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Dopamine plays a key role in learning; however, its exact function in
decision making and choice remains unclear. Recently, we proposed
a generic model based on active (Bayesian) inference wherein dopa-
mine encodes the precision of beliefs about optimal policies. Put
simply, dopamine discharges reflect the confidence that a chosen
policy will lead to desired outcomes. We designed a novel task to
test this hypothesis, where subjects played a “limited offer” game in
a functional magnetic resonance imaging experiment. Subjects had
to decide how long to wait for a high offer before accepting a low
offer, with the risk of losing everything if they waited too long.
Bayesian model comparison showed that behavior strongly sup-
ported active inference, based on surprise minimization, over classical
utility maximization schemes. Furthermore, midbrain activity, encom-
passing dopamine projection neurons, was accurately predicted by
trial-by-trial variations in model-based estimates of precision. Our
findings demonstrate that human subjects infer both optimal policies
and the precision of those inferences, and thus support the notion
that humans perform hierarchical probabilistic Bayesian inference. In
other words, subjects have to infer both what they should do as well
as how confident they are in their choices, where confidence may be
encoded by dopaminergic firing.

Keywords: active inference, confidence, dopamine, neuroeconomics,
precision

Introduction

Dopamine plays a key role in learning and decision making. It
has been linked to signaling of expected utility (Fiorillo et al.
2003), salience (Berridge 2007), stimulus-novelty (Bunzeck
and Düzel 2006; Redgrave and Gurney 2006) and reward pre-
diction error (RPE; i.e., the mismatch between the predicted
and actual reward) (Schultz et al. 1997; Steinberg et al. 2013).
However, a more general account of dopaminergic activity,
which provides a principled explanation for all these associa-
tions, has yet to be established.

Recently, we formulated an inference scheme that attempts
a unified explanation for the role of dopamine in choice
(Friston et al. 2013). Here, planning and decision making are
understood as approximate Bayesian (active) inference (Tous-
saint and Storkey 2006; Botvinick and Toussaint 2012), where
agents minimize their surprise about future states. In this
scheme, valuable policies (i.e., sequences of control states)
minimize the relative entropy (Kullback–Leibler [KL] diver-
gence) between the probability distributions over likely and
desired outcomes. The value of a policy reflects how close the
distribution of likely outcomes is to the desired distribution
(see Friston et al. (2013) for a detailed discussion—for related

ideas about decision making and KL control, see Kappen et al.
(2009); Todorov (2009)).

A key consequence of this perspective is that, to minimize
surprise, agents need to estimate the precision of (confidence
in) their inferences or beliefs about the relative values of pol-
icies. It is therefore not sufficient to represent the desired
outcome and how to get there. Instead, one also has to optimize
the expected certainty or precision that the desired outcome
can be reached. Expected precision needs to be widely broad-
cast, since it plays a crucial role in hierarchical inference
(Friston et al. 2010; Friston 2011). Locally, precision plays a
modulatory (multiplicative) role to select or gate message
passing in Bayesian belief updating schemes. These features are
anatomically and neurophysiologically consistent with the en-
coding of precision by neuromodulators (Friston et al. 2012;
Moran et al. 2013) and with dopaminergic activity in particular,
based on its key role in decision making and its unique func-
tional anatomy (Friston et al. forthcoming). Precision is now
emerging as an important interpretation of empirical brain re-
sponses as measured with fMRI (see Iglesias et al. 2013). Fur-
thermore, when approximate inference is performed using
Variational Bayes (Attias 2000; Beal 2003), the time course of
precision updating closely resembles phasic dopamine re-
sponses (Friston et al. forthcoming). This perspective on the
functional role of dopamine fits comfortably with formulations
in terms of signal to noise (Cohen and Servan-Schreiber 1992;
Goldman-Rakic 1998), uncertainty and precision (Fiorillo et al.
2003; Fiorillo et al. 2008), and the key role that dopamine plays
in selecting among alternative actions (Braver et al. 1999; Frank
2005; Humphries et al. 2009; Cisek and Kalaska 2010). This is
because precision increases with signal to noise and decreases
with uncertainty. In particular, the precision of beliefs about
completing actions manifests in the efficiency of action selec-
tion, often conceived of in terms of winner take all mechanisms.

To test the hypothesis that dopamine encodes precision, we
designed an event-related fMRI experiment, in which subjects
were given the option of accepting a current offer or waiting
for a potential higher offer in the future, but with the risk of
losing everything. In this setting, precision can be understood
as the confidence that a high offer will be accepted in the
future—and can be easily manipulated in this setup. Although
we cannot measure dopaminergic activity directly in human
subjects, we used activity in midbrain regions that include the
ventral tegmental area (VTA) and substantia nigra (SN) (origin
of dopaminergic projections) as a proxy. To optimize choice
behavior in this particular task, precision itself has to be opti-
mized to ensure optimal selection of the most valuable policy.
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In short, our task allowed us to test whether activity in SN/VTA
reflects expected precision.

The active inference scheme evaluated in this work follows
from the principle of minimizing variational free energy
(Friston et al. 2006). It can be thought of as the discrete time
version of predictive coding—that now predominates in
models of perceptual inference and learning (Srinivasan 1982;
Rao and Ballard 1999; Seth 2011; Bastos et al. 2012). Specifically,
it uses variational Bayes to solve discrete time and Markov de-
cision problems, in the same way that predictive coding uses
Bayesian filtering with continuous time and states. To model
purposeful behavior, we simply assume that agents are
equipped with prior beliefs that they will minimize the differ-
ence between predicted and desired outcomes; either using
(discrete) variational message passing (Friston et al. 2013) or
(continuous) predictive coding (Friston, Adams et al. 2012).

It is important to note that our task requires planning or in-
ference, not reward learning. In other words, subjects knew
the contingencies in advance—and there was no learning or
updating of value functions that would call upon RPE (Schultz
et al. 1997). Our hope was to establish a role of dopamine in
the context of inference—searching for evidence that dopa-
mine encodes the precision or confidence during online as-
similation (i.e., the assimilation of sensory data to optimize
estimates of hidden states generating outcomes) and decision
making under a biologically plausible model (Friston et al.
2013, forthcoming). This is potentially important because the
physiology of dopaminergic neurotransmission is more con-
sistent with a role in mediating precision. Furthermore,
changes in (inverse) precision are identical to (negative)
changes in expected value. This means that changes in preci-
sion may provide a sufficient account of the reward-dependent
aspects of dopaminergic responses.

In summary, the problem faced by our subjects was to infer
what they were most likely to do, if they were to end up in de-
sirable states—and then act on that inference. On the basis of
previous (theoretical) work, we anticipated that midbrain
dopaminergic areas and their projection fields would correlate
with trial-by-trial changes in the precision or confidence in
those inferences.

Materials and Methods

Participants
Twenty-six right-handed participants (15 females) with normal or cor-
rected–to-normal vision and no known history of neurological or psy-
chiatric disorders participated in our study. All participants were
university students with a mean age of 28 (standard deviation = 8.69,
range = [20, 55]) and were recruited via the University College London
Psychology Subject Pool. Subjects were told that the minimum
payment for participating would be £25 but payment could be in-
creased according to their performance—the average “win” was £37.
Two participants were excluded from the analysis due to misses in
more than 10% of games. The study was approved by the UCL Research
Ethics Committee for fMRI-studies with performance-dependent
payment (Approval-Code: 3450 002) and written informed consent
was secured from all participants.

Behavioral Paradigm
Subjects underwent a 1-h training phase followed by one and a half
hours of scanning. Subjects performed 3 sessions comprising 36
games outside the scanner and the same number of sessions and
games inside the scanner—where each session lasted for about 18

min. The objective of the extensive prescan training was to over-train
subjects on the contingencies of the task and therefore minimize
changes in behavior due to learning. This ensured the task could be
treated as a pure inference problem.

Subjects had to solve a limited offer task, which required a choice
between accepting an offer currently available or waiting for a higher
offer in the future—with the risk of losing everything. Each game com-
prised successive trials (time steps) and subjects had to make a deci-
sion at each trial. At the first trial of a game, subjects were offered a
specific monetary amount (in pence) and had to decide whether to
accept this offer or wait for the next trial. If an offer was accepted, sub-
jects won the accepted amount and had to wait for the remaining trials
of that game, without being able to choose again (this ensured that
subjects did not accept prematurely to increase the number of games).
If subjects decided to wait, then the initial offer could be retained, it
could be withdrawn or it could be replaced by a high offer. If the initial
offer remained, subjects had to make the same choice again. If the
offer was withdrawn, then the monetary amount on the screen was re-
placed by a cross, indicating that subjects had won nothing and would
have to wait for the remaining trials to play out. If the initial offer was
replaced by a high offer, subjects accepted immediately.

The probabilities for a withdrawal (r) and for receiving the high
offer (q) were defined by hazard rates, such that for the 2 actions
(accept or wait), the transition probabilities over states (s) and actions
(a) were as follow:

Pðstþ1jst ;aacceptÞ ¼

0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
1 0 0 0 0
0 1 0 0 0

2
66664

3
77775

Pðstþ1jst ;awaitÞ ¼

PðinitialÞ 0 0 0 0
PðhighÞ 0 0 0 0

PðwithdrawalÞ 1 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

with

PðinitialÞ ¼ 1� ðr þ qÞ
PðhighÞ ¼ q ¼ ð1� rÞ � ð1� ð1� 0:5ÞÞ1=T

PðwithdrawalÞ ¼ r ¼ 1� 1� 1
22

� �t

where t refers to the current trial and T is the number of trials in a
game. This implies that a high offer is less likely as the game proceeds
and one is more likely to lose the initial (lower) offer.

We varied the initial offer and the length of a game (number of
trials). The amount of the initial offer was drawn from either a low or a
high uniform distribution—with a mean of 12 (range: 9–15) and 32
(range: 29–35) pence, respectively. In every game, this initial offer
could be replaced by a high offer, which was always 80 pence. Further-
more, we compared long and short games, where long games con-
sisted of 8 trials and short games of 4 trials. Each session was equally
divided into long and short games with a low or high initial offer,
respectively—providing a total of 9 games per session for each of these
4 conditions.

To summarize, our limited offer task corresponds to a sequential
choice paradigm, were subjects had to decide whether to accept an
initial offer or wait for a higher offer (Fig. 1A). Each game comprised a
specified number of trials, with a trial-specific probability of offer with-
drawal and high offer. These probabilities were defined as hazard
rates, such that withdrawal became more likely over time and the high
offer became less likely (Fig. 1B). At the end of each game, participants
were shown the outcome (Fig. 1D) and the total winnings determined
the payment they received at the end of the experiment. Crucially, in
this task, precision reflects trial-by-trial changes in the confidence
about receiving the high offer (as discussed below), which makes this
task ideally suited to investigate the neuronal mechanisms underlying
the dynamics of precision.
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Scanning
In the scanner, each game started with an orientation screen (for 1000
ms) specifying the amount of the initial offer and the number of trials
(i.e., the length) for this particular game. To ensure consistent re-
sponses and to differentiate motor responses from decision processes,
subjects were given 1500 ms to think about their choice (without being
able to respond), followed by a response period of 1000 ms, during
which they made a button press. A 1000-ms interval—in form of a
blank screen—was inserted before the next trial. When subjects failed
to choose in the given time, the offer was withdrawn. Each game was
followed by an interstimulus interval that was jittered between 4000
and 8000 ms. We counterbalanced the sides on which the options
“wait” and “accept”would appear on the screen.

Imaging Data Acquisition and Preprocessing
Scanning took place at the Wellcome Trust Centre for Neuroimaging,
acquiring T2*-weighted echo planar images (EPIs) using a 3-T Trio
Siemens scanner and a 32-channel head coil. We acquired a partial
volume consisting of 42 3-mm slices in descending order (echo time:
0.065 ms, repetition time: 2.940 ms) at an angle of 30° in the anterior–
posterior axis to optimize sensitivity to OFC (Deichmann et al. 2003).
Images were acquired with a field of view of 192 × 192 mm (matrix
64 × 64) resulting in a notional in-plane resolution of 3 × 3 × 3 mm.
In each session, 364 volumes were acquired and all subjects completed
3 sessions except subject 5, who only completed 2 sessions due to
equipment failure. Five whole-brain EPIs with identical scan para-
meters were collected before starting the task in order to optimize
co-registration. Foam head-restraint pads were used to minimize head
movement and an MR-compatible button box recorded right index and

middle finger presses to select “wait” or “accept.” Respiratory and
cardiac activity were measured and used as covariates in the imaging
analysis—to increase the signal-to-noise ratio. Whole-brain multipara-
meter maps were collected for anatomical localization using a 1-mm
isotropic resolution (Helms et al. 2009)—allowing for precise localiza-
tion of midbrain areas.

Preprocessing and statistical analysis was performed using SPM12b
(Wellcome Trust Centre for Neuroimaging, London, UK, http://www.fil.
ion.ucl.ac.uk/spm). The first 6 images were discarded to accommodate
T1 relaxation effects. Functional images were unwarped using field-
maps generated by the Fieldmap toolbox as implemented in SPM12b
(Hutton et al. 2002). EPIs were then realigned to the mean image of
each session and co-registered with the MT-weighted structural image.
The DARTEL toolbox (Ashburner 2007) was used to normalize the EPIs
and co-registered structural scans to MNI space—allowing the compari-
son of data between subjects in a common anatomical space.

Computational Modeling
We assume that agents are equipped with a generative model m relat-
ing observations Ot to (hidden) states St and control states (i.e., se-
quences of actions and their consequences) Ut at each trial t [ T ,
where a sequence of control states is called a policy π:

Pð~o;~s;p; gj~a;mÞ ¼ Pð~oj~sÞPð~s;pjg; ~aÞPðgjmÞ ð1Þ

In this generative model, the first term of the right side of the equation
represents the likelihood that informs state estimates, the second repre-
sents empirical priors over states and policies and the last term repre-
sents a prior over precision γ. The∼ notation denotes sequences over

Figure 1. Experimental Design. (A) Each game comprised a specified number of trials (discrete time steps). On each trial, subjects had to decide whether to accept a current offer
or wait for the next trial. If subjects decided to wait, the low offer could be withdrawn with probability r, it could be replaced by a high offer with probability q or could be carried over
to the next trial with probability 1− (r+ q). (B) The withdrawal probability increased, whereas a high offer became less likely with each successive trial. (C) Average probabilities of
accepting the initial offer at each trial (note that Pwait = 1− Paccept)., indicating that subjects were prepared to wait for the high offer (except at the last time step). The decrease in
acceptance-probability at the seventh trial in long games is not due to an actual decreased propensity to accept but due to very few data points for these trials. (D) Structure of a
game in the scanner: Each game started with an orientation screen, specifying the number of trials and the amount of the initial offer. At each trial, subjects had a brief period to
make a decision, followed by a response period. Following a short break, the next offer was presented. After the last trial, the break-screen was replaced by a screen indicating the
win amount on this game, followed by a jittered interstimulus interval (ISI)—before the next game.

3436 Dopamine Encodes Confidence • Schwartenbeck et al.

 at U
niversity of E

ast A
nglia on A

pril 15, 2016
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://cercor.oxfordjournals.org/


time. Note that, in this task, there was no uncertainty about the
mapping between observations and (hidden) states.

Inference about policies provides the agent’s belief that a particular
policy will be enacted, which can be expressed as:

lnPðpjstÞ ¼ g � QðpjstÞ ð2Þ

This means that the agent’s belief that a particular policy will be
enacted depends on a precision (γ) weighted value (Q) of this policy,
given the state at the current trial (St). Actions or choices are sampled
from the posterior marginal over the current control state.

Intuitively, a policy is valuable if it leads to outcomes that are close
to desired outcomes. Formally, this means that a valuable policy mini-
mizes the KL divergence (relative entropy) between a probability distri-
bution over outcomes under the policy in question and a distribution
over states that the agent believes it will (desires to) occupy:

QðpjstÞ ¼ �DKL½PðsT jst ;pÞjjPðsT jmÞ� ð3Þ

This divergence can be understood as the mismatch between states the
agent believes it should end up in and states it is likely to end up in.
The first probability distribution (in the KL divergence) represents the
likelihood of final outcomes given the current state and policy, and
therefore represents an empirical prior about the likely outcomes of a
game, conditioned on a particular state and policy. The second distri-
bution does not depend on any state or policy but represents the
agent’s prior belief about which state it will end up in, conditioned
only on its model of the environment (goals). These goals map real
world commodities (in our case: monetary offers) to an internal re-
presentation of utilities or prior beliefs about occupying different
states (that are associated with different commodities):

uðsT jmÞ ¼ ln PðsT jmÞ ¼ lnðsð½commoditiys � k�ÞÞ ð4Þ

where the κ parameter represents the agent’s sensitivity to the differ-
ences in the utilities of the different outcome states and σ is the
softmax function, ensuring that the prior probabilities add to one.

Crucially, the value of a policy can be re-written as

QðpjstÞ ¼ H ½PðsT jst ;pÞ� þ
X
sT

PðsT jst ;pÞ � uðsT jmÞ ð5Þ

This equation shows that the value of a policy can be decomposed into
entropy and expected utility terms. The entropy term increases if the
agent visits several different or novel states (i.e., increases its entropy
over states), whereas the expected utility term connects to classical the-
ories from behavioral economics—and is maximized if the final state
with the highest expected utility is attained. In other words, a valuable
policy maximizes the entropy over the final states and the expected
utility over those states. This decomposition of the value of a policy fits
neatly with accounts of intrinsic and extrinsic reward (Luciw et al.
2013) and connects to classic notions of exploration and exploitation
(Cohen et al. 2007; Daw 2009). Here, increasing the entropy over goal
states corresponds to the concept of a novelty bonus (Kakade and
Dayan 2002) or information gain, whereas maximizing expected utility
corresponds to exploitation. In what follows, we will contrast this (KL
optimal) formulation with classical schemes that only consider the ex-
pected utility. In the current setting, expected utility contributes to
prior beliefs about behavior that are updated to form posterior beliefs
on the basis of observed outcomes. Later, we will use the posterior dis-
tribution over actions as a measure of choice uncertainty or conflict.

Equation (2) shows that the probabilistic selection of a policy
depends not just upon its relative value but also precision. In other
words, to minimize free energy, action selection needs to be modulated
by contextual information, which is accommodated by precision. Prior
beliefs over policies take the form of a probability distribution with
γ or precision acting as an (inverse) temperature parameter—therefore
modulating the sensitivity of an agent to differences in the value of
different policies. It can be thought of as representing the confidence
in the most valuable policy, that is, the confidence that one will

indeed attain preferred goals, which has to be updated on the basis of
observations.

In our scheme, approximate inference is performed using Variation-
al Bayes (Attias 2000; Beal 2003), which leads to precision updates
with the following form:

ĝ ¼ a

1� p̂T � Q � ŝt
: ð6Þ

Posterior precision follows a standard gamma distribution:
PðgjmÞ ¼ Gða;b ¼ 1Þ with scale parameter α. The expected precision
is updated at each trial depending on the inferred policy, choice
values, and expected current (hidden) state. This equation implies that
precision falls when the initial offer is withdrawn, because the confi-
dence in receiving the high offer is minimal, and increases when the
high offer is accepted—because the confidence in reaching the goal
(of ending with the highest offer) becomes maximal. Equation (6) has
an important interpretation; it says that (changes in inverse) precision
equals (changes in negative) expected value, where expected value is
the value expected under the current state and policy p̂T � Q � ŝt. From
the point of view of the precision hypothesis, this may explain why
dopamine firing has been interpreted in terms of RPE. See Friston et al.
(2013) for a detailed description of the computational scheme and its
application to the paradigm used in this paper.

Behavioral Analysis andModeling
Given the form of a generative model, one can use observed choice be-
havior to estimate the parameters of the model that best accounts for
the choices of each subject. These parameters could include the hazard
rate or prior beliefs about precision used by a particular individual. We
estimated 3 parameters, based upon subject’s performance, using the
Hierarchical Gaussian Filtering Toolbox to compute maximum a pos-
teriori estimates (Mathys et al. 2011; Mathys 2012). Maximum a poster-
iori estimation maximizes the evidence for posterior estimates of
parameters given observed responses and prior distributions over
unknown parameters, generally specified as lognormal priors. For
each subject, we estimated the α or prior precision, a hazard rate, and
κ, the sensitivity to commodity values. The prior means for α were 8
(with a standard deviation of 1/16), 1/22 for the hazard rate (with the
estimate bounded between 0 and 1 by a logit function over the Gauss-
ian prior) and 1 for κ (with a standard deviation of 1/16). The likeli-
hood of the particular choice, for a given set of parameters, was
obtained using the spm_MDP_offer.m routine as implemented in the
DEM toolbox of SPM12b (Wellcome Trust Centre for Neuroimaging,
London, UK, http://www.fil.ion.ucl.ac.uk/spm). This routine uses vari-
ational Bayes to provide distributions over policies that minimize free
energy using the Markov decision process implicit in the probability
transitions describing our task (see above). Only trials in which sub-
jects decided to wait or accept the initial offer were used for behavioral
model comparison and parameter estimation, as only these trials
report motivated choices.

Imaging Data Analysis
A standard (event-related) statistical parametric mapping (SPM) ana-
lysis was used to test for specific task-effects and belief updates, where
each trial was treated as a separate event. Our regressors modeled
onsets of the initial screen, outcome screen and all trials of a game—as
well as the onsets of trials in which subjects made a motor response.
We included 5 parametric regressors for precision, the updates (or first
derivative) of precision, choice conflict, the updates (or first derivative)
of choice conflict, and the length of a game (long and short). Values
for precision and choice conflict were set to zero whenever a final state
(having accepted an offer or it being withdrawn) was reached, assum-
ing no further decision related processing. Choice conflict was defined
as the entropy of the posterior distribution over actions, which in-
creases when the probabilities for wait and accept (as estimated by the
model) are similar (thereby reflecting an internal conflict or ambiguity
about the decision) and decreases when the probabilities are very dif-
ferent (i.e., when we assume little cognitive conflict concerning the 2
choices).
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We included temporal derivatives (first-order differences) as covari-
ates of no interest to account for slice timing effects and applied a high
pass filter (using a 128-s cutoff) to remove low-frequency drifts.
Finally, we accounted for physiological noise with respiratory, cardiac,
and motion regressors. An AR(1) model was used to model serial corre-
lations in the fMRI time series.

We used a standard summary statistic approach to random effects
analysis: Second (between-subject)-level responses were tested by
performing one-sample t-tests on the linear contrasts of the estimated
responses from the first (within-subject)-level general linear model
analyses. We corrected for multiple comparisons in the ensuing
SPM using random field theory (for a whole-brain search and
region-of-interest [ROI] analyses).

We performed small-volume-corrected ROI analyses of midbrain re-
sponses in the SN/VTA. The ROI for SN/VTA was drawn manually on
our sample mean structural image, which can be distinguished from
surrounding areas as bright stripe (Düzel et al. 2009). The ROIs for
specific effects of choice conflict were obtained from the WFU picka-
tlas (Maldjian et al. 2003) and the AAL atlas (Tzourio-Mazoyer et al.
2002). All (corrected) peak-level results reported survived a height
threshold of P = 0.001 (uncorrected).

Results

Choice Behavior
Participants were sensitive to differences in experimental
factors (number of trials and magnitude of the initial offer) and
adjusted their choice behavior accordingly. When comparing
short (4 trials) and long (8 trials) games with low (between 9
and 15 pence) and high (between 29 and 35 pence) initial
offers, we found that high initial offers led to an earlier accept-
ance, compared with low initial offers, a distinction more pro-
nounced in long compared with short games (Fig. 1C). This
was confirmed by fitting a general linear model of acceptance
latency with the predictors’ game length, initial offer, and their
interaction. This showed that acceptance latency increased in
longer games (b = 0.57, F1,995 = 149.34, P < 0.01), decreased for
high compared with low initial offers (b =−0.83, F1,995 =
311.94, P < 0.01), with a larger difference between high and
low initial offers in long compared with short games (b =−0.26,
F1,995 = 31.04, P < 0.01). The mean acceptance latency for short
games was 3.52 trials (SD = 1.01) for low and 2.39 (SD = 1.06)

for high initial offers and for long games 5.19 (SD = 1.92) for
low and 3.01 (SD = 1.55) high initial offers, respectively.

Modeling Subject-Specific Behavior
Our (Bayes optimal) scheme deploys a standard gamma prior
over precision with scale parameter α. Precision is then
updated at each trial according to the current state, with a
sharp increase after a high offer and a decrease when an offer
is withdrawn (because the confidence in reaching the desired
goal is maximal and minimal, respectively). The behavior of
expected (posterior) precision for these 2 outcomes is illu-
strated in Figure 2.

Using the observed probability of accepting over successive
trials for each subject, we estimated: (α), a hazard rate (r), and
a monetary sensitivity parameter (κ) for each subject individu-
ally. These parameters encode the subject’s prior expectations
about precision, hazard rates, and their sensitivity to monetary
cues, respectively. The parameters from this behavioral model-
ing are shown in Table 1. Their intercorrelations suggested a
substantial and unique contribution of each parameter to be-
havior (r(α, κ) = 0.48, r(α, hazard rate) = 0.61), r(κ, hazard
rate) = 0.66). The overall variance in observed choice behavior
explained by the behavioral modeling was R2 = 0.81 and pre-
dicted choice probabilities closely resembled observed choice
probabilities (Fig. 3). Although the empirical results suggest a
slight dip in the probability of accepting in penultimate trials,
this merely reflects the fact that there were very few trials with
these long deferments.

Even though the model fits were impressive for such a
simple model, there may be room for improvement. This
speaks to further model comparisons in the future—using
more complicated priors or using more free parameters; for
example, including a nonspecific prior cost for waiting or opti-
mizing the subjects’ estimates of transition probabilities.
However, with an R2 of over 80%, we considered the current
model sufficient for our purposes.

The estimated parameters characterize subject-specific traits
that model between-subject variability in choice behavior. Of
particular interest here is the trait or prior expectation about
precision, namely α. The corresponding state or “posterior” ex-
pectations about precision reflect trial-by-trial changes in

Figure 2. Simulation of state-dependent changes of expected precision and putative dopaminergic responses. (A) Receiving the high offer (left upper panel) produces a sharp
increase in precision (lower left panel) and simulated dopaminergic firing (lower right panel). The high offer induces a change in policy and compels the agent to accept (“switch,”
upper right panel). (B) Same format as in (A), but illustrating the withdrawal of an initial offer, leading to a decrease in precision and a consequent dip in dopaminergic firing.
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confidence about waiting for a high offer, that are nuanced by
these “prior” beliefs. If prior precision is high, subjects tend to
wait longer for a high offer. Accordingly, the estimate of each
subject’s prior precision correlated positively with the average

number of trials waiting for a high offer (r = 0.45, P = 0.026),
and negatively with the total number of games in which the
initial offer was accepted (r =− 0.45, P = 0.026).

Model Comparison
In our theoretical formulation, policy selection is based upon
minimizing the KL divergence between the distribution over
states the agent wants to be in, and those it believes it can
reach from the current state. This divergence can be decom-
posed into the entropy of the probability over final outcomes
and an expected utility term. This is important because it sug-
gests that choice behavior will maximize both the entropy over
outcomes and their expected utility (Schwartenbeck et al.
2013). This contrasts with classical utilitarian approaches,
which assume that choices maximize expected utility alone. To
disambiguate between these accounts of choice behavior, we
used the behavioral data to compare active inference, in which
subjects maximize both entropy and expected utility, with a
model wherein subjects maximized expected utility alone. In
other words, we compared models in which the KL divergence
was replaced by expected utility. Random effects Bayesian
model comparison (Stephan et al. 2009) revealed strong evi-
dence in favor of the active inference model (exceedance prob-
ability w > 0.99). Ignoring the complexity of the models and
just focusing on the accuracy or explained variance as repre-
sented by R2 values, we found that the active inference model
explained more variance in 21 of 24 subjects, even though the
overall difference in accuracy between the 2 models was small
(R2

active inference ¼ 0:81; R2
expected utility ¼ 0:78). The increase in

Table 1
Individual model parameters and their associated accuracy expressed as the proportion of
explained variance

Subject α κ Hazard rate R2

1 8.0044 1.0000 0.4576 0.4300
2 18.4709 1.0004 0.4358 0.6237
3 11.0772 1.0010 0.4260 0.4623
4 8.7165 0.5916 0.5291 0.1417
5 22.3780 1.0001 0.3608 0.8716
6 7.7290 1.0000 0.5095 0.3145
7 23.1915 1.0000 0.3585 0.5262
8 12.0402 1.0001 0.3851 0.2372
9 31.9133 1.0001 0.2554 0.9840
10 20.5454 1.0001 0.3842 0.6727
11 21.1646 1.0002 0.4219 0.7541
12 20.0900 0.9999 0.4013 0.6727
13 25.0789 1.0001 0.2885 0.6613
14 6.6711 1.0016 0.5537 0.2332
15 23.8371 0.9998 0.3283 0.7259
16 24.8066 1.0001 0.2921 0.8018
17 10.2983 0.9958 0.4321 0.2936
18 34.1881 0.6106 0.3401 0.9011
19 13.6716 0.9998 0.4675 0.5423
20 14.2230 0.9999 0.4033 0.5423
21 30.8221 1.0000 0.2750 0.9410
22 11.1589 0.9978 0.4665 0.7390
23 33.8191 0.5764 0.5752 0.6675
24 11.2746 1.0000 0.4888 0.4742
Average 18.55 0.95 0.41 0.8139

Note that our modeling maximized model evidence (by minimizing variational free energy) which
accounts for model complexity in addition to accuracy.

Figure 3. Observed and estimated acceptance probabilities as predicted by our model (note that Pwait = 1− Paccept). These estimates are based upon maximum a posteriori
values for prior precision, the hazard rate, and sensitivity to differences in monetary cues. Note that the observed acceptance probabilities are identical to the ones shown in
Figure 1C.
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accuracy was statistically significant in a two-tailed Wilcoxon
signed rank test (z =− 3.8857, P = 0.0001).

Clearly, the agreement between the behavioral results and
theoretical predictions depends in part on the hundred percent
probability of accepting on the last trial. To ensure that this
characteristic (of both KL optimal and classical utilitarian
schemes) was not confounding the model comparison, we re-
peated the analysis without forcing the model to accept at the
last time step. In this analysis, the model fit was R2 = 0.75 and
the exceedance probability for the KL scheme over the classical
schemewas again w > 0.99.

Accordingly, we used the active inference model to predict
trial-by-trial variations in neuronal responses.

Model-Based Correlates in the Brain
To generate suitable explanatory variables (stimulus functions)
to model fMRI responses, we used trial-by-trial variations in
posterior expectations, based upon the subject-specific priors
above. This approach highlights the mediating role of compu-
tational modeling, in linking the behavioral responses of each
subject to their physiological responses—as encoded by a con-
ventional general linear convolution model of fMRI time series.
Here, we focused on choice conflict and confidence, measured
as the entropy over alternative choices (wait vs. accept) and
expected precision, respectively.

Testing for neuronal correlates of conflict identified the left
and right insular (left: peak MNI coordinates: −28 24 3, cluster
size = 2158, Ppeak < 0.003, Tpeak voxel = 8.60; right: peak MNI
coordinates: 30 21 9, cluster size = 3029, Ppeak < 0.001,
Tpeak voxel = 10.04) and anterior cingulate cortex (ACC) (peak
MNI coordinates: 5 18 45, cluster size = 4372, Ppeak = 0.002,
Tpeak voxel = 8.62, Fig. 4). These significant (whole-brain-
corrected) results imply that activity in these regions increased
with choice conflict and neatly connects to previous results on
the neuronal mechanisms underlying conflict and uncertainty
(Brown and Braver 2007, 2008; Platt and Huettel 2008). Choice
conflict—as estimated by our model—therefore predicts neur-
onal activation in regions commonly activated by paradigms in-
volving conflict and is in line with theories associating the ACC
with conflict monitoring (Botvinick et al. 2001; Botvinick et al.
2004). We did not identify any effects of game length on trial-
specific responses.

Precision Updates and the Dopaminergic Midbrain
Our main question concerned whether expected precision pre-
dicted activity in dopamine-rich brain regions. To answer this,
we used a (small-volume-corrected) analyses based on an

anatomical ROI isolating the SN and VTA. The SN/VTA area
contains ∼90% of all dopaminergic projection neurons in
humans and nonhuman primates (Düzel et al. 2009). Our re-
stricted small-volume analysis using the SN/VTA ROI strongly
supported the hypothesis that dopaminergic midbrain activity
encodes expected precision in the SN (peak MNI −10 −22
−11, Ppeak = 0.008, Tpeak voxel = 4.58) and the VTA (peak MNI 5
−19 −15, Ppeak = 0.005, Tpeak voxel = 4.79; peak MNI −3 −21 −15,
Ppeak = 0.006, Tpeak voxel = 4.78) (Fig. 5A). Equivalent tests for
the effects of changes in expected precision did not survive
whole-brain correction.

Finally, to test the hypothesis that precision provides a suffi-
cient account of midbrain responses, we repeated the above
analyses but including expected value (under the utilitarian
model) and the current monetary offer (reward) of the current
trial as additional explanatory variables. Tests for the effects of
expected value or reward did not survive correction for mul-
tiple comparisons in the midbrain ROI. While these results do
not imply that expected value or reward do not contribute to
midbrain responses, we can say that precision provides a suffi-
cient account of any of observed midbrain responses that
could have been explained by expected value or reward. Inter-
estingly, however, despite the colinearity between precision
and expected value (and current reward), the effect of preci-
sion was still significant in the VTA (peak MNI 5 −21 −17,
Ppeak = 0.035, Tpeak voxel = 3.89; peak MNI −4 −25 −17, Ppeak =
0.039, Tpeak voxel = 3.84; corrected for the midbrain ROI) and
showed trend significance in the SN (peak MNI −10 −25 −12,
Ppeak = 0.070, Tpeak voxel = 3.53; corrected for midbrain ROI).
This suggests that not only is precision sufficient to explain
midbrain responses, it explains components that cannot be ex-
plained by expected value (or current reward) alone.

Effects of Precision on Other Brain Regions
Although our primary hypothesis concerned precision-related
responses in dopaminergic midbrain regions, the neurobio-
logical implementation of active inference using variational
Bayes also makes strong predictions about precision-related
effects in other brain systems (see Friston et al. (2013)). Cru-
cially, it predicts that expected precision should also modulate
Bayesian belief updates in systems inferring hidden states of
the world—including states that entail control or action.
Physiologically, this means that we would expect to see aug-
mented trial-related responses not just in the source of dopa-
minergic projections but also in their targets—targets that are
involved in processing visual information and simulating the
outcomes of alternative policies (planning).

Figure 4. Effects of choice conflict defined as the entropy of the probability distribution over the 2 alternative actions (wait vs. accept). SPM thresholded at P< 0.005
(uncorrected) and masked for the midbrain for display purposes.
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We detected significant precision-related responses in
several regions, after correction for a whole-brain search, that
included visual and inferotemporal cortical regions engaged
during perceptual categorization, and prefrontal regions asso-
ciated with delay period activity and planning (see Table 2 and
Fig. 5B). Interestingly, these prefrontal regions extended to an-
terior insular cortex consistent with an affective (autonomic)
component to neuronal inference. Although we do not discuss
the functional anatomy of these results in any detail we note
that precision-related effects are distributed and are consistent
with the neuromodulation of belief updates in brain systems in-
volved in perceptual inference (Rao and Ballard 1999), action
selection (Cisek and Kalaska 2010), and (more speculatively)
interoceptive inference (Seth et al. 2011). Of the regions impli-
cated in our analysis, the anterior insular cortex, frontal regions
such as the anterior cingulate cortex and the ventral and dorsal
striatum have established dopaminergic projections.

Discussion

Dopamine activity in humans and other animals is linked to a
variety of apparently diverse functions (Düzel et al. 2009). This
speaks to the need for theories that assign dopamine a more
general role—as opposed to relating it exclusively to reward
(Pessiglione 2006; Schultz 1998), salience (Berridge 2007,
2012), novelty (Bunzeck and Düzel 2006; Redgrave and
Gurney 2006), working memory (Williams and Goldman-Rakic
1995), or learning (Steinberg et al. 2013). We have proposed
that it plays a generic role in modulating or selecting the neur-
onal messages that are exchanged during active Bayesian infer-
ence, most concisely formalized as encoding precision in
predictive coding (Friston 2005; Friston et al. 2012). This for-
mulation of dopamine arises naturally from treating the brain
as hierarchical Bayesian inference machine that minimizes sur-
prise or free energy. Here, we show that the responses of a
dopamine-rich region of the brain are predicted by this generic
but computationally specific role in the context of decision
making.

In the setting of choice behavior, this scheme implies that
dopamine reports the expected certainty or precision of beliefs
about policies and thereby the confidence a policy will deliver
an outcome during purposeful and planned behavior. This
confidence must adapt with context so as to minimize free
energy. The optimization of precision has both trait and state
aspects namely, prior (trait) and posterior (state-dependent)
precision. Individuals with a higher trait-precision wait longer
for desired outcomes (e.g., the high offer) and accept initial
offers less frequently. They are therefore less stochastic in their
behavior, showing more patience when waiting for the high
offer. Posterior or context-sensitive precision reflects the confi-
dence in reaching a desired goal, conditioned on the current
state. This means that it resembles a reward prediction signal

Table 2
Effects of precision on the whole-brain level (reported on the cluster level for P< 0.001
uncorrected)

Region Cluster
size

FWE-corrected
P-value

T-value of
peak voxel

Peak coordinates
(MNI)

x y z

Cerebellum 243 0.011 4.73 −9 −82 −35
306 <0.001 5.83 0 −55 −36

Sensory (visual) 3390 <0.001 7.36 36 −93 −6
5260 <0.001 6.41 −25 −97 −12

Parietal 2928 <0.001 6.89 −28 −54 47
306 0.003 4.94 −6 −69 38

Frontal 2463 <0.001 6.97 44 12 44
384 <0.001 6.93 −51 6 36

Cingulate 4002 <0.001 6.13 −3 5 32
Midbrain/striatum/
insular cortex

2560 <0.001 6.40 −31 −3 −5
1752 <0.001 7.07 23 −3 11

Figure 5. Neuronal correlates of expected precision in the brain. (A) Using a hand-drawn ROI for the SN/VTA, we detected substantial effects for expected precision in both the
substantia nigra as well as the ventral tegmental area: SPM thresholded at P< 0.005 (uncorrected) and masked for the midbrain for display purposes. SPM thresholded at
P<0.005 (uncorrected) and masked for the midbrain for display purposes. (B) At the whole-brain level, we found distributed and strong effects of precision in prefrontal,
inferotemporal, and parietal regions as well as in the striatum and anterior insular cortex. SPM thresholded at P<0.005 (uncorrected) and masked for the midbrain for display
purposes.
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as posited by reinforcement learning: see below and (Schultz
et al. 1997; Fiorillo 2003). In the context of reinforcement
learning paradigms, the RPE now becomes the change in confi-
dence about receiving anticipated rewards. In a nonreward
context, expected precision reflects the novelty associated with
increased entropy over potential outcomes. This is important
because dopamine discharges have also been associated with
salience and novelty (Bunzeck and Düzel 2006; Redgrave and
Gurney 2006; Berridge 2007, 2012).

Our results provide behavioral and neuronal validation of
an active inference formulation of optimal behavior. Bayesian
model selection suggests that this scheme offers a better (and
more accurate) account of behavior than a model based solely
on expected utility. Explaining behavior in terms of minimiz-
ing the KL divergence, rather than simply maximizing ex-
pected utility also provides a principled explanation for the
tradeoff between exploration and exploitation (Schwartenbeck
2013) and can be extended to explain phenomena such as
Herrnstein’s matching law (Herrnstein 1961). The entropy
term is a simple and necessary component of KL control
(Ortega and Braun 2013) that can be thought of as “keeping
one’s options open.” This component may also provide a
formal basis for heuristics like the exploration bonus (Kakade
and Dayan 2002).

Clearly, there are many ways to model our paradigm.
However, the active inference framework comfortably accom-
modates many standard models as special cases. In particular,
it contextualizes and provides a possible biological implemen-
tation for models based on maximizing expected value, such
as model-based or hierarchical reinforcement learning (Ribas-
Fernandes et al. 2011; Huys et al. 2012). Active inference
absorbs rewards into prior beliefs by placing choice behavior
in the broader context of minimizing surprise (i.e., maximizing
model evidence or marginal likelihood). In our scheme, agents
seek out states they believe they should occupy, hence desir-
able (rewarding) states are unsurprising states and undesirable
(unrewarding) are surprising. It is easy to see that, by minimiz-
ing surprise, agents will seek out familiar and rewarding goals.
Casting decision making as active Bayesian inference may help
to contextualize the interpretation of utilitarian models. For
example, through the monotonic relationship between ex-
pected value and precision: see Equation (6) and Friston et al.
(2013). Furthermore, our framework provides straightforward
applications to tasks that do not invoke explicit rewards or
support value learning, such as the urn task (FitzGerald et al.
in review).

In the introduction section, we distinguished between infer-
ence and learning—framing the current game as an inference
problem. Our primary motivation was to manage expectations
about comparisons with classical schemes based upon RPE.
The question, “how does this scheme compare with RPE for-
mulations?,” raises some fundamental issues about the nature
of formal models and normative schemes that we now briefly
consider.

It is useful to emphasize the distinction between inference
and learning problems (Botvinick and Toussaint 2012). Pure
inference (or planning) problems require an agent to find an
optimal solution (behavior) based on a set of observations and
a generative model of the environment. Learning problems, in
contrast, require the agent to update the parameters of its gen-
erative model—or indeed learn the model structure through
model comparison. In the context of planning, the simplest

way to optimize behavior is to evaluate the outcomes of allow-
able policies and select the policy that maximizes expected
value. This is effectively what the variational Bayesian scheme
we have used does. This scheme makes it clear that planning
requires the representation of future states—and allows one to
cast optimal control problems as pure inference problems
(Botvinick and Toussaint 2012; Friston 2011). The alternative
would be to formulate the planning problem as a control
problem and solve the associated dynamic programming or
Bellman equation using backwards induction. In other words,
assume that the policy is specified by a value function and
compute the value function by working backwards from the
final (valuable) state. In principle, variational Bayes and back-
wards induction should give similar answers; however, there is
no neuronally plausible message-passing scheme for back-
wards induction.

Note that variational Bayes and backwards induction do not
call on RPE, which arises in reinforcement learning schemes
where the value of actions and states are learnt through re-
peated experience (Sutton and Barto, 1998). In brief, reinforce-
ment learning schemes such as Rescorla-Wagner, Q-learning,
and SARSA try to solve the appropriate Bellman optimality
equations using variants of the Robbins Munro algorithm
(Robbins and Munro 1951). In other words, they try to estimate
a value function of states (or state-action pairs) using stochastic
approximation. In these schemes, a running estimate is
updated using the RPE multiplied by a small number (the
learning rate). Under certain (ergodic) assumptions, this
scheme is guaranteed to converge to the true value function,
when on average, the prediction error is zero. However, RPE
cannot be used in the context of the (partially observed)
Markov decision problems considered above. This is because
optimal choices have to be inferred for each game—precluding
stochastic approximation over multiple games.

When one considers these issues in operational terms, it
becomes clear that RPE is an auxiliary variable associated with
stochastic approximation schemes for learning value func-
tions. Given this insight, what would be an alternative to vari-
ational message passing? This is a difficult question to answer,
because the natural response would be some form of optimal
control; for example, solving the Bellman equation using back-
wards induction. However, this is formally equivalent to the
solution of the equivalent inference problem using Bayesian
filtering (or smoothing)—either exactly or approximately
(Todorov 2008; Friston 2011; Tassa et al. 2011).

In summary, active inference offers a process theory,
describing the real-time neuronal message passing that under-
lies optimal choice behavior. This formulation equips the nor-
mative account (i.e., minimizing variational free energy or
maximizing expected value) with a biologically plausible im-
plementation—an implementation that makes some clear pre-
dictions about measurable behavioral and neuronal responses.

In short, unless one thinks the brain uses a stochastic ap-
proximation scheme to make optimal decisions on the basis of
a single trial or sequence, there is no reason to invoke RPE.
Indeed, all the physiological evidence in support of RPE re-
sponses during learning was used to motivate an understand-
ing of dopamine as encoding precision during inference
(Friston et al. 2013). Perhaps, the deeper question is not how
the current scheme compares with classical (reinforcement
learning) schemes; but rather what are the (biologically plaus-
ible) alternatives one could consider?

3442 Dopamine Encodes Confidence • Schwartenbeck et al.

 at U
niversity of E

ast A
nglia on A

pril 15, 2016
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


Furthermore, the notion that dopamine reports precision or
confidence in the context of planning or inference fits comfort-
ably with several established ideas about the role of dopamine
during motivated behavior. Important examples here include
the notions of “wanting” (e.g., Berridge 2007, 2012) and vigor
and effort (e.g., Salamone and Correa 2012). Incentive salience
is particularly interesting because of the close relationship
between salience and precision—especially in the domain of
visual attention. It may not be straightforward to cast wanting
or incentive salience in terms of formal (active) inference;
however, the close relationship between the salience of incen-
tivizing cues and the confidence or precision in beliefs that
cued outcomes can—or will be—attained is self-evident.

Minimizing surprise about future outcomes generally
implies the minimization of a relative entropy, or KL diver-
gence, between likely and desired outcomes. Active inference
connects to established accounts of KL control but places KL
divergence in the setting of inference. This eliminates the need
for ad hoc parameters in that the softmax temperature param-
eter of classical (utilitarian) approaches is replaced by a preci-
sion that is itself optimized. Our fMRI results suggest this
optimization may provide a simple account of dopaminergic
midbrain responses.

We have provided evidence that precision may be encoded
by activity in midbrain regions that are associated with dopa-
minergic activity (Düzel et al. 2009; Guitart-Masip et al. 2011).
However, in biologically plausible implementations of active
inference, variational updating of precision and inferred
(control) states are widely distributed. For example, Bayesian
updates about hidden states of the world may be encoded by
prefrontal neuronal activity but this in turn depends on percep-
tual categorization in lower visual and inferotemporal regions.
All of these regions have to inform precision updates in the
dopaminergic midbrain, which then optimize perceptual infer-
ence and policy selection. This is consistent with our findings
of prefrontal, striatal, and insular responses being modulated
by expected precision—and emphasizes the distributed causes
and consequences of (putative) dopaminergic activity.

Establishing a link between precision and dopaminergic ac-
tivity provides insights into both the neurobiology of decision
making as well as into its pathologies. The link between psy-
chopathology and abnormalities of precision is a focus of
much current research, and has been discussed in the context
of a number of disorders including psychosis (Adams et al.
2013), Parkinson’s disease (Frank 2005; Friston et al. 2012),
functional disorders (Edwards et al. 2012), and autism (Pellica-
no and Burr 2012). Associating precision with dopaminergic
firing also suggests the fruitful application of this sort of para-
digm to conditions associated with pathologic decision
making, such as obsessive–compulsive disorders or addiction.
Intriguingly, both obsessive–compulsive disorders (Politis
et al. 2013) and addiction (Diana 2011; Taber et al. 2012) have
been associated with abnormal dopaminergic function.
Indeed, this article is a prelude to an application of our para-
digm to addiction—which we anticipate will be associated
with abnormalities of dopaminergic and precision-related re-
sponses. In short, we will investigate specific characteristics of
the generative model underlying addictive choice behavior to
understand the behavioral and neuronal mechanisms that
cause pathological decision making in addiction. We expect
that addiction will be marked by a decreased prior precision,
inducing more impulsive and habitual behavior. This also

resonates with findings that addiction is associated with a di-
minished phasic response of dopaminergic neurons (Willuhn
et al. 2014). Clearly, hyperdopaminergic states—associated
with pathologically high levels of (prior) precision—may
induce maladaptive conditions such as overly optimistic state
inference (Friston et al. 2013) or failures of sensory attenuation
in schizophrenia (Adams et al. 2013).

In conclusion, our findings associate dopaminergic rich
midbrain activity with the expected precision of beliefs about
controlled outcomes, namely the confidence of reaching a
desired goal. The findings inform the ongoing discussion
about the general role of dopamine in brain function as well as
its relationship to a range of cognitive processes, such as
working memory, reward prediction, salience, novelty, and
learning as well as pathologies of decision making. The
current study provides strong evidence that humans perform a
rather sophisticated form of probabilistic reasoning, which crit-
ically involves the inference on the precision with which
certain beliefs are held. Thus, our results are in line with the
Bayesian brain hypothesis, casting the brain as a hierarchical
Bayesian inference machine. Furthermore, our study provides
behavioral and neuronal validation of active inference in deci-
sion making, and lays the groundwork for a unified under-
standing of how behavior is selected and contextualized by the
brain through hierarchical Bayesian inference.
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