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Abstract 36 

This study considers long-term precipitation and temperature variability across the Caribbean using 37 

two gridded datasets (CRU TS 3.21 and GPCCv5).  We look at trends across four different regions 38 

(Northern, Eastern, Southern and Western), for three different seasons (May to July, August to 39 

October and November to April) and for three different periods (1901-2012, 1951-2012 and 1979-40 

2012). There are no century-long trends in precipitation in either dataset, although all regions (with 41 

the exception of the Northern Caribbean) show decade-long periods of wetter or drier conditions.  42 

The most significant of these is for the Southern Caribbean region which was wetter than the 1961-43 

90 average from 1940-1956 and then drier from 1957 to 1965. Temperature in contrast shows 44 

statistically-significant warming everywhere for the periods 1901-2012, 1951-2012 and for over half 45 

the area during 1979-2012. Data availability is a limiting issue over much of the region and we also 46 

discuss the reliability of the series we use in the context of what is known to be available in the CRU 47 

TS 3.21 dataset.  More station data have been collected but have either not been fully digitized yet 48 

or not made freely available both within and beyond the region. 49 

  50 
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1. Introduction 51 

The climatology of the Caribbean region has been less well studied than the North American continent 52 

situated to its north. This is partly due to less of the historic climatic data being digitally available, but 53 

also due to the region being composed of many small independent countries, some just encompassing 54 

one or a few small islands.  Early analyses consider monthly precipitation series from individual islands 55 

(e.g. Kraus, 1955, Granger, 1985 and Singh, 1997a) or as parts of studies comparing Caribbean 56 

averages (often including parts or all of Central America) with other regions of the tropics. Hastenrath 57 

(1976, 1978 and 1984) has been the early proponent of such work showing that the Caribbean-Central 58 

American region (as characterised by a 48-station average) is inversely related with precipitation 59 

averages from the Great Plains in the United States and also with rainfall and sea-surface 60 

temperatures (SSTs) along the Peruvian and Ecuadorian coast.  Hastenrath’s work also emphasized 61 

links between their regional rainfall series and SSTs and wind and pressure patterns over the Tropical 62 

Atlantic.  63 

Hastenrath and Polzin (2013) reassessed the early work, using the same 48-station average, but only 64 

updating the series to 1986. The work also updated the wider regional links using many of the 65 

atmospheric and ocean circulation indices that have been more widely used since the 1980s [e.g. 66 

indices of the El Niño/Southern Oscillation (ENSO) phenomenon, the North Atlantic Oscillation (NAO) 67 

and tropical Atlantic SSTs]. Many papers in the last 15 years have assessed the same issues, looking at 68 

links between the tropical Atlantic and Pacific SSTs and Caribbean/Central American rainfall (Enfield 69 

and Alfaro, 1999, Giannini et al., 2000, Chen and Taylor, 2002, Spence et al., 2004 and Stephenson et 70 

al., 2007), generally with the aims of understanding regional dynamical drivers and identifying possible 71 

seasonal forecasting potential. These papers used gridded precipitation products which combine in 72 

situ measurements with satellite products, but there has been little discussion of longer timescale 73 

trends across the region. One of the datasets used in some of these analyses was developed by 74 

Magaña et al. (1999) for the period 1958 to 1995 (at a resolution of 1° by 1° latitude/longitude 75 

resolution), where the construction is also extensively discussed by Taylor et al. (2002). Although this 76 

dataset uses many stations, the vast majority are from Central America (see Figure 2 of Taylor et al., 77 

2002).  78 

Reverting to the large-scale Hastenrath type of work looking at the greater Caribbean region, Jury 79 

(2009a, b) and Jury and Gouirand (2011) attempted to determine the strength of any interdecadal, 80 

quasi-decadal and decadal scale variability across the Caribbean using earlier versions of the gridded 81 

datasets we will use in this paper (see next section). These gridded products are based solely on in situ 82 

records and our aim is to focus on these specifically for the Caribbean region.  83 
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The basic climatology of the region has been described in a number of earlier works (e.g. the earlier 84 

works of Hastenrath previously mentioned) and more recently by Taylor and Alfaro (2005). Many 85 

studies (e.g. Chen and Taylor, 2002 and Spence et al. 2004) discuss the regional climatology in terms 86 

of a wet season (June to November) which coincides with the period of hurricane passage across the 87 

region. The aims of this paper are more along the lines of Jury’s work, addressing both the issue of 88 

whether long-term changes are identifiable in seasonal temperature and precipitation amounts across 89 

the region and whether the changes are specific to sub-regions or occur with similar timing across the 90 

entire Caribbean.  Our paper, then, builds on further work by Jury (2009c) and also to a lesser extent 91 

on the seasonal and regional definitions from Jury et al. (2007), which in turn were based on factor 92 

analyses of the annual cycle initiated by Giannini et al. (2000). The latter type of analysis is somewhat 93 

non-standard and was chosen to cope with the often relatively short duration records, where a 94 

common period of measurements across many sites was impossible to develop. More recently, a few 95 

studies have begun to consider climate change in the coming decades on Caribbean wide and sub-96 

regional scales using global and regional climate model simulations (e.g. Singh 1997a, b, Angeles et 97 

al., 2006, Neelin et al., 2006, Campbell et al., 2010, Charlery and Nurse, 2010 and Hall et al. 2012). 98 

Additionally, Pérez and Jury (2013) have looked at long-term changes for Hispaniola in the context of 99 

future simulations by climate models.  Karmalkar et al. (2013) have also defined two Caribbean regions 100 

(western and eastern), but this was primarily for comparing with simulations from the PRECIS Regional 101 

Climate Model at 50km resolution.  102 

The purpose of this paper is to consider sub-regions of the Caribbean in a longer-term context (back 103 

to the beginning of the 20th century) using recently-enhanced gridded datasets. We will refer to 104 

earlier work in the discussion of the spatial patterns of observed change and in regional time series of 105 

precipitation and temperature across the region. The emphasis is on seasonal timescale changes from 106 

data of monthly totals and averages. Because data availability is such a significant issue within the 107 

region, a great deal of emphasis is also placed on the examination of the datasets used (e.g. coverage 108 

and coherency) in the context of the discussion of the trends they reflect. Changes in daily 109 

precipitation and temperature extremes have been considered by Peterson et al. (2002), Stephenson 110 

et al. (2014) and Mclean et al. (2015) and this timescale is not considered here. This paper is structured 111 

as follows. The various datasets used are introduced in section 2. Section 3 defines the seasons used 112 

and sub-regional definitions before describing analyses derived from the datasets in terms of time 113 

series plots and spatial patterns of trends. Discussion follows in section 4 with some conclusions in 114 

section 5. 115 

2. Datasets used 116 
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In this assessment of long-term trends across the Caribbean, we make use of gridded datasets of 117 

observational station data (CRU TS 3.21, Harris et al., 2014 and GPCCv5, Becker et al., 2013, developed 118 

respectively by the Climatic Research Unit, CRU at the University of East Anglia, UK and the Global 119 

Precipitation Climatology Centre, GPCC at Deutscher Wetterdienst in Germany). Precipitation data are 120 

included in both datasets, but temperature only in CRU TS 3.21.   Recently-developed extended 121 

Reanalyses (20CR, Compo et al., 2011 and ERA-20C, Poli et al., 2013 and Hersbach et al., 2015) are 122 

potentially useful data products for this type of study, but are not considered here. With our emphasis 123 

on precipitation, even the ERA-Interim Reanalysis (Dee et al., 2011) from 1979 are not adequate, as 124 

many of the smaller Caribbean islands are not represented as land as the resolution is only 0.7° by 0.7° 125 

of latitude/longitude (approximately 80km).  The extended Reanalyses have the same resolution 126 

issues. Further downscaling to finer scales (e.g. ERA-20C/Land, which downscales to 25km but has yet 127 

to be released) may provide more useful data series, but their use would need extensive validation. 128 

Early papers (Granger, 1985 and Singh, 1997a, b) comment on the strong precipitation gradients 129 

across some islands (from the windward to the leeward side) but if the islands are not even 130 

represented then doubt must be cast on the veracity of the data recent Reanalyses produce.  131 

Jury et al. (2009c) intercompared earlier versions of CRU TS 3.21 and GPCC with numerous Global 132 

Climate Model simulations and Global and Regional Reanalyses using a network of rain gauges from 133 

Cuba to Barbados. This study considered how well the various datasets reproduced the spatial 134 

patterns and seasonal cycle for a climatological average for the period 1979-1990. The two products 135 

we will use performed well in western parts of the Caribbean, but the earlier version of CRU TS 3.21 136 

(CRU TS 2.1) used by Jury et al. (2009c) was perceived to be too wet over the eastern islands of the 137 

Lesser Antilles.  138 

The quality of any observational-based gridded product is clearly dependent on the number of station 139 

observations that are available. We make use of the station availability through time used in the CRU 140 

TS 3.21 dataset as one means of assessing quality, with a second means being the degree of agreement 141 

between the same variable measured by the two data products. For GPCCv5, information on the 142 

specific station data used are not provided with the dataset. GPCC just release gridded products at the 143 

same resolution as CRU TS 3.21. Figures 1 and 2 show the locations of the CRU TS 3.21 precipitation 144 

and temperature measuring sites, respectively, for the 1951-2012 period. We map this for a larger 145 

spatial domain than used in this study and show the locations of the sites.  In these figures, an infilled 146 

circle means that the site has at least 50% of the monthly values for this 62-year period and an unfilled 147 

circle has less than 50% of the time series with monthly values.  In general, there are slightly more 148 

precipitation than temperature series.  The precipitation map (Figure 1) shows similar numbers of 149 



6 

 

stations to the Magaña et al. (1999) dataset (see Figure 2 of Taylor et al., 2002) for the Caribbean, but 150 

fewer series over Central America, particularly for Nicaragua. 151 

In the development of the CRU TS 3.21 dataset (Harris et al., 2014) the high-resolution grids use a 152 

search radius (1200km for temperature and 450km for precipitation). GPCCv5 (Becker at al., 2013) use 153 

a comparable search radius for precipitation which is 3.5° of latitude and longitude at the Equator, 154 

which reduces for higher latitudes according to the cosine of latitude. For Caribbean latitudes this is 155 

also about 450km. So precipitation grids across Guyana and Suriname, for example, will use data from 156 

within these countries, but will additionally be informed by data from eastern Venezuela and northern 157 

Brazil. Similarly the northern Caribbean region will make use of longer and more complete series from 158 

Florida to the north and Belize will be influenced by Mexican data to the west and Honduran series to 159 

the south. Data density across most of the region is, however, poor and could be markedly improved 160 

by digitizing and making available more of the data that have been collected, particularly for years 161 

before independence. The implication of this is that with a spatial resolution of 0.5° by 0.5° 162 

latitude/longitude degrees, the gridded products will reuse many stations to develop all the grid-box 163 

series, more so for temperature than precipitation (see Figures 1 and 2 and Harris et al., 2014). Due 164 

to the greater spatial coherency of temperature compared to precipitation variability (i.e. greater 165 

correlation between sites for the same separation), we would intuitively expect there to be better 166 

agreement between these datasets for temperature changes at the regional scale than for 167 

precipitation. Additionally, the numbers of stations with digitized data for the region in CRU TS 3.21 168 

improves dramatically for the periods from 1951 or 1961 than for the first half of the 20th century. 169 

For a station to be used within CRU TS3.21 sufficient data are required for the variable to be expressed 170 

as an anomaly/percent anomaly (for temperature/precipitation) from the 1961-90 base period. 171 

Station availability for this period is therefore better than any other period, but the fact that there are 172 

more stations available then should not affect results for the overall period (1901-2012). Interpolation 173 

using anomalies or percent anomalies will not lead to a bias. The GPCCv5 interpolation method is 174 

much more complex (Becker et al. 2013) and the apparent bias in these data before 1920 could be a 175 

result of this. Without knowing which specific stations were used by GPCCv5 precludes further study 176 

of this. The use of more than one dataset, where this is possible, allows potential problems in one of 177 

the datasets to be illustrated.  178 

3. Analyses 179 

Jury et al. (2007) derived four clusters of coherently-varying precipitation variability from the Northern 180 

Caribbean.  Their analysis extended from Cuba in the west and Bahamas in the north to the northern 181 

islands of the Lesser Antilles in the east and south. Our Caribbean region is more extensive 182 
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encompassing all the above, but also the rest of the Lesser Antilles, Guyana, Suriname and Belize (see 183 

Figure 3 and also Figures 1 and 2). With respect to the sub-regional definitions shown on this map they 184 

are purely determined geopolitically as opposed to being strictly climatic. The northern region in 185 

Figure 3 encompasses three of the four regions proposed by Jury et al. (2007). Belize to the west and 186 

Trinidad and Tobago and Guyana and Suriname to the southeast are clearly two distinct regions 187 

separated from the principal Caribbean island chain.  188 

As well as presenting plots of time series averages for sub regions, we additionally have developed 189 

trend maps of change in precipitation and temperature for three periods (1901-2012, 1951-2012 and 190 

1979-2012). These were chosen as the full period of availability of gridded observational products, the 191 

period of enhanced observational coverage (1951-2012) and the most recent period with extensive 192 

satellite- based coverage and reanalysis products (1979-2012, see also Jury, 2009c). 193 

The main feature of precipitation over the Caribbean is a well-defined annual cycle. Taylor and Alfaro 194 

(2005) and Jury (2009c) show that for most of the region (Belize and the Islands of the Caribbean Sea), 195 

this cycle is characterised by maximum precipitation from May to November and a dry period peaking 196 

in February–March. Particularly in the northwest of the Caribbean, the wet season tends to be bimodal 197 

with peaks in May–June (early season) and August–October (late season). In the southeast of this 198 

Caribbean region (particularly Guyana and Suriname) the bimodal peaks are May to July with a lesser 199 

one in December and January. These peaks are separated by a reduced rainfall period (July-August) 200 

called the mid-summer drought/dry spell in Central America/Caribbean, respectively (Magaña et al. 201 

1999, Gamble and Curtis 2008 and Gamble et al., 2008).  The relative minimum in rainfall tends to be 202 

a month later (August-September) over Trinidad and Tobago and September and October for Guyana 203 

and Suriname. The term ‘mid-summer drought’ is more widely used in Central America, where the 204 

reduction is more marked than in the Caribbean. 205 

Figures 4-7 show time series plots for the four regions of precipitation totals from the CRU TS 3.21 206 

dataset for the three seasons (May, June and July: MJJ; August, September and October: ASO; and, 207 

November to April: NDJFMA) and the calendar year totals (ANN) as anomalies from the 1961-90 208 

reference period. The first two three-month seasons represent the early and late wet seasons (after 209 

Taylor et al., 2002) who suggest different driving mechanisms for the respective periods. The third 210 

season is representative of the dry season everywhere except the southern Caribbean. In all plots we 211 

show a 10-year Gaussian smoothed series to highlight longer-term variations.  Additionally, on each 212 

plot, we show the similarly smoothed time series produced by GPCCv5.  For each annual plot we 213 

indicate the number of precipitation gauges used in the grid-box interpolation for each region for the 214 

CRU TS 3.21 dataset. The number of stations available to the gridded product varies considerably 215 
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during the course of period from 1901 to 2012. Numbers are markedly lower before 1951 and are also 216 

lower in the recent two decades, particularly for the Northern Caribbean region for precipitation in 217 

Figure 4. As expected, station coverage is lower for the smaller-sized eastern and western regions. For 218 

these two regions, coverage reduces to zero for some years before 1940. Thus here, the series will be 219 

composed of interpolated values from stations outside the region, but still within the 450km limit.  220 

Table 1 gives the monthly average values for both datasets for the 1961-90 climatological base period.  221 

The values here represent the simple averages of all 0.5° by 0.5° latitude/longitude squares that 222 

contain land within each region. The timings of the relative minima in rainfall (discussed earlier in this 223 

section) are highlighted for three of the four regions in Table 1. Table 2 gives correlations between the 224 

two datasets for three periods (1901-2009, 1921-2009, 1951-2009 and 1979-2009) for the three 225 

selected seasons and the annual total. The final year here is determined by the availability of GPCCv5, 226 

which finishes in 2009. In Figure 8 we plot CRU TS 3.21 temperature change (as anomalies from 1961-227 

90) over the period from 1901 for all four Caribbean regions. Here we just plot the time series for the 228 

calendar year average.  Station availability for temperature is lower than for precipitation, as is also 229 

evident when comparing Figure 2 with Figure 1. Station availability within the regions drops to zero 230 

for three of the regions, so the data are infilled from further afield - for temperature stations up to 231 

1200km have been used compared with up to 450km for precipitation (see the discussion of the 232 

gridded datasets in Section 2). 233 

The time series trends looked at the four regions individually. We will now look at spatial patterns 234 

across the Caribbean region to see if anything has been missed by looking at the four sub-regions. 235 

With the basic datasets (CRU TS 3.21 and GPCCv5) being gridded datasets at a 0.5° by 0.5° 236 

latitude/longitude for land areas, we can plot precipitation trend maps for the 1979-2012 period for 237 

each of the three seasons for CRU TS 3.21 (Figures 9-11) and 1979-2009 for GPCCv5 (Figures 12-14). 238 

We highlight regions where the trend is statistically significant. Finally, we plot a similar trend analyses 239 

for annual mean temperature for the 1979-2012 period for CRU TS 3.21 in Figure 15. 240 

4. Results and Discussion 241 

The emphasis in this section is mostly on the precipitation changes which are more variable across the 242 

region and over time, with the more consistent temperature variations mentioned briefly at the end.  243 

Figures 4 to 7 show time series for the three selected seasons together with annual totals, with each 244 

Figure showing all four series for each of the Caribbean sub-regions.  Each plot expresses the 245 

precipitation as mm anomalies from the 1961-90 base period. The different sizes of the regions, with 246 

the Northern one being by far the largest, need to be borne in mind when interpreting the results.  247 
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The agreement between the two datasets (CRU TS 3.21 and GPCCv5) is generally good (see the 248 

correlations in Table 2), but these correlations are not as high as in more data dense regions further 249 

north in North America and also in Europe (Harris et al., 2014). GPCCv5 series tend to show higher 250 

precipitation totals for periods before about 1920 for all four regions except the Southern Caribbean. 251 

For the small Eastern Caribbean region, GPCCv5 gives higher precipitation anomalies before 1920 but 252 

lower anomaly values since the 1990s. Also for the Western Caribbean region, GPCCv5 gives higher 253 

precipitation anomalies before 1950.  254 

The regional precipitation averages for the base period of 1961-90 are given in Table 1. GPCCv5 regions 255 

tend to be drier in an absolute sense, particularly so for the Eastern Caribbean region (about 25% 256 

lower), an observation commented upon by Jury (2009c). The limited number of gauges in this region 257 

(see Figure 1) influences the CRU TS 3.21 dataset as year-to-year variability for all seasons reduces 258 

dramatically before about 1930, caused by the interpolation then using more distant gauges.  259 

Differences between datasets are much smaller for the other regions and are negligible for the 260 

Western Caribbean. For all four sub-regions, the seasonal cycle is similar for both gridded products 261 

(Table 1).   262 

Table 2 gives correlations for the three seasons and annual totals between the CRU TS 3.21 and 263 

GPCCv5 datasets over four time periods (1901-2009, 1921-2009, 1951-2009 and 1979-2009). 264 

Correlations between the two datasets for the same region are all statistically significant, but are 265 

markedly reduced for some of the seasons for the Eastern and Western Caribbean, particularly those 266 

involving the 1901-1920 period.  These reductions are due to the greater differences between the two 267 

datasets, with GPCCv5 tending to show unrealistically high levels during these twenty years (see 268 

especially Figures 5 and 7). To allow for this this, we additionally give correlations for the 1921-2009 269 

period in Table 2.  Despite the correlations being reduced in earlier periods, possibly due to the 270 

regional series being based on fewer stations, the correlations between the two datasets are still 271 

highly statistically significant. Inter-regional correlations are not that large but tend to be greater when 272 

involving the larger Northern Caribbean region.  Correlations with the Southern Caribbean region are 273 

much weaker, as this region doesn’t share the similar mechanisms that drive rainfall amounts in the 274 

other three Caribbean regions (see Taylor et al. 2002). The inter-regional correlations are higher for 275 

the two wetter season periods of May to July and August to September than for the November to 276 

April season or the annual totals. 277 

One of the main results is that neither precipitation dataset shows any statistically significant century-278 

scale trends across the region. Decadal-scale variability is more apparent in the smaller sub-regions, 279 

with the larger Northern region showing the least. Apart from the Eastern region, the timing of the 280 
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variability is similar between sub-regions, strongly suggestive of being influenced by SST variability (as 281 

previously discussed by Enfield and Alfaro, 1999, Chen and Taylor, 2002 and Taylor et al., 2002). The 282 

wetter (1931-38 and 1950-56) and drier (1939-47 and 1971-78) periods noted by Hastenrath and 283 

Polzin (2013) for the Caribbean are difficult to see across the four sub-regions but are not entirely 284 

absent. For example, the 1970s drying is evident in the annual plots for the Northern, Eastern and 285 

Western Caribbean (Figures 4, 5 and 7).  It is also noted that the 1940s were dry over the Western 286 

Caribbean (Figure 7), while the main feature of any of the regions occurs in the Southern Caribbean 287 

(Figure 6) with a wet phase from 1940 to 1956 followed by a drier phase from 1957 to 1965, by far the 288 

biggest fluctuation in all four annual series. Other studies (e.g. Peterson et al. 2002 and Taylor et al. 289 

2002) similarly identify strong decadal variability in Caribbean rainfall manifesting in an anomalously 290 

dry Caribbean in the early 1970s and late 1980s to early 1990s and a wet Caribbean in the late 1960s. 291 

While not quite consistent across all plots, most of the plots capture the shift towards wetter 292 

conditions after the early 1990s. 293 

As is also common with precipitation variations in many regions of the world, some of the seasonal 294 

and regional time series are positively skewed, i.e. the positive anomalies tend to be slightly larger 295 

than the negative departures. The Northern (Figure 4) and Eastern (Figure 5) Caribbean sub-regions 296 

tend to show higher precipitation totals since about 2000, but again it is noted that overall none of 297 

the sub-regional-average series shows century-timescale trends. The main features are periods of 298 

about a decade in length which were wetter or drier than the 1961-90 base period in all Caribbean 299 

regions, but the amplitude is markedly reduced in the larger northern region. 300 

Figures 9 to 11 (for CRU TS 3.21) and Figures 12 to 14 (for GPCCv5) show plots of spatial precipitation 301 

trends for the three seasons for the period 1979 to 2012 (2009 for GPCCv5). Few of the regions show 302 

any trends that are statistically significant at the 95% level. This also applies (not shown) to the two 303 

longer periods (1901-2012/2009 and 1951-2012/2009). The significant drying seen in the Bahamas for 304 

the NDJFMA season during 1979-2012 for CRU TS 3.21 (Figure 11) is also evident in the GPCCv5 data 305 

(Figure 14) but is less spatially extensive. Longer-term trends towards drying are evident for 1901-306 

2009 for GPCCv5, but for this dataset, the first 20 years of the 20th century are generally unrealistically 307 

too wet (e.g. Figures 4, 5 and 7). As GPCC doesn’t provide access to the underlying station series, it is 308 

impossible to determine why GPCCv5 shows this feature.  309 

Figure 8 which shows annual temperature averages for the four Caribbean regions indicates strong 310 

warming across all regions, particularly since the 1970s. The only earlier decades warmer than the 311 

1970s were the 1960s for the Northern Caribbean, the 1950s for the Western Caribbean and the 1940s 312 

for the Eastern and Southern Caribbean.  Only temperature trends are shown for the annual average 313 
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for the period since 1979-2012 in Figure 15. Most regions show statistically significant warming except 314 

for the eastern half of the Northern Caribbean (eastern Cuba and Haiti), northern parts of the Southern 315 

Caribbean (northern Guyana) and western parts of the Eastern Caribbean (Puerto Rico).  For the two 316 

longer periods almost every location shows statistically significant warming for the 1901-2012 and 317 

1951-2012 periods. The annual temperature cycle across the Caribbean (see Table 1) is reduced in the 318 

Eastern and more especially in the Southern region compared to the other two as they are more 319 

equatorward and, in the Eastern case, more maritime.  320 

5. Conclusions 321 

Seasonal precipitation totals for four sub-regions of the Caribbean, estimated using two gridded 322 

datasets, reveal no century-scale trends, but there are periods of up to ten years when some regions 323 

were drier or wetter than the long-term average.  The greatest such fluctuation seen was in the 324 

Southern Caribbean which was wetter than the 1961-90 average from 1940-1956 and then drier from 325 

1957 to 1965. Only a few small parts of the Caribbean exhibit statistically significant precipitation 326 

trends over the recent 1979-2012 period. In contrast to precipitation, much of the Caribbean region 327 

shows statistically significant warming over the same period and this applies to all the regions for the 328 

1901-2012 and 1951-2012 periods, but only about half of the region for 1979-2012. Temperature 329 

change for this latter period is not significant over eastern Cuba, Jamaica, Hispaniola, Puerto Rico and 330 

the northern half of Guyana and Suriname. 331 

Agreement between the two precipitation datasets (CRU TS 3.21, Harris et al., 2014 and GPCCv5, 332 

Becker et al., 2013) is generally good, except for the Eastern Caribbean region. Here GPCCv5 suggests 333 

a decrease in precipitation since the 1990s compared to CRU TS 3.21. Also for this region, CRU TS 3.21 334 

is about 25% wetter than GPCCv5 in an absolute sense. GPCCv5 appears to be excessively wet in all 335 

regions prior to about 1920. Nonetheless, the reasonable agreement between the datasets bolsters 336 

the idea that the century-long lack of a trend in precipitation is real notwithstanding the sparse data 337 

available. This study suggests a need to further investigate why, with a positive trend in surface 338 

temperatures, there has been no significant trend in precipitation, especially as precipitation in the 339 

region is strongly linked to surface temperatures. The question is why ‘warmer’ has not translated into 340 

‘wetter’. Peterson et al. (2002) suggest that interannual variability currently dominates the 341 

precipitation signal and likely accounts for the lack of an overall trend.   There may be a regional trend 342 

toward increased high frequency precipitation variability as a result of a global warming signal, for 343 

example due to the increased frequency of occurrence  of ENSO events (Trenberth and Hoar, 1996) 344 

which are known drivers of Caribbean rainfall (e.g. Taylor et al.,  2002). Several recent modelling 345 

studies (e.g. Taylor et al., 2011, 2013; Rauscher et al., 2011; Karmalkar et al., 2013; Fuentes-Franco et 346 



12 

 

al., 2015) indicate that SST warming in the Caribbean will lead to drying in the Caribbean and Central 347 

America in future decades (often more distant periods such as the 2071-2100 period). Our study 348 

supports the need for further investigation, but with a greater emphasis on observational data. 349 

Finally, this study highlights that the availability and completeness of many of the underlying station 350 

series for the region is poor, especially when compared to the North American continent situated to 351 

the north. Long-term records have been collected, but for many of the countries of the region they 352 

remain to be both completely digitized and made freely available.  Further evidence for this conclusion 353 

comes from the more extensive daily datasets used to assess whether changes in extremes are 354 

occurring across the region (Stephenson et al., 2014), for which some of the station data hasn’t been 355 

released. We encourage more of the Meteorological Services in the region to make their digitized data 356 

more available, and to expand ongoing data rescue activities to include data collected before many of 357 

the island nations became independent.   358 
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Tables 488 

 489 

Table 1: Monthly average Precipitation amounts (mm) and monthly average Temperature (°C) over 490 

the 1961-90 climatological period for the four Caribbean regions (Figure 3) and the two 491 

gridded datasets (CRUTS is CRU TS 3.21 and GPCC is GPCCv5) used in this study. The driest 492 

months in the May to October period are emboldened for all regions except the Eastern. 493 

 494 

Prec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CRUTS N   59.2   55.8  57.9   91.8 188.7 166.2 130.4 159.0 182.8  171.2 104.6   69.0 

GPCC N   52.6   51.1  53.3   82.4 169.7 153.5 112.4 143.5 166.2 178.7  96.4   60.6 

CRUTS  E 148.8 110.0 105.8 148.6 198.2 196.7 224.2 248.3 258.3 274.3 282.9 199.5 

GPCC E 106.7   71.6  77.3   95.6 126.8 143.2 183.9 209.7 219.2 209.7 216.2 146.7 

CRUTS S 200.0 145.0 174.0 222.4 345.0 334.3 270.7 186.6   98.2   87.7 111.4 184.9 

GPCC S 174.9 121.7 145.0 195.1 316.4 324.6 256.5 178.7   96.8   81.3 112.1 171.5 

CRUTS W 133.7   71.6   55.8   60.1 137.7 267.0 295.9 246.7 294.7 262.9 199.2 164.2 

GPCC W 126.8   71.9   58.6   51.5 116.0 300.0 296.0 275.5 297.2 245.4 184.4 153.8 

Temp.             

CRUTS N 22.3 22.6 23.6 24.6 25.7 26.6 27.1 27.2 26.8 26.0 24.6 23.1 

CRUTS E 24.0 24.0 24.4 25.0 25.8 26.3 26.3 26.5 26.4 26.1 26.0 24.7 

CRUTS S 25.2 25.2 25.6 25.9 25.9 25.6 25.6 26.0 26.6 26.8 26.6 25.7 

CRUTS W 22.7 23.3 24.8 26.2 27.1 27.1 26.7 26.8 26.7 25.6 23.9 23.0 

 495 

 496 

 497 

  498 
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Table 2: Correlation coefficients between time series of seasonal total precipitation developed from 499 

the two gridded precipitation datasets (CRUTS and GPCC, see Table 1).  Correlations are 500 

shown for three different seasons (MJJ, ASO and NDJFMA) and the annual total for four 501 

different time periods (1901-2009, 1921-2009, 1951-2009 and 1979-2009) for the four 502 

Caribbean regions (N, W, E and S). In the matrices below, the first four blocks contain 503 

correlations for the MJJ season above the diagonal and ASO below the diagonal.  Bold values 504 

indicate correlations significant at the 95% level using a Student’s t-test. The red values 505 

indicate correlations between the two datasets for the same region and season. The second 506 

set of four matrices contains correlations for the NDJFMA season above the diagonal and for 507 

the Annual totals below. 508 

 509 

 510 

    MJJ 1901-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
SO

 1
9

0
1

-2
0

0
9

 

CRUTS N -------- 0.33 0.43 -0.05 0.89 0.30 0.39 -0.01 

CRUTS W 0.19 -------- 0.30 0.00 0.35 0.61 0.16 -0.11 

CRUTS E 0.39 0.22 -------- -0.09 0.49 0.21 0.68 -0.18 

CRUTS S 0.32 0.24 0.15 -------- -0.10 -0.04 0.01 0.77 

GPCC N 0.87 0.19 0.34 0.24 -------- 0.27 0.34 -0.05 

GPCC W -0.04 0.38 0.01 0.11 0.01 -------- 0.13 -0.11 

GPCC E 0.31 0.10 0.53 0.05 0.35 0.06 -------- -0.06 

GPCC S 0.33 0.20 0.17 0.89 0.29 0.03 0.07 -------- 

          

    MJJ 1921-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
SO

 1
9

2
1

-2
0

0
9

 

CRUTS N -------- 0.42 0.48 -0.07 0.89 0.32 0.42 -0.06 

CRUTS W 0.20 -------- 0.34 0.02 0.46 0.83 0.25 -0.07 

CRUTS E 0.38 0.22 -------- -0.09 0.52 0.29 0.83 -0.24 

CRUTS S 0.32 0.23 0.15 -------- -0.10 -0.02 0.05 0.78 

GPCC N 0.88 0.22 0.35 0.25 -------- 0.28 0.40 -0.10 

GPCC W -0.09 0.54 0.07 0.02 -0.09 -------- 0.26 -0.11 

GPCC E 0.26 0.12 0.58 0.10 0.27 0.15 -------- -0.06 

GPCC S 0.35 0.21 0.20 0.90 0.34 -0.08 0.20 -------- 

          

    MJJ 1951-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
SO

 1
9

5
1

-2
0

0
9

 

CRUTS N -------- 0.35 0.49 -0.12 0.92 0.36 0.46 -0.10 

CRUTS W 0.33 -------- 0.35 -0.04 0.43 0.92 0.36 -0.12 

CRUTS E 0.37 0.36 -------- -0.12 0.51 0.36 0.87 -0.30 

CRUTS S 0.37 0.25 0.16 -------- -0.10 -0.07 -0.03 0.80 

GPCC N 0.87 0.33 0.38 0.28 -------- 0.38 0.46 -0.10 

GPCC W 0.30 0.90 0.28 0.24 0.28 -------- 0.38 -0.15 

GPCC E 0.30 0.17 0.61 0.08 0.36 0.11 -------- -0.15 

GPCC S 0.43 0.26 0.29 0.93 0.39 0.22 0.27 -------- 
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    MJJ 1979-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
SO

 1
9

7
9

-2
0

0
9

 

CRUTS N -------- 0.15 0.15 -0.03 0.84 0.25 0.16 0.06 

CRUTS W 0.27 -------- 0.27 0.18 0.36 0.93 0.27 0.05 

CRUTS E 0.48 0.34 -------- -0.09 0.34 0.19 0.88 -0.28 

CRUTS S 0.39 0.15 0.05 -------- 0.07 0.10 -0.04 0.81 

GPCC N 0.87 0.27 0.50 0.43 -------- 0.36 0.32 0.04 

GPCC W 0.19 0.96 0.21 0.07 0.21 -------- 0.26 0.03 

GPCC E 0.45 0.30 0.69 0.21 0.46 0.19 -------- -0.08 

GPCC S 0.46 0.18 0.23 0.91 0.54 0.09 0.40 -------- 
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    NDJFMA 1901-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
N

N
 1

9
0

1
-2

0
0

9
 

CRUTS N -------- 0.23 0.25 -0.25 0.78 0.05 0.14 -0.21 

CRUTS W 0.22 -------- 0.21 -0.14 0.24 0.49 0.06 -0.13 

CRUTS E 0.45 0.27 -------- 0.06 0.15 0.02 0.38 0.03 

CRUTS S 0.12 0.00 0.16 -------- -0.10 0.06 0.17 0.94 

GPCC N 0.85 0.23 0.38 0.07 -------- 0.22 0.18 -0.04 

GPCC W 0.02 0.44 -0.05 -0.07 0.11 -------- 0.14 0.07 

GPCC E 0.36 0.06 0.45 0.23 0.38 0.04 -------- 0.18 

GPCC S 0.17 -0.05 0.12 0.89 0.12 -0.11 0.21 -------- 

          

    NDJFMA 1921-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
N

N
 1

9
2

1
-2

0
0

9
 

CRUTS N -------- 0.24 0.25 -0.24 0.89 0.12 0.17 -0.20 

CRUTS W 0.28 -------- 0.23 -0.08 0.29 0.70 0.10 -0.03 

CRUTS E 0.46 0.28 -------- 0.11 0.17 0.09 0.45 0.10 

CRUTS S 0.14 0.03 0.18 -------- -0.21 0.04 0.17 0.95 

GPCC N 0.89 0.33 0.43 0.07 -------- 0.16 0.11 -0.16 

GPCC W 0.11 0.69 0.07 -0.10 0.17 -------- 0.16 0.09 

GPCC E 0.31 0.15 0.56 0.19 0.20 0.13 -------- 0.17 

GPCC S 0.20 0.02 0.14 0.90 0.15 -0.14 0.16 -------- 

          

    NDJFMA 1951-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
N

N
 1

9
5

1
-2

0
0

9
 

CRUTS N -------- 0.17 0.21 -0.19 0.89 0.07 0.26 -0.15 

CRUTS W 0.28 -------- 0.15 -0.15 0.18 0.94 -0.05 -0.11 

CRUTS E 0.45 0.29 -------- 0.22 0.11 0.17 0.66 0.22 

CRUTS S 0.13 0.16 0.15 -------- -0.18 -0.16 0.03 0.96 

GPCC N 0.92 0.31 0.41 0.12 -------- 0.07 0.09 -0.15 

GPCC W 0.28 0.90 0.29 0.09 0.29 -------- -0.10 -0.11 

GPCC E 0.30 0.10 0.62 0.00 0.26 0.13 -------- -0.02 

GPCC S 0.20 0.16 0.09 0.90 0.21 0.08 -0.03 -------- 

          

    NDJFMA 1979-2009 

    CRUTS N CRUTS W CRUTS E CRUTS S GPCC N GPCC W GPCC E GPCC S 

A
N

N
 1

9
7

9
-2

0
0

9
 

CRUTS N -------- 0.09 -0.03 -0.31 0.83 -0.06 0.03 -0.27 

CRUTS W 0.17 -------- 0.06 0.09 0.13 0.94 -0.12 0.08 

CRUTS E 0.31 0.25 -------- 0.23 -0.20 0.10 0.71 0.19 

CRUTS S 0.26 0.34 0.13 -------- -0.30 0.13 0.11 0.93 

GPCC N 0.90 0.21 0.33 0.32 -------- 0.05 -0.30 -0.23 

GPCC W 0.09 0.94 0.18 0.36 0.15 -------- -0.21 0.17 

GPCC E 0.34 0.14 0.72 0.00 0.27 0.12 -------- 0.01 

GPCC S 0.38 0.26 0.07 0.84 0.47 0.27 0.03 -------- 
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 513 

Figure Captions 514 

 515 

Figure 1: Station coverage for monthly precipitation totals (from CRU TS 3.21) across the region 516 

based on the 1951-2012 period. Filled circles have more than 50% completeness and unfilled circles 517 

less than 50% availability during the period.  The shaded areas are those countries highlighted in 518 

Figure 3. 519 

Figure 2: Station coverage for monthly temperature averages (from CRU TS 3.21) across the region 520 

based on the 1951-2012 period. Filled circles have more than 50% completeness and unfilled circles 521 

less than 50% availability during the period. The shaded areas are those countries highlighted in 522 

Figure 3. 523 

Figure 3: The four geopolitical regions of the Caribbean used in this study (as defined by CARICOM, 524 

Caribbean Community and Common Market, a regional economic grouping). 525 

 Figure 4: Seasonal and annual precipitation anomaly (from 1961-90) time series for the North 526 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 3.21 series 527 

with brown bars drier. The smooth lines are 10-year Gaussian smoothed series for CRU TS 3.21 and 528 

GPCCv5. Beneath the annual plot, the number of stations used per year is given. 529 

 Figure 5: Seasonal and annual precipitation anomaly (from 1961-90) time series for the East 530 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 3.21 series 531 

with brown bars drier. The smooth lines are 10-year Gaussian smoothed series for CRU TS3.21 and 532 

GPCCv5. Beneath the annual plot, the number of stations used per year is given. 533 

 Figure 6: Seasonal and annual precipitation anomaly (from 1961-90) time series for the South 534 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 3.21 series 535 

with brown bars drier. The smooth lines are 10-year Gaussian smoothed series for CRU TS3.21 and 536 

GPCCv5. Beneath the annual plot, the number of stations used per year is given. 537 

 Figure 7: Seasonal and annual precipitation anomaly (from 1961-90) time series for the West 538 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 3.21 series 539 

with brown bars drier. The smooth lines are 10-year Gaussian smoothed series for CRU TS3.21 and 540 

GPCCv5. Beneath the annual plot, the number of stations used per year is given. 541 

 Figure 8: Annual temperature anomalies (°C from the 1961-90) period for the four Caribbean 542 

regions. Red bars indicates years warmer than 1961-90 for the CRU TS 3.21 series, with blue bars 543 

cooler. The smooth lines are 10-year Gaussian smoothed series. Beneath each plot, the number of 544 

stations used per year is given. 545 

Figure 9:  Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the MJJ season 546 

for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are marked with a 547 

+ sign. 548 

Figure 10:  Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the ASO season 549 

for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are marked with a 550 

+ sign. 551 
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Figure 11: Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the NDJFMA 552 

season for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are marked 553 

with a + sign. 554 

Figure 12: Precipitation trends (from GPCCv5) across the Caribbean regions for the MJJ season for 555 

1979-2009. Units: mm/decade. Statistically significant trends at the 95% level are marked with a + 556 

sign. 557 

Figure 13:  Precipitation trends (from GPCCv5) across the Caribbean regions for the ASO season for 558 

1979-2009. Units: mm/decade. Statistically significant trends at the 95% level are marked with a + 559 

sign. 560 

Figure 14:   Precipitation trends (from GPCCv5) across the Caribbean regions for the NDJFMA season 561 

for 1979-2009. Units: mm/decade.  Statistically significant trends at the 95% level are marked with a 562 

+ sign. 563 

Figure 15: Temperature trends (from CRU TS 3.21) across the Caribbean regions for the calendar 564 

year average 1979-2012. Units: °C/decade. Statistically significant trends at the 95% level are marked 565 

with a + sign. 566 

  567 
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 568 

 569 

Figure 1: Station coverage for monthly precipitation totals (from CRU TS 3.21) across the region 570 

based on the 1951-2012 period. Filled circles have more than 50% completeness and unfilled 571 

circles less than 50% availability during the period.  The shaded areas are those countries 572 

highlighted in Figure 3. 573 

 574 

575 
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 577 

Figure 2: Station coverage for monthly temperature averages (from CRU TS 3.21) across the region 578 

based on the 1951-2012 period. Filled circles have more than 50% completeness and unfilled 579 

circles less than 50% availability during the period. The shaded areas are those countries 580 

highlighted in Figure 3.  581 
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 584 

Figure 3: The four geopolitical regions of the Caribbean used in this study (as defined by CARICOM, 585 

Caribbean Community and Common Market, a regional economic grouping).  586 
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 593 
Figure 4: Seasonal and annual precipitation anomaly (from 1961-90) time series for the North 594 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 595 

3.21 series with brown bars drier. The smooth lines are 10-year Gaussian smoothed series 596 

for CRU TS 3.21 and GPCCv5. Beneath the annual plot, the number of stations used per year 597 

is given. 598 
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 600 
Figure 5: Seasonal and annual precipitation anomaly (from 1961-90) time series for the East 601 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 602 

3.21 series with brown bars drier. The smooth lines are 10-year Gaussian smoothed series 603 

for CRU TS3.21 and GPCCv5. Beneath the annual plot, the number of stations used per year 604 

is given. 605 

 606 
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 608 
Figure 6: Seasonal and annual precipitation anomaly (from 1961-90) time series for the South 609 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 610 

3.21 series with brown bars drier. The smooth lines are 10-year Gaussian smoothed series 611 

for CRU TS3.21 and GPCCv5. Beneath the annual plot, the number of stations used per year 612 

is given.  613 
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 614 
Figure 7: Seasonal and annual precipitation anomaly (from 1961-90) time series for the West 615 

Caribbean region. Blue bars indicates seasons/years wetter than 1961-90 for the CRU TS 616 

3.21 series with brown bars drier. The smooth lines are 10-year Gaussian smoothed series 617 

for CRU TS3.21 and GPCCv5. Beneath the annual plot, the number of stations used per year 618 

is given. 619 
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 620 
 621 

Figure 8: Annual temperature anomalies (°C from the 1961-90) period for the four Caribbean 622 

regions. Red bars indicates years warmer than 1961-90 for the CRU TS 3.21 series, with blue 623 

bars cooler. The smooth lines are 10-year Gaussian smoothed series. Beneath each plot, the 624 

number of stations used per year is given. 625 

 626 
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 629 

Figure 9:  Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the MJJ season 630 

for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are marked 631 

with a + sign. 632 
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 634 

Figure 10:  Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the ASO season 635 

for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are marked 636 

with a + sign. 637 

 638 
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 641 

Figure 11: Precipitation trends (from CRU TS 3.21) across the Caribbean regions for the NDJFMA 642 

season for 1979-2012. Units: mm/decade. Statistically significant trends at the 95% level are 643 

marked with a + sign. 644 
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 647 

Figure 12: Precipitation trends (from GPCCv5) across the Caribbean regions for the MJJ season for 648 

1979-2009. Units: mm/decade. Statistically significant trends at the 95% level are marked 649 

with a + sign. 650 

 651 



33 

 

 652 
 653 

Figure 13:  Precipitation trends (from GPCCv5) across the Caribbean regions for the ASO season for 654 

the 1979-2009. Units: mm/decade. Statistically significant trends at the 95% level are 655 

marked with a + sign. 656 
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 659 

Figure 14:   Precipitation trends (from GPCCv5) across the Caribbean regions for the NDJFMA season 660 

for the 1979-2009. Units: mm/decade. Statistically significant trends at the 95% level are 661 

marked with a + sign. 662 
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 664 
Figure 15: Temperature trends (from CRU TS3.21) across the Caribbean regions for the calendar year 665 

average for 1979-2012. Units: °C/decade. Statistically significant trends at the 95% level are 666 

marked with a + sign. 667 
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