
“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 1 — #1i
i

i
i

i
i

i
i

A
rticle

TriLoNet: Piecing together small networks to reconstruct
reticulate evolutionary histories
James [Oldman]],1, Taoyang Wu],1, Leo van Iersel2, Vincent Moulton∗,1
1 School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
2 Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands.
]These authors equally contributed to this work.
∗Corresponding author: E-mail: vincent.moulton@cmp.uea.ac.uk.
Associate Editor: ?
?

Abstract

Phylogenetic networks are a generalisation of evolutionary trees that can be used to represent reticulate

processes such as hybridisation and recombination. Here we introduce a new approach called TriLoNet

to construct such networks directly from sequence alignments which works by piecing together smaller

phylogenetic networks. More specifically, using a bottom up approach similar to Neighbor-Joining,

TriLoNet constructs level-1 networks (networks that are somewhat more general than trees) from smaller

level-1 networks on three taxa. In simulations we show that TriLoNet compares well with Lev1athan, a

method for reconstructing level-1 networks from three-leaved trees. In particular, in simulations we find

that Lev1athan tends to generate networks that overestimate the number of reticulate events as compared

with those generated by TriLoNet. We also illustrate TriLoNet’s applicability using simulated and real

sequence data involving recombination, demonstrating that it has the potential to reconstruct informative

reticulate evolutionary histories. TriLoNet has been implemented in JAVA and is freely available at

https://www.uea.ac.uk/computing/TriLoNet.

Key words: Phylogenetic network, reticulate evolution, networks reconstruction, supernetwork

Introduction

Phylogenetic networks are a generalisation

of evolutionary trees that can be used to

represent reticulate evolutionary processes such

as horizontal gene transfer, hybridisation and

recombination (Bapteste et al., 2013). The

importance of such processes in genome evolution

is becoming increasingly appreciated, and several

approaches have been introduced to compute

phylogenetic networks in recent years (see

Gusfield, 2014; Huson et al., 2010; Nakhleh,

2011; Woolley et al., 2008, and the references

therein). There are various types of phylogenetic

networks (cf. Huson et al., 2010); in this article

we are interested in rooted networks which aim

to explicitly represent reticulate events. As with

rooted evolutionary trees, these networks have

vertices and branches or arcs, a single root vertex,

c© The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please email: journals.permissions@oup.com

Mol. Biol. Evol. ?(?):1–18 doi:10.1093/molbev/mst? 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/41993799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 2 — #2i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

a

b c

d

i

e

f

g

h

j
K

(i)

C

a

a

a

b

b

c

d

j f

(ii)

x

x

y
z

y z

(iii)

R

FIG. 1. (i) A level-1 phylogenetic network N , with a cherry
C, a reticulated cherry R and a cactus K indicated by
the dotted ellipses. The bold arc is a cut arc since its
removal disconnects the network. (ii) Three of the trinets
displayed by N . (iii) Two level-1 networks that display
different trinets but exhibit the same set of triplets; the
bold arcs indicate how the triplet xy|z is exhibited.

and their leaves are labelled by the taxa, also

known as OTU’s. However, unlike trees, they can

contain vertices with more than one parent, giving

rise to cycles. For example, in Fig. 1(i) we present

a rooted network which contains three cycles, and

which represents the evolutionary history of the

taxa a,b,...,j. The vertices with two parents in

the cycles, or reticulate vertices, each represent a

reticulate evolutionary event.

Several methods have been developed for

constructing rooted networks, with some

implemented in software packages such as

PhyloNet (Than et al., 2008), PADRE (Lott et al.,

2009), TripNet (Poormohammadi et al., 2014),

and Dendroscope 3 (Huson and Scornavacca,

2012). In this paper we focus on constructing

level-1 networks (also known as galled trees

in Wang et al., 2001), an important family

of rooted networks in which no two distinct

cycles share a common vertex. These networks

are appropriate for situations where modest

amounts of reticulation is believed to have

occurred (Gusfield, 2014) and they have been

used to, for example, represent the evolution of

the fungus F. graminearum (Huson et al., 2010),

and that of HIV and yeast (Huber et al., 2011).

Current methods for computing level-1 networks

(Huber et al., 2011; Jansson and Sung, 2006;

Jansson et al., 2006) aim to exhibit a set of

triplets (rooted trees with three leaves), and one

is implemented in the Lev1athan software (Huber

et al., 2011). All of these triplet-based methods

can be regarded as extensions of the well-

known Aho algorithm (Aho et al., 1981) and its

derivatives (Semple et al., 2004) for constructing

a tree from a collection of triplets.

A general issue with the current triplet-based

approaches for computing level-1 networks is

that they are not consistent. In other words,

even if their input consists of all of the triplets

exhibited by a level-1 network, they do not

necessarily output that network (cf. Gambette

and Huber, 2012). To understand why this is

the case, consider the two simple level-1 networks

on the three leaves x,y,z in Fig. 1(iii). These

two networks both exhibit the triplets xy|z and

xz|y, and so any triplet based method will be

confounded by the problem of not being able

to distinguish between these networks for every

subset of three taxa. A similar problem also

arises for larger networks containing cycles with

four nodes. In addition, when applying triplet-

based approaches to sequence alignments, it is first

necessary to compute triplets. This is typically

2

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 3 — #3i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

done by computing phylogenetic trees on separate

regions of a sequence alignment, breaking these

trees up into triplets and then combining them to

make a collection of triplets (Huber et al., 2011).

Although not necessary, in practice this can mean

that breakpoints also need to be computed, which

can be challenging (Lemey et al., 2009).

Here we introduce a new algorithm called

TriLoNet (Trinet Level-one Network algorithm)

to build level-1 networks. The method works by

piecing together three-leaved, level-1 networks or

trinets (see e.g. Fig. 1(ii)). In particular, TriLoNet

can be thought of as a supernetwork method

for constructing rooted networks from smaller

rooted networks (cf. e.g. Grunewald et al. (2013);

Huson et al. (2004) for examples of supernetwork

approaches for unrooted networks). In contrast to

triplets, the trinets displayed by a level-1 network

do determine the network (Huber and Moulton,

2012). Essentially, the problem illustrated by the

two networks in Fig. 1(iii) does not arise as there

is only one possible trinet on each subset of

three taxa displayed by a network, a fact that

we exploit to show that TriLoNet is consistent. In

addition, we develop a method to compute trinets

from a sequence alignment without the need to

compute breakpoints, thus eliminating the need

to preprocess alignments. This provides a way to

infer networks directly from sequences, which is

an important goal in the theory of phylogenetic

networks (Yu et al., 2014, p.16453).

TriLoNet uses a bottom up approach that

is similar in style to the Neighbor-Joining

algorithm (Saitou and Nei, 1987). Essentially, as

with Neighbor-Joining which selects a cherry at

each stage, TriLoNet identifies either a (possibly

reticulated) cherry or a cactus that hangs off

the bottom of a level-1 network as illustrated by

the dotted ellipses C, R, and K in Fig. 1(i).

It then replaces the selected cherry or cactus

with a single leaf, recomputes the trinet set,

and continues to iteratively look for cherries and

cactuses until a level-1 network is constructed.

This yields a polynomial time algorithm whose

full description is presented in the Materials

and Methods section, and whose consistency is

proven in the Supplementary Material. Note that

alternative algorithms have been presented for

deciding whether or not a collection of trinets fits

perfectly on a level-1 network (e.g. Huber and

Moulton, 2012; Huber et al., 2015) but, unlike

TriLoNet, they are unable to construct a network

for more general collections of trinets that do not

fit perfectly on any level-1 network.

Results and Discussion

We refer to the Materials and Methods section for

the terminology used in this section.

Comparison study

We begin by analysing the effect of introducing

noise into a set of trinets that is consistent with a

level-1 network for both TriLoNet and Lev1athan.

The idea of this approach is to see how the two

3

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 4 — #4i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

methods perform as the data becomes less and

less like that for a given level-1 network. To do

this, we used an experimental scheme adapted

from Huber et al. (2011). Central to this scheme

is a parameter ε which gives the percentage of

noise to be introduced. In particular, for each ε

equal to 0,1,2,5,10,15,20,25,30, using the network

generator in Huber et al. (2011) we obtain a

collection M of random level-1 networks that

contains 100 networks with leaf sizes in the range

1+(10×j) to 10×(j+1) for each 2≤j≤9. Then,

for every network M in M, we constructed the

trinet collection Tε(M) by randomly replacing

ε% trinets in T (M), the collection of all trinets

displayed by M , with ones of different type

chosen uniformly at random. To construct a triplet

collection with a noise level comparable to that

of the trinet collection, we also consider the

collection Trε(M) of all triplets that are exhibited

by some trinet in Tε(M). The collections Tε(M)

and Trε(M) are then used as inputs for TriLoNet

and Lev1athan, respectively.

To measure the similarity between the input

network M and output network N , we compute

the triplet consistency score

C ′(N,M)=
|Tr(N)∩Tr(M)|
|Tr(M)|

as defined in Huber et al. (2011) and a trinet

consistency score C(N,M) using the same formula

with Tr(N) and Tr(M) replaced by T (N) and

T (M), respectively. Here Tr(N) and Tr(M)

denote the collection of all triplets exhibited by N

and M , respectively. Note that both scores take

on values in [0,1]. Moreover, C(N,M)=1 implies

that N is equal to M (Huber and Moulton, 2012),

although this does not necessarily hold for the

C ′-score (cf. Huber et al., 2011, p.643).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 5 10 15 20 25 30

C'-score C-score

FIG. 2. The plot of ε (x axis) against the average triplet
(lines with triangles) and trinet (lines with squares)
consistency score (y axis). TriLoNet scores are indicated
by solid lines, whilst those for Lev1athan by dashed lines.

The average C- and C ′-scores that we obtained

over all inputs are summarised in Fig. 2. Note

that when ε=0 (i.e. there is no noise), the

average C-score for TriLoNet is 1, as expected,

and 0.999 for Lev1athan. So, for a very small

portion of networks in M Lev1athan outputs a

slightly different network, possibly due to the

small cycle problem mentioned above. For the

C ′-score, Lev1athan performs very well and has

an average score close to one, although this does

not imply that it produces networks identical

to the input ones. As probably to be expected,

when ε increases, the average C-score decreases

for both TriLoNet and Lev1athan, but TriLoNet

has much higher C-score, which indicates a higher

topological similarity to the input network in

terms of trinets. For instance, for ε=5, the

average C-score for the networks constructed by

TriLoNet is 0.88 whilst 0.17 for Lev1athan. In

4

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 5 — #5i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

addition, we also computed the difference between

the number of reticulation vertices in input and

output networks for TriLoNet and Lev1athan. The

results are summarised in Fig. 3. They indicate

that compared to TriLoNet, Lev1athan tends to

generate networks with more reticulations than

necessary to represent the input data.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

N
u

m
b

er
 o

f
re

ti
cu

la
ti

o
n

s

Number of leaves

1pc 5pc 10pc

FIG. 3. The median of the difference between the number
of reticulations in the networks constructed by TriLoNet
(solid lines) and Lev1athan (dashed lines) compared with
the input for the networks generated in the noise study. The
x-axis is labelled by the number of leaves and the y-axis by
the median differences. For ε=1,5,10, ε-percent means that
the input data sets for the algorithms are respectively from
the collection Tε(M) and Trε(M) as detailed in the text.

Simulated Data

We also studied the behaviour of TriLoNet on

simulated sequence data. Following the scheme

detailed in Holland et al. (2002, p.2054) for

identifying recombinants, we generated artificial

multiple sequence alignments for the six level-

1 networks N1,...N6 given in Fig. 4. Briefly,

each network Ni contains precisely one reticulate

vertex, the parent of taxon Ri, and two trees:

the left (resp. right) tree consists of all the

arcs of Ni except the arc directed towards the

reticulate vertex from the right-hand (resp. left-

hand). In particular, the taxon Ri represents a

single recombinant sequence. For each network

Ni, we then generated 100 DNA alignments of

length 50,000bp on nine sequences a,b,··· ,h,Ri

by concatenating two subalignments of length

25,000bp that were simulated respectively along

these two trees using Seq-Gen (Rambaut and

Grass, 1997) with the K2P model and transition-

transversion bias 4.

We ran TriLoNet on the resulting alignments.

We found that for networks N4,N5 and N6 (for

which the left and the right trees are more

symmetrical), the TriLoNet networks were the

same as the generating network in all 100 runs and

for networks N1 and N2, that they were the same

for 94 and 96 out of 100 runs, respectively. For

network N3, the output tended not to be identical

to N3, but it still shared 83% of the trinets with

N3 on average. Note that network N3 also caused

difficulties for recombinant detection in Holland

et al. (2002). A closer inspection of the output

networks indicated that they differed from the

input mainly because they contained a cherry with

taxa a and b (data not shown), whilst a and b do

not form a cherry in N3. We also repeated the

simulations with sequences length 100,000bp, and

obtained similar results (data not shown).

Biological data

To illustrate the applicability of our method, we

present its application to three data sets for which

some reticulate events have been documented in

the literature.

HIV: We first consider an HIV data set consisting

of eight HIV sequences with length 9953bp,

representing subtypes A,B,D,F,G,J,H, as well

5

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 6 — #6i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

a b c d he f gR1 R2 R3 a b c d he f gR4 R5 R6

(i) (ii)
FIG. 4. Six level-1 networks used to generate artificial alignments (adapted from Holland et al., 2002, Fig. 6). Here N1
(left) and N4 (right) are drawn in black, while Ni (i=2,3) (resp. i=5,6) is obtained from N1 (resp. N4) by replacing the
parent of R1 and the three arcs incident with it by the parent of Ri and the three arcs incident with it (in light grey).
Branch lengths are drawn to scale; the expected number of substitutions from the root to each leaf is 0.3.

as KAL-153, a recombinant sequence between

subtypes A and B (cf. Lemey et al., 2009, Chapter

16).

This data set was also used to illustrate

Lev1athan in Huber et al. (2011). Since Lev1athan

is not designed to construct level-1 networks

directly from sequence alignments, Huber et al.

(2011) first constructed three gene trees using

Neighbor Joining and the two breakpoints inferred

in Lemey et al. (2009). Then, to obtain a network

with KAL-153 being the only recombinant

sequence, Huber et al. (2011) had to use a variant

of Lev1athan that explicitly assumed that only one

reticulate event had occurred and also restricted

their analysis to the triplets derived from two of

three gene trees. Note also that Huber et al. (2011)

reported that two other network reconstruction

methods, the cluster network and the galled

network as implemented in Huson et al. (2007),

had problems too, postulating between 2 and 4

reticulation vertices (Huber et al., 2011, p.646).

In Fig. 5(i) we present the TriLoNet network

based on the whole sequence alignment which was

computed without any additional assumptions.

This indicates that one reticulate event took place.

However instead of KAL-153, it identifies H as

being the recombinant sequence. To explore this

further, we reran our analysis with sequence H

removed. In Fig. 5(ii) we display the resulting

network, in which KAL-153 now appears as

a recombinant of A and B subtypes, which

agrees with the analysis in Lemey et al. (2009).

In particular, this indicates that TriLoNet has

the potential to identify recombinant sequences,

although some care needs to be taken when

interpreting results.

It is interesting to also compare the TriLoNet

for this data set with the split network

in Fig. 6 generated by the NeighborNet

6

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 7 — #7i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

H

KAL-153

G

D

B

A

J

F

(i)

KAL-153

J

F

G

D

A

B

(ii)
FIG. 5. Phylogenetic networks inferred by TriLoNet for the HIV data set in the text.

algorithm (Bryant and Moulton, 2004)

implemented in SplitsTree (Huson and Bryant,

2006) using the default settings. This network is

not rooted and so, in contrast to the TriLoNet,

the edges do not have directions. The network

does however display bipartitions or splits of

the data that are supported by the Hamming

distance matrix calculated directly from the

sequence alignment. The splits are represented by

sets of parallel edges in the network all having

the same length. In the split network we see

a split represented which separates KAL-153

and subtype A from the rest of the subtypes,

and another split which separates KAL-153 and

subtype B from the rest of the subtypes. This is

consistent with KAL-153 being a recombinant of

subtypes A and B. The main difference is that,

as the split network is not rooted, it does not

represent an explicit evolutionary history for the

data set, whereas the TriLoNet does (although it

should be emphasised that NeighborNet was not

designed to do this).

Giardia: We now consider a giardia data set,

which consists of seven sequences with lengths

approximately 17,000bp concatenated from three

partial chromosomes, 3, 4, 5 with lengths roughly

6,000, 1,500 and 9,500 respectively (Cooper et al.,

2007). Isolate WB represents genotype A1 and all

other isolates genotype A2. In addition, sequences

303 and 305 are identical, and isolate 335 is

believed to be a recombinant (Cooper et al., 2007).

7

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 8 — #8i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

A

KAL-153

B

D

F

H

J

G

0.01

FIG. 6. The split network constructed by the NeighborNet method for the HIV data set.

As the segments from the three chromosomes are

known a priori, and have quite different lengths,

we experimented with introducing some scaling

into trinet calculation (see Step A1 below) to

take these lengths into account. In particular, for

i=3,4,5, denoting by ni the length of chromosome

segment i, and by wi(xy|z) the number of the sites

on chromosome segment i for which sequences x

and y have the same character while x and z

have different characters, we replaced the quantity

w(xy|z) in the computation of trinets by

n3w3(xy|z)+n4w4(xy|z)+n5w5(xy|z)
n3+n4+n5

and do similar replacement for w(yz|x) and

w(xz|y).

The networks inferred by TriLoNet with and

without rescaling incorporated are given in

Fig. 7(i) and Fig. 7(ii), respectively. For reference,

we also picture the split network generated by

the NeighborNet approach in Fig. 2 of the

Supplementary Material. In both of the networks

generated by TriLoNet, WB appears as an

outgroup, as should be the case. Moreover, the

two TriLoNets are quite similar although the

second one postulates that 335 is a recombinant

and is more representative of the three tree

topologies given for each of the three chromosome

segments presented in Cooper et al. (2007,

Figure 3). More specifically, sequences 55, JH,

335 cluster together in the second network,

which is in general agreement with the analysis

presented in Cooper et al. (2007, p.1984). This

analysis suggests that TriLoNet is again able

to produce some informative histories, and also

that it could be useful to rescale when prior

breakpoint information is known concerning the

input alignment.

8

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 9 — #9i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

WB

303, 305

335

JH

55

246

(i)

WB

335

303, 305

246

JH

55

(ii)

FIG. 7. Phylogenetic networks inferred by TriLoNet for the giardia isolates.

HBV: To investigate the applicability of TriLoNet

to larger data sets, we considered 25 HBV

sequences of length 3229bp sampled from five

genotypes (denoted A-D and F) that were

presented in Bollyky et al. (1996). In Fig. 8 we

present the TriLoNet network. As can be seen,

genotypes F, C and A all appear within different

clusters within the network, and genotype D is

almost clustered together, with the exception for

the recombinant sequence HPBADW1. The split

network generated by the NeighborNet approach

(see Fig. 3 in the Supplementary Material) also

clusters together the five genotypes.

For the two recombinant sequences between

different genotypes identified in Bollyky et al.

(1996) the network identifies one, HBVDNA, with

parent sequences from genotype A and D, as

reported in Bollyky et al. (1996). This is also

reflected in the NeighborNet, where there are

splits which group HBVDNA with both A and

D genotypes, in a similar fashion to the KAL-153

recombinant in the HIV data set above. The other,

HPBADW1, does not appear as a recombinant,

but instead as a leaf in the cactus that also

contains HBVDNA as a leaf. When we removed

HBVDNA from the analysis, HPBADW1 was

subsequently identified as a recombinant sequence

of genotypes A and B by TriLoNet (see Fig. 4 in

the Supplementary Material), which is in line with

the analysis in Bollyky et al. (1996). Also, in this

network genotype D is disentangled from A and B

groupings, which the HBVDNA sequence probably

brought together being a recombinant of A and D

genotypes. This suggests that although TriLoNet

9

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 10 — #10i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

is able to identity potential recombinants, a higher

level network might be necessary to provide a

better representation of this particular data set.

Conclusion

We have introduced and implemented a novel

method called TriLoNet to infer level-1 networks

directly from sequence alignments without having

to, for example, compute breakpoints. It is the

first supernetwork approach to construct rooted

networks from real data by putting together

smaller networks into a larger one, much like

triplet-based supertree methods.

Our simulations indicate that the new approach

compares favourably with the Lev1athan method

for inferring level-1 networks from triplets. First,

in simulations TriLoNet produces networks that

are topologically more similar to the input

networks, based on trinet-comparison. Moreover,

TriLoNet does not require additional assumptions,

and does not appear to add in as many additional

reticulation vertices to represent the data. This

may be related to the fact that trinets determine

level-1 networks whereas triplets do not in

general. In addition, our artificially generated

alignments indicate that TriLoNet is quite good

at reconstructing level-1 network topologies for

some fairly simple scenarios without requiring

breakpoints, and the real data sets illustrate that

our method is able to build networks that can be

helpful for understanding reticulate histories. In

particular, TriLoNet could be useful for combining

small networks computed using model based

approaches. Note that this approach has proven

useful for constructing phylogenetic trees (see, e.g.

Schmidt et al., 2002).

There are various directions in which our

method might be extended. For example,

Lev1athan can work with partial triplet data, and

so it would be interesting to develop a method

that can cope with missing trinets. However, this

could be challenging in view of the recent hardness

result by Huber et al. (2015). In addition, instead

of subnetworks with three leaves, one could

consider subnetworks with larger number of

leaves, say the so-called quarnets (subnetworks

with four-leaves). However, the number of quarnet

topologies is much larger than that of trinets,

and inferring quarnets from sequence alignments

could be much more complicated. Even so, it

could be of interest to construct quarnets that

always include an out group as a first step.

Another interesting direction could be to

develop better ways of computing trinets from

sequence data. One possibility could be a

likelihood approach which would require the

development of appropriate models. However,

this could be challenging since even though

there are methods for computing likelihoods for

networks (e.g. Yu et al., 2014), these are not

immediately applicable as they work by computing

likelihood on trees in the network which do

not necessarily determine the network even when

branch lengths are known (Pardi and Scornavacca,

2015). In this regard the recent work of Nguyen

10

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 11 — #11i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

HBVADW4A

HBVDNA

HPBMUT

HPBADW1

HBVAYWMCG

HPBHBVAA

XXHEPAV

XXHEPA

HPBADW2

HPBADWZCG

HPBADR1CG

HPBETNC

HPBADRC

HPBCG

HPBADRA

HEHBVAYR

HBVADR4

HBVADRMHPBCGADR

HPBADW3HPBADWZ

HBVADW

HVHEPB

HUMPRECX

HBVADW2

F

C

C C C

C

C

C

C

C

D

D

D

D

D

D

B

B

B B A

AA

A

A

FIG. 8. The level-1 network constructed by TriLoNet for the HBV data set.

and Roos (2015) might hold some promise, as

it does not require trees to compute networks,

although it would have to be adapted to ensure

that it always generated level-1 trinets.

It would also be of interest to consider higher

level networks. Although a level-1 network is useful

to model and represent the reticulate processes

in some data sets, we have seen in our HBV

example that higher level networks could be more

appropriate for more complex data sets. In this

direction, it is known that the trinets in a so-called

level-2 network (i.e., a binary network in which

each of the components obtained from removing

all cut arcs contains at most two reticulation

vertices) determine the network (van Iersel and

Moulton, 2014), and so a method to construct

level-2 networks should be feasible. However, some

careful thought will be necessary as to how to

compute level-2 trinets, as these are more complex

and numerous than level-1 trinets, and it will

probably also be much more intricate to put level-

2 trinets together. In this regard, it might make

more sense to restrict to a simpler subset of level-2

trinets.

In conclusion, we believe that our supernetwork

based reconstruction method is a useful alternative

for inferring informative networks, especially for

data sets with a small number of reticulate events.

We hope that this approach will serve to inspire

new methods for constructing rooted networks by

puzzling together small networks, a strategy that

has already proven its worth for phylogenetic trees.

Materials and Methods
Phylogenetic networks

We begin by presenting some preliminaries

concerning networks. A rooted phylogenetic

11

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 12 — #12i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

network N , or a network for short, is a directed

graph containing a unique root with neither

directed cycles nor vertices that have one parent

and one child, and in which each leaf is uniquely

labelled by a taxon from a given set of taxa. A

network is binary if each vertex has at most two

children, and at most two parents, and those

vertices with two parents (the reticulations) have

one child. In addition, a network is level-1 if

each reticulation is contained in precisely one

(undirected) cycle (Huson et al., 2010). Such

networks are also known as galled trees (Gusfield,

2014). Unless stated otherwise, all our networks

are level-1. An arc in a network is called a cut arc

if it is not incident with a leaf and its removal

disconnects the network. Note that given a cut

arc {u,v} in a level-1 network such that there

is no cut arc below v, the network consisting of

v and all vertices and arcs below v is either a

cherry (i.e., the two vertices below v are both

leaves), a reticulated cherry (i.e., v and its two

children form a cycle and the two leaves below v

are incident with this cycle) or a cactus (i.e., v is

in a cycle such that all of the vertices below v are

either in the cycle or incident with a vertex in the

cycle) with three or more leaves; see Fig. 1 (i).

The building blocks used in our algorithm

are networks with two and three leaves, known

respectively as binets and trinets. As depicted in

Fig. 9. there are precisely two types of binets

and eight types of trinets (up to relabelling the

leaves) (Huber and Moulton, 2012). Note that all

the trinets have a cut arc except for those of type

S1 or S2.

A binet or trinet T is displayed by a network

N if there exists a vertex u in N such that T

can be obtained from N by deleting all vertices

and arcs that are not on a directed path from u

to a taxon contained in T and then repeatedly

suppressing vertices with one parent and one child

and replacing parallel arcs by single arcs until

neither operation is applicable. The set consisting

of all trinets displayed by N is denoted by T (N).

Note that it is necessarily dense, that is, it contains

precisely one trinet for each combination of three

taxa. It is known that a binary level-1 network

is encoded by the collection of trinets that it

displays (Huber and Moulton, 2012).

Note that trinet T1(x,y;z) in Fig. 9 is just a

tree or triplet and is also denoted by xy|z; note

that the other two triplets on these three taxa

are xz|y and yz|x. The triplet xy|z is exhibited by

a network N if T1(x,y;z) can be obtained from

the trinet T in T (N) with leaf set {x,y,z} by

deleting some (or none) arcs and suppressing the

resulting vertices that have one parent and one

child. For instance, xy|z is exhibited by S2(x;y;z)

but not by S1(x,y;z). Note that if the trinet

T1(x,y;z) is displayed by N , then the triplet

xy|z is exhibited by N , but the converse does

not necessarily hold. For example, triplet xy|z is

exhibited by S2(x;y;z), but the trinet T1(x,y;z)

is not displayed by S2(x;y;z). The set of triplets

exhibited by N is denoted by Tr(N).

12

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 13 — #13i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

N5(x; y; z)

S2(x; y; z)

x

y

z

N1(x, y; z)

x y

z

S1(x, y; z)T1(x, y; z)

x y z
x y

z

N4(x; y; z)N2(x, y; z)

x y

z

N3(x; y; z)

z
y

x

z

y

x

y

x

z

T0(x, y)

S0(x; y)

x y

y

x

FIG. 9. The two types of binets and the eight types of trinets.

Trinets from sequences

The first stage in our approach is to compute

a dense set of trinets from a multiple sequence

alignment (MSA) on a given set of taxa X. More

precisely, for each triple of taxa in X, we assign a

trinet to the triple using the following three steps.

Step A1: For each triple t={x,y,z} of taxa

x,y,z from X, we consider the subalignment of

the MSA on x,y and z. For each of the three

possible triplets on t, say xy|z, we compute a

weight w(xy|z) defined as the number of sites in

the subalignment such that the character states

(e.g., nucleotides for DNA) are the same for

x and y and different to the one for z. In

addition, assuming w(xy|z)≥w(xz|y)≥w(yz|x),

we introduce the following score

δt=
w(xy|z)−w(xz|y)

w(xz|y)−w(yz|x)
,

with the convention δt=w(xy|z)−w(xz|y) if

the denominator in the definition equals zero.

Intuitively, this score indicates whether the trinet

associated to t should contain a cut arc or not. In

other words, a higher δt score gives greater support

for assigning t a trinet that contains a cut arc

separating x and y from z. Note that this δt score is

closely related to the δ-score used to measure ‘tree-

likeness’ in statistical geometry (see, e.g. Holland

et al., 2002, and the references therein).

Step A2: Using the score δt computed in the

first step and a threshold κ, we partition the set of

triples of taxa from X into two subsets. The first

is Σκ that contains all triples of taxa whose δ-score

is greater than or equal to κ. All other triples form

the second subset, denoted by Σc
κ. The basic idea

is that a triple in Σc
κ is less likely to contain a cut

arc and hence will be assigned a trinet of type S1

or S2, while a triple in Σκ will be assigned to a

trinet of other types.

To obtain a κ value for applications, we

simulated sequences along a representative

collection of weighted trinets for all eight types of

trinets in Fig. 9 (see the Supplementary Material

13

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 14 — #14i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

for more details). For each of the weighted trinets,

we generated and concatenated sequences along

all trees with three leaves embedded in the trinet

using the K2P model with transition-transversion

bias 4 and computed the δ-scores. In most cases

a κ value of 6 or 7 could correctly distinguish

trinets with types S1 and S2 from the other types

of trinets. We therefore took a default value of

κ=6.5.

Step A3: In this step we assign a trinet of

type S1 or S2 to each triple t={x1,x2,x3} in Σc
κ.

Without loss of generality, we assume that the

number of triples in Σκ containing xi is greater

than or equal to that containing xj for 1≤ i<j≤3.

Let wt be the minimum weight among the three

triplets on t. Then we assign the unique trinet of

type S1 or S2 such that this trinet contains x1

below its reticulate vertex and does not exhibit the

triplet with the minimum weight. More precisely,

we assign the trinet S1(x2,x3;x1) to t if wt=

w(x2x3|x1), and S2(x2;x3;x1) if wt=w(x1x2|x3),

and S2(x3;x2;x1) otherwise. We denote the set of

trinets obtained in this step by TS.

Step A4: The last step is to assign a trinet

to each triple t={x,y,z} in Σκ. For simplicity,

assume as before that the triplet xy|z has the

maximum weight amongst the three possible

triplets on t. We then assign a trinet T to t in

which there exists a cut arc separating x and

y from z (i.e. a trinet T of the form T1(x,y;z),

N1(x,y;z), N2(x;y;z), N3(x;y;z), N4(x;y;z) or

N5(x;y;z)) so that the number of trinets that have

already been assigned to some triple and share a

binet with T is maximised.

Cut arc sets

As mentioned in the Introduction, a fundamental

step in our algorithm is the selection of a (possibly

recticulated) cherry or a cactus. These lie below

cut arcs in the network, and so we shall now

explain how subsets of leaves that lie below a cut

arc can be related to certain subsets of the taxa

that can be derived by just considering the trinets

displayed by the network.

To this end, we call a subset A of the leaf set of a

network a cut arc (CA-) set if there exists a cut arc

(u,v) in the network such that A contains precisely

the taxa below v. Since a cut arc is not incident

with a leaf, a CA-set contains at least two taxa.

For example, the CA-sets of network N in Fig. 1

are {b,c}, {d,j} and {e,f,g,h,i}. We call a CA-set

A minimal if no proper subset B of A is a CA-set.

Note that a minimal CA-set in a level-1 network

is necessarily the leaf set of a cherry, a reticulated

cherry or a cactus.

We now explain how the problem of finding

minimal CA-sets in a network N can be translated

into a graph theoretical problem given in terms

of T (N). This has the advantage of allowing us

to formulate an algorithm to deal with arbitrary

dense trinet sets which uses standard graph theory

algorithms.

To this end, given a dense collection T of trinets

with leaves labelled by elements in a set X we

associate the digraph Ω(T) which has vertex set

14

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 15 — #15i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

X and arc set consisting of those (x,y) such that

there exists no taxon z∈X−{x,y} for which {x,z}

is a CA-set for the trinet in T with leaf set {x,y,z}.

For example, Fig. 10 depicts the digraph Ω(T (N))

for the trinet collection T (N) induced by the

network N in Fig. 1(i).
g

h

i
e

f

a
b

c

d

j

FIG. 10. An example of digraph Ω.

Now, recall that a subset A of the vertex set

of a digraph is called a sink set if there exists

no arc (u,v) in the digraph with u in A and v

not in A. In addition, we call a sink set A in a

digraph small if A is non-singleton and none of

its proper non-singleton subsets is a sink set. For

the network N depicted in Fig. 1(i), the minimal

CA-sets are {b,c}, {d,j} and {e,f,g,h,i}, which

are exactly the same as the small sink sets in the

digraph Ω(T (N)) in Fig. 10. This an illustration

of the following result whose proof is given in the

Supplementary Material.

Theorem A. Suppose that N is a binary level-

1 phylogenetic network on X with at least three

leaves. If A is a proper subset of X, then the

following assertions are equivalent:

(i) A is a minimal CA-set in N .

(ii) A is a small sink set in Ω(T (N))

The TriLoNet algorithm

As with the Neighbor-Joining algorithm (Saitou

and Nei, 1987) for inferring phylogenetic trees,

our TriLoNet algorithm is based on a bottom up

approach. Using Steps A1-A4 above if necessary,

we shall assume that the input is a dense collection

of trinets T on X. As outlined in the Introduction,

our algorithm works by iteratively identifying

cherries, reticulated cherries or cactuses. We now

briefly present the algorithm in three steps, with a

full description and complexity analysis included

in the Supplementary Material.

Step B1: We begin by identifying a non-

singleton subset Y of X that corresponds to a

(possibly reticulated) cherry or cactus. To do this,

for i ranging between 1 and |X|−1, we compute

the smallest i for which the graph Ωi(T) contains

at least one arc, where Ωi(T) has vertex set X

and arc set consisting of those (x,y) such that

there are less than i taxa z∈X−{x,y} for which

{x,z} is a CA-set for the trinet in T with leaf set

{x,y,z}. Note that Ω1(T)=Ω(T), and so Ωi(T)

can be thought of an augmentation of Ω(T) which

allows us to compute small sink sets even in case

there are none to be found in Ω(T). The existence

of a smallest index i follows since each arc in Ωi(T)

is also contained in Ωi+1(T), and there exists an

arc between each pair of vertices in Ω|X|−1(T).

Now, to identify the subset Y of X, we simply

compute a small sink set in Ωi(T) for the smallest

index i. This can be done in polynomial time

by using Tarjan’s algorithm (Tarjan, 1972) for

computing the strongly connected components

of a digraph. We give the full details in the

Supplementary Material.

15

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 16 — #16i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

Step B2: We now associate a network NY that

is either a (possibly reticulated) cherry or a cactus

to the small sink set Y computed in Step 1. If Y

contains two taxa, then NY is just the cherry or

reticulated cherry that is displayed by the majority

of trinets in T . Otherwise, Y contains at least

three taxa. Let TY be the subset of trinets whose

leaf set is a subset of Y . Then we construct the

cactus NY with leaf set Y as follows. First, the

child of the reticulate vertex in NY is the taxon

z in Y that maximises the number of type S1

and S2 trinets in TY which have z as the child

of their reticulate vertices. Second, the split and

relative ordering of taxa on the sides of the cactus

is determined by considering the relative ordering

of taxa determined by S2 trinets in TY . The details

are given in the Supplementary Material.

Step B3: If the subset Y obtained in Step 1

is X itself, the algorithm stops and outputs the

network NY . Otherwise (i) we compute the trinet

set T ∗ induced by T on the set X∗ formed by

replacing every element in the subset Y with a

new taxon y∗, (ii) obtain a level-1 network N∗ for

T ∗ recursively, and (iii) combine the two networks

NY and N∗ to form a level-1 network on X by

replacing the taxon y∗ in N∗ with NY .

Consistency and Implementation

In the Supplementary Material we prove that

the TriLoNet algorithm is consistent. More

specifically, we prove:

Theorem B. If the TriLoNet algorithm is applied

to T (N) for a level-1 network N , then it will

output N .

This property was key in developing the

TriLoNet algorithm as it guided the way in which

we chose the selections given in Steps B1 and B2 of

the algorithm. We have implemented the TriLoNet

algorithm in JAVA and it is available for download

at https://www.uea.ac.uk/computing/TriLoNet.

It accepts three kinds of inputs: a NEXUS or

FASTA file containing a sequence alignment,

or a file specifying a dense set of trinets.

The network constructed by the algorithm

is outputted in the eNewick format (see,

e.g. Cardona et al., 2008) and/or the DOT

format (Gansner et al., 2006), which can be

visualised by using Dendroscope (Huson and

Scornavacca, 2012) and GraphViz (Ellson et al.,

2002), respectively. Although the complexity of

TriLoNet is O(|X|4), it runs in reasonable time

on fairly large data sets. For example, in Fig. 5

of the Supplementary Material we include the

network inferred by TriLoNet for a data set

consisting of 200 HIV sequences downloaded from

http://www.hiv.lanl.gov/, which was computed in

7 hours 34 minutes on a MacBook Pro computer

with an i7 processor and 16 GB RAM.

Supplementary Material

Supplementary text is available at

Molecular Biology and Evolution online

(http://www.mbe.oxfordjournals.org/).

16

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 17 — #17i
i

i
i

i
i

i
i

TriLoNet: Reconstructing reticulate histories · doi:10.1093/molbev/mst? MBE

Acknowledgments

We thank David Morrison for the website

http://phylonetworks.blogspot.co.uk/p/datasets.html

from which some data sets used for testing

TriLoNet are downloaded. We would also like to

thank one associate editor and two anonymous

referees for their helpful and constructive

comments on a previous version of this paper.

References

Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman,

J. D. 1981. Inferring a tree from lowest common

ancestors with an application to the optimization of

relational expressions. SIAM Journal on Computing ,

10(3): 405–421.

Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk,

S., McInerney, J. O., Morrison, D. A., Nakhleh, L.,

Steel, M., Stougie, L., et al. 2013. Networks: expanding

evolutionary thinking. Trends in Genetics, 29(8): 439–

441.

Bollyky, P. L., Rambaut, A., Harvey, P. H., and Holmes,

E. C. 1996. Recombination between sequences of

hepatitis B virus from different genotypes. Journal of

Molecular Evolution, 42(2): 97–102.

Bryant, D. and Moulton, V. 2004. Neighbor-net:

an agglomerative method for the construction of

phylogenetic networks. Molecular biology and evolution,

21(2): 255–265.

Cardona, G., Rosselló, F., and Valiente, G. 2008. Extended

newick: it is time for a standard representation of

phylogenetic networks. BMC bioinformatics, 9(1): 532.

Cooper, M. A., Adam, R. D., Worobey, M., and Sterling,

C. R. 2007. Population genetics provides evidence

for recombination in giardia. Current Biology , 17(22):

1984–1988.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C.,

and Woodhull, G. 2002. Graphviz–open source graph

drawing tools. In Graph Drawing , pages 483–484.

Springer.

Gambette, P. and Huber, K. 2012. On encodings of

phylogenetic networks of bounded level. Journal of

Mathematical Biology , 65(1): 157–180.

Gansner, E., Koutsofios, E., and North, S. 2006.

Drawing graphs with dot. Technical report, Technical

report, AT&T Research. URL http://www. graphviz.

org/Documentation/dotguide. pdf.

Grunewald, S., Spillner, A., Bastkowski, S., Bogershausen,

A., and Moulton, V. 2013. SuperQ: computing

supernetworks from quartets. Computational Biology

and Bioinformatics, IEEE/ACM Transactions on,

10(1): 151–160.

Gusfield, D. 2014. ReCombinatorics: The Algorithmics

of Ancestral Recombination Graphs and Explicit

Phylogenetic Networks. MIT Press.

Holland, B. R., Huber, K. T., Dress, A., and Moulton, V.

2002. δ plots: a tool for analyzing phylogenetic distance

data. Molecular Biology and Evolution, 19(12): 2051–

2059.

Huber, K. and Moulton, V. 2012. Encoding and

constructing 1-nested phylogenetic networks with

trinets. Algorithmica, 616: 714–738.

Huber, K., van Iersel, L., Kelk, S., and Suchecki, R.

2011. A practical algorithm for reconstructing level-

1 phylogenetic networks. IEEE/ACM Transactions

on Computational Biology and Bioinformatics, 8(3):

635–649.

Huber, K. T., Van Iersel, L., Moulton, V., Scornavacca,

C., and Wu, T. 2015. Reconstructing phylogenetic

level-1 networks from nondense binet and trinet sets.

Algorithmica, in press.

Huson, D. H. and Bryant, D. 2006. Application

of phylogenetic networks in evolutionary studies.

Molecular biology and evolution, 23(2): 254–267.

Huson, D. H. and Scornavacca, C. 2012. Dendroscope 3:

an interactive tool for rooted phylogenetic trees and

networks. Systematic biology , 61(6): 1061–1067.

17

“Trinet_MBE_rev” — 2016/2/1 — 15:34 — page 18 — #18i
i

i
i

i
i

i
i

Oldman et al. · doi:10.1093/molbev/mst? MBE

Huson, D. H., Dezulian, T., Klopper, T., and Steel, M. A.

2004. Phylogenetic super-networks from partial trees.

IEEE/ACM Transactions on Computational Biology

and Bioinformatics (TCBB), 1(4): 151–158.

Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T.,

Franz, M., and Rupp, R. 2007. Dendroscope: An

interactive viewer for large phylogenetic trees. BMC

bioinformatics, 8(1): 460.

Huson, D. H., Rupp, R., and Scornavacca, C. 2010.

Phylogenetic Networks: Concepts, Algorithms and

Applications. Cambridge University Press.

Jansson, J. and Sung, W.-K. 2006. Inferring a level-1

phylogenetic network from a dense set of rooted triplets.

Theoretical Computer Science, 363(1): 60–68.

Jansson, J., Nguyen, N. B., and Sung, W.-K. 2006.

Algorithms for combining rooted triplets into a galled

phylogenetic network. SIAM Journal on Computing ,

35(5): 1098–1121.

Lemey, P., Salemi, M., and Vandamme, A.-M. 2009.

The phylogenetic handbook: a practical approach to

phylogenetic analysis and hypothesis testing . Cambridge

University Press.

Lott, M., Spillner, A., Huber, K. T., and Moulton, V. 2009.

Padre: a package for analyzing and displaying reticulate

evolution. Bioinformatics, 25(9): 1199–1200.

Nakhleh, L. 2011. Evolutionary phylogenetic networks:

models and issues. In Problem Solving Handbook in

Computational Biology and Bioinformatics, pages 125–

158. Springer.

Nguyen, Q. and Roos, T. 2015. Likelihood-based

inference of phylogenetic networks from sequence data

by phylodag. In Proc. 2nd International Conference on

Algorithms for Computational Biology , page in press.

Pardi, F. and Scornavacca, C. 2015. Reconstructible

phylogenetic networks: Do not distinguish the

indistinguishable. PLoS Computational Biology ,

11(4): e1004135.

Poormohammadi, H., Eslahchi, C., and Tusserkani, R.

2014. Tripnet: A method for constructing rooted

phylogenetic networks from rooted triplets. PloS one,

9(9): e106531.

Rambaut, A. and Grass, N. C. 1997. Seq-gen: an

application for the monte carlo simulation of dna

sequence evolution along phylogenetic trees. Computer

applications in the biosciences: CABIOS , 13(3): 235–

238.

Saitou, N. and Nei, M. 1987. The neighbor-joining method:

a new method for reconstructing phylogenetic trees.

Molecular biology and evolution, 4(4): 406–425.

Schmidt, H. A., Strimmer, K., Vingron, M., and von

Haeseler, A. 2002. Tree-puzzle: maximum likelihood

phylogenetic analysis using quartets and parallel

computing. Bioinformatics, 18(3): 502–504.

Semple, C., Daniel, P., Hordijk, W., Page, R. D., and Steel,

M. 2004. Supertree algorithms for ancestral divergence

dates and nested taxa. Bioinformatics, 20(15): 2355–

2360.

Tarjan, R. 1972. Depth-first search and linear graph

algorithms. SIAM journal on computing , 1(2): 146–160.

Than, C., Ruths, D., and Nakhleh, L. 2008. Phylonet: a

software package for analyzing and reconstructing

reticulate evolutionary relationships. BMC

bioinformatics, 9(1): 322.

van Iersel, L. and Moulton, V. 2014. Trinets encode tree-

child and level-2 phylogenetic networks. Journal of

Mathematical Biology , 68: 1707–1729.

Wang, L., Zhang, K., and Zhang, L. 2001. Perfect

phylogenetic networks with recombination. Journal of

Computational Biology , 8(1): 69–78.

Woolley, S. M., Posada, D., and Crandall, K. A. 2008.

A comparison of phylogenetic network methods using

computer simulation. PLoS One, 3(4): e1913.

Yu, Y., Dong, J., Liu, K. J., and Nakhleh, L. 2014.

Maximum likelihood inference of reticulate evolutionary

histories. Proceedings of the National Academy of

Sciences, 111(46): 16448–16453.

18

