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Abstract 

Neurodegenerative diseases are associated with distinct and distributed patterns of atrophy in the 

cerebral cortex. Emerging evidence suggests that these atrophy patterns resemble intrinsic 

connectivity networks in the healthy brain, supporting the network-based degeneration framework 

where neuropathology spreads across connectivity networks. An intriguing yet untested possibility 

is that the cerebellar circuits, which share extensive connections with the cerebral cortex, could be 

selectively targeted by major neurodegenerative diseases. Here we examined the structural 

atrophy in the cerebellum across common types of neurodegenerative diseases, and characterised 

the functional connectivity patterns of these cerebellar atrophy regions. Our results showed that 

Alzheimer’s disease and frontotemporal dementia are associated with distinct and circumscribed 

atrophy in the cerebellum. These cerebellar atrophied regions share robust and selective intrinsic 

connectivity with the atrophied regions in the cerebral cortex. These findings for the first time 

demonstrated the selective vulnerability of the cerebellum to common neurodegenerative disease, 

extending the network-based degeneration framework to the cerebellum.  Our work also has direct 

implications on the cerebellar contribution to the cognitive and affective processes that are 

compromised in neurodegeneration as well as the practice of using the cerebellum as reference 

region for ligand neuroimaging studies.  
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Introduction 

Common neurodegenerative diseases are associated with progressive and circumscribed atrophy 

in the cerebral cortex, with distinct anatomical distributions. In Alzheimer’s disease (AD), 

neuropathology predominantly targets the bilateral posterior cingulate cortices, precuneus, and 

hippocampus, whereas frontotemporal dementia (FTD) affects the frontal and temporal lobes of 

the brain (Braak and Braak, 1991; Rosen et al., 2002). Importantly, the cerebral atrophy in 

neurodegeneration have been shown to resemble the anatomical patterns of intrinsic connectivity 

networks in healthy brains, such as the default mode and salience networks (Greicius et al., 2004; 

Seeley et al., 2009). As revealed by functional magnetic resonance imaging (fMRI), these networks 

feature spontaneous, temporally synchronous, spatially distributed neural activities, which 

presumably result from direct or indirect anatomical connections (Beckmann et al., 2005; 

Damoiseaux, 2006; Fox et al., 2005; Vincent et al., 2007). The anatomical similarity between the 

atrophy patterns in neurodegeneration and intrinsic connectivity networks in health provided the 

first empirical evidence in living humans that neurodegenerative diseases represent organized 

large-scale network breakdowns and neuropathology spreads along trans-synaptic connections 

(Seeley et al., 2009). This “network-based degeneration” framework holds important clinical 

implications, in elucidating disease-specific profiles and developing imaging markers for diagnosis 

and disease monitoring. 

So far, research on common neurodegenerative diseases has primarily focused on the cerebral 

cortex. However, connectivity network architecture extends beyond the cerebral cortex, notably, to 

the cerebellum via topographically-organized connections (Schmahmann, 2001). Structurally, the 

cerebellum is connected to the cerebral cortex via poly-synaptic fiber connections; these 

connections are organized topographically that different parts of the cerebellum are connected to 

distinct cerebral regions (Buckner, 2013; Kelly and Strick, 2003). Functionally, most cerebral 

intrinsic connectivity networks can be mapped onto the cerebellum using functional connectivity 

analyses (Buckner and Krienen, 2011; Habas et al., 2009). Such topographically-organized 

connectivity between the cerebrum and the cerebellum led to an intriguing possibility, that 
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neurodegeneration could target distinct cerebellar regions within the same intrinsic connectivity 

network.  

Nonetheless, the role of the cerebellum in major neurodegenerative diseases has received little 

attention. This oversight might be due to the notion that cerebellar degeneration is classically 

associated with ataxia, a symptoms that is typically absent in AD and FTD. Recent clinical and 

neuroimaging studies in human, however, have provided compelling evidence that the cerebellum 

is broadly involved in cognition, language and emotion (Baumann et al., 2014; Schmahmann and 

Sherman, 1998; Schmahmann, 2001). Hence, cerebellar changes might not necessarily lead to 

motor symptoms, but rather compromise cognitive and affective functions. This notion is indirectly 

corroborated by our recent findings, showing that sporadic bvFTD patients have substantial 

cerebellar changes, particularly in the anterior lobules and the posterior crus (Tan et al., 2014). It is 

thus an imperative task to characterize pathological changes in the cerebellum accompanying 

neurodegenerative diseases, and further their relationship with cerebral degeneration. 

The current study addresses this issue by systematically mapping the atrophy patterns in the 

cerebellar and cerebral cortices across four common types of neurodegenerative diseases: 

Alzheimer’s disease (AD) and the three FTD subtypes (behavioural variant FTD – bvFTD; 

semantic dementia – svPPA; progressive nonfluent aphasia – nfvPPA). To explore the 

mechanisms underlying the cerebral atrophy, we mapped the anatomical patterns of cerebellar 

and cerebral atrophy onto known intrinsic connectivity architecture in healthy brains. Furthermore, 

we investigated whether the amount of cerebellar atrophy correlated with the cerebral atrophy 

across patients within each diagnosis group. We hypothesised that i) different clinical groups would 

show distinct patterns of cerebellar atrophy; ii) the anatomical patterns and the extents of 

cerebellar and cerebral atrophy within each group would be related as predicted by intrinsic 

connectivity architecture in healthy brains.  

 

Methods 

Case Selection 
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A total of 217 participants took part in this study. Patients were recruited in a consecutive fashion 

from the FTD Research Clinic, FRONTIER, in Sydney, resulting in a sample of 56 AD, 38 bvFTD, 

30 nfvPPA, 29 svPPA and 64 elderly controls. All FTD patients met current consensus criteria for 

bvFTD (Rascovsky et al., 2011) and svPPA and nfvPPA (Gorno-Tempini et al., 2011) showing the 

progressive neuropsychiatric and/or cognitive decline characteristic of this dementia subset. More 

specifically, bvFTD patients met criteria for probable bvFTD by showing behavioural disinhibition, 

apathy, and loss of empathy, as well as a decline in functional abilities. svPPA patients had 

surface dyslexia, as well as impaired naming, single-word comprehension and object knowledge, 

while having spared repetition and speech production. nfvPPA patients had apraxia of speech or 

agrammatism, as well as complex sentence comprehension problems, while showing intact single-

word comprehension and object knowledge. All patients also met criteria of atrophy localised to 

frontal and/or temporal lobes as well as perisilvian areas via an MRI visual atrophy rating scale 

(XXX). AD patients met diagnosti criteria for Alzheimer’s disease (Dubois et al., 2007) by having 

significant episodic memory problems as reported by the patient or carer, which was corroborated 

by neuropsychological verbal and non-verbal episodic memory testing (RAVLT, Rey figure, Doors& 

People test) as well as medial temporal lobe atrophy on visual atrophy rating scale (XXX). 

Diagnosis for all patients was established by consensus among a senior neurologist (JRH) and 

neuropsychologists based on clinical investigations, cognitive assessment, carer interviews, and 

evidence of atrophy on structural neuroimaging. Patients were excluded when symptom onset was 

sudden or other significant neurological or psychiatric symptoms were present. No patients were 

included in the bvFTD group who manifested any ALS symptomology or were C9orf72 positive. A 

group of 64 healthy elderly adults were recruited as controls. Testing and scanning was conducted 

at the first clinic visit of each patient, however patients were followed-up at 12-months intervals for 

disease management purposes which also confirmed their additional diagnoses. Based on this 

database, we selected participants who are best matched for age and gender across the disease 

and control groups, resulting in the final cohort for this study (34 AD, 33 bvFTD, 27 nfvPPA, 27 

svPPA and 34 controls).  
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Ethics Statement 

Ethics approval was obtained from the Human Research Ethics Committee of South Eastern 

Sydney/Illawarra Area Health Service (HREC 10/126, 10/092 & 10/022). Research was conducted 

following the ethos of the Declaration of Helsinki. Written consent, either from patient or family, 

was obtained for each participant in the study. 

 

Test Selection 

The Addenbrooke’s Cognitive Examination Revised (ACE-R) and the Cambridge Behavioural 

Inventory Revised (CBI-R) were selected on the basis of their high sensitivity, specificity and 

feasibility for screening cognitive and neuropsychiatric symptoms, respectively.  

The ACE-R is a test that detects early cognitive impairment with 94% sensitivity and 89% 

specificity (Mioshi et al., 2006) and has been well validated across various neurodegenerative 

diseases. The participant works through a battery of items designed to reveal levels of functioning 

across five subscales: attention & orientation, memory, fluency, language and visuospatial 

cognition. The total possible score is 100, with higher scores denoting more preserved cognitive 

abilities. Scores below 88 are indicative of cognitive impairment (Mioshi et al., 2006). 

The CBI-R is a 45-item carer questionnaire mapping the neuropsychiatric topography of the 

participant and any material impact on daily life. Each item, a given behaviour, is ascribed a 

frequency rating (0-4) – 0 indicating no impairment, 1 a rare occurrence (a few instances per 

month), 2 a repeated occurrence (a few instances per week), 3 a daily occurrence, and 4 a 

constant occurrence. The CBI-R stands corroborated by the Neuropsychiatric Inventory (NPI) as 

an effective measure of neuropsychiatric symptoms (Wedderburn et al., 2008). The maximum 

score is 180, signifying absolute behavioural and psychological dysfunction (Results are reported 

herein as percentages, for simplicity). Thus higher scores in CBI-R indicate greater impairment, in 

contrast with grading of ACE-R scores.  
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Statistical analyses on demographics and neuropsychology  

Data were analysed using SPSS19.0 (IBM Corp., Chicago, Ill., USA). Demographic (age, gender, 

years of education) and clinical (disease duration, FRS Rasch score, ACE-R total score and CBI 

total scores) variables were checked for normality of distribution by Kolmogorov-Smimov tests. 

Variables revealing normal distribution (age, education, FRSRasch) were compared across groups 

via one-way ANOVAs followed by Bonferonni post hoc tests whereas variables with non-normal 

distributions (gender, disease duration, CDR sum of boxes, ACE-R total and CBI-R total) were 

assessed via Chi-square, Kruskal-Wallis and Mann-Whitney U tests. 

 

Imaging acquisition  

Subjects were scanned using a 3T Philips MRI scanner. T1-weighted acquisition: coronal 

orientation, matrix 256x256x200, 1x1 mm2 in-plane resolution, slice thickness 1 mm, TE/TI = 

2.6/5.8 ms. 

 

Imaging preprocessing and analysis 

T1-weighted images were segmented into grey and white matter using VBM8 toolbox in SPM8. 

The output images were visually inspected for each participant to ensure accurate segmentation 

(see sFig. 3 for representative images). The grey matter images were further normalized into 

Montreal Neurological Institute (MNI) space (affine + nonlinear), modulated (non-linear only), and 

smoothed with an 8mm full-width at half-maximum Gaussian kernel. These resulting images were 

subsequently entered into a second-level, random-effects voxel-based morphometry analysis to 

perform a two sample t-test to identify differences between each disease group and healthy 

controls. The group-difference maps were evaluated with a peak height threshold [family-wise error 

(FWE)-corrected p < 0.05] (sFig. 1). 

The cerebellum was processed using the spatially unbiased infratentorial template (SUIT) toolbox 

specifically developed for the cerebellum (Diedrichsen, 2006). Compared with the standard whole-

brain atlases, the high resolution atlas used by SUIT preserves the anatomical detail of the 
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cerebellum and provides more accurate spatial registration (Diedrichsen, 2006). The cerebellum 

was first isolated using a stepwise Bayesian algorithm that estimates the likelihood of each voxel 

belong to the cerebellum, normalised to the MNI space with the high resolution probability 

cerebellum template in SUIT (affine + nonlinear), modulated, and smoothed with a 2mm full-width 

at half-maximum Gaussian kernel. These resulting images were subsequently entered into a 

second-level, random-effects voxel-based morphometry analysis to perform a two-sample t-test to 

identify between-group differences in the cerebellum. Here, we compared the differences between 

each of the four disease groups and the healthy controls (four group-comparisons; Fig 1), as well 

as between the four disease groups (six group-comparisons; sFig. 2). Group-differences in the 

cerebellum were not detected at the threshold used for the cerebrum (FWE-corrected p < 0.05). 

Hence, a more lenient threshold was used: a peak height threshold (p < 0.001 or p < 0.005), and 

cluster extend (FWE-corrected p < 0.05). 

Age and gender were included as covariates in all group comparisons. As total GM or TIV were 

corrected during the preprocessing step “modulation – non-linear only” in VBM8 and SUIT. Note 

the modulation step (to correct for local expansion or contraction) was implemented by dividing the  

partial volume maps by the Jacobian of the warp field, therefore correcting for global brain size 

differences. TIV was therefore  not included as a covariate in the statistical model. Disease 

severity as quantified by FRS was included as an additional covariate in all comparisons between 

disease groups.  

These group-difference maps were then compared with each of the intrinsic connectivity networks 

as defined in the Yeo and the Buckner atlas for the cerebrum and the cerebellum, respectively 

(Buckner and Krienen, 2011; Yeo et al., 2011); the spatial similarity was assessed by goodness-of-

fit scores (GOF) according to the following formula, and summarised in Table 2. 

GOF = (Vin – Vout) / (Vin + Vout), where 

Vin: Probability of voxels in the group-difference map to be inside of the connectivity network; 

Vin: Probability of voxels in the group-difference map to be outside of the connectivity network. 

Permutation tests were used to test whether the GOF scores of the top-matching network are 

significantly higher than the rest. Here, group comparisons were performed on randomly-selected 
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subsets of 20 patients to derive the GOF scores. This process was repeated 50 times for each 

disease group and statistical significance between the top and second ranking networks was 

examined with Mann-Whitney U Test (Table 2). 

 

Seed-based functional connectivity  

For each type of neurodegenerative diseases, we selected the peak atrophy regions within the 

relevant networks in the cerebral and the cerebellar cortex for AD, bvFTD, nfvPPA and svPPA, 

respectively (Table 3). As the result, the clusters peaks of group difference maps at the left angular 

gyrus (AG), the right anterior insula (AI), the left inferior frontal gyrus (IFG) and the left inferior 

temporal gyrus (ITG) were used as the cerebral seeds, whereas the peaks of group difference 

maps at the left Crus I, the left VI, the right Crus I and the left IV-V were used as the cerebral 

seeds, for AD, bvFTD, nfvPPA and svPPA, respectively.  

The intrinsic connectivity of these seeds was examined using resting state fMRI data from 468 

‘related’ Q1-Q6 subjects (R468), acquired by the human connectome project (WU-Minn HCP Data 

– 500 Subjects; age 22-35 and 59% female). The preprocessing pipeline of HCP resting state 

dataset has been described in details in the original publication (Glasser et al., 2013; Smith et al., 

2013). Briefly, structural images were corrected for MR gradient nonlinearity distortion, and 

registered to the MNI space using an initial linear (FLIRT) and non-linear (FNIRT) registration in 

FSL. Functional images were corrected for spatial distortions, realigned to compensate for subject 

motion, co-registered to the structural images, smoothed with 2 mm FWHM and mapped onto the 

standard space. The output is a standard set of time series in every subject, with spatial 

correspondence of 2 mm average surface vertex and subcortical volume voxel spacing. Lastly, FIX 

(FMRIB's ICA-based X-noisifier) was applied to this set of time series to remove non-neural 

artefact signals (Smith et al., 2013). FIX combines independent component analysis and 

hierarchical fusion of classifier to identify spatiotemporal components that mostly reflect artefacts in 

the data; commonly used noise regressors, such as white matter and cerebrospinal fluid 

timeseries, were included to assist classification (Salimi-Khorshidi et al., 2014). The timeseries of 

identified noise components, as well as the 24 confound timeseries derived from the motion 
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estimation, were subsequently removed from the fMRI data; 24 motion-related timeseries include 

the 6 rigid-body parameter timeseries, their backwards-looking temporal derivatives, plus all 12 

resulting regressors squared) (Satterthwaite et al., 2013; Smith et al., 2013). 

  

 

The use of nuisance signal regression is still an outstanding issue for connectivity analyses (Smith 

et al., 2013). To ensure our results are not sensitive to the choice of this preprocessing step, we 

examined functional connectivity either with or without additional regressions. Using the workbench 

1.0 software, seed-based functional connectivity maps were generated for each of the 468 

subjects, based on (1) correlation with regression of the mean grey timecourse (MGT) and (2) full 

correlation between the seeds and every other voxels in the brain (Smith et al., 2013). The 

regression of MGT, the average timecourse of grey matter voxels and vertices, represents a less 

aggressive form of global signal regression (Smith et al., 2013). Then, group-level statistical 

analyses were performed on the 468 individual functional connectivity maps to derive the intrinsic 

connectivity networks. The spatial similarity between these intrinsic connectivity networks were 

then measured by (Pearson) spatial cross-correlation. Since the results from the two connectivity 

maps were quantitatively similar (Table 3), only the MGT-regressed connectivity maps were 

displayed in the Results (Fig. 2).  

 

Structural correlation between the cerebral and cerebellar seed regions 

To assess the atrophy at the peak atrophy regions that were used as the seeds in the preceding 

analyse, we created 6-mm sphere ROIs that were centred at the peak coordinates (Table 3, grey 

rows). The mean grey matter volumes of these ROIs were extracted from the structural image of 

each patient. The associations between the cerebral and cerebellar ROIs were examined via 

(Pearson) correlation. One-tailed tests were used, as we had prior hypotheses that the atrophy 

severity of the cerebral and cerebellar ROIs within the same, targeted networks would be positively 
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correlated. Post hoc residual normality tests were performed on these correlation analyses in 

SPSS.  In all cases, the residuals conformed to a Gaussian distribution and no outlier was 

detected.  

 

Results 

Demographics and clinical profiles 

To establish the atrophy profiles across several common neurodegenerative syndromes, we 

screened our clinical database for patients diagnosed with AD, bvFTD, svPPA and nfvPPA, and 

healthy controls, who are best matched for age and gender (Table 1). The resultant four groups 

have no significant difference in gender or years of education (p > 0.1 for all). Age was not 

significantly different between most groups (p > 0.1), except that the nfvPPA group showed 

significantly older age as compared to the bvFTD and svPPA groups (p<0.05). Since the nfvPPA 

group does not differ from the control group in age, we opted to include all patients, rather than 

exclude the older ones and reduce the sample size. A longer disease duration was found in svPPA 

compared to AD and nfvPPA (p < 0.05) but no other difference was found across groups. On the 

CDR assessments, patients with nfvPPA scored higher than all patient groups (p < 0.05) and 

patients with bvFTD scored significantly worse in comparison to AD and svPPA (p < 0.01). As 

expected, all patient groups performed significantly worse in comparison to controls in ACE-R and 

CBI assessments (p<0.01). For the ACE-R, svPPA cases performed worse in comparison to all 

other groups (p < 0.05 for all). A poorer performance was also seen in AD and nfvPPA compared 

to bvFTD (p < 0.05). For the CBI scores, the svPPA cohort performed significantly worse in 

comparison to nfvPPA (p < 0.01) but both svPPA and nfvPPA cohorts performed significantly 

better in comparison to bvFTD cases (p < 0.01), with nfvPPA also performing better in comparison 

to AD (p < 0.01). Significant differences was seen in the FRS Rasch score in AD, svPPA and 

nfvPPA in comparison to bvFTD (p < 0.01) as well as in svPPA compared to AD and nfvPPA (p < 

0.05).  
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Distinctive patterns of cerebellar atrophy in the AD and FTD 

AD and FTD subtypes are associated with significant and anatomically-distinct atrophy in the 

cerebellum. Compared to age-matched healthy controls, patients with AD showed significant 

atrophy in the bilateral Crus I (Fig. 1A, sTable 1; p<0.001 for voxel height, FWE-corrected p<0.05 

for cluster extent). On the other hand, the cerebellar atrophy in bvFTD was located at the anterior 

and superior portion of the cerebellum, with peak atrophied regions in lobule VI, predominantly on 

the left (Fig. 1B, sTable 1; p<0.001 for voxel height, FWE-corrected p<0.05 for cluster extent). In 

svPPA and nfvPPA groups, the threshold used above did not detect cerebellar atrophy. A lenient 

statistical threshold for voxel height (p<0.005) revealed bilateral atrophy in lobules IV-V and IX in 

svPPA, and Crus I in nfvPPA (Fig. 1C,D, sTable 1, FWE-corrected p<0.05 for cluster extend). 

Next, we examined whether the cerebellar changes are different between these common 

neurodegenerative disorders. We found the cerebellar atrophy was more severe in AD than FTD 

subtypes (sFig. 2; FWE-corrected p<0.05 for cluster extent). Specifically, patients with AD 

presented greater atrophy in the right and left Crus I than patients with bvFTD and nfvPPA, 

respectively. On the other hand, no cerebellar regions were found to show greater atrophy in FTD 

subtypes than AD.  In addition, no significant differences in the cerebellar cortex were identified 

between the three FTD subtypes.   

 

Cerebellar atrophy patterns reflect cerebro-cerebellar intrinsic connectivity  

If the cerebellar atrophy in neurodegenerative diseases results from the spread of neuropathology 

across interlinked networks, these atrophied regions in the cerebellum should belong to the same 

large-scale intrinsic connectivity networks as the corresponding cerebral atrophied regions. To test 

this hypothesis, we compared the atrophy maps against established cerebral and cerebellar atlas 

based on resting state connectivity (Buckner and Krienen, 2011; Yeo et al., 2011). It has been well 

recognized that the cerebral atrophy patterns in AD and bvFTD resemble the default mode network 

anchored by bilateral angular gyrus, precuneus and posterior cingulate cortex, and the salience 

network anchored by bilateral anterior insula and anterior cingulate cortex, respectively (Greicius et 
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al., 2004; Seeley et al., 2009) (sFig. 1). Consistent with these previous findings, the cerebral 

atrophy patterns in AD and bvFTD showed the highest matching scores with the default mode 

network and salience network in the connectivity network atlas, respectively (Table 2; sFig. 1). 

When we applied a similar analysis in the cerebellum, the cerebellar atrophy pattern matched the 

best with the cerebellar counterparts of the default mode network and salience network, 

respectively (Figs. 1A,B, overlaid on the 7-network atlas; Table 2), suggesting that the 

neurodegeneration in AD and bvFTD follows large-scale cerebro-cerebellar intrinsic connectivity 

patterns as identified in healthy brains.  

The intrinsic connectivity networks underlying cerebral atrophy are less studied and established for 

nfvPPA and svPPA (Farb et al., 2013; Guo et al., 2013; La Joie et al., 2013; Seeley et al., 2009). 

Nonetheless, we observed a similar pattern in nfvPPA, where the atrophied areas best matched 

the same intrinsic connectivity networks, the frontoparietal network, in both the cerebrum and the 

cerebellum (Fig. 1C, Table 2). For svPPA, although the limbic network shares high spatial similarity 

with the cerebral atrophy pattern, its matching with the cerebellar atrophy pattern was poor, 

suggesting the neurodegenerative process in svPPA might follow different mechanisms between 

the two brain regions (Fig. 1D, Table 2).  

 

Shared intrinsic connectivity patterns between cerebral and cerebellar atrophy regions  

To further validate the cerebro-cerebellar connectivity-based degeneration hypothesis, we adopted 

a seed-based analytical strategy commonly used in the cerebrum (Guo et al., 2013; Seeley et al., 

2007; Zhou et al., 2012). We examined whether the peak atrophied regions in the cerebral and the 

cerebellar cortices share similar intrinsic connectivity patterns in healthy brains (see Methods for 

details; Table 3, grey rows).  

Intrinsic connectivity network seeded at the left AG, the peak cerebral atrophy region in AD (black 

circle in Fig. 2A, top row), encapsulates bilateral angular gyrus, middle temporal gyrus, precuneus 

and dorsal medial prefrontal cortex (DMPFC). Additional, Crus I and II in the cerebellum also 

showed high connectivity to the angular gyrus seed (Fig. 2A).  Intriguingly, the network seeded at 
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left Crus I, the peak cerebellar atrophy region in AD, resembles this angular gyrus-seeded network, 

with bilateral angular gyrus, middle temporal gyrus, precuneurs and DMPFC being the most 

connected cerebral regions (Fig. 2A, bottom row; Table 3, spatial cross-correlation = 0.61). 

Similarly, seeding either in the cerebrum or the cerebellum, peak atrophy regions in bvFTD 

generated networks encompassing ACC, bilateral anterior insula, temporoparietal junction, as well 

as lobules VI and VIII (Fig. 2B; Table 3, spatial cross-correlation = 0.57); peak atrophy regions in 

nfvPPA show robust, shared connectivity in inferior frontal gyrus, intraparietal sulcus, DMPFC, as 

well as Crus I and lobule VIII (Table 3, cross-correlation = 0.60). In svPPA, however, cerebral and 

cerebellar atrophy regions appeared to have different intrinsic connectivity patterns (Table 3, 

cross-correlation = 0.08). 

 

Correlated cerebral and cerebellar atrophy within the relevant connectivity networks.  

Finally, based on the network-based generation framework, the severity of degeneration should be 

correlated between the cerebrum and the cerebellum within the same connectivity networks. We 

tested this hypothesis with correlational analyses on structural atrophy. In AD, grey matter volume 

at the peak atrophy region in Crus I was significantly correlated with grey matter volume at the 

angular gyrus (r=0.38, p=0.01), but not the anterior insula (r=0.08, p=0.32; Fig. 3A). On the other 

hand, in bvFTD, grey matter volume at the peak atrophy region in lobule VI was significantly 

correlated with grey matter volume at the anterior insula (r=0.34, p=0.02), but not the angular gyrus 

(r=-0.05, p=0.38; Fig. 3B). We did not find significant correlation between the cerebral and the 

cerebellar atrophy severity in nfvPPA and svPPA, although there was a trend in nfvPPA (p=0.06).  

 

Discussion 

Our findings showed that neurodegenerative syndromes are associated with distinct patterns of 

atrophy in the cerebellum. These cerebellar atrophy regions shared robust intrinsic connectivity 

with the atrophy regions in the cerebral cortex, as revealed by seed-based functional connectivity 
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analyses on healthy brains. These results suggested that the network-selective vulnerability could 

underlie the pathogenesis of neurodegeneration in both the cerebral and cerebellar cortices. We 

report here that the cerebellar subregions targeted by AD are within the Crus I/II, and the ones by 

bvFTD are within lobule VI. Previous studies in healthy adults have classified Crus I/II and lobule 

VI as the cerebellar counterparts of the default mode network and the salience network, 

respectively (Buckner and Krienen, 2011; Habas et al., 2009; Krienen and Buckner, 2009). Hence, 

our observations are consistent with previous research on the cerebral cortex that AD targets the 

default mode network and bvFTD targets the salience network (Seeley et al., 2009; Zhou et al., 

2010). These results provide strong support that neurodegenerative processes spread across 

intrinsic connectivity networks in the brain, and further extend this network-based framework to the 

cerebellum.  

To our knowledge, our study is the first to systematically examine cerebellar atrophy in relation to 

intrinsic brain networks across common neurodegenerative diseases. The cerebellum is generally 

regarded as being spared in AD - often serving as a control tissue or a reference region in imaging 

studies (Dukart et al., 2010; Smith et al., 1997).  However, pathological insults in the cerebellum 

have been widely reported in AD by earlier pathology studies (Braak et al., 1989; Chen et al., 

2010; Dickson et al., 1990; Fukutani et al., 1996; Ishii et al., 1997; Joachim et al., 1989; Mattiace et 

al., 1990; Wegiel et al., 1999), which oddly became scanty in the more recent literature. On the 

other hand, the importance of the cerebellum is gaining increasing traction in the field of FTD, 

fuelled by studies that have found structural changes and neuropathological lesions in the 

cerebellum in patients carrying the c9ORF72 mutation (Mahoney et al., 2012; Whitwell et al., 

2012). The cerebellar changes do not appear to be specific to c9ORF72 mutation though: They 

have since been documented in cohorts of sporadic bvFTD, particularly in the anterior lobules and 

the crus (Tan et al., 2014), similar to our connectivity results. These findings clearly suggest that 

caution is warranted to regard the cerebellum as a control or reference region in 

neurodegenerative conditions, as atrophy in the regions emerges as much more pervasive as 

previously thought. Future studies should address the impact of those cerebellar changes on 

ligand neuroimaging and how this can be accounted to avoid biased results. 
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More importantly, our results demonstrate how network-based framework has become a powerful 

framework for understanding the mechanisms of neurodegeneration. Not only on a systems level 

where the anatomical distributions of cerebral atrophy in neurodegenerative diseases resemble 

intrinsic connectivity networks in healthy brains (Seeley et al., 2009), but also on a molecular level 

where pathogenic proteins (eg. amyloid, tau, TDP-43) could misfold and aggregate into self-

propagating agents for the spread of disease (Jucker and Walker, 2013).  Hence, evidence is 

converging that the connectivity-based, network-specific mechanisms underlie the origin and 

progression of neurodegenerative diseases. Under this network-based framework, involvement of 

the cerebellum should be no surprise.  Earlier tracing studies have well documented the 

topographically-organized connections between the cerebellum and the cerebrum, including 

prefrontal cortex, via the cerebro-cerebellar-thalamo circuits (Haines and Dietrichs, 1984; Haines 

et al., 1997; Siwek and Pandya, 1991). Recent functional neuroimaging studies further mapped 

functional connectivity networks in the cerebral cortex onto distinct cerebellar regions (Buckner and 

Krienen, 2011; Habas et al., 2009). Together with these structural and functional studies, our 

results underscore the importance of dissecting the anatomical subdivisions of the cerebellum in 

elucidating its function and vulnerability to neuropathology. Furthermore, other subcortical 

structures strongly connecting to the targeted cerebral regions could potentially be vulnerable to 

neurodegeneration. For example, there has been increasing evidence that the basal ganglia 

contribute to symptomology in neurodegeneration along with the cortical changes (Shepherd, 

2013). Future study could take a similar approach for the whole brain to establish a complete 

depiction of neural network changes in neurodegeneration.  

This cerebro-cerebellar connectivity is critical for the understanding the clinical pathological 

correlates in neurodegenerative diseases. Indeed, historically the cerebellum has been associated 

with coordination and motor symptoms. However, more recent evidence suggests that 

somatosensory regions occupy only a relatively small proportion of the cerebellum, with almost 

one-half of the cerebellum involved in cognitive control and the default mode networks (Buckner 

and Krienen, 2011). Functional imaging studies have highlighted the role of Crus I in working 

memory and connectivity studies have corroborated this by demonstrating that the cerebellar Crus 
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I/II are the major cerebellar regions coupled to the default network (Buckner and Krienen, 2011; 

Krienen and Buckner, 2009). The current study shows peak atrophy in Crus I being associated 

with the default mode network targeted in AD, and the cerebellar lobule VI with the salience 

network in bvFTD. The presence of cerebellar degeneration raises intriguing questions on the 

cerebellar contribution to the cognitive and affective symptoms in these patients, who have no or 

very subtle motor symptoms. More likely, if taken an integrative view of the brain function, the 

integrity of the entire circuit, that encompasses the relevant cerebral and cerebellar cortices, as 

well as subcortical structures, is the key to support healthy mental states. This is clearly 

speculation at this stage, and future studies addressing these issues are evidently needed. 

Despite these significant findings in AD and bvFTD, results for the nfvPPA and svPPA groups were 

less robust. Indeed, a more lenient threshold was needed to detect cerebellar atrophy in nfvPPA 

and svPPA (Fig. 1). The weaker statistical significance could be due to the smaller sample sizes of 

the nfvPPA and svPPA groups. Alternatively, it might reflect that the cerebellum is less affected in 

nfvPPA and svPPA than AD and bvFTD, although a direct comparison of FTD subtypes did not 

show significant differences (sFig. 2). One could speculate that the observed differences could be 

due to stronger anatomical connections between the cerebrum and the cerebellum, which might 

lead to a higher susceptibility of cerebellar atrophy. Clearly this anatomical connectivity needs to 

be further investigated. In AD and bvFTD, atrophy in strongly connected cortical regions such as 

the parietal and prefrontal cortices might cause greater cerebellar atrophy, leading to the clear 

relationship between cerebellar atrophy and connectivity. On the other hand, the anterior temporal 

lobe, the targeted cerebral regions in svPPA, might not share strong connections with the 

cerebellum, resulting in much weak relationship. This possibility, however, remains a speculation; 

investigations of the cerebellar changes in the language variant, particularly svPPA, are warranted 

in future studies employing bigger sample sizes. 

 

Limitations and future directions  
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Despite these promising findings there were several limitations to our findings. The effects of 

cerebellar atrophy as measured by sMRI were moderate in our study, compared to the atrophy in 

the cerebrum.  This moderate effect, however, might not necessarily reflect the degree of 

cerebellar atrophy or pathology in AD and FTD. Standard sMRI technique could be suboptimal for 

measuring the structure of the cerebellum due to its high neuronal density. The human cerebellum 

contains more than half of all the neurons within the brain within less than 10% of its volume, 

resulting in the densely-packed and highly-convoluted cerebellar cortex. Hence, future studies 

using high-resolution sMRI and fMRI could provide valuable insights into the structural and 

functional vulnerability of the cerebellum and other subcortical structures in much finer details. 

High-resolution neuroimaging could also enhance the ability to investigate the relationship between 

the degenerative processes in the cerebrum and the cerebellum. Our results provide preliminary 

evidence that the severity of cerebral and cerebellar atrophy are selectively correlated within the 

same intrinsic connectivity networks (Fig. 3).  However, the correlations we detected were only 

moderate (r = 0.3~0.4). To fully address this notion of co-atrophy, these analyse should be further 

investigated by neuroimaging studies that offer improved spatial resolution and account for other 

confounding factors.  Finally, our study did not address the contribution of cerebellar lesion to 

clinical profiles in AD and FTD and did not allow to confirm the findings in pathologically confirmed 

cases. Future studies combining high-resolution cerebellum imaging and comprehensive 

neuropsychology assessments could advance our understanding of the neural correlates of 

cognitive and behavioural symptoms in neurodegeneration.  
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Figure legends  

Fig. 1. Statistical maps of structural atrophy in the cerebellum in (A) AD, (B) bvFTD, (C) nfvPPA 

and (D) svPPA, and their overlays with the Buckner 7-network atlas. (E) The corresponding 7-

network atlas in the cerebrum (only left hemisphere is shown). p < 0.001 (AD & bvFTD) or 0.005 

(nfvPPA & svPPA) for peak height and FWE-corrected p < 0.05 for spatial extent. Purple regions in 

the cerebellum are all part of the salience network, as the visual network, color coded as dark 

purple, does not have a cerebellar counterpart (Buckner and Krienen, 2011). 

 

Fig. 2. Intrinsic connectivity patterns of cerebral (top row) and cerebellar (bottom row) atrophy 

regions in AD (A) and bvFTD (B). Seed regions are signified by yellow arrowhead. Additional 

anatomical landmarks are signified by white/grey arrowheads to assist visual inspection.  

 

Fig. 3. Correlation between cerebral and cerebellar atrophy in patients with AD (A) and bvFTD (B). 

Grey matter volumes from the cerebral and cerebellar seed regions for the default mode network 

and salience network are plotted against each other. Significant correlations (Bonferroni-corrected 

for multiple comparisons) are plotted in black and non-significant correlations are plotted in grey. 
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Table 1 
 

 AD 

(N=34) 

bvFTD 

(N=33) 

nfvPPA 

(N=27) 

svPPA  

(N=27) 

Controls 

(N=34) 

Gender 

(M:F) 

19: 15 19: 14 11: 16 18:9 16:18 

Age (yrs) 62 ± 6  61 ± 7 f 67 ± 10  61 ± 5 f 64 ± 5 

Education 

(yrs) 

13 ± 3 12 ± 3 a 13 ± 3 12 ± 3 13 ± 3 

Disease 

duration 

(yrs) 

3 ± 3 3 ± 2 3 ± 2 4 ± 3 c, f N/A 

CDR  3.9 ± 2.2 6.4 ± 3.6 d 1.9 ± 2.1 d, e 3.3 ± 2.7 e, f N/A 

FRSRasch 

score 

1.0 ± 1.4 e 0.6 ± 0.5  0.4 ± 0.5 e 1.5 ± 1.3 e, d, f  N/A 

ACE-R 

Total 

67.2 ± 18.0 b 76.7 ± 11.7 b, c 76.5 ± 14.8 b, c 61.6 ± 18.2 b, c, e, g 95.4 ± 3.4 

CBI Total 21.7 ± 13.4 b 37.1 ± 15.8 b, d 12.4 ± 11.0 b , 

d, e 

25.6 ± 16.7 b, e, g 3.0 ± 2.9 

 
ap < 0.05 compared to Controls 
bp < 0.01 compared to Controls 
cp < 0.05 compared to AD 
dp < 0.01 compared to AD 
ep < 0.01 compared to bvFTD 
fp < 0.05 compared to nfvPPA 
gp < 0.01 compared to nfvPPA 
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Table 2. GOF scores between atrophy patterns and top two best-matching intrinsic connectivity 
networks (ICN). 
 

  AD bvFTD nfvPPA svPPA 

 #ICN GOF #ICN GOF #ICN GOF #ICN GOF 

7
 N

e
tw

o
rk

 

P
a

rc
e

lla
ti
o
n
 

Cerebellum 

No. 1 7** 0.47 4** 0.44 6* 0.56 2** 0.42 

No. 2 6 0.32 2 0.16 7 0.34 5 0.23 

Cerebrum 

No. 1 7** 0.56 4** 0.54 6** 0.66 5** 0.86 

No. 2 3 0.32 7 0.40 4 0.51 7 0.11 

1
7
 N

e
tw

o
rk

 

P
a

rc
e

lla
ti
o
n
 

Cerebellum 

No. 1 17* 0.57 8* 0.46 17** 0.78 15 0.70 

No. 2 14 0.47 13 0.37 8 0.20 11 0.68 

Cerebrum 

No. 1 17** 0.65 8** 0.65 12* 0.81 9** 0.91 

No. 2 14 0.53 10 0.45 8 0.63 17 0.53 

 
To avoid naming confusions, intrinsic connectivity networks are labelled here by the numbers used 
in the original atlas. For the visual displays of these networks, see Fig. 1E for the 7-network 
parcellation atlas, and the Fig. 11A in Buckner et al, 2011 for the 17-network parcellation atlas.  
The 7 network: 1, Visual; 2, Somatosensory; 3, Dorsal attention; 4, Salience; 5, Limbic; 6, 
Frontoparietal; 7, Default. The 17 network: 1,2, Visual; 3,4, Somatosensory; 5,6, Dorsal attention; 
7,8, Salience; 9,10, Limbic; 11-13, Frontoparietal; 14-17, Default. Networks that match significantly 
better than the rest are signified with ** p < 0.001 and * p < 0.01.  
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Table 3. Cross correlation between the cerebral and cerebellar peak atrophy regions seeded 
intrinsic connectivity networks. 
 

 Cerebral   AD bvFTD nfvPPA svPPA 
Cerebellar  L AG R AI L IFG L ITL 

AD 
L CRUS I 

0.61 / 0.51 -0.34 / -0.04 0.37 / -0.03 0.06 / -0.14 

bvFTD 
L VI 

-0.34 / 0.23 0.57 / 0.73 0.16 / 0.27 -0.36 / -0.32 

nfvPPA 
R CRUS I 

0.36 / 0.36 -0.16 / 0.25 0.60 / 0.46 -0.19 / -0.17 

svPPA 
L IV-V 

0.29 / 0.36 -0.13 / 0.19 0.00 / 0.12 0.08 / 0.18 

 
Results are shown for both connectivity measures: correlation with MGT regression / functional 
correlation. 
 
 
 


