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Abstract

This thesis is concerned with stability and existence of waves in interfacial and free surface

problems. Considered is the curtain coating problem, with specific emphasis on trilayer

and bilayer flows, and the breakup of a viscous thread with a solid core.

Experiments on curtain coating and sheet breakup are mostly conducted by industry and

as such are hidden in patents or kept secret by companies trying to gain an edge in

a competitive market. Experiments on curtain breakup concentrating on the effect that

surfactants have upon the stability and the effect of differing fluid properties are discussed.

It is shown that multiple layers of different fluid are more stable when reducing the flow

rate of the lowest layer.

Single and multi-layer fluid flow down an inclined plane is studied with the emphasis on

the effect of an insoluble surfactant. Bilayer and trilayer flow down an inclined plane is

considered. The main point of interest here is the existence of multiple unstable modes

for a single set of parameters.

A long wave model describing the multi-layer flow is discussed. Time-dependent solutions

to this model system lead to the discovery of travelling wave solutions present in the

dynamics.

The travelling wave solutions are further investigated through Fourier analysis leading to

the discovery of branches of solutions emerging from wavenumbers for which the flow is

neutrally stable.

The normal mode stability of annular Stokes flow of a viscous thread with a solid core is

discussed which extends work done for negligible viscosity and small wavenumbers.
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Introduction

In this thesis we discuss interfacial flow problems in open flow systems. Dynamical systems

present a mathematical problem in that the position of the interface is not known explicitly

but changes depending upon the fluid flow.

We first consider the curtain coating process. Curtain coating is a coating method that

involves the creation of a fluid sheet falling under gravity. The object that is to be coated is

then passed through the falling sheet leaving a layer of fluid on the object. Curtain coating

is used in some manufacturing processes which require a layer of fluid to be applied to

a solid surface (for example the manufacture of photographic film discussed by Krebs

(2009)). Usually an even coating is required, so minimising disturbances is essential.

Previously experiments have been done by manufacturers and consequently the results

are hidden in patents. One of the aims of this thesis is to obtain new information on

the curtain coating process through experiments. We performed experiments for various

parameter ranges, varying viscosity, surface tension and flow rate, to deduce an acceptable

parameter range for a falling liquid curtain to remain stable which are presented in section

1. A stable curtain in this thesis is defined to be a sheet of falling fluid with no holes in.

Breakup of a curtain is defined to be after a hole appears in the curtain it changes to a

form that is not a fluid sheet. For example multiple threads or a single thread resembling

two jets coalescing. A diagram of the curtain coating setup is shown in figure 0.1.
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! ! ! !

Figure 0.1: Diagram of 3 layers of fluid flowing uniformly over the die and falling onto the

substrate.

Surfactants were in the fluids used in our experiments. Surfactants are a substance which

reduce the surface tension of the fluid in which they are inserted. During our experiments

we used insoluble surfactants which have a hydrophobic section which is attracted to free

surfaces. Surfactants have the effect of lowering the surface tension. This effect has a limit

called the critical micelle concentration whereby the free surface of a fluid is completely

saturated with surfactant and some of the remaining surfactant in the fluid creates clumps

of surfactant within the fluid. As such this means that experimentally the surface tension

of a given fluid can only be reduced to a limit decided by the CMC (Critical Micelle

Concentration) level. The CMC level is the surfactant concentration at which micelles

start to form. Micelles are clusters of surfactant that do not migrate to the surface of the
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fluid. This motivated a theoretical study of the effect of surfactants on multi-layer flow.

The study of multi-layer flow is useful for understanding film coating, of which curtain

coating is one example. This includes optical coating, discussed by Baumeister (2004),

where it is required to produce multiple layers of thin fluid with little or no defects to

coat a lens. Also for medical devices that require lubrication, such as catheters and other

medical devices, a hydrophilic film coating is required to aid lubricity as discussed by

LaPorte (1997). It should be noted that the experiments conducted in industry would be

done on much larger apparatus. The width of the die we used in the experiments was

12cm whereas in industry the width of the die could be several meters. Of particular

interest to industry is to minimize disturbances. In order to understand the disturbances

that can occur we seek traveling wave solutions. Traveling waves are waves that occur on

a free surface or interface and keep their profile and have a constant velocity.

The theoretical work, both our work and work done by others, discussed on multi-layer flow

in this thesis is purely two-dimensional. This simplification was justified in an argument

given by Squire (1933), for a single layer flow in a channel, where he pointed out that

any disturbances found by considering a three-dimensional disturbance is governed by the

same equations as for a two-dimensional disturbance in a similar flow. Hesla et al. (1986)

extended this to two layer flow in a channel. Halpern & Frenkel (2003) extended this to

include surfactants. Blyth (2008) extended Squire’s work for a film flow down a plane with

surfactant (and an electric field). These studies give us a good indication that a similar

theorem can be reached for multi-layer film flow down an inclined plane in the presence

of surfactant although no papers have been found that show this.
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Single Layer Flow

For a single layer, surfactant-free flow, work has been done by Benjamin (1957) in the limit

of small Reynolds number using a normal mode perturbation, expanding the equations in

a power series expansion. It was found that for a long wave perturbation there is a critical

Reynolds number above which the flow is unstable. This was later confirmed by Liu et al.

(1993) experimentally. Yih (1963) also looked at a single layer of surfactant-free flow. He

considered the case of small wavenumbers, for which he found that there exists a critical

Reynolds number above which some disturbances are amplified. He also considered the

case of small Reynolds number, for which he agrees with Benjamin (1957) and the case

of large wavenumbers, for which Yih found that short amplitude waves are damped by

surface tension and the rate of damping is reduced with an increase in viscosity. Work has

been done by Boatto et al. (1993) to investigate traveling waves on a single layer of fluid

on a non-inclined plane. They found that using a lubrication approximation in which the

equation of motion is ht + (hnhxxx)x = 0 for which h is the position of the free surface and

n is a parameter which corresponds to different physical situations. The equation that

they studied is in the limit of negligible inertia and is governed by viscous and capillary

forces. They investigated the equation for differing values of n but never link these to

any physical parameters. To our knowledge no work has been done to find traveling wave

solutions for multilayer flows.

Two Layer Flow

For two layer surfactant-free flow there exists an instability even at zero Reynolds number.

This was shown by Kao (1968), using a long wave approximation, for the upper layer being
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more viscous than the lower layer. He also found that for a thin layer of the upper fluid the

critical Reynolds number does not change with changing the viscosity of the upper layer.

Loewenherz & Lawrence (1989) extended this for an arbitrary wavenumber in the limit

of Stokes flow and with no surface or interfacial tension, using a normal mode analysis.

They found that for a more viscous thinner upper layer there exists a stable bandwidth

of finite wavenumbers. They also found that the long waves did not appear to govern the

stability of the flow. Chen (1993) found that in the presence of inertia a two layer flow is

always unstable if the upper layer is more viscous than the lower layer for low Reynolds

numbers. This result they found using a normal mode analysis. For two layer flow with a

vertically inclined plane Jiang & Lin (2005) found that it can be stabilised by oscillating

the plate parallel to the plane but also this can further destabilise the flow for certain

parameter ranges. Pozrikidis (1998) used the boundary integral method to compute the

fully nonlinear calculations of a two layer Stokes flow and found that even a low surface

tension is able to stabilise the flow. Jiang et al. (2004) and Gao & Lu (2008) provided an

explanation of the underlying physical mechanism for the long wave inertialess instability

(zero Reynolds number) of two layer film flow using an energy argument.

Effect of Surfactants

For single layer surfactant-laden flow, Whitaker & Jones (1966) and Lin (1970) extended

the previous single layer analysis done by Benjamin (1957) and Yih (1963). They found

that the critical Reynolds number is larger which implies that the surfactant has a stabil-

ising effect upon the flow. Pozrikidis (2003) relaxed the long wave assumption and showed

that in the inertialess zero Reynolds limit there are two modes, one that corresponds to

that found by Yih (1963) and one that corresponds to the Marangoni mode. Both of
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these modes are stable at zero Reynolds number. He used a boundary element method

to study the nonlinear development of the instability. Blyth & Pozrikidis (2004) solved

the Orr-Sommerfeld problem for a surfactant-laden film numerically and found that the

Yih mode and the Marangoni mode can be unstable in the presence of inertia and one

of the modes dominates dependent upon the Reynolds number. They used normal mode

analysis to accomplish this.

Surfactant-laden two-layer flow was studied by Gao & Lu (2007). Normal mode analysis

was conducted in the limit of Stokes flow for any wavelength. They found that there

are four possible modes with surfactant only one of which can be unstable for layers

of equal thickness. For the stable configuration of having a more viscous layer next to

the plane they found that adding surfactant to the free surface did not destabilise the

flow but adding surfactant to the interface did. For the unstable configuration of having

the less viscous layer at the plane they found that adding surfactant to the free surface

has a stabilising effect while adding surfactant to the interface can have a stabilising or

destabilising effect dependent upon the Marangoni number of the free surface and the

viscosity ratio. Samanta (2014) has recently extended this work to include the effects of

inertia upon the flow. Using a normal mode analysis they found was that the interface

mode cannot be completely eliminated by interface immobilisation.

Three Layer Flow

Three layer flow in the absence of surfactant has been discussed by a number of people.

Work has been done on three layer flow by Wang et al. (1978) who found long wave

instabilities due to differing viscosities in the layers but only when considering inertia.
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They used a power series expansion in the wavenumber, assumed to be small, of the

velocity and wave speed. Weinstein & Kurz (1991), who also worked with long wavelength

perturbations, considered many parameter ranges, with differing viscosities, densities and

layer thicknesses and concluded that even at zero Reynolds number a three layer flow

can be unstable. In particular when the middle layer is thin and less viscous than the

surrounding layers. They used a normal mode analysis expanding the wave speed and

velocity in terms of the wavenumber. Finite wavelength disturbances in the absence of

inertia and interfacial tension but considering surface tension was considered by Weinstein

& Chen (1999) again using a normal mode analysis. They found that the instability found

in Weinstein & Kurz (1991) is still present for the finite wavelength regime. When the

middle layer is thin and very viscous they found a new instability for only finite wavelength

perturbations. Also the magnitude of the growth rates that they found for three layers

is orders of magnitude higher than those found for two layer flows by Loewenherz &

Lawrence (1989). Jiang et al. (2005) investigated the physical mechanism behind the

three layer instability. They found that Reynolds stresses in the lower layers of three layer

flow are an essential part of instability unlike for two layer flow. This remains true even

as the Reynolds number tends to zero.

Thesis Aims and Structure

In order to study the stability of multi-layer flows we first have to calculate the initial

velocity profile in the absence of any perturbation. This is done in section 2.1. In section

2.2 we discuss the stability of two layer flows with surfactant in the absence of inertia,

specifically parameter ranges not considered by Gao & Lu (2007) such as differing layer

thicknesses. Also we consider the stability of three layer flows with surfactant in the ab-
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sence of inertia which, to the best of our knowledge, is the first time this has been studied.

Further to this in section 3.1 we derive and numerically solve a long wave approximation

describing the multilayer flow. We use these same equations to study the presence of

travelling wave solutions in section 3.2 concentrating on five cases which cover a range of

parameters.

In section 4, we examine the dynamics of a viscous thread coating a solid core. One

example of annular flow with a core in nature is spider silk. Spiders spin silk of two types,

one is hard and cylindrical and is the main structure of the web (usually the outwards

spokes of the web) and the other which is very elastic and is covered in sticky beads. The

sticky beads are initially excreted as an annular thread over an elastic thread. These break

up into uniformly spaced beads discussed by Boys (1960).

The capillary instability of an invicid liquid thread has been well studied by Rayleigh

(1879), neglecting the effect of the surrounding fluid. He found that any disturbance with

a wavelength greater than the circumference of the jet should cause the jet to break up into

droplets. Tomotika (1935) considered the effect of the surrounding fluid using a normal

mode analysis and found that there is a single wavenumber that grows more rapidly than

any other wavenumber for a viscous fluid. Goren (1962) considers the instability of an

annular thread of fluid surrounding a solid core but only comments on the case of negligible

inertia and the case of zero viscosity. Using a normal mode Stokes analysis, he found that

for a given ratio of the radii of the annular thread and the Ohnesorge number, the ratio

of inertial forces to the viscous forces times the ratio of the surface tension forces to the

viscous, there is a “disturbance of a certain wavelength, which grows more rapidly than

any other wavelength”.
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We seek to extend Goren (1962) work to include the effects of viscosity and allow all

wavenumbers. We conduct a normal mode analysis by assuming a small amplitude per-

turbation. For a given ratio of radii of the rigid core to the liquid thread and Ohnesorge

number we find that there is a certain wavelength which grows more rapidly than other

wavelengths of a disturbance.

In the final section we summarise the findings of the thesis and discuss future directions.
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1 Curtain Coating Experiments

Many of the experimental data on the breakup of multi-layer liquid curtains are within

patents and as such are inaccessible or difficult to gain insight from. Experiments were

conducted at the King Abdullah University of Science and Technology using a custom

built 4-layer slide die (TSE Troller AG, Switzerland). The aim of the experiments were to

investigate the stability of a liquid curtain and arrive at some conclusions on the condition

by which a liquid curtain maintains stability.

! ! ! !

Figure 1.1: Diagram of 3 layers of fluid flowing uniformly over the die and falling onto the

substrate.

Also of interest is a phenomenon know as the hysteresis window. The hysteresis window

is defined as the difference between the breakup flow rate and the curtain formation flow

rate. We define the breakup flow rate as the flow rate at which the curtain ceases to be
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continuous and the curtain formation flow rate is the minimum flow rate that the curtain

can be formed. The dies used in industry can be several meters wide but the die that we

used for the experiments was 12cm wide.

1.1 Theoretical Background

Analytic work has been done by Taylor (1959) investigating thin fluid sheets but no sta-

bility criterion was formulated. Brown (1961) conducted experiments on liquid curtains

to ascertain a stability criterion for a single layer. Lin (1981) obtained a local stability

condition for a single layer of fluid falling under gravity defined by a condition on the

Weber number, the ratio of the fluid inertia to the surface tension,

We =
ρQvc
γ

> 2, (1.1)

where ρ is the liquid density, Q is the local flow rate per unit width of curtain, vc is the

vertical velocity component and γ is the dynamic surface tension. This agreed with the

experiments done by Brown. Dyson et al. (2009) extended this model for n-layers of fluid

to get

vc
∑n

j=1 ρjQj∑n
j=0 γj

> 1, (1.2)

where the subscripts denote the characteristics of the corresponding layers and the γi’s

denote the dynamic surface tensions where γ0 denotes the surface tension between layer

1 and the surrounding gas, γ1 the interfacial tension between layers 1 and 2 and so on as

illustrated for three layers in figure 1.1.
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1.2 Experimental Setup

No work to the authors knowledge has been done to compare the above conditions against

experiments. The experiment involved four containers of fluid each with separate pumps

Figure 1.2: Photograph of the experimental setup.

and flow meters feeding fluid into the die and out of the four slots, three of which are

shown in figure 1.1. The fluid then forms layers of flow which cascade over the lip of the

die forming a curtain and landing on the target plate. For the experiments the plate was

stationary.

The curtain had to be manually formed with plastic rods to pin the curtain to the edge

guides, as shown at the bottom of the edge guides in figure 1.3. Pipettes were used to

ensure the edges of the curtain did not de-pin before an instability broke the curtain. The

fluids were sometimes reused for subsequent experiments after being given time to settle

in the tanks.

Several fluids of varying viscosity and surface tension were used and the properties of the

different fluids are given in table 1. The surfactant used in fluid 1 was cetyl trimethy-

lammonium bromide (CTAB) and the other fluids had sodium dodecyl sulfate (SDS) so
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Figure 1.3: Photograph of the coating die close up with labels.

although measurements of surface tension and viscosity were taken the interactions be-

tween the different surfactants and the viscosity may be different.

Fluid Glycerol

conc.

(%w/w)

Surfactant

conc.

(%w/w)

Viscosity

(mPa.s)

Surface

tension

(mNm−1)

Density

(kgm−3)

1 65.5 0.01 15.4 50.8 1171

2 74 0.21 33.4 42.21 1169

3 74 0.05 33.4 54.47 1169

4 83.5 0.21 70 47.13 1219

5 91.9 0.1 262 59.5 1241

6 91.9 0.21 262 54.8 1241

7 65.5 0.21 15.4 47.9 1171

Table 1: Table of fluid properties.
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Measurements of all the flow rates are given in Appendix A. In these tables QST denotes

the flow rate measured in cm3s−1 and QBR denotes the flow rate at which the curtain

breaks up, also in the same units.

Figure 1.4: Plot of the mean, denoted W; minimum, left tick; maximum, right tick;

median, middle vertical line; 1st quartile, left vertical line, and 3rd quartile, right vertical

line, of the breakup flow rates (in cm3s−1) for the given fluids on the right.

In considering the stability of curtain coating flows with surfactant we will briefly talk

about the migration of surfactants. When a fluid is initially ejected from the die slot the

surfactants are assumed to be equally concentrated throughout the fluid but as a fluid

with surfactant is exposed to a non solid interface the surfactant migrates to the newly

created free surface or interface. If the surfactant laden fluid is exposed to a fluid with

which there is no interfacial tension, as in the case of a fluid being exposed to a layer of the

same fluid, the surfactant does not migrate to this surface. Due to this for a single layer

by the time the fluid reaches the lip of the die the surfactant is mostly upon the upper

free surface. This means that as the curtain is being formed at the top of the curtain the

surface tension at the front of the curtain is much lower than at the back equalising as the

curtain falls. If we consider the two layer case the surfactant in the upper layer is mostly
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at the free surface by the time the fluid arrives at the lip of the die while it is still equally

distributed in the lower layer allowing the surface tension at the back of the curtain to

reduce quicker than the one layer configuration.

Further to the above paragraph there is a surfactant concentration above which micelles

start being created and any more surfactant which is added wholly contributes to these

micelles. We call this the CMC or Critical Micelle Concentration level and it is a charac-

teristic of insoluble surfactant. Above the CMC level the surface tension of the surfactant

laden fluid will not change significantly suggesting a surface fully laden with surfactant. A

surfactant particle is made of two distinct parts, a head and tail, the head is hydrophilic

or water loving and the tail is hydrophobic or water hating. This is what causes the sur-

factants to migrate to the surface. The surfactants that do not migrate to the surface due

to the surface being saturated form micelles by grouping together with their tails centered

around a point. These observations are discussed by Rosen & Kunjappu (2012) where

further nuances of surfactants are discussed.

The surfactant concentrations for fluids 2, 4, 6 and 7 were chosen to be at the CMC

level and therefore the lowest surface tension achievable for the fluid using an insoluble

surfactant.
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1.3 Single Layer

Fluid number Average breakup flow rate Minimum starting flow rate

1 12.15 21

2 6.54 16.9

3 12.21 22.7

4 8.08 15.7

5 9.41 12.3

6 8.79 11.1

7 4.57 14.8

Table 2: Condensed table of fluid flows for a single layer of each fluid.

Figure 1.4 shows the averages, ranges and inter-quartile ranges of the breakup flow rates

for a single layer of each fluid. As we can see from figure 1.4, fluids 1 and 3 are the most

unstable as the curtain formed by those fluids breaks up at a higher flow rate than the

other fluids. This is due to their lower viscosity and higher surface tension. We note that

fluid 5 has the highest surface tension but has a much higher viscosity which dampens out

instabilities. In general a higher viscosity will dampen out any disturbances that occur but

if the upper layer is more viscous than the lower layer it is well known that this causes an

instability leading to waves occurring. The average breakup flow and minimum starting

flow rate for a single layer of each fluid are shown in table 2.

Comparing fluids 2 and 3 in table 2 we can see that a change in the surface tension does

not have an effect upon the width of the hysteresis window. This is further enforced by

considering fluids 5 and 6. If we compare fluids 3 and 6 with similar surface tensions fluid
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6 with a larger viscosity has a much smaller hysteresis width. Similarly when considering

fluids 4 and 7 the fluid with a higher viscosity, fluid 4, has a smaller hysteresis window.

Considering the needs of industry a very stable flow with a small hysteresis window is

desirable.

1.4 Two Layers

We also conducted experiments on multiple layers. We conducted experiments of two

layers of the same fluid to compare to a single layer of the same fluid with the same total

flow rate the results of which are given for fluid 1 in table 3.

Fluid

number

Breakup flow

rate for single

layer

Flow rate

of layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for

two layers

Total mini-

mum starting

flow rate

1 12.15 8 5.7 13.7 19.5

1 12.15 7 7.9 14.9 19.8

1 12.15 6 8.1 14.1 20.2

1 12.15 5 9.1 14.1 20.1

1 12.15 4 10.1 14.1 21.0

Table 3: Condensed table of fluid flows for two layers of fluid 1.

For two layers of fluid 1 we fixed the flow rate of the lower layer and varied the flow rate of

the upper layer until breakup occurred the condensed results of which are given in table 3.

As we can see in table 3 the total flow rate for two layers is consistently higher implying

that multiple layers of the same fluid are more unstable than a single layer. This may be

37



due to the effect of surfactants as described above as the surface tension of the back of

the curtain will change more rapidly as it flows over the lip causing an instability. The

hysteresis window for two layers of fluid 1 is not significantly different for differing layer 1

flow rates as shown in table 3. When we compare the hysteresis window of a single layer

of fluid 1 to two layers of the same fluid we observe that the minimum startup flow is

similar but the average breakup flow rate is higher for two layers reducing the hysteresis

window for two layers.

Fluid

number

Breakup flow

rate for single

layer

Flow rate

of layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for

two layers

Minimum

Starting flow

rate

2 6.54 4 5.84 9.84 17.5

2 6.54 3 2.86 5.86 17.8

Table 4: Condensed table of fluid flows for two layers of fluid 2.

When considering two layers of fluid 2 as shown in table 4 we had several anomalous

readings for setting the flow rate in layer 1 to 3cm3s−1 and varying the flow rate in layer

2. One experiment gave a total breakup flow rate of 14.1cm3s−1 which appears to be an

outlier as the rest of the curtain breakup flows are in the range 3cm3s−1 to 7.3cm3s−1.

Taking this into account gives us a revised total average flow rate of 4.68cm3s−1. This

result goes against the previous results, in that two layers of fluid 2 appear to be more

stable for a lower flow rate in layer 1 which is the opposite to the results given in table 3.

The hysteresis window is reduced for the higher layer 1 flow rate while it is increased for

lower layer 1 flow rate.

Two layers of fluid with different surfactant concentrations with the same viscosity were
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Fluid

number

for layer

1

Fluid

number

for layer

2

Flow rate

of layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for

two layers

Minimum

Starting flow

rate

2 3 6 6.4 12.4 N/A

2 3 5 7 12 21.2

3 2 6 9.9 15.9 N/A

3 2 5 7.48 12.48 22.5

Table 5: Condensed table of fluid flows for two layers made up of fluid 2 and fluid 3.

considered. The condensed results are given in table 5. The average breakup flow rate for

a single layer of fluid 3 is 12.21cm3s−1 while for fluid 2 it is 6.54cm3s−1. Two layers of the

same fluid had the surprising effect of destabilising the flow, while for the configuration

given above the total breakup flow rate is similar to that of the breakup flow rate for a

single layer of the least stable fluid. The hysteresis window for fluid 2 and fluid 6 as the

lower layer are similar, ignoring the higher layer 1 flow rate due to unavailable information.

Two layers of fluid with similar surface tensions and different viscosities were considered.

The condensed results are given in table 6. The total flow at the time of breakup for the

experiments presented in table 6 are closest to those for a single layer of fluid 4. Since

the breakup flow for a single layer of fluid 3 is larger this would suggest that having a

thin layer of fluid at the bottom of the curtain has a stabilising effect. There is a clear

difference in the breakup flow rates between having a flow rate of 4cm3s−1 and a flow rate

of 3cm3s−1 for the bottom layer. The results suggest the flow is more stable with a thinner
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Fluid

number

for layer

1

Fluid

number

for layer

2

Flow rate of

layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for

two layers

Minimum

Starting flow

rate

3 4 4 4.2 8.2 15.3

3 4 3 4.41 7.41 14.9

4 3 4 5.71 9.71 16.1

4 3 3 2.99 5.99 15.8

Table 6: Condensed table of fluid flows for two layers made up of fluid 3 and fluid 4.

layer on the bottom. It should be noted that although a smaller flow rate gives a thinner

layer than that of a single layer of the same fluid a single layer of fluid 4 with a flow rate of

3cm3s−1 is not necessarily thinner than a single layer of fluid 3 with a flow rate of 4cm3s−1

since the higher viscosity of fluid 4 increases the effect of the solid boundary at the inclined

plane. The hysteresis window for the first three rows of table 6 is the similar to a single

layer of fluid 4 while the last row is similar to the width of the hysteresis window for fluid

3.

Two layers of fluid with different surface tensions and vastly different viscosities were con-

sidered. The condensed results are given in table 7. Comparing the single layer breakup

flow rates combining two layers in the configurations given has a destabilising effect. Fol-

lowing on from our discussion in the previous paragraph comparing the experiments in the

third and fourth rows we see the same stabilising effect shown previously but comparing

the first and second rows reducing the flow rate for the lower layer, being fluid 2, has the

effect of destabilising the flow. This is possibly due to the low surface tension coupled
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Fluid

number

for layer

1

Fluid

number

for layer

2

Flow rate of

layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for

two layers

Minimum

Starting flow

rate

6 2 4 4.25 9.25 14.0

6 2 3 6.3 10.3 13.7

2 6 4 4.76 9.76 12.2

2 6 3 3.31 7.31 11.2

Table 7: Condensed table of fluid flows for two layers made up of fluid 2 and fluid 6.

with the concentration of surfactant causing a steep surface tension gradient near the die

lip at the back of the curtain. The width of the hysteresis window is similar to that of a

single layer of fluid 6.

Fluid

number

for layer

1

Fluid number for

layer 2

Flow rate of

layer 1

Average

breakup flow

rate of layer 2

Total average

flow rate for two

layers

7 2 5 6.65 16.65

7 2 4 6.32 14.32

7 2 3 6.8 12.8

Table 8: Condensed table of fluid flows for two layers made up of fluid 2 and fluid 7.

Two layers of fluid with similar surface tensions and different viscosities were considered.

The condensed results are given in table 8. Here we can further see the stabilising effect of
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reducing the flow rate of the lower layer although the total breakup flow rates are greater

than those for a single layer of fluid 2 or fluid 7.

Fluid

num-

ber for

layers

Flow rate

of layer 1

at breakup

Flow rate of

layer 2 at

breakup

Flow rate of

layer 3 at

breakup

Total average

flow rate for

three layers

Minimum

Starting flow

rate

1 4 4 6.95 14.95 20.3

1 4 3 8.48 15.48 20.5

1 3 4 8.65 15.65 20.5

1 4 9.18 4 17.18 22.0

1 4 9.1 3 16.1 21.1

1 3 7.75 4 14.75 21.1

Table 9: Condensed table of fluid flows for three layers made up of fluid 1.

Three layers of the same fluid were considered. The condensed results are given in table

9. We considered three layers of fluid 1, as this fluid has a higher breakup flow rate than

most of the other fluids considered. We were able to form a three layer curtain while

still being able to observe breakup. There does not appear to be much difference in the

total breakup flow rates between the first three rows in table 9. This suggests that the

change in the flow rates considered in these rows are not significant enough to show any

pattern. In considering the fourth through sixth rows of table 9 we see the stabilising

effect of reducing the flow rate of either layer 3 or layer 1 but the total breakup flow rate

is not reduced enough to be significantly more stable than that of the total breakup flow

rates given in the first to third rows. The hysteresis window for three layers of fluid 1 is
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smaller than a single layer of the same fluid. This is due to the three layer flow being more

unstable but the startup flow rate is similar to that of a single layer.

1.5 Summary

In this section we have given an overview of the experiments we performed on curtain

coating stability. We have shown that in general for multiple layers of fluid reducing the

flow rate in layer 1 has the effect of reducing the total breakup flow rate and stabilising

the curtain.

We were unable to compare directly against the Dyson formula for stability due to not

knowing the thickness of the curtain as it falls. Also the measurements of surface tension

we have are for a static fluid, as the surface tension changes with fluid flow due to the use

of insoluble surfactants, so the dynamic surface tension of the falling film are not known.

We have looked at varyious fluids and their effects upon the hysteresis window. We found

that multiple layers of the same fluid have a similar minimum startup flow while the

breakup flow is mostly larger causing a smaller hysteresis window.
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2 Stability of Multi-layer Flow Down an Inclined Plane

In order to understand the instabilities present in the curtain coating flows presented in

section 1 we consider the flow over the face of the die before it arrives at the lip. Specifically

the stability of the flow and the existence of any waves that we would expect to observe

which could lead to instabilities in the curtain. To calculate the linear stability of the flow

we must first start with a base state which we take to be a unidirectional flow parallel to

the inclined plane. To this we apply a small perturbation which has a wavenumber and

growth rate. Using appropriate boundary conditions we arrive at an equation relating the

wavenumber to the growth rate with parameters based upon the fluid properties.

2.1 Unidirectional Flow

In figure 2.1 we give the arrangement of our layers whereby we denote the first layer to be

the layer closest to the inclined plane increasing until we arrive at the layer n which has

a free surface. We denote the thickness of the ith layer to be hi and the angle between

the horizontal and the inclined plane to be α. We take the x-axis to be parallel to the

inclined plane and the y-axis to be perpendicular as shown in figure 2.1. To calculate the

unidirectional flow we consider laminar flow over an inclined plane with multiple layers of

fluid as shown in figure 2.1.

To find the velocity field and the thicknesses of the layers of the fluids we consider the

Navier-Stokes equations,

ρi

(
∂u(i)

∂t
+ u(i) · ∇u(i)

)
= −∇p(i) + µi∇2u(i) + ρig, (2.1)

where u(i) denotes the velocity field, ρi denotes the density, p(i) denotes the pressure, µi
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Figure 2.1: Illustration of multiple layers of fluid flowing down an inclined plane.

denotes the viscosity, g denotes the acceleration due to gravity exerted upon the fluid and

the superscripts, (i) denote the fluid layer. For a steady flow with the velocity components

only depending upon y we are left with

0 = −p(i)x + µiu
(i)
yy + gρi sin (α), (2.2a)

0 = −p(i)y + gρi cos (α), (2.2b)

where u(i) is the velocity in the x-direction and α is the angle between the horizontal and

the plane. Solving (2.2b) for pi gives us

p(i) = κi(x) + gρiy cos (α), (2.3)

where κi(x) is the constant (with respect to y) of intergration. The no slip boundary

condition at the plane is

u(i) = 0, at y = 0, (2.4)

and the continuity of velocity, continuity of pressure and dynamic conditions at the inter-

face are

u(i) = u(i+1), at y =
i∑

j=1

hj, (2.5a)
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µiu
(i)
y = µi+1u

(i+1)
y , at y =

i∑
j=1

hj, (2.5b)

p(i) = p(i+1), at y =
i∑

j=1

hj, (2.5c)

for i from 1 to n− 1 and the continuity of pressure and dynamic conditions at the surface

are

u(n)y = 0, at y =
n∑
j=1

hj, (2.6a)

p(n) = p(a), at y =
n∑
j=1

hj. (2.6b)

We can prove by mathematical induction that the p(i)’s are only dependent upon y by first

calculating the pressure at the interface of fluid n and the ambient fluid which gives us

κn(x) = p(a) − gρn cos (α)
n∑
j=1

hj. (2.7)

Then we calculate the pressure at the interface of the ith and (i+ 1)st fluid which gives us

κi(x) = κi+1 + g cos (α)

(
ρi+1

i+1∑
j=1

hj − ρi
i∑

j=1

hj

)
. (2.8)

So by mathematical induction κ is independent of x and hence the p(i)’s are only dependent

upon y. Substituting (2.3) into (2.2a) and setting κ to be a constant and solving for u

gives

u(i)(y) = −g ρi
2µi

sin (α)y2 + biy + ci. (2.9)

2.1.1 Single Layer

For 1 layer we have the velocity profile

u(1)(y) =
gρ1 sinα

µ1

(
h1y −

y2

2

)
, (2.10)
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which we derive from (2.9), (2.4), (2.5) and (2.6). Now we want to find the height of the

fluid given a flow rate, s1, so we want to solve

s1 =

∫ h1

0

u(1)(y)dy, (2.11)

for h1, which implies

ŝ1 = h31/3, (2.12)

where ŝ1 = µ1s1/(gρ1 sinα), which has one real solution,

h1 =

(
3µ1s1
gρ1 sinα

)1/3

, (2.13)

given by solving (2.12). We can verify this is consistent with experiments by substituting

in the values for one layer of fluid 2, with parameters given in table 1, with a flow rate

of s1 = 0.002/0.12m2s−1 giving h1 = 0.00124m to three significant figures. So for the

given flow rate the thickness of the layer is about 1.24mm which is consistent with our

experimental observations comparing visually the height of the fluid at the edge of the

flow against the known height of the edge guides.

2.1.2 Two Layers

For 2 layers we have the velocity profiles

u(1)(y) = −gρ1 sin (α) y2

2µ1

+
g sin (α) (ρ2h2 + ρ1h1) y

µ1

, (2.14a)

u(2)(y) = −gρ2 sin (α) y2

2µ2

+
gρ2 sin (α) (h1 + h2) y

µ2

+
g sin (α)h1 (ρ1h1µ2 + 2µ2ρ2h2 − ρ2h1µ1 − 2 ρ2µ1h2)

2µ1µ2

.

(2.14b)

Now we want to find the height of the fluids given a flow rates s1 and s2 so we want to

solve

s1 =

∫ h1

0

u(1)(y)dy, (2.15a)
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s2 =

∫ (h1+h2)

h1

u(2)(y)dy, (2.15b)

for h1 and h2. Substituting equations (2.14a) and (2.14b) into (2.15a) and (2.15b) and

integrating out gives two coupled cubics in h1 and h2 given by

s1 =
g sin (α)h1

2 (2 ρ1h1 + 3 ρ2h2)

6µ1

, (2.16a)

s2 =
g sin (α)h2

(
2 ρ2µ1h2

2 + 3 ρ1h1
2µ2 + 6h1µ2ρ2h2

)
6µ1µ2

. (2.16b)

We can solve (2.16a) for h2 and substitute into (2.16b) to give a cubic in z = h31 given by

f(h31; s1, s2) = az3 + bz2 + cz + d = 0, (2.17)

where

a =
gρ1

2 sin (α) (9µ2ρ2 − 8 ρ1µ1)

81ρ22µ1µ2

, (2.18a)

b =
8 ρ1

2s1µ1 − 15 ρ1µ2ρ2s1 − 9 s2ρ2
2µ2

9ρ22µ2

, (2.18b)

c =
4µ1s1

2 (3µ2ρ2 − 2 ρ1µ1)

3ρ22gµ2 sin (α)
, (2.18c)

d =
8s1

3µ1
3

3ρ22g2 (sin (α))2 µ2

. (2.18d)

In solving (2.16a) for h2 we have implicitly placed a restriction on h1. Since h2 > 0 from

(2.16a) we arrive after some manipulation to the condition

h1 <

(
3s1µ1

gρ1 sinα

)1/3

≡ ẑ1/3. (2.19)

In general, equation (2.17) has three solutions which are dependent upon the coefficients

(2.18). It is not immediately obvious whether there is one unique realistic solution. By

considering the sign of the coefficients of (2.18) and the turning points of f(z), we are able

to determine that there is only one realistic solution to (2.17), the proof of which we give

below.
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We note that the parameters µ1, µ2 and s1 are all positive. So d > 0 for all values of the

parameters, which gives that f(0) > 0. Also we note that f(ẑ) < 0. So by the intermediate

value theorem there exists at least one root in the interval z = 0 to z = ẑ.

Case 1

We consider what happens when a > 0. Since a > 0 this gives after some manipulation

that b < 0 and c < 0. Since a > 0 two of the roots are at a position less than zero and

greater than ẑ respectively as shown in figure 2.2. Giving us the one root in our interval

as required.

Figure 2.2: Sketch of a possible f(z) for the restrictions given in case 1.

Case 2a

For a < 0 we cannot determine more information so we consider c > 0 which gives after
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some manipulation b < 0. Considering the stationary points given by the solution of

df(z)

dz
= 3az2 + 2bz + c = 0, (2.20)

the solutions of (2.20) are given by

z =
−b±

√
b2 − 3ac

3a
, (2.21)

which has one positive and one negative solution so the only configuration is one root in

the interval z = 0 to z = ẑ as shown in figure 2.3.

Figure 2.3: Sketch of a possible f(z) for the restrictions given in case 2a or 2b(i).

Case 2b(i)

Next we consider c < 0. This does not determine the sign of b so first we consider b < 0.

Considering the midpoint of the two turning points given by

z′′ = − b

3a
< 0. (2.22)
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This leads to a configuration as shown in figure 2.3. But if the discriminant of (2.20) is

negative then there are no turning points and figure 2.4 shows a case of this.

Figure 2.4: Sketch of a possible f(z) for the restrictions given in case 2b(i) or 2b(ii).

Case2b(ii)

For the final case we consider c < 0 and b > 0. If b > 0 then the discriminant of (2.20),

b2−3ac, is negative then f(z) has no turning points and figure 2.4 is what our f(z) should

look like.

We have considered all possible signs of the coefficients of (2.17) and proved that there is

only one root of (2.17) in the range z = 0 to z = ẑ.

To illustrate a typical velocity profile for two layers we have computed the velocity profiles,

plotting (2.14a) and (2.14b), for a two layer flow given by the first row of table 5, at

breakup, shown in figure 2.5.
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Figure 2.5: Plot of (2.14a) and (2.14b) for the two layer flow given by row 1 of table 5.

2.1.3 Three Layers

For three layers we have the velocity profiles

u(1)(y) = −gρ1 sin (α) y2

2µ1

+
g sin (α) (ρ2h2 + ρ1h1) y

µ1

, (2.23a)

u(2)(y) = −gρ2 sin (α) y2

2µ2

+
gρ2 sin (α) (h1 + h2) y

µ2

−g sin (α)h1 (−ρ1h1µ2 − 2µ2ρ2h2 + ρ2h1µ1 + 2 ρ2µ1h2)

2µ1µ2

,

(2.23b)

u(3)(y) = −gρ3 sin (α) y2

2µ3

+
g sin (α) (−ρ2h3 + ρ3h1 + ρ3h2 + ρ3h3) y

µ3

+
1

2µ1

g sin (α)h1 (ρ1h1 + 2 ρ2h2) +
1

2µ2

g sin (α) ρ2
(
h2

2 − h32
)

− 1

2µ3

g sin (α)
(
ρ3h1

2 + 2 ρ3h1h2 + 2 ρ3h1h3 + ρ3h2
2 + 2 ρ3h2h3

+ρ3h3
2 − 2 ρ2h3h1 − 2 ρ2h3h2 − 2 ρ2h3

2
)
,

(2.23c)

and the pressures

p(1)(y) = p(a) + g cos (α) (ρ1y − h1ρ1 − h2ρ2 − h3ρ3) , (2.24a)
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p(2)(y) = p(a) + g cos (α) (ρ2y − h1ρ2 − h2ρ2 − h3ρ3) , (2.24b)

p(3)(y) = p(a) + g cos (α) (ρ3y − h1ρ3 − h2ρ3 − h3ρ3) , (2.24c)

which were computed using equations (2.4), (2.5), (2.6) and (2.9) using a maple script.

We do not pursue the analysis here, but we expect that these equations to have precisely

one solution as for the three layer unidirectional flow on the grounds that only one solution

has been observed experimentally.

2.2 Stability of Three Layer Flow Down an Inclined Plane

We consider an inclined plane with three layers of fluid, numbered 1, 2 and 3 with 1

being the layer closest to the plane and 3 being the layer with a free surface as shown in

figure 2.6. We take the x-axis pointing down along the plane and the y-axis perpendicular

pointing away from the plane. We start by considering the solution for unidirectional flow

down an inclined plane, given in the previous section. To this unidirectional solution we

add a small perturbation of the velocity and pressure.

As we are considering small perturbations of the velocity and pressure we can take the

Navier-Stokes equations and ignore nonlinear terms (since we are considering small per-

turbations of a steady state) and ignore external forces, excepting gravity, we arrive at

the Stokes equations

−∂pj
∂x

+ µj

(
∂2uj
∂x2

+
∂2uj
∂y2

)
+ ρjg sin (θ) = 0, (2.25a)

−∂pj
∂y

+ µj

(
∂2vj
∂x2

+
∂2vj
∂y2

)
− ρjg cos (θ) = 0, (2.25b)

∂uj
∂x

+
∂vj
∂y

= 0 (2.25c)
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Figure 2.6: Illustration of a three layer flow down an inclined plane.

where the µj’s are the dynamic viscosities, the ρj’s are the densities of the fluids, the uj’s

are the velocities in the x direction, the vj’s the velocities in the y direction, g is gravity,

θ is the angle between the horizontal and the incline plane and the pj’s are the pressures.

The subscripts j = 1 to 3 denote the lower, middle and upper fluid respectively. We non-

dimensionalise by scaling the velocity by Û = ρ1gh
2
1 sin (θ)/µ1, time by h1/Û , pressure by

µ1Û/h1 and having a length scale of h1. We introduce the streamfunctions ψj such that

uj = Uj(y) +
∂ψj
∂y

, (2.26a)

vj = −∂ψj
∂x

, (2.26b)

where Uj(y) is the unidirectional steady state velocity solution derived in the previous

section, in which case (2.25c) is automatically satisfied. Taking the partial derivative of

(2.25a) with respect to y, the partial derivative of (2.25b) with respect to x and taking
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the difference of these two equations eliminates the pressure and leaves

∂

∂y

(
∂2uj
∂x2

+
∂2uj
∂y2

)
− ∂

∂x

(
∂2vj
∂x2

+
∂2vj
∂y2

)
= 0. (2.27)

We assume that the perturbations have a normal mode from of exp (ik(x− ct)). So taking

a small perturbation parameter 0 < ε� 1 we assume

ψj(x, y, t) = εφj(y) exp (ik(x− ct)), (2.28a)

pj(x, y, t) = Pj(y) + εqj(y) exp (ik(x− ct)), (2.28b)

γj(x, t) = 1 + εζj exp (ik(x− ct)), (2.28c)

Γj(x, t) = 1 + εξj exp (ik(x− ct)), (2.28d)

hj(x, t) = dej + εηj exp (ik(x− ct)), (2.28e)

where Pi(y) is the unidirectional steady state pressure derived in the previous section, k

is the wavenumber of the perturbation, c is the complex growth rate of the perturbation,

de1 = 0, de2 = h2 and de3 = h2 + h3 as shown in Gao & Lu (2007). Substituting (2.26a)

and (2.26b) into (2.27) gives

∂

∂y

(
∂2

∂x2
∂ψj
∂y

+
∂2

∂y2
∂ψj
∂y

)
+

∂

∂x

(
∂2

∂x2
∂ψj
∂x

+
∂2

∂y2
∂ψj
∂x

)
= 0, (2.29)

which, substituting (2.28a) in, simplifies to the Orr-Sommerfeld equations in the limit of

Stokes flow Gao & Lu (2007)

(D2 − k2)2φj = 0, (2.30)

where D= d
dy

. We take the unidirectional flow (2.23a)-(2.24c) which for three layers in

dimensionless constants and variables is

U1(Y ) = −1

2
Y 2 + Y R3δ3 + Y R2δ2 + Y, (2.31a)
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U2(Y ) = −1

2

R2Y
2

m2

+
Y R3δ3
m2

+
Y R2

m2

+
Y R2δ2
m2

+ R3δ3 + R2δ2 −
R3δ3
m2

−1

2

R2

m2

− R2δ2
m2

+
1

2
,

(2.31b)

U3(Y ) = −1

2

R3Y
2

m3

+
Y R3

m3

+
Y R3δ2
m3

+
Y R3δ3
m3

+
1

2

R2δ2
2

m2

− R3δ2
m3

−1

2

R3δ2
2

m3

+ R3δ3 + R2δ2 +
1

2
− 1

2

R3

m3

− R3δ3
m3

− R3δ2δ3
m3

+
R3δ2δ3
m2

,

(2.31c)

P1(Y ) = −cot (α)− R2 cot (α) δ2 + Pa − R3 cot (α) δ3 + Y cot (α), (2.31d)

P2(Y ) = −R2 cot (α)− R2 cot (α) δ2 + Pa − R3 cot (α) δ3 + Y R2 cot (α), (2.31e)

P3(Y ) = Pa − R3 cot (α)− R3 cot (α) δ2 − R3 cot (α) δ3 + Y R3 cot (α), (2.31f)

where Y = y/h1, m2 = µ2/µ1, m3 = µ3/µ1, δ1 = h2/h1, δ2 = (h2 + h3)/h1, R2 = ρ2/ρ1

and R3 = ρ3/ρ1 are respectively the non-dimensional length and the ratios of viscosities,

fluid thicknesses and densities. We introduce the non-dimensional constants the capillary

number Caj = µjÛ/γj0 which is the ratio of the inertia to the surface tension and the

Marangoni numberMaj = EjΓj0/γj0 where γj0 is the uniform surface tension, Ej is the

surface elasticity and Γj0 is the basic value of the surfactant concentration which gives the

sensitivity of the surface tension to the surfactant concentration. The non-dimensional

force balance across the free surface is

σ3 · n3 + Ca−13 (γ1∇ · n3)n3 − Ca−13

1

H3

∂γ3
∂x

t3 = 0, (2.32)

where σ3 is the stress tensor, H3 =
√

1 + (∂h3/∂x)2, n3 is the normal vector pointing in

the direction of increasing y and t3 is the tangential vector pointing in the direction of

increasing x. The dynamic condition at the interfaces are

(σ3 − σ2) · n2 + Ca−12 (γ2∇ · n2)n2 − Ca−12

1

H2

∂γ2
∂x

t2 = 0, (2.33a)

(σ2 − σ1) · n1 + Ca−11 (γ1∇ · n1)n1 − Ca−11

1

H1

∂γ1
∂x

t1 = 0, (2.33b)
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where Hj =
√

1 + (∂hj/∂x)2 for j = 1, 2. The stress tensor is defined as

σj =

 2mj
∂u
∂x
− pj ∂v

∂x
+ ∂u

∂y

∂v
∂x

+ ∂u
∂y

2mj
∂v
∂y
− pj

 . (2.34)

Also we apply the kinematic condition

∂hj
∂t

+ uj
∂hj
∂x

= vj, (2.35)

at the free surface and interfaces.

A convection-diffusion equation governs the concentrations of insoluble surfactants which

can be written as Halpern & Frenkel (2003)

∂HjΓj
∂t

+
∂HjΓjuj
∂x

= Dsj
∂

∂x

(
1

Hj

∂Γj
∂x

)
, (2.36)

in the one dimensional case where Dsj is the surfactant diffusivity. For our problem we

assume Dsj = 0 and in practice the surface diffusivity is negligible Gao & Lu (2007). A

linear approximation of the relationship between the surfactant concentration and surface

tension is

γj − 1 = Maj(Γj − 1). (2.37)

The no slip boundary conditions at the wall gives

φ1 = 0, Dφ1 = 0 at y = −1. (2.38)

The continuity of velocity and dynamic conditions across the interface closest to the wall

gives

η1DU1 + Dφ1 = η1DU2 + Dφ2, (2.39a)

φ1 = φ2, (2.39b)

m2(D
2 − 3k2)Dφ2 = (D2 − 3k2)Dφ1 − Ca−11 ik3η1, (2.39c)
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(D2 + k2)φ2 − (D2 + k2)φ1 = −Ma1Ca
−1
1 ikξ1, (2.39d)

at y = 0. The continuity of velocity and dynamic conditions across the second interface

gives

η2DU3 + Dφ3 = η2DU2 + Dφ2, (2.40a)

φ2 = φ3, (2.40b)

m3(D
2 − 3k2)Dφ3 = m2(D

2 − 3k2)Dφ2 − Ca−12 ik3η2, (2.40c)

(D2 + k2)φ3 − (D2 + k2)φ2 = −Ma2Ca
−1
2 ikξ2, (2.40d)

at y = δ1. The dynamic conditions at the free surface are

ikη3DP3 +m3(D
2 − 3k2)Dφ3 = −Ca−13 ik3η3, (2.41a)

η3D
2U3 + (D2 + k2)Dφ3 = −Ma3Ca

−1
3 ikξ3, (2.41b)

at y = δ2. The kinematic conditions and transport equations are

η1(U1 − c) + φ1 = 0, at y = 0, (2.42a)

η2(U2 − c) + φ2 = 0, at y = δ1, (2.42b)

η3(U3 − c) + φ3 = 0, at y = δ2, (2.42c)

ξ1(U1 − c) + η1DU1 + Dφ1 = 0, at y = 0, (2.42d)

ξ2(U2 − c) + η2DU2 + Dφ2 = 0, at y = δ1, (2.42e)

ξ3(U3 − c) + Dφ3 = 0, at y = δ2. (2.42f)

Where we have resolved the pressure terms by rearranging the stokes equations in the

x-direction.

The general solution to (2.30) is

φj(y) = Aj cosh (ky) + bj sinh (ky) + Cjy cosh (ky) + hjy sinh (ky), (2.43)
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where the coefficients A, B, C and D are to be found. We substitute (2.43) into (2.38) -

(2.42f) and arrive at a homogeneous linear set of equations which can be expressed as a

matrix as so

M · w = 0, (2.44)

where w = [A1, B1, C1, h1, A2, B2, C2, h2, A3, B3, C3, h3, η1, η2, η3, ξ1ξ2ξ3]
T is the vector of

unknowns and the matrix M is an 18 by 18 matrix with c appearing only linearly on the

diagonal. This allows us to formulate it as a generalized eigenvalue problem of the form

M′ · w = c c′ · w, (2.45)

where M′ is the matrix M with c set to zero and c′ is a diagonal matrix of the coefficients

of c. It can be noted that one can also set det(M) = 0, ignoring the trivial case of

w = 0, to get a polynomial of degree six but finding the roots is not a trivial task. The

parameters that remain after solving (2.45) are the wave speed c and wavenumber k, the

thickness ratios δ1 and δ2, the viscosity ratios m2 and m3, the density ratios R2 and R3,

the Marangoni numbers Ma1, Ma2 and Ma3, the capillary numbers Ca1, Ca2 and Ca3

and the angle of inclination of the plane θ. For simplicity we will assume that the densities

are equal, the capillary numbers are all equal to unity and set the angle of inclination of

the plane to be θ = 0.2.

2.3 Plots of Linear Stability Analysis

We now consider the solutions of (2.45) considering the varying wavenumber to the cor-

responding growth rate. We present our results as a comparison between the growth rate

and wavenumber kc and the wavenumber k.

Briefly we consider two layers of fluid. We label them as in figure 2.1 ignoring layer 3.
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Figure 2.7: Effect of surfactant on the stability of a two layer flow for δ = 0.5, m = 2.5,

Ca1 = Ca2 = 1, Ma2 = 0, θ = 0.2 and varying Ma1 at the interface.

We introduce the non-dimensional variables δ = h2/h1, m = µ2/µ1, Ca1, Ca2, Ma1 and

Ma2, where the Ma’s and Ca’s are defined as above. Considering two layers of fluid we

can see by figures 2.7a and 2.7b that choosing δ = 1/2 can lead to multimode solutions

and stable bandwidths. It should be noted that Gao & Lu (2007) only presented results

where δ = 1.

First we consider the effect of adding an additional layer to Gao & Lu (2007) figure 2a,

where the free surface has surfactant laden on it and the interface is clean. We consider an

additional layer placed above the two layers of Gao & Lu (2007) with the same viscosity

and thickness as our layer 2 and having a clean free surface. This is equivalent to letting

δ1 = δ2 = 1, m1 = m2 = 2.5, Ca1 = Ca2 = Ca3 = 1, θ = 0.2 and Ma1 = Ma3 = 0

and varying Ma2 as shown in figure 2.8. Similar to Gao & Lu (2007) no instability

occurs when m1 < 1 and m2 < 1. Since the upper layers are more viscous than the

lower layer we expect an instability without surfactant as verified in figure 2.8. As in

Gao & Lu (2007) the presence of surfactant both decreases the maximum growth rate

and reduces the bandwidth of the unstable wavenumbers monotonically. The instability

60



0 0.1 0.2 0.3 0.4 0.5 0.6
−2

0

2

4

6

8

10

12
x 10−3

k

kc

 

 
  0
  1
  2
  4
  8
 20
100

Figure 2.8: Effect of surfactant on the stability for δ1 = δ2 = 1, m1 = m2 = 2.5, Ca1 =

Ca2 = Ca3 = 1, Ma1 = Ma3 = 0, θ = 0.2 and varying Ma2.

arising from the more viscous upper layers cannot be completely eliminated by introducing

surfactant to the second interface but is reduced greatly, as there is always a sufficiently

small wavenumber which is unstable for 0 < Ma2 <∞.

Unlike in Gao & Lu (2007) figure 2a we observe kinks in the maximum unstable wavenum-

ber, near k = 0 in figure 2.8, these are where two different modes overlap as shown in

figure 2.9. Unlike for two layer flow with surfactant we can observe multiple unstable

modes which lead to interesting interactions with a change in parameters, as we will fur-

ther investigate. This phenomenon is believed to be a new observation for stability of

multilayer film flows.

Next we consider three layers of fluid where the total initial thickness of the upper two

layers is equal to the lower layer, so δ1 = δ2 = 1/2, and we have surfactant only on the

second interface, so Ma1 = Ma3 = 0. The other parameters are as follows, m1 = m2 = 2.5,
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Figure 2.9: Multiple modes of stability for δ1 = δ2 = 1, m1 = m2 = 2.5, Ca1 = Ca2 =

Ca3 = 1, Ma1 = Ma3 = 0, θ = 0.2 and Ma2 = 8.
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Figure 2.10: Effect of surfactant on the stability for δ1 = δ2 = 0.5, m1 = m2 = 2.5,

Ca1 = Ca2 = Ca3 = 1, Ma1 = Ma3 = 0, θ = 0.2 and varying Ma2.

Ca1 = Ca2 = Ca3 = 1 and θ = 0.2 shown in figure 2.10. This leads to a situation whereby

we can observe a stable bandwidth of wavenumbers sandwiched between two unstable
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bandwidths of wavenumbers. We note also that both modes behave monotonically when

we increase the surfactant concentration of the second interface.
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Figure 2.11: Effect of surfactant on the stability for δ1 = δ2 = 0.5, m1 = m2 = 2.5,

Ca1 = Ca2 = Ca3 = 1, Ma1 = 0, Ma2 = 1.5, θ = 0.2 and varying Ma3.

Taking the case of having a stable bandwidth sandwich from figure 2.10 by letting Ma2 =

1.5 we introduce surfactant to the free surface as shown in figures 2.11a and 2.11b. In

figure 2.11a we can see that increasing Ma3 form 0 to 0.1 causes the second mode to grow

while having little effect upon the first mode. While in figure 2.11b increasing Ma3 from

0.1 to 100 dampens both modes, but notably the first mode much more than the second.

This is also showing adding surfactant is causing the first mode to monotonically decrease

whilst the second mode is exhibiting non-monotonic behavior. When Ma3 ≈ 7.756 we can

see that there is not one but two most rapidly growing wavenumbers. As Ma3 → ∞ the

growth rates do not tend to zero but to a curve close to Ma3 = 100, that is a growth rate

which is comparable in magnitude to having little or no surfactant upon the surface. This

implies that surface immobility does not ensure a stable system.

Again looking at the case in figure 2.10 where a stable bandwidth sandwich is present we
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Figure 2.12: Effect of surfactant on the stability for δ1 = δ2 = 0.5, m1 = m2 = 2.5,

Ca1 = Ca2 = Ca3 = 1, Ma2 = 1.5, Ma3 = 0, θ = 0.2 and varying Ma1.

now consider adding surfactant to the first interface as shown in figures 2.12a and 2.12b.

For the purposes of visualization we have split the plot into two figures with different k-

scales. Both modes are exhibiting non-monotonic behavior over differing Ma1 scales. The

first modes maximum peaks when Ma1 ≈ 6 while the second modes maximum peaks at

Ma1 ≈ 1. While in figures 2.11a and 2.11b the maximum growth rates of the two modes

are decreasing slowly whereas in figures 2.12a and 2.12b the maximum growth rates of the

two modes are decreasing more rapidly.

To further illustrate more clearly what is happening in figures 2.12a and 2.12b we look

more closely at the range of Ma1 = 0.05 to 4, shown in figures 2.13a and 2.13b. In this

range the first mode monotonically increases whilst the second mode increases to a peak

near Ma1 ≈ 0.5 whereupon it decreases.

Adding surfactant to the free surface, of a stable configuration with δ1, δ2 < 1, has a

destabilising effect upon the flow as shown in figure 2.14. Here we have a stable configu-

ration for Ma3 < 0.45 which becomes unstable as we increase Ma3 reaching a maximum
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Figure 2.13: Effect of surfactant on the stability for δ1 = δ2 = 0.5, m1 = m2 = 2.5,

Ca1 = Ca2 = Ca3 = 1, Ma2 = 1.5, Ma3 = 0, θ = 0.2 and varying Ma1.
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Figure 2.14: Effect of surfactant on the stability for δ1 = δ2 = 0.25, m1 = m2 = 0.5,

Ca1 = Ca2 = Ca3 = 1, Ma1 = Ma2 = 0, θ = 0.2 and varying Ma3.

at Ma3 ≈ 2 after which increasing Ma3 has a stabilising effect. Unlike earlier examples

the band of unstable wavenumbers starts at a non zero k implying that large wavelength

perturbations are stable. Increasing Ma3 from Ma3 = 0.6 increases the upper limit of the

unstable band until Ma3 = 1 where increasing Ma3 from here decreases the upper limit.
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The lower limit of the unstable band decreases as Ma3 increases from Ma3 = 0.6. This

case is interesting in particular due to having a stable bandwidth between zero and the k

position of the smallest unstable wavenumber.

Figure 2.15: Plot of growth rate ωI against wavelength λ̄ for the parameters given in

Weinstein and Chen’s figure 3, where we have taken β = π/2.

To give more confidence that our equations are correct we compared our results with

those of Weinstein & Chen (1999). In particular we computed their figure 3 using our

equations which led to figure 2.15. It should be noted that we took Ca = 1/1000 rather

than Ca = 1000 as in Weinstein & Chen (1999) as taking a large capillary number does

not lead to the plot shown suggesting a typo. With these changes and keeping the other

parameters as quoted in the figure caption we arrive at figure 2.15. As we can see our figure

is almost identical to that found in Weinstein & Chen (1999) figure 3. This agreement

supports our equations, especially the cases with no surfactant. To relate the wavelength

and growth rate to our variables we assigned λ̄ = 2π
k

and ωI = Im(kc).
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Figure 2.16: Plot of growth rate kc against wavenumber k for the parameters given in Gao

& Lu (2007) figure 2b.

In comparing our results to those of Gao & Lu (2007) we must note that we found small

differences between our equations and theirs’, namely the m in both equations (2.18) and

(2.20) are not present in our calculations of these equations, thus we expect our results

to be slightly different. After careful analysis of our equations and comparing them to

Weinstein & Chen (1999) we conclude that the equations are correct as we present them.

This is shown in figures 2.16 and 2.17 where we have computed Gao & Lu (2007) figure

2b and 5 respectively. For figure 2.16 we have plotted the mode with the largest growth

rate for each k rather than the unstable mode. It should be noted that although the most

unstable configuration occurs when the Marangoni number related to the free surface

equals 40 whereas Gao & Lu (2007) found the most unstable configuration to have a

Marangoni number of 20 the figures are qualitatively the same. So there is a non-monotonic

relationship between the maximum growth rate and the Marangoni number as shown by

Gao & Lu (2007).
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Figure 2.17: Plot of growth rate kc against wavenumber k for the parameters given in Gao

& Lu (2007) figure 5.

In figure 2.17 again we find small differences between our calculation and Gao & Lu (2007).

The maximum of each case in figure 2.17 are slightly lower than in Gao & Lu (2007) figure

5 and the values of the growth rate curves at c = 0 are larger but again qualitatively both

figures show the same results whereby adding surfactant to the free surface where there is

already surfactant on the interface has a stabilising effect.

All of the plots in Gao & Lu (2007) were recalculated using our equations and similar

results were found as above where a general agreement was found with small but notice-

able differences in the exact values being found. Apart from the discrepancy with the

presence of viscosity ratios in some equations the results are in general agreement for all

the parameter sets given in Gao & Lu (2007) paper.
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3 Nonlinear Investigations of Three Layer Flow Down

an Inclined Plane

In order to better understand the evolution of the unstable flows we derive nonlinear

equations which we solve numerically in section 3.1. These equations lead us to travelling

wave solutions which we find by considering the travelling wave form of the equations

found for the nonlinear evolution. These we solve by a similar numerical method giving

rise to travelling wave branches discussed in detail in section 3.2.

3.1 Nonlinear Evolution of Three Layer Flow Down an Inclined

Plane

To further understand the effects of surfactants upon the dynamics of multi layer flow we

consider the nonlinear evolution of the flow by taking a long wave approximation of the

flow similar to that considered in Tseluiko et al. (2008).

We consider an inclined plane with three layers of fluid, numbered 1, 2 and 3 with 1 being

the layer closest to the inclined plane and 3 being the uppermost layer with a free surface.

We take the x-axis pointing parallel with the inclined plane in the direction of positive

gravitational force and the y-axis perpendicular to and pointing away from the inclined

plane.

We take the Navier-Stokes equations

ρj

(
∂uj
∂t

+ uj · ∇uj

)
= −∇pj + µj∇2uj + ρjg, (3.1a)

∇ · uj = 0 (3.1b)
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Figure 3.1: Illustration of a three layer flow down an inclined plane.

where the µj’s are the dynamic viscosities, the ρj’s are the densities of the fluids, the

uj = (uj, vj) are the velocities in the x and z direction respectively and the pj’s are the

pressures. The subscripts j = 1 to 3 denote the lower, middle and upper fluid respectively.

The no-slip condition and the impermeability of the boundary require that

u1 = 0 (3.2)

at the plane, z = 0. At the first and second interfaces, z = fj(x, t), we have the kinematic

condition,

vj =
∂fj
∂t

+ uj
∂fj
∂x

, (3.3)

continuity of velocity,

vj = vj+1, (3.4a)

uj = uj+1, (3.4b)
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and the dynamic balance of stress,

(σj+1 − σj) · nj − (γj∇ · nj) nj +
1

Hj

∂γj
∂x

tj = 0, (3.5)

where Hj =
√

1 + (∂hj/∂x)2, for j = 1, 2. At the free surface, z = f3(x, t), we have the

kinematic condition,

v3 =
∂f3
∂t

+ u3
∂f3
∂x

, (3.6)

and the dynamic balance of stress,

−σ3 · n3 − (γ3∇ · n3 + pa) n3 +
1

H3

∂γ3
∂x

t3 = 0, (3.7)

where H3 =
√

1 + (∂h3/∂x)2, the σj’s are the stress tensors, the γj’s are the surface

tensions, pa is the atmospheric pressure, tj’s are the unit tangents to the interfaces and

free surface respectively and the nj’s are the unit normals to the interfaces and free surface

respectively. The normal and tangential stress balances at the interfaces are

nj · (σj+1 − σj) · nj = γj∇ · nj, tj · (σj+1 − σj) · nj +
1

Hj

∂γj
∂x

= 0, (3.8)

for j = 1, 2 and

−n3 · σ3 · n3 = γ3∇ · n3 + pa, −t3 · σ3 · n3 +
1

H3

∂γ3
∂x

= 0, (3.9)

at the free surface.

The surfactant concentrations, Γj, are governed by a convection-diffusion equation Halpern

& Frenkel (2003), which in one dimensions can be written as

∂HjΓj
∂t

+
∂HjΓjuj
∂x

= Dsj
∂

∂x

(
1

Hj

∂Γj
∂x

)
, (3.10)

for j = 1, 2, 3 where Dsj is the surfactant diffusivity Gao & Lu (2007). The surfactant

diffusivity can be considered negligible, so we take Dsj = 0.
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The relationship between the surfactant concentration and surface or interfacial tension is

γj − γj0 = −Ej (Γj − Γj0) , (3.11)

where Ej are the surfactant elasticities, for j = 1, 2, 3. We introduce the shifted pressure,

p̃j, to simplify presentation as so

pj = p̃j + pa + ρjgx sin θ − ρjgz cos θ, (3.12)

where θ is the angle between the inclined plane and the horizontal. We non-dimensionalize

variables by writing

x∗ =
1

h1
x, z∗ =

1

h1
z, t∗ =

U0

h1
t, u∗j =

1

U0

uj, v∗j =
1

U0

vj,

p∗j =
h1
µ1U0

p̃j, γ∗j =
1

γj0
γj, Γ∗j =

1

Γj0
Γj, f ∗j =

1

h1
fj,

 (3.13)

as in Tseluiko et al. (2008), for j = 1, 2, 3 where the asterisk denotes a dimensionless

quantity and U0 = ρ1gh
2
1 sin θ/µ1 is the Nusselt surface speed of a flat film flowing down

an inclined plane. We also introduce the Reynolds number, Rej, the capillary number,

Caj, and the Marangoni number, Maj,

Rej =
ρjU0h1
µj

=
Rojρ

2
1gh

3
1 sin θ

2mjµ2
1

, Caj =
µjU0

γj0
=
mjρ1gh

2
1 sin θ

γj0
,

Maj =
EjΓj0
γj0

,

(3.14)

where Roj = ρj/ρ1 and mj = µj/µ1 noting that mj = Ro1 = 1. Substituting (3.13) into

(3.1), dropping the asterisks, we obtain

Rej

(
∂uj
∂t

+ uj
∂uj
∂x

+ vj
∂uj
∂z

)
= −∂pj

∂x
+mj

(
∂2uj
∂x2

+
∂2uj
∂z2

)
, (3.15a)

Rej

(
∂vj
∂t

+ uj
∂vj
∂x

+ vj
∂vj
∂z

)
= −∂pj

∂z
+mj

(
∂2vj
∂x2

+
∂2vj
∂z2

)
, (3.15b)

∂uj
∂x

+
∂vj
∂z

= 0. (3.15c)
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The conditions at the wall are u1 = 0 and v1 = 0 at z = 0. At the interfaces and free

surface z = fj(x, t) the kinematic condition becomes

vj =
∂fj
∂t

+ uj
∂fj
∂x

, (3.16)

for j = 1, 2, 3. The tangential stress balances are given by

2f1x (m2v2z − v1z)−
(
f 2
1x − 1

)
(m2 (u2z + v2x)− (u1z + v1x))

= − 1

Ca1

(
1 + f 2

1x

)1/2
γ1x,

(3.17a)

2f2x

(
m3

m2

v3z − v2z
)
−
(
f 2
2x − 1

)(m3

m2

(u3z + v3x)− (u2z + v2x)

)
= − 1

Ca2

(
1 + f 2

2x

)1/2
γ2x,

(3.17b)

2f3xv3z +
(
1− f 2

3x

)
(u3z + v3x) =

1

Ca3

(
1 + f 2

2x

)
γ3x. (3.17c)

and the normal stress balances are given by

(f 2
1x + 1)

(f 2
1x − 1)

(m2v2z + v1z) + (p1 − p2 + (x− z cot (θ)) (1−Ro2))

=
1

Ca1

(
γ1κ1 +

f1xγ1x

(f 2
1x + 1)

1/2
(f 2

1x − 1)

)
,

(3.18a)

(f 2
2x + 1)

(f 2
2x − 1)

(
m3

m2

v3z + v2z

)
+

1

m2

(p2 − p3 + (x− z cot (θ)) (Ro2 −Ro3))

=
1

Ca2

(
γ2κ2 +

f2xγ2x

(f 2
2x + 1)

1/2
(f 2

2x − 1)

)
,

(3.18b)

(1 + f 2
3x)

(1− f 2
3x)

v3x −
1

m3

(p3 +Ro3x−Ro3z cot (θ))

= − 1

Ca3

(
γ3κ3 +

f3xγ3x

(f 2
3x + 1)

1/2
(f 2

3x − 1)

)
.

(3.18c)

The surfactant relation is given by

γj = 1−Maj(Γj − 1), (3.19)

and the convection-diffusion equation remains unchanged after non-dimensionalizing.
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We introduce a long wave scaling by introducing the parameter 0 < υ � 1 and writing

x =
ξ

υ
, z = z, t =

τ

υ
, v = υw, uj = Uj +O(υ),

wj = Wj +O(υ), pj = υ−1Pj +O(1), fj = Fj +O(υ),

(3.20)

as in Tseluiko et al. (2008). To retain Maringoni traction and surface tension effects, we

assume that

Caj = υ3C ′j, Maj = υ2M ′
j, (3.21)

where C ′j = O(1) and M ′
j = O(1). Also we take γj = O(1) and Γj = O(1). We

also neglect the gravitational component in the z-direction which is the same as letting

cot (θ)� υ−1. We can ignore the nonlinear components of the Navier-Stokes equation by

letting Rej � υ−1 for all j. Expanding the equations at leading order gives

Pjξ = mjUjzz, (3.22a)

Pjz = 0, (3.22b)

Ujξ = −Wjz, (3.22c)

U1 = 0, z = 0, (3.22d)

W1 = 0, z = 0, (3.22e)

Wj = Fjτ + UjFjξ, z = Fj, (3.22f)

m2U2z − U1z =
M ′

1Γ1ξ

C ′1
, z = F1, (3.22g)

m3

m2

U3z − U2z =
M ′

2Γ2ξ

C ′2
, z = F2, (3.22h)

U3z = −M
′
3Γ3ξ

C ′3
, z = F3, (3.22i)
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P1 − P2 + ξ (1−Ro2) = −F1ξξ

C ′1
, z = F1, (3.23a)

P2 − P3 + ξ (Ro2 −Ro3) = −m2
F2ξξ

C ′2
,z = F2, (3.23b)

P3 + ξRo3 = −m3
F3ξξ

C ′3
,z = F3, (3.23c)

W1 = W2, z = F1, (3.23d)

W2 = W3, z = F2, (3.23e)

U1 = U2, z = F1, (3.23f)

U2 = U3, z = F2, (3.23g)

Γjτ + (ΓjUj)ξ = 0, z = Fj, (3.23h)

where j = 1, 2, 3.

Substituting (3.22f) into (3.22c) and using (3.22e), (3.23d) and (3.23e) gives us a set of

linked partial differential equations describing the interface and free surface positions given

by

F1τ = − (q1)ξ , (3.24a)

F2τ = − (q1 + q2)ξ , (3.24b)

F3τ = − (q1 + q2 + q3)ξ , (3.24c)

where the fluxes q1, q2 and q3 are given by

q1 =

∫ F1

0

U1dz, (3.25a)

q2 =

∫ F2

F1

U2dz, (3.25b)

q3 =

∫ F3

F2

U3dz. (3.25c)

Equations (3.24) describe the relationship between the interfaces and free surface positions

and the local velocities of the fluids below. The rate of change with respect to time of

75



the interfaces and free surface is equal to the negative of the rate of change of the fluxes,

given by (3.25), of the fluids below the particular interface or free surface with respect to

distance parallel to the inclined plane. We find the Ui’s by solving (3.22a) for Ui using

(3.22b) giving

U1 =
z2

2
P1ξ + A1z, (3.26a)

U2 =
z2

2m2

P2ξ + A2z +B2, (3.26b)

U3 =
z2

2m3

P3ξ + A3z +B3, (3.26c)

where we find the Pi’s by solving (3.23a), (3.23b) and (3.23c) giving

P1 = −F1ξξ

C ′1
−m2

F2ξξ

C ′2
−m3

F3ξξ

C ′3
− ξ, (3.27a)

P2 = −m2
F2ξξ

C ′2
−m3

F3ξξ

C ′3
− ξRo2, (3.27b)

P3 = −m3
F3ξξ

C ′3
− ξRo3, (3.27c)

where the Ai’s are found using (3.22g), (3.22h) and (3.22i) and the Bi’s are found using

(3.23f) and (3.23g)

A1 = −M
′
1Γ1ξ

C ′1
− F1P1ξ + F1P2ξ +m2A2, (3.28a)

A2 = −M
′
2Γ2ξ

C ′2
− F2P2ξ

m2

+
F2P3ξ

m2

+
m3A3

m2

, (3.28b)

A3 = −M
′
3Γ3ξ

C ′3
− F3P3ξ

m3

, (3.28c)

B2 =
F 2
1

2

(
P1ξ −

P2ξ

m2

)
+ F1 (A1 − A2) , (3.28d)

B3 =
F 2
2

2

(
P2ξ

m2

− P3ξ

m3

)
+ F2 (A2 − A3) +B2. (3.28e)

These equations have no clear analytic solution so we resort to numerical analysis of the
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equations. We use an implicit first order time step given by(
F (j),n+1 − F (j),n

dτ

)
+

1

2
q
(j),n+1
ξ +

1

2
q
(j),n
ξ = 0, (3.29a)(

G(j),n+1 −G(j),n

dτ

)
+

1

2
Q

(j),n+1
ξ +

1

2
Q

(j),n
ξ = 0, (3.29b)

where F (j),n is the position of the j interface at the n time step, G(j),n is the surfactant

concentration of the j interface at the n time step, q(j),n is the quantity within the ξ

derivative on the right hand side of (3.24), Q(j),n is the quantity within the ξ derivative of

(3.23h), (j) denotes the different fluids, n is the time step and dτ is the time step size for

j = 1, 2, 3. We define dξ = 2L/(N + 1) where L is half the wavelength and N determines

the number of points in space. We then approximate F (j),n+1 = f (j) and G(j),n+1 = g(j),

say, spectrally by writing them as a discrete Fourier transform

f (j)(z) =
N∑

n=−N

f̂ (j),n exp (ikz), (3.30a)

g(j)(z) =
N∑

n=−N

ĝ(j),n exp (ikz), (3.30b)

where j = 1, 2, 3, i =
√
−1 and the hat denotes the Fourier coefficients. This makes

numerically computing the derivatives simpler and faster. Let H
(j),n+1
i and K

(j),n+1
i be

the left hand sides of (3.29) defined by

H
(j),n+1
i =

f
(j)
i − F (j),n

dτ
+

1

2
q̂
(j),n+1
ξ,i +

1

2
q̂
(j),n
ξ,i , (3.31a)

K
(j),n+1
i =

g
(j)
i −G(j),n

dτ
+

1

2
Q̂

(j),n+1
ξ,i +

1

2
Q̂

(j),n
ξ,i , (3.31b)

where j = 1, 2, 3 and the hat denotes the q’s and Q’s evaluated with the approximation

of the discrete Fourier transform as given by (3.30). We seek to make the H
(j),n+1
i ’s and

K
(j),n+1
i ’s zero by using Newtons method as described below. Let

x =
(
f̂ (1),−N , ..., f̂ (1),N , ĝ(1),−N , ..., ĝ(1),N , f̂ (2),−N , ..., f̂ (2),N , ĝ(2),−N , ..., ĝ(2),N ,

f̂ (3),−N , ..., f̂ (3),N , ĝ(3),−N , ..., ĝ(3),N
)
,

(3.32)
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be the vector of discrete Fourier transform coefficients which we are using Newton’s method

to calculate and

H =
(
H

(1),n+1
1 , ..., H

(1),n+1
2N+1 , K

(1),n+1
1 , ..., K

(1),n+1
2N+1 , H

(2),n+1
1 , ..., H

(2),n+1
2N+1 ,

K
(2),n+1
1 , ..., K

(2),n+1
2N+1 , H

(3),n+1
1 , ..., H

(3),n+1
2N+1 , K

(3),n+1
1 , ..., K

(3),n+1
2N+1

)
,

(3.33)

be the vector of the equations we are solving for. Given an initial guess x = X say there

is an improved guess given by X+h such that H(X+h) ≈ 0. Expanding this as a Taylor

series gives

H(X + h) = H(X) + h · J(X) +O(h2), (3.34)

where j = 1, 2, 3 and Ji,n = ∂Hi/∂xn. Rearranging (3.34), ignoring O(h2) and using the

assumption that H(X + h) ≈ 0, gives

h = −J−1 ·H (X) , (3.35)

where j = 1, 2, 3. So the new corrected guess is x = X−J−1 ·H (X). We iterate this until

the 2-norm drops below a specified tolerance, say 10−5. This gives us the wave profile at

the new time step which we can march forward to a specified end time.

Shown in figure 3.2 is the comparison of the maximum growth rate given by a linear

stability analysis of equations (3.24) above compared to the nonlinear evolution calculation

above. As we can see in figure 3.2 the change in the maximum from the nonlinear evolution

calculation agrees with the linear growth rate for a short time period which we expect as

after this the nonlinear dynamics start to take over.

3.2 Travelling Wave Solutions of Multi Layer Flows

Numerical calculations of the nonlinear evolution equations for large τ suggest that there

exists travelling wave solutions. For two layers of fluid taking δ = 1.5 m = Ro = Ca2 =
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Figure 3.2: Plot of the logarithm of the maximum of the amplitude over time τ in blue

and the a straight line with slope given by the growth rate determined by normal mode

linear stability analysis of (3.24) in red.

Ma1 = Ma2 = 1, Ca1 = 1.1 and k = 0.7, calculating the initial condition based on the

wave profile of the unstable mode at this k and marching foreword in time to τ = 800

gives figure 3.3 and figure 3.4. As we can see from figure 3.3 and figure 3.4, after τ ≈ 100

the amplitude of the free surface and interface position and surfactant concentration does

not change suggesting we have arrived at a stable solution which could be a travelling

wave solution. We also show the waveforms at τ = 800 in figure 3.5. We investigate this

travelling wave further in case study 2 section 3.2.2.
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Figure 3.3: Amplitude of free surface and interface position over τ for δ = 1.5, m = Ro =

Ca2 = Ma1 = Ma2 = 1, Ca1 = 1.1 and k = 0.7.
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Figure 3.4: Amplitude of free surface and interface surfactant concentration over τ for

δ = 1.5, m = Ro = Ca2 = Ma1 = Ma2 = 1, Ca1 = 1.1 and k = 0.7.
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Figure 3.5: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.7 with δ = 1.5, m = Ro = Ca2 =

Ma1 = Ma2 = 1 and Ca1 = 1.1.

We seek steady state travelling wave solutions of (3.24) by writing (3.24) and (3.23h) as

F (j)
τ + q

(j)
ξ = 0, (3.36a)

G(j)
τ +Q

(j)
ξ = 0, (3.36b)

where j = 1, 2, 3 and q
(j)
ξ corresponds to the integrals on the right hand side of (3.24)

and Q(j) = GjUj, where Uj is defined in (3.26). Introducing a travelling wave coordinate

z = ξ − cτ , where c is a wave speed to be found, seeking solutions F (j)(z), G(j)(z), q(j)(z)

and Q(j)(z) and using the chain rule gives

−cF (j)
z + q(j)z = 0, (3.37a)

−cG(j)
z +Q(j)

z = 0, (3.37b)

where j = 1, 2, 3 and the F (j)’s, G(j)’s q(j)’s and Q(j)’s are dependent upon z only. This

means we now have six coupled ordinary differential equations which can be integrated to
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give

−cF (j) + q(j) = d(j), (3.38a)

−cG(j) +Q(j) = d(j+3), (3.38b)

where j = 1, 2, 3 and dj, for j = 1, 2, ..., 6, are constants to be determined. To calculate

the d(j) we consider the conservation of volume for the three profile equations, (3.38a),

and conservation of total concentration for the three surfactant equations, (3.38b). Taking

(3.36) and integrating with respect to ξ over a period gives

∂

∂τ

∫ L

ξ=0

F (j)dξ +
[
q(j)
]L
ξ=0

= 0, (3.39a)

∂

∂τ

∫ L

ξ=0

G(j)dξ +
[
Q(j)

]L
ξ=0

= 0, (3.39b)

where j = 1, 2, 3, L = 2π/k the wavelength and k is the wavenumber. Since q(j) and Q(j)

are periodic (3.39) reduces to

∫ L

ξ=0

F (j)dξ = const.,

∫ L

ξ=0

G(j)dξ = const.. (3.40)

Since
∫ L
ξ=0

F (j)dξ = Lh(j0) and
∫ L
ξ=0

G(j)dξ = Lg(j0) for the unidirectional case, where the

h(j0)’s are the unperturbed film thicknesses and the g(j0)’s are the unperturbed surfactant

concentrations, and we are considering evolutions of the flow from this initial position and

since there is no time dependence for the travelling wave solution (3.40) becomes

1

L

∫ L

ξ=0

F (j)dξ = h(j0),
1

L

∫ L

ξ=0

G(j)dξ = g(j0), (3.41)

where j = 1, 2, 3. Given an initial profile these equations do not lead to a unique solution

as the phase of a travelling wave solution is not set due to the translational invariance of

the flow. This can be uniquely defined by imposing

∫ L

ξ=0

ξF (1)dξ = 0. (3.42)
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It can be shown that this fixes a wave with translational invariance by considering the

function F (1)(ξ) = sin (ξ + φ), where ξ is in the range 0 to 2π and φ is left unset. We

apply (3.42) to our function to give φ = π/2 + 2πn but since sin(x) = sin(x+ 2π) the only

solution is φ = π/2, since sin is periodic, so F (1)(ξ) = sin (ξ + π/2) = cos (ξ).

In considering where to start looking for travelling wave solutions we consider the linear

stability analysis in section 2.2. Travelling wave solutions exist at least where the growth

rate, given by the linear stability analysis, of a particular set of parameters is zero. So in

considering figure 2.9 at k ≈ 0.25 and k ≈ 0.1 we expect a travelling wave branch starting

here since the growth rates vanish. We cannot seek a travelling wave exactly where the

growth rate is zero as this corresponds to a zero amplitude wave. To calculate the initial

wave profiles we perform stability analysis on (3.24) and (3.23h) by letting

F (j) = h(j0) + εF (j0) exp (ikz), G(j) = g(j0) + εG(j0) exp (ikz), (3.43)

where j = 1, 2, 3, F (j0) and G(j0) define the waveform which we calculate below, and ε > 0

a small parameter. Substituting (3.43) into (3.24) and (3.23h) gives a system of linear

equations given by the generalized eigenvalue problem for c

MF = cI(6)F (3.44)

where I(6) is the six by six identity matrix, F =
(
F (10), F (20), F (30), G(10), G(20), G(30)

)
and

M is a six by six matrix with the parameters Ma1, Ma2, Ma3, Ca1, Ca2, Ca3, Ro2, Ro3,

δ2, δ3, m2 and m3. The eigenvalues of the generalized eigenvalue problem (3.44) give us

the values of c the imaginary part of which are the growth rates of the stability problem.

If we substitute a c corresponding to a particular growth rate into (3.44) we can solve

the new generalized eigenvalue problem (3.44) to give the eigenvectors. We choose the

eigenvector whose corresponding eigenvalue is zero, since this is where the travelling wave
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branch is expected to start. This eigenvalue is precisely the F that we require for the

initial wave profile which we set to be

F (j) =h(j0) + 2εRe(F (j0) exp (ikξ)), (3.45a)

G(j) =g(j0) + 2εRe(G(j0) exp (ikξ)), (3.45b)

where j = 1, 2, 3. Now we have an initial wave profile which we expect to be close to the

travelling wave solution for a wavenumber close to the zero growth rate. We introduce a

grid to discretize the spatial dimension by letting Nx be the number of spatial points. To

evolve our initial wave profile towards the travelling wave solution for this wavenumber

we iterate Newton’s method in order to solve (3.38), (3.41) and (3.42) by approximating

the wave profile spectrally by sampling the wave profile given by (3.45) at each grid point

over the wavelength, L. We then approximate F (j) = f (j) and G(j) = g(j), spectrally by

writing them as a discrete Fourier transform

f (j)(z) =
N∑

n=−N

f̂ (j),n exp (ikz), g(j)(z) =
N∑

n=−N

ĝ(j),n exp (ikz), (3.46)

where j = 1, 2, 3, i =
√
−1 and the hat denotes the Fourier coefficients. We substitute the

discrete Fourier transform estimate into the equations we want to solve, (3.38), (3.41) and

(3.42). In order to arrive at a satisfactory estimate for the Fourier coefficients we define

the quantities,

H
(j)
i =− cf (j) + q̂(j) − dj, (3.47a)

K
(j)
i =− cgj + Q̂(j) − dj+3, (3.47b)

Lj =
1

L

∫ L

ξ=0

fjdξ − hj0, (3.47c)

Lj+3 =
1

L

∫ L

ξ=0

gjdξ − gj0, (3.47d)

L7 =

∫ L

ξ=0

ξf1dξ, (3.47e)
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where j = 1, 2, 3 and the hat denotes the qj’s and Qj’s evaluated with the approximation

of the discrete Fourier transform as given by (3.46). We require the equations (3.47) to

be zero in order to satisfy (3.38), (3.41) and (3.42). In order to achieve this we let

x =
(
f̂ (1),−N , ..., f̂ (1),N , ĝ(1),−N , ..., ĝ(1),N , f̂ (2),−N , ..., f̂ (2),N , ĝ(2),−N , ..., ĝ(2),N ,

f̂ (3),−N , ..., f̂ (3),N , ĝ(3),−N , ..., ĝ(3),N
)
,

(3.48)

be the vector of discrete Fourier transform coefficients which we are using Newton’s method

to calculate and

H =
(
H

(1),n+1
1 , ..., H

(1),n+1
2N+1 , K

(1),n+1
1 , ..., K

(1),n+1
2N+1 , H

(2),n+1
1 , ..., H

(2),n+1
2N+1 ,

K
(2),n+1
1 , ..., K

(2),n+1
2N+1 , H

(3),n+1
1 , ..., H

(3),n+1
2N+1 , K

(3),n+1
1 , ..., K

(3),n+1
2N+1 , L1, ..., L7

)
,

(3.49)

be the vector of the equations we are solving for. We use the same method given as (3.34)

and (3.35) in the previous section to calculate an improved guess. This gives us the wave

profile at the new k which we can step by a small enough step size to progress the travelling

wave branch.

After much experimenting with various parameter ranges several points become apparent.

Selecting a k too close to the bifurcation point sometimes leads to the zero amplitude

solution, which equates to the flat profile constant surfactant concentration solution. The

direction of the travelling wave branch, either k increasing from the bifurcation point or

k decreasing, does not appear to be easy to predict apart from noting that at least one

branch decreases from the bifurcation point. If the amplitude of initial guess is too high

the method will not converge but the amplitude of the wave close to the bifurcation point

is difficult to predict. If an amplitude too small is chosen the method tends to converge

to the flat profile. Interestingly when trying to find a particularly difficult traveling wave

branches sometimes, counterintuitively, less spatial grid points are needed to obtain the

first traveling wave solution. In the cases shown below in order to find the traveling wave
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we chose a k within 10−2 of the bifurcation point, an N of around 40 except for the case

discussed above where an N of 20 was required to find the traveling wave solution and an

amplitude of around 0.1 to 0.01.

In order to test the convergence of Newtons method for our setup we plot our initial profile

of the wave given by (3.45) over plots of the first three iterations of Newtons method as

shown in figure 3.6 for k = 0.97 with Ca1 = 1.1 and Ca2 = Ro = Ma1 = Ma2 = m = δ =

1. After three iterations of Newtons method the profiles do not change enough to show

on the plots in figure 3.6 but it takes five iterations of Newtons method to converge for a

tolerance of 10−4. As we can see from figure 3.6 the method allows for an initial guess of

the profiles to be quite different from the solution while converging quickly to the solution.
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Figure 3.6: Plot of convergence of Newtons method from an initial guess for k = 0.97 with

Ca1 = 1.1 and Ca2 = Ro = Ma1 = Ma2 = m = δ = 1.
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Figure 3.7: Plot of convergence of Newtons method increasing the number of Fourier

coefficients for k = 0.97 with Ca1 = 1.1 and Ca2 = Ro = Ma1 = Ma2 = m = δ = 1.

Figure 3.7 illustrates what happens when we increase the number of spatial points from

a small amount. Doing so shows that as we increase the number of spatial grid points we

tend towards a unique profile that is not determined by the number of spatial grid points.

A greater number of grid points is desirable as it increases the accuracy of the profiles but

with an increase in grid points comes an increase in the time taken for each iteration of

Newtons method. Taking N = 40 seems to be a reasonable compromise whereby a good

accuracy is achieved and each iteration of Newtons method takes less than a second on a

basic computer system.

Considering the number of Fourier coefficients as given then the other constant we need

to consider for the numerical method is the step size for k. A smaller step size means less

iterations of Newtons method but since one has to perform at least one iteration per step

there is a limit to how much a small step size can speed up the method. The step size

used varied greatly between the cases considered. Sometimes a step size for k of 0.1 while

at others a much smaller step size for k of 10−4 was required due to a rapid change in the

profiles.
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Figure 3.8: Plot of comparison of a run of the nonlinear code as in figure 3.5 and calculating

the travelling wave solution using the method described above for k = 0.7 with Ca1 = 1.1

and Ca2 = Ro = Ma1 = Ma2 = m = δ = 1.

In figure 3.8 we compare the profiles from running the nonlinear equations using the

method described above, in red dashes, and the profiles generated by calculating the trav-

eling wave profile using the method described above, shown in a blue solid line. The two

profiles show excellent agreement suggesting that at least some long runs of the nonlinear

evolution equations tend to traveling wave forms.

We concentrate on two layer flows for our travelling wave investigation. We compare the

growth rate based on the linear stability analysis of the nonlinear equations (3.24) to

the amplitude, defined as the absolute value of the difference between the maximum and

minimum, of the interface position.
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Traveling Wave Solutions in Two Layer Systems

3.2.1 Case Study 1 - Ca1 = Ca2 = Ro = 1, m = 5, δ = 1.5 and Ma1 = Ma2 = 0
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Figure 3.9: Comparison of the linear growth rate to the amplitude of the travelling wave

solution by wavenumber, k, for Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and no surfactant,

Ma1 = Ma2 = 0.

We have found a travelling wave branch for a surfactant-free two layer flow where m = 5,

δ = 1.5 and Ca1 = Ca2 = Ro = 1 as shown in figure 3.9. This shows, as we expect, that

travelling wave solutions exist without the presence of surfactant. The travelling wave

branch bifurcates from k ≈ 0.8018 which is where the growth rate is zero, as shown in

figure 3.9, and is defined for decreasing k. As we follow the branch closer to k = 0 the

branch becomes harder to resolve requiring a very small step in k due to the increasing

wavelength. As k approaches zero the amplitude of both the free surface and interface
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tend to different non-zero values. This suggests that there may exist an infinitely large

wavelength, non-zero amplitude, travelling wave solution, suggesting that there may exist

a non-periodic single wave solution in the limit of k → 0. The maximum amplitude of the

interface occurs at a similar wavenumber, k ≈ 0.5, as the maximum growth rate.
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Figure 3.10: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.75 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.

The profiles close to the bifurcation point, shown in figure 3.10, are close to sine waves

with a relative phase shift close to π. This is what we would expect as we are close to the

bifurcation point where zero growth rate occurs and so the wave profile should be close to

the wave given from the linear stability analysis which is a sine wave.
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Figure 3.11: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.6 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.

In figure 3.11 we can see a small deformation appearing to the right of the minimum on the

interface and the free surface profile is starting to resemble an inverse sawtooth waveform.

In figure 3.12 the deformation near z = 0 on the interface has become more pronounced

while the free surface has become more rounded near at its maximum and more pointed

near its minimum.
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Figure 3.12: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.4 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.
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Figure 3.13: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.2 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.
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In figure 3.13 we can see a pulse starting to form around the transition between periods

as the interface and free surface position between the pulses is tending to a flat state.

In figure 3.14 we can see the interface and free surface position between the pulses has

become nearly flat while the pulses have become more defined.

z
-40 -20 0 20 40 60 80 100

F
1

0.9

1

1.1

1.2

1.3

1.4
Interface Position

z
-40 -20 0 20 40 60 80 100

F
2

2.35

2.4

2.45

2.5

2.55
Free Surface Position

Figure 3.14: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.1 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.

As we get close to k = 0, as seen in figure 3.15, we see the pulse solution over the transition

between periods where the rest of the profile is flat. The pulses occur at the same position

in the period and mirror each other in their maximum deviation from the flat profile.
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Figure 3.15: Plot of two periods of interface and free surface position for travelling wave

solution at k = 0.01 with Ca1 = Ca2 = Ro = 1, δ = 1.5, m = 5 and Ma1 = Ma2 = 0.
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3.2.2 Case Study 2 - Ca1 = 1.1 and Ca2 = Ro = m = Ma1 = Ma2 = δ = 1
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Figure 3.16: Comparison of the growth rate based on the linear stability to the amplitude

of the travelling wave solution by wavenumber for Ca1 = 1.1 and Ca2 = Ro = m = Ma1 =

Ma2 = δ = 1.

We have found a travelling wave branch for a two layer flow where Ca1 = 1.1 and Ca2 =

Ro = m = Ma1 = Ma2 = δ = 1 as shown in figure 3.16. The travelling wave branch

bifurcates from k ≈ 1.0321 where it tends towards k = 0. As we get closer to k = 0

the brach becomes harder to resolve as the surfactant on the interface tends to zero for

part of a period which causes numerical problems near the transition between zero and

non-zero surfactant concentration. Also a discontinuity in the first derivative of the free

surface surfactant concentration develops at the z position where the interface surfactant

concentration sharply changes from a zero to a non-zero value. The maximum of the

amplitude of the interface is roughly at the same wavenumber, k ≈ 0.4, as the maximum
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of the growth rate.
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Figure 3.17: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.97 with Ca1 = 1.1 and Ca2 = Ro =

m = Ma1 = Ma2 = δ = 1.
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Figure 3.18: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.7 with Ca1 = 1.1 and Ca2 = Ro =

m = Ma1 = Ma2 = δ = 1.

In figure 3.17 the positions are similar to sine waves similar to figure 3.11 but with the

same relative phase. Whereas the surfactant on the interface is already approaching a bell

96



curve shape while the surfactant on the free surface is starting to look like a pulse.

In figure 3.18 a small deformation has appeared to the right of the minima on the interface

position. The free surface is tending towards a bell curve shape. We note the maxima

of the interface and free surface positions are in the same z position. The amplitude of

surfactant concentration on the interface is increasing while the concentration near the

transition between periods tends to zero as k decreases. The surfactant concentration on

the free surface has now become a pulse.
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Figure 3.19: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.5 with Ca1 = 1.1 and Ca2 = Ro =

m = Ma1 = Ma2 = δ = 1.

In figure 3.19 we see that both the interface and free surface positions are tending to a

bell curve shape with a capillary ripple on the right hand side of the interface position.

The minima on the free surface position occurs to the right of the bell curve shape while

it occurs to the left on the free surface position. The surfactant concentration on the

interface has nearly reduced to zero for part of the period. This suggests that the surfactant

is migrating into the small deformation where the minima is on the interface. The free
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surface surfactant concentration has developed a small deformation to the right of the

maxima and the local maxima to the left of the minima has increased.
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Figure 3.20: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.3 with Ca1 = 1.1 and Ca2 = Ro =

m = Ma1 = Ma2 = δ = 1.

In figure 3.20 we can see the positions have developed into a more localized deformation

with the same general profiles as before. The surfactant concentrations have developed in

the same manner. There is a discontinuity in the first derivative at z ≈ −9 (± wavelength)

which may contribute to the numerical calculation breaking down at this wavenumber.
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3.2.3 Case Study 3 - Ca1 = Ca2 = Ro = 1, m = 2, δ = 0.1, Ma1 = 0.1 and

Ma2 = 10.391
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Figure 3.21: Comparison of the growth rate based on the linear stability to the amplitude

of the travelling wave solution by wavenumber for Ca1 = Ca2 = Ro = 1, Ma1 = 0.1,

Ma2 = 10.391, m = 2 and δ = 0.1.

0.25 0.3 0.35 0.4 0.45

G
ro
w
th

R
at
e

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Wavenumber
0.25 0.3 0.35 0.4 0.45

A
m
p
li
tu
d
e
of

In
te
rf
ac
e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

G
ro
w
th

R
at
e

×10-4

0

1

2

3

4

5

6

7

Wavenumber
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

A
m
p
li
tu
d
e
of

In
te
rf
ac
e

0

0.05

0.1

0.15

0.2

0.25

Figure 3.22: Comparison of the growth rate based on the linear stability to the amplitude

of the travelling wave solution by wavenumber for Ca1 = Ca2 = Ro = 1, Ma1 = 0.1,

Ma2 = 10.391, m = 2 and δ = 0.1.

We have found four travelling wave branches for the two layer flow where Ca1 = Ca2 =

Ro = 1, Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1 as shown on the left of figure 3.21
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and both plots in figure 3.22. For the growth rate we have two unstable modes with a stable

bandwidth separating them. The first travelling wave branch bifurcates from k ≈ 0.2381

where the branch tends towards k = 0, the second branch bifurcates from k ≈ 0.4521

where it also tends towards k = 0, the third branch bifurcates from k ≈ 2.3768 where

the branch initially tends towards k = 2.4 before turning around and tending towards

k ≈ 1.3565 before turning around a second time and the fourth branch was discovered

when following the first branch where it turns around at k ≈ 0.1. As the first branch gets

close to k = 0.02 the branch becomes harder to resolve, possibly due to the shock-like

structure developing on the interface and free surface positions. As the second branch

approaches k = 0.237 the branch becomes difficult to resolve further, possibly due to the

increase in the number of oscillations on the interface position. The third branch becomes

difficult to resolve when it approaches k = 1.42 after turning around at k ≈ 1.3565.

A fourth branch was found after calculating the first branches second turning point the

method found a different branch which does not emerge from a point of zero growth rate.

Given a typical wave profile as given in figure 3.24 we can find a solution at half the

wavenumber, k̂ = k/2, which is the same profiles repeated such that they fit twice the

wavelength, a so called harmonic of the branch with wavenumber k. From this we can

construct a branch which has the same wave profiles and concentrations repeated as those

at twice the wavenumber. We shall refer to this as a pseudo-branch. The fourth branch

is different to the other branches in that it branches off from a pseudo-branch as opposed

to a point of zero growth rate as the other branches do.

Branch 1
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Figure 3.23: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.232 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.23 we can see the positions resemble sine waves with maxima in the same z

position. The interface surfactant concentration also resembles a sine wave with relative

phase shift to the positions of π while the free surface surfactant concentration has a phase

shift of about π/2 relative to the interface surfactant concentration.

In figure 3.24 the positions resemble a sawtooth waveform. The interface surfactant con-

centration resembles an inverse sawtooth waveform with the maximums where the mini-

mums are on the interface position. The free surface surfactant concentration more closely

resembles a sine wave where the maximums are between the positions of the maximums

of the interface position and interface surfactant concentration.
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Figure 3.24: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.21 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.25: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.15 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.25 we can see that a deformation has developed in the middle of the periods

in both the position and interface surfactant concentration. The interface surfactant con-

centration has developed a similar deformation to the left of the period transition. The
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free surface surfactant concentration is becoming more pointed at its maximums while the

minimums are staying rounded.
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Figure 3.26: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.1 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.27: Plot of of the comparison between the interface and free surface position for

travelling wave solution at k = 0.1 with Ca1 = Ca2 = Ro = 1, Ma1 = 0.1, Ma2 = 10.391,

m = 2 and δ = 0.1.
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Figure 3.26 shows the position of both the interface and the free surface developing into

what is starting to look like a Fourier transform of a sawtooth waveform. These profiles

are strikingly similar as shown in figure 3.27 where we see the two profiles superimposed

over each other. The interface surfactant concentration has a shape resembling an inverse

sawtooth waveform. The free surface surfactant concentration is now looking more like a

bell curve shape with a small kink on the right hand side of the maximums.

z
-40 -20 0 20 40 60 80 100

F
j

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14
Positions

F1
F2

z
-40 -20 0 20 40 60 80 100

Γ
1

0.9

0.95

1

1.05

1.1

1.15
Interface Surfactant Concentration

z
-40 -20 0 20 40 60 80 100

Γ
2

0.99

1

1.01

1.02
Free Surface Surfactant Concentration

Figure 3.28: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.09705 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.28 we can see more deformations have appeared on the positions and the

interface surfactant concentration while the free surface surfactant concentration remains

mainly unchanged.
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Figure 3.29: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.09 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.29 the interface and free surface are much closer together than in figure 3.28.

The interface and free surface surfactant concentrations remain unchanged except for an

increase in their amplitudes.
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Figure 3.30: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.05 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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in figure 3.30 we can see that the free surface minima are lower than the interface maxima.

The maxima on both the positions and the concentrations have become more pointed.
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Figure 3.31: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.02 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.31 the positions have developed shock like structures to the left of the period.

The interface surfactant concentration also has a shock like structure in the same z position

as the positions. The free surface surfactant concentration has developed an apparent

discontinuity in the first derivative at the same z position.

Branch 2

In figure 3.32 the interface and free surface positions resemble sine waves with a relative

phase shift between the interface and free surface of nearly π/2. The surfactant concentra-

tion on the interface is similar to the interface position while the surfactant concentration

on the free surface is similar to a small phase shift of the free surface position.
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Figure 3.32: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.452 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.33: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.445 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.33 we can see a deformation in the form of a wave around the middle of the

period. The free surface position has a small deformation that mirrors that of the interface

but with a much smaller amplitude. The interface surfactant concentration has a small

deformation resembling the deformation on the interface position while the free surface
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surfactant concentration has a barely noticeable deformation in the same position.
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Figure 3.34: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.44 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.34 we can see the deformations on the interface and free surface position and

surfactant concentration have increased in amplitude to become more like a wave packet.
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Figure 3.35: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.42 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

Figure 3.35 shows the further increase in amplitude of the deformations. We note here
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that the interface position and surfactant concentration has four local maxima in the wave

packet per period. The free surface position also has four local maxima. The free surface

surfactant concentration wave packet is not defined enough for counting the maxima to

be of significant use.
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Figure 3.36: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.4 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.36 the interface position wave packet amplitude has become the amplitude

of the whole wave. The interface position still has four local maxima but a fifth local

maximum is developing to the left of the wave packet. The free surface position wave

packet has increased slightly in amplitude as has the interface and free surface surfactant

concentration.

In figure 3.37 the interface position wave packet minimum has become much smaller than

the minimum outside the wave packet. The interface position now has five local maxima

as does the interface surfactant concentration and free surface position. The free surface

surfactant concentration still has a small amplitude wave packet.
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Figure 3.37: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.34 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.38: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.325 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.38 the wave packet on the interface position has six local maxima and minima.

The rest of the profiles have changed little.
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Figure 3.39: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.237 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.39 we observe that the number of oscillations in both interface and free surface

position and surfactant concentration increases as k decreases. The new oscillations appear

to be forming to the left of the current wave packet as seen when comparing the interface

positions in figures 3.37 and 3.38. At z ≈ −5 in both these figures we can see a small

deformation for k = 0.34 which becomes a local maximum by k = 0.325. The amplitude of

the left most oscillation, at z ≈ −4 to z ≈ −1, increases between k = 0.34 and k = 0.325

to become a similar amplitude to the oscillation to the right of z ≈ −1. The other profiles

follow similar patterns.

Branch 3

The profiles in figure 3.40 resemble sine waves with the interface and free surface positions

having a phase shift of π. The interface surfactant concentration is a small phase shift

of the interface position while the free surface surfactant concentration is a slightly larger

phase shift of the free surface position.
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Figure 3.40: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 2.3773 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.41: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 2.3844 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.41 we can see the interface position is starting to resemble an inverse sawtooth

waveform while the free surface position is starting to resemble a sawtooth waveform

keeping the symmetry between the two positions. The maxima of the interface surfactant
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concentration have become more rounded and the minima more pointed. The maxima of

the free surface surfactant concentration have become more pointed and the minima more

rounded while at the same time looking more like a sawtooth waveform.
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Figure 3.42: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 2.3 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.42 the interface position is starting to look like an inverse sawtooth waveform

whilst the free surface waveform looks like a sawtooth waveform. The interface surfactant

concentration is similar to the interface position with more rounded maxima and a defor-

mation at k ≈ 1. The free surface surfactant concentration has a similar profile to the

interface position but with more rounded minima.

In figure 3.43 we can see that the interface and free surface are closer together than in figure

3.42 and between z ≈ 1 and z ≈ 2 the positions are becoming more flat. The surfactant

concentrations remain unchanged in their shape but have increased in amplitude.
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Figure 3.43: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 2 with Ca1 = Ca2 = Ro = 1, Ma1 = 0.1,

Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.44: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.38 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.44 the interfaces are almost touching with the upper fluid tending to beads

connected by a thin layer of fluid. The interface surfactant concentration is close to zero

at z ≈ 0 in the centre of the period. The free surface surfactant concentration deviates
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from the base level of 1 only by a small amount in comparison to the interface surfactant

concentration.

Branch 4
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Figure 3.45: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.116 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

Figure 3.45 shows the interface and free surface positions and surfactant concentrations

for the pseudo branch near the bifurcations point of the fourth branch denoted by an ’o’

on the right of figure 3.21. These profiles are identical to the ones found in figure 3.23.

Figure 3.46 shows the wave profiles just after the bifurcation point where every other

local maxima and minima are lower and higher respectively than the global maxima and

minima respectively.

In figure 3.47 the interface surfactant concentration, interface and free surface position

local maxima and minima from figure 3.46 have become almost equal to each other. The

free surface surfactant concentration has reduced to a single maximum per period and a

nearly flat profile away from the maxima.
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Figure 3.46: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.1165 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.
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Figure 3.47: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.123 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

The figures presented for the rest of this branch are for wave numbers after the turning

point where, following the branch from the bifurcation point, it changes from k increasing

to k decreasing.
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Figure 3.48: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.08 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.48 for the positions we observe that the maximum and minimum within a period

stay close together while at the same time migrating further away from the maximum

and minimum in the next period. The interface surfactant concentration follows a similar

pattern. The free surface surfactant concentration has become more rounded at its minima.
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Figure 3.49: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.04 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.49 the positions have become pulses with a flat area in between them. The
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interface surfactant concentration has again developed in the same way as the positions.

The free surface surfactant concentration has developed into a single wave per period with

a flat area between them.
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Figure 3.50: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.016 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.1, Ma2 = 10.391, m = 2 and δ = 0.1.

In figure 3.50 the profiles remain unchanged in shape but the distance between pulses has

increased in the positions and interface surfactant concentration and the distance between

the single waves has increased in the free surface surfactant concentration.
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3.2.4 Case Study 4 - Ca1 = 1.1, Ca2 = 0.8, Ro = 1,m = 0.2, δ = 0.35,Ma1 =

0.1405,Ma2 = 0.3
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Figure 3.51: Comparison of the growth rate based on the linear stability to the amplitude

of the travelling wave solution by wavenumber.

We have found travelling wave branches for a two layer flow where Ca1 = 1.1, Ca2 = 0.8,

Ro = 1, Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35 as shown in figure 3.51. Here

we have two unstable modes which overlap. We have found two travelling wave branches.

The first branch bifurcates from k = 1.0713 towards k = 0, which becomes difficult to

resolve near k = 0.5 due to the interface surfactant tending to zero for part of the period,

and the second branch bifurcates from k = 1.9011 towards k = 0.

Branch 1
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Figure 3.52: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.06 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.52 the interface and free surface positions are similar sine waves. The interface

surfactant concentration resembles a sine wave with relative phase shift of π to the interface

position while the free surface surfactant concentration looks like the interface surfactant

concentration with a defamation at z ≈ 3. It is unusual for the traveling wave solution so

close to the bifurcation point to be much of a perturbation from a sine wave.
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Figure 3.53: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.
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In figure 3.53 the interface and free surface position shapes remain unchanged except

in amplitude. The interface surfactant concentration has started looking like an inverse

sawtooth waveform whilst at the same time increasing the amplitude rapidly compared to

the positions and the free surface surfactant concentration. The deformation on the free

surface surfactant concentration has become more pronounced producing a local maximum

of a similar height to the global maxima.
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Figure 3.54: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.8 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.54 the interface and free surface positions are starting to look like sawtooth

waveforms. The interface surfactant concentration has become zero at the transition

between periods while the free surface surfactant concentration has developed a pulse in

the position of zero surfactant concentration on the interface.

In figure 3.55 the interface and free surface positions have developed a deformation to

the left of the maxima in the same position where the interface surfactant concentration

becomes zero. The range for which the interface surfactant concentration is zero has

increased while keeping its shape. The free surface surfactant concentration is developing
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what appears to look like a discontinuity at least in the first derivative.
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Figure 3.55: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.7 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.
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Figure 3.56: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.6 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.56 the deformation on the interface and free surface positions has increased

so that a pulse has started to form at the transition between periods. The interface

surfactant concentration has remained vastly unchanged. The distance between pulses of
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the free surface surfactant concentration has increased in line with what we would expect

with decreasing the wavenumber, k.
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Figure 3.57: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.5025 with Ca1 = 1.1, Ca2 = 0.8,

Ro = 1, Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.57 the interface and free surface position and concentration remain mainly

qualitatively unchanged except noting that due to the decrease in the wavenumber, k,

the distance between the main features has increased. We should note that the apparent

fuzziness in the free surface surfactant concentration is due to a numerical instability

most probably caused by the rapid change at the pulse in the free surface surfactant

concentration.

Branch 2

In figure 3.58 the interface position resembles a sine wave while the free surface position

resembles a reflection of the interface position. The interface surfactant concentration is

similar to the interface position while the free surface surfactant concentration is similar

to a sine wave with a phase shift of π/2 relative to the free surface position.
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Figure 3.58: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.89 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.
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Figure 3.59: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.5 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.59 the interface position has developed a deformation to the right of the max-

imum and the free surface has developed a matching smaller deformation to the right of

the minimum. The interface surfactant concentration has developed a deformation in the
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same position as on the interface position while the free surface surfactant concentration

has developed a deformation in the same position.
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Figure 3.60: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.0 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.

In figure 3.60 the deformation on the interface position has become comparable to the

maxima while the deformation in the free surface position has become almost identical to

the minima. The interface surfactant concentration deformation has become comparable

to the maxima and the free surface surfactant concentration has almost become zero just

to left of the centre of the period.

In figure 3.61 the interface position has developed several oscillations which appears to

be a pulse on a sine wave. The interface surfactant concentration has a similar profile to

the interface position with a sharp point at the minima. On the free surface position a

deformation has appeared at the middle of the period while the minima has become more

rounded. The free surface surfactant concentration has become zero at the middle of the

period while the amplitude has stayed the same.
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Figure 3.61: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.5 with Ca1 = 1.1, Ca2 = 0.8, Ro = 1,

Ma1 = 0.1405, Ma2 = 0.3, m = 0.2 and δ = 0.35.
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3.2.5 Case Study 5 - Ca1 = Ca2 = Ro = 1, m = 2, δ = 0.1, Ma1 = 0.274237 and

Ma2 = 2
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Figure 3.62: Comparison of the growth rate based on the linear stability to the amplitude of

the travelling wave solution by wavenumber with Ca1 = Ca2 = Ro = 1, Ma1 = 0.274237,

Ma2 = 2, m = 2 and δ = 0.1.

We have found travelling wave branches for a two layer flow where Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1 as shown in figure 3.62 and 3.63. Here

we have two unstable modes which meet at a point of zero growth. We have found two

travelling wave branches. The first branch bifurcates from k = 0.3603 towards k = 0. At

k = 0.05 the first branch becomes difficult to resolve further, possibly due to the increase

in the wavelength meaning the features of the profiles become more localised and so much

more spatial points are needed to resolve. The second branch bifurcates from k = 1.9479

towards k = 0. As the second branch passes k = 1 it becomes much more difficult to

resolve which seems to be because of a rapidly decreasing interface amplitude but using a

smaller step in k does not seem to let the branch progress further.
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Figure 3.63: Comparison of the growth rate based on the linear stability to the amplitude of

the travelling wave solution by wavenumber with Ca1 = Ca2 = Ro = 1, Ma1 = 0.274237,

Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.64: Comparison of the growth rate based on the linear stability to the amplitude of

the travelling wave solution by wavenumber with Ca1 = Ca2 = Ro = 1, Ma1 = 0.274237,

Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.65: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.35 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.65 the interface and free surface positions resemble sine waves with the same

phase shift. The interface surfactant concentration is a sine wave with a relative phase shift

to the interface position of approximately π while the free surface surfactant concentration

is a phase shift of approximately π/2 to the free surface position.

In figure 3.66 the interface and free surface positions have started to transform into a

sawtooth waveform. The interface surfactant is starting to look like a bell curve shape

while the free surface surfactant concentration remains mainly unchanged.
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Figure 3.66: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.3 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.67: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.2 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.67 the interface and free surface position has developed a deformation to the

left of the maximum. The interface and free surface surfactant concentration are looking

more like bell curve shapes.
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Figure 3.68: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.1 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.68 the interface and free surface position have developed a second deformation

to the left of the maximum. The interface surfactant concentration has developed into two

distinct parts, to the right of the period the profile is close to flat and over the transition

between periods it has an inverse sawtooth waveform with a continuous transition between

the two. The free surface surfactant concentration has developed a small deformation to

the right of the maximum.

In figure 3.69 the interface and free surface position have developed a flat profile at the

right side of the periods. The interface surfactant concentrations flat part has increased

while the free surface surfactant concentration has developed a flat part to the right of the

period.
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Figure 3.69: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.05 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.70: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.94 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.70 the interface position resembles a sine wave while the free surface position

is approximately a refection of the interface position. The interface surfactant surfac-
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tant concentration is a shift of approximately π/2 of the interface position while the free

surface surfactant concentration is approximately a reflection of the interface surfactant

concentration.
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Figure 3.71: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.5 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.71 the interface position is starting to look like an inverse sawtooth waveform

with a deformation to the right of the maxima while the free surface position is keeping

its approximate reflection of the interface position. The interface surfactant concentration

looks like a refection of a bell curve shape while the free surface surfactant concentration

has kept its approximate reflection of the interface surfactant concentration.

In figure 3.72 the interface and free surface position deformation has increased in size.

The interface and free surface surfactant concentration have also developed deformations

at the same position as the maxima on the interface position.

133



z
-4 -2 0 2 4 6 8

F
1

0.94

0.96

0.98

1

1.02

1.04
Interface Position

z
-4 -2 0 2 4 6 8

F
2

1.08

1.09

1.1

1.11

1.12

1.13
Free Surface Position

z
-4 -2 0 2 4 6 8

Γ
1

0.8

0.9

1

1.1

1.2
Interface Surfactant Concentration

z
-4 -2 0 2 4 6 8

Γ
2

0.99

0.995

1

1.005

1.01

1.015
Free Surface Surfactant Concentration

Figure 3.72: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1.2 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.73: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 1 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.73 the interface position deformation has become comparable to the minima

whilst the deformation on the free surface position has increased. The interface surfactant

concentration deformation has not changed whilst the free surface surfactant concentration
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has developed into more of a sawtooth waveform with a curve between the sawtooths.
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Figure 3.74: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.95 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.74 the interface position has developed into a pulse where the maxima and

minima are of equal deviation from Fj = 1. The free surface position has developed a

pulse where the maxima has a much higher deviation from Fj = 1.095 than the minima.

The interface surfactant concentration has continued its shape but with a straight line

developing to the left of the period. The free surface surfactant concentration has remained

vastly unchanged.

In figure 3.75 the shapes of the interfaces and surfactant concentrations are very similar

to 3.74 but have a sharper point at z ≈ 5.
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Figure 3.75: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.8 with Ca1 = Ca2 = Ro = 1, Ma1 =

0.274237, Ma2 = 2, m = 2 and δ = 0.1.
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Figure 3.76: Plot of two periods of interface and free surface, position and surfactant

concentration for travelling wave solution at k = 0.51 with Ca1 = Ca2 = Ro = 1,

Ma1 = 0.274237, Ma2 = 2, m = 2 and δ = 0.1.

In figure 3.76 the interfaces and surfactant concentrations continue to become sharper

causing a pinching of the upper fluid at z ≈ 6.

These cases were chosen to represent a cross section of possible parameter values, where

we have taken the densities of both layers to be equal for all cases. Case 1 gives traveling

wave solutions in the absence of surfactants with a thicker much more viscous upper layer.
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Case 2 shows the traveling wave solutions where the viscosities and layer thicknesses are

the same, the Marangoni numbers and the Capillary number in the upper layer are equal

to 1 and the Capillary number in the lower layer is slightly larger than the upper layer

at 1.1. The larger Capillary number in the lower layer is the cause of the instability in

the linear growth rate. Case 3 is our first case of multiple unstable modes where we have

a more viscous thin upper layer and a much higher surfactant concentration on the free

surface of the upper layer. Case 4 is a case where there is a thin less viscous upper layer,

the Capillary number of the lower layer is slightly more than the upper layer and there is

about twice the surfactant concentration on the upper layer. This leads to the growth rate

curves overlapping. In Case 5 there is a thin more viscous upper layer and the Marangoni

number on the interface has been tuned to allow the growth rate curves to intersect at a

point of neutral stability. This we thought might lead to periodic traveling waves.

Stability of Traveling Wave Solutions
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Figure 3.77: Plot of interface and free surface, position and surfactant concentration for

travelling wave solution at k = 0.7 with Ca1 = 1.1, Ca2 = Ro = Ma1 = Ma2 = m = 1

and δ = 1.5 with a perturbation of the surface as a dashed line.

137



z
-5 -4 -3 -2 -1 0 1 2 3 4 5

F
1

0.4

0.6

0.8

1

1.2

1.4

1.6
Interface Position

z
-5 -4 -3 -2 -1 0 1 2 3 4 5

F
2

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
Free Surface Position

z
-5 -4 -3 -2 -1 0 1 2 3 4 5

Γ
1

0

0.5

1

1.5

2

2.5

3
Interface Surfactant Concentration

z
-5 -4 -3 -2 -1 0 1 2 3 4 5

Γ
2

0.9

0.95

1

1.05

1.1

1.15
Free Surface Surfactant Concentration

Figure 3.78: Plot of interface and free surface, position and surfactant concentration for

travelling wave solution at k = 0.7 with Ca1 = 1.1, Ca2 = Ro = Ma1 = Ma2 = m = 1

and δ = 1.5 with the long term evolution of the perturbation as a dashed line.

To test the stability of the travelling wave solutions we took a travelling wave solution as

computed above and multiplied the solutions by a small perturbation which we took to

be ε sin (kz), where and ran the nonlinear evolution code given in section 2.3 with this as

the initial wave profile. Figure 3.77 shows the travelling wave profiles for k = 0.7 with

Ca1 = 1.1, Ca2 = Ro = Ma1 = Ma2 = m = 1 and δ = 1.5 which was computed in section

2.4.2 and the perturbation of the travelling wave profiles where we have chosen ε = 0.05.

After running the nonlinear evolution code to τ = 200 where the profiles are plotted in

figure 3.78. This shows that this particular travelling wave solution is stable for such a

perturbation as we have presented.

3.3 Summary

We have shown an extension of Gao & Lu (2007) work by considering an equal layer ratio

which can lead to multiple unstable modes not found by Gao and Lu. These solutions

with multiple modes can have stable bandwidths sandwiched by unstable bandwidths as
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shown for certain values in figure 2.7.

We also extended Gao & Lu (2007) work by considering adding a third layer to their

two layer calculations. These also led to solutions with multiple modes where changing

the surfactant concentration made one mode change monotonically whilst making the

other change non-monotonically. In some cases we found that there can exist a range of

stable wavenumbers sandwiched by a region of unstable wavenumbers. This can arise from

having the total thickness of the upper layers of fluid equal to the thickness of the lowest

layer and surfactant only on the interface between layers 2 and 3. Varying the levels of

surfactants in the interfaces and free surface can have interesting effects upon the growth

rates of the different modes. One example of this is for a layer thickness as described in the

previous sentence with surfactant on the interface between layers 2 and 3. Increasing the

concentration of surfactant on the free surface has the effect of monotonically reducing

one mode while having a non-monotonic effect upon the other mode. In considering a

case which is stable in the absence of surfactant, where upper layers are less viscous than

the layers below them, the range or ranges of unstable wavenumbers in the presence of

surfactant do not start from zero wavenumber as in the previous cases. After extensive

search in the literature this appears to be the first time observing this for multi-layer flow

down an inclined plane.

We have derived and solved numerically a set of equations to describe the nonlinear evo-

lution of three layer flow down an inclined plane in the presence of surfactant. Picking an

initial wave profile based on the linear stability analysis either the wave stabilises to a flat

profile denoting a unidirectional flow or a stable wave profile which we surmised to be a

travelling wave profile as given in section 2.3.
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We have considered the presence of travelling wave solutions for two layer flow in the

presence of surfactants. In the vicinity of the point of zero growth rate, there exists a

travelling wave solution of small amplitude. In the travelling wave cases we have consid-

ered, at least one of the travelling wave branches tends towards zero wavenumber from the

bifurcation point. This suggests that for a set of parameters at least one of the traveling

wave branches will tend towards zero wavenumber. In case 1 and 2 the maximum of the

amplitudes are close to the maximums of the growth rate for the linear stability.

In case 3 an unexpected branch was found which bifurcates not from a point of zero

growth rate as the others found do but from a harmonic of branch 1 in case 3. We expect

that there exists other such branches which bifurcate from harmonics of different branches

but we make no further effort to find them in this thesis and it is left for further work.

The existence of this branch may not depend upon the presence of surfactant since all

the branches have harmonics but such a branch has not been found in case 1 where no

surfactant is present.

The presence of turning of the branch and the loops created were also unexpected as it

suggests multiple traveling wave solutions exist for a single wavenumber. The solution

that we expect to observe would depend upon the stability of the different travelling wave

solutions and the initial profile taken for an unsteady time dependent calculation as given

in section 2.2.
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4 Breakup of a Liquid Thread with a Rigid Core

We examine the dynamics of a viscous thread coating a solid core. One example of annular

flow with a core in nature is spider silk. Spiders spin silk of two types, one is hard and

cylindrical and is the main structure of the web (usually the outwards spokes of the web)

and the other which is very elastic and is covered in sticky beads. The sticky beads

are initially excreted as an annular thread over an elastic thread. These break up into

uniformly spaced beads discussed by Boys (1960).

We conduct a normal mode analysis by assuming a small amplitude perturbation of an

annular thread of fluid surrounding a solid core which is initially at rest.

We consider a liquid thread of radius b surrounding a solid core of radius a as in figure 4.1.

We take the z-axis to point along the centre of the solid core and the r-axis to point out

radially from the centre of the thread, perpendicular to z. We use cylindrical coordinates

(r, θ, z) as shown in figure 4.1. We assume the thread has a constant initial velocity along

the z-axis which we take to be zero via a simple Galilean transform of the velocity, so

that the solid core is moving along with the fluid. We assume there is no θ dependence

on the pressure, velocity or the disturbance to the interface, as we do not expect this to

affect thread breakup. For a Rayleigh jet the growth rate of the θ mode is always stable

giving credence to ignoring the θ mode for our calculations. We are considering small

perturbations of the velocity and pressure from the base state described above. We take

the Navier-Stokes equations in cylindrical coordinates as given in Acheson (1990), ignoring

nonlinear terms since we will be taking small perturbations of the velocity, assuming axis

symmetry and ignoring external forces such as gravity we arrive at the equations

∂u

∂t
= −1

ρ

∂p

∂r
+
µ

ρ

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2

)
, (4.1a)
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Figure 4.1: Illustration of a layer of fluid coated on the outer surface of a rigid circular

rod.

∂w

∂t
= −1

ρ

∂p

∂z
+
µ

ρ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
, (4.1b)

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (4.1c)

where µ is the dynamic viscosity, ρ is the density of the fluid, u is the velocity in the

r direction, w the velocity in the z direction and p is the pressure. We introduce a

streamfunction ψ such that

u =
1

r

∂ψ

∂z
, (4.2a)

w = −1

r

∂ψ

∂r
, (4.2b)

in which case (4.1c) is automatically satisfied. Taking the partial derivative of (4.1a) with

respect to z, the partial derivative of (4.1b) with respect to r and taking the difference of

the two equations eliminates the pressure and leaves

∂

∂t

(
∂u

∂z
− ∂w

∂r

)
= ν

(
∂

∂z

(
∇2u+

u

r2

)
− ∂

∂r

(
∇2w

))
. (4.3)

If we let D2 = ∂2

∂r2
− 1

r
∂
∂r

+ ∂2

∂z2
be a differential operator then (4.3) becomes

∂(D2ψ)

∂t
= νD4ψ (4.4)
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and sinceD2 and ∂
∂t
−νD2 commute we can show that without loss of generality ψ = ψ1+ψ2

where

D2ψ1 = 0, (4.5a)

∂ψ2

∂t
− νD2ψ2 = 0. (4.5b)

We introduce a perturbation which we write as a product of exp (int) and exp (ikz). So

taking 0 < ε� 1 we write

u(r, z, t) = εU(r) exp (ikz + int) + C.C., (4.6a)

w(r, z, t) = εW (r) exp (ikz + int) + C.C., (4.6b)

ψ1(r, z, t) = εΨ1(r) exp (ikz + int) + C.C., (4.6c)

ψ2(r, z, t) = εΨ2(r) exp (ikz + int) + C.C., (4.6d)

where k is the real wavenumber of the perturbation, where C.C. is the complex conjugate

of the first part of the expression and n is the complex growth rate. Substituting (4.6)

into (4.5b) gives the differential equation

d2Ψ1

dr2
− 1

r

dΨ1

dr
− k2Ψ1 = 0, (4.7)

and substituting into (4.5a) gives

d2Ψ2

dr2
− 1

r

dΨ2

dr
− k21Ψ2 = 0, (4.8)

where k21 =
(
k2 + in

ν

)
. If we let Ψm(r) = rΨ̃m(r), for m = 1, 2, and substitute into (4.7)

and (4.8) and multiply by r then we get the modified Bessel’s equation

r2
d2Ψ̃1

dr2
+ r

dΨ̃1

dr
− (k2r2 + 1)Ψ̃1 = 0, (4.9)

for m = 1 and similarly for m = 2 we get

r2
d2Ψ̃2

dr2
+ r

dΨ̃2

dr
− (k21r

2 + 1)Ψ̃2 = 0. (4.10)
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Solving (4.9) and (4.10) gives

Ψ1 = A1rI1(kr) +B1rK1(kr), (4.11a)

Ψ2 = A2rI1(k1r) +B2rK1(k1r), (4.11b)

respectively, where A1, A2, B1 and B2 are constants to be found and I1 and K1 are the

modified Bessel functions of the first kind. Substituting back into (4.6) (c and d) we have

ψ = r {A1I1(kr) +B1K1(kr) + A2I1(k1r) +B2K1(k1r)} exp (int+ ikz) , (4.12)

which agrees with Tomotika (1935).

The no slip condition and no penetration into the solid core at the surface of the cylinder

requires [
1

r

∂ψ

∂z

]
r=a

= 0, (4.13)[
−1

r

∂ψ

∂r

]
r=a

= 0, (4.14)

respectively. We describe the surface of the thread by r = f(z, t) as shown in figure 4.2.

Figure 4.2: Illustration of the surface of a liquid thread over a solid core.
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The normal to the surface is given by

n =
∇ (f − r)
|∇ (f − r)|

=

(
−1, ∂f

∂z

)(
1 +

(
∂f
∂z

)2)1/2 . (4.15)

We let f(z, t) = b (1 + εA exp (int+ ikz)), where A is unknown, so (4.15) becomes

n = (1/2,−εbikA exp (int+ ikz) /2) +O(ε2) (4.16)

The kinematic condition on the surface of the thread is

D

Dt
(r − f) = 0, (4.17)

which gives after some simplification A = kψ/(b2n).

We know the jump in stress can be expressed by

[
σ(1) − σ(2)

]
· n = 2κγn, (4.18)

derived from Acheson (1990), where σ(j) is the stress tensor in fluid j, κ is the curvature,

γ is the surface tension, n is the normal vector and the superscripts denote (2) the thread

and (1) the surrounding fluid. Left multiplying (4.18) by n gives

n ·
[
σ(1) − σ(2)

]
· n = 2κγ. (4.19)

Since we are considering zero stress induced by fluid (1), or the outer fluid, and we know

σ = (pa − p)I + 2µe, (4.20)

where pa is atmospheric pressure and e is the rate of strain tensor. Substituting (4.20)

into (4.21) gives

pa − p+ 2
[
−µ(2)n · e(2) · n

]
= 2κγ. (4.21)

Expanding (4.21) and dropping the superscripts gives us

pa − p+ 2µerr − 4µ
∂f

∂z
erz + 2µ

(
∂f

∂z

)2

= 2κγ. (4.22)
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We know that 2κ = ∇ · n, erz = 1
2

(
∂u
∂z

+ ∂w
∂r

)
and err = ∂u

∂r
(see for example Acheson

(1990)). Taking p = p0 + εp1 exp (ikz + int)), at O(1) we have

p0 =
γ

b
− pa, (4.23)

which represents the pressure balance at the interface with no perturbation. At O(ε) we

have

2µ
dU

dr

∣∣∣∣
r=b

− p1 =
γA

b
(1− k2b2), (4.24)

which represents the stress surface tension balance at the interface. We can determine p1

by substituting ψ into (4.1b) to get

εp1
ρ

=
n

kr

∂ψ

∂r
− µ

ρik

((
2

r3
− 1

r2
− k2

r

)
∂ψ

∂r
− 1

r2
∂2ψ

∂r2
+

1

r

∂3ψ

∂r3

)
. (4.25)

The tangential stress component is

t · σ · n = 0, (4.26)

where t is the normal tangential vector pointing in the z direction. Substituting in (4.26)

for t, σ and n gives

−err
∂f

∂z
+ erz

(
∂f

∂z

)2

− erz + ezz
∂f

∂z
= 0. (4.27)

Substituting in for e gives

−∂u
∂r

∂f

∂z
+

(
∂u

∂z
+
∂w

∂r

)(
∂f

∂z

)2

−
(
∂u

∂z
+
∂w

∂r

)
+
∂w

∂z

∂f

∂z
= 0. (4.28)

Since there are no O(1) terms we look at the O(ε) terms

∂u

∂z
+
∂w

∂r
= 0. (4.29)

Substituting the solution for ψ given in (4.12) into (4.11a), (4.11b), (4.29), (4.24) and

(4.25) gives four equations in four variables (A1, A2, B1, B2) whose solution is non-trivial

146



if the determinant of the matrix of coefficients is zero,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(ka) I1(k1a) K1(ka) K1(k1a)

kI0(ka) k1I0(k1a) −kK0(ka) −k1K0(k1a)

2k2I1(kb) (k2 + k21)I1(k1b) 2k2K1(k1b) (k2 + k21)K1(k1b)

F1 F2 F3 F4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.30)

where

F1 =
(
2 iµ k2nb− iρ n3b2 − γ k4b2 + γ k2

)
I1(kb)

+
(
−ρ n2ν bk − 2 iµ k3nb2 + ρ n2ν k

)
I0(kb),

(4.31a)

F2 =
(
−iρn3b2 − γk4b2 + 2iµk2nb+ γk2

)
I1(k1b)

+
(
ρn2νk1 − ρn2k2νk1b

2 − 2iµk2k1nb
2 + ρn2νk31b

2 − ρn2νk1b
)
I0(k1b),

(4.31b)

F3 =
(
−γk4b2 − iρn3b2 + 2iµk2nb+ γk2

)
K1(kb)

+
(
−ρn2νk + 2 iµk3nb2 + ρn2νbk

)
K0(kb),

(4.31c)

F4 =
(
−iρn3b2 − γk4b2 + 2iµk2nb+ γk2

)
K1(k1b)

+
(
−ρn2νk1 + 2iµk2k1nb

2 + ρn2k2νk1b
2 − ρn2νk1

3b2 + ρn2νk1b
)
K0(k1b).

(4.31d)

We can nondimensionalize by letting L = b/a (using a as the length scale), Λ = 2πb/λ = bk

(scaling the wavenumber by a period), S = γρb/µ2 and N = nib2ρ/µ to give∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(ΛL) I1(Λ̂L) K1(ΛL) K1(Λ̂L)

ΛI0(ΛL) Λ̂I0(Λ̂/L) −ΛK0(Λ/L) −Λ̂K0(Λ̂/L)

2Λ2I1(Λ) (2Λ2 +N)I1(Λ̂) 2Λ2K1(Λ) (2Λ2 +N)K1(Λ̂)

F̂1 F̂2 F̂3 F̂4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.32)

where

F̂1 = Λ2
(
2− S + SΛ2

)
I1(Λ)−

(
2Λ3 +N2

)
I0(Λ), (4.33a)

F̂2 = Λ2
(

2N − S + SΛ2Λ̂
)
I1(Λ̂)− Λ̂

(
2Λ2N + 2N2

)
I0(Λ̂), (4.33b)
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F̂3 = Λ2
(
2N − S + SΛ2

)
K1(Λ) + Λ

(
2Λ2N +N2

)
K0(Λ), (4.33c)

F̂4 = Λ2
(
2N − S + SΛ2

)
K1(Λ̂) + Λ̂

(
2Λ2N + 2N2

)
K0(Λ̂), (4.33d)

and Λ̂ =
√

Λ2 +N .

We are only interested in the real part on N for the purposes of determining stability and

as such we let N denote the real part of N from here. We cannot get an explicit solution

for N in terms of Λ as N appears in the argument of the Bessel functions but we can plot

it implicitly by initially fixing Λ at a small value and using Newton’s method to solve for

N . We then increase Λ by a sufficiently small step size and solve for N and continue in

this manner. The numerical method starts to break down near N = 0 as setting N = 0

in (4.32) makes columns 1 and 2, and 3 and 4 equal so that the left hand side of (4.32) is

zero and it is satisfied. So we estimate the solution path as a growth rate curve crosses

the N axis by estimating the solution path by assuming that locally the solution is linear

and using Newton’s method to continue the solution below the axis.

Λ
0 0.2 0.4 0.6 0.8 1

N

×10-3

0

1

2

3

4

5

6

7

8

9

Figure 4.3: Plot of growth rate N against the wavenumber Λ for S = 1 and L = 1/2.
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Figure 4.4: Plot of growth rate N against the wavenumber Λ for S = 1 and L = 1/2.
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Figure 4.5: Plot of growth rate N against the wavenumber Λ for S = 1 and L = 1/2.

Plotting for S = 1 and L = 1/2 and starting at small positive Λ gives us figure 4.3 and

4.4. We have also computed the first completely stable mode as shown in figure 4.5.

These are typical plots for the parameters S and L. The cutoff wavenumber is always at

Λ = 1 as a consequence of the scaling given. For the parameter ranges that we have tested
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there is always precisely one unstable mode, that we attribute to capillary forces causing

a pinching of the fluid jet similar to Rayleigh (1879).

We can compare figure 4.3 directly with Goren (1962) figure 1 where Goren (1962) com-

puted a Taylor expansion of (4.32) around N = 0 we have allowed for any N . The

maximum in figure 4.3 appears to be identical to that found in Goren (1962) figure 1 but

the behaviour for small Λ differs from that of Goren (1962). Near Λ = 0 in figure 4.3

the behaviour appears to be quadratic in Λ while it appears to be linear in Goren (1962)

figure 1.
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Figure 4.6: Plot of growth rate N against the wavenumber Λ for S = 1 and varying L.

The unstable growth rate only changes quantitatively and not qualitatively with S, keeping

its shape, destabilising for S increasing and stabilising for S decreasing. Increasing L has

a stabilising effect as shown in figure 4.6 as we expect. Since increasing L is equivalent to

thinning the fluid layer relative to the solid core. Increasing L also shifts the maximum in

the direction of Λ increasing as shown in figure 4.7 where we have normalised the growth
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Figure 4.7: Plot of growth rate N against the wavenumber Λ for S = 1 and varying L

with curves normalised such that their maximum is 1.

rates such that the maximum of each growth rate is N = 1.

4.1 Summary

In this section we have considered the stability of an annular thread of fluid with a solid

core. As we expect from previous work, we have found that a single unstable mode exists

for a given set of parameters. We have verified our work against that of Goren. We

have found that varying the parameter S has the effect of scaling the growth rate without

changing the Λ coordinate of the maximum growth rate. Changing the parameter L has

the effect of scaling the growth rate and changing the Λ coordinate. Increasing L has

a stabilising effect upon the growth rate while shifting the maximum in the positive Λ

direction.

151



Conclusion

In section 1, we have given an overview of the experiments we performed on curtain coating

stability. We have shown that in general for multiple layers of fluid reducing the flow rate

in layer 1 has the effect of reducing the total breakup flow rate and stabilising the curtain.

In section 2.1, for a two layer unidirectional flow given a set of flow rates, for each fluid,

we have shown that there exists precisely one set of fluid thicknesses which satisfy the

given conditions. We have also postulated that for a three layer unidirectional flow the

same holds on the grounds that only one solution been observed experimentally.

In section 2.2, we have extended Gao & Lu (2007) two layer stability analysis with surfac-

tant to consider two layers of fluid with differing thicknesses and extended this to three

layers. In Gao & Lu (2007) only two layers of equal thickness were considered. This leads

to at most one unstable mode which after extensive testing with the parameters we agree

with. We have considered a thinner upper layer where we have shown that not only do we

have multiple unstable modes but also a stable bandwidth occurring between two unstable

bandwidths.

We also extended Gao & Lu (2007) work by considering adding a third layer to their

two layer calculations. These also led to solutions with multiple modes where changing

the surfactant concentration made one mode change monotonically whilst making the

other change non-monotonically. In some cases we found that there can exist a range of

stable wavenumbers sandwiched by a region of unstable wavenumbers. This can arise from

having the total thickness of the upper layers of fluid equal to the thickness of the lowest

layer and surfactant only on the interface between layers 2 and 3. Varying the levels of

surfactants in the interfaces and free surface can have interesting effects upon the growth
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rates of the different modes. One example of this is for a layer thickness as described in the

previous sentence with surfactant on the interface between layers 2 and 3. Increasing the

concentration of surfactant on the free surface has the effect of monotonically reducing

one mode while having a non-monotonic effect upon the other mode. In considering a

case which is stable in the absence of surfactant, where upper layers are less viscous than

the layers below them, the range or ranges of unstable wavenumbers in the presence of

surfactant do not start from k = 0 as in the previous cases. After extensive search in

the literature this appears to be the first time observing this for multi-layer flow down an

inclined plane.

In section 3.1, we have derived and solved numerically a set of equations to describe

the nonlinear evolution of three layer flow down an inclined plane in the presence of

surfactant. Picking an initial wave profile based on the linear stability analysis either the

wave stabilises to a flat profile denoting a unidirectional flow or a stable wave profile which

we surmised to be a travelling wave profile as given in section 3.2.

In section 3.2, we have considered the presence of travelling wave solutions for three layer

flow in the presence of surfactants. In the vicinity of the point of zero growth rate, there

exists a travelling wave solution of small amplitude. In the travelling wave cases we have

considered, at least one of the travelling wave branches tends towards k = 0 from the

bifurcation point. This suggests that for a set of parameters at least one of the traveling

wave branches will tend towards k = 0. In case 1 and 2 the maximum of the amplitudes

are near to the maximums of the growth rate for the linear stability.

In case 3 an unexpected branch was found which bifurcates not from a point of zero

growth rate as the others found do but from a harmonic of branch 1 in case 3. We expect
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that there exists other such branches which bifurcate from harmonics of different branches

but we make no further effort to find them in this thesis and it is left for further work.

The existence of this branch may not depend upon the presence of surfactant since all

the branches have harmonics but such a branch has not been found in case 1 where no

surfactant is present.

The presence of turning of the branch and the loops created were also unexpected as it

suggests multiple traveling wave solutions exist for a single k. The solution that we expect

to observe would depend upon the stability of the different travelling wave solutions and

the initial profile taken for an unsteady time dependent calculation as given in section 3.1.

In section 4, we have considered the stability of an annular thread of fluid with a solid

core. As we expect from previous work, we have found that a single unstable mode exists

for a given set of parameters. We have verified our work against that of Goren (1962).

We have found that varying the parameter S has the effect of scaling the growth rate

without changing the Λ coordinate of the maximum growth rate. Changing the parameter

L has the effect of scaling the growth rate and changing the Λ coordinate. Increasing L

has a stabilising effect upon the growth rate while shifting the maximum in the positive

Λ direction.
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Further Work

The experiments conducted in section 1 describe a starting point both for comparison

with theoretical results and for further experimentation extending the limits of the work

presented here. With equipment able to produce more consistent low flow rates one would

be able to better investigate the effect of lowering the flow rate of layer 1 on the stability

of the curtain creating a lubrication layer. Specifically with a lower flow rate one can

investigate breakup of three and four layers. These investigations could consider a thin

middle layer or thin upper and lower layers to fully consider the effect of ‘lubricating’

layers. Ambravaneswaran et al. (2004) considers steady capillary jets and the transition

between a stable thread and the formation of droplets. The transition from a stable jet

to droplet formation has a lower flow rate than the transition from droplet formation to a

stable jet describing a hysteresis window. This hysteresis window could have a link to the

hysteresis window observed in the curtain coating experiments considered here and this

link could be further investigated.

From section 2.1 the analysis required to determine if a unique solution exists for a three

layer unidirectional flow given a set of flow rates, for each fluid, is not trivial but with some

substantial analysis headway may be made via complex analysis using winding numbers.

One can use winding numbers to calculate the number of roots within a closed contour on

the complex plane.

In section 2.2 and 2.3 we have considered the linear stability of multi layer flows for a range

of parameters which show interesting behaviour but this does not cover all parameter

ranges. The effect of adding surfactant to the layers for a thin layer compared to the

other layers is one avenue of investigation as is considering a thicker upper layer and
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varying surfactant concentrations. Indeed the possible configurations even with these five

parameters are many. Calculation of neutral stability curves could be considered for the

three layer flows considered in this thesis.

The nonlinear evolution equations given in section 3.1 make several simplifications of the

flow in order to arrive at equations that we can easily solve numerically. These include a

long wave approximation and a constraint on the angle of inclination of the plane. These

simplifications could be relaxed to arrive at an equation which describes the flow in the

presence of inertia and allows for any angle of the inclined plane. Such as system could be

solved using boundary integral computations for steady traveling waves for Stokes flow.

This method could also incorporate inertia. For a Navier-Stokes flow we could utilize a

finite-element method or a level set method. Another avenue of interest could be traveling

waves in three layer layer flows where further work is in preparation in Thompson & Blyth

(2016).

This thesis has considered many cases where travelling wave solutions exist but we cannot

say that for each case we have found all the travelling wave solutions that exist there.

This is shown in the travelling wave branch found in section 3.2.3 case study 3 where a

branch was found that did not emerge from a point of zero stability. Methods may exist

that find all possible travelling wave solutions for a particular wavenumber but these are

not considered in this thesis. Further analysis is needed into the existence of the harmonic

branches that are presented in section 3.2.3 case study 3.

The stability of an annular thread of fluid with a solid core presented here, in section 4,

is a small extension of well known results. The direction that this research could take is

considering a viscoelastic fluid in place of the viscous fluid discussed here to better model
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spider silk or to change the solid core for spheres evenly spaced along the centerline of the

thread. The second extension here is motivated by the pharmaceutical industry. When

manufacturing certain drugs it is desirable to coat the active ingredient in a shell, either

to extend the time between the drug being ingested and when the pill is broken down.

This encapsulation can be achieved by seeding a fluid thread with particles of the active

ingredient periodically along the centre of the fluid. The hope is that the fluid breaks up

into equally sized droplets each with a single particle of the active ingredient while also

reducing the emergence of satellite droplets.
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A Experimental results

Fluid 1

A.1 Single Layer Experiment 1

Experiment number QST QBR Threads

1 28.4 16.9 N/A

2 28 14.35 9 threads

3 28 13.2 8 threads

Experiment number QST QBR Threads

1 28 12.5 8 threads

2 28 10.2 7 threads and 1 oscillating

3 28 9.2 6 threads and 1 oscillating

4 28 7.7 6 threads and 1 oscillating

5 21.6 10.7 N/A

6 21.0 10.5 6 threads and 1 oscillating

A.2 Single Layer Experiment 2

Experiment number QST QBR Threads

1 21 12.7 N/A

2 21 12.9 N/A

3 21.0 10.7 N/A
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A.3 Single Layer Experiment 3

Experiment number QST QBR Threads

1 23.2 12.4 N/A

2 23.2 10.0 N/A

3 23.2 9.4 N/A

A.4 Two Layer Experiment 1

Experiment number Q1 Q2,ST Q2,BR

1 10.5 9.3 6.6

2 10.5 7.2 0 (still stable)

3 8 11.7 3.9

4 7 13.0 4.8

5 9 11.1 0 (still stable)

6 6 13.9 5.9

7 5 15.1 6.4
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A.5 Two Layer Experiment 2

Experiment number Q1 Q2,ST Q2,BR

1 4 17.3 9.8

2 4 17.0 10.3

3 8 13.5 4.5

4 7 13.6 8.7

5 7 13.6 8.5

6 7 13.6 10

7 8 13.5 5.9

8 8 13.5 3.8

9 7 14 6.9

10 7 14 5.1

11 7 14 5.1
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A.6 Two Layer Experiment 3

Experiment number Q1 Q2,ST Q2,BR

1 8 11.5 6.0

2 8 11.5 8.1

3 8 11.5 3.6

4 8 11.5 7.4

5 7 13.2 7.9

6 7 12.8 9.1

7 7 12.8 8.0

8 7 12.8 4.1

9 6 14.2 10.4

10 6 14.2 9.1

11 6 14.2 7.5

12 6 14.2 7.6
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A.7 Three Layer Experiment 1

Experiment number Q1 Q2 Q3,ST Q3,BR

1 4 4 12.3 8.1

2 4 4 12.3 8.7

3 4 4 12.3 6.0

4 4 4 12.3 2.3

5 4 4 14.0 8.2

6 4 4 12.3 10.3

7 4 4 12.3 6.2

8 4 4 12.3 4.0

9 4 4 12.3 8.0

10 4 4 12.3 7.7
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A.8 Three Layer Experiment 2

Experiment number Q1 Q2 Q3,ST Q3,BR

1 4 3 13.5 9.8

2 4 3 13.5 5.6

3 4 3 13.5 9.2

4 4 3 13.5 10.6

5 4 3 13.5 9.0

6 4 3 13.5 8.8

7 4 3 13.5 8.9

8 4 3 13.5 5.9

9 3 4 13.5 9.9

10 3 4 13.5 4.4

11 3 4 13.5 10.4

12 3 4 13.5 9.9
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A.9 Three Layer Experiment 3

Experiment number Q1 Q3 Q2,ST Q2,BR

1 4 4 14.0 9.0

2 4 4 14.0 8.2

3 4 4 14.0 10.5

4 4 4 14.0 9.0

5 4 3 14.1 8.8

6 4 3 14.1 7.6

7 4 3 14.1 9.8

8 4 3 14.1 10.2

9 3 4 14.1 10.0

10 3 4 14.1 4.5

11 3 4 14.1 6.7

12 3 4 14.1 9.8

A.10 One layer experiment

Experiment number QST QBR

1 21.0 13.0

2 21.0 14.6

3 21.0 15.4

4 21.0 14.5
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A.11 Two layer experiment

Experiment number Q1 Q2,ST Q2,BR

1 7.0 14.0 11.0

2 7.0 14.0 11.0

3 7.0 14.0 11.0

4 8.5 14.0 8.0

Fluid 2

A.12 One layer experiment

Experiment number QST QBR

1 16.9 9.9

2 16.9 7.2

3 16.9 4.5

4 16.9 10.9

5 16.9 7.8

6 16.9 5.5

7 16.9 5.7

8 16.9 7.3
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Experiment number QST QBR

1 17.2 3.2

2 17.2 4.1

3 17.2 11.2

4 17.2 6.8

5 17.2 4.8

6 17.2 6.0

7 17.2 4.8

8 17.2 5.0

A.13 Two layer experiment

Experiment number Q1 Q2,ST Q2,BR

1 4.0 13.5 4.5

2 4.0 13.5 3.2

3 4.0 13.5 9.4

4 4.0 13.5 7.1

5 4.0 13.5 6.2

6 4.0 13.5 4.2

7 4.0 13.5 3.2

8 4.0 13.5 3.3

166



Experiment number Q1 Q2,ST Q2,BR

1 3.0 14.8 4.3

2 3.0 14.8 11.1

3 3.0 14.8 0

4 3.0 14.8 1.7

5 3.0 14.8 1.7

6 3.0 14.8 1.3

7 3.0 14.8 0

8 3.0 14.8 2.8

A.14 Three layer experiment

Experiment number Q1 Q3 Q2,ST Q2,BR

1 3 3 10.7 0

2 3 3 10.7 0 (stable)

Fluid 3
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A.15 One layer experiment

Experiment number QST QBR

1 22.7 21.0

2 22.7 8.4

3 22.7 7.3

4 22.7 12.8

5 22.7 8.1

6 22.7 17.3

7 22.7 8.3

8 22.7 14.5

A.16 Two layer experiment

Q1 = fluid 3, Q2 = fluid 2

Experiment number Q1 Q2,ST Q2,BR

1 6.0 N/A 4.7

2 6.0 N/A 9.7

3 6.0 N/A 3.5

4 6.0 N/A 7.8

Experiment number Q1 Q2,ST Q2,BR

1 5.0 17.5 4.5

2 5.0 17.5 7.9

3 5.0 17.5 8.5

Q1 = fluid 2, Q2 = 3
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Experiment number Q1 Q2,ST Q2,BR

1 6.0 25 12

2 6.0 26.9 9.5

3 6.0 27 8.2

Experiment number Q1 Q2,ST Q2,BR

1 5.0 28.3 8.0

2 5.0 28.3 7.8

3 5.0 16.2 5.0

4 5.0 16.2 9.2

5 5.0 16.2 7.4

Fluid 4: 80% glycerol and 0.21% SDS.

A.17 One layer experiment

Experiment number QST QBR

1 16.1 9.7

2 16.1 5.6

3 15.7 7.5

4 15.7 9.1

5 15.7 8.0

6 15.7 8.2

7 15.7 8.8

8 15.7 7.7
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A.18 Two layer experiment

Q1 = fluid 4, Q2 = fluid 3

Experiment number Q1 Q2,ST Q2,BR

1 4.0 12.1 2.2

2 4.0 12.1 7.3

3 4.0 12.1 5.5

4 4.0 12.1 6.0

5 4.0 12.1 5.1

6 4.0 12.1 2.4

7 4.0 12.1 5.1

8 4.0 12.1 0*

*Period of stability then breakup.

Experiment number Q1 Q2,ST Q2,BR

1 3.0 12.8 4.7

2 3.0 12.8 4.9

3 3.0 12.8 5.2

4 3.0 12.8 5.4

5 3.0 12.8 5.4

6 3.0 12.8 2.4

7 3.0 12.8 3.7

8 3.0 12.8 3.6

Q1 = fluid 3, Q2 = fluid 4
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Experiment number Q1 Q2,ST Q2,BR

1 4.0 11.3 6.3

2 4.0 11.3 10.0

3 4.0 11.3 6.8

4 4.0 11.3 5.0

5 4.0 11.3 7.0

6 4.0 11.3 3.3

7 4.0 11.3 5.5

8 4.0 11.3 1.8

Experiment number Q1 Q2,ST Q2,BR

1 3.0 11.9 1.3 on meter

2 3.0 11.9 3.0

3 3.0 11.9 1.3 on meter

4 3.0 11.9 3.9

5 3.0 11.9 3.4

6 3.0 11.9 2.5

7 3.0 11.9 3.8

8 3.0 11.9 4.3

Fluid 5
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A.19 One layer experiment

Experiment number QST QBR

1 12.3 10.7

2 12.3 8.8

3 12.3 9.0

4 12.3 8.0

5 12.3 8.1

6 12.3 11.4

7 12.3 9.9

8 12.3 9.4

Fluid 6

A.20 One layer experiment

Experiment number QST QBR

1 14.4 12.9

2 12.9 9.4

3 13.0 7.8

4 12.3 6.8

5 11.6 10.0

6 11.1 10.5

7 11.1 6.6

8 11.1 6.3
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A.21 Two layer experiment

Q1 = fluid 5, Q2 = fluid 2

Experiment number Q1 Q2,ST Q2,BR

1 4.0 10.0 2.7

2 4.0 10.0 4.2

3 4.0 10.0 6.3

4 4.0 10.0 6.4

5 4.0 10.0 2.3

6 4.0 10.0 6.2

7 4.0 10.0 3.9

8 4.0 10.0 2.0

Experiment number Q1 Q2,ST Q2,BR

1 3.0 10.7 7.0

2 3.0 10.7 4.9

3 3.0 10.7 7.1

4 3.0 10.7 3.9

5 3.0 10.7 9.8

6 3.0 10.7 4.5

7 3.0 10.7 9.8

8 3.0 10.7 3.4

Q1 = fluid 2, Q2 = fluid 6
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Experiment number Q1 Q2,ST Q2,BR

1 4.0 8.2 5.1

2 4.0 8.2 4.6

3 4.0 8.2 1.8

4 4.0 8.2 5.2

5 4.0 8.2 5.0

6 4.0 8.2 6.0

7 4.0 8.2 4.6

8 4.0 8.2 5.8

Experiment number Q1 Q2,ST Q2,BR

1 3.0 8.2 3.8

2 3.0 8.2 2.5

3 3.0 8.2 3.0

4 3.0 8.2 4.1

5 3.0 8.2 3.7

6 3.0 8.2 3.1

7 3.0 8.2 2.6

8 3.0 8.2 3.7

Fluid 7

Experiment number QST QBR

1 14.8 0

2 14.8 3.8

3 14.8 6
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