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We study bias arising as a result of nonlinear transformations of random variables in random or mixed
effects models and its effect on inference in group-level studies or in meta-analysis. The findings are
illustrated on the example of overdispersed binomial distributions, where we demonstrate considerable
biases arising from standard log-odds and arcsine transformations of the estimated probability p̂, both
for single-group studies and in combining results from several groups or studies in meta-analysis. Our
simulations confirm that these biases are linear in ρ, for small values of ρ, the intracluster correlation
coefficient. These biases do not depend on the sample sizes or the number of studies K in a meta-analysis
and result in abysmal coverage of the combined effect for large K. We also propose bias-correction
for the arcsine transformation. Our simulations demonstrate that this bias-correction works well for
small values of the intraclass correlation. The methods are applied to two examples of meta-analyses
of prevalence.

Keywords: Intracluster correlation; Meta-analysis; Overdispersion; Random effects;
Transformation bias.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction

The main focus of this paper is the bias that arises as a result of transformations of random variables in
random or mixed effects models and the deleterious effects of these biases on inference in group-level
studies, such as ecological studies in epidemiology or cluster-randomized trials, and in meta-analyses.
For a single sample, the influential paper by Cox (1983) investigated transformations in some detail.
Suppose that Xn is an unbiased estimator based on a sample of size n for some real parameter θ and
furthermore that we are interested in the estimator f (Xn) of the transformed parameter η = f (θ )

for a nonlinear transformation f (·). The estimator f (Xn) will then exhibit a finite-sample bias, but
it retains consistency. If an unsuspected random effect is introduced, however, the estimator loses its
consistency, because the bias is enlarged by overdispersion.

If the overdispersion is small and undetectable in the data, it may still severely affect the inference on
transformed effects in a group-level study or in a meta-analysis. Both types of studies are increasingly
popular in biomedical applications and aim to combine group-level effects. In epidemiology, studies
are often based on routinely collected administrative unit-level data, such as prevalence or incidence
of a disease or condition in a population. Cluster-randomized trials are motivated by the convenience
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of group-level treatment allocation. Meta-analyses aim to combine evidence from the existing studies.
Requisite statistical methods are essentially the same; they are based on random or mixed effects
models, and are well established, especially so in meta-analysis. Our findings apply both to the stan-
dard additive random effects model (REM) of meta-analysis (Hedges and Olkin, 1985), and to the
multiplicative version of REM (Kulinskaya and Olkin, 2014).

We illustrate our findings with the comparatively simple example of overdispersed binomial data,
where overdispersion arises as a result of an intracluster correlation ρ between Bernoulli random
variables in cluster-randomized trials or within studies in meta-analyses. The most general assumptions
about dependent Bernoulli variables {X1, X2, . . . , Xn} specify only the first two moments:

E(Xi) = pi, Var(Xi) = pi(1 − pi), and ρi j = (P(Xi = 1, Xj = 1) − pi p j )/
√

piqi p jq j, (1)

where pi is the probability of success or prevalence of a condition, qi = 1 − pi and ρi j = corr(Xi, Xj )

is the correlation of Xi and Xj , i �= j. As Prentice (1988) shows, the correlation values are restricted to
the interval

(
max

(−
√

pi p j

qiq j
,−

√
qiq j

pi p j

)
, min

(√ piq j

qi p j
,

√
qi p j

piq j

))
. (2)

This bound need not apply if the interest lies in an overdispersed binomial distribution, since overdis-
persed binomial random variables are not restricted to sums of dependent Bernoullis. We concentrate
on the simplest model with constant probabilities and correlations, that is, pi = p and ρi j = ρ. The
restriction on ρ then reduces to max(−p/q,−q/p) < ρ < 1. Further restrictions may arise from partic-
ular data-generating distributions and/or latent variables. There exist a variety of methods to generate
dependent Bernoulli variables; three of them are used in our simulations: the Gaussian copula (GC)
method of Emrich and Piedmonte (1991), the Lunn and Davies (1998) method and the beta-binomial
distribution; see Web Appendix for details.

The intraclass correlation ρ (ICC) is typically small in bio-medical applications, and the number of
clusters K is moderate to large in group level studies. Clustering is mostly due to the same healthcare
provider (health practitioner, general practice, clinic, etc.). Gulliford et al. (2005) analyzed the data on
188 ICCs obtained from the General Practice Research Database (GPRD) for variation of outcomes
and performance between United Kingdom general practices and 136 results from a Health Technology
Assessment (HTA) review for a range of outcomes in community and health services settings. In the
GPRD, the median prevalence p was 0.13 (interquartile range IQR 0.284−0.035), and median ICC was
0.051 (IQR 0.094−0.011). In the HTA review, the median prevalence was 0.065 (IQR 0.207−0.004),
and median ICC, 0.006 (IQR 0.036−0.0003). Similarly, Littenberg and MacLean (2006) calculated
the ICC for 62 binary variables, measured as part of the Vermont Diabetes Information System, a
cluster-randomized study of adults with diabetes from 73 primary care practices in Vermont, USA and
surrounding areas. The median ICC was 0.022; IQR (0.040−0.006). Prevalence of some comorbidities
and complications and certain aspects of quality of life varied much more among patients with only
small correlation within practices (ICC< 0.001). Eldridge et al. (2004) provided a systematic review of
152 published and 47 unpublished cluster-randomized trials in primary health care, published between
1997 and 2000. The median number of clusters in the published trials was 29, and in the unpublished
trials it was 32. In meta-amalysis, though, the number of studies may be quite small.

We illustrate our general findings in examples of biases from arcsine and logit (log-odds) transfor-
mations in single studies and in meta-analysis, concentrating on small values of the ICC, viz. ρ < 0.1.
These transformations are very popular in the analysis of binomial proportions (Kulinskaya et al.,
2008, Ch.18), and they are also used in other popular effect measures for binary data, such as the log-
odds-ratios or the differences of arcsine-transformed proportions (Hedges and Olkin, 1985; Rücker
et al., 2009).

The structure of this paper is as follows. The transformation bias is introduced in Section 2. Section
3 explores the consequences of the transformation bias when combining results in meta-analysis or
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(equivalently) in analysis of group-level studies, and Section 4 applies our methodology to two examples
of meta-analyses of prevalence of a disease or a condition. Final comments and discussion are given in
Section 5. Additional material, including the methods for generating Bernoulli variables and detailed
simulation results, are provided in Web Appendix.

2 Transformation bias

2.1 Theoretical derivation of transformation bias

Consider a real-valued statistic X , an estimator of a real parameter based on a sample of size n.
Let gτ (x) denote the density of X , where τ ≥ 0 is an overdispersion parameter. When τ = 0, we
have the null or “fixed effect” model with density g(x) = g0(x), and for τ > 0 we have a “random
effects” model (REM). Denote the expected value and the central moments of X by xτ = Eτ (X ) and
μ j (τ ) = Eτ ((X − xτ ) j ), j > 1, respectively. We assume that all moments μ j (τ ), j > 1 of X exist for
values of τ close to zero, and that the variance is of order O(1/n) and the higher moments are o(1/n).
This setting is similar to that of Cox (1983). Let f (X ) be a transformation of X such that derivatives
of all orders exist. Think of X as an estimator of x0 and of τ as an effect that is not part of the model
used by the statistician. The expected value of the transformed variable is

Eτ ( f (X )) =
∫

f (x)gτ (x)dx = f (x0) +
∞∑
j=1

1
j!

d j f (x)

dxj

∣∣∣
x0

Eτ ((X − x0)
j ) . (3)

The first two terms of this series collect all the terms up to order O(1/n) at the model τ = 0

Eτ ( f (X )) − f (x0) = df (x)

dx

∣∣∣
x0

Eτ (X − x0) + 1
2

d2 f (x)

dx2

∣∣∣
x0

Eτ (X − x0)
2 + remainder. (4)

The left-hand side is the bias of f (X ) as an estimator of f (x0). The first term on the right-hand
side measures the influence of the bias, and the second term the one of the mean squared error of X
introduced by the “random effects” model. The formula shows that f (X ) is an unbiased estimator
of f (x0) to order O(1/n) only if X remains unbiased even under the REM, that is xτ = x0, and if
furthermore the transformation is linear.

The bias to order O(1/n) can be calculated directly if the first two moments of X under the density
gτ (x) are known:

f ′(x)

∣∣∣
x0

(xτ − x0) + 1
2

f ′′(x)

∣∣∣
x0

(μ2(τ ) + (xτ − x0)
2) .

Further, setting τ = 0 shows that for a nonlinear transformation, f (X ) is in general not an unbiased
estimator of f (x0). Now consider a similar expansion for the variance. Using (3) for f 2(X ), and
subtracting the relevant order terms from [Eτ [ f (X )]2], we obtain

Varτ ( f (X )) = Var0( f (X )) + [ f ′(x)|x0
]2[μ2(τ ) − μ2(0)]+

+ 2[ f ′(x)|x0
][ f (x0) − E0( f (X ))][xτ − x0]+

+ 1
2

[ f ′′(x)|x0
][ f (x0) − E0( f (X ))][μ2(τ ) − μ2(0)]+

− [ f ′′(x)|x0
][xτ − x0]2 + · · · .

(5)

If τ is of order O(1/
√

n), only the terms in the first line are of order O(1/n), and the rest can be
neglected.
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Example 1: Transformation of a normal random variable
Consider a random variable X from a normal distribution with density gτ (x) = ϕ(x; x0, σ

2/n + τ 2),
where ϕ(μ, σ 2) is the normal density with mean μ and variance σ 2. Here xτ = x0, so X is unbiased
for x0 even under the REM, and the variance is σ 2/n + τ 2. If we transform to f (X ), our formula for
the bias gives

σ 2/n + τ 2

2
d2 f (x)

dx2

∣∣∣∣
x0

.

In this case the overdispersion is of size τ 2 and in a nonlinear transformation it causes an added bias
of size 0.5τ 2 f ′′(x)|x0

. This does not tend to 0 with n → ∞.

Example 2: Standard random effects model for log-odds
In a meta-analysis, the following standard additive REM for the empirical log-odds (θ = log(p/(1 −
p))) is used routinely: θ̂ = X ∼ N(θ, [np(1 − p)]−1 + τ 2), where p is the probability of an event of
interest. We are interested in going from the logit scale θ to the probability scale p. This transformation
is

p = f (θ ) = [1 + exp(−θ )]−1 .

It follows that p̂ = f (X ) has a bias of size

1
2

f ′′(θ ){[np(1 − p)]−1 + τ 2} = 1
2

p(1 − p)(1 − 2p)

[
1

np(1 − p)
+ τ 2

]
.

This follows from f ′(θ ) = f (θ ) − f (θ )2 and

f ′′(θ ) = exp(−θ )(exp(−θ ) − 1)

(1 + exp(−θ ))3
= p(1 − p)(1 − 2p) .

The bias is nonzero unless p = 1/2. For p = 0.1, the bias is 0.4/n + 0.036τ 2; and for p = 0.2, it is
0.3/n + 0.048τ 2. Note again the dramatic effect of the REM parameter τ .

Example 3: Overdispersed binomial model for log-odds
Consider the sample log-odds in any overdispersed binomial model. We denote the overdispersion
parameter in this model by ρ instead of τ , as this corresponds to the correlation between each pair
of underlying Bernoulli variables X1, . . . , Xn. The transformation of interest is f (p) = log(p/(1 −
p)). The derivatives are f ′(p) = [p(1 − p)]−1 and f ′′(p) = (2p − 1)/[p(1 − p)]2. When the log-odds
transformation is applied to X = p̂ = ∑n

i=1 Xi/n, Eq. (4) is used with the first two moments of an
overdispersed binomial distribution, μρ( p̂) = p and Varρ ( p̂) = n−1 p(1 − p)[1 + (n − 1)ρ], to obtain

Eρ

(
log

(
p̂

1 − p̂

))
= log

(
p

1 − p

)
+ (2p − 1)

2p2(1 − p)2
Varρ ( p̂) + · · · =

= log
(

p
1 − p

)
− (1 − 2p)(1 + (n − 1)ρ)

2np(1 − p)
+ · · ·

.

Therefore, the sample log-odds has an additional bias term linear in ρ in the overdispersed binomial
model. For p = 0.1, the total bias is −4.444[1 + (n − 1)ρ]/n; and for p = 0.2, this bias is −1.875[1 +
(n − 1)ρ]/n.
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The standard bias correction for log-odds due to Gart et al. (1985) is to add 1/2 to X and to n − X ,
that is to use p̃ = (X + 1/2)/(n + 1) when estimating the log-odds. As is well known, this correction
eliminates the 1/n bias term of the log-odds at the null model ρ = 0. When using this correction,
the bias term f ′(p)E( p̃ − p) = [p(1 − p)]−1(1 − 2p)/(2(n + 1)) + O(n−2) is added in Eq. (4), and the
variance is multiplied by [n/(n + 1)]2 and we are left with

Eρ

(
log

(
p̃

1 − p̃

))
= Eρ

(
log

(
X + 1/2

n − X + 1/2

))
=

= log
(

p
1 − p

)
+ (1 − 2p)

2p(1 − p)(n + 1)
− (1 − 2p)n(1 + (n − 1)ρ)

2p(1 − p)(n + 1)2
+ · · · .

To assess the precision of these two-moment approximations to the bias with and without the Gart
et al. (1985) correction, we performed 10,000 simulations for p = 0.1 at each value of ρ from 0.01
to 0.1 in increments of 0.01, for various n values from 10 to 1000, generating overdispersed binomial
variables from the beta-binomial distribution, from the GC model of Emrich and Piedmonte (1991)
and from the model of Lunn and Davies (1998). The results are given in Fig. 1 (first row). See also
Supporting Information Fig. A2 in the Web Appendix. The values of p and ρ were known in these
simulations. The approximation works well for small values of ρ in the beta-binomial and GC models,
but does badly for the Lunn–Davies model. Thus knowing just two moments of a distribution does
not provide sufficient information on the magnitude of bias.

2.2 Variance-stabilizing transformations in overdispersed families

Variance-stabilizing transformations (v.s.t.’s) are used when the variance (under the fixed effect model)
is a function of the mean: Var0(X ) = h(E0(X )). The aim of a v.s.t. is to achieve Var0( f (X )) ≈ 1. To
be a v.s.t. when τ = 0, a transformation f (X ) must satisfy

[ f ′(E0(X )]2 = [Var0(X )]−1 = 1/h(E0(X )) ;

see Kulinskaya et al. (2008) for details and examples. Substituting this expression in equation (5), we
obtain that, up to terms of smaller order,

Varτ [ f (X )] = Varτ (X )

Var0(X )
. (6)

It follows that for an additive REM, where under gτ (x) the variance Varτ (X ) = Var0(X ) + τ 2, the
null v.s.t. f (x) does not stabilize the variance for τ �= 0.

Example 4: Overdispersed binomial model for arcsine transformation
As an example, consider once more the arcsine transformation f (p∗) = 2arcsin(

√
p∗) for p∗ = (X +

3/8)/(n + 3/4), which is routinely used to variance-stabilize binomial variables and is due to Anscombe
(1948). Consider, first, the arcsine transformation without Anscombe correction, that is applied to
p̂ = X/n. The derivatives are f ′(p) = [p(1 − p)]−1/2 and f ′′(p) = −(1/2)[p(1 − p)]−3/2(1 − 2p). The
bias under overdispersion ρ > 0 is

Eρ

[
2arcsin(

√
p̂)

]
− 2arcsin(

√
p) = −1

4
(1 − 2p)√
p(1 − p)

[1 + (n − 1)ρ]
n

, (7)
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Figure 1 Biases of log-odds (top) and arcsine (bottom) transformations on logit and arcsine scales,
respectively, in overdispersed binomial model for p = 0.1 and 0.01 ≤ ρ ≤ 0.1. For each value of ρ,
10,000 simulations from the beta-binomial distribution (circles); from the Lunn and Davies model
(squares); from the Gaussian Copula model (triangles), with and without the Gart (top) or Anscombe
(bottom) corrections (solid and dashed lines, respectively); also the linear bias given by the first two
terms of Eq. (4) using known values of p and ρ. Light gray line at zero.
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and the variance is n−1[1 + (n − 1)ρ]. With Anscombe correction, we need to add the first-order bias
term to the above formula. Using p∗ = (np̂ + 3/8)/(n + 3/4), the bias is

Eρ

[
2arcsin(

√
p∗)

]
− 2arcsin(

√
p) = 3(1 − 2p)

2
√

p(1 − p)(4n + 3)
− (1 − 2p)√

p(1 − p)

4n[1 + (n − 1)ρ]
(4n + 3)2

. (8)

For p = 0.1, the bias is −(2/3)[1 + (n − 1)ρ]/n and the additional bias from the overdispersion is
−(2/3)ρ; and for p = 0.2, the bias is −0.375[1 + (n − 1)ρ]/n with an additional bias of −0.375ρ.

To assess the bias of the arcsine transform and the precision of our two-moment approximation
to the bias for p = 0.1, we performed 10,000 simulations for p = 0.1 at each value of ρ from 0.01 to
0.1 in increments of 0.01, for various values for n from 10 to 1000, generating overdispersed binomial
variables from the beta-binomial distribution, from the model of Lunn and Davies (1998) and from
the GC model of Emrich and Piedmonte (1991). The results are given in Fig. 1 (second row). See also
Supporting Information Fig. A3 in the Web Appendix. The linear bias term was plotted for the known
values of p and ρ. Overall, the bias of the arcsine transformation is rather small. The approximation
has the correct slope but not the intercept of a linear trend for smaller values of n. For larger n, the
approximation is very good for the beta-binomial and for the GC, but not for the Lunn–Davies model
unless ρ ≤ .01. For larger ρ, the bias of the arcsine transform with the Lunn–Davies model is clearly
not linear. The Anscombe (1948) correction reduces bias for all values of n, though it does not matter
much for larger n. In this case the Lunn–Davies model results in a somewhat smaller bias than the
beta-binomial and the GC models.

We also studied the coverage of confidence intervals for p based on the normal approximation with
the variance [1 + (n − 1)ρ] for known ρ to the arcsine transformation of p̂ for the three models. The
results are given in Supporting Information Fig. A4 in the Web Appendix.

Overall the coverage in the beta-binomial and the GC models with Anscombe (1948) correction
is pretty good. It becomes increasingly conservative with increasing ρ. The coverage deteriorates for
larger sample sizes in the Lunn–Davies model. This is due to its asymptotic nonnormality, as discussed
in Web Appendix, Section A.4.

3 Transformation bias when combining datasets

3.1 Small biases in meta-analysis

In meta-analysis or when combining group-level data, a relation between the average sample size n and
the number of studies/clusters K is important for the quality of the inference for the combined effect.
We retain the meta-analysis terminology in this Section, but it is just as applicable to the analysis of
group-level studies. In our context, if a statistic X estimating some parameter μ has a bias of order
1/n, the mean (weighted or not) of K such statistics has a bias of the same order, but its variance
is of order 1/(nK ). So keeping n fixed and increasing K results in diminishing coverage of μ as the
narrower confidence intervals are centered on a biased estimator. This observation was originally
made in Kulinskaya et al. (2014). In the current setting, a minor bias from a transformation used
under REM may result in substandard coverage of the combined effect, as is demonstrated for the
arcsine transform in Section 3.2. Therefore in meta-analysis we cannot afford even small biases when
K is large.

Denote by ni, i = 1, . . . , K the sample sizes and by n̄ the “average” sample size of the K studies,
and let the total sample size be N = n̄K. Denote by Xi a summary statistic from study i, and denote
its expectation and variance by μ and σ 2

i . Note that σ 2
i is of order 1/ni. Let the bias of the combined

weighted mean X̄ be c/n̄, so the combined mean is centered at μ + c/n̄. If inverse-variance weights
wi are used in the combined mean, its variance is approximated by [

∑
wi]

−1 = [Kw̄]−1 = O(1/N),
where w̄ is the average weight. Denote by σ 2 = w̄−1 = O(1/n̄) the “average” variance of the within-
studies summary statistics Xi. The half-width of the confidence interval (CI) for the combined mean
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of K studies is z1−α/2σ/
√

K . For the CI for the combined effect to reliably cover the mean μ, the
requirement is

z1−α/2σ/
√

K >> |c|/n̄.

This may not be satisfied when the number of studies K is too large, or the sample size n̄ is too small.
To achieve good coverage of the combined effect, given biased estimates from the individual trials
whose bias is of rough order 1/n̄ = K/N , the following relation between the number of studies K and
the overall sample size N should hold:

K = O(N1/2−γ ) for some γ > 0.

This means that the sample sizes of the individual studies in meta-analysis cannot be too small in
relation to the number of studies. In practice, as the constant c is not known, particular caution is
required in the case of a large number of comparatively small studies. A similar complication arises,
for instance, when combining penalised GLM regressions (which are intentionally somewhat biased)
on subsamples of a big dataset. The even stronger restriction K < N1/5 is required in that case in order
for the combined result to be equivalent to the regression on the full dataset (Chen and Xie, 2012).

3.2 Arcsine transformation in meta-analysis

We have studied by simulation the bias and coverage of the parameter 2arcsin(
√

p) when the data is
generated from an overdispersed binomial distribution with intracluster correlation coefficient ρ ≤ 0.1.
The estimated probabilities p̂i, i = 1, . . . , K from the individual studies are arcsine-transformed, and
the meta-analysis is performed on the variance-stabilized scale. We varied the sample sizes from
n = 10 to n = 1000 and the number of studies from K = 10 to K = 80. Inverse-variance weights on
the variance-stabilized scale, wi = ni/[1 + (ni − 1)ρ] with known ρ, were used in the meta-analysis

A representative selection of these simulation results when p = 0.1 is given in Fig. 2 for the bias
and the coverage of the combined mean (with the known ρ in weights) of the arcsine-transformed
estimated probabilities from K studies. Detailed results for bias and coverage for p = 0.1, 0.2, and
0.4 are given in Supporting Information Figs. A5 and A10 in the Web Appendix. The coverage of the
combined mean when the parameter ρ is estimated is explored in Section 3.3.

The Anscombe correction substantially reduces bias and improves coverage. For each sample size,
coverage deteriorates as the number of studies K increases. The reason is that the bias, though small,
becomes nonnegligible for large K, as discussed in Section 3.1. Interestingly, for large n (starting from
n = 80), there is a substantial difference in coverage between the beta-binomial and GC models, and
the Lunn–Davies model. Coverage in the Lunn–Davies model is close to nominal, whereas in the
other two models, coverage deteriorates quite dramatically. For p = 0.2 and p = 0.4 the above overall
patterns also apply but on a milder scale, especially for p = 0.4, see Supporting Information Figs. A7
and A10 in the Web Appendix.

3.3 Bias correction for arcsine transformation in meta-analysis

In this section, we aim to correct the bias in the arcsine transformation by taking out the first-order
bias terms given by Eqs. (7) and (8). The bias terms depend on (1 − 2p)/

√
p(1 − p) and ρ. The

bias correction using known values of p and ρ substantially improves both bias and coverage, see
Supporting Information Figs. A11 and A13 in the Web Appendix. Substituting an estimate p̂ in the
expressions for bias results in an additional bias in the expected value of (1 − 2p̂)/

√
p̂(1 − p̂). This

bias is minimised when the Gart et al. (1985) correction p̃ = (X + 0.5)/(n + 1) is used in the bias term.
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Figure 2 Bias on the arcsine scale and coverage at nominal 95% level of the combined mean in the
meta-analysis of arcsine transformations from K studies in overdispersed binomial model for p = 0.1
and 0.01 ≤ ρ ≤ 0.1. For each value of ρ, 10,000 simulations from the beta-binomial distribution
(circles); from the Lunn and Davies model (squares); from the Gaussian Copula model (triangles),
with and without Anscombe correction (solid and dashed lines, respectively). Also linear bias given
by the first two terms of Eqs. (7) and (8) and plotted for known p and ρ. Light gray lines at zero for
bias and at 0.95 for coverage.
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For the intracluster correlation coefficient ρ various estimators were reviewed by Ridout et al. (1999).
The analysis of variance (AOV) estimator and an estimator based on a weighted average of Pearson
correlation coefficients between pairs of observations within each group, denoted ρ̂PPR by Ridout et al.
(1999) perform best in terms of bias. Our own simulations show that the AOV estimator, ρ̂AOV , defined
in Web Appendix (Section B), is superior to the ρ̂PPR estimator, see Supporting Information Fig. A20.

We have studied by simulation the changes to bias and coverage of the 2arcsin(
√

p) when the
bias correction based on the estimated first-order bias term is applied to the arcsine transformation
and meta-analysis is performed on the variance-stabilized scale. A representative selection of these
simulation results for the bias and the coverage when p = 0.1 is given in Fig. 3. The intraclass correlation
was estimated by ρ̂AOV , and the Gart et al. (1985) 1/2 correction was applied to p̃ in the bias term. We
varied sample sizes n from 10 to 1000 and the number of studies K from 10 to 80. In meta-analysis,
inverse-variance weights on the variance-stabilized scale were used: wi = ni/[1 + (ni − 1)ρ̂AOV ].

Comparing the first two rows of Fig. 3 with respective rows of Fig. 2, we see that the bias correction
reduced the bias, especially for small values of the intraclass correlation ρ ≤ 0.06. For larger values of
ρ, the bias correction results in a positive bias, compared with negative bias without the correction.
The bias after correction increases for large values of ρ.

Comparing the lower two rows of Fig. 3 with respective rows of Fig. 2, it is clear that the bias
correction improves coverage in the beta-binomial and the GC models for ρ ≤ 0.06 and K ≥ 30. The
coverage deteriorates for larger values of ρ̂. For K = 10 the bias correction results in coverage at about
90% at nominal 95% level. The reason is the inferior estimation of ρ for small values of K. For the
Lunn–Davies model, the correction decreases coverage.

3.4 Meta-analysis of log-odds: Complications with unstable weights

In a meta-analysis of the log-odds parameter log(p/(1 − p)) from an overdispersed binomial dis-
tribution with intracluster correlation ρ, the weight of an estimated log-odds is given by the inverse
estimated variance w = (1 + (n − 1)ρ̂)/(np̂(1 − p̂)). In contrast to the arcsine-transformed parameter,
the weights of log-odds estimates depend on the unknown probabilities. Estimation of the probabilities
affects the bias of the log-odds, and even its sign.

Trikalinos et al. (2013) studied by simulation the log, logit, and arcsine transformations for overdis-
persed binomial data. They rightly point out that “All these functions are concave for proportions
between 0, 0.50, and therefore introduce a negative bias: The mean in the transformed scale will be
smaller than the transformation of the mean in the proportion scale”. However, this theoretical finding
is reversed when the probabilities p are estimated. Supporting Information Fig. A16 and Fig. A17 in
Web Appendix show the bias and coverage of log-odds in the meta-analysis of K studies using known
probabilities p and intracluster correlation ρ in the weights. The bias is very similar to the bias for a
single study given in Fig. 1. The first-order bias given by the first two terms of Eq. (4) approximates
the bias of the log-odds transformation reasonably well. Compare these results with those in Fig. 4,
and with Supporting Information Fig. A18 and Fig. A19 in the Web Appendix showing bias and
coverage when the weights include estimated probabilities and an estimated or known value of ρ.
Coverage in the meta-analysis of the log-odds parameter is pretty dismal in all settings. However, the
sign of the bias changes from negative to positive with substitution of p̂ in the weights. New terms
taking the random weights into account are required to estimate the bias. It is therefore considerably
more difficult to provide bias correction for meta-analysis of log-odds, and we do not pursue this
further.

4 Examples

An important application of our methodology is to group-level studies or meta-analyses of prevalence
of a disease or a condition. In this section, we consider the severity of transformation bias and the
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Figure 3 Bias on the arcsine scale and coverage at nominal 95% level of the combined mean of bias-
corrected arcsine transformations from K studies in overdispersed binomial model for p = 0.1 and
0.01 ≤ ρ ≤ 0.1 with estimated probabilities p̂i and ρ̂AOV in the bias correction terms. For each value of
ρ, 10,000 simulations from the beta-binomial distribution (circles); from the Lunn and Davies model
(squares); from the Gaussian Copula model (triangles), with and without Anscombe correction (solid
and dashed lines, respectively). Light gray lines at zero for bias and at 0.95 for coverage.
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Figure 4 Bias on log-odds scale and coverage at nominal 95% level of the combined mean of bias-
corrected log-odds from K studies in overdispersed binomial model for p = 0.1 (log(p/(1 − p)) =
−2.20) and 0.01 ≤ ρ ≤ 0.1 with estimated probabilities p̂i and ρ̂AOV in the weights. For each value of
ρ, 10,000 simulations from the beta-binomial distribution (circles); from the Lunn and Davies model
(squares); from the Gaussian Copula model (triangles), with and without Gart correction (solid and
dashed lines, respectively). Also the first-order linear bias given by the first two terms of Eq. (4) with
known values of p and ρ. Light gray lines at zero for bias and at 0.95 for coverage.
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usefulness of our correction to this bias in two examples of meta-analyses of prevalence. The first ex-
ample is that of syndromal depression in chronic kidney disease (Palmer et al., 2013), and the second
is the prevalence of HIV infection in homeless people (Beijer et al., 2012). For both examples we ob-
tained the results using the standard meta-analytic methods for the arcsine-transformed prevalences,
and also our bias-correcting methods. These varying techniques result in somewhat different estimates
of prevalence. Our R program for meta-analysis of prevalence is provided as Supplementary Informa-
tion. To evaluate which method is more likely to provide a correct inference, we have performed three
simulation studies for each example, using the three methods for generation of overdispersed binomial
outcomes, the GC, the BB, and the LD methods. In all simulations we used the sample mean prevalence
p̄ and the estimated correlation ρ̂AOV as the true values, and simulated 1000 new meta-analytic datasets
with the same number of studies and the same sample sizes as in the original meta-analyses. For each
simulation, we estimated the combined prevalence using the arcsine transformation with and without
the Anscombe (1948) correction, and also with and without our bias correction.

4.1 Prevalence of syndromal depression for patients on dialysis

A meta-analysis of 41 studies by Palmer et al. (2013) evaluated the prevalence of syndromal depression
in chronic kidney disease (CKD). We consider the subset of 28 studies with N = 2855 patients in
total undergoing dialysis for CKD. According to Palmer et al. (2013), the dialysis stage has the
highest rate of depressive symptoms. These data are provided in Supporting Information Table A1
in Web Appendix. Table A1 also includes estimated prevalences, their arcsine transformations and
corresponding variances. The sample sizes in these 28 studies are unbalanced and the range of estimated
prevalences is (0.0808, 0.5484). The results of various meta-analyses of these data are summarized
in Table 1.

Cochran’s Q statistic is Q = 142.5, at K − 1 = 27 degrees of freedom, indicating significant hetero-
geneity. In the standard random effects model for the arcsine-transformed data, the DerSimonian-Laird
estimate of the between-studies variance is τ̂ 2

DL = 0.043, and the combined estimate of prevalence is
0.227. The overdispersed model provides an estimated intracluster correlation of ρ̂AOV = 0.046 and a
very similar combined estimate of prevalence. The Anscombe (1948) correction increases this estimate
to 0.230 for both models. The proposed bias correction increases it further to 0.236 when used both
with and without the Anscombe correction, but the Anscombe correction does not seem to matter
when the bias correction is used. The value of ρ = 0.046 and the sample mean prevalence of p̄ = 0.2367
were used in further simulations, summarised in Table 2.

Table 1 Combined estimates of prevalence of syndromal depression and their confidence intervals
for the data from Palmer et al. (2013).

Model Anscombe correction p̂w p̂L p̂U

Fixed effects model (FE) None 0.2060 0.1914 0.2211
3/8 0.2081 0.1934 0.2232

Random effects model (REM) None 0.2267 0.1904 0.2652
3/8 0.2299 0.1937 0.2682

Overdispersed model (ODM) None 0.2269 0.1900 0.2661
without bias correction 3/8 0.2302 0.1931 0.2696

Overdispersed model (ODM) None 0.2357 0.1982 0.2753
with bias correction 3/8 0.2356 0.1982 0.2752
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Table 3 Combined estimates of prevalence of HIV in homeless people and their confidence intervals
for the data by Beijer et al. (2012).

Anscombe (1948) correction p̂w p̂L p̂U

Fixed effects model (FEM) None 0.0482 0.0442 0.0523
3/8 0.0495 0.0455 0.0536

Random effects model (REM) None 0.0429 0.0223 0.0697
3/8 0.0445 0.0241 0.0708

Overdispersed model None 0.0427 0.0252 0.0645
without bias correction (ODM) 3/8 0.0444 0.0265 0.0666

Overdispersed model None 0.0587 0.0379 0.0836
with bias correction (ODM) 3/8 0.0590 0.0382 0.0841

Overall, the bias of the arcsine transformation is reduced by bias correction, and the coverage is
noticeably improved. Known ρ results in somewhat higher, and the estimated ρ in somewhat lower
than nominal coverage, but the differences are within 2 percentage points in both cases when the bias
correction is used. Once more, the Anscombe correction does not seem to be needed when the bias
correction is used.

4.2 Prevalence of HIV in homeless people

A meta-analysis of the data on N = 10,886 participants in 16 studies by Beijer et al. (2012) evaluated
prevalence of HIV infection in homeless people. These data are provided in Supporting Information
Table A2 in Web Appendix. The main feature of these data is low prevalences, varying from 0 to 0.13.
The results of meta-analyses by various techniques after the arcsine transformation are summarized
in Table 3.

Cochran’s Q statistic is 536.4036 at K − 1 = 15 degrees of freedom, indicating significant heterogene-
ity. The standard random effects model for the arcsine-transformed data provides the DerSimonian–
Laird estimate of between study variance τ̂DL = 0.054 and combined estimate of prevalence of 0.043.
The overdispersed model provides the estimated intracluster correlation of ρ̂AOV = 0.037 and the
same combined estimate of prevalence. The Anscombe (1948) correction increase these estimates to
0.045 and 0.044, respectively, for the two models. The proposed bias correction increases estimated
prevalence to 0.059 when used both with and without the Anscombe correction.

The value of ρ = 0.037, and the sample mean prevalence of p̂ = 0.054 were used in further simula-
tions, summarized in Table 4.

Overall, the negative bias of the arcsine transformation is reduced and becomes positive due to bias
correction, and the coverage is noticeably improved. Known ρ results in somewhat higher, and the
estimated ρ in considerably lower than nominal coverage, reaching 91% at 95% nominal level for the
BB and the GC generated data as compared with 96–97% for all generation mechanisms when ρ is
known and the bias correction is used. Unfortunately, for the LD generation the estimation of ρ by
ρAOV clearly does not work, resulting in abysmal coverage with or without the bias correction. Once
more, the Anscombe (1948) correction does not seem to be of much benefit when the bias correction is
used. To summarize, low prevalence is considerably more challenging to estimate correctly. The perils
of routine use of transformations are very clear in this example, and the proposed bias correction is of
much benefit.
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5 Discussion

We have investigated bias arising in the estimation of transformed probabilities under the assumptions
of random or mixed effects models, and its deleterious effects on inference in a meta-analysis. We
demonstrated and quantified these effects in the examples of arcsine and log-odds transformations
for overdispersed binomial data. In the standard additive REM of meta-analysis, the random effect is
modeled as the between-study variance component τ 2. In the overdispersion model (Kulinskaya and
Olkin, 2014), the overdispersion parameter can be interpreted as the intracluster correlation coefficient.
Both models can be described in the common framework of overdispersion.

Cox (1983) compared ML estimates μ̂+ and μ̂ for the overdispersed and original models, respec-
tively, under contiguous alternatives gτ (x). He found that μ̂+ − μ̂ is proportional to τ unless the
parametrization is chosen to eliminate bias of order n−1 in μ. The model specification is important in
this context: “if the log linear model specifies a Poisson distribution for Yj with log E(Yj ) = xT

j β, the
overdispersed model should have E (Yj ) = exp(xT

j β), with Var(Yj ) > E(Yj ). An overdispersed model in
which Yj is considered to have a Poisson distribution with log E(Yj ) = xT

j β + ξ j , where ξ j in turn is a
random variable of expectation zero, would, however, lead to the inconsistencies...” (Cox, 1983, p. 273).

In the same vein, we have demonstrated in Section 2.1 that for close alternatives to the fixed effect
model, any nonlinear transformation of an overdispersed random variable has a bias that is linear in
τ . We have seen in simulations, for both the log-odds and arcsine transformations, that the reduction
in bias of a transformation under the fixed effect model reduces bias under the REM. We have used
the Gart et al. (1985) and Anscombe (1948) corrections to this end. Unfortunately, this, in general, is
not sufficient to correct bias under the REM. Additionally, such correction is more complicated in the
regression setting.

Gart et al. (1985) discuss bias reduction for the logit. Let the empirical logit be La(X ) =
log(X + a)/(n − X + a). “It is not possible to recommend a universal correction a for La(x) in weighted
linear regression; sometimes a = 1/2 is best, at other instances 1/4, 0, 1/2, or intermediate values are
appropriate. The estimation of its variance also presents problems of bias and correlation.” (Gart et al.,
1985, p. 187).

We have also seen that, depending on the way the REM is defined, the primary statistic may
be unbiased, but any transformation of this statistic is biased unless the transformation is a linear
function of the primary statistic. Thus, linear models are bias-free, but Generalised Linear Mixed
Models (GLMMs) are not. Other popular classes of transformations that are affected are the variance-
stabilizing and the normalizing transformations. This may have important implications in data analysis,
where these kinds of transformations are routinely performed. In Section 3, we demonstrated how large
an effect of these small biases may be in the context of meta-analysis, and explained the reasons for
these findings.

Model misspecification bias in meta-analysis of rates and proportions is discussed in Trikalinos
et al. (2013, p.81). The authors simulated the properties of log, log-odds and arcsine transformations
of the estimated probability p under beta-binomial and binomial-uniform (i.e., discrete uniform)
distributions. They noted a very small bias of the arcsine transformation compared with the log-odds
and log transformations, and recommended inference based on the arcsine transformation without
Anscombe (1948) correction in meta-analysis. We agree with their recommendation on the preferential
use of the arcsine transformation, but our results show that their recommendation on not using the
Anscombe correction cannot be accepted without reservations. They also noticed that for both the
log-odds and arcsine transformations “coverage appears to become worse with increasing K, and more
so for scenarios where heterogeneity is large”, but failed to explain this pattern.

Our simulations confirm that the biases of the log-odds and arcsine transformations are linear in ρ

for small values of the intracluster correlation coefficient. These biases do not depend on the sample
sizes or the number of studies K in a meta-analysis and result in abysmal coverage of the combined
effect for large K. As a remedy, we proposed a plug-in bias correction for the arcsine transformation
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18 I. Bakbergenuly et al.: Dependent Bernoulli

in meta-analysis. For a large number of studies K ≥ 30, and for well-behaved overdispersed binomial
distributions such as the beta-binomial or the GC model, this correction improves coverage and reduces
the bias for ρ ≤ 0.06. For ρ > 0.06, the coverage still deteriorates. For the log-odds transformation
of proportions, it is more difficult to provide a similar bias correction due to the dependence between
the probabilities of the outcome and the weights. Our R programs for simulations are provided as
Supplementary Information.

Random effects models are often written without any details on how the overdispersion is generated.
However we demonstrated that knowing just two moments of a distribution is not sufficient. When the
meta-analysis includes just a few studies, the mechanism of randomness is difficult to ascertain. In such
cases, our examples show that it will be nearly impossible to get a realistic bias correction for large ICC.
How to safeguard against misspecification of the REM and which method to use in a meta-analysis
are open questions. If the REM is specified on the original scale X , the transformed effect measure
f (X ) is biased. It appears to be safer to specify the REM on the transformed scale when the inference
on this scale is preferable. These considerations may apply in the context of a meta-analysis, where the
REM is rather artificial to start with, and therefore there is some freedom on how to define it. Such
freedom is not ordinarily present in the analysis of real data, where the correct model is paramount.
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Rücker, G., Schwarzer, G., Carpenter, J. and Olkin, I. (2009). Why add anything to nothing? The arcsine difference
as a measure of treatment effect in meta-analysis with zero cells. Statistics in Medicine 28, 721–738.

Trikalinos, T. A., Trow, P. and Schmid, C. H. (2013). Simulation-based comparison of methods for meta-analysis
of proportions and rates. Technical Report 13(14)-EHC084-EF, Agency for Healthcare Research and Quality
(US).

C© 2016 The Authors. Biometrical Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA www.biometrical-journal.com


