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ABSTRACT 

Red flower color has arisen multiple times and is generally associated with hummingbird 

pollination. The majority of evolutionary transitions to red color proceeded from purple 

lineages and tend to be genetically simple, almost always involving a few loss-of-function 

mutations of major phenotypic effect. Here we report on the complex evolution of a novel red 

floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless 

ancestor. The presence of a red color is remarkable because the genus cannot synthesize red 

anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor 

AN2. We show that moderate up-regulation and a shift in tissue specificity of an AN2 paralog, 

DEEP PURPLE (DPL), restores anthocyanin biosynthesis in P. exserta. An essential shift in 

anthocyanin hydroxylation occurred through re-balancing the expression of three 

hydroxylating genes. Furthermore, the down-regulation of an acyltransferase promotes 

reddish hues in typically purple pigments by preventing acyl group decoration of 

anthocyanins. This study presents a rare case of a genetically complex evolutionary transition 

towards the gain of a novel red color. 
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INTRODUCTION 

Whether adaptation involves single genes of large phenotypic effect or proceeds 

through many genes with small individual effects is a crucial question in evolutionary 

biology (Orr and Coyne, 1992; Orr, 2005; Chevin and Beckerman, 2012; Barton et al., 2016; 

Boyle et al., 2017). In his theoretical work, Fisher predicted that mutations of small effect 

were most likely to produce phenotypes with increased fitness (Fisher, 1918; Fisher, 1930). 

However, contemporaries of Fisher as well as more recent theory suggest that a single bout of 

adaptation could involve loci with a distribution of effect sizes, with both large-effect and 

small-effect mutations (Orr, 1998; Orteu and Jiggins, 2020). Today, there is abundant 

experimental evidence that the genetic basis of natural variation in individual traits can be 

extremely complex with many loci involved (Atwell et al., 2010; Chan et al., 2010; Turchin 

et al., 2012; Kooke et al., 2016; Guo et al., 2018; Sohail et al., 2019). At the same time, 

evidence for adaptation proceeding via few loci of large effect also abounds (Doebley, 2004; 

Hoekstra et al., 2006; Nadeau et al., 2016; Todesco et al., 2020). The relative importance of 

such large-effect mutations, however, remains contentious (Rockman, 2012) highlighting the 

need to examine genetic mechanisms with a critical eye. 

A prime example of the relevance of mutations of large phenotypic effect has been 

pollinator-mediated selection on floral traits. Adaptation to shifts in pollinator availability is 

widely accepted to be a driving force in the rapid diversification of the angiosperms 

(Johnson, 2006; Sapir and Armbruster, 2010; Schiestl and Johnson, 2013; van der Niet et al., 

2014). Color is a trait that can be easily be quantitated and monitored in different tissues 

during development. Many studies have demonstrated the importance of flower color for 

pollinators (Yuan et al., 2013a) and some have directly linked single genes to pollinator 

preference (Hoballah et al., 2007; Hopkins and Rausher, 2011; Yuan et al., 2013b; Sheehan et 

al., 2016; Kellenberger et al., 2019). 

Anthocyanins are the major floral pigments in the angiosperms and are produced by 

the flavonoid pathway (Winkel-Shirley, 2001). The two most common branches of the 

flavonoid pathway are the anthocyanins (red, purple, blue pigments responsible for visible 

color) and flavonols (responsible for UV color). Flavonoids are synthesized as a part of the 

complex metabolic network of phenylpropanoids, which includes a large variety of primary 

and secondary compounds such as lignins, volatile signals, developmental regulators and 

defense compounds (Winkel, 2006; Yang et al., 2017). Extensive knowledge of flavonoid 

pathway biosynthesis and regulation provides a foundation to study process of floral color 

evolution. 
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In floral color adaptation there are three general types of phenotypic transitions: loss 

of color, shifts in color hue and gain of color (Rausher, 2008). Losses of pigmentation tend to 

be relatively simple, with loss-of-function mutations in single genes of major phenotypic 

effect. Between species, these mutations typically occur in transcription factors which leads 

to down-regulation of anthocyanin biosynthetic genes (Quattrocchio et al., 1999; Schwinn et 

al., 2006; Hoballah et al., 2007; Lowry et al., 2012; Streisfeld et al., 2013; Yuan et al., 2013b; 

Esfeld et al., 2018). Shifts in color hue, which are typically from blue-purple to red, always 

involve a change in anthocyanin hydroxylation (in the case of blue-purple to red, a decrease 

in hydroxylation) and often also include transcription factors. Thus the genetic mechanisms 

of color shifts are more diverse, through both loss-of-function mutations and expression 

changes in biosynthetic and regulatory genes (Zufall and Rausher, 2004; Streisfeld and 

Rausher, 2009; Des Marais and Rausher, 2010; Hopkins and Rausher, 2011; Smith and 

Rausher, 2011; Wessinger and Rausher, 2015).  

It has been suggested that floral color gains are frequent at macroevolutionary scales 

(Smith and Goldberg, 2015). Land plants have the ability to synthesize flavonoid and 

anthocyanin pigments (Campanella et al., 2014); given that floral color is an evolutionarily 

labile trait, the likelihood of several instances of floral color gains in the evolutionary history 

of a genus is considerable (i.e. Armbruster (2002)). The rarest case of floral color evolution is 

the re-gain of floral color in a lineage which has already lost color. Obviously, it is easier to 

break something than to fix it and with increasing time, it becomes more difficult to re-evolve 

a complex trait that is lost, as first stated in Dollo’s law (Dollo, 1893; Gould, 1970). Indeed, 

demonstrations of molecular-genetic mechanisms underlying interspecific floral color gains 

are not well represented in the literature (but see Cooley et al. (2011)), and most documented 

color gains are within-species polymorphisms (i.e. Streisfeld et al. (2013)).  

A genus with losses, shifts, and re-gain of floral color is Petunia (Solanaceae). The 

garden petunia, Petunia hybrida, is a horticultural hybrid with a remarkable diversity of 

colors and color patterns and a long history of research on the chemistry and genetics of 

anthocyanin biosynthesis (Figure 1; (Koes et al., 2005; Quattrocchio et al., 2006a; Tornielli et 

al., 2009; Bombarely et al., 2016). The naturally occurring species of the genus Petunia are 

native to South America and have undergone several shifts in pollination system, resulting in 

two main clades, the short-tube and long-tube clades, so named based on their floral tube 

length (Reck-Kortmann et al., 2014). The species in the short-tube clade are bee-pollinated 

and have the ancestral purple flowers, whereas the species of the long-tube clade are diverse 

in flower color, scent, and morphology and are visited by different pollinators (Sheehan et al., 
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2012; Hermann et al., 2013; Reck-Kortmann et al., 2014). P. axillaris presents white UV-

absorbent flowers pollinated by hawkmoths (Stehmann et al., 2009), P. secreta purple UV-

reflective flowers pollinated by solitary bees (Stehmann and Semir, 2005; Rodrigues et al., 

2018b; Rodrigues et al., 2018a), and P. exserta red UV-reflective flowers pollinated by 

hummingbirds (Lorenz-Lemke et al., 2006). These three species grow in the Serra do Sudeste 

region in the south of Brazil, where both P. secreta and P. exserta are strict endemics.  

The most recent phylogeny robustly places the white P. axillaris as sister to the two 

colored species P. exserta and P. secreta (Figure 1E; Esfeld et al. (2018)). The phylogenetic 

history of AN2 and MYB-FL –the key R2R3-MYB transcription factors that determine the 

spatial and temporal expression of the anthocyanin and flavonol biosynthetic pathways in 

Petunia –further supports the notion that P. secreta and P. exserta regained floral 

pigmentation from a colorless ancestor (Sheehan et al., 2016; Esfeld et al., 2018). Notably, 

the independent re-gains of color have resulted in two different colors: the ancestral purple in 

P. secreta and a red color unique to the genus in P. exserta. At the molecular level, P. secreta 

regained floral color by a compensatory deletion in the AN2 coding sequence that restored the 

AN2 reading frame. This gain-of-function mutation to a transcription factor is an “easy fix” to 

a difficult problem: to restore the synthesis of the ancestral purple color without additional 

changes to the essential biosynthetic genes (Esfeld et al., 2018). 

Compared to the surprisingly simple pseudogene resurrection in P. secreta, 

reacquisition of color in P. exserta must be inherently more complex. First, all P. exserta 

accessions studied (Esfeld et al., 2018) contain one or more frameshifts in the AN2 coding 

region, and thus are unlikely to encode full-length functional proteins. Consequently, a 

substitute transcription factor must have been recruited. Second, additional modifications are 

required to obtain the distinct red color. Therefore, P. exserta represents both a re-gain in 

floral color as well as a transition from purple to red, a new color hue in the genus. Red color 

can be achieved through different biochemical means, the main strategies being changes in 

anthocyanins, synthesis of carotenoids, alterations to vacuolar pH, or through any 

combination (Ng and Smith, 2016b). In P. hybrida, the key anthocyanin biosynthetic enzyme 

DFR has lost the ability to synthesize the orange-red pelargonidin anthocyanins (Johnson et 

al., 2001). This may also be true for its wild ancestors. Previously published pigment 

analyses do not discuss carotenoids and disagree on the composition and relative abundance 

of anthocyanins present in P. exserta flowers. Specifically, it is unclear whether the two 

major types of anthocyanins consist of pelargonidin and cyanidin (Griesbach et al., 1999), or 

cyanidin and delphinidin (Ando et al., 1999; Ando et al., 2000). These issues need to be 
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resolved in order to understand how P. exserta makes red flowers. Here we present a 

chemical analysis of the floral pigments of P. exserta and an in depth molecular-genetic 

analysis, as well as functional validation. These led us to three candidate transcription factors 

and at least three candidate biosynthetic genes, which were validated by functional analysis. 

We conclude that the evolution of red floral color in P. exserta flowers proceeded through 

multiple and subtle genetic alterations.  

 

RESULTS 

 

Hydroxylation, methylation, and acylation modifications to P. exserta anthocyanins 

create the red color 

To characterize the biochemical aspects of the red color of P. exserta, we analyzed 

the flavonoid pigment profile in hydrolyzed petal limb extracts. Acid hydrolysis removes the 

O-glycoside and acyl decorations, but not B-ring hydroxylation or methylation, to reveal the 

flavonoid backbone (Harborne, 1998), here resulting in anthocyanidins (anthocyanin 

aglycones) and flavonol aglycones. Cyanidin and delphinidin were the most abundant 

anthocyanidins (44% cyanidin, 40% delphinidin, 8% petunidin, 4% malvidin, 3% peonidin 

(Figure 1A,B). Notably, the orange-red pelargonidin was not detected (Figure 1C). Flavonol 

concentrations were low, as previously described in Sheehan et al. (2016). As fully decorated 

cyanidin and delphinidin typically produce magenta to blue hues, we proceeded to identify 

the anthocyanin compounds (anthocyanin aglycone and attached decorative moiety) in non-

hydrolyzed extracts of P. exserta limbs. We identified four major compounds: a delphinidin 

diglycoside, cyanidin diglycoside, petunidin diglycoside, and peonidin diglycoside, with 

traces of additional malvidin anthocyanins (all likely rutinosides, 6-O-α-L-rhamnosyl-D-

glucose; Supplemental Figure S1). When UV-Vis spectra were observed in the LC-MS 

experiment (at low pH), the absorption maxima of these anthocyanins was between 519-522 

nm, that is, red-shifted relative to purple-shifted maxima of 530-550 nm (Supplemental 

Figure S1B; (Harborne, 1958; Mabry et al., 1970; Markham, 1982)). In comparison, purple-

colored P. secreta and P. inflata produce several types of acylated anthocyanins (acyl 

moieties are aromatic or aliphatic acids, such as p-coumaric acid, Supplemental Figure S2). 

Additionally, the purple Petunia species produce methylated anthocyanidins petunidin and 

malvidin almost exclusively (Esfeld et al., 2018). We conclude that P. exserta does not 

produce monohydroxylated pelargonidin anthocyanins and that the anthocyanins produced 

are severely deficient in acylation and methylation. 
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P. exserta does not produce yellow-orange carotenoid copigments in the petal limb 

epidermis, although it does produce them in the inner floral tube epidermis (Figure 1D). 

Thus, P. exserta has the biosynthetic machinery to synthesize carotenoids but they do not 

contribute to the red hue of the petal limb. Neither does P. exserta have an especially low 

petal homogenate pH compared to sister taxa (Supplemental Figure S3), or to those reported 

in various wild-type P. hybrida varieties (de Vlaming et al., 1983; Quattrocchio et al., 

2006b). While we cannot rule out an interaction between particular anthocyanins and 

vacuolar pH, we note that P. exserta and P. secreta have approximately the same petal 

homogenate pH. Given the major color difference between the two species (red vs. purple), 

we conclude that the major biochemical basis of color differentiation between the two species 

is that of anthocyanin composition rather than vacuolar pH. Thus, P. exserta’s red color is 

due to its relatively simple flavonoid composition, highlighting changes in anthocyanin 

hydroxylation, methylation, and acylation. This indicates that protein function and/or 

expression of F3′H/HT1, F3′5′H/HF1, F3′5′H/HF2, AAT, 3′AMT/MT, 3′5′AMT/MF might 

be compromised (many of the Petunia genes have specific names; we have added these after 

the forward slash, abbreviations in Figure 1A).  

 

No evidence for deficiencies in most anthocyanin biosynthetic protein sequences 

To assess potential functional divergence of proteins and genes, sequences of 

biosynthetic genes F3′H/HT1, F3′5′H/HF1, F3′5′H/HF2, FLS, DFR, ANS, 3GT, ART, AAT, 

5GT, 3′AMT/MT, 3′5′AMT/MF1 and 3′5′AMT/MF2 were compared. With the exception of 

MF1 and MF2, all flavonoid pathway genes in the four Petunia species in this study had low 

pairwise divergence, with ≤ 1.5% nucleotide divergence among the long-tube clade species 

(P. exserta, P. axillaris, P. secreta). Protein coding sequences showed no loss-of-function 

mutations in the four species examined, with two exceptions. P. exserta 3′5′AMT/MF1 

harbors a frameshift mutation in the fifth exon leading to an early stop codon. P. axillaris 

features a different frameshift mutation in 3′5′AMT/MF1, and the gene cannot be found in P. 

secreta. While P. exserta has a seemingly functional 3′5′AMT/MF2, both P. axillaris and P. 

secreta have nonsense mutations in 3′5′AMT/MF2. The low abundance of malvidin in P. 

exserta could be explained by an MF1 pseudogene, with residual product from 3′AMT/MT 

which can have anthocyanin 5′-O-methylation activity (Provenzano et al., 2014).  

The complete absence of the orange-red pelargonidin suggests that the P. exserta 

DFR enzyme cannot reduce the monohydroxylated precursor DHK, as is the case in P. 

hybrida (Johnson et al., 2001). Indeed, the DFR amino acid sequences in the defined region 
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of substrate specificity are identical between P. hybrida and the wild species, including P. 

exserta (Figure 1F, Supplemental Figure S4A, (Johnson et al., 2001; Petit et al., 2007)). We 

additionally examined conserved motifs and known active sites previously described in the 

literature for F3′H/HT1, F3′5′H/HF1, F3′5′H/HF2, and AAT (Nakayama et al., 2003; Seitz et 

al., 2007). All four Petunia species had identical active site sequences in these regions for 

each hydroxylating gene, altogether suggesting that P. exserta does not contain unique 

mutations in flavonoid biosynthetic loci that affect enzyme function. There are, however, 

significant amino acid changes in substrate recognition sites 1 and 2 between the F3′5′H 

genes HF1 and HF2 (Supplemental Figure S4B). This suggests a potential functional 

difference between these two F3′5′H paralogs. It follows that differential expression of the 

two HF copies could result in a different flavonoid composition. In summary, the in silico 

analysis of the protein sequences of all but one of the biosynthetic genes makes it plausible 

that they encode active proteins with conserved function in Petunia; the duplicate F3′5′H/HF 

proteins may recognize different substrates. 

 

Anthocyanin biosynthetic gene expression is restored in P. exserta  

With the exception of the MF genes, all of the flavonoid biosynthetic genes encode 

functional proteins. We therefore compared gene expression in developing petal limbs 

between red P. exserta, white P. axillaris, and purple P. secreta with reverse transcription 

quantitative PCR (RT-qPCR; Figure 2A, Supplemental Table S1) and added additional 

purple species P. inflata with RNAseq (Supplemental Figure S5, Supplemental Table S2). 

Expression levels of phenylpropanoid and flavonoid early biosynthetic genes were generally 

lower in P. exserta than in P. axillaris, and similar to expression levels in P. secreta and P. 

inflata (Supplemental Figure S5; Supplemental Table S2). The first two committed 

anthocyanin biosynthetic genes, DFR and ANS, were higher in P. exserta than in P. axillaris 

but remained lower than in P. secreta, 2.4-fold for DFR and 1.4-fold for ANS (Figure 2A). 

We observed only moderate values (< 0.65) of allele-specific expression (ASE) as measured 

in the F1 hybrid of P. axillaris x P. exserta for most of the flavonoid pathway biosynthetic 

genes, indicating that the differential expression observed is at least partly due to trans-

regulatory effects (Figure 2B). 

 

Changes in flavonoid hydroxylation gene expression associated with shift to novel red 

color 
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Expression of F3′H/HT1 was very high in white, UV-absorbing P. axillaris, in 

agreement with the high levels of the dihydroxylated flavonol quercetin in this species 

(Figure 2A, Supplemental Figure S5). Expression of F3′H/HT1 is reduced in the UV-

reflective P. exserta and P. secreta relative to P. axillaris due to the absence of MYB-FL 

activity as well as cis-acting mutations (Figure 2A,B, Supplemental Figure S5, Sheehan et al. 

2016, Esfeld et al. 2018). Comparison of F3′H/HT1 expression between P. exserta and P. 

secreta showed a 4.5-fold higher expression in P. exserta, promoting a shift from 

trihydroxylated towards dihydroxylated anthocyanins (e.g. cyanidin). 

The F3′5′H/HF1 and F3′5′H/HF2 proteins synthesize trihydroxylated delphinidin, 

petunidin and malvidin. That P. exserta requires F3′5′H at all is in line with the high 

concentration of delphinidin. We observed an unexpected pattern in the HF loci. Expression 

of both genes is low in P. axillaris and high in P. secreta. However, whereas F3′5′H/HF1 

remained low in P. exserta, F3′5′H/HF2 was elevated to the expression level of P. secreta 

(Figure 2A, Supplemental Figure S5C). Interestingly, in slightly older petal limbs differences 

became more pronounced; P. secreta increased F3′5′H/HF1 expression while P. exserta 

increased F3′5′H/HF2 expression (Supplemental Figure S6). Thus, P. exserta preferentially 

expresses HF2 and P. secreta HF1. Together with divergence in the substrate recognition 

sites between HF1 and HF2 (Supplemental Figure S4B), this suggests that F3′5′H/HF1 and 

F3′5′H/HF2 have different properties. In summary, the higher F3′H/HT1 expression as well 

as the relative difference in expression between F3′5′H/HF1 and F3′5′H/HF2 between red P. 

exserta and purple P. secreta could lead to the difference in phenotype of dihydroxylated vs. 

trihydroxylated anthocyanins. 

 

Reduced expression of anthocyanin late biosynthetic genes prevents acylation and most 

methylation  

Given the lack of acylated anthocyanins present in P. exserta (Supplemental Figure 

S1), we reasoned that one or more downstream anthocyanin modifying genes could be down-

regulated. The 3GT gene is prerequisite to obtain simple glucosylated anthocyanins (e.g. 3-O-

glucosides), ART to obtain rhamnosylated anthocyanins, and AAT to obtain acylated 

anthocyanins. Levels of expression for 3GT and AAT in P. exserta were comparable to those 

of P. axillaris but importantly, much lower than in P. secreta (2.8x and 13.5x less, 

respectively; Figure 2, Supplemental Figure S5, Supplemental Figure S6). We observed only 

moderate ASE for AAT (0.62) in the P. axillaris x P. exserta F1 hybrid, indicating regulation 

primarily in trans. P. exserta and P. axillaris have identical 3GT sequences, so no ASE could 
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be calculated. However, given that the anthocyanins observed were glycosylated yet 

distinctly lacking in acylation, we conclude that the down-regulation of AAT is an essential 

aspect of the P. exserta phenotype. 

Since anthocyanin biosynthesis in Petunia is thought to proceed in a sequential 

fashion due to strict substrate specificity, down-regulation of AAT should prevent the 

majority of flux from downstream modifications (i.e. methylation) (Tornielli et al., 2009). 

However, 8% of P. exserta anthocyanidins are petunidin, which is singly methylated on the 

B-ring (Figure 1A) by 3′AMT/MT, indicating some nonlinearity in the pathway. 

Furthermore, we observed moderate up-regulation of 3′AMT/MT in P. exserta (Figure 2A) as 

well as strong ASE (0.98, biased to P. exserta copy) in the P. axillaris x P. exserta F1 hybrid 

indicating cis-regulatory effects. Further methylation to produce malvidin is hindered as 

3′5′AMT/MF1 is a pseudogene in P. exserta (as well as P. axillaris), and although expression 

of 3′5′AMT/MF2 is curiously high in P. exserta compared to sister species, P. exserta only 

makes small amounts of malvidin (3%) (Figure 1B, 2A, Supplemental Figure S5, 

Supplemental Figure S6). Thus, the overall contribution of the methylating loci to the P. 

exserta phenotype is small. Taken together, these data point to 3GT and AAT as promising 

anthocyanin modifying candidate genes warranting further investigation. 

 

Identifying candidate replacement MYB transcription factors for anthocyanin 

biosynthesis 

We previously showed that a frameshift mutation in the P. exserta MYB-FL gene 

underlies a major QTL for loss of UV-absorbing flavonols (Sheehan et al., 2016). A new 

analysis revealed that this QTL is also responsible for a gain of anthocyanin production 

(Figure 3A, Supplemental Table S3). MYB-FL belongs to MYB family Subgroup (SG7) and 

is not an anthocyanin biosynthesis activator. Therefore, the loss of MYB-FL function in P. 

exserta may enable an increase in anthocyanin production by a trade-off between the 

anthocyanin and flavonol branches of the flavonoid biosynthesis pathway. Three minor QTLs 

on chromosomes 1, 3 and 7 exclusively affected anthocyanin production (Supplemental 

Table S3, Supplemental Table S4). 

Anthocyanin biosynthesis is activated by the MBW complex, comprising MYB, 

bHLH, and WD40 transcription factors. MYB family Subgroup 6 (SG6) members specialize 

in anthocyanin biosynthesis and control spatial and temporal specificity (Dubos et al., 2010; 

Feller et al., 2011) and are easily identified by their specific amino acid signatures (Stracke et 

al., 2001; Zimmermann et al., 2004; Lin-Wang et al., 2010; Hichri et al., 2011). The long-
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tube clade of Petunia has four known paralogs belonging to this subgroup that target different 

aspects of anthocyanin patterning: AN2 (petal limb), AN4 (petal tube, present in duplicate 

copies), DPL (petal vein), and PHZ (light-induced petal blush and vegetative tissues), whose 

functions have been demonstrated in P. hybrida (Quattrocchio et al., 1993; Quattrocchio et 

al., 1999; Albert et al., 2014). 

Given the main MYB transcription factor that activates anthocyanin biosynthesis in 

petal limbs, AN2, is a pseudogene in P. exserta (Esfeld et al., 2018), an obvious hypothesis is 

that a closely related MYB substitutes for AN2 in the MBW complex. This led us to focus 

first on MYB SG6, to which AN2 belongs. To define the MYB subgroups, we identified 256 

and 246 MYBs from the P. exserta and P. axillaris genomes, respectively, and constructed a 

maximum likelihood phylogenetic tree with annotated Arabidopsis thaliana MYBs from 

Dubos et al. (2010). MYB SG6 formed a well-supported clade with A. thaliana PAP1, PAP2, 

MYB113, and MYB114. SG6 contained additional P. exserta members (Supplemental Figure 

S7A). To determine whether the presence of additional SG6 MYBs is unique to P. exserta or 

any species with anthocyanin-based color, we searched for SG6 MYBs in sister species P. 

secreta (out of a total of 177 MYBs) and analyzed a SG6-specific phylogeny (Figure 3B, 

Supplemental Table S5). P. axillaris, P. secreta, and P. exserta each have single copies of 

AN2, PHZ, DPL, and two copies of AN4 (AN4-1, AN4-2). Six additional AN4-like sequences 

in the P. exserta genome are pseudogenes (Figure 3B). This absence of novel or functional 

duplicated SG6 MYBs in P. exserta suggests a potential shift in expression or tissue 

specificity of a current SG6 MYB.  

To identify de novo up-regulation of SG6 MYBs in petal limbs, we compared P. 

exserta to the white, anthocyaninless P. axillaris. We subsequently compared P. exserta 

expression patterns to purple species P. secreta and P. inflata to characterize whether any 

MYB expression in P. exserta is unique, or whether patterns simply reflect petal limbs with 

anthocyanin biosynthesis (Figure 3C, Supplemental Figure S8A). AN2 expression was 

elevated in P. exserta, but the encoded protein is nonfunctional in both P. exserta and P. 

axillaris (Esfeld et al. 2018). PHZ has no obvious changes in protein function, and was 

equally and weakly expressed in P. axillaris, P. exserta, and P. secreta, and even more 

reduced in P. inflata. The AN4 genes were not expressed in petal limbs (Figure 3C, 

Supplemental Figure S8A). In contrast, DPL encodes a functional protein and was more 

highly expressed in P. exserta than in P. axillaris (Figure 3C, Supplemental Table S2, 

Supplemental Table S6). Furthermore, both P. secreta and P. inflata (which have functional 

AN2) expressed DPL less than P. axillaris in petal limbs. DPL has weak ASE (Figure 3D, 
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Supplemental Figure S8C), suggesting that it is mostly regulated in trans. DPL is located on 

chromosome 7, which has a minor QTL for anthocyanin content (Figure 3A; Supplemental 

Table S4). We examined the DPL protein sequence and found only a single amino acid 

replacement unique to P. exserta, which is not in a functionally annotated area of the protein 

(Supplemental Figure S9). Taken together, DPL is a paralog of AN2 that is upregulated in P. 

exserta petal limbs and therefore a promising AN2-replacement. 

  

Broadening the search for potential transcription factors 

Given that SG6 MYB proteins operate in a complex with additional protein partners 

(bHLH, WD40, other MYBs), we then expanded our search to identify any additional 

candidate genes from an entire transcription factor dataset (2284 proteins from Yarahmadov 

et al. (2020)). We used the P. axillaris x P. exserta RNAseq dataset, filtering for statistically 

significant differential expression (DE) (1388 genes), a base mean of ≥25 read counts (1130 

genes), and a log2 fold change (L2FC) of at least ±1.5 (153 genes). Along with ASE 

calculations, we assessed predicted functional variants (i.e. missense, nonsense, frameshift 

mutations, see Methods).  

Seven additional MYB transcription factors were differentially expressed, three of 

which were more highly expressed in P. exserta than in P. axillaris (Supplemental Table S6). 

Of these, two MYB transcription factors are known to influence or interact with floral color: 

PH4, which regulates vacuolar pH and influences floral color hue using the same bHLH and 

WD40 partners as AN2 (AN1/JAF13 bHLH and AN11 WD40) in Subgroup “G20” 

(Quattrocchio et al., 2006b) (Figure 3C, Supplemental Figure S8A, Supplemental Table S6) 

and MYBx, an R3 repressor of anthocyanin biosynthesis (Albert et al., 2014). The R2R3-

MYB activator PH4 is more highly expressed in sister taxa P. exserta and P. secreta 

compared to P. axillaris, with the magnitude of difference greater in P. exserta (L2FC 1.85 

P. exserta to P. axillaris, L2FC 0.89 P. secreta to P. axillaris; Supplemental Figure S8A, 

Supplemental Table S2, Supplemental Table S6). PH4 additionally has moderate ASE 

(Figure 3D, Supplemental Figure S8C), suggesting both cis- and trans-regulation. The PH4 

protein sequence contained one amino acid replacement which was shared between P. inflata 

and P. exserta (Supplemental Figure S10). The enhanced expression of PH4 in P. exserta 

qualifies PH4 as a valid non-SG6 candidate MYB. 

Put in context with P. secreta and P. inflata expression, MYBx appears to be 

expressed similarly in P. exserta and P. secreta (L2FC 4.13 P. exserta to P. axillaris, L2FC 

4.24 P. secreta to P. axillaris), but because it is a repressor that is more highly expressed in 
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all of colored species rather than in white P. axillaris, it does not fit the candidate gene 

profile. Additionally, none of the MYBs expressed more highly in P. axillaris appear to be 

repressors. 

Six bHLH and six WD40 transcription factors were differentially expressed. None of 

the WD40 functional annotations suggested an obvious interaction or role in floral color 

(Supplemental Table S7).  Of the bHLH genes, JAF13 was less expressed in P. exserta than 

in P. axillaris (L2FC of 2.50, Supplemental Figure S8B, Supplemental Table S8). Since 

JAF13 is redundant with its more highly expressed paralog AN1 in the MBW complex 

(Quattrocchio et al., 1998; Spelt et al., 2000; Tornielli et al., 2009; Montefiori et al., 2015), it 

was not further considered. Of the remaining transcription factors, we considered only those 

transcription factors that have DE as well as ASE of ≥0.75 in order to locate genes with 

causal (in cis) mutations (Supplemental Table S9). Eleven genes were more highly expressed 

in P. exserta than P. axillaris, and ten genes more highly expressed in P. axillaris than P. 

exserta. Based on the detailed examination of the entire transcription factor dataset, we 

selected MYB-FL, DPL and PH4 for functional validation. 

 

Transcription factor candidate gene validation 

To assess the contributions of each candidate gene to the floral pigmentation 

phenotype, functional validation was performed using virus-induced gene silencing (VIGS). 

MYB-FL silencing produced purple, anthocyanin-containing sectors in P. axillaris, 

demonstrating a negative association between flavonol and anthocyanin concentrations in the 

naturally occurring species, although it is not clear whether this is due to regulatory 

competition between the branches or dihydroflavonol substrate competition. DPL silencing 

produced white sectors; importantly, this phenotype was observed only in P. exserta and not 

in the other species tested (Figure 4A). Analysis of flavonoid concentrations in P. exserta 

showed a significant reduction of total anthocyanidins in DPL-silenced petal limbs (Figure 

4B). Therefore, inactivation of DPL specifically interfered with anthocyanin production in P. 

exserta and had no effect in the purple species P. secreta and P. inflata. 

Silencing of PH4 produced a shift from purple to blue in P. inflata (Figure 4A). This 

same phenotype was observed in P. hybrida ph4 mutants (Quattrocchio et al., 2006b). 

Extensive studies of P. hybrida have shown that PH4 is an activator of vacuolar P-ATPase 

genes and that ph4 mutants have a reduced uptake of protons into the vacuole. When 

vacuoles become more basic, the same anthocyanins that appear red in acidic conditions 

appear more blue (Brouillard, 1988; Yoshida et al., 1995; Yoshida et al., 2003; Quattrocchio 
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et al., 2006b). To our surprise, we observed white sectors in P. exserta as well as in sister 

species P. secreta. Indeed, PH4-silenced petals in P. exserta and P. secreta produced 

significantly lower levels of anthocyanidins, whereas PH4 silencing in P. inflata did not 

significantly lower the amount of anthocyanidins (Figure 4C).  

We conclude that both DPL and PH4 are key transcription factors that are required 

for pigmentation in P. exserta. However, DPL inactivation exclusively affects P. exserta, 

whereas PH4 has a function in all three colored species. 

 

Anthocyanin biosynthetic candidate gene validation 

Biosynthetic genes F3′H/HT1, F3′5′H/HF1, F3′5′H/HF2, 3GT, and AAT were 

identified as promising candidates involved in the establishment of the red color. Silencing of 

the dihydroxylating F3′H/HT1 produced a visible phenotype in P. exserta (Figure 4A) with 

lighter-colored sectors. This subtle but highly reproducible phenotype could not be confirmed 

by chemical analysis of whole limbs, emphasizing the sensitivity of sector analysis (Figure 

4D), and raising the possibility of redundant or compensatory 3′ B-ring hydroxylation by 

F3′5′H. No change in phenotype was observed in P. secreta and P. inflata, which was to be 

expected as these species produce trihydroxylated purple pigments and do not express HT. 

Next, we silenced the F3′5′H/HF trihydroxylation genes. Although HF1 and HF2 are 

not identical, the high sequence similarity prevented specific targeting of either one via 

VIGS-silencing (which uses siRNA molecules of 20-27 bp); thus both HF1 and HF2 gene 

copies were simultaneously targeted. HF-silenced sectors in P. exserta were a light shade of 

red. When comparing the concentrations of anthocyanidins, the amount of delphinidin was 

reduced in the silenced sectors (Figure 4D). Further, the amount of cyanidin in F3′5′H/HF-

silenced petals was significantly higher than in F3′H/HT1-silenced petals, demonstrating a 

shift in anthocyanidin hydroxylation. Thus, both F3′H/HT1 and F3′5′H/HF1/2 (and thereby 

both dihydroxylated and trihydroxylated anthocyanins) contribute to the red color of P. 

exserta. In contrast, F3′5′H/HF silenced sectors in P. secreta and P. inflata were completely 

white, marking the absence of anthocyanidins. This result indicates that the F3′5′H/HF genes 

are responsible for the purple pigmentation of these species whereas F3′H/HT1 activity is 

inconsequential.    

The anthocyanin-modifying genes 3GT and AAT yielded contrasting results. Silencing 

3GT produced no visible phenotype in any species, suggesting that it is not essential to either 

red or purple anthocyanin production (Figure 4A). Silencing AAT had no effect on the color 

phenotype in P. exserta, in line with its low expression (Figure 2, Supplemental Figure S5D, 
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Supplemental Figure S6). In contrast, silencing AAT in the purple species P. secreta and P. 

inflata produced pink sectors (Figure 4A). The proportion of delphinidin increased in the 

pink sectors of both P. secreta and P. inflata, and additionally introduced dihydroxylated 

cyanidin in P. secreta pink sectors (Figure 4E). These results indicate not only that AAT is a 

key step in acylation of anthocyanins, but also that AAT-modified anthocyanins may act as 

substrate for methylated anthocyanins (i.e. petunidin, malvidin, peonidin) (Tornielli et al., 

2009). Thus, both acylation and methylation strategies contribute to deep purple hues in 

Petunia. We conclude that P. exserta modifies expression of the hydroxylating enzymes 

F3′H/HT1 and F3′5′H/HF to produce its red hue, and that the low expression of downstream 

decorating enzyme AAT prevents a purple hue. 

 

DPL, but not PH4, restores anthocyanin biosynthesis in white P. axillaris 

 To determine whether DPL can activate anthocyanin biosynthesis, transgenic lines 

expressing DPL under the control of the CaMV35S promoter were generated in the P. 

axillaris background. Of the nine independent lines, two representative lines were chosen for 

further analysis. Transgenic and non-transgenic siblings were compared from each line. The 

35Spro:DPL plants were intensely pigmented in all visible parts of the plant including 

vegetative tissue (Figure 5A, Supplemental Figure S11). P. axillaris is white-flowered 

(genotype an2 an4 MYB-FL; Figure 5A) and 35Spro:DPL  expression complements the an2 

and an4 mutations, restoring anthocyanin biosynthesis to the corolla (petal limb and petal 

tube; Figure 5A, Supplemental Figure S11). Total anthocyanidin concentration increased in 

P. axillaris 35Spro:DPL petal limbs (Figure 5B). 

As expected, DPL transcript levels were highly increased in the transgenic line. 

Anthocyanin-specific biosynthetic genes were upregulated (DFR, ANS, 3GT, ART, AAT, 

5GT, 3′AMT/MT, but not MF; Figure 5C). Expression of genes dedicated to flavonol 

biosynthesis, namely MYB-FL, FLS and F3′H/HT1, were not significantly different in the 

overexpression lines compared to P. axillaris. Both F3′5′H/HF1 and F3′5′H/HF2 remained 

lowly expressed (Figure 5C). Thus, similar to P. exserta (Figure 2A), DPL overexpression in 

a P. axillaris background up-regulated the genes of the anthocyanin pathway. However, DPL 

overexpression with the CaMV35S promoter appeared to up-regulate all of the anthocyanin-

modifying genes whereas this did not occur in P. exserta (low expression of 3GT and AAT, 

Figure 2A). We conclude that DPL can activate anthocyanin biosynthesis, but additional 

genetic variation in P. exserta as well as further degeneration in P. axillaris anthocyanin 

transcriptional network likely contributed to the red vs. purple color.  
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We next investigated the potential role of PH4 in the transcriptional activation of the 

biosynthetic genes. Inactivation of PH4 by VIGS in the P. axillaris 35Spro:DPL transgenic 

background induced white sectors, as it did in the wild-type P. exserta and P. secreta 

backgrounds (Figure 5D, 4A). Thus, PH4 is indispensable for color formation even in a 

background where DPL is constitutively active. PH4 has been shown not to induce 

biosynthetic gene expression in P. hybrida (Quattrocchio et al., 2006b), but it could be an 

activator of DPL expression in P. exserta. However, transient expression of 35Spro:PH4 in the 

wild-type P. axillaris background did not induce anthocyanin pigmentation (Figure 5E), 

which strongly argues against PH4 as an upstream regulator of DPL. 

 

DISCUSSION 

In a scenario of shifts in pollinator competition and availability, selection for floral 

color is likely to be strong, favoring genetic changes of large phenotypic effect. Indeed, there 

is a rich and diverse literature on such large-effect genes. However, almost all documented 

cases of floral color changes involve loss-of-function mutations or severely reduced 

expression of the identified genes. In Petunia, we identified two cases of re-acquisition of 

color from a colorless ancestor. Re-acquisition of the ancestral purple color in P. secreta was 

by a simple 2-bp compensatory deletion in the R2R3-MYB transcription factor AN2 (Esfeld 

et al., 2018). Acquisition of red floral color in P. exserta turned out to be far from simple. 

  

Balanced shift in activities of three hydroxylation enzymes  

Documented shifts to red floral color are caused either by addition of carotenoids or 

by redirecting anthocyanin synthesis to the orange-red pelargonidins. Our new LC-MS 

analyses clearly show that P. exserta contains neither carotenoids nor pelargonidins (Figure 

1, Supplemental Figure S1), but instead cyanidin and delphinidin are the major pigments. The 

presence of delphinidins is surprising as they tend to be blue/purple (Holton and Cornish, 

1995). How then can P. exserta flowers be red?  

The high abundance of dihydroxylated cyanidin and trihydroxylated delphinidin in P. 

exserta implies balanced activities of F3′H/HT1 and the two F3′5′ hydroxylases F3′5′H/HF1 

and F3′5′H/HF2. Compared to its sister species P. secreta, P. exserta displays a substantially 

increased expression of F3′H/HT1, in line with high cyanidin concentrations. In the case of 

the two F3′5′ hydroxylases, expression of F3′5′H/HF1 is decreased and expression of 

F3′5′H/HF2 is increased. Detailed analysis of the genetic interactions of these three genes in 

P. hybrida has shown that HF1 is fully epistatic over both HT1 and HF2; that is, in the 
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presence of HF1 activity, anthocyanins are always trihydroxylated irrespective of the allelic 

state of the two other genes (Wiering and De Vlaming, 1984). Genotypes without HF1 but 

with HT1 and HF2 produced both dihydroxylated and trihydroxylated anthocyanidins. 

Therefore, we propose that reduction of F3′5′H/HF1 activity was a prerequisite for the 

accumulation of dihydroxylated cyanidins by F3′H/HT1. Additionally, the Petunia-specific 

duplication of F3′5′H and subsequent functional divergence of HF1 and HF2 specificity was 

also vital to the delphinidin-based contribution to the red color in P. exserta. 

 

Anthocyanin acylation and methylation are further contributors to the purple-to-red 

continuum 

Shifts in floral color from blue to red across the angiosperms always involve a 

decrease in anthocyanin hydroxylation. But to the best of our knowledge, P. exserta is the 

only red-flowering species in the Solanaceae and possibly in the eudicots that retains 

delphinidin production and still produces a red hue (Berardi et al., 2016; Ng and Smith, 

2016a; Ng and Smith, 2016b; McCarthy et al., 2017; Larter et al., 2018; Ng et al., 2018). To 

resolve this conundrum, we focused our attention on the sugar, acyl or methyl modifications 

of the anthocyanidin backbone. Without acylation, the simply glycosylated versions of 

cyanidin and delphinidin appear redder in situ than do their acylated versions (Curaba et al., 

2019; Tasaki et al., 2019). In support of this, when anthocyanin acyltransferase AAT was 

silenced in purple P. secreta or P. inflata, the silenced sectors appeared pink (Figure 4). 

We propose that in addition to essential changes in anthocyanin hydroxylation, P. 

exserta is red because it lacks decoration of the anthocyanidin backbone by acylation (AAT), 

and as a consequence color hue shifts towards red (Fukui et al., 1998; Slimestad et al., 1999; 

Hashimoto et al., 2002). Indeed, there may be many undetected cases where important 

anthocyanin modifying genes such as AAT contribute to shifts in floral color, and considering 

the full complexity of the anthocyanin biosynthetic pathway could be rewarding. 

 

Regain of color from a colorless ancestor 

Unlike sister species P. secreta, P. exserta did not resurrect the AN2 pseudogene, 

raising the question of which transcription factor(s) induce the anthocyanin biosynthetic 

genes in floral tissue. Genetic analysis identified a strong QTL on chromosome 2, with 

opposing effects on visible and UV color (Figure 3A). We previously identified transcription 

factor MYB-FL as the gene underlying the UV color QTL (Sheehan et al., 2016). Transposon 

insertions in MYB-FL yielded UV-reflective pink sectors in the white UV-absorbing 
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background, most likely due to substrate competition between flavonol and anthocyanin 

biosynthesis. It is highly plausible that MYB-FL underlies the visible color QTL on 

chromosome 2, as well. UV-absorbing flowers stand out against the foliage background and 

are an important guide for night-active hawkmoths, whereas UV color has little effect on day-

active pollinators (Chittka et al., 1994; White et al., 1994; Raguso and Willis, 2005). Thus, 

MYB-FL activity is dispensable for daytime pollination by hummingbirds, and its loss is 

necessary to free up substrate for anthocyanin biosynthesis. It is a rare example of gain of 

function by a loss-of-function mutation. 

 

 DPL reinstates anthocyanin biosynthesis 

AN2 being non-functional, we searched for substitute transcriptional activators that 

intensify visible flower color by activating the anthocyanin biosynthetic genes (Figure 2B). 

Within the R2R3-MYB SG6 clade to which AN2 belongs, we found a single candidate, DPL. 

DPL is moderately up-regulated relative to P. axillaris, whereas it is low in purple P. secreta 

and P. inflata (Figure 3C). Silencing of DPL strongly reduced color in P. exserta but not in P. 

secreta and P. inflata (Figure 4A,B), providing functional validation of its unique role in P. 

exserta. We further demonstrated that DPL is capable of reinstating anthocyanin biosynthesis 

in the anthocyaninless species P. axillaris (Figure 5). 

In P. hybrida Mitchell (which is mostly P. axillaris-like) DPL is responsible for vein 

pigmentation in the petal tube but has no role in the limb (Albert et al., 2011). We conclude 

that DPL has shifted from activating anthocyanin biosynthesis in the veins of the floral tube 

to activating anthocyanin biosynthesis in the limb. Duplication and diversification of MYBs 

is pervasive in floral color diversification (Des Marais and Rausher, 2008; Yuan et al., 2014; 

D'Amelia et al., 2018). The duplication of the ancestral SG6 MYB presumably took place in 

the Petunia ancestor given the presence in all Petunia lineages and phylogenetic relatedness 

of the four anthocyanin-MYB paralogs (AN2, DPL, PHZ, AN4; Figure 3B). The up-

regulation of DPL in the P. exserta lineage is an essential step in the regaining of intense 

anthocyanin pigmentation in its flowers, and is an example of the gain of a new expression 

pattern (regulatory neofunctionalization) rather than partitioning of ancestral expression 

patterns (subfunctionalization) (Moore and Purugganan, 2005). 

 

A novel role of PH4 in the Petunia long-tube clade 

 PH4 is 3.6-fold up-regulated in P. exserta compared to P. axillaris and has moderate 

ASE (0.64), suggesting it may be a candidate AN2 substitute (Figure 3C). Silencing the gene 
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in the short-tube species P. inflata yielded the expected shift to blue, presumably through 

disruption of vacuolar pH acidification. In contrast, PH4 silencing results in white sectors in 

P. exserta as well as P. secreta, indicating a new function specific to the long-tube clade 

(Figure 4A,C). Could this new function be transcriptional activation of anthocyanin 

biosynthesis, either directly or indirectly? PH4 does not induce anthocyanin biosynthetic 

genes in P. hybrida (Quattrocchio et al., 2006b) and neither does it induce anthocyanin 

biosynthesis in P. axillaris (Figure 5E). Moreover, silencing of PH4 causes white sectors 

even when DPL is constitutively expressed (Figure 5D). Therefore, PH4 does affect pigment 

accumulation, but not by direct transcriptional activation of the biosynthetic genes nor 

indirectly by activating DPL. We conclude that PH4 induces anthocyanin accumulation by an 

independent mechanism. What could this be? In P. hybrida, PH4 is required for acidification 

of the vacuole as well as for volatile transport out of the vacuole (Quattrocchio et al., 2006b; 

Cna'ani et al., 2015). We speculate that PH4 activates a transporter that exports anthocyanins 

from the cytoplasm into the vacuole.  

 

A complex molecular mechanism in the shift to hummingbird pollination 

Most transitions in floral color studied at the molecular level appear to be relatively 

simple. The most complex transition described to date is the blue to red shift in Iochroma 

(Solanaceae), which involved modifications of DFR, F3′H, and F3′5′H (Smith and Rausher, 

2011; Larter et al., 2018). That P. exserta retains delphinidin production, yet presents a red 

color, qualifies it as more complicated than a transition that goes from delphinidin (blue-

purple) to pelargonidin (brick red).  In the case of P. exserta, our major conclusions are that 

the evolution of red color in P. exserta involved 1) inactivation of a competing biosynthetic 

pathway by loss of function of its specific transcriptional activator MYB-FL, 2) up-regulation 

of DPL to replace the ancestral function of AN2 in petal limbs, 3) reshuffling of the 

expression patterns of the hydroxylating genes F3′H/HT1, F3′5′H/HF1 and F3′5′H/HF2, and 

4) absence of anthocyanin acylation due to low expression of the responsible enzyme, AAT 

(Figure 6).  

Finally, there must be additional levels of complexity. First, overexpression of DPL 

behind the strong 35S promoter in P. axillaris induces high expression of all late biosynthetic 

genes, including 3GT and AAT which are not expressed in P. exserta (Figure 5, Figure 2). 

This hints at additional genetic diversity between the P. axillaris and P. exserta backgrounds. 

It is also possible that the P. exserta DPL expression level (Figure 3C) is insufficient to 

induce certain target genes. In that case, a precise intermediate level of DPL expression 
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would be functionally relevant. Second, ASE analysis shows that DPL is largely activated in 

trans (Figure 3D). A plausible candidate upstream activator was PH4, but we have 

confidently ruled it out (Figure 5D, E). Broadening the search to the entire transcription 

factor data set yielded 21 potential candidates. That none of them is annotated as even 

remotely related to flavonoids does not necessarily disqualify them as candidates. Indeed, it 

has been well established – also in plants – that many different transcription factors bind to 

many different promoter elements (Franco-Zorrilla et al., 2014; Taylor-Teeples et al., 2015; 

Gaudinier et al., 2018), potentially creating large and complex transcriptional networks. 

Mutational effects in such networks result in a continuum of large to small effects in a given 

phenotype and may diffuse through the network causing subtle changes in unrelated 

pathways (Boyle et al., 2017), in line with theoretical models (Orr, 1998; 2005). To what 

extent such a scenario is relevant for the evolution of red color in P. exserta case remains an 

interesting question. 

 

MATERIALS AND METHODS 

 

Plant material and growth conditions 

Wild Petunia accessions have been previously described (Segatto et al., 2014; 

Turchetto et al., 2014; Sheehan et al., 2016; Turchetto et al., 2016). The reference accession 

Petunia axillaris N (hereafter referred to as P. axillaris) is from the Rostock Botanical 

Garden (Germany) and is registered in the Amsterdam collection under the designation of P. 

axillaris S26; P. inflata S6 (hereafter referred to as P. inflata) was provided by R. Koes 

(University of Amsterdam, the Netherlands); P. exserta from R.J. Griesbach (USDA, 

Beltsville, USA). P. secreta was collected in its natural habitat and maintained through 

laboratory crossings (Esfeld et al., 2018). Plants were grown in a growth chamber under a 

light:dark regime of 15:9 h using 400W Clean Ace Daylight metal halide lamps (Eye 

Lighting International; two bulbs per square meter giving 200-250 µmol/m
2
/s), at 22:17°C at 

60-80% relative humidity, in commercial soil (70% Klasman substrate, 15% Seramis clay 

granules, 15% quartz sand), and fertilized once a week. 

 

Color and UV images 

Color images were recorded using a Panasonic DMC-TZ10 camera. UV pictures were 

recorded using a Nikon 60 mm 2.8D microlens with a Nikon D7000 SLR camera converted 

to record UV light using a UV-specific filter (blocking visible and infrared light). 
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DNA sequencing and reference genomes 

 Reference draft genomes of P. axillaris and P. exserta used were taken from 

DNAZoo (https://www.dnazoo.org/assemblies/Petunia_axillaris and 

https://www.dnazoo.org/assemblies/Petunia_exserta) and modified, detailed in Supplemental 

Methods S1, to reflect correct chromosome arrangement and names. The reference genome 

for P. inflata was v1.0.1 from (Bombarely et al., 2016), assembly and annotation files 

accessible on the SolGenomics website 

(https://solgenomics.net/organism/Petunia_inflata/genome). We additionally completed a 

draft genome assembly and annotation of P. secreta for this manuscript. This Whole Genome 

Shotgun project has been deposited at NCBI GenBank 

under the accession JAFBXY000000000, project PRJNA674325. The version described  

in this paper is version JAFBXY010000000, and annotation is deposited at Dryad 

(https://doi.org/10.5061/dryad.jsxksn083). Further methods on DNA sequencing and 

assembly are detailed in Supplemental Methods S1. 

 

RNA sequencing 

To detect differential gene expression (DE) and allele-specific expression (ASE) in P. 

exserta, P. axillaris, the P. axillaris x P. exserta F1, and P. secreta, petal limb tissue was 

harvested via dissection of petal limbs from stage 4 buds (P. axillaris/P. secreta: 22-30 mm, 

P. exserta/ P. axillaris x P. exserta F1, 25-34 mm) from plants grown under controlled 

conditions. For each species or hybrid, petal limbs from three biological replicates (individual 

plants) were collected. RNA was extracted using the Qiagen RNeasy Plant Mini Kit. RNA 

was prepared and sequenced in the Lausanne Genomic Technologies Facility (Lausanne, 

Switzerland) in two separate experiments. Experiment 1: P. axillaris, P. exserta, P. axillaris 

x P. exserta F1, Experiment 2: P. axillaris, P. secreta. Quality of RNA was checked using a 

Fragment Analyzer (Advanced Analytical). Libraries were prepared using Illumina TruSeq 

PE Cluster Kit v3 and each experiment was sequenced on a single lane of an Illumina HiSeq 

2500 as single-end 100 nt reads. Sequencing data was processed using the Illumina Pipeline 

Software v.1.82. Reads were uploaded to NCBI SRA database under PRJNA674380. 

Transcriptomes from Illumina data were assembled for P. exserta, P. axillaris, and P. 

secreta using Trinity v2.4.0 in genome-guided mode with P. axillaris v3.0.4 as the reference 

genome (Grabherr et al., 2011; Haas et al., 2013) for the purposes of examining predicted 

transcripts. 
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Differential expression analysis 

Although we collected material for RNAseq data from Petunia species from the same 

tissue type at the same developmental stage (petal limbs from bud stage 4) and under 

controlled growth conditions, samples were not sequenced in the same experiment. Thus, to 

avoid any experimental or platform-based biases, we did not analyze all datasets together. 

Each colored species (P. exserta, P. secreta, P. inflata) was always sequenced with the white 

P. axillaris. We carried out differential expression analysis for each of the three experiments 

(P. exserta, P. secreta, P. inflata compared to P. axillaris) in parallel, and statistical analysis 

was only carried out within experiments (colored species compared to P. axillaris). The P. 

inflata/P. axillaris experimental files are NCBI SRA accession PRJNA300613. 

All read data were processed with Trimmomatic v.0.36 (Bolger et al., 2014) to 

remove Illumina adaptor sequences and trim low-quality regions. These pre-processed reads 

were mapped against the draft reference genome of P. axillaris (v.3.0.4, described above) 

using STAR v.2.6.0c in two-pass mode, with splice junctions -- sjdbOverhang 100 and 

ignoring reads that map more than 20 times in total (Dobin et al., 2013). Reads were counted 

per gene using featureCounts v.1.5.2 (Liao et al., 2014). 

Differential expression analysis was performed with DESeq2 v.1.26.0 (Love et al., 

2014) in R v.3.6.0 (Team, 2019) using RStudio v.1.3.1073. Counts were normalized using 

rlog-transform in DESeq2 and for each gene mean counts were computed over the sample 

replicates. For each comparison, the colored species (P. exserta, P. secreta, P. inflata) was 

compared to the P. axillaris from the same experiment. 

 

Allele-specific expression in the P. axillaris x P. exserta F1 hybrids 

We performed allele-specific expression (ASE) analysis as in Esfeld et al. (2018) and 

Yarahmadov et al. (2020). The bamfiles of three P. axillaris x P. exserta F1 hybrids were 

used to detect variants according to GATK Best Practices for RNA-seq data (Van der 

Auwera et al., 2013). In short, after duplicate marking with Picard-tools v2.18.11 

(http://broadinstitute.github.io/picard/) and splitting reads with N in their CIGAR string, local 

realignment around indels was undertaken and base quality scores were recalibrated, using a 

set of high-quality SNPs determined by an initial run of the HaplotypeCaller (DePristo et al., 

2011). Variants were filtered using hard thresholds, selecting for biallelic alleles and 

removing variants matching DP<10, AF<0.75, QD<2.0, MQ<40.0, FS>60.0. Clustered SNPs 

with more than three occurrences in a window of five were also removed. 
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Allelic coverage for variant positions was detected with ASEReadCounter 

implemented in GATK v3.5.0 (Van der Auwera et al., 2013; Castel et al., 2015) using -mmq 

50 and -minDepth 20 filters on rounded read counts averaged over the biological replicates. 

Analyses of allelic imbalance were conducted in R (v3.6.0) with the package MBASED 

(v.1.20.0) (Mayba et al., 2014). Parameters of read count over-dispersion were estimated with 

a custom R script provided by the author of the MBASED package. P-values of ASE and 

heterogeneity were corrected for multiple comparisons using the p.adjust function with the 

Benjamini–Hochberg method in R base package “stats” (v3.6.0). ASE scripts are made 

available on https://github.com/Kuhlemeier-lab/Exserta-red/.  

 

Analysis of functionally relevant SNPs in the coding region of candidate transcription 

factors 

To identify functional SNPs between P. exserta and P. axillaris, variant files of the 

parental species obtained from ASE analysis described above were scanned using SNPeff 

v.4.3T (Cingolani et al., 2012). Detected mutations classified as high-impact, frameshift, loss 

and gain of stop codon, and missense variants were considered for further analysis. 

 

RIL population, GBS, and genetic map 

An F7 mapping population of 195 progenies were bred from selfed progeny of an F2 

population of the parental species P. axillaris x P. exserta. These individuals were sequenced 

and genotyped using a GBS protocol (Elshire et al., 2011); details further described in 

Supplemental Methods S2. Raw sequence reads are available at the NCBI SRA database 

under PRJNA704924, 

Genetic maps were constructed using packages R/qtl v1.46-2 (Broman et al., 2003) 

and ASMap v.1.0-4 (Taylor and Butler, 2017) in R v3.6.0 and RStudio v1.3.1073 (Team, 

2016). Individuals with <70% genotypes were removed. Markers in initial draft genetic maps 

with identical genotypes over all individuals were binned for a second round of map 

construction using a cutoff of p-value of 1^10. A genetic map of 714.1 cM was generated 

with Kosambi mapping function and was used to group 1409 markers into seven linkage 

groups. The finalized genetic map is summarized in Supplemental Table S10. The genetic 

map generation script is made available on https://github.com/Kuhlemeier-lab/Exserta-red/. 

 

Phenotyping and QTL analysis of P. axillaris x P. exserta F7 RIL population 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/advance-article/doi/10.1093/plcell/koab114/6237947 by U

niversitaetsbibliothek Bern user on 26 April 2021

https://github.com/Kuhlemeier-lab/Exserta-red/


 

 23 

Anthocyanin and flavonol absorbances were measured in the P. axillaris x P. exserta 

F7 RIL population using the same protocol as described by (Sheehan et al., 2016). For each 

plant, five flowers were phenotyped. For each flower, a disc 8 mm in diameter of petal limb 

tissue was sampled and placed into 1 ml of MAW extraction buffer (2:1:7 methanol:acetic 

acid:water). After 48 h in the dark, absorption spectra were measured on a spectrophotometer 

(Ultraspec 3100 pro, Amersham Biosciences, England, UK). Anthocyanin values represent 

summed absorbance values over 445–595 nm and flavonol values represent summed 

absorbance values over 315–378 nm. 

Anthocyanins and flavonols were evaluated for the identification of QTLs based on 

their phenotypic distribution using the “scanone” function in R/qtl v1.46-2 (Broman et al., 

2003). Anthocyanins were normally distributed and analyzed with the “hk” Haley-Knott 

regression method. Flavonols showed a bimodal distribution reflecting groups with high and 

low concentrations and were analyzed using the “2part” method. Genome-wide significance 

level was established using 10000 permutations using the “n.perm” argument for each of the 

anthocyanin and flavonol phenotypes at α = 0.05. The R/qtl script is made available on 

https://github.com/Kuhlemeier-lab/Exserta-red/ 

 

Identification and filtering for candidate MYB, bHLH, WD40, and global transcription 

factors 

MYB transcription factors were detected in the P. exserta, P. axillaris, and P. secreta 

genomes using HMMER v3.1b2 (Eddy, 2009); P. secreta MYBs were only used to identify 

Subgroup 6 (SG6) MYBs. The alignment of A. thaliana MYBs from Dubos et al. (2010) was 

used to create a MYB hmm profile, and then searched against each genome. A cutoff of E-

value of 0.01 for the full sequence was used. WD40 and bHLH transcription factors were 

identified in P. exserta and P. axillaris only. Identification of WD40 proteins was performed 

with HMMER as described for MYBs above, but the hmm profile was constructed from 

WD40 proteins from the Solanaceae downloaded from pfam database 

(https://pfam.xfam.org/family/WD40#tabview=tab7). The bHLH proteins were previously 

identified in Yarahmadov et al. (2020) for P. exserta and P. axillaris. 

Once identified, we extracted the MYB, bHLH, and WD40 transcription factors 

present in the differential expression gene dataset from the RNAseq experiment of P. exserta, 

P. axillaris, and their F1 hybrid, and then applied strict filters (DE, filtering for ±1.5 LFC, 

and only considering genes that had a baseMean of least 25 normalized read counts).  
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We additionally scanned a Petunia global transcription factor dataset (2284 proteins 

from Yarahmadov et al. (2020)) to extend the search outside of potential MBW candidates to 

any possible transcription factor (thus including other major transcription factor families, 

such as WRKY or Zinc fingers). We applied the same DE filters but additionally applied a 

filter for an allele-specific expression (ASE) value of 0.75; this would detect mutations in cis. 

This approach served to narrow down the candidate gene list and would capture additional 

candidate transcription factors. 

 

Phylogenetic analysis: MYB tree estimation 

Two gene trees were estimated: one for all MYBs to define the MYB subgroups, and 

a second tree focused on MYB Subgroup 6 (SG6). For the entire-MYB tree, MYBs from P. 

exserta, P. axillaris, and A. thaliana were aligned using Clustal and MAFFT algorithms in 

Geneious v9.1.8 (Biomatters Ltd). We included the recently discovered SG6 MYB ASR3 

from P. inflata (Genbank accession MF623311) and used the C-myb protein from Danio 

rerio as an outgroup (Genbank accession AAH59803) as in Gates et al. (2017). A neighbor-

joining tree was generated in Geneious using default parameters to serve as a starting tree for 

phylogenetic estimation. A perl script for model selection available with RAxML estimated 

the best protein evolution model as PROTGAMMAVT. The phylogeny was estimated in 

RAxML v8.2.10 (Stamatakis, 2014) by estimating the best-scoring maximum likelihood tree 

with 1000 bootstrap replicates (using the standard RAxML bootstrapping algorithm, -f b) 

with raxmlHPC. Petunia MYBs were classified into the canonical MYB subgroups if they 

formed discrete clades with known A. thaliana proteins, as well as by using motifs defined in 

Stracke et al. (2001). 

The second gene tree focused on MYB SG6 and the PH4 clade (“G20”), and included 

protein sequences from P. exserta, P. axillaris, and P. secreta. MYBs from SG6 were 

identified from the larger MYB tree by their well-known motifs: the bHLH interacting motif 

[D/E]Lx2[R/K]x3Lx6Lx3R, the ANDV motif, and the C-terminal SG6-defining motif 

[R/K]Px[P/A/R]x2[F/Y/L/R] (Stracke et al., 2001; Zimmermann et al., 2004; Lin-Wang et al., 

2010; Hichri et al., 2011). The PH4 sequences were identified using the same bHLH 

interaction motif as well as two “G20” conserved motifs (Quattrocchio et al., 2006b). The full 

protein sequences of these genes were extracted, realigned using the MAFFT algorithm, and 

then neighbor-joining tree was constructed in Geneious v9.1.8 (Biomatters Ltd). The gene 

tree was estimated with raxmlHPC program using the rapid bootstrap approach (-f a) with 
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1000 bootstraps, PROTGAMMAAUTO model selection (JTT was selected), and with the 

neighbor-joining starting tree. 

Fasta alignments and newick tree files for both trees are provided as Supplemental 

Datasets S1-S4.  

 

Coding sequences of flavonoid biosynthetic loci and transcription factors 

We used known sequences from P. hybrida as well as those previously identified in 

Supplemental Note 7 from Bombarely et al. (2016) and in Esfeld et al. (2018), and used 

BLAST to find orthologs in P. axillaris, P. inflata, P. secreta, and P. exserta. Genes were 

aligned first with the MAFFT algorithm and then by codon in Geneious v9.1.8 (Biomatters 

Ltd). We manually examined the coding sequences of flavonoid biosynthetic loci HT1 

(F3′H), HF1 (F3′5′H), HF2 (F3′5′H second copy), FLS, DFR, ANS, 3GT, ART, AAT, 5GT, 

MT (3′AMT), MF1 (3′5′AMT), and MF2 (3′5′AMT second copy) for any loss-of-function 

mutations and estimated sequence divergence using the “Distances” function in Geneious. 

Protein alignments are available on Dryad. 

The DFR, HT1, HF2, and AAT coding sequences were translated to amino acid 

sequences and aligned using the MAFFT algorithm in Geneious v9.1.8 (Biomatters Ltd). The 

DFR protein alignment of P. inflata, P. axillaris, P. secreta, P. exserta, and P. hybrida 

(Genbank KC140107.1) were re-aligned to the sequence and crystal structure of Vitis vinifera 

DFR (Petit et al., 2007). Protein active and binding sites are known for the hydroxylating 

genes F3′H and F3′5′H and AAT (Nakayama et al., 2003; Seitz et al., 2007). We examined 

these sites in amino acid alignments of HT1, HF1, HF2, and AAT for any amino acid 

changes unique to P. exserta. 

Coding sequences for DPL and PH4 in P. exserta, P. axillaris, and P. secreta were 

cloned during the Gateway cloning procedure (described below) and verified by Sanger 

sequencing. Exon and introns were defined by aligning the resulting sequences to the 

respective genome drafts, as well as manually examining Illumina read mapping and 

assembled transcripts (transcriptomes described above). 

 

Virus induced gene silencing (VIGS) 

VIGS was performed as described in (Spitzer-Rimon et al., 2013) with the Tobacco 

rattle virus (TRV). Briefly, pTRV1, pTRV2-MCS (multiple cloning site), and pTRV2-NtPDS 

(phytoene desaturase from Nicotiana tabacum, which causes photobleaching) plasmids were 

obtained from the Arabidopsis Biological Resource Center (ABRC accessions CD3-1039, 
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CD3-1040, CD3-1045 respectively). We selected coding region fragments in the targeted 

genes that are the most specific to avoid off-targets (~200-350 bp). These fragments were 

either synthesized by Genewiz (Leipzig, Germany) or amplified by PCR from cDNA using 

forward and reverse primers containing BamHI and EcoRI restriction sites (summarized in 

Supplemental Tables S12 and S13). Fragments were cloned into the pTRV2-MCS plasmid 

and transformed into A. tumefaciens strain GV3101. pTRV1 was mixed with each pTRV2 

derivative in a 1:1 ratio prior to infection of Petunia plants (at approximately a six-leaf 

stage). Infection was carried out by removing the shoot apex and applying 40 ul inoculum to 

the cut surface of the stem. Only flowers from the branches arising from infected meristems 

were phenotyped. 

For each species/gene combination, three plants each were infiltrated with pTRV2 

derivative, empty vector (pTRV2-MCS) as a negative control, and one pTRV2-NtPDS 

positive control (for VIGS efficiency). At the time of flowering, at least 25 consecutive 

flowers per plant (at least ~75 total flowers per gene/species) were phenotyped two days 

post-anthesis at the same time every day. Silenced sector phenotypes were determined when 

the same phenotype arose in all three biological replicates per species and produced in the 

majority (>50%) of flowers for P. axillaris, P. exserta, and P. inflata. P. secreta is more 

susceptible to TRV and tended to produce silenced sectors at a lower, but consistent rate 

(~25-30%). 

 

Overexpression constructs and transformation in P. axillaris 

The construct used for stable transformation, pNWA12 (35Spro:DPL) from Albert et 

al. (2011), was kindly gifted by Nick Albert. Stable transgenic P. axillaris lines were 

generated by leaf disc transformation with Agrobacterium tumefaciens strain LBA4404 

following an adapted version of the protocol described by Conner et al. (2009). Nine 

independent lines from the T1 generation were established with two independent lines 

selected for characterization. Further methods are described in Supplemental Methods S3. 

 The P. exserta ORFs for DPL and PH4 were amplified and cloned into the Gateway-

compatible binary vector pGWB402 (Addgene plasmid #74796) with a CaMV35S promoter. 

Transient transformation of petals using A. tumefaciens strain GV3101was performed as in 

Van Moerkercke et al. (2011). One-day open flowers were syringe-infiltrated at each of the 

five petal midveins, and three days later phenotypes were observed and photographed. 

 

Reverse transcription-quantitative PCR 
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Expression levels of biosynthetic genes were measured for stage 4 and stage 6 petal 

limb material in P. axillaris, P. exserta, and P. secreta. Primer sequences not previously 

reported in Esfeld et al. (2018) are included in Supplemental Table S12. Stage 4 expression 

levels of P. axillaris and P. secreta are published in Esfeld et al. 2018 but were conducted in 

the same experiment as presented in this manuscript, including bud stage 4 data from P. 

exserta as well as bud stage 6 data. 

Petal limbs were collected from buds stage 4 and stage 6 from three different plants of 

each species, representing three biological replicates (n = 12); P. axillaris and P. secreta (bud 

length stage 4: 22-30 mm; bud length stage 6: 40-50 mm), P. exserta (bud length stage 4: 25-

35 mm; bud length stage 6: 50-65 mm). Samples were frozen in liquid nitrogen and stored at 

-80°C until extraction. RNA was extracted with the RNeasy Plant Mini Kit (Qiagen), 

replacing β-mercaptoethanol by dithiothreitol. RNA was treated with DNase I (Sigma-

Aldrich), and quantified with a Nanodrop ND-1000 (Thermo Fisher); RNA was additionally 

analyzed on a Bioanalyzer 2100 (Agilent Technologies) prior to cDNA preparation. 

Random hexamer primers were used for first-strand synthesis using the Transcriptor 

Universal cDNA Master (Roche) kit according to the supplier. Quantitative RT-PCR 

experiments were performed using the LightCycler 96 Real-Time PCR System (Roche) with 

KAPA SYBR_FAST qPCR Kit optimized for LightCycler 480 (KAPA Biosystems), 

according to the manufacturer’s recommendations. Technical replicates were obtained by 

running each sample in triplicate, means of these were taken as the value for the biological 

replicate. Cycle of quantification (Cq) thresholds and normalization calculations were 

determined by the LightCycler 480 Software (v.1.1.0.1320; Roche). Standard curves were 

used to determine the PCR efficiencies. The SAND reference gene (Mallona et al., 2010) and 

controls with no-reverse transcription were included for each sample. For each of the 

flavonoid genes of interest, pairwise comparisons of the mean relative gene expression values 

were made among the three species and bud stages in R (v3.6.0) using the TukeyHSD 

function. 

For RT-qPCR expression analyses in the stable transgenic lines (35Spro:DPL in P. 

axillaris), the experiment was conducted as described above with the following adaptations. 

Petal limbs were collected from buds at stage 4 only from three stable transformant plants 

and from three negative transformants (n = 6); bud length 22-30 mm. The experiment was 

conducted as described above with the following adaptations. First strand synthesis was 

performed with random hexamer primers using the qScriber cDNA Synthesis Kit (HighQu) 

according to the supplier. qPCR experiments were performed using the LightCycler 96 Real-
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Time PCR System (Roche) with ORA™ qPCR Green ROX L Mix, 2X (HighQu), according 

to the manufacturer’s recommendations but reducing the reaction volume by half. For each of 

the genes, comparisons of the mean relative gene expression values were made using two 

sample t-tests (if heterogeneity of variances) or Welch two sample t-tests (if heterogeneity of 

variances) in R (v.3.6.0). 

 

Extraction and identification of flavonoid pigments 

To quantitate and identify anthocyanidins (anthocyanin aglycones) and flavonol 

aglycones, acid hydrolysis procedure was followed as described in Esfeld et al. (2018) based 

on (Harborne, 1998). Briefly, fresh petal limb tissue was dissected from three flowers from 

three individual plants per species (or per VIGS treatment: either whole limbs or sectors were 

sampled, sectors when possible; on average, n=9 for each treatment presented) was weighed 

and placed overnight at 4C in 1 mL of 2M HCl in a darkened 2 mL screw-cap tube. 

Flavonoid extraction was performed via acid hydrolysis for 90 minutes with phase separation 

using ethyl acetate and isoamyl alcohol, resulting in two fractions per sample: one containing 

flavonols and the other containing anthocyanidins. Final extracts were dried at 4°C and stored 

at -20°C until analysis. Samples were re-suspended in 75% MeOH with 1% formic acid (v/v) 

and the two flavonoid fractions per sample were combined for analysis, except for P. 

axillaris samples which were analyzed separately due to the disparate concentrations of 

flavonols and anthocyanidins. Further analyses are described in Supplemental Methods S4. 

To qualitatively identify intact anthocyanins, three second-day open flowers each of 

P. exserta, P. secreta, and P. inflata were sampled and combined per species. Care was taken 

to avoid or remove pollen from the fresh petals used.  Fresh petals were ground on ice in 1 

mL of methanol 1% HCl (v/v), diluted, and immediately analyzed using LC-MS. Further 

methods are described in Supplemental Methods S4. 

 

Crude petal pH measurements 

To measure the pH of crude petal homogenates, we followed the protocol described in 

Spelt et al. (2002). The petal limbs of two flowers (P. exserta, P. axillaris, P. secreta) or 

three flowers (P. inflata; approximately three P. inflata corollas equals the weight of two 

flowers for the other species) were ground with a pestle and mortar in 4 mL of distilled water, 

and the pH of the homogenate was measured immediately (to avoid alkalinization by uptake 

of atmospheric carbon dioxide) with a pH electrode that corrects for temperature (Hanna 

Instruments HI991001). 
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Accession Numbers 

Sequence data from this article can be found under the accession numbers listed in 

Supplemental Table S14. Additional Genbank/GenPept accession numbers for reference 

proteins used in this work are as follows: P. inflata ASR3 (MF623311.1), P. hybrida DFR 

(KC140107.1), Vitis vinifera DFR (P51110.1), P. hybrida Mitchell DPL (ADW94950.1), P. 

hybrida R27 PH4 (AAY51377.1), and Danio rerio C-MYB (AAH59803.1). The P. inflata/P. 

axillaris experimental files are NCBI SRA accession PRJNA300613. Raw sequence reads for 

the F7 mapping population of P. axillaris x P. exserta are available at the NCBI SRA 

database under PRJNA704924. The Whole Genome Shotgun project has been deposited at 

NCBI GenBank under the accession JAFBXY000000000, project PRJNA674325. The 

version described in this paper is version JAFBXY010000000, and annotation is deposited at 

Dryad (https://doi.org/10.5061/dryad.jsxksn083). 

 

 

 

Supplemental Data 

Supplemental Figure S1. Identification of four main anthocyanins in P. exserta methanolic 

extracts. 

Supplemental Figure S2. Identification of an acylated anthocyanin present in purple P. 

secreta and P. inflata methanolic extracts. 

Supplemental Figure S3. Determination of crude petal extract pH in four Petunia species. 

Supplemental Figure S4. Protein alignments of Petunia DFR, HT/HF1/HF2, and AAT 

against known crystal structures, binding sites, and motifs. 

Supplemental Figure S5. RNAseq expression of phenylpropanoid and flavonoid biosynthetic 

genes.  

Supplemental Figure S6. Expression of flavonoid biosynthetic pathway genes in petals from 

bud stages 4 and stage 6. 

Supplemental Figure S7. Maximum likelihood (ML) phylogenetic tree of MYBs and 

subgroup (SG) relationships. 

Supplemental Figure S8. RNAseq and ASE in the F1 hybrid between P. axillaris and P. 

exserta of known flavonoid transcription factors. 

Supplemental Figure S9. Protein alignment of DPL. 

Supplemental Figure S10. Protein alignment of PH4. 
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Supplemental Figure S11. Overexpression of DPL under the control of the CaMV35S 

promoter in P. axillaris. 

Supplemental Table S1. RT-qPCR statistics for Petunia biosynthetic gene expression. 

Supplemental Table S2. Log2 fold change (L2FC) values and statistics for three RNAseq 

experiments. 

Supplemental Table S3. Summary of QTL analysis of anthocyanin and flavonol quantity in 

petal limbs. 

Supplemental Table S4. Chromosomal locations of phenylpropanoid, flavonoid pathway 

structural genes and transcription factors based on the P. axillaris and P. exserta draft 

genomes. 

Supplemental Table S5. Gene IDs for MYB Subgroup 6 and PH4 clade phylogeny. 

Supplemental Table S6. Filtering for MYB candidate transcription factors. 

Supplemental Table S7. Filtering for WD40 candidate transcription factors. 

Supplemental Table S8. Filtering for bHLH candidate transcription factors. 

Supplemental Table S9. Filtering for transcription factors with ASE. 

Supplemental Table S10. Summary statistics of the genetic map for F7 RILs population of P. 

axillaris x P. exserta. 

Supplemental Table S11. RT-qPCR statistics for 35Spro:DPL experiment biosynthetic gene 

expression 

Supplemental Table S12. Primers used for RT-qPCR, PCR, and cloning. 

Supplemental Table S13. Gene fragment sequences for cloning. 

Supplemental Table S14. List of deposited data and accessions. 

Supplemental Methods S1. DNA sequencing and reference genomes. 

Supplemental Methods S2. RIL population generation, GBS sequencing, and genetic map 

estimation. 

Supplemental Methods S3. Stable Agrobacterium-mediated transformation of P. axillaris. 

Supplemental Methods S4. LC-UV and LC-MS chromatographic methods. 
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Figure 1. P. exserta uses purple pigments to create a red flower color. A. Schematic 

representation of the Petunia flavonoid biosynthetic pathway, highlighting the end product 

groups flavonols and anthocyanidins, and the general chemical structure of the six common 

anthocyanidins. Flavonoids are classified into three groups according to their B-ring 

hydroxylation: monohydroxylated, dihydroxylated, and trihydroxylated, highlighted in 

yellow in figure diagram. The dihydroflavonols DHK, DHQ, and DHM are common 

precursors to both flavonols and anthocyanidins (anthocyanin aglycones). Enzymatic 

modification of phenylpropanoid precursors by F3H creates anthocyanidins and flavonols 

that are monohydroxylated on the flavonoid B-ring, while F3′H (encoded by HT1) activity 

creates dihydroxylated and F3′5′H (encoded by HF1 and HF2) trihydroxylated pigments; 

F3′5′H can also act upon DHK directly. FLS modifies dihydroflavonols into the flavonols 

kaempferol, quercetin and myricetin, in increasing B-ring hydroxylation order. Anthocyanins 

are produced from dihydroflavonols by the sequential action of DFR and ANS. Further 

modifications by a suite of six enzymes yield five anthocyanin types, in increasing B-ring 

hydroxylation order: the brick-red to orange pelargonidin, the red to magenta cyanidin and 

peonidin, as well as the blue to purple delphinidin, petunidin, and malvidin. The enzyme FLS 

has low activity on DHM in Petunia, triggering reduced presence of myricetin. Increased 

hydroxylation of anthocyanidins through the action of F3′H/HT1 and F3′5′H/HF shift color 

from red towards purple-blue. Glycosylation, acylation, and methylation of the anthocyanins 

has a similar effect. We group the biosynthetic genes/enzymes in the schematic into the 

following: middle biosynthetic genes (hydroxylating HT1/F3′H, HF1/F3′5′H, and 

HF2/F3′5′H, anthocyanin-specific DFR and ANS, flavonol-specific FLS) and late 

biosynthetic genes (decorating 3GT, ART, AAT, 5GT and methylating MT/3′AMT, 

MF1/3′5′AMT, MF2/3′5′AMT). Anthocyanidins are differentially substituted on the 

anthocyanidin B-ring as follows: Pelargonidin R1=R2=H, Cyanidin R1=OH, R2 =H, 

Delphinidin R1= R2 =OH, Peonidin R1=OMe, Petunidin R1=OMe, R2 =OH, Malvidin R1= 

R2=OMe. B. Anthocyanidins (anthocyanin aglycones) and flavonol concentrations of P. 

exserta petal hydrolyzed extracts, with visible and UV photos of P. exserta. C. The LC-UV 

chromatogram of hydrolyzed extract of P. exserta anthocyanidins overlaid with a 

chromatogram of a mixture of reference standard anthocyanidins, indicates the presence of 

delphinidin, cyanidin, petunidin, peonidin, and malvidin as a shoulder peak, but no 

pelargonidin is detected; n = 9, error bars ±SD. D. Light microscopy of adaxial epidermal 

peel of P. exserta petal limbs (top and bottom left panels, overhead and side views 

respectively) shows vacuoles containing anthocyanins but no carotenoid-containing 
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chromoplasts. In contrast, an epidermal peel of the adaxial (inner) floral tube of P. exserta 

shows cells with yellow carotenoid-containing chromoplasts clustered around the edges of 

the cells, with anthocyanins in the vacuole from a single anthocyanin-pigmented vein cell. E. 

The species tree of the four focal Petunia species as estimated in Esfeld et al. (2018). F. In 

Petunia, the enzyme DFR does not accept DHK as a substrate, thus preventing the 

biosynthesis of pelargonidin. Amino acids from the region of the DFR protein thought to be 

involved in substrate specificity as defined by Johnson et al. (2001) are in bold, with the most 

important residue 143D starred; all Petunia species have identical sequences in this region. A 

full and detailed alignment against the crystal structure is shown in Supplemental Figure S1. 

Abbreviations: For genes and enzymes that have different names, we state the Petunia gene 

name after a forward slash. DHK, dihydrokaempferol; DHQ, dihydroquercetin; DHM, 

dihydromyricetin; F3H, flavanone 3-hydroxylase; F3′H/HT1, flavonoid-3′-hydroxylase, 

encoded by HT1; F3′5′H/HF, flavonoid-3′5′-hydroxylase, encoded by HF1 and HF2; FLS, 

flavonol synthase; DFR, dihydroflavonol-4-reductase; 3GT, anthocyanin-3-

glucosyltransferase; ART, anthocyanin rhamnosyltransferase; AAT, anthocyanin-3-rutinoside 

acyltransferase; 5GT, anthocyanin 5-glucosyltransferase; 3′AMT, 3′-anthocyanin 

methyltransferase encoded by MT; 3′5′AMT, 3′5′-anthocyanin methyltransferase encoded by 

MF1 and MF2. Chemical abbreviations: Pel, pelargonidin; Cy, cyanidin; Del, delphinidin; 

Peo, peonidin; Pet, petunidin; Mal, malvidin. 

 

 

Figure 2. Expression of P. exserta flavonoid biosynthetic pathway genes differ in 

comparison to the white P. axillaris and the purple P. secreta, and ASE in the F1 

hybrids between P. axillaris and P. exserta. A. Relative expression as obtained by RT-

qPCR of the biosynthetic genes of the flavonoid pathway conducted on stage 4 petal limb 

tissue. Expression is represented as the mean ratio of the gene relative to expression of the 

reference gene SAND. Box plots show medians of relative expression from three biological 

replicates, error bars ± SD. Statistics were calculated using aligned ranks transformation 

ANOVA with Tukey post-hoc comparisons; letters indicate significantly different groups and 

full statistics are given in Supplemental Table S1. Stage 4 values for P. axillaris and P. 

secreta were previously published in Esfeld et al. (2018). B. Allele-specific expression (ASE) 

conducted on three biological replicate F1 hybrids between P. axillaris and P. exserta 

(representative photo of F1 hybrid shown in legend). Genes only shown if ASE could be 

calculated (presence of SNPs). For ASE, mapped RNAseq reads were realigned and averaged 
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over SNPs between the parental alleles and counted (see Methods), bars depict the mean read 

counts over all SNPs per gene, per species; points depict mean read counts per individual 

biological replicate. ASE, calculated as the major allele frequency ratio, is written above bars, 

error bars ±SE. We use a strict threshold of ASE values greater than or equal to 0.75 

(indicating at least 3:1 ratio of allelic imbalance) to indicate cis-regulation of the alleles, ASE 

values less than this indicates regulation in trans (for example, ASE of 0.50 indicating a 1:1 

ratio of allelic expression and equal activation by a trans factor). ** p < 0.01, *** p < 0.001 

 

Figure 3. QTL analysis and flavonoid pathway-related MYB Subgroups 6 and “G20”: 

gene tree, expression in stage 4 petal limbs as obtained by RNAseq, and ASE in the F1 

hybrids between P. axillaris and P. exserta. A. QTL analysis of anthocyanin and flavonol 

content in an F7 RIL population of P. axillaris x P. exserta. QTLs are shown with allelic 

effects; LOD values greater than zero indicate P. exserta alleles (“BB”) affect the phenotypic 

variance and below zero indicate P. axillaris alleles (“AA”) affect the phenotypic variance; 

this calculated by multiplying the LOD value by the additive effect divided by the absolute 

value of the additive effect. A major QTL is located on chromosome 2, with minor QTL on 

chromosomes 1, 3 and 7. Percent variance estimated (PVE) listed per chromosome. B. 

Phylogenetic relationship of MYB proteins belonging to Subgroup 6 (SG6) and the PH4 

clade (“G20”) from P. exserta, P. axillaris, and P. secreta. The complete MYB tree for P. 

exserta and P. axillaris is in Supplemental Figure S7. MYB SG6 and G20 form monophyletic 

groups within the MYB tree. Support values shown are based on 1000 bootstraps from a 

RAxML maximum likelihood analysis. AN4 has two canonical copies in long-tube clade 

species, denoted as either “1” or “2”; P. exserta AN4-2 is a pseudogene (denoted 
b
). 

Additional AN4-like genes (denoted 
a
) were discovered in P. exserta but not in either P. 

axillaris or P. secreta; one copy was excluded due to an early nonsense mutation yielding a 

protein of only seven amino acids (Peex113Ctg05333g00001.1). None of the additional AN4-

like genes have measurable expression in stage 4 limbs; gene IDs and accessions given in 

Supplemental Table S4. Branch length represents substitutions per site. B. Normalized read 

counts of candidate MYB from three RNAseq experiments; L2FC values provided in 

Supplemental Table S2, data provided in Supplemental Dataset S5. In each RNAseq 

experiment, a single-colored Petunia species (P. exserta, P. secreta, P. inflata) was compared 

to the white P. axillaris as control, with three biological replicates each, depicted as dots; see 

Supplemental Figure S8, error bars ±2SD. C. Of the candidate MYBs, ASE in P. axillaris 

and P. exserta could be measured on SNPs in DPL, PHZ, and PH4 only; highly significant 
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ASE was detected in PHZ and PH4. ASE bars depict the mean read counts over all SNPs per 

gene, per species; points depict mean read counts per individual biological replicate. Number 

of SNPs indicated in parentheses, ASE calculated as major allele frequency indicated above 

bars, error bars ±SE. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Figure 4. Virus-induced gene silencing (VIGS) phenotypes and chemistry in Petunia. A. 

Three candidate transcription factors and four candidate flavonoid biosynthetic pathway 

genes were silenced in the Petunia species using virus-induced gene silencing (VIGS). 

Flowers where the visible phenotype was altered after gene silencing are indicated with a 

star. VIGS of DPL yielded a loss of color in P. exserta only, whereas VIGS of PH4 induced a 

loss of color in both P. exserta and P. secreta and a color shift in P. inflata. A color shift 

rather than a complete color loss (i.e. white sectors) was observed for the red P. exserta when 

either HT1 or HF genes were silenced. In the purple species, HT1 silencing did not yield a 

phenotype whereas a color loss (i.e. white sectors) were observed for HF silencing. VIGS of 

AAT yielded pink sectors in purple P. secreta and P. inflata. B. Total anthocyanidins 

(compounds shown as stacked bars in order from top to bottom: cyanidin, peonidin, 

delphinidin, petunidin, malvidin) were lower in P. exserta whole petal limbs (n = 5) where 

DPL was silenced compared to the control (pTRV2, n = 4), (Kruskal-Wallis X
2 
= 6.00, df=1, 

p = 0.029). Individual values for total anthocyanidins shown as points. C. Total 

anthocyanidins were lower in P. exserta and P. secreta whole petal limbs where PH4 was 

silenced (n = 3) compared to the control (pTRV2; same control as in DPL-VIGS), but were 

not significantly different in silenced vs. control P. inflata (n = 7, 2 respectively; P. exserta 

Kruskal-Wallis X
2 
= 4.50, df = 1, p = 0.034, P. secreta Kruskal-Wallis X

2 
= 3.857, df = 1, p = 

0.049, P. inflata Kruskal-Wallis X
2 
= 1.191, df = 1, p = 0.275); individual values shown as 

points. D. While silencing of HT1 in P. exserta petal limbs produces a slight decrease in 

cyanidin and delphinidin, a more drastic reduction of delphinidin is observed in HF silencing. 

Individual values for total anthocyanidins shown as points. E. For silencing of AAT in P. 

secreta, pooled petal limb sectors instead of entire petal limbs from three individuals per 

treatment were analyzed. Pink sectors contained lower concentrations of anthocyanidins than 

in purple sectors. Qualitatively, pink sectors also produced more delphinidin and less 

malvidin than did purple sectors, as well as small but detectable amounts of cyanidin in P. 

secreta. * p < 0.05, ** p < 0.01, *** p < 0.001, error bars ± SD. 
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Figure 5. Stable overexpression of 35Spro:DPL in P. axillaris. A. Overexpression of DPL 

yields purple flowers instead of white flowers in P. axillaris. B. The purple color is due to an 

increase in delphinidin anthocyanins with a small increase in cyanidin. The flavonol 

composition only changes slightly, with an increase in the monohydroxylated kaempferol. P. 

axillaris n = 3, 35Spro:DPL n = 6 (three each from two independent lines). C. Gene 

expression analysis of transcription factors and biosynthetic genes for flavonoid biosynthesis 

in 35Spro:DPL transgenic lines (abbreviated as OE) compared to transgene negative P. 

axillaris (abbreviated as AX). Expression is represented as the mean ratio of the gene relative 

to expression of the reference gene SAND. Statistics were calculated using two sample or 

Welch t-tests, ** p < 0.01, *** p < 0.001. The full statistical analysis is given in 

Supplemental Table S11. D. VIGS of PH4 of in 35Spro:DPL lines induced white sectors 

compared to the control (pTRV2). E. Transient overexpression of 35Spro:PH4 and 

35Spro:DPL in wild-type P. axillaris, shown together with buffer and wounding control. Box 

plots depict medians of relative expression from three biological replicates, error bars ± SD.  

** p < 0.01, *** p < 0.001 

 

Figure 6. Schematic for the mechanism of red flower color in Petunia exserta. The 

evolution of red flower color in P. exserta involved the loss of function in the flavonol 

biosynthetic transcription factor MYB-FL and a loss of function in the ancestral anthocyanin 

transcription factor AN2. To compensate for the loss of AN2, related MYB transcription 

factor DPL is up-regulated in petal limbs to activate anthocyanin biosynthesis. Expression of 

the transcription factor PH4 is essential for anthocyanin pigmentation in P. exserta, although 

its function is not directly related to biosynthesis but potentially anthocyanin transport. 

Together with re-activation of anthocyanin biosynthesis, other essential changes in gene 

expression are necessary to achieve red pigmentation relative to sister taxa: moderate 

expression of F3′H/HT1 (in bold), up-regulation of F3′5′H/HF2 (in bold) instead of 

F3′5′H/HF1. Last, the down-regulation of AAT expression prevents cyanidin and delphinidin 

anthocyanin pigments from acylation which would impart a blue-purple hue.  

Legend: Transcription factors are indicated in ovals, flavonoid structural genes/enzymes 

without a bounding shape, and biochemical products in boxes. Items in gray indicate 

inactivity or low expression (in the case of genes) or low concentration (in the case of 

products). 
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Figure 1. P. exserta uses purple pigments to create a red flower color. A. Schematic representation of the 
Petunia flavonoid biosynthetic pathway, highlighting the end product groups flavonols and anthocyanidins, and 
the general chemical structure of the six common anthocyanidins. Flavonoids are classified into three groups 
according to their B-ring hydroxylation: monohydroxylated, dihydroxylated, and trihydroxylated, highlighted in 
yellow in figure diagram. The dihydroflavonols DHK, DHQ, and DHM are common precursors to both flavonols 
and anthocyanidins (anthocyanin aglycones). Enzymatic modification of phenylpropanoid precursors by F3H 
creates anthocyanidins and flavonols that are monohydroxylated on the flavonoid B-ring, while F3′H (encoded by 
HT1) activity creates dihydroxylated and F3′5′H (encoded by HF1 and HF2) trihydroxylated pigments; F3′5′H can 
also act upon DHK directly. FLS modifies dihydroflavonols into the flavonols kaempferol, quercetin and myricetin, 
in increasing B-ring hydroxylation order. Anthocyanins are produced from dihydroflavonols by the sequential 
action of DFR and ANS. Further modifications by a suite of six enzymes yield five anthocyanin types, in 
increasing B-ring hydroxylation order: the brick-red to orange pelargonidin, the red to magenta cyanidin and 
peonidin, as well as the blue to purple delphinidin, petunidin, and malvidin. The enzyme FLS has low activity on 
DHM in Petunia, triggering reduced presence of myricetin. Increased hydroxylation of anthocyanidins through the 
action of F3′H/HT1 and F3′5′H/HF shift color from red towards purple-blue. Glycosylation, acylation, and 
methylation of the anthocyanins has a similar effect. We group the biosynthetic genes/enzymes in the schematic 
into the following: middle biosynthetic genes (hydroxylating HT1/F3′H, HF1/F3′5′H, and HF2/F3′5′H, anthocyanin-
specific DFR and ANS, flavonol-specific FLS) and late biosynthetic genes (decorating 3GT, ART, AAT, 5GT and 
methylating MT/3′AMT, MF1/3′5′AMT, MF2/3′5′AMT). Anthocyanidins are differentially substituted on the 
anthocyanidin B-ring as follows: Pelargonidin R1=R2=H, Cyanidin R1=OH, R2 =H, Delphinidin R1= R2 =OH, 
Peonidin R1=OMe, Petunidin R1=OMe, R2 =OH, Malvidin R1= R2=OMe. B. Anthocyanidins (anthocyanin 
aglycones) and flavonol concentrations of P. exserta petal hydrolyzed extracts, with visible and UV photos of P. 
exserta. C. The LC-UV chromatogram of hydrolyzed extract of P. exserta anthocyanidins overlaid with a 
chromatogram of a mixture of reference standard anthocyanidins, indicates the presence of delphinidin, cyanidin, 
petunidin, peonidin, and malvidin as a shoulder peak, but no pelargonidin is detected; n = 9, error bars ±SD. D. 
Light microscopy of adaxial epidermal peel of P. exserta petal limbs (top and bottom left panels, overhead and 
side views respectively) shows vacuoles containing anthocyanins but no carotenoid-containing chromoplasts. In 
contrast, an epidermal peel of the adaxial (inner) floral tube of P. exserta shows cells with yellow carotenoid-
containing chromoplasts clustered around the edges of the cells, with anthocyanins in the vacuole from a single 
anthocyanin-pigmented vein cell. E. The species tree of the four focal Petunia species as estimated in Esfeld et 
al. (2018). F. In Petunia, the enzyme DFR does not accept DHK as a substrate, thus preventing the biosynthesis 
of pelargonidin. Amino acids from the region of the DFR protein thought to be involved in substrate specificity as 
defined by Johnson et al. (2001) are in bold, with the most important residue 143D starred; all Petunia species 
have identical sequences in this region. A full and detailed alignment against the crystal structure is shown in 
Supplemental Figure S1. Abbreviations: For genes and enzymes that have different names, we state the 
Petunia gene name after a forward slash. DHK, dihydrokaempferol; DHQ, dihydroquercetin; DHM, 
dihydromyricetin; F3H, flavanone 3-hydroxylase; F3′H/HT1, flavonoid-3′-hydroxylase, encoded by HT1; 
F3′5′H/HF, flavonoid-3′5′-hydroxylase, encoded by HF1 and HF2; FLS, flavonol synthase; DFR, dihydroflavonol-
4-reductase; 3GT, anthocyanin-3-glucosyltransferase; ART, anthocyanin rhamnosyltransferase; AAT, 
anthocyanin-3-rutinoside acyltransferase; 5GT, anthocyanin 5-glucosyltransferase; 3′AMT, 3′-anthocyanin 
methyltransferase encoded by MT; 3′5′AMT, 3′5′-anthocyanin methyltransferase encoded by MF1 and MF2. 
Chemical abbreviations: Pel, pelargonidin; Cy, cyanidin; Del, delphinidin; Peo, peonidin; Pet, petunidin; Mal, 
malvidin. 
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Figure 2. Expression of P. exserta flavonoid biosynthetic pathway genes differ in comparison to the 
white P. axillaris and the purple P. secreta, and ASE in the F1 hybrids between P. axillaris and P. exserta. 
A. Relative expression as obtained by RT-qPCR of the biosynthetic genes of the flavonoid pathway conducted on 
stage 4 petal limb tissue. Expression is represented as the mean ratio of the gene relative to expression of the 
reference gene SAND. Box plots show medians of relative expression from three biological replicates, error bars 
± SD. Statistics were calculated using aligned ranks transformation ANOVA with Tukey post-hoc comparisons; 
letters indicate significantly different groups and full statistics are given in Supplemental Table S1. Stage 4 values 
for P. axillaris and P. secreta were previously published in Esfeld et al. (2018). B. Allele-specific expression 
(ASE) conducted on three biological replicate F1 hybrids between P. axillaris and P. exserta (representative 
photo of F1 hybrid shown in legend). Genes only shown if ASE could be calculated (presence of SNPs). For 
ASE, mapped RNAseq reads were realigned and averaged over SNPs between the parental alleles and counted 
(see Methods), bars depict the mean read counts over all SNPs per gene, per species; points depict mean read 
counts per individual biological replicate. ASE, calculated as the major allele frequency ratio, is written above 
bars, error bars ±SE. We use a strict threshold of ASE values greater than or equal to 0.75 (indicating at least 3:1 
ratio of allelic imbalance) to indicate cis-regulation of the alleles, ASE values less than this indicates regulation in 
trans (for example, ASE of 0.50 indicating a 1:1 ratio of allelic expression and equal activation by a trans factor). 
** p < 0.01, *** p < 0.001 
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Figure 3. QTL analysis and flavonoid pathway-related MYB Subgroups 6 and “G20”: gene tree, 
expression in stage 4 petal limbs as obtained by RNAseq, and ASE in the F1 hybrids between P. axillaris 
and P. exserta. A. QTL analysis of anthocyanin and flavonol content in an F7 RIL population of P. axillaris x P. 
exserta. QTLs are shown with allelic effects; LOD values greater than zero indicate P. exserta alleles (“BB”) 
affect the phenotypic variance and below zero indicate P. axillaris alleles (“AA”) affect the phenotypic variance; 
this calculated by multiplying the LOD value by the additive effect divided by the absolute value of the additive 
effect. A major QTL is located on chromosome 2, with minor QTL on chromosomes 1, 3 and 7. Percent variance 
estimated (PVE) listed per chromosome. B. Phylogenetic relationship of MYB proteins belonging to Subgroup 6 
(SG6) and the PH4 clade (“G20”) from P. exserta, P. axillaris, and P. secreta. The complete MYB tree for P. 
exserta and P. axillaris is in Supplemental Figure S7. MYB SG6 and G20 form monophyletic groups within the 
MYB tree. Support values shown are based on 1000 bootstraps from a RAxML maximum likelihood analysis. 
AN4 has two canonical copies in long-tube clade species, denoted as either “1” or “2”; P. exserta AN4-2 is a 
pseudogene (denoted 

b
). Additional AN4-like genes (denoted 

a
) were discovered in P. exserta but not in either P. 

axillaris or P. secreta; one copy was excluded due to an early nonsense mutation yielding a protein of only seven 
amino acids (Peex113Ctg05333g00001.1). None of the additional AN4-like genes have measurable expression 
in stage 4 limbs; gene IDs and accessions given in Supplemental Table S4. Branch length represents 
substitutions per site. B. Normalized read counts of candidate MYB from three RNAseq experiments; L2FC 
values provided in Supplemental Table S2, data provided in Supplemental Dataset S5. In each RNAseq 
experiment, a single-colored Petunia species (P. exserta, P. secreta, P. inflata) was compared to the white P. 
axillaris as control, with three biological replicates each, depicted as dots; see Supplemental Figure S8, error 
bars ±2SD. C. Of the candidate MYBs, ASE in P. axillaris and P. exserta could be measured on SNPs in DPL, 
PHZ, and PH4 only; highly significant ASE was detected in PHZ and PH4. ASE bars depict the mean read counts 
over all SNPs per gene, per species; points depict mean read counts per individual biological replicate. Number 
of SNPs indicated in parentheses, ASE calculated as major allele frequency indicated above bars, error bars 
±SE. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 4. Virus-induced gene silencing (VIGS) phenotypes and chemistry in Petunia. A. Three candidate 
transcription factors and four candidate flavonoid biosynthetic pathway genes were silenced in the Petunia 
species using virus-induced gene silencing (VIGS). Flowers where the visible phenotype was altered after gene 
silencing are indicated with a star. VIGS of DPL yielded a loss of color in P. exserta only, whereas VIGS of PH4 
induced a loss of color in both P. exserta and P. secreta and a color shift in P. inflata. A color shift rather than a 
complete color loss (i.e. white sectors) was observed for the red P. exserta when either HT1 or HF genes were 
silenced. In the purple species, HT1 silencing did not yield a phenotype whereas a color loss (i.e. white sectors) 
were observed for HF silencing. VIGS of AAT yielded pink sectors in purple P. secreta and P. inflata. B. Total 
anthocyanidins (compounds shown as stacked bars in order from top to bottom: cyanidin, peonidin, delphinidin, 
petunidin, malvidin) were lower in P. exserta whole petal limbs (n = 5) where DPL was silenced compared to the 
control (pTRV2, n = 4), (Kruskal-Wallis X

2 
= 6.00, df=1, p = 0.029). Individual values for total anthocyanidins 

shown as points. C. Total anthocyanidins were lower in P. exserta and P. secreta whole petal limbs where PH4 
was silenced (n = 3) compared to the control (pTRV2; same control as in DPL-VIGS), but were not significantly 
different in silenced vs. control P. inflata (n = 7, 2 respectively; P. exserta Kruskal-Wallis X

2 
= 4.50, df = 1, p = 

0.034, P. secreta Kruskal-Wallis X
2 

= 3.857, df = 1, p = 0.049, P. inflata Kruskal-Wallis X
2 

= 1.191, df = 1, p = 
0.275); individual values shown as points. D. While silencing of HT1 in P. exserta petal limbs produces a slight 
decrease in cyanidin and delphinidin, a more drastic reduction of delphinidin is observed in HF silencing. 
Individual values for total anthocyanidins shown as points. E. For silencing of AAT in P. secreta, pooled petal 
limb sectors instead of entire petal limbs from three individuals per treatment were analyzed. Pink sectors 
contained lower concentrations of anthocyanidins than in purple sectors. Qualitatively, pink sectors also 
produced more delphinidin and less malvidin than did purple sectors, as well as small but detectable amounts of 
cyanidin in P. secreta. * p < 0.05, ** p < 0.01, *** p < 0.001, error bars ± SD. 
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Figure 5. Stable overexpression of 35Spro:DPL in P. axillaris. A. Overexpression of DPL yields purple 
flowers instead of white flowers in P. axillaris. B. The purple color is due to an increase in delphinidin 
anthocyanins with a small increase in cyanidin. The flavonol composition only changes slightly, with an increase 
in the monohydroxylated kaempferol. P. axillaris n = 3, 35Spro:DPL n = 6 (three each from two independent 
lines). C. Gene expression analysis of transcription factors and biosynthetic genes for flavonoid biosynthesis in 
35Spro:DPL transgenic lines (abbreviated as OE) compared to transgene negative P. axillaris (abbreviated as 
AX). Expression is represented as the mean ratio of the gene relative to expression of the reference gene SAND. 
Statistics were calculated using two sample or Welch t-tests, ** p < 0.01, *** p < 0.001. The full statistical analysis 
is given in Supplemental Table S11. D. VIGS of PH4 of in 35Spro:DPL lines induced white sectors compared to 
the control (pTRV2). E. Transient overexpression of 35Spro:PH4 and 35Spro:DPL in wild-type P. axillaris, shown 
together with buffer and wounding control. Box plots depict medians of relative expression from three biological 
replicates, error bars ± SD.  ** p < 0.01, *** p < 0.001 
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Figure 6. Schematic for the mechanism of red flower color in Petunia exserta. The evolution of red flower 
color in P. exserta involved the loss of function in the flavonol biosynthetic transcription factor MYB-FL and a loss 
of function in the ancestral anthocyanin transcription factor AN2. To compensate for the loss of AN2, related MYB 
transcription factor DPL is up-regulated in petal limbs to activate anthocyanin biosynthesis. Expression of the 
transcription factor PH4 is essential for anthocyanin pigmentation in P. exserta, although its function is not 
directly related to biosynthesis but potentially anthocyanin transport. Together with re-activation of anthocyanin 
biosynthesis, other essential changes in gene expression are necessary to achieve red pigmentation relative to 
sister taxa: moderate expression of F3′H/HT1 (in bold), up-regulation of F3′5′H/HF2 (in bold) instead of 
F3′5′H/HF1. Last, the down-regulation of AAT expression prevents cyanidin and delphinidin anthocyanin 
pigments from acylation which would impart a blue-purple hue.  
Legend: Transcription factors are indicated in ovals, flavonoid structural genes/enzymes without a bounding 
shape, and biochemical products in boxes. Items in gray indicate inactivity or low expression (in the case of 
genes) or low concentration (in the case of products). 
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