where seven out of  ten neutral (microsatellite) markers were polymorphic 

with an average of less than three alleles per locus (Hansson & Richardson 2005). Although, 

in comparison to the other Acrocephalus species screened in the present study, the SW 

variation was relatively low and hence our haplotype-level neutrality tests failed to detect 

any signatures of selection. When using haplotype-level tests across all Acrocephalus species 

there was still no strong evidence of selection detected. However, site-specific tests were 

able to detect individual sites at several TLR loci under both putatively negative (purifying) 

and positive (balancing) selection in the SW and further sites were identified when looking 

across the Acrocephalus genus. Finally, phylogenetic analyses showed that the different TLR 

genes evolve independently without the inter-locus complications observed in other 

immune genes such as the MHC.   

 Despite the lack of evidence of strong signatures of selection we did find some 

interesting patterns within specific loci. For example, TLR15 appeared to have a bias 

towards potentially functional (amino-acid) variants remaining, with all four sequence 

variants detected encoding different amino acid sequences. It was the only locus to 

significantly deviate from Hardy-Weinberg proportions and this may be a result of 

heterozygote advantage (Figure S1), a mechanism of balancing selection that has been 

found to act on immune gene variation in various species (Hedrick 2002; Worley et al. 2010; 

Niskanen et al. 2013). We suggest this possibility based on the relative excess of 

heterozygotes at TLR15 compared to the six other TLR loci examined, though heterozygote 

excess when tested specifically did not, on its own, explain the deviation from HWE 

observed. Haplotype-based neutrality tests have been much criticised for their limitations 

and lack of power for detecting selection (Vasemagi & Primmer 2005; Leffler et al. 2012; Li 

et al. 2012), which, given the limited sequence data available from the genetically 

depauperate population of the SW, may explain our results. Furthermore, haplotype-level 

tests based on the allele frequency spectrum make strong inferences about the populations’ 
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demography, such as constant population size (Zhai et al. 2009). The Seychelles warbler 

population, which has been expanding rapidly since it was reduced to ca 26 individuals in 

the 1960’s (Wright et al. 2014) does not comply with these assumptions.  

Selection was identified at individual sites within the exons of the TLR loci examined. 

In the SW, both TLR3 and TLR15 had individual sites identified as being under positive 

selection, and these sites were confirmed to be under selection across the Acrocephalus 

genus. An additional site at the TLR15 locus was also identified in the other warbler species 

but not in the SW, which is evidence of species-specific selection. TLR15 was also the locus 

under the greatest amount of selection overall with sites for both positive and purifying 

selection. This pattern of different sites within the exon showing signatures of different 

types of selection is probably because some of the sites are directly involved in PAMP 

binding while others may be important in determining the overall shape and configuration 

on the molecule and thus conserved (Bell et al. 2003; Werling et al. 2009; Kawai & Akira 

2010). Given that the codons in the same exon interference selection has the potential to 

mask opposing selection forces (Good et al. 2013).  

While such codon-based tests across species provide considerable power, there are 

caveats. For example, the signatures they detect will be of past selection caused by a 

selective pressure that may no longer be acting (Yang & Bielawski 2000). The tests cannot 

resolve whether the variation observed is currently under selection in the contemporary 

population. Many sites shown to be under negative (purifying) selection across the other 

Acrocephalus species were also found to be under negative selection in the SW. Population 

genetic theory predicts that while the intensity of (positive) selection on the innate immune 

genes may fluctuate in space and time, depending on the selective pressures exerted by 

pathogens, purifying selection is a constantly operating evolutionary force that preserves 

the functionality of these genes (Kimura & Ohta 1969; Ohta 2002; Mukherjee et al. 2009). 

This may therefore explain the different results we obtained for positively and negatively 

selected sites in the SW, in that signals of negative selection were clearer because they 

overwhelm the potentially weaker signals of balancing selection. 

When comparing the SW to OW, it is clear that TLR polymorphism in the SW (and 

other island populations) is reduced compared to that of the large populations of mainland 



Chapter 3: TLRs in the Seychelles warbler 

95 
 

Acrocephalus species (Figure 1). This implicates genetic drift associated with the small size / 

bottlenecked history of these isolated island populations as the main force shaping this 

genetic variation. While census population size did predict overall levels of nucleotide 

variation at TLR loci within different populations, this association was weaker (not 

significant) when testing amino acid variation. This difference is because the island species 

have much lower levels of overall nucleotide variation than mainland  species but not so 

much lower levels of (apparently functional) amino acid variants (Figure 1). This may be 

because a greater proportion of functional variation, compared to neutral variation, is 

retained in the bottlenecks populations, perhaps as a result of balancing selection mitigating 

the effect of drift on these functional variants 

One may ask why pathogen-mediated selection has not been maintained more 

variation at these important immune loci in the SW.  Importantly, despite considerable 

screening efforts, no gastro-intestinal parasites or virus infections and only one blood 

parasite - a single strain of avian-malaria (GRW1) - have been detected in the SW population 

(Hutchings 2009). This contrasts markedly with the diversity of pathogens found in most 

mainland avian populations, but is normal for remote (bottlenecked) island populations 

(Steadman et al. 1990; Coltman et al. 1999; Vögeli et al. 2011). Since pathogen-mediated 

balancing selection is thought to be the force maintaining variation at immune genes 

(Turner et al. 2012; Westerdahl et al. 2012; Grueber et al. 2014), the paucity of pathogens 

could help explain why drift appears to be the predominant evolutionary force shaping TLR 

variation in our SW population (Vögeli et al. 2011). 

On the other hand, a restricted pathogen in the SW fauna may have actively 

contributed to the loss of immunogenetic variation. For example, the lack of variation 

observed at TLR4 in this study is perhaps particularly surprising as this locus has been shown 

to be involved in the recognition of Protozoan's such as haemosporidian (malaria-like) 

parasites (Franklin et al. 2011; Basu et al. 2012), and the only pathogen detected in the SW 

was a Haemoproteus (Hutchings 2009). It is possible that the single TLR4 allele remaining in 

the SW population might have offered the best protection (or tolerance) against GRW1. In 

the absence of multiple strains exerting selection pressures favouring different alleles, 

selection may have driven this allele to fixation at TLR4. So while the most parsimonious 

explanation for a lack of variation may be genetic drift, we highlight the possibility that PMS 
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could reach a new equilibrium in small isolated populations in the form of the complete 

fixation of a single allele. This effect of selection could have important implications for 

conservation genetics of post-bottlenecked populations with limited pathogens because 

immunogenetic variation could be lost faster than expected based on drift alone. In support 

of this idea, several other studies have found that immunogenetic variation eroded faster 

than neutral variation in island / fragmented populations (for example, see Bollmer et al. 

2011; Sutton et al. 2011; Eimes et al. 2011). 

 While TLR polymorphism may be low in the SW, it may be significant that some 

variation has been maintained in five of the seven loci given its demographic history. All 

TLRs recognise specific pathogen-associated molecular patterns (PAMPs) and their different 

levels of haplotype variation could reflect the biodiversity of the pathogens they protect 

against in a particular population or species. TLR1LA and TLR1LB recognise lipoproteins in 

the cell walls of bacteria, fungi and protozoans (Brownlie & Allan 2011). In the SW, TLR1LB 

was the only TLR gene that showed evidence for purifying selection. TLR1LA only had two 

synonymous alleles, while TLR5,which has been shown to recognise the flagella of bacteria 

in other species (Andersen-Nissen et al. 2007) had three apparently functional alleles. TLR3 

and TLR15 had the highest levels of variation and these were the only loci at which any sites 

were identified as being positively selected in the SW. TLR3 is involved in sensing  viral RNA 

(Uematsu & Akira 2008), whereas TLR15, a gene unique to birds, appears to be important in 

the recognition of intracellular parasites, including haemosporidian parasites (Boyd et al. 

2007). Further investigations into how individual variation at TLR15 influences resistance or 

resilience to haemosporidian infection in the SW may be worthwhile. 

 There has been much debate on the relative roles of genetic drift and selection in 

shaping functional variation in natural populations and importantly, whether balancing 

selection can maintain important functional variation even in the face of strong drift (e.g. 

Alcaide 2010; Sutton et al. 2011; Strand et al. 2012). There is, however, considerable 

evidence that drift outweighs selection even at immunologically-important loci where 

balancing selection would be expected to be most effective (Miller & Lambert 2004; Willi et 

al. 2007; Kuo et al. 2009; Grueber et al. 2013, 2015). Our data on TLR variation in the SW 

and other Acrocephalus species concurs with this general view of the overriding effect of 

drift. However potentially functional variation does still exist within the SW at some of the 
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TLR loci. Thus it is possible that selection may have played a role in maintaining this 

variation, though more in-depth studies are now required to investigate this possibility. 

Furthermore, approaches will need to consider how to delineate the relative effects of drift 

and selection at these candidate loci during the bottleneck. Studies undertaken during 

bottleneck events, and which identify the cause of selection, will therefore be required 

before we can fully understand these dynamics. 

In summary, the bottleneck suffered by the SW population appears to have reduced the 

levels of variation observed in TLR genes in this species. However, some potentially 

functional variation still remains (most noticeably at the TLR15 locus) possibly as a result of 

balancing selection. The limited amount of variation detected does, however, undermine 

our ability to test the significance of such variation. Sequence-based tests of selection have 

low statistical power and restrictive assumptions. Only studies assessing the impact of 

genetic variation on individual fitness within the contemporary population and/ or 

simulating how drift and selection shape variation across bottlenecks will be able to robustly 

identify the effects of selection. That some TLR loci have maintained variation in spite of the 

recent bottleneck makes them an ideal candidate for analysing the association between 

immunological variation and fitness at the individual level in this wild population. 
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Supplementary material 
 

Table S1. Primers and PCR annealing temperatures used to amplify TLR loci in seven Acrocephalus 

species. 

 

Table S2. Haplotype-level tests for selection based on the allele frequency spectrum for each TLR 

locus for the Seychelles warbler. Significant P-values are in bold. 

 

Table S3. Z-tests of selection based upon dN/dS for each TLR locus for both the Seychelles warbler 

(SW) and all other Acrocephalus species (OW): A. arundinaceus, A. australis, A. brevipennis, A. 

scirpaceus, A. schoenobaenus and A. taiti. Significant P-values are in bold. 

 

Table S4. McDonald-Kreitman’s test for selection within and between species for each TLR locus and 

all pairwise combinations of all Acrocephalus species: A. arundinaceus, A. australis, A. brevipennis, A. 

scirpaceus, A. schoenobaenus, A. sechellensis and A. taiti.  Significant P-values are in bold. ‘NA’ 

denotes when the McDonald-Kreitman contingency table not be computed as not all components of 

the table have sufficient data. 

 

Figure S1. Observed and expected haplotype frequency charts for each polymorphic TLR locus 

amplified in the Seychelles warbler. 

 

Figure S2. Maximum-likelihood trees for each Toll-like receptor (TLR) locus to show the relationship 

between alleles at each locus across different avian lineages. Bootstrapping is applied to each 

relationship with 1000 repetitions and the tree is drawn to scale, with branch lengths measured in 

number of substitutions per site. Trees include all sequences obtained for the Seychelles warbler 

(SW) and six other Acrocephalus species (OW) and reference sequences of other passerines and non-

passerine species to root the trees. 
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Table S1. 

Locus  Primer Name Primer Sequence 5’-3’ Species Anneal  T oC 

TLR1LA  avTLR1LAF 

avTLR1LAR 

GATGGAATGAGCACTTCAGA 

CTTCGTCTGCGTCCACTG 

Acrocephalus brevipennis  62 

Acrocephalus arundinaceus  62 

   Acrocephalus taiti  62 

   Acrocephalus australis  62 

   Acrocephalus sechellensis 60 

TLR1LB avTLR1LBF 

avTLR1LBR 

TCCAGGYTWCAAAATCTGACAC 

CGGCACRTCCARGTAGATG 

Acrocephalus brevipennis  60 

Acrocephalus arundinaceus  62 

   Acrocephalus taiti  60 

   Acrocephalus scirpaceus 60 

   Acrocephalus schoenobaenus  60 

   Acrocephalus australis  60 

   Acrocephalus sechellensis 60 

TLR3 avTLR3F 

avTLR3R 

CAAWGTTGAACTTGGTGAAAAT 

TCACAGGTRCAATCAAANGG 

Acrocephalus brevipennis  57 

Acrocephalus arundinaceus  58 

   Acrocephalus taiti 57 

   Acrocephalus scirpaceus 57 

   Acrocephalus schoenobaenus 57 

   Acrocephalus australis  57 

   Acrocephalus sechellensis 55 

TLR4  PauTLR4F 

PauTLR4R 

GCTTTCCTTGAACAACATAAAGTCC 

GGGACAGAAAGACAGGGTAGG 

Acrocephalus brevipennis  55 

Acrocephalus arundinaceus 58 

   Acrocephalus taiti (HW) 55 

   Acrocephalus scirpaceus 55 

   Acrocephalus schoenobaenus  55 

   Acrocephalus australis  55 

   Acrocephalus sechellensis 58 

TLR5  avTLR5F 

avTLR5R 

GTAATCTTACCAGCTTCCAAGG 

GCTGGAGTTCATCTTCATC 

Acrocephalus taiti 61 

Acrocephalus arundinaceus 62 

   Acrocephalus scirpaceus 61 

   Acrocephalus schoenobaenus 61 

   Acrocephalus sechellensis 55 

TLR15  FinchTLR15F 

avTLR15R 

GATCTCCCATCCCACCTGA 

AAGGAGATCTTATTCCCTG 

Acrocephalus brevipennis 58 

Acrocephalus arundinaceus 58 

   Acrocephalus scirpaceus  60 

   Acrocephalus australis  57 

   Acrocephalus sechellensis 57 

TLR21  FinchTLR21F 

FinchTLR21R 

TTGACAACAACCTGCTCACTG 

TACGCAGCTCGTTCTTGG 

Acrocephalus arundinaceus  58-60 

Acrocephalus australis  60 

   Acrocephalus brevipennis 58 

   Acrocephalus taiti 58 

   Acrocephalus sechellensis 58 
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Table S2. 

Locus Number of 
individuals 

Tajima’s D Fu & Li’s D Fu & Li’s F 

TLR1LA 22 0.78 (>0.1) 0.55 (>0.1) 0.72 (>0.1) 
TLR1LB 33 1.54 (>0.1) 0.72 (>0.1) 1.13 (>0.1) 

TLR3 28 0.85 (>0.1) 0.88 (>0.1) 1.02 (>0.1) 
TLR4 30 - - - 
TLR5 23 -0.98 (>0.1) 0.76 (>0.1) 0.29 (>0.1) 

TLR15 30 0.84 (>0.1) 0.87 (>0.1) 1.01 (>0.1) 
TLR21 30 - - - 

 

Table S3. 

Locus Species 
Group 

Z-test of positive 
selection (dN > dS) 

Z-test of negative 
selection (dN < dS) 

dN-dS dS-dN 

TLR1LA SW -1.02 (1.00) 1.06 (0.15) 
OW 1.07 (0.14) -1.11 (1.00) 

TLR1LB SW -1.38 (1.00) 1.39 (0.08) 
OW 1.12 (0.13) -1.15 (1.00) 

TLR3 SW -0.62 (1.00) 0.62 (0.27) 
OW -0.80 (1.00) 0.82 (0.21) 

TLR4 SW - - 
OW -2.38 (1.00) 2.44 (0.08) 

TLR5 SW -0.57 (1.00) 0.57 (0.29) 
OW 0.19 (0.43) -0.18 (1.00) 

TLR15 SW 1.17 (0.12) -1.14 (1.00) 
OW -0.71 (1.00) 0.70 (0.24) 

TLR21 SW - - 
OW -0.62 (1.00) 0.62 (0.27) 

*P-values given in brackets 
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Table S4. 

Locus Species paired 
with SW 

           dS          dN 
P-value  Fixed differences 

between species  
S Fixed differences 

between species 
S 

TLR1LA A. arundinaceus 1 2 3 2 1.00 
 A. australis 1 1 3 4 1.00 
 A. brevipennis 2 1 4 2 1.00 
 A. taiti 1 1 3 0 0.40 

TLR1LB A. arundinaceus 0 5 0 3 NA 
 A. australis 0 2 1 5 1.00 
 A. brevipennis 0 2 2 2 0.47 
 A. schoenobaenus 2 2 4 1 0.53 
 A. scirpaceus 1 3 1 1 1.00 
 A. taiti 0 2 1 1 1.00 

TLR3 A. arundinaceus 1 3 1 2 1.00 
 A. australis 1 1 1 3 1.00 
 A. brevipennis 1 1 2 2 1.00 
 A. schoenobaenus 2 0 2 2 0.47 
 A. taiti 1 1 2 3 1.00 

TLR4 A. arundinaceus 5 1 0 0 NA 
 A. australis 5 0 0 2 0.05 
 A. brevipennis 4 6 0 0 NA 
 A. schoenobaenus 9 4 2 2 0.58 
 A. scirpaceus 6 5 0 6 0.04 
 A. taiti 5 0 0 1 0.17 

TLR5 A. arundinaceus 0 1 0 0 NA 
 A. brevipennis 0 0 0 0 NA 
 A. scirpaceus 0 1 3 0 0.25 
 A. taiti  0 0 0 3 NA 

TLR15 A. arundinaceus 0 0 1 3 NA 
 A. australis 6 1 9 3 1.00 
 A. brevipennis 1 0 0 3 0.25 
 A. scirpaceus 0 0 1 3 NA 
 A. taiti 0 0 1 3 NA 

TLR21 A. arundinaceus 1 0 0 1 1.00 
 A. australis 0 1 0 1 NA 
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Figure S1.  
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Figure S2. 

 

 

 

 

 

 

 

 

 
                     TLR1LA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                        TLR1LB 

 

 



Chapter 3: TLRs in the Seychelles warbler 

113 
 

 

 

 

 

 

 

 

 

 

                  TLR3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                          TLR4 

 

 



Chapter 3: TLRs in the Seychelles warbler 

114 
 

 

 

 

 

 
                             TLR5 

 

 

 

 

 

 

 

 

 

 

 
  

          TLR15 

 

 

 

 

 

 

 

 

               TLR21 

 



Chapter 3: TLRs in the Seychelles warbler 

115 
 

Additional information 
 

Figure 1. Rarefaction curve of number of unique alleles observed with increasing sample size of 

individuals sampled, calculated in the program HpRare v1.0 (Kalinowski 2005). 
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Figure 2. Haplotype networks for each TLR locus characterised in the Acrocephalus genus. Nodes are 

proportional to frequency of haplotypes observed and joining branches represent genetic distances 

over evolutionary time. Red dots donate key mutational steps between haplotypes All networks 

were constructed in the program Fluxus (fluxus-engineering.com) based on neighbour-joining 

methods (Bandelt & Röhl 1999). 
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Abstract  

Pathogen-mediated selection (PMS) can maintain immunogenetic variation within host 

populations, but how PMS acts on such variation within bottlenecked isolated populations 

with a depauperate parasite fauna remains a subject of considerable debate. Toll-like 

receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are 

predicted to be under PMS. We previously characterised variation at TLR loci in the 

Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a 

severe recent bottleneck. We found that five out of seven TLR loci were polymorphic, which 

is in sharp contrast to the low levels of genome-wide variation observed in this species. As is 

often the case however, standard population genetic statistical methods failed to detect a 

contemporary signature of selection at any of the TLR loci. Therefore, we applied forward-

in-time computer simulations to delineate demographic effects from the effects of 

selection. Our simulations rejected neutral evolution in all five polymorphic TLR genes in this 

species. Weak balancing selection appears to have acted in the recent past on the five TLR 

genes with estimated selection coefficients ranging from 0.005 < S < 0.03. The model could 

not discern whether balancing selection has been acting during the actual bottleneck, with 

drift being the overriding evolutionary force. Forecast models predict that immunogenetic 

variation in the Seychelles warbler will continue to erode, but only if PMS has ceased to 

operate. Such ‘drift debt’ occurs when a genepool reaches its new equilibrium level of 

polymorphism, and this loss is likely to be an important threat to many recently-

bottlenecked populations. 
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Introduction 

Understanding how random drift and selection affect genetic diversity in populations is 

important from a conservation perspective, given that genetic variation is key to a 

population’s short and long term health though it links to inbreeding depression and 

adaptive potential, respectively (Frankham et al. 1999). Selection can potentially maintain 

variation in a gene pool in the face of drift, yet the relative role of these different 

evolutionary forces in bottlenecked populations in shaping variation in the wild remains 

unclear (Acevedo-Whitehouse & Cunningham 2006). Genetic drift is often thought to 

outweigh the effects of selection in small (bottlenecked) populations, resulting in a loss of 

genetic variation and leading to population differentiation and isolation (Miller & Lambert 

2004; Grueber et al. 2013). However, even though the post-bottleneck population may have 

lost significant variation compared to the ancestral gene pool, this does not preclude the 

possibility that balancing selection has occurred. Furthermore, given that recently 

bottlenecked populations are unlikely to be in mutation-drift-selection equilibrium, the 

currently observed levels of polymorphism might overestimate future genetic diversity.  

 Immune genes are ideal candidates with which to investigate the link between 

genetic variation and fitness because of their direct effects on survival (e.g. Sorci & Moller 

1997; Merino et al. 2000; Sol et al. 2003; Moller & Saino 2004) and reproductive success 

(e.g. Pedersen & Greives 2008; Kalbe et al. 2009; la Puente et al. 2010; Radwan et al. 2012). 

Furthermore, variation at immune genes can have an important impact on the demographic 

structure of populations (e.g. Hudson 1986; Redpath et al. 2006; Deter et al. 2007; Pedersen 

& Greives 2008) and they are thought to evolve faster than the rest of the genome as a 

result of host-pathogen co-evolution (Trowsdale & Parham 2004). Much work has been 

done investigating how pathogen-mediated selection (PMS) can maintain genetic variation 

at genes of the Major Histocompatibility Complex (MHC) (for reviews, see Piertney & Oliver 

2006; Spurgin et al. 2011). However, the MHC is a large multigene family with a complex 

evolutionary history and with many evolutionary forces acting simultaneously on the various 

gene members (e.g. van Oosterhout 2009) and events such as gene conversion (e.g. Spurgin 

et al. 2011), which can complicate population genetic analysis of wild populations. Other 

important immune genes exist that remain relatively understudied, and these genes are 

increasingly recognised as excellent candidates for investigating functional variation and 
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selection (e.g. Bollmer et al. 2011; Turner et al. 2012; Grueber et al. 2013; for review, see  

Acevedo-Whitehouse & Cunningham 2006). 

 Toll-like receptors (TLRs) are membrane-bound sensors of the vertebrate immune 

system that function in recognising pathogen-associated molecular patterns (PAMPs) and 

triggering an appropriate immune response (Akira et al. 2001; Werling & Jungi 2003). 

Vertebrate TLRs fall into six different families depending on the specific PAMPs they 

recognise (Takeda & Akira 2005; Kawai & Akira 2010). Different TLRs bind to different 

elements, ranging from bacterial lipoproteins (Takeuchi et al., 2002; Jin et al., 2007), 

lipopolysaccharides (Bihl et al., 2003; Kim et al., 2007), DNA motifs (Keestra et al., 2010; 

Brownlie & Allan, 2011) and viral RNA (Yoneyama & Fujita 2010). Studies have shown 

evidence of positive selection acting within TLR loci across a range of vertebrate taxa (e.g. 

Ferrer-admetlla et al. 2008; Nakajima et al. 2008; Areal et al. 2011; Palti 2011; Grueber et al. 

2014). It appears that this selection largely targets the TLR extracellular domain responsible 

for binding PAMPs (for reviews, seeTakeda & Akira, 2005; Kawai & Akira, 2010). Assuming 

that TLRs are involved in a co-evolutionary arms race with pathogens, it is likely that 

balancing selection operates at these genes. This idea is also supported by the direct links 

that have been made between in vitro nucleotide variation at these genes with differential 

disease outcome (Hellgren et al. 2010; Basu et al. 2012; Netea et al. 2012). 

 Avian models are widely used for looking into patterns of functional variation (e.g. 

Hellgren & Ekblom 2010; Bonneaud et al. 2011; Kyle et al. 2014; Staley & Bonneaud 2015). A 

study on the entire TLR multigene family in seven phylogenetically-diverse avian species has 

inferred polymorphic TLRs to be under strong balancing selection (Alcaide & Edwards 2011). 

However, it can be difficult to examine the causes and consequences of functional variation 

in wild avian populations. The Seychelles warbler, Acrocephalus sechellensis,  is an island 

endemic passerine species that was, because of anthropogenic effects, reduced to the verge 

of extinction with less than 30 individuals remaining on a single island during the last 

century (Collar & Stuart 1985). In a previous study, we characterised variation at TLR genes 

in the bottlenecked population of the Seychelles warbler (Chapter 3). We found that despite 

the considerable losses in genome-wide variation due to the bottleneck (Spurgin et al. 

2014), considerable polymorphism remained at five different TLR loci (TLR1LA, TLR1LB, 
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TLR3, TLR5 and TLR15) while two loci were monomorphic (TLR4 and TLR21). Remarkably, 

four functional variants (alleles) were found at a single locus (TLR15) (Table 1). 

 Due to the overwhelming effect of stochastic processes, detecting any possible 

signature of selection in bottlenecked populations using standard population genetic 

statistical methods is difficult since they make unrealistic demographic assumptions, such as 

constant population size and no population structure. Furthermore, they fail to distinguish 

historic selection from current selection. Possibly due to this limitation, a previous study 

failed to detect the evidence of balancing selection acting on TLR variation in the Seychelles 

warbler (Chapter 3). Additionally, rejection of neutral evolution only indicates that a 

population is not in mutation-drift equilibrium. Such deviation from equilibrium is consistent 

with both the effects of selection as well as a post-bottleneck population expansion, thus 

making the interpretation of such tests complicated (Ramírez-Soriano et al. 2008). This 

problem is particularly acute in relation to conservation genetics, given that by definition, 

endangered populations are not in equilibrium.  

In an attempt to resolve this problem, we designed an individual-based model that 

uses forward-in-time simulations to account for the stochasticity during the population 

bottleneck. By simulating the exact bottleneck scenario, as previously inferred through 

neutral markers and historic data (Spurgin et al. 2014), we estimate the strength of 

balancing selection acting on these genes before, during, and after the bottleneck. In 

addition, we estimate the predicted future loss of genetic variation at the TLRs, i.e. the ‘drift 

debt’, which is likely to occur until the Seychelles warbler has reached its new mutation-

drift-selection equilibrium state. After using this new and considerably more robust 

statistical analysis with more realistic demographic assumptions to detect selection, we then 

discuss the applicability of such an approach and the insights it provides in relation to the 

forces acting to shape present and future patterns of genetic variation within bottlenecked 

populations in general.  

 

Materials and Methods 

Molecular methods 
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Blood samples (ca 25 µl) are taken at each catch via brachial venipuncture, placed in 

absolute ethanol in a 2 ml screw-top Eppendorf tube and kept in the fridge at 4oC. The blood 

samples used in the present study were from randomly-selected adult birds (> 1 year old) 

chosen at random from the contemporary 2000-2008 population. Genomic DNA was 

extracted using a salt extraction method (Richardson et al. 2001) and sex was confirmed 

using a molecular sexing protocol (Griffiths et al. 1998). The following TLR loci were 

amplified: TLR1LA, TLR1LB, TLR3, TLR4, TLR5, TLR15 and TLR21, in 22-30 individuals, as 

detailed in Chapter 3.  

Forward-in-Time Computer Simulations 

A model was built to simulate the loss of genetic variation at an autosomal locus under 

balancing selection (symmetric overdominance) in a diploid population that experienced a 

bottleneck of known size and duration. A synthetic nucleotide sequence representing 

several different TLR loci with a known number of base-pairs was simulated. This locus was 

first allowed to accumulate polymorphisms in an ancestral population of a given Ne until the 

genetic diversity (expressed as the effective number of haplotypes) in this population had 

reached a mutation-drift-selection equilibrium (Fig 1). We assumed an effective population 

size (Ne) of 6900 based on work done by Spurgin et al. (2014), where Ne was estimated by 

analysis of microsatellite data from samples taken from both the pre- (museum samples) 

and post-bottleneck (contemporary) population of the Seychelles warbler. We also explored 

the minimum and maximum estimates (Ne = 2600 and 9700). We assumed a constant 

mutation rate equal to μ = 10-9 (Kumar & Subramanian 2002). Furthermore, we modelled 

balancing selection across a narrow range of selection coefficients (S), based on preliminary 

findings (Chapter 3) of 0 < S < 0.1. We simulated a selection coefficient that was constant 

over time within each model. We compared the results of these simulations to the loss in 

genetic variation in simulations without selection acting during or after the bottleneck.  

In our simulations, once the ancestral population had reached equilibrium it 

underwent a bottleneck consisting of 22 generations of Ne = 50, followed by three 

generations of population expansion with Ne = 100, 150 and 200, and finishing with nine 

generations at Ne = 250 (Spurgin et al. 2014). The bottleneck scenario was started at 

different (random) points in time after the burn-in had completed and after the ancestral 
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population had reached equilibrium. Finally, a subsample equal to the number of genotyped 

birds was randomly drawn from the simulated contemporary population, and haplotype 

diversity (Hsim) in this sub-sample was assessed. These precautions were taken to account 

for the random levels of stochasticity in genetic evolution over time (Fig S1 & S2). 

Simulations were first run with a selection coefficient S = 0 to test whether the null 

model of neutral evolution can be rejected. If neutral evolution was rejected, different 

selection coefficients were then explored to examine the parameter space and determine 

the strength of selection that was most consistent with the observed heterozygosity in the 

post-bottleneck Seychelles warbler population. Therefore, we compared the simulated 

value (Hsim) to the observed heterozygosity (Hobs) in the contemporary Seychelles warbler 

population using a total of 1,000 independent sampling points to calculate the distribution 

of Hsim for each selection coefficient S of each locus. 

Given that isolated and bottlenecked populations may lose a component of their 

parasite fauna (Bergstrom et al. 1999), we ran a second set of simulations to examine the 

effect of reducing PMS on TLR variation. We focused on TLR15, the most polymorphic locus 

in the Seychelles warbler, and simulated neutral evolution during and after the bottleneck. 

Observing a continued decline in gene diversity, we then performed forecast modelling to 

predict the future loss of genetic variation at TLR loci in the Seychelles warbler assuming no 

PMS. This part of the study was performed to quantify the ‘drift debt’ by analysing the loss 

of genetic polymorphism still required to reach the novel mutation-drift-selection 

equilibrium value. In these simulations, we assume a ‘no-change’ scenario regarding the 

future demography and population size of the Seychelles warbler. The model predicted the 

amount of genetic variation at TLR15 in 2050 and 2100. We assumed an average four-year 

generation time and an effective population size Ne = 250 (Wright 2014). We simulated the 

future loss of genetic variation caused by drift with and without balancing selection (S = 0.00 

and S = 0.03), and a mutation rate μ = 10-9 (Kumar & Subramanian 2002). 

 

Results 

Simulations show that an equilibrium is reached after 100 000 generations with θ = 2.76 x 

105 (which is equivalent to Ne = 6900 and μ = 109), and that Hsim reaches a plateau (Fig 1).  
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Table 1. Polymorphism statistics for TLR loci in the Seychelles warbler. Adapted from Chapter 3. 

Locus Number of 
sequences 

Fragment 
size (bp) 

H S Heterozygosity dN / 
dS 

TLR1LA 44 531 2 1 0.35 0 / 1 
TLR1LB 66 750 4 2 0.63 0 / 2 
TLR3 58 801 5 3 0.53 2 / 1 
TLR4 60 648 1 0 0.00 0 / 0 
TLR5 48 741 2 1 0.12 1 / 0 
TLR15 60 528 5 3 0.68 3 / 0 
TLR21 60 453 1 0 0.00 0 / 0 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simulated heterozygosity of a gene subject to overdominance selection and which consists 

of 528 base pairs in a population with an effective population size Ne = 6900 and a mutation rate µ 

=10-9 across a range of selection coefficients (S = 0.00, 0.01, 0.02, 0.03 and 0.05). The equilibrium 

heterozygosity is reached after ca 100 000 generations. 

The figure shows that the equilibrium values of Hsim increase with an increased coefficient of 

balancing selection (S). When simulating neutral evolution, the mutation-drift equilibrium 

value of haplotype diversity is as close to, if not, zero (Hsim ≈ 0). This contrasts with the fact 

that the post-bottleneck population of the Seychelles warbler showed significant levels of 

polymorphism at some TLR loci, with five haplotypes observed at one locus.  
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As predicted, the simulation population bottleneck rapidly leads to the erosion of 

variation over the 34 generations as a consequence of increased genetic drift. Despite this in 

our observed data, five out of seven TLR loci remained polymorphic in the Seychelles 

warbler population. According to our models, moderate- weak balancing selection  

(0.005 ≤ S ≤ 0.03) is likely to act on TLRL1A, TLR1LB, TLR3, TLR5 and TLR15, which would 

explain the observed level of polymorphism at these five loci. In contrast, the two 

monomorphic loci (TLR4 and TLR21) appear to evolve neutrally (S=0) according to the 

simulations (Table 2, Fig 2). 

Table 2. Selection coefficient (S) estimates based on plotted simulated TLR heterozygosity (H) 

following specific demographic scenario after 100 000 generations under a constant selective 

pressure. P-values indicate any significant difference between observed and simulated H. 

Locus S based on H S based on 
number of 
haplotypes 

Difference between H 
and number of 

haplotypes 

Significance (P) 

TLR1LA 0.01 0.01 0.00 N/A 
TLR1LB 0.03 0.05 0.02 > 0.1 

TLR3 0.02 0.08 0.06 > 0.1 
TLR4 0.00 0.00 0.00 N/A 
TLR5 0.01 0.01 0.00 N/A 

TLR15 0.03 0.09 0.06 > 0.1 
TLR21 0.00 0.00 0.00 N/A 

 

Our estimates of the strength of selection based on Hsim and Hobs consistently reject 

neutral evolution for five out of the seven TLR loci (Fig 2). The Ne of the ancestral population 

also does not appear to have a significant effect on the overall conclusions (Fig S3). 

However, if we assume a 10 times higher mutation rate (μ =10-8), only the two most diverse 

TLR loci (TLR1LB and TLR15) have a level of genetic polymorphism that is inconsistent with 

neutral evolution (Fig S4).  

Next we assumed that there would be no PMS during and after the bottleneck so 

that the immunogenetic variation would be subject only to drift and not subject to 

balancing selection. We simulated TLR15, the most polymorphic TLR locus in our study, and 

found that the initial decline of heterozygosity is similar between the scenario with and 

without balancing selection (S = 0.03 and S = 0.00 respectively) (Fig 3). However, without 

balancing selection, the gene diversity continues to decline into the future.  
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Figure 2. Mean (5 - 95% CI) simulated  

heterozygosity across a range of selection  

coefficients (S) in a contemporary population  

of Seychelles warblers. The observed  

heterozygosity Hobs is indicated by the dashed 

line for each locus. 



Chapter 4: Simulating selection at TLRs   

129 
 

Time (in generations post-bottleneck)

0 10 20 30 40 50 60

H
et

er
oz

yg
os

ity
 (H

e)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S=0.03 constant over time
Sa=0.03 followed by Sb=0

 

Figure 3.  Heterozygosity in simulations with a constant balancing selection S = 0.03 (solid) and 

balancing selection in the ancestral population (Sa = 0.03) followed by neutral evolution during / 

after the bottleneck (Sb = 0) (open symbols). Dotted horizontal line indicate actual heterozygosity 

(He = 0.682) observed in the population sample and the contemporary sample was collected at 

generation 34 (dashed vertical line). In the absence of contemporary balancing selection (open 

symbols), the population continues to lose genetic diversity due to the ‘drift debt’. 

To test this further and quantify the ‘drift debt’, we conducted forecast modelling to 

predict the amount of genetic variation at TLR15 that will remain in the Seychelles warbler 

population over the next decades if balancing selection has ceased to operate. Simulations 

show that in this scenario, genetic variation continues to decline by a further 2.2% and 4.5% 

by 2050 and 2100 respectively, even with the future Seychelles warbler population size 

remaining constant at present day levels (Fig S5). In contrast, if PMS continues to act at a 

constant intensity (S = 0.03), the TLR variation is not expected to decline any further. 

 

Discussion 

A previous study detected genetic polymorphisms in five out of seven TLR loci in the post-

bottlenecked population of the Seychelles (Chapter 3) despite the generally low levels of 

genome-wide variation observed in this species (Richardson & Westerdahl 2003; Hansson & 
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Richardson 2005). However, even though one of the loci (TLR15) carried four allelic variants, 

population genetic statistics were unable to detect evidence of balancing selection at any of 

the loci. In order to analyse the evolution of TLRs in this bottlenecked population in more 

detail, we developed forward-in-time computer simulations to test whether balancing 

selection has been (and / or still is) acting on these genes. The model was parameterised 

based on data from a previous study of this species (Spurgin et al. 2014), which used 

microsatellite data from contemporary and historic samples to determine the extent and 

duration of the bottleneck that this species endured. Our simulations suggest that balancing 

selection has been acting on five out of seven TLR genes. The strength of selection inferred 

in the Seychelles warbler differs between TLR loci but is generally relatively weak (S ≤ 0.03) 

compared to what has been found for TLRs in other avian species (Alcaide & Edwards 2011; 

Grueber et al. 2012). TLR15 is the most polymorphic TLR locus in the Seychelles warbler, 

despite a considerably low S-value (S = 0.03). A similar conclusion was drawn in previous 

studies on several other phylogenetically-distant avian species (Alcaide et al. 2007; Brownlie 

& Allan 2011; Boyd et al. 2012). The house finch, Carpodacus mexicanus, shows high levels 

of polymorphism with at least 16 alleles at the TLR15 locus, which probably reflects the 

species’ large effective population size as well as the effect of balancing selection (Alcaide & 

Edwards 2011). More similar to the Seychelles warbler is the New Zealand Stewart Island 

robin, Petroica australis raikura, another island endemic that has undergone a recent 

bottleneck. In this species TLR15 was found to possess two functional variants and was 

inferred to be under balancing selection (Grueber et al. 2012). 

Simulations showed that the initial rate of decline in heterozygosity during the 

bottleneck is almost identical in scenarios with and without balancing selection. This 

conclusion is consistent with previous studies that have suggested that drift overrides the 

effect of balancing selection during bottlenecks (e.g. Willi et al. 2007; Bollmer et al. 2011; 

Strand et al. 2012). A forecast model showed that genetic variation might continue to 

decline due to a ‘drift debt’ in which the post-bottlenecked population reaches a new and 

considerably lower equilibrium level of polymorphism. However, such continued erosion will 

only take place if pathogen-mediated selection (PMS) has ceased to operate after the 

bottleneck (Fig 3). If the selection coefficient of PMS in the post-bottlenecked Seychelles 

warbler population remains similar to that in the ancestral population, TLR variation in the 
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contemporary gene pool will have reached its new equilibrium value and is not expected to 

decline any further. 

The intensity of PMS operating in the Seychelles warbler population is difficult to 

establish. Even though our computer simulations show that the TLR polymorphism observed 

in the Seychelles warbler is consistent with balancing selection, it was impossible to discern 

whether selection was operating during the bottleneck. The rate of decline in genetic 

diversity is similar in simulated scenarios with and without balancing selection (S=0.03 and 

S=0, respectively), which shows that genetic drift tends to override the effect of balancing 

selection during population bottlenecks (see also Alcaide 2010; Grueber et al. 2013). 

Nevertheless, it is important to understand whether or not balancing selection continues to 

operate because this will determine the amount of genetic variation that remains in the 

population in the future. Our simulations show that TLR variation in the Seychelles warbler 

is expected to continue to decline if PMS has ceased to operate, whereas the genepool will 

have already reached a new equilibrium level of variation if PMS remains at the level 

inferred. 

The contemporary population of the Seychelles warbler is very pathogen 

depauperate. No gastro-intestinal parasites have ever been detected in this population 

despite considerable efforts to screen a large number of birds sampled at different times 

(Hutchings 2009). Furthermore, there is no evidence of detrimental bacterial, viral or fungal 

infections in this species. Indeed only one type of blood pathogen has ever been detected; 

the GRW1 strain of avian malaria (Hutchings 2009). Given this low pathogen diversity in the 

Seychelles warbler, contemporary balancing selection might play little or no role in 

maintaining TLR polymorphism in this species. However, it is important to predict how the 

population would respond to novel introduced pathogens. In order to thoroughly explore 

whether PMS is still operating on TLR variation, we will need to examine the link between 

individual TLR characteristics and fitness in the contemporary Seychelles warbler 

population. 

It is interesting to consider why the previous assessment of TLR sequence variation 

in the Seychelles warbler failed to detect positive selection. There has been much criticism 

on the relatively poor power underlying the use of genetic markers in molecular ecology 
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(Waples & Gaggiotti 2006; Vasemagi & Primmer 2005; Sutton et al. 2011). Indeed, 

sequence-based tests of selection come with several caveats such as low statistical power 

and restrictive assumptions (for review, see Ford 2002). Sharp changes in demography and 

population size, as well as the limited number of samples available for analysis, are issues 

that are particularly problematic in studies of endangered species. For this reason, forward-

in-time simulations might be a better alternative to understand the evolutionary forces that 

have shaped genetic variation within endangered populations (see also Carvajal-Rodríguez 

2010). In all likelihood, many studies will have concluded that selection has not been 

operating in their study species due to the insufficient statistical power of the most 

commonly used population genetic statistics.  

A computer simulation approach also offers a further important advantage over 

population genetic statistics in that it enables researchers to estimate the future loss of 

genetic variation that may occur in endangered species. Such information allows 

conservation managers to make informed decisions by anticipating deleterious changes in 

genepools and strategically plan interventions such as genetic supplementation (Lynch & 

Hely 2001; van Oosterhout et al. 2007). Forecast modelling of the Seychelles warbler 

indicated that the genetic variation at TLR15 might continue to decline depending on the 

presence or absence of PMS. Moreover, more recently bottlenecked populations than the 

Seychelles warbler are expected to show a continued decline in genetic variation even if the 

population has recovered and is demographically stable and even when PMS is operating. 

The reason for this is that the amount of genetic variation present in a recently 

bottlenecked population will still significantly exceed the level expected in a genepool that is 

in a mutation-drift-selection equilibrium. Analogous to the ‘extinction debt’ (Kuussaari et al. 

2009), genetic variation is expected to be lost under a ‘no change’ scenario. We have 

referred to this as the ‘drift debt’, and we believe this is likely to affect many recently 

bottlenecked populations. We advocate the use of computer simulations in conservation 

biology to quantify the anticipated future decline in genetic variation in endangered species. 
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Supplementary material 
 

Figure S1. Pilot simulations to show that due to large stochasticity in number of haplotypes (H) in the 

ancestral population, the post-bottleneck population can start from very different levels of diversity 

by chance and thus, all post-bottleneck replicates are affected. Runs i) and ii) are at the identical 

settings of Ne= 100, µ= 10-5 for t= 5000 generations, followed by a bottleneck of N=100 for t= 100 

generations. Runs iii) and iv) are at the identical settings of Ne=1000, µ= 10-6 for t= 5000 

generations, followed by a bottleneck of N=1000 for t= 100 generations. These repeat runs with 

identical conditions reflect a large degree of variance due to ‘chance’ over evolutionary time. 

 

Figure S2. Pilot simulations to show that by taking an average of multiple sample from the gene pool 

in the ancestral population, the post-bottleneck population now starts at more similar levels of 

diversity and thus, outputs are now similar for different Ne / µ combinations, which are numerically 

the same for runs i) to iii). Run i) is at Ne= 10 000 and µ= 10-7, run ii) is at Ne= 1000 and µ= 10-6, and 

run iii) is at Ne= 100 and µ= 10-5. These repeat runs with identical conditions now have considerably 

less variance in H, given the new sampling methods written into the simulation instructions. 

   

Figure S3. Upper and lower bounds of effective population size (Ne) to show the sensitivity of this 

parameter in detecting selection (S) within TLR loci in a simulated bottlenecked population of 

Seychelles warblers, based on TLR haplotype diversity (Hsim and Hobs). 

 

Figure S4. Upper and lower bounds of mutation rate (µ) to show the sensitivity of this parameter in 

detecting selection (S) within TLR loci in a simulated bottlenecked population of Seychelles warblers, 

based on TLR haplotype diversity (Hsim and Hobs). 

 

Figure S5. Estimating selection coefficients (S) in the contemporary population of Seychelles warbler 

based on TLR haplotype diversity observed when selection is applied to the population before a 

bottleneck, but kept at S=0 both during and after the bottleneck. Parameters include: Ne (260, 690, 

970), µ (10-7, 10-8, 10-9) and ‘bottle’ to indicate the simulations ran where S only applies before the 

bottleneck, and is set at zero for during and after the bottleneck. 

 



Chapter 4: Simulating selection at TLRs   

139 
 

Figure S1. 

i) 

 

 

 

 

 

 

ii) 

 

 

 

 

 

 

iii) 

 

 

 

 

 

 

iv) 

 

 

 

 



Chapter 4: Simulating selection at TLRs   

140 
 

Figure S2. 

i) 

 

 

 

 

 

 

ii) 

 

 

 

 

 

 

iii) 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Simulating selection at TLRs   

141 
 

Figure S3. 
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Figure S5. 
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Abstract 

Pathogens can exercise strong selection on hosts, which makes them key drivers of 

evolutionary and demographic processes in natural populations. As a result of pathogen-

mediated selection, specific immune genes may show relatively elevated levels of variation 

in small bottlenecked populations that have lost genome-wide variation due to drift. The 

Seychelles warbler Acrocephalus sechellensis is an endemic passerine that underwent a 

recent bottleneck and resulting loss of genome-wide variation. However, five toll-like 

receptor genes remain polymorphic in the population, with TLR15 showing the highest level 

of functional variation and some signatures of positive selection. This study examines the 

association between individual TLR15 variation and disease status and survival in a cohort of 

birds followed throughout their entire lives. We find that individuals with a specific allele at 

TLR15 appear to have increased resilience to malarial infection, are more likely to survive 

into adulthood, and appear to have gained some immunity to subsequent reinfection. 

Furthermore our analysis also shows that resilience /resistance may be influenced by other 

previously screened immune loci, as MHC diversity  predicted adult survival, and a specific 

MHC allele, Ase-ua4, influenced the ability to resist and / or tolerate malaria once infected.. 

Overall, this study suggests that complex interactions between Seychelles warbler hosts and 

malaria pathogens may result in the maintenance of TLR15 variation in this population, even 

in the face of considerable drift.   
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Introduction 

Pathogens (parasites and infectious diseases) exert strong selection pressures and thus are 

extremely important in shaping the evolution of their hosts, affecting everything from levels 

of genetic variation in individuals and populations, to behavioural and life history 

characteristics, and even organisational level process (Hudson 1986; Redpath et al. 2006; 

Deter et al. 2007; Pedersen & Greives 2008) such as demography, range and species 

persistence (for reviews, see Stahl & Bishop 2000; McDonald & Linde 2002; Barreiro & 

Quintana-Murci 2010). Given the impact that pathogens can have on their hosts’ evolution 

it is important to understand the role of host genetic variation in combating pathogens. 

Many studies have shown that reduced genetic variation has negative effects on individual 

host fitness (e.g. Hedrick 2002; Biedrzycka & Radwan 2008; Lampert et al. 2009). Reduced 

genetic variation can also be detrimental at the  population level, as demonstrated by the 

impact malarial parasites had on endemic Hawaiian passerine species (van Riper III et al. 

1986; Atkinson et al. 1995; Fonesca et al. 2000). This can lead to an increased extinction risk 

known as the extinction vortex (for reviews, see Newman & Pilson 1997; Spielman et al. 

2004).  

The level of polymorphism across the genome varies considerably due to a variety of 

evolutionary forces acting none-exclusively and underlying demography (Lande 1976, 1988). 

Selection can alter the level of genetic variation at any given locus from that observed on 

average across the genome, as a result of purifying (negative) or positive selection reducing 

variation compared to neutrally evolving regions (Kimura 1986; Ohta 2002; van Oosterhout 

2009). Rarely, loci may show an elevated level of polymorphism compared to the genome 

wide average as a result of balancing selection. Such elevated levels of variation occur as a 

results of a variety of potentially interacting mechanisms, including overdominance 

(Doherty & Zinkernagel 1975), rare allele advantage (Hill et al. 1991) and spatio-temporally 

fluctuating selection (Slade & McCallum 1992). These mechanism act to maintain genetic 

variation at a locus as a result of the superior fitness (at a given point in time or space) of 

individuals that either carry a specific allele or heterozygous combination of alleles (Hedrick 

2006; Mitchell-Olds et al. 2007). Different selective agents can mediate balancing selection, 

although most commonly, balancing selection is associated with pathogens (for reviews, see 

Jeffery & Bangham 2000; Ford 2002; Bernatchez & Landry 2003).  
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TLRs are membrane-bound glycoproteins of the innate immune system that 

recognise distinctive pathogen-associated molecular patterns (PAMPs) (Jin & Lee 2008) and 

trigger an appropriate immune response depending on the pathogen-derived antigen they 

bind to and the class of that TLR molecule (Roach et al. 2005). TLR15 is the most recently 

evolved of the TLR multigene family (Brownlie & Allan 2011) and importantly, it appears to 

be key to the recognition of intracellular parasites, including malarial parasites (Creagh & 

O’Neill 2006). It was first identified in the cecum of chickens when up-regulated in response 

to Salmonella infection (Higgs et al. 2006). The consequences of TLR activation are diverse 

and tailored to ensure efficient destruction and clearance of invading pathogens (Brownlie 

& Allan 2011). It has already been recently well-shown that TLRs in a range of vertebrates 

are under positive (balancing) selection (e.g. Nakajima et al. 2008; Areal et al. 2011; Grueber 

et al. 2014). Furthermore, selection maintaining variation at these immune genes can result 

in differential pathogen infection outcome (e.g. Bihl et al. 2003; Nerren et al. 2009; Boyd et 

al. 2012). 

A good host-pathogen system is needed to explore the mechanisms of pathogen 

mediated balancing selection. Malaria is widely-studied because it is responsible for  high 

impact diseases in humans, livestock and wildlife (Garnham 1980,  for review, see Bordes & 

Morand 2015), including birds (e.g. Bonneaud et al. 2011; Fuller et al. 2012; Marzal et al. 

2015). Studies have tested specific predictions about infection intensity and host fitness 

using avian-malaria models (e.g. Wood et al. 2007; Szollosi et al. 2011; Ferrer et al. 2014). 

For example, although few studies have evidenced fitness consequences of malaria 

infections in wild birds (e.g. Marzal et al. 2005; Radwan et al. 2012; Garamszegi et al. 2015), 

trade-offs between reproduction and defence against Plasmodium infections have been 

shown (Bonneaud et al. 2006; Lachish et al. 2011; Ferrer et al. 2014). However, the evidence 

of fitness consequences associated with haemoparasites infections in wild bird populations 

is so limited that these infections are often considered to be relatively benign (for review, 

see Escalante et al. 2004). To fully understand the impact of parasites such as avian malaria 

on their hosts we need precise information about the many biotic and abiotic factors that 

determine an individual exposure to malaria, and accurate estimates of subsequent fitness. 

Unfortunately such complete data on a wild host system is rare.   
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Here we use a combination of detailed life history, malarial infection and survival 

data collected over 18 years in the Seychelles warbler (Acrocephalus sechellensis - SW) 

population on Cousin to investigate the interactions between TLR variation and fitness in a 

wild living population. A previous study characterised variation in the toll-like receptor (TLR) 

gene group in the SW. The TLR15 locus was the most polymorphic of the seven TLR loci 

screened, retaining four functional variants despite the recent bottleneck suffered by the 

SW and showing some signatures of positive selection at the codon level (chapter 4).  In this 

study, we screened individual TLR15 variation for a cohort of Seychelles warblers from 

Cousin Island and followed them throughout their lives, over a period of 18 years. We tested 

for associations between individual TLR15 variation and malarial infection and survival 

(juvenile and adult). We controlled for other factors found to influence Seychelles warbler 

survival in previous studies including MHC diversity and the specific MHC allele Ase-ua4 

(Brouwer et al. 2010; Wright 2014), in addition to key ecological factors that may influence 

individual infection and survival.  

 

Materials and Methods 

Study species and sampling 

The Seychelles warbler (SW) is a small (ca 12-15 g) insectivorous passerine bird endemic to 

the Seychelles islands (Safford & Hawkins 2013). Due to anthropogenic effects, by the 1960s 

the SW was reduced to just one population of ca 26 individuals remaining on the island of 

Cousin (Collar & Stuart 1985). As a result, the SWs effective population size was dramatically 

reduced from ca 7000 in the early 1800s to <50 in the contemporary population (Spurgin et 

al. 2014). However, with effective conservation management, the population recovered to 

its carrying capacity of ca 320 adults on the island by 1982 (Komdeur 1992) and has since 

remained relatively stable (Brouwer et al. 2009; Wright et al. 2014). The SW has shown to 

be an ideal study species for evolutionary, ecological and conservation question (e.g. 

Komdeur 1992; Richardson et al. 2003; van de Crommenacker et al. 2012; Wright et al. 

2014). Since 1997, >96% of the Cousin population have been caught and ringed with a 

unique combination of colour rings and a metal British Trust for Ornithology (BTO) ring 
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(Richardson et al. 2002). Blood samples (ca 25 µl) are taken via brachial venipuncture, 

placed in absolute ethanol in a 2 ml screw-top Eppendorf tube and stored at 4oC.  

 We focused on all SWs born in 1997-2002 (n = 205), that we monitored throughout 

their lives. Of these all but seven have since died (these seven are excluded from the 

survival analyses but included in the malarial analyses). An overall population census is 

carried out on Cousin bi-annually (for each field season) and individuals are intensively 

monitored with a re-sighting probability of juveniles (assigned as < 1 year of age in that 

study) at 0.87 ± 0.05 and adults at 0.92 ± 0.03 (Brouwer et al. 2006). If an individual is not 

seen for three consecutive seasons it is declared dead. There are two main breeding seasons 

for the Seychelles warbler which, for the purpose of this study, are termed ‘summer’ (April – 

October) and ‘winter’ (November – March). Birds are aged at first catch according to their 

eye-colour and behaviour and a number of age classes come under ‘Juvenile’, which is 

defined in this study as anything up to 10 months of age, and ‘Adult’ is once a bird is > 10 

months old (Wright 2014). A ‘Juvenile’ can include all birds which are chicks, fledglings and 

old fledglings (all of these classes have grey eyes but different behaviours), and sub-adults 

(light-brown eyes, anything from 5-10 months old). Eye colour is subject to considerable 

natural variation and thus approximation is based on long-term data (for examples, see 

Komdeur 1991; Hammers et al. 2012). Upon first catch, a hatch date is estimated based on 

the ringing date and strict ageing guidelines. Total life-span of a bird can thus be estimated 

using the hatch date and the date the bird was last observed, though this is clearly a 

minimal estimate as the time between the date last seen and the actual date of death could 

vary between birds. 

 In addition to the population census done each season, bi-annual environmental 

surveys are taken across the island in order to measure both local and general ecological 

factors. Territory quality (TQ) is used as an index of food availability and is recorded as an 

insect count within a specified territory. In this study it applies to the territory of which a 

bird was born in. TQ  also reflects abiotic factors such as weather given that temperature, 

humidity and rainfall all correlate with insect abundance (Komdeur 1992). Local density (the 

number of individual Seychelles warblers resident in a territory) is another important 

measure used here as it has been shown to influence Seychelles warbler survival (Brouwer 

et al. 2006). This previous study showed that while natal local density was not associated 
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with survival (natal group size), lifetime local density had a negative effect on survival. Birds 

living in larger groups had lower survival probabilities than those living in small groups. 

Lifetime local density is the average group size a bird lived in from its second year of life 

onwards (adulthood) and is defined in this study as ‘local density’ hereafter.  

 

Molecular procedures 

Genomic DNA was extracted using a salt-extraction method (Richardson et al. 2001). The 

sex of each bird was determined by polymerase chain reaction (PCR) as described in Griffiths 

et al. (1998). Only DNA samples that successfully amplified the sex-specific markers were 

subsequently screened for malaria. Avian malaria (Haemoproteus and Plasmodium species) 

was screened using the nested PCR method described by Waldenström et al. (2004). All 

samples were screened at least twice and only samples that amplified twice and were 

verified as malaria through Sanger sequencing were taken to be positive infections.  

 

TLR15 variation in the Seychelles warbler 

Specific primers were designed to target the variable region of exon 1 of TLR15 previously 

identified in the SW (Chapter 3). The primers  were designed in the program PerlPrimer 

v1.1.21 (Marshall 2004) The forward primer, TCTCCTGCAAATCCTTAGCC, has a melting 

temperature (Tm) of 59.94oC and the reverse primer, CTGCTGTGTAGATGAAGTGG, has a Tm 

of 58.45oC. Together these primers successfully amplified ca 420 bp around the variable 

region of interest.  

PCRs were carried out in 10 µl volume with genomic DNA at a concentration of ca 10 

ng/µl. Taq PCR Master Mix was used (Qiagen, UK) which includes: Taq DNA Polymerase, 

QIAGEN PCR Buffer, MgCl2, and ultrapure dNTPs at optimised concentrations. PCRs were 

carried out using the following conditions: 30 s at 95oC, 30 s at the locus-specific annealing 

temperature of 58oC, 60 s at 72oC, all repeated for 34 cycles. All PCRs started with an 

incubation step of 5 mins at 95oC and finished with an incubation step of 5 mins at 72oC. All 

PCR products were electrophoresed on a 2% agarose gel containing ethidium bromide to 

determine successful amplification of the expected size fragment. Successful samples were 

submitted to MWG Operon (Eurofins, Germany) for Sanger sequencing. All unique 
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sequences were confirmed by repeated sequencing across multiple individuals or (where 

identified in only one individual) multiple independent PCRs from that individual. Each 

chromatogram was examined by eye to identify single nucleotide polymorphisms (SNPs) in 

BioEdit (Hall 1999) via ClustalW codon alignment. Sequences with multiple SNPs had their 

haplotypes inferred using Bayesian PHASE algorithms (Stephens & Donnelly 2003) in the 

program DnaSP (Librado & Rozas 2009). However, given the relatively low level of 

polymorphism observed (six haplotypes), it is possible to manually assign haplotypes to each 

individual within the cohort based on the presence of given SNPs. Amino acid sequences 

were translated using Mega v5.1 (Tamura et al. 2011). 

 

Tests for signatures of selection 

All TLR15 haplotype frequencies were tested for deviation from Hardy-Weinberg 

equilibrium using the Markov chain method available in Genepop v.2 (Raymond & Rousset 

1995) for Fisher’s test of exact probability (Guo & Thompson 1992). FIS values are presented 

using Robertson and Hill’s estimates (1984), which have lower variance under the null 

hypothesis compared to the alternative Weir and Cockerham’s estimate (1984). Should 

there be a significant deviation, subsequent testing for heterozygote deficiency / excess was 

also carried out based on the U-test, which is more powerful than a probability-test 

(Raymond & Rousset 1995). Furthermore, individual genotypes that deviate from HW are 

presented using software HW-Quick check (Kalinowski 2006). 

 DnaSP was used to calculate basic measures of genetic variation including: number 

of sequences (N), overall number of segregating sites (S), number of haplotypes (H), 

haplotype diversity (Hd), nucleotide diversity (π) and ratio of synonymous (dS) to non-

synonymous (dN) substitution. Z-tests of selection were carried out in Mega v5.1 (Tamura et 

al. 2007) in order to identify selection based on the average dN/dS across entire sequences 

(Kryazhimskiy & Plotkin 2008).  

Site-specific tests were carried out using the HyPhy package available on 

DataMonkey (Delport et al. 2010). Different models were run to identify individual sites 

under selection based on dN/dS ratios at each codon. Two models were used: the mixed 

effects model of evolution that identifies sites under episodic diversifying selection (MEME) 
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(Murrell et al. 2012) and the fast unbiased Bayesian un-approximation model that identifies 

sites under putative diversifying and purifying selection (FUBAR) (Murrell et al. 2013). Both 

models had the default settings applied. This included a significance level of 0.1 for MEME 

to classify a site under selection, given that this method has been shown to be more 

conservative than empirical Bayesian approaches (Murrell et al. 2012). As the FUBAR model 

uses a Monte Carlo routine, it has a Bayes factor / posterior probability set at 0.9 as a 

minimum value for a site to be deemed under putative selection (Murrell et al. 2013). 

 

Association analyses 

For all linear model analyses, a model that including only fixed factors of primary interest 

and that maximised the sample size from our dataset was first tested. Any fixed factors 

deemed to be significant were then included in more complex models with fixed factors of 

secondary interest where some of these variables were not available for all 205 birds and 

thus the sample size was reduced. All variables were checked for significant correlation 

measures as a precaution beforehand. Microsatellite heterozygosity was included in all 

models as a control measure, given the results presented in ‘Box 1’ that there is no 

association between microsatellite heterozygosity and TLR15 heterozygosity. This means 

that neutral variation is independent of variation at functional loci like TLRs and so must be 

considered when assessing the effects of genetic variation on individual fitness parameters. 

The variable ‘microsatellite heterozygosity’ represents standardised multi-locus 

heterozygosity across 30 neutral markers (Table S1). 

 Malaria prevalence was investigated in early life (0 – 5 months, i.e. first catch once 

fledged) and averaged across a bird’s life. This excludes when the bird is a chick in the nest 

as the bird fledges after two weeks and it takes malaria a minimum of two weeks to develop 

and be able to be detected. Annual prevalence of malaria for the entire population of 

Cousin (all age classes) was plotted from 1997 to 2014 to show the current trend of malarial 

infection on the island (Fig S1). We constructed generalised linear mixed models (GLMMs) 

using the lme4, lmerTest and car packages in R (Bates et al. 2015, R Core Team 2015). Birth 

year was included as a random factor. For early-life malaria, the response variable was 

presence or absence of malaria, with a specified binomial error structure and built in Logit 
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Link function. For lifetime malaria, the response variable was a proportion measure of the 

number of samples where infection was detected over the total number of samples 

available for that individual, to which a quasi-binomial error structure was specified. A 

weighted correction factor was applied to control for the different lifespan’s of the birds 

and thus the number of blood and malaria sample screens available.  

 TLR15 variation was represented as a predictor variable in two ways: (i) specific 

genotypes (> 0.05 in frequency) and (ii) Homozygosity / Heterozygosity. Given the only 

alleles observed at > 0.05 frequency in the population were ‘A’ ‘B’ and ‘C’, and alleles ‘B’ and 

‘C’ were only found in the heterozygous state, all individuals possessed at least one copy of 

the ‘A’ allele. Therefore, homozygosity represents ‘AA’ individuals whereas heterozygosity 

represents both ‘AB and AC’ individuals. If heterozygosity was deemed significant in any of 

the statistical analyses, ‘AB’ and ‘AC’ were then separated out and the two alternate alleles 

were tested independently. Additional variables were included on the premise that they had 

previously been found to have some effect on SW fitness and thus needed controlling for: 

MHC diversity and Ase-ua4 (Brouwer et al. 2010; Wright 2014), territory quality and season-

born (Komdeur 1992; van de Crommenacker et al. 2011), sex (Richardson et al. 2002, 2003) 

and local density (Brouwer et al. 2006).  

 

Survival analyses 

Survival analyses were split into juvenile survival (likelihood of surviving into adulthood (>10 

months)) and adult survival (overall lifespan). These were carried out using the survival and 

flexsurv packages in R. The optimal survival distribution curve for these analyses was 

obtained from plotting our data against five potential curves and determining the best fit 

using an Akaike Information Criterion (AIC) analysis. We found that the log-normal curve 

was the most optimal model distribution from six potential distributions tested, including: 

exponential, Weibull, Gamma, Gompertz and log-logistic (Log Likelihood = -962.37, df = 2, 

AIC = 1928.73). Therefore we then ran a generalised linear model based on the variable surv 

which takes into account survival over time fitted to the optimal log-normal curve, with 

TLR15 variation as a fixed variable. The same TLR15 variation factors used in the malaria 

analyses were used for the survival analyses.  
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 Other variables included in the survival analyses were MHC diversity, presence/ 

absence of Ase-ua4, early-life malarial infection, season-born, territory quality (averaged for 

that particular season) and local density. Sex was excluded from the analysis as there was no 

significant difference in survival between sexes in preliminary analysis (U = 5035.50, df = 1, P 

= 0.68) nor was there any a priori reason to include it based on a previous study that 

established high annual survival in the SW had no difference between the sexes (Brouwer et 

al. 2010). The only variable not included to have previously been shown to influence survival 

was the presence of extreme weather conditions. We plotted weather variables over the 

time period of 1997-2014 to show the relatively benign and constant conditions over the 

years (Fig S2). Furthermore, territory quality correlates with weather variables. 

Finally, we investigated variables which could influence the ways in which an 

individual responds to malaria exposure. There are five potential responses: (i) death (ii) 

complete resistance (never acquiring infection) (iii) tolerance / maintaining infection (iv) 

partial resistance (gained but cleared an infection) and (v) susceptibility through re-

infection. These categories were not mutually-exclusive and a bird could show a number of 

these responses within its lifetime as we analysed all blood samples that had been screened 

for malaria which were available for each bird. We did one-way ANOVA’s to look at variables 

exclusively and post-hoc multiple-comparison Tukey tests were able to decipher which 

categories were specifically being affected by the variable in question.  

 

Results 

Selection tests 

In the 205 birds genotyped at the predetermined variable region of TLR15, four non-

synonymous substitutions were identified (combining to create six unique alleles) and both 

haplotype and nucleotide diversity were low (Hd = 0.27, π = 0.001) The Fisher’s exact 

probability test provided equivocal results, suggesting that genotypic frequencies were close 

to deviating from Hardy-Weinberg (HW) proportions (FIS = 0.05, P = 0.08). This deviation was 

support by the more powerful U-test which rejected heterozygote deficiency (FIS = 0.05, P = 

0.04). This was further confirmed by HW one-tailed global tests, which identified three 

heterozygous genotypes where more individuals had been observed to possess these 
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heterozygote genotypes than expected under HW-equilibrium (‘AB’ P = 0.04, ‘AC’ P = 0.08 

and ‘AD’ P = 0.03) (Fig 1). 

 Z-tests of selection failed to detect any signatures of selection at the TLR15 locus in 

this cohort of SW, when testing for positive selection based on dN > dS (Z = 1.13, df = 139, P 

> 0.1), and negative selection based on dN < dS (Z = -1.16, df = 139, P > 0.1). This confirmed 

previous results from Chapter 3 where a smaller subset of birds (n = 30) were amplified at 

the TLR15 locus to characterise variation. However, site-specific tests for selection which 

looked at each of the 140 codons individually, identified a single site under putative positive 

selection within this cohort using the FUBAR model (Posterior Prob dN > dS = 0.94). It is at 

this specific site (codon 51) where two non-synonymous mutations were observed, 

producing three different amino acids depending upon the genotype: ‘AA’ (Asparganine), 

‘AB’ (Isoleucine) and ‘AC’ (Lysine). 

 

Figure 1. Expected and observed number of individuals with different TLR15 genotypes, according to 

Hardy-Weinberg equilibrium (HWE). Dashed line represents the threshold of an allele frequency of 

0.05 and thus all genotypes < 0.05 were then excluded from the association analyses. 
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Box 1: Microsatellite and TLR15 heterozygosity 
 
Methods - We examined the ability of microsatellite multi-locus heterozygosity (MLH) to predict TLR 

heterozygosity of individuals of each species using a GLMM implemented by the ‘MCMCglmm’ function in the 

R-package MCMCglmm (Hadfield 2010). Individual MHL was calculated for a larger subset of individuals (n = 

205) from the Seychelles warbler (SW) population, by taking an individual mean measure of heterozygosity 

across 30 microsatellite markers (Table S1), and then turning it into a measure of standardised heterozygosity 

(SH) (Coltman et al. 1999)  to correct for the fact that not all 205 individuals have been successfully typed at all 

loci. This is important for standardising for variability of the typed markers to allow meaningful comparisons. It 

is possible to also use MLH metric internal relatedness (IR), which is a DNA-based measure of an individual’s 

inbreeding coefficient (Amos et al. 2001). Another study found that both IR and SH were highly correlated and 

qualitatively similar (r = -0.929 for 216 individuals, Grueber et al. 2015). Typically, IR is more suited to studies 

with an aim to inform patterns of inbreeding, so we chose to use SH as this has a more centralised focus on 

evolutionary forces shaping variation in a population, measured as heterozygosity. For the model, we used 

measures of heterozygosity at the TLR15 locus (the most polymorphic TLR locus in the SW) as the response 

variable. Given this is a proportion measure the model was estimated with a logit link function (specified in the 

MCMCglmm package as the family ‘Multinomial2’). SH was the fixed predictor variable and Bird ID was the 

random factor.  

 

Results- On average, MLH showed no relationship with TLR heterozygosity (posterior mean = -0.140, P-MCMC 

= 0.824); the 95 % credible interval included zero (I – 95% = -1.214, U – 95% = 0.895). Raw data presented in 

‘Additional Information’ (Table 6). 

 

Discussion- We found no relationship between microsatellite SH and TLR heterozygosity in the SW. These 

results support the argument that microsatellite multi-locus heterozygosity (MLH) is not a good indicator of 

inter-individual variation in heterozygosity at genic regions, for example, at TLR loci. Microsatellite MLH is 

often estimated with a relatively small number of markers, however we have used 30 microsatellite markers 

specifically designed to be polymorphic and reliable for use in the SW (Richardson et al. 2000) to overcome 

issues raised in predicting individual-level genome-wide heterozygosity reliably (Balloux et al. 2004).  
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Association analyses 

Malaria infection 

Early-life malarial infection- 59% of juvenile birds was infected with malaria in early-life. 

Individuals with the ‘AC’ TLR genotype were significantly more likely to test positive for 

early-life malaria infection and ‘AA’ individuals were significantly less likely to have early-life 

malaria, given it is the only homozygous genotype included when testing the effects of 

homozygosity (Figure 1, Table 1). MHC variation and the specific MHC allele Ase-ua4 had no 

significant association with early-life malaria and nor was there any significant difference 

between sexes. However, being born in the winter season and / or being born in a territory 

of high quality increased the likelihood of infection (Table 1, Table S2).  

 

Table 1. Investigating how TLR variation is associations with early-life malarial infection in the 

Seychelles warbler using generalised linear mixed models which include both genetic and ecological 

factors. All models were built with a logit link function and binomial error structure. Codes applied to 

P-values to show significance are as follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

Explanatory 
variables 

N Significant 
variables 

Estimate Std. 
Error 

Z P- value 2.5% CI 97.5% 
CI 

TLR15 genotype, 
microsatellite Hz, 
sex, season-born 

205 TLR15 
genotype- ‘AC’ 

1.231 0.552 2.228 0.026* 0.176 2.375 

Season-born -  
‘Winter’ 

1.544 0.369 4.187 0.000*** 0.838 2.291 

TLR15 Hm / Hz, 
sex, microsatellite 
Hz season-born 

205 Homozygous 
(Hm) 

-0.597 0.329 -1.815 0.070 . -1.246 0.047 

Season-born -  
‘Winter’ 

1.446 0.358 4.039 0.000*** 0.759 1.694 

TLR15 Hap B, 
TLR15 Hap C, sex, 
microsatellite Hz 
season-born 

205 TLR15 
haplotype C 

1.235 0.549 2.250 0.024* 0.188 2.372 

Season-born -  
‘Winter’ 

1.440 0.359 4.008 0.000*** 0.750 1.656 

TLR15 genotype, 
season-born, Ase-
ua4, MHC diversity 

111 TLR15 
Genotype- ‘AC’ 

1.253 0.692 1.812 0.070 . -0.051 2.714 

Season-born -  
‘Winter’ 

1.894 0.485 3.905 0.000*** 0.983 2.901 

TLR Hm / Hz, 
season-born, Ase-
ua4, MHC diversity 

111 Season-born -  
‘Winter’ 

1.776 0.471 3.773 0.000*** 0.891 2.751 

TLR Hm / Hz sex, 
season-born, 
territory quality 

65 Territory  
quality 

0.128 0.056 2.293 0.022* 0.042 0.285 
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Figure 2. Proportion of individuals with early-life malaria in relation to their genotype at the TLR15 

locus.  Only genotypes made up from alleles with frequencies > 5% in the population are shown. * 

indicates genotypes that significantly influenced life-time malaria at P < 0.05. 

Lifetime malarial infection- TLR15 variation did not influence average lifetime rate of 

malarial infection, nor did any other immunogenetic variable (MHC diversity and Ase-ua4). 

However, both sex and early-life exposure to malaria and gaining infection, showed a 

significant interaction in negatively influencing the likelihood of life-time malarial infection. 

Male birds that had gained malarial infection in early-life had significantly reduced chances 

of being re-infected later in life (Figure 2, Table 2 & S3). 

 

Survival 

Juvenile survival - 67.8% of juvenile birds survived to adulthood. When investigating the 

association between TLR15 variation and juvenile survival, early-life malaria predicted 

survival in all models (Table 3). TLR15 variation did not appear to predict survival , but given 

its significant association with early-life malaria, we also did separate models of juvenile 

survival excluding early-life malaria. TLR15 variation still did not significantly predict survival: 

genotype ‘AB’ (z = -0.047, P = 0.962) ‘AC’ (z = -0.775, P = 0.438) ‘AA / Homozygous’ (z = 

0.316, P = 0.752) haplotype ‘B’ (z = 0.024, P = 0.981) and ‘C’ (z = -0.803, P = 0.422). With all 

variables included MHC diversity and Ase-ua4 had no effect on juvenile survival but territory 

quality almost had a significant effect, considering the model had little power (Table 3 & S4).  
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Table 2. Investigating if TLR variation is associated with average lifetime malarial infection in the 

Seychelles warbler, using generalised linear mixed models which include both genetic and ecological 

fixed factors. All models were built with a quasi-binomial error structure with ‘Birth Year’ included as 

a random factor. Codes applied to P-values to show significance are as follows:  . (<0.1) * (<0.05) ** 

(<0.01) and *** (< 0.001). 

Explanatory variables  N Significant 
variables 

Estimate Std. 
Error 

t P- 
value 

2.5% CI 97.5% 
CI 

TLR15 genotype, microsatellite 
Hz, early-life malaria*sex, local 
density, sex, season-born 

205 Early-life 
malaria*Sex 

-1.112 0.545 -2.039 0.043* -2.188 -0.046 

TLR Hm / Hz, microsatellite Hz, 
early-life malaria*sex, local 
density, sex, season-born 

205 Early-life 
malaria*Sex 

-1.120 0.545 -2.039 0.043* -2.188 -0.046 

TLR15 Hap B, TLR15 Hap C, 
microsatellite Hz, early-life 
malaria*sex, local density, sex, 
season-born 

205 Early-life 
malaria*Sex 

-1.112 0.545 -2.039 0.043* -2.188 -0.046 

Early-life malaria*sex, Ase-ua4, 
MHC diversity 

110 Early-life 
malaria*Sex 

-1.430 0.747 -1.914 0.059 . -2.908 0.030 

Early-life malaria*sex, Ase-ua4, 
MHC diversity, territory quality 

65 Early-life 
malaria*Sex 

-2.278 1.103 -2.065 0.044* -4.544 -0.175 

Early-life 
malaria 

2.285 1.054 2.168 0.035* 0.312 4.527 

 

Figure 3. Relationship between being infected with malaria in early-life and being infected overall 

throughout the lifetime for females and males analysed separately. 
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Table 3. Investigating TLR variation in relation to juvenile survival in the Seychelles warbler using 

generalised linear mixed models which include both genetic and ecological fixed factors. All models 

were built with a logit link function and binomial error structure. Codes applied to P-values to show 

significance are as follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

Explanatory variables N Significant 
variables 

Estimate Std. 
Error 

Z P- value 2.5% CI 97.5% 
CI 

TLR15 genotype, 
microsatellite Hz, early-
life malaria, season-born 

205 Early-life 
malaria 

1.501 0.384 3.908 0.000*** 0.777 2.293 

TLR15 Hm / Hz, 
microsatellite Hz, early-
life malaria, season-born 

205 Early-life 
malaria 

1.419 0.369 3.842 0.000*** 0.720 2.176 

TLR15 Hap B, TLR15 Hap 
C, Hm / Hz, 
microsatellite Hz, early-
life malaria, season-born 

205 Early-life 
malaria 

1.497 0.380 3.937 0.000*** 0.781 2.281 

Early-life malaria, Ase-
ua4, MHC diversity 

111 Early-life 
malaria 

1.726 0.450 3.833 0.0001*** 0.872 2.648 

Early-life malaria, Ase-
ua4, MHC diversity, 
territory quality 

65 Early-life 
malaria 

3.236 0.864 3.743 0.0002*** 1.716 5.238 

Territory 
quality 

-0.058 0.035 -1.667 0.0955 . -0.131 0.007 

 

 

 

 

 

 

 

 

 

 

Figure 4. Relationship between individual TLR15 characteristics and mean likelihood of juvenile 

survival using the comparison of homozygous (‘AA’) and heterozygous individuals (including Hz 

genotypes derived from the three alleles at frequencies >5% (‘AB’ or ‘AC’). These categories are 

further divided into individuals with and without malaria in early-life.  
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Adult survival – TLR15 variation had no significant effect on adult survival in the Seychelles 

warbler (Table S5). When we removed early-life malaria from the model, given its 

established relationship with TLR15 variation, we still found that TLR15 variation had no 

significant effect on adult survival for genotype ‘AB’ (t = -0.604, P = 0.546) ‘AC’ (t = 0.117, P = 

0.907) ‘AA’ / homozygous (t = 0.154, P = 0.878) haplotype ‘B’ (t = -1.043, P = 0.298) and ‘C’ (t 

= 0.001, P = 0.999). However, with all variables included, individuals with higher MHC 

diversity had longer adulthood lifespans (Table 4; Fig 5). Furthermore, lifetime malarial 

infection predicted adult survival in that individuals that continue to show resilience to 

infection are more likely to live for longer (Table 4). The only other ecological factor to be 

related to adult survival was local density in that living in a large group in adulthood was 

negatively related to survival (Table 4; Fig S5). These results were fully supported when an 

alternative GLMM was ran which was not fitted to a model distribution survival curve and 

simply used adult survival measured in months as the response variable (Table S6). 

 

Table 4. Investigating TLR variation in relation to adult survival in the Seychelles warbler using 

generalised linear mixed models of survival over time fitted to a log-normal distribution curve using 

the surv package in R (R Core Team 2015). Codes applied to P-values to show significance are as 

follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

Explanatory variables N Significant 
variables 

Value Std. 
Error 

Z P- value 2.5% CI 97.5% 
CI 

TLR15 genotype, 
microsatellite Hz, early-
life malaria, life-time 
malaria, local density  

205 Local Density -5.756 2.370 -2.429 0.016* -10.400 -1.111 
Life-time 
malaria 

14.738 7.557 1.950 0.053 . -0.073 29.549 

TLR15 hm / hz, 
Microsatellite Hz, early-
life malaria, life-time 
malaria, local density 

205 Local Density -6.353 2.327 -2.729 0.007 ** -10.914 -1.791 
Life time 
malaria 

16.272 7.418 2.193 0.030 * 1.732 30.812 

TLR15 hap B, TLR15 hap 
C, microsatellite Hz, 
early-life malaria, life-
time malaria, local 
density 

205 Local Density -6.385 2.327 -2.743 0.007** -10.946 -1.823 
Life time 
malaria 

15.388 7.483 2.057 0.041* 0.723 30.054 

Life-time malaria, local 
density, Aseua4, MHC 
diversity 

110 Local Density -0.109 0.056 -1.957 0.0503 . -0.219 0.000 
Life time 
malaria 

0.352 0.181 1.947 0.0516 . -0.002 0.706 

MHC diversity 0.107 0.049 2.175 0.0296* 0.011 0.204 
Life-time malaria, local 
density, Aseua4, MHC 
diversity, territory 
quality 

65 Local Density -0.145 0.074 -1.960 0.0499* -0.290 -3.623 
Life time 
malaria 

0.747 0.246 3.043 0.0023** 0.266 1.228 
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Figure 5. Association between MHC diversity and mean adult survival (months) in a cohort of 

Seychelles warbler where MHC diversity represents a total count of unique MHC alleles. 

 

Individual response to infection - There is no significant difference between the different 

categories of response to malarial infection observed in the SW with TLR15 variation. Having 

a specific TLR15 allele had no effect on the patterns of response to infection observed: allele 

‘A’ (F = 1.496, df = 4, P = 0.205) allele ‘B’ (F = 0.351, df = 4, P = 0.843) and allele ‘C’ (F = 

1.192, df = 4, P = 0.315). However, the presence of MHC allele ‘Ase-ua4’ did significantly 

influence the patterns of malaria infection observed when looking across the different 

responses (F = 3.859, df = 4, P = 0.006) (Fig 6). When looking within the different outcomes, 

it appeared that individuals that do possess the Ase-ua4 allele had significantly less 

likelihood of dying as a result of infection and more likely to respond in one of the other 

categorised ways, such as tolerating infection or clearing the infection (X2 = 71.329, df = 1, P 

< 0.001). Territory quality had no effect on individual outcome of infection (F = 1.281, df = 4, 

P = 0.283) but local density did have an effect (F = 3.112, df = 4, P = 0.016). Individuals who 

lived in larger residential groups were less likely to gain an infection in the first place (X2 = 

4.365, df = 1, P = 0.037) (Fig 7). 
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Figure 6. Different outcomes to malarial parasite exposure by Seychelles warblers during their 

lifetime and its association with whether the bird possesses the MHC allele Ase-ua4.  Potential 

outcomes include: death, re-infection, tolerance, partial resistance (clearing an infection) and full 

resistance (complete avoidance of infection). * indicates outcomes that were significantly different 

from one another and the letters denote the pairwise relationship. 

 

Figure 7. Different outcomes elicited to malarial parasite exposure by Seychelles warblers during 

their lifetime and its association with mean local density (resident territory group size). Potential 

outcomes include: death, re-infection, tolerance, partial resistance (clearing an infection) and full 

resistance (complete avoidance of infection). * indicates genotypes that significantly influenced life-

time malaria at P < 0.05. 
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Discussion 

We investigated the effect of individual variation at the polymorphic TLR15 locus on malarial 

infection and survival within an isolated population of the Seychelles warbler (SW).  We 

found that individuals possessing the specific ‘AC’ TLR 15 genotype - or arguably the ‘C’ 

haplotype as this allele was only observed in a heterozygous state with allele A -significantly 

influenced the likelihood of being infection with malaria when sampled on the natal 

territory.  Individuals with ‘AC’ were more likely to have early-life malaria and ‘AA’ 

individuals were least likely to have early-life malaria.  Haemosporidian parasites normally 

takes ca two weeks to develop into an infection (Garnham 1980), so no chicks were infected 

in the SW. Consequently all the infected individuals of 0 – 4 months will have at least 

fledged from the nest. Avian malaria, like malaria in all other vertebrates, consists of a 

number of stages: (i) a pre-patent stage shortly after transmission when parasites develop in 

host tissues, (ii) acute phase where parasites are in the blood and parasitaemia increases, 

thus having negative symptomatic effects on the host, and (iii) the latent / chronic phase 

when parasitaemia falls (Garnham 1980; Atkinson & van Riper III 1991; Thomas et al. 2008). 

This latter phase can last for years, even for life, and relapses can occur (e.g. Bensch et al. 

2007; Lachish et al. 2011; Asghar et al. 2015). Therefore, the individuals that we catch with 

infection will be in the latent / chronic phase and are essentially already ‘survivors’ of the 

infection. Consequently, individuals with the ‘AC’ genotype are in this chronic phase and 

thus having the ‘C’ haplotype has provided a form of resilience against the pathogen. These 

same individuals that had early-life malaria infection were also less likely to become re-

infected as an adult also supports this idea of these individual having a degree of 

resilience/resistance. Individuals that are homozygous for ‘AA’ are more likely to have been 

exposed to malaria and not survived the acute phase, and therefore not be sampled. 

 These results support the hypothesis of pathogens mediating balancing selection 

within this bottlenecked population. It is important to note that neutral variation had no 

effects on disease resistance or survival in our models, but ‘adaptive’ variation did. Having 

the specific heterozygous combination of an ‘A’ and ‘C’ allele has advantages over being 

homozygous for either ‘A’ or ‘C’ on its own. This is evidence of overdominance, a 

mechanism of heterozygote advantage (Doherty & Zinkernagel 1975). However, 

heterozygote advantage is not the only mechanism in effect, as it does not explain why ‘AB’ 
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heterozygous individuals do not share the same benefits observed with ‘AC’ individuals. 

Balancing selection due to spatio-temporal fluctuations in selection favouring one particular 

allelic variant over others is consistent with our results as an explanatory mechanism 

(Robertson & Hill 1984) as is the rare-allele advantage hypothesis if the ‘C’ allele has only 

recently emerged in the population gene pool (Slade & McCallum 1992). Therefore, this 

emphasises how a number of mechanisms can be proposed to explain pathogen-mediated 

balancing selection and they do act in concert (for excellent review, see (Spurgin & 

Richardson 2010). 

TLR15 variation had no direct association with individual survival in the SW. However 

malarial infection, which was in part influenced by TLR variation, did appear to affect 

survival. Consequently we suspect TLR15 variation must have an indirect role on survival 

through this interaction. Studies on another island endemic passerine species- the Stewart 

Island Robin Petroica australis raikura- found a survival advantage conferred by the 

presence of a specific TLR4 allele (Grueber et al. 2013). However, this was one of only two 

TLR genes that were indeed found to be monomorphic in the SW population. This suggests 

that there is large variation in pathogen-selection regimes on different islands and perhaps, 

there is a paucity of pathogens on Cousin Island where the SW is a suitable host.  

Overall, our results for TLR15 are very much in line with other studies. It appears that 

the locus is generally highly-conserved and under purifying selection, but shows evidence of 

positive (balancing) selection at specific sites even if the rate of non-synonymous (dN) 

substitutions is slow. This was the consensus found when Alcaide & Edwards (2011) 

examined ten TLR genes in seven phylogenetically-distant avian species. Another m;4eta-

analyses has also shown this in-depth by looking at eight different vertebrate species 

(including human, chimpanzee, macaque, mouse, cow, chicken, western clawed frog and 

zebrafinch) and showing that all genes in the TLR signalling pathway are highly conserved 

(Song et al. 2012). Only specific sites are under positive selection and they are always sites 

involved with the extracellular leucine-rich repeat domain responsible for pathogen 

recognition. Nakajima et al. (2008) show the extent of the ‘rapid evolution’ occurring 

specifically in this domain of TLRs across primates and has even been shown in cetaceans 

with the common effect of functional constraint but some codons having made radical 

changes with parallel evolution between independent lineages (Shen et al. 2012). 
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Mukherjee et al. (2009) have further shown how this is an example of local adaptation in 

humans. They looked at six TLRs in 171 Indian people with high microbial loads and show 

the large diversity at these loci just compared to European and African populations. 

Interestingly, they find an excess of rare variants but low tolerance of dN substitutions. We 

also find an excess of rare heterozygous alleles in the SW and find low tolerance, with the 

exception of the rare allele proving advantageous (Slade & McCallum 1992). Studies on 

other innate immune genes have mirrored our findings by finding specific genotypes confer 

a fitness advantage. Basu et al. (2012) had already showed that dN substitutions at the TLR4 

locus influenced blood infection load of Plasmodium falciparum. However, further work 

looking at the Interleukin 12B gene in humans showed an ‘AC’ genotype increased log-

parasitaemia levels specifically (P = 0.01).  This is what we found in the SW and is an 

excellent example of how studies on model species can be applied to other taxa, including 

humans and this research holds much importance in the hope of developing novel 

adjuvants. 

Consistent with previous studies on the SW (Brouwer et al. 2010), we did find other 

immunogenetic variation directly influenced adult survival. Individual MHC diversity was 

positively related to the lifespan of the bird. Such a relation between MHC diversity and 

survival  has also been shown across a range of vertebrate taxa (for examples, see Wegner 

et al. 2003; Kalbe et al. 2009; Sepil et al. 2013). Interestingly, the specific MHC allele Ase-ua4 

did not appear to have significant effects on survival in this particular SW cohort (Brouwer et 

al. 2010; Wright 2014). However, we suspect there is an underlying fitness effect present 

which went undetected due to limited power in our analysis. This underlying fitness effect is 

related to our analysis into differential pathogen-infection outcomes, of which we showed 

that the presence of Ase-ua4 allele did significantly reduce post-malarial infection mortality. 

In fact, individuals carrying Ase-ua4 were more likely to be able to tolerate the infection.  

 Another interesting result from this study is the observed differences between sexes 

with malaria infection (and consequently, survival). We found that males born in the winter 

season are less likely to be infected later in life because they are more likely to have early-

life malaria. We showed that winter-born birds had increased chances of early life infection. 

This is not surprising, given that these months are hotter and wetter and thus promote the 

abundance of dipteran vectors, such as mosquitoes. The fact that territory quality (a 
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measure of local insect availability) was also positively correlated with early-life malaria was 

consistent with this result. Therefore, it appears that male SW born in the winter are 

surviving this increased early-life malaria better than the female SW, based on the 

previously outlined theory of only catching birds in the chronic phase of infection. This could 

reflect the different gender roles within the SW breeding system (Richardson et al. 2002, 

2003) and thus be an example of the Immuno-competence handicap hypothesis where 

different sexes have different levels of investment in immunity and reproduction (Folstad & 

Karter 1992; for review, see Roberts et al. 2004).  

 It is clear that the role of immunogenetic variation in determining malaria infection 

and survival in the SW population could explain its maintenance and drive within the 

population. Although, the environmental factors we included based on previous studies are 

also important and interact with immunogenetic variables. Local density influences adult 

survival, which is not surprising given that Cousin is a small island with finite resources and 

local competition will heavily associate with food (and other resources) availability. It is also 

in concurrence with previous findings by Brouwer et al. (2006). The advantages to helping in 

this system (e.g. Komdeur 1994; Richardson et al. 2003, 2007) and their trade-off with finite 

resources and territory quality (e.g. Richardson et al. 2004; Brouwer et al. 2006) are already 

well-documented. Our novel finding concerning local density was its relationship with 

differential pathogen-infection outcomes once an individual had been exposed to the 

malarial parasite.  Of all the different possible outcomes, having a larger local density 

appeared to increase the likelihood of complete resistance, which is when a bird 

consistently tests negative for infection. This is not what we expected given our findings that 

larger local density reduces individual survival, which is also well-supported from a previous 

SW study (Brouwer et al. 2006). However, this pattern has been shown in other studies in a 

range of vertebrates including birds, rodents and primates (Plaut et al. 1969; Daviews et al. 

1991; Marzal et al. 2005). Some of these studies have used a ‘dilution’ effect of vector 

activity to explain their findings and this was further investigated in a meta-analysis study, 

which conclusively showed that intensity of infection by mobile parasites or parasites 

requiring intermediate vector hosts, consistently decreased as host group size increased 

(Cote & Poulin 1995). However, this would not sufficiently explain this result in the SW given 

the enormous abundance of vector (mosquito) species. Local density is a mean measure of 
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the number of individuals in a resident territory and this would include birds within and 

outside of the breeding group. Therefore, I hypothesise that what we are seeing is less of a 

local-density effect, and perhaps a reflection on social roles. A higher local density will 

represent a bigger range of social roles including dominant breeders, helpers and ‘other 

birds’- birds that reside in a territory but have yet to gain a social role. ‘Other birds’ will be 

less likely to gain infection due to their isolation and increased activity. This also means they 

would be less likely to acquire immunity in their ‘naïve’ state which could have negative 

consequential effects on survival and not maximise TLRs ability to link innate and adaptive 

immune defence (for reviews, see Akira et al. 2001; Schnare et al. 2001). This is on top of 

not gaining the fitness benefits that come with helping in a social breeding system (Wiley & 

Rabenold 1984; Griffin & West 2003; Komdeur et al. 2014).  

In conclusion, it is important that we establish the key factors which influence SW 

survival and thus shape its evolution. We have focused on innate immunogenetic variation 

at a relatively polymorphic TLR locus. We have shown that TLR characteristics have a role in 

resilience to malaria in early-life, which consequently leads to reduced infection in later life 

and benefits to overall survival. Our results also support previous studies which indicated 

that the MHC influences survival in this species, and we have shown that this may be 

because of its interaction with malaria. Finally we have confirmed the importance of specific 

ecological factors that interact with genetic factors and pathogens as part of an overall 

evolutionary framework. Elucidating the components of this framework has important 

conservation implications, particularly for maintaining genetic diversity as part of intensive 

management of a species (Grueber & Carolyn 2015).  
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Supplementary material 

 

Figure S1. Annual malarial prevalence in the Cousin Island population of Seychelles warblers 

including individuals of all age classes and all sexes. 
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Figure S2. Annual mean air temperature and dew melting temperature (measure of moisture in the 

air) from 1997 to 2015 for both April-October and November-March breeding seasons for the 

Seychelles warbler on Cousin Island (ca 2km from Praslin Island, the source of this weather data). 
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Figure S3. Local density influencing adult survival (months) within a cohort of Seychelles warblers. 
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Table S1. Microsatellite loci and Toll-like receptor loci genotyped in this study, with total number of 

individuals (N), number of heterozygous and homozygous individuals (N-Het and N-Hom, 

respectively), number of alleles (A), observed and expected heterozygosity (HO and HE, respectively). 

 

Table S2. Investigating TLR variation associations with early-life malarial infection in the Seychelles 

warbler, using generalised linear mixed models which include both genetic and ecological fixed 

factors. All models were built with a logit link function and binomial error structure. Codes applied to 

P-values to show significance are as follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

 

Table S3. Investigating TLR variation associations with average lifetime malarial infection in the 

Seychelles warbler, using generalised linear mixed models which include both genetic and ecological 

fixed factors. All models were built with a quasi-binomial error structure and included birth year as a 

random factor. Codes applied to P-values to show significance are as follows:  . (<0.1) * (<0.05) ** 

(<0.01) and *** (< 0.001). 

 

Table S4. Investigating TLR variation associations with juvenile survival in the Seychelles warbler, 

using generalised linear mixed models which include both genetic and ecological fixed factors. All 

models were built with a logit link function and binomial error structure. Codes applied to P-values 

to show significance are as follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

 

Table S5. Investigating TLR variation associations with adult survival in the Seychelles warbler, using 

generalised linear mixed models which include both genetic and ecological fixed factors. All models 

included birth year as a random factor. Codes applied to P-values to show significance are as follows:  

. (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 

 

Table S6. Investigating TLR variation associations with adult survival in the Seychelles warbler, using 

generalised linear mixed models of survival over time fitted to a log-normal distribution curve using 

the surv package in R (R Core Team 2015). Codes applied to P-values to show significance are as 

follows:  . (<0.1) * (<0.05) ** (<0.01) and *** (< 0.001). 
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Table S1. 

Marker Locus  N N-Het N-Hom A HO HE
 

10 205 95 110 3 0.463 0.474 

13 205 97 108 3 0.473 0.521 

18 205 100 105 4 0.488 0.485 

25 205 136 69 6 0.663 0.719 

27 205 130 75 6 0.634 0.656 

35 205 124 81 3 0.605 0.608 

37 205 81 124 3 0.395 0.436 

4 205 88 117 2 0.429 0.411 

42 205 58 147 2 0.283 0.277 

48 194 52 142 4 0.268 0.664 

56 205 73 132 3 0.356 0.403 

58 205 152 53 5 0.742 0.702 

6 205 141 64 4 0.688 0.694 

9 116 16 100 4 0.138 0.396 

Ase-11 205 99 106 3 0.483 0.473 

Ase-16 205 148 57 7 0.722 0.749 

Ase-19 205 105 100 2 0.512 0.489 

Ase-22 205 78 127 2 0.381 0.375 

Ase-3 205 87 118 3 0.424 0.444 

Ase-38 205 82 113 2 0.445 0.479 

Ase-53 205 100 105 4 0.488 0.559 

Ase-55-cest 205 78 127 2 0.381 0.407 

Ase-61 204 97 107 5 0.476 0.518 

Ase-64 204 134 70 3 0.657 0.632 

Ase-7 205 96 109 2 0.468 0.460 

Calex-08-gga 205 42 163 2 0.205 0.207 

Cuu4-gga5 205 85 120 2 0.415 0.474 

Pdoμ6 205 119 86 3 0.581 0.564 

PmaTGA 205 101 104 3 0.493 0.499 

Pte24-cest 205 7 198 2 0.034 0.034 

Mean Microsatellites 205 93 108 3.3 0.460 0.494 

TLR15 205 59 146 6 0.288 0.270 
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Table S2. 

Explanatory 
variables 

N Significant variables Estimate Std. 
Error 

Z P- value 2.5% CI 97.5% CI 

TLR15 
genotype, 
microsatellite 
Hz, sex, 
season-born 

205 TLR15 genotype- ‘AB’ 0.186 0.404 0.461 0.645 -0.620 0.975 
TLR15 genotype- ‘AC’ 1.231 0.552 2.228 0.026* 0.176 2.375 
Microsatellite Hz 0.153 0.711 0.215 0.830 -1.241 1.561 
Sex 0.238 0.314 0.757 0.449 -0.375 0.861 
Season born 1.544 0.369 4.187 0.000*** 0.838 2.291 

TLR15 Hm / 
Hz, 
microsatellite 
Hz, sex, 
season-born 

205 TLR15 Hm / Ht -0.597 0.329 -1.815 0.070 . -1.246 0.047 
Microsatellite Hz 0.266 0.677 0.393 0.694 -1.057 1.610 
Sex 0.132 0.305 0.432 0.666 -0.465 0.735 
Season born 1.446 0.358 4.039 0.000*** 0.759 2.169 

TLR15 hap B, 
TLR15 hap C, 
microsatellite 
Hz, sex, 
season-born 

110 Haplotype B 0.282 0.393 0.718 0.473 -0.499 1.050 
Haplotype C 1.235 0.549 2.250 0.024* 0.188 2.372 
Microsatellite Hz 0.142 0.693 0.205 0.838 -1.216 1.513 
Sex 0.173 0.306 0.566 0.572 -0.425 0.778 
Season born 1.440 0.359 4.008 0.000*** 0.750 2.166 

TLR15 
genotype, 
season-born, 
Ase-ua4, MHC 
diversity 

110 TLR15 genotype- ‘AB’ -0.096 0.571 -0.168 0.867 -1.236 1.026 
TLR15 genotype- ‘AC’ 1.253 0.692 1.812 0.070. -0.051 2.714 
Season born 1.894 0.485 3.905 0.000*** 0.983 2.901 
Ase-ua4 -1.306 0.798 -1.636 0.102 -3.021 0.189 
MHC diversity 0.012 0.145 0.081 0.935 -0.274 0.300 

TLR15 hap C, 
season-born, 
Ase-ua4, MHC 
diversity 

110 Haplotype C 1.159 0.670 1.730 0.084 . -0.103 2.579 
Season born 1.785 0.469 3.807 0.000*** 0.902 2.755 
Ase-ua4 -0.882 0.720 -1.225 0.221 -1.236 0.493 
MHC diversity 0.001 0.142 0.006 0.995 -0.051 0.282 

TLR15 hap C, 
season-born, 
sex,  territory 
quality 

65 Haplotype C 0.425 0.969 0.439 0.661 -1.510 2.424 
Season born 0.995 0.669 1.487 0.137 -0.304 2.340 
Sex -0.324 0.592 -0.547 0.585 -1.515 0.829 
Territory quality 0.131 0.056 2.361 0.018* 0.046 0.288 

TLR15 
genotype, 
season-born, 
sex,  territory 
quality 

65 TLR15 genotype- ‘AB’ -0.057 0.896 -0.064 0.949 -1.897 1.718 
TLR15 genotype- ‘AC’ 0.521 0.992 0.525 0.599 -1.454 2.556 
Season born 1.014 0.700 1.448 0.148 -0.347 2.420 
Sex -0.471 0.605 -0.777 0.437 -1.693 0.703 
Territory quality 0.129 0.056 2.323 0.020* 0.043 0.285 
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Table S3.  

Explanatory 
variables 

N Significant variables Estimate Std. 
Error 

t P- 
value 

2.5% CI 97.5% 
CI 

TLR15 genotype, 
Microsatellite Hz, 
early-life malaria, 
TLR15 genotype* 
early-life malaria, 
sex, sex* early-
life malaria, local 
density, season-
born 

191 TLR15 genotype- ‘AB’ -0.158 0.440 -0.360 0.719 -1.037 0.697 
TLR15 genotype- ‘AC’ 0.549 0.913 0.601 0.549 -1.286 2.488 
Microsatellite Hz 0.297 0.573 0.518 0.605 -0.828 1.425 
Early-life malaria 0.508 0.439 1.158 0.249 -0.351 1.375 
‘AB’ * early-life 
malaria 

-0.871 0.864 -1.008 0.315 -2.725 0.750 

‘AC’* early-life 
malaria 

-0.840 1.053 -0.797 0.426 -2.988 1.289 

Sex 0.530 0.349 1.519 0.131 -0.150 1.222 
Sex(Male)* early-life 
malaria 

-1.112 0.545 -2.039 0.043* -2.188 -0.046 

Local density -0.140 0.130 -1.077 0.283 -0.404 0.110 
Season-born 0.422 0.331 1.273 0.205 -0.229 1.074 

TLR15 hm / hz, 
Microsatellite Hz, 
early-life malaria, 
TLR15 genotype* 
early-life malaria, 
sex, sex* early-
life malaria, local 
density, season-
born 

191 TLR15 Hm / Hz -0.215 0.385 -0.558 0.578 -0.974 0.543 
Microsatellite Hz 0.297 0.573 0.518 0.605 -0.828 1.425 
Early-life malaria 0.508 0.439 1.158 0.249 -0.351 1.375 
‘AB’* early-life 
malaria 

-0.871 0.864 -1.008 0.315 -2.725 0.750 

‘AC’* early-life 
malaria 

-0.805 1.057 -0.761 0.448 -2.988 1.289 

Sex 0.530 0.349 1.519 0.131 -0.150 1.222 
Sex(M)* early-life 
malaria 

-1.112 0.545 -2.039 0.043* -2.188 -0.047 

Local density -0.140 0.130 -1.077 0.283 -0.404 0.110 
Season-born 0.422 0.331 1.273 0.205 -0.229 1.074 

TLR15 hap B, 
TLR15 hap C, 
Microsatellite Hz, 
early-life malaria, 
TLR15 genotype* 
early-life malaria, 
sex, sex* early-
life malaria, local 
density, season-
born 

191 Haplotype B -0.411 0.344 -1.193 0.234 -1.106 0.252 
Haplotype C 0.549 0.913 0.601 0.549 -1.286 2.488 
Microsatellite Hz 0.297 0.573 0.518 0.605 -0.828 1.425 
Early-life malaria 0.508 0.439 1.158 0.249 -0.351 1.375 
‘AB’* early-life 
malaria 

-0.871 0.864 -1.008 0.315 -2.725 0.750 

‘AC’* early-life 
malaria 

-0.805 1.057 -0.761 0.448 -2.988 1.289 

Sex 0.530 0.349 1.519 0.131 -0.150 1.222 
Sex(M)* early-life 
malaria 

-1.112 0.545 -2.039 0.043* -2.188 -0.046 

Local density -0.140 0.130 -1.077 0.283 -0.404 0.110 
Season-born 0.422 0.331 1.273 0.205 -0.229 1.074 

Early-life malaria, 
sex, early-life 
malaria *sex, 
Ase-ua4, MHC 
diversity 

103 Early-life malaria 0.782 0.505 1.548 0.125 -0.198 1.794 
Sex 0.144 0.572 0.252 0.802 -0.988 1.272 
Early-life malaria*sex -1.430 0.747 -1.914 0.059 . -2.908 0.030 
Ase-ua4 0.441 0.528 0.835 0.406 -0.603 1.489 
MHC diversity -0.105 0.138 -0.761 0.449 -0.376 0.167 

Early-life malaria 
*sex, Ase-ua4, 
MHC diversity, 
territory quality 

59 
 

Early-life malaria 2.285 1.054 2.168 0.035* 0.312 4.527 
Sex 0.707 0.891 0.793 0.431 -1.001 -2.571 
Early-life malaria*sex -2.278 1.103 -2.065 0.044* -4.544 -0.175 
Ase-ua4 0.190 0.795 0.239 0.812 -1.435 1.743 
MHC diversity -0.250 0.201 -1.244 0.219 -0.663 0.136 
Territory quality -0.043 0.041 -1.032 0.307 -0.132 0.036 
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Table S4. 

Explanatory 
variables 

N Significant 
variables 

Estimate Std. 
Error 

Z P- value 2.5% CI 97.5% CI 

TLR15 genotype, 
Microsatellite Hz, 
early-life malaria, 
season-born 

205 TLR15 genotype- 
‘AB’ 

-0.085 0.426 -0.200 0.842 -0.909 0.772 

TLR15 genotype- 
‘AC’ 

-0.904 0.573 -1.579 0.114 -2.034 0.241 

Microsatellite Hz 0.778 0.740 1.050 0.294 -0.666 2.251 
Early-life malaria 1.501 0.384 3.908 0.000*** 0.777 2.293 
Season born 0.368 0.432 0.852 0.394 -0.462 1.250 

TLR15 Hm / Hz, 
Microsatellite Hz, 
early-life malaria, 
season-born 

205 TLR15 hm / hz 0.311 0.353 0.881 0.378 -0.386 1.003 
Microsatellite Hz 0.701 0.716 0.979 0.327 -0.698 2.123 
Early-life malaria 1.419 0.369 3.842 0.000*** 0.720 2.176 
Season born 0.370 0.424 0.872 0.383 -0.443 1.235 

TLR15 hap B, 
TLR15 hap C, 
Microsatellite Hz, 
early-life malaria, 
season-born 

205 Haplotype B -0.076 0.423 -0.179 0.858 -0.893 0.776 
Haplotype C -0.920 0.571 -1.610 0.107 -2.046 0.223 
Microsatellite Hz 0.831 0.731 1.137 0.256 -0.594 2.287 
Early-life malaria 1.497 0.380 3.937 0.000*** 0.781 2.281 
Season born 0.379 0.427 0.889 0.374 -0.438 1.250 

Early-life malaria, 
Ase-ua4, MHC 
diversity 

110 Early-life malaria 1.726 0.450 3.833 0.000*** 0.872 2.648 
Ase-ua4 0.320 0.714 0.448 0.654 -1.051 1.807 
MHC diversity 0.213 0.145 1.472 0.141 -0.068 0.503 

Early-life malaria, 
Ase-ua4, MHC 
diversity, 
territory quality 

65 Early-life malaria 3.236 0.864 3.743 0.000*** 1.717 5.239 
Ase-ua4 0.091 1.035 0.088 0.930 -1.904 2.302 
MHC diversity 0.0176 0.212 0.083 0.934 -0.404 0.438 
Territory quality -0.058 0.035 -1.667 0.096 .  -0.131 0.007 
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Table S5.  

Explanatory 
variables 

N Significant variables Estimate Std. 
Error 

t P- value 2.5% CI 97.5% 
CI 

TLR15 genotype, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 TLR15 genotype- ‘AB’ -4.891 8.237 -0.594 0.553 -21.035 11.254 
TLR15 genotype- ‘AC’ -0.582 10.875 -0.054 0.957 -21.896 20.732 
Microsatellite Hz -4.473 14.496 -0.309 0.758 -32.884 23.937 
Early-life malaria 6.641 6.656 0.998 0.320 -6.404 19.685 
Lifetime malaria 14.738 7.557 1.950 0.053 -0.0731 29.549 
Local density -5.756 2.370 -2.429 0.016* -10.400 -1.111 

TLR15 Hm / Hz, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 TLR15 Hm / Hz 1.617 6.789 0.238 0.812 -11.689 14.923 
Microsatellite Hz -3.215 14.105 -0.228 0.820 -30.860 24.430 
Early-life malaria 5.939 6.514 0.912 0.363 -6.828 18.706 
Lifetime malaria 16.272 7.418 2.193 0.030 1.732 30.812 
Local density -6.353 2.327 -2.729 0.007** -10.914 -1.791 

TLR15 hap B, 
TLR15 hap C, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 Haplotype B -8.707 8.230 -1.058 0.291 -24.836 7.423 
Haplotype C -1.665 10.872 -0.153 0.878 -22.975 19.644 
Microsatellite Hz -4.600 14.253 -0.323 0.747 -32.535 23.335 
Early-life malaria 5.928 6.581 0.901 0.369 0.723 30.054 
Lifetime malaria 15.388 7.483 2.057 0.041* 0.723 30.054 
Local density -6.385 2.327 -2.743 0.007** -10.946 -1.823 

Lifetime malaria, 
local density, 
Ase-ua4, MHC 
diversity 

110 Lifetime malaria 15.401 10.045 1.533 0.129 -3.690 35.289 
Local density -4.518 3.187 -1.418 0.160 -10.997 1.042 
Ase-ua4 17.331 13.608 1.274 0.206 -8.471 44.262 
MHC diversity 6.500 2.732 2.379 0.019* 1.165 11.790 

Lifetime malaria, 
local density, 
Ase-ua4, MHC 
diversity 

65 Lifetime malaria 32.011 14.896 2.149 0.036* -3.690 35.289 
Local density -6.742 4.492 -1.501 0.139 -10.997 1.042 
Ase-ua4 20.794 19.545 1.064 0.292 -8.471 44.262 
MHC diversity 7.482 3.932 1.903 0.063 . 1.165 11.790 
Territory quality -0.313 0.657 -0.477 0.635 -18.545 10.088 
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Table S6.  

Explanatory 
variables 

N Significant variables Estimate Std. 
Error 

Z P- value 2.5% CI 97.5% 
CI 

TLR15 genotype, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 TLR15 genotype- ‘AB’ 0.266 0.786 0.338 0.735 -1.274 1.806 
TLR15 genotype- ‘AC’ 0.286 0.796 0.359 0.720 -1.274 1.846 
Microsatellite Hz 0.017 0.263 0.065 0.948 -0.499 0.533 
Early-life malaria 0.131 0.121 1.085 0.278 -0.106 0.368 
Lifetime malaria 0.313 0.137 2.277 0.023* 0.043 0.582 
Local density -0.125 0.043 -2.895 0.004** -0.209 -0.040 

TLR15 Hm / Hz, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 TLR15 Hm / Hz -0.027 0.124 -0.215 0.830 -0.271 0.217 
Microsatellite Hz 0.010 0.259 0.038 0.970 -0.497 0.516 
Early-life malaria 0.122 0.119 1.025 0.305 -0.112 0.356 
Lifetime malaria 0.321 0.136 2.359 0.018* 0.054 0.587 
Local density -0.136 0.043 -3.194 0.001** -0.220 -0.053 

TLR15 hap B, 
TLR15 hap C, 
Microsatellite Hz, 
early-life malaria, 
lifetime malaria, 
local density 

205 Haplotype B -0.121 0.151 -0.803 0.422 -0.416 0.174 
Haplotype C -0.051 0.199 -0.255 0.799 -0.441 0.339 
Microsatellite Hz -0.005 0.261 -0.020 0.984 -0.516 0.506 
Early-life malaria 0.125 0.120 1.036 0.300 -0.111 0.361 
Lifetime malaria 0.310 0.137 2.263 0.024* 0.041 0.578 
Local density -0.137 0.043 -3.212 0.001** -0.220 -0.053 

Lifetime malaria, 
local density, 
Ase-ua4, MHC 
diversity 

110 Lifetime malaria 0.352 0.181 1.947 0.052 .  -0.002 0.706 
Local density -0.109 0.056 -1.957 0.050 . -0.219 0.000 
Ase-ua4 0.195 0.245 0.798 0.425 -0.284 0.674 
MHC diversity 0.107 0.049 2.175 0.030* 0.011 0.204 

Lifetime malaria, 
local density, 
Ase-ua4, MHC 
diversity 

65 Lifetime malaria 0.747 0.246 3.043 0.002** 0.266 1.228 
Local density -0.145 0.074 -1.960 0.049 * -0.290 0.000 
Ase-ua4 0.285 0.322 0.884 0.377 -0.347 0.916 
MHC diversity 0.109 0.065 1.685 0.092 . -0.018 0.236 
Territory quality -0.006 0.011 -0.587 0.557 -0.028 0.015 
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Genetics will disappear as a separate science because,  

in the 21st century, everything in biology will become gene-based,  

and every biologist will be a geneticist (Sydney Brenner). 

 

In this thesis I have highlighted the importance of exploring evolutionary forces and how 

they shape genetic variation within natural populations. I explored how different groups of 

immune genes, all with pivotal roles in innate immune defence from pathogens, may have 

evolved in response to demographic and selective drivers in a bottlenecked island 

population of the Seychelles warbler. Here in this chapter, I discuss my findings in a 

collective context and outline potential avenues for future research. 

 

6.1 Comparative evolution of different immune genes 

Understanding the relative roles of demographic and selective forces in shaping genetic 

variation has become a central focus of evolutionary biology (Lande 1976). In particular, we 

need to understand how variation is driven, maintained and  eroded at functional loci that 

are linked to individual fitness in terms of natural selection (Darwin 1859; Klein 1986; 

Takahata et al. 1992). This is important in bottlenecked or fragmented populations where a 

demographic event has reduced diversity across the genome and can have severe genetic 

consequences. Immune genes are ideal candidates for this type of study because of the vital 

role they play in combating pathogens in wild populations (Anderson & May 1978; May & 

Anderson 1983). All living things will encounter familiar and / or novel pathogens 

continuously throughout their lifetime and the immune gene repertoire is critical in 

determining how an individual responds to initial and subsequent exposures to infections. 

Variation at these immune loci should theoretically enable an individual to better combat 

any given pathogen, but also a greater variety of pathogens and thus improve individual 

fitness. At the population level within and among individual variation will enhance long-term 

viability and persistence (O’Brien & Evermann 1988). However, immune loci can differ 
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considerably in their structure, function and mechanisms of mutation, and this ultimately 

influences how their evolution is shaped by different deterministic forces. In this thesis, I 

examined two gene groups from the vertebrate innate immune system: β-defensins 

(specifically in avian β-defensins (AvBDs), Chapter 2) and Toll-like receptors (TLRs, Chapters 

3 - 5) in the Seychelles warbler (SW); a recently bottlenecked species endemic to the 

Seychelles archipelago.  

 My results showed considerable similarities and differences in the evolution of these 

two very different innate immune gene groups. Firstly, I found that higher levels of 

polymorphism had been maintained at the TLRs in comparison to the AvBDs in the face of 

the recent bottleneck event in the SW population. AvBDs were initially chosen as a 

candidate group because of (i) their simple structure, (ii) their direct function and (iii) a 

priori hypothesis based on previous literature demonstrating an association between 

nucleotide variation and pathogen infection outcomes within an individual. However, little 

variation was observed across the six loci amplified in the SW. Furthermore, amplifying the 

shortest locus- AvBD7- in museum specimens of the SW pre-dating the bottleneck did not 

detect the greater level of variation that I had expected. This posed new considerations in 

explaining the role of AvBDs within this relatively pathogen-depauperate system. 

 In contrast to the AvBDs, five out of seven TLR loci had several polymorphisms, of 

which two loci TLR3 and TLR15 showed signatures of positive (balancing) selection. TLRs are 

structured similarly to the Major Histocompatability Complex (MHC). However the MHC has 

a complex evolutionary history involving repeat gene duplications and so an individual can 

possess multiple MHC loci. This presents a number of logistical challenges when doing allele-

specific studies because the alleles have highly similar sequences (Bach 1976). The MHC is 

also burdened with many other problems, ironically with a main technical issue being that 

for the very reason it is attractive as a candidate gene group, its complexity can confound its 

study. Since most organisms are exposed to enormous numbers of pathogens, this in turn is 

characterised by a highly complex MHC. Therefore, when studies focus on a single exon of 

an MHC locus and its relationship with individual pathogens, the results are often mixed (for 

reviews, see Bernatchez & Landry 2003; Garrigan & Hedrick 2003). It is unlikely to be 

possible to fully characterise the MHC and pathogen load in most study systems. The only 

feasible approach would be to focus on a simpler more tractable study system (Richardson 
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& Westerdahl 2003; Miller & Lambert 2004; Ejsmond & Radwan 2009), but this arguably 

could still have no application to more complex systems. 

 Like the MHC, the TLR molecule is a receptor molecule and has specific domains with 

specific functions. There is a cystolic domain which contains the Toll / Interleukin-1 receptor 

interaction in order to form the adaptor molecules needed to initiate a primary immune 

response (Vogel et al. 2003). Nakajima et al. (2008) show that TLRs across 25 different 

primate species are highly conserved at this domain, but are rapidly evolving in another 

region. This region is the extracellular domain made up of leucine-rich repeats that is 

responsible for recognising pathogens and this can be highly variable between different TLR 

molecules depending on what class of pathogen ligand they bind to and auto-regulate 

(Kawai & Akira 2006). This mirrors the peptide-binding region of the MHC and a number of 

studies show strong evidence of positive (balancing) selection at specific sites encoding for 

this domain (e.g. Alcaide & Edwards 2011; Areal et al. 2011; Grueber et al. 2014). There is a 

common effect of functional constraint, which Shen et al. (2012) show nicely across 

different cetacean species that dN / dS averaged across sequences is < 1, but there are 

radical changes at specific sites and parallel evolution between independent lineages that 

are indicative of balancing selection. It is this variation which permits specific TLR activation 

to be tailored to ensure efficient immune defence against invading pathogens (for review,, 

see Brownlie & Allan 2011). 

  There was no evidence of gene conversion at the TLR loci and so there were no 

problems with the recombination rate exceeding the mutation rate at these loci (Ohta 

1995). When looking across the Acrocephalus genus at multiple species, results suggested 

that at least one recombination event has occurred in each of the four polymorphic TLR 

genes across the Acrocephalus warblers (TLR1LB, TLR3, TLR4 and TLR15) (minimum number 

of recombination events identified between specific sites = 2, 1, 2, 2 respectively). It could 

have been expected to find evidence of gene conversion at the TLR loci, given that these 

alleles are duplicates (Roach et al. 2005). However, this was not the case and sequences 

were dissimilar enough to identify different alleles (Chapter 3). I used several TLR loci from 

different classes and this may partly explain why I did not detect evidence of gene 

conversion. It is still unclear why the structure of these classes within the TLR multigene 

family is so different and what role gene conversion played in their evolution. However, it is 
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evident that gene conversion plays a much greater role in the evolution of the MHC than at 

TLR loci.  

 My findings are concurrent with previous studies in that point mutation is the main 

source of genetic variation at TLRs (Barreiro et al. 2009; Alcaide & Edwards 2011) (and 

AvBDs (Hellgren & Ekblom 2010; Hellgren 2014)). Interestingly, point mutations are more 

likely to be deleterious compared to the entire sections of DNA copied by gene conversion 

events. The latter is more likely to be functional because it is being directly copied from one 

variant to another, and yet we found no evidence of GC at AvBD or TLR loci in the Seychelles 

warbler. This could simply be due to the fact that for the MHC, the genes are all very closely 

physically positioned and this allows for gene conversion to take place. However, it can also 

be argued that this is a consequence of different evolutionary forces at play.  

I used a combination of approaches in order to identify the role of selection in the 

evolution of AvBDs and TLRs in the SW and tried to delineate the effects of selection from 

that of drift. Firstly, I used traditional population genetics statistical methods (Chapters 2 & 

3) including haplotype-specific and PAML-based site-specific tests. These were based on 

either allele frequencies or dN / dS ratios. Within polymorphic TLR loci, even at loci with 

multiple non-synonymous variants (TLR3 and TLR15), I failed to detect any overall signatures 

of selection using haplotype-specific whole sequence-based tests in the SW. This remained 

the case when considering sequences from several other Acrocephalus species. However, at 

the codon-level I did identify a number of sites under both positive (balancing) and negative 

(purifying) selection within the SW and across the Acrocephalus genus at all five 

polymorphic TLR loci. Next, I used a novel approach of designing forward-in-time computer 

simulations to delineate demographic effects from the effects of selection in order to get a 

better resolution of selective pressures when working with relatively low levels of variation 

at our candidate genes (Chapter 4). This was feasible because I had estimates for important 

parameters like effective population size (Spurgin et al. 2014) and mutation rate.  My 

simulations suggested that weak balancing selection appears to have acted in the recent 

past on the five TLR genes. Finally, I conducted association analyses to determine whether 

the TLR variation observed at the most polymorphic of TLR loci caused differential effects in 

individual fitness (Chapter 5). I found a specific TLR15 allele that increases resilience to a 

specific Haemosporidian strain (GRW1) in addition to giving the individual acquired 
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immunity to prevent future infections later in life. These results suggest that pathogen-

mediated selection may at least partly explain the fact that some variation remains in the 

bottlenecked SW population.  

By combining several different approaches I was able to compare my results and 

gain a more holistic view on how evolutionary forces were shaping contemporary variation. 

I was able to overcome the various limitations and difficulties imposed by using any one of 

these approaches exclusively. For example, testing for deviations from Hardy-Weinberg 

equilibrium or any test based on entire sequences can be confounded by null alleles, 

genotyping errors, population sub-structure and gene flow (migration). These can all cause 

false-positive results (for review, see Vasemagi & Primmer 2005). Tests based on allele 

frequency distributions such as Tajima’s D test of neutrality, test for either selection or a 

change in population size, as it can be hard to disentangle the two from one another. 

Therefore, they can make strong inferences on population demographics but are not 

considered to be able to give robust inferences of selection (Zhai et al. 2009). Additionally, 

they often cannot delineate current from past selection given their large evolutionary 

timeframe, with the exception of some tests including Hardy-Weinberg deviation. Tests 

based on dN / dS ratios give limited evidence that a certain DNA variant or polymorphism 

currently has a direct phenotypic or fitness consequence by using a shorter evolutionary 

timeframe. Consequently by using different methods, I have been able to span these 

different time frames using: (i) sequence-based tests to examine long evolutionary past, (ii) 

novel forward-in-time computer simulations to examine evolution over the span of the 

bottleneck, and (iii) association analyses to look at selection occurring presently. 

By applying multiple approaches to characterise immunogenetic variation in the SW, 

they mutually suggest that while weak selection is acting on TLR loci, drift is the overriding 

force shaping such variation. I was able to compare and contrast this pattern to a previous 

study that assessed population-level variation at TLRs in another island endemic 

bottlenecked species, the New Zealand robin Petroica australis raikura (Grueber et al. 

2013). This study paralleled our results in finding drift was the overriding force shaping 

variation at different TLR loci. Grueber et al. (2013) expanded on this study by identifying a 

specific TLR4 allele which conferred a survival advantage to individuals. We have previously 

identified a specific MHC allele which also increases individual survival in the SW (Brouwer 
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et al. 2010) and in this thesis, I show evidence of a specific TLR15 allele indirectly conferring 

a survival advantage by providing resilience to disease (Chapter 5). My overall finding of 

dominating drift and consequential loss of adaptive genetic variation from a bottleneck is 

concordant with a number of excellent existing studies (e.g. Willi et al. 2007; Garcia de 

Leaniz et al. 2007; Ardia et al. 2011). Likewise, my conclusion that there are strong effects of 

drift in shaping variation post-bottleneck in the contemporary population is well-supported 

in the literature (Miller & Lambert 2004; Miller et al. 2010; Sutton et al. 2011; Grueber et al. 

2013). 

Although drift is an important evolutionary force in our system, the main focus of 

this thesis was to investigate whether selection could maintain specific (functional) variation 

in a bottlenecked avian population. AvBDs encode for anti-microbial peptides, which 

recognise a broad spectrum of pathogens and directly attack the pathogen cell wall (Hollox 

& Armour 2008; van Dijk et al. 2008; Derache et al. 2012). Conversely, TLRs recognise 

specific PAMPs such as lipopolysaccharides, lipids, DNA and RNA fragments (Takeuchi et al. 

2002; Boyd et al. 2007, 2012; Keestra et al. 2010). Consequently, TLR molecules are 

considerably complex in structure with distinct regions serving different roles. A number of 

studies have shown that sites encoding the peptide-binding region of the MHC are strongly 

selected for when sites encoding the ‘stalk’ are highly conserved (Aguilar et al. 2013; Sutton 

et al. 2013; Scherman et al. 2014). The exon that I screened in the SW encodes for the 

leucine-rich repeat region responsible for binding to PAMPs and within this receptor region 

of the molecule, my results inferred a number of sites to be structural in their role and sites 

directly associated with pathogen-ligand binding. These codon-specific findings have been 

mirrored in other studies in TLRs (Alcaide & Edwards 2011; Areal et al. 2011; Fornůsková et 

al. 2013; Grueber et al. 2014) and they all contribute to better understanding how selection 

operates to promote the variation responsible for optimising the TLRs function in immune 

defence. 

It is widely-accepted that pathogens are the predominant selective pressure acting 

on immune genes and driving their diversity (for review, see Spurgin & Richardson 2010). 

Pathogens are not necessarily considered to be natural groups per se, but in fact a 

phylogenetically and antigenically diverse group of interacting organisms at both cellular 

and intracellular levels within the host (Nizet 2006). Therefore, immunity itself will occur 
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differently with each pathogen or array of pathogens invoked, depending on determinants 

of cell surfaces (e.g. the structure of extracellular domains and their receptors), among 

other factors including demography, environment and gene-gene interactions (for example, 

the interaction of different immune gene families within the immune repertoire). By 

considering this polygenic nature of disease, identifying selection at specific sites directly 

responsible for these determinants gives us a much better idea of the role of selection in 

shaping patterns of variation in pathogen resistance. 

Pathogen-mediated selection is just one type of selective force behind balancing 

selection that could be shaping immune gene variation. The MHC has already been linked to 

other forces, such as kin recognition and mate choice (Manning et al. 1992; Reusch et al. 

2001; Bernatchez & Landry 2003; Richardson et al. 2005; Brouwer et al. 2010; Huchard et al. 

2013). While there has been considerable work using TLRs in functional variation studies, it 

is still unknown whether they may be involved in mechanisms other than the direct immune 

response. More research is needed to elucidate the role of different selection pressures 

other than pathogen-mediated selection in shaping variation at these loci in natural 

populations. 

 

6.2 An evolutionary conservation case study 

To understand the long-term viability of a population or species, both the genetics and the 

ecology must be considered within an evolutionary framework in order to maximise use of 

the data for informing conservation bodies. In chapters 2 and 3, I establish that there is a 

relatively low level of immunogenetic variation in the bottlenecked SW. By comparing 

variation at the same loci across several Acrocephalus species with varying demographic 

histories, I found evidence of considerably more variation existing in mainland migratory 

species than in island bottlenecked species. This suggests that being from an insular 

endemic population has genetic consequences, particularly if that population has 

undergone a bottleneck. The SW’s recent bottleneck has been well-documented over the 

last 150 years (Oustalet 1878; Crook 1960; Collar & Stuart 1985). Effective population size 

estimates indicate that the SW had a widespread distribution historically, covering the inner 

granitic islands of the Seychelles (Chapter 1, Figure 6). Furthermore, historic populations will 
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have dispersed between different islands and so gene flow would have had a role in shaping 

genetic variation, unlike the contemporary population. If the established ‘rule’ that a 

population’s effective size is approximately one tenth of its census size is true (Frankham 

2010) the SW may once have had a population of > 10 000. Given these figures, it appears 

that the bottleneck occurred relatively recently and over a longer time span than originally 

predicted (Spurgin et al. 2014). Thus, purging of genetic load is unlikely to have occurred in 

such a short time (Crnokrak & Barrett 2002). This needs to be considered when assessing 

variation in the contemporary population. 

 In this thesis, chapters 2 and 3 show that levels of functional variation are relatively 

low across two different immune gene groups. I proceeded to do a pre- and post-bottleneck 

comparison at a specific locus, AvBD7, to gain a better idea of how patterns of variation may 

have changed as a consequence of the bottleneck. It was possible to amplify this short β-

defensin in 15 museum samples (< 120 bp) and only two polymorphisms (one synonymous 

and one non-synonymous) were observed in comparison to the single-nucleotide 

polymorphism (synonymous) observed in the post-bottleneck contemporary population. 

This could arguably be direct evidence of a loss of functional variation as a result of the 

bottleneck. However, when dealing with such low numbers of variants it is next to 

impossible to statistically assess this. Unfortunately, the DNA was low-quality and fairly 

degraded. This prevented us from screening the more polymorphic TLR genes. For chapter 

5, I designed primers to amplify the key variable region within the TLR15 sequence, the 

most polymorphic loci in this study. Unfortunately, this region was ca 400 bp and given that 

this was at the upper limit of the microsatellite fragment sizes that were genotyped (Wright 

2014), amplifying this region in the museum samples was also not an option. The problem 

was further enhanced by the limited volume of museum DNA available from the specimens 

of which they were extracted (Spurgin et al. 2014). To attempt to design primers and carry 

out repeated genotyping to counter the high error rates that come with degraded DNA 

(Arandjelovic et al. 2009), was not possible given the insufficient volumes of DNA sample 

available.  

Extending on this work, it would be ideal to characterise functional immunogenetic 

variation within the different translocated populations, which have all been sourced from 

the Cousin population examined in this thesis. Translocations can cause bottlenecks 
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themselves due to small founder sizes and incomplete sampling from the source population 

(Jamieson 2011). Previous research on the SW has shown that the earlier translocations of 

just 29 founder individuals each to the islands of Aride and Cousine (in 1988 and 1991 

respectively) resulted in limited but detectable genetic divergence (Wright 2014). 

Interestingly, the same study also found that diversity within the multiple Seychelles 

warbler populations was temporally stable, thus suggesting that drift has had minimal effect 

in further eroding genetic variation in the translocation populations since their 

establishment. This infers that the populations grow rapidly after translocation with little 

reproductive skew (Nei et al. 1975).  

It is often the case that many  translocations have an absence of follow-up studies on 

the source population from which the founding individuals were removed (Pertoldi et al. 

2007). Yet in the SW system, this has been specifically assessed and the impact of the 

removal of these individuals on the genetic status of the source population has been shown 

to have no detrimental long-term effect (Wright 2014). My studies use individuals from the 

contemporary population after three translocations had already taken place (the latest 

being to Denis Island in 2004) and I can conclude with sufficient evidence that drift has had 

overriding effects in the SW Cousin population. What positive (balancing) selection I do 

detect is relatively low and my simulation forecast models predict that this selection will 

have little effect on the long-term variation at TLR loci (Figure 3, Chapter 4), unlike the 

bottleneck event which had huge negative effects on overall diversity (Figures 1 & 2, 

Chapter 4).  Many studies which show neutral processes to be the main forces in shaping 

genetic variation in small populations, compare the levels of variation at both neutral 

markers and functional (or ‘critical’) markers representing adaptive variation (Kimura 1986; 

Alcaide 2010; Sutton et al. 2011; Agudo et al. 2012).  

By carrying out association analyses, it is useful to see what factors directly influence 

fitness parameters such as individual survival, malarial prevalence and how individuals 

respond to malarial infection once exposed. My models focus on immunogenetic variation 

and its association with individual fitness, but we control for ecological factors. I found that 

a specific TLR15 allele confers for resilience against malarial infection in early-life, which 

consequently results in acquired immunity for preventing secondary infections in later life. 

Given the significant role of lifetime malarial infection on adult survival, this means that this 
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allele has indirect survival advantages too. Other immunogenetic variables proved 

functional, with MHC diversity having direct effects on adult survival and the MHC allele 

Ase-ua4 significantly influencing whether an individual dies or not once infected with GRW1. 

Unfortunately, some association analyses are limited when working with endangered wild 

species. It is not possible to look at mRNA expression, which has been done for TLRs in a 

number of studies investigating the direct relationship between TLR variation and immune 

response in model species in vivo and in vitro, such as in the chicken (Gallus species) (e.g. 

Higgs et al. 2006; Nerren et al. 2009, 2010) and in mice (e.g. Rehli 2002; Bihl et al. 2003). 

However, we can look at differential outcomes in response to individuals being infected and 

relatively assess the different patterns in relation to genetic variation, as we did in chapter 

5. Although chapters 2-4 explore the genetic composition of the SW population and infer 

the evolutionary and demographic processes responsible, chapter 5 is informative for 

conservation biology from both a scientific knowledge and practical perspective. With the 

chapters combined, I hope to provide conservation stakeholders with novel and useful data 

that will hopefully be of relevance to other bottlenecked or fragmented populations of 

conservation concern, where a similar level of monitoring of the population in its natural 

state can permit in depth molecular ecological study. 

 

6.3 Directions for future research 

The research presented in this thesis characterises two families of immune genes in the SW 

and uses a combination of different approaches to infer the evolutionary forces which have 

shaped the variation observed within this population. To add to this, it is important to 

compare and contrast neutral variation with functional variation. This has already been 

done in the SW with regards to MHC diversity (Hansson & Richardson 2005). Although the 

MHC markers and microsatellites were not directly compared in this study, relatively, they 

both showed the same picture of genetic variation in the SW in that much variation had 

been lost across the genome as a consequence of the recent bottleneck. By comparing the 

SW to two other Acrocephalus species, they further showed that genetic variation in the SW 

was half to one third of that of its congeners, which has also been shown in a number of 

other studies (Komdeur et al. 1998; Richardson & Westerdahl 2003). It would be useful to 



Chapter 6: General Discussion 

197 
 

quantify patterns of neutral polymorphism in comparison to functional polymorphism in 

order to better understand the (potential) selection / drift dynamics at candidate loci.  

 By modelling microsatellite standardised heterozygosity with TLR15 heterozygosity, I 

was able to determine an absence of any significant association between the two measures. 

This is informative in that it proves microsatellites are not sufficient in explaining variation in 

a natural population. However, this does not resolve the issue that we cannot say whether 

the polymorphism statistics for TLR15 and other immune genes are different than those we 

would expect for anonymous loci. However, whilst microsatellite studies have been 

developed for the Seychelles warbler (Richardson et al. 2000) you cannot directly compare 

allele numbers / allelic richness between microsatellites and AvBDs / TLRs because the 

microsatellite markers designed for the SW were specifically chosen to be polymorphic, 

which presents a bias (Richardson et al. 2000). In order to gain a true neutral reference, I 

would need to screen another nuclear locus to assess how much non-functional 

synonymous variation exists in each population in all of our species and ideally, in the same 

individuals. Also, I would ideally need to screen more than one nuclear locus and then find a 

way distinguish whether our ‘signatures’ of selection is positive selection or whether it is 

just relaxed purifying selection / reduced efficiency of purifying selection, which can be 

expected in a bottlenecked population (Hughes 2007).  

 We amplified AvBD and TLR loci in a handful of individuals from other Acrocephalus 

species to simply assess the relative variation at these immune loci across the genus. This 

approach was used to increase our power to detect selection when using population genetic 

statistical tests by comparing patterns of selection across a set of ecologically-distinct 

species. We could improve our approach by obtaining more samples from these other 

Acrocephalus species and to increase our number of individuals screened in order to fully 

understand the evolutionary processes in operation at specific loci of interest. Associations 

between individual TLR genotypes and specific pathogens in wild populations, is yet to be 

explored. Only one blood parasite has been identified in the SW to date and no evidence 

has been found of any gastro-intestinal parasites (Hutchings 2009). However, it would be 

interesting to screen for other pathogens such as bacteria and viruses. The AvBDs have been 

shown to directly attack bacterial pathogens via the amphipathic properties of their 

encoded anti-microbial peptides. Therefore, assessing the relationship between bacterial 



Chapter 6: General Discussion 

198 
 

infection and AvBD loci, or viral infection and TLR loci, would provide further understanding 

on pathogen-mediated balancing selection as a mechanism for maintaining variation in this 

bottlenecked population.  

Advancement for this research would be to screen the pathogen fauna that exist 

within the different SW populations and how exposure to different suites of pathogens 

results in different pathogen-selection regimes. Failing to incorporate the complexity of the 

immune system with the polygenic nature of many pathogen infections limits our ability to 

test hypotheses about the possible role of selection in shaping patterns of variation in 

pathogen resistance and/ or susceptibility. In a short period time (< 25 years), there have 

already been big differences that have emerged with regards to disease resistance. Two out 

of four translocated populations have eradicated GRW1 (Fairfield et al. in prep, for details 

on translocations see Komdeur 1994; Richardson et al. 2006; Wright et al. 2014). This is 

despite the fact that all new populations included a proportion of founders with GRW1 

infection (Hutchings 2009). The most recently translocated population to Frégate Island in 

2011, which is ten times the size of Cousin, has a much greater diversity of flora and fauna 

diversity on the island compared to Cousin and other islands holding translocated 

populations. In addition to considering the pathogen, there is a need in this field to 

incorporate study on the vectors responsible for pathogen transmission. For example, it has 

been well-shown that the intermediate dipteran vector host plays a vital role in the co-

evolutionary arms race between pathogen and host (for review, see Bordes & Morand 

2015). Therefore, I would be keen to assess vector abundance, species diversity and explore 

individuals at a molecular level to fully understand how the intermediate host fits in with 

overall pathogen-mediated selection within a community of different hosts and different 

pathogens. 

Formal analyses for detecting evidence of natural selection acting on the parasite 

population are relatively new.  For example, analyses studying the diversity observed in 

genes encoding antigens, especially those in the merozoite and sporozoite, and attributing 

that diversity to the action of natural selection imposed by the host immune system 

(Garamszegi et al. 2015; Marzal et al. 2015; Pigeault et al. 2015). A study has already looked 

at the genetic diversity of malarial parasite lineages in the great reed warbler Acrocephalus 

arundinaceus (Bensch et al. 2007; Westerdahl et al. 2012). These studies emphasise how the 
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knowledge of extrinsic parameters such as vector distribution and alternative hosts are 

needed to fully understand patterns of infection. Overall, assessing pathogen pressures 

across SW populations across multiple years and a long time scale, may contribute to our 

understanding of how pathogen mediated selective pressures fluctuate over time and shape 

genetic variation in natural populations. 

The MHC has long been a paradigm for the study of  functional variation and (for 

review, see Bernatchez & Landry 2003). However it  is clear that we need to consider other 

immune gene groups if we are to fully understand these processes to (Acevedo-Whitehouse 

& Cunningham 2006). The candidate-gene approach can successfully examine genes based 

on a priori hypotheses and establish functionality of variation by using a bottom-up 

approach (Fitzpatrick et al. 2005). Research is now increasing, particularly in TLRs, and there 

remain a number of other immune gene groups to be explored; particularly from the innate 

immune system, which is still relatively understudied (Kaiser 2007).  

There are many innate multigene cytokine families, especially the chemokines and 

their receptors, and the TNF/TNFR super-families. All of these cytokine families are under 

selective pressure (for review, see Hill 2001). Preliminary evidence shows that non-MHC 

cytokine gene variants such as Interleukin-1, Interleukin-4, cytotoxic T lymphocyte-

associated molecule-4 and natural-resistance-associated macrophage protein 1 are all 

relevant to disease resistance / susceptibility (for examples, see Walley & Cookson 1996; 

Donner et al. 1997; Bellamy et al. 1998; Nicoll et al. 2000).  Killer-cell Immunoglobulin-like 

receptors (KIRs) have also been shown to be highly polymorphic (Lindenstrøm et al. 2004). 

Chicken-killer immunoglobulin-like receptors (CHIRs) are especially appealing candidates for 

their extremely high degree of polymorphism with single nucleotide substitutions 

generating different CHIRs at a fast evolutionary rate (Nikolaidis et al. 2005). Natural killer-

cell receptors share many features with the MHC because they are both large dense clusters 

of loci with high levels of polymorphisms, maintained by resistance to infection (Trowsdale 

2001). Conceptually, these are all valid and worthy candidate loci for study into functional 

variation. There is a persistent need for broader research on traditional vertebrate models 

which can be transferred to wild populations. Better yet, if there is an opportunity to 

conduct this research in the wild, such knowledge would enable broader understanding of 
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the levels at which natural selection can act on immunity and thus better inform 

conservation biology. 

 It would be beneficial to investigate the interactions between different immune 

genes and to study how those interactions impact upon individual fitness in order to better 

understand the role of adaptive genetic variation in small populations. The publication of an 

Acrocephalus genome would allow access to a wealth of genetic data that would greatly 

enhance our research from the designing of locus-specific primers to a better resolution. 

Genomic technologies now offer unprecedented opportunities and with the exponential 

advancement of their speed and affordability, whole genomes are quickly overtaking the 

use of conformational techniques previously used to explore the structure and function of 

genes like the MHC (Thomas & Klaper 2004; Avise 2010; Babik 2010; Warren et al. 2010). 

When constructing phylogenies in Chapters 2 and 3 based on the variation characterised at 

AvBDs and TLRs respectively, a number of nodes remained unresolved. While this is likely to 

have been a power-issue (limited evidence of shared polymorphism between species), this 

remains problematic when wanting to infer the role of selection over a longer period of 

evolutionary time. Phylogenies of other genes in the genome would greatly help to address 

this problem and make it clearer whether, for example, observed neutral and functional 

polymorphism is due to recent species divergence. 

The SW is an invaluable model for asking important evolutionary- questions, given 

that it has been intensively monitored and studied for over 25 years. There is a wealth of 

accurate fitness and life-history data, environmental monitoring and more than 5000 blood 

samples collected longitudinally from over 6000 birds (for some examples, see Komdeur 

1991; van de Crommenacker et al. 2011; Barrett et al. 2013; Spurgin et al. 2014). The island 

ecology is relatively benign and the absence of predators means that there is a relatively 

high annual survival rate of 0.61 and 0.85 for juvenile and adults (Brouwer et al. 2006) and 

accurate fitness data available for each individual within the population. By having a re-

sighting probability of 0.95 (Brouwer et al. 2006), it presents the rare opportunity of being 

able to study a natural ‘laboratory’ population when typically, extensive molecular ecology 

studies in wild populations prove to be scarce.   
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I hope that the content of this thesis may prove to be of use in its wider applications 

to conservation biodiversity and emphasise the need to include and progress research into 

evolutionary conservation. This thesis’ research provides novel information about multiple 

gene families within a natural population and uses a combination of approaches to try to 

infer the evolutionary processes responsible for shaping variation at these gene families. 

Knowing how such variation is shaped has important conservation implications in being able 

to assess population / species adaptive potential, epidemic risks and to predict responses to 

future novel challenges. In the case of this thesis, the focus lies with response to challenges 

of a pathogenic nature, at a time when novel pathogens are increasingly emerging in natural 

populations. Consequently, these sorts of studies are integral to better understanding 

disease dynamics and the long-term viability of populations or species of conservation 

concern. 
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