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Abstract. We investigate a group all-pay auction in which each group’s effort is

represented by the minimum among the effort levels exerted by the group members

and the prize is a group-specific public good. Examples of such structure include

R&D competitions, sequential production, supply-chain process, negative product

or political campaigns, various sporting events, and territorial conflicts. We fully

characterize the symmetric equilibria for two groups. There are four types of

equilibria: the pure strategy equilibria in which all (active) players exert the same

effort, the semi-pure strategy equilibria in which the players in a group play the

same pure strategy whereas those in the other group play the same mixed strategy,

the non-degenerate mixed strategy equilibria with continuous support, and the

non-degenerate mixed strategy equilibria with discontinuous support. We then

analyze the case of the general n-group. We find the pure strategy equilibria and

specify candidates for the mixed strategy equilibria.
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1. Introduction

“... It’s a race

And there ain’t no room

For someone in second place.”

– “I’m in a Hurry (And Don’t Know Why)” by Alabama released in 1992.

There are frequent instances in which groups get engaged with cut-throat competition

(as depicted in the lyrics above) and the strength of a group in the competition is repre-

sented by the weakest performance among its group members. This is prominent especially

in markets. Take, for example, the case of R&D race among organizations in which the

R&D team within an organization is stratified with complementary units, or the innovation

process within the organization is sequential (Abernathy and Rosenbloom, 1968; Kaplan

et al., 2003). Another example is the race between two RJVs to set the standard for a new

O-ring (Kremer, 1993) type product. In each of the cases, the organization which has the

strongest ‘weakest-link’ in their innovation process wins the R&D race. Combining these

concepts, Hansen and Birkinshaw (2007) conclude that the innovation in an organization

is only as effective as the strength of the weakest-link in its ‘innovation value chain’.

Similar logic applies to the situation in which products compete through their supply

chains to sell in a market. Regarding this, Benton and Maloni (2005) note that “...a

product is delivered to the end customer via a supply chain... but a supply chain is only

as strong as its weakest link.” Slone et al. (2007) reiterate, in the same line, the importance

of the strength of the weakest-link in competition among supply chains. Inevitably, the

product linked with the strongest supply chain captures (most of) the market.

These examples above can be described as group contests. Contests are a family of

games in which players exert costly resources such as effort, time, and money in expectation

of winning a valuable prize (Konrad, 2009). In the above given situations firms make

irreversible investments in their R&D process or Supply Chains in order to win a patent

or to capture a market segment. Modeling a contest involves specifying the probability

of winning as a function of efforts put forth by the players. This function is called a

Contest Success Function (CSF). One of the most popular CSFs used in the literature

is the all-pay auction (Hillman and Samet, 1987; Hillman and Riely, 1989; Baye et al.,
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1996) in which the player choosing the highest effort wins with certainty.1 The cut-throat

competitions described above can be modeled with all-pay auctions. In the case of group

all-pay auctions, groups engage in costly confrontations and each group member may make

a costly investment (bid) for its group. A function that translates the bids of individual

group members into the group bid is called an Impact Function (Wärneryd, 1998).

In the current study we investigate a group all-pay auction with the weakest-link impact

function. In other words, the minimum among the bids made by the individual members

within a group represents the group bid of that group, the group whose group bid is the

maximum among all the groups wins the prize, and all players lose their bids. As the Max

bid among the Min bids turns out to be the winner, we call the contest described above as

the Max-Min Group Contest . Following the literature, in the continuation we denote

the ‘resources’ or the ‘bids’ as the ‘effort’ expended. We make two assumptions which are

also standard in the literature and in line with the examples provided. First, the prize has

the nature of a group-specific public good in the sense that the prize is shared by all the

members of the winning group, even if one or more members in the winning group does

not expend effort. Second, we assume complete information, i.e., the game structure and

the parameter values are of common knowledge.

The literature on group contest emerges with Katz et al. (1990) who use a perfectly

substitute impact function and a logit-type CSF under symmetric valuation of the prize.

Baik (2008) extends this with asymmetric valuation.2 It is found that players with low-

valuation for the prize free-ride on the highest-valuation group member(s). The analyses

of non-linear impact functions are rather recent. Under logit-type CSF, Lee (2012) uses a

weakest-link impact function and finds multiple equilibria with no free-riding. Chowdhury

et al. (2013), instead, use a best-shot impact function in which the best effort among the

group members represents the group effort. They find that it is possible for the highest

valuation player to free ride on a lower-valuation group member in equilibrium. Kolmar

and Rommeswinkel (2013) use a Constant Elasticity of Substitution impact function rang-

ing from perfect substitute to weakest link and pin down the convergence conditions for

equilibria. All these studies consider every group to follow the same impact function, but

1Two other canonical CSFs that instead consider noise in individual efforts are the logit-type CSF (Tullock,
1980) and the Tournament (Lazear and Rosen, 1981). Please see Konrad (2009) for a survey.
2Ursprung (1990), Baik (1993), Riaz et al. (1995), Dijkstra (1998), Münster (2009) and Choi et al. (2014)
also study the group contests with logit-type CSF and group-specific public good prize. Nitzan (1991a,b),
Lee (1995), Katz and Tokatlidu (1996) and Wärneryd (1998) consider the prize as a private good.
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Chowdhury and Topolyan (2013) analyze a group contest in which it is possible for differ-

ent groups to follow different impact functions and fully characterize related equilibria.

Turning to the group all-pay auction, the focus of this study, Baik et al. (2001) and

Topolyan (2014) consider a perfectly substitute impact function and find free-riding equi-

libria analogous to the logit-type CSF results. Barbieri et al. (2014) consider a best-shot

impact function and find conditions under which multiple players in each group may be

active.

In this study we aim to make contributions in three focal areas. First, we contribute to

the group contest literature by employing the weakest-link impact function and the all-pay

auction CSF. Second, we also contribute to the all-pay auction literature by considering

a group all-pay auction and show that under this specific (weakest-link) technology, the

resultant equilibria are considerably different from the ones existing studies found. Finally,

since the prize in this group contest has the nature of a public good within the winning

group, the current study is also related to the literature on the provision of public goods

under network externalities; and further contributes to a well-established area of research.3

As argued above, plenty of field incidences involve this contest. To add to the cases

in industrial organization, the system reliability war between two system provider groups

also has similar features with this contest. In all cases the weakest part of the product /

system portrays its strength while competing with another product or system. Similarly,

when rival organizations are involved in negative advertisement about several dimensions

of a product, then the product with the weakest feature in a particular dimension eventu-

ally loses market. Even outside of market, in the case of negative electoral campaigning

on a set of political issues (Skaperdas and Grofman, 1995), the weakest issue determines

the strength of a candidate.4 Hence, situations in which multi-dimensional negative cam-

paigning is involved can also be modeled as the Max-Min group contest.

Another distinct example of the Max-Min group contest is territorial conflict. It is

observed that different computer viruses and bots often get involved into conflict to cap-

ture the same computer or program. The ‘Computer World’ magazine reported in 2010

that “An upstart Trojan horse program has decided to take on its much-larger rival by

stealing data and then removing the malicious program from infected computers. Security

3This includes studies by Hirshleifer (1983), Bergstrom et al. (1986), Harrison and Hirshleifer (1989),
Vicary (1990), Conybeare et al. (1994), Sandler and Vicary (2001), Arce (2001), Vicary and Sandler
(2002), Varian (2004), Cornes and Hartley (2007), and Lei et al. (2007).
4This also relates to the literature on Sabotage. Please see Chowdhury and Gürtler (2014) for a survey.
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researchers observe that the relatively unknown Spy Eye toolkit added this functionality

just a few days ago in a bid to displace its larger rival, known as Zeus. The feature, called

“Kill Zeus,” apparently removes the Zeus software from the victims PC, giving Spy Eye

exclusive access to usernames and passwords.5” Each virus can be considered as a group of

codes. While engaged in territorial conflict, whether a virus will ultimately be the victim

of its rival and be abolished depends crucially on the weakest part of its codes. Similar

feature can be observed in the nature. National Geographic (2006) observes Turf battle

among Borneo Sea Eagles in which a pair of Sea Eagles fight off intruder Eagles who try

to catch fish in the territory covered by the pair.6 At the time of the fight, once one of

the group members leaves the battle, the group loses. Hence, this turns out to be a group

conflict with weakest-link technology as well.

The last set of examples come from Sports. Consider, for instance, team pursuit sporting

events such as team races in speed skating and female cycling. In these events each team’s

record is measured as the time when the last member of the team finishes the race and

the winning prize goes to the team whose record is the fastest. Also, in both summer and

winter Olympic team events based on synchronization, such as synchronized swimming,

rhythmic gymnastics, or pairs (figure) skating, the team performance literally depends on

the lowest performer of the team. These cases, thus, turn out to be copybook examples

of the Max-Min group contest.

All these examples are comprised of diverse background and nature. Nevertheless they

all reflect situations in which groups engage in cut-throat competition and the ‘strength’

of a group depends on the lowest effort exerted by a member of the group. This, however,

is not surprising for the cases of computer viruses, Eagles, and negative campaigns due to

their attacking nature. When groups get involved in attack games such as these, then the

group members are essentially connected with a weakest-link technology, and the survival

of a group depends on its weakest group member (Clark and Konrad, 2007; Kovenock and

Roberson, 2010). For the other examples, the structure of the contest itself makes them

in resemblance with the Max-Min group contest.

Although there are various field examples of this type of group all-pay auction with

weakest-link technology, no study to date has tried to analyze this. In the current study we

5http://www.computerworld.com/s/article/9154618/New Russian botnet tries to kill rival. This, how-
ever, is not an exception. Similar incidences noted by, among others, Layden (2008) in Channel Register
Magazine. Details are available here: http://www.channelregister.co.uk/2008/02/28/rootkit wars/.
6http://rockyforkfarms.com/eagle-vs-eagle-in-mid-air/
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characterize equilibria for the Max-Min group contest and discuss the related implications.

Standard all-pay auction literature, be it regarding individual players (Baye et al., 1996) or

groups (Baik et al., 2001), shows that pure strategy equilibrium does not exist. However,

in our model, we find that a continuum of pure strategy equilibria might co-exist with

three characteristically different mixed strategy equilibria. In the pure strategy equilibria,

all (active) players expend the same effort. A special type of mixed strategy equilibrium

exists in which every member in a group exerts the same effort whereas every member

in the other group plays the same mixed strategy. We call this a ‘semi-pure strategy’

equilibrium. In addition to this semi-pure strategy equilibrium, there are two types of

non-degenerate mixed strategy equilibria: the mixed strategy equilibria with continuous

support and those with discontinuous support. These results, we believe, contribute to

the areas of group contests, all-pay auctions, and public goods with network externalities.

The rest of the paper proceeds as follows. Section 2 constructs a two-group model and

characterizes all the possible equilibria. This helps to keep brevity in our analysis, because

many of the quantitative results in the two-group model follow through to Section 3 which

analyzes a general n-group model with different group sizes. In Section 3, we characterize

the pure strategy equilibria and introduce the candidates for the mixed strategy equilibria

for the general case. We discuss the results and corresponding implications in Section 4.

2. The two-group model

There are two groups, 1 and 2. Group g consists of kg ≥ 2 risk-neutral players, where

g = 1, 2. Denote by Ig the index set of all players in group g. The prize is a group-specific

public good, and the valuation of the prize is the same for every player in group g (denoted

by vg). Assume, without loss of generality, that v1 ≥ v2.

Denote the effort level of player i in group g by xg,i, and the vector of effort levels

(xg,1, · · · , xg,kg) by xg. Given player i in group g and a tuple of effort levels (x1, x2),

denote by x
g
−i the effort levels of all players other than player i in group g, i.e.,

x
g
−i =

{

(xg,1, · · · , xg,i−1, xg,i+1, · · ·xg,kg), x−g
}

,

where x−g is the vector of effort levels of the other group.

Definition 2.1. Given a vector of effort levels of the members in group g, xg, group g’s

effort level is a non-negative real number B(xg), where B is a (weakest link) function of
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kg variables of the following form:

B(xg) = min
i∈Ig

xg,i. (2.1)

The cost function for the effort is the same for all players and c(x) = x for any effort

level x ≥ 0.

We assume both groups compete in an all-pay auction (see Hillman and Riley, 1989;

Baye et al., 1996). Let Pg denote the probability of group g’s winning, then the contest

success function has the following form:

Pg(xg, x−g) =











1 if B(xg) > B(x−g)
1
2 if B(xg) = B(x−g)

0 if B(xg) < B(x−g).

(2.2)

Consequently, the payoff function of player i in group g has the following form:

ug,i(xg, x−g) =











vg − xg,i if B(xg) > B(x−g)
vg
2 − xg,i if B(xg) = B(x−g)

−xg,i if B(xg) < B(x−g).

(2.3)

Definition 2.2. A strategy of player i in group g is a probability distribution over a

subset of R+ (the set of effort levels of player i), denoted by sg,i. Denote the set of all

strategies of player i by Sg,i.

Definition 2.3. Group g’s strategy is a kg-tuple of its members’ strategies (sg,1, · · · , sg,kg).

Group g’s strategy is denoted by sg. The set of all strategies of group g is denoted by Sg,

and the set of all strategies for the game by S.

We extend the payoff function u from the set of pure strategies R
k1+k2
+ to the set of

mixed strategies S as follows. Fix a strategy s ∈ S; let Fg, Fg,i, and F−g be the probability

measures on R+ induced by sg, sg,i, and s−g, respectively. Note that, because each group’s

effort is determined by the weakest-link fashion, Fg = 1−
∏

i∈Ig
(1− Fg,i). Intuitively, Fg

represents the probability distribution induced on R+ by sg. Then the payoff of player i
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in group g is computed as follows:

ug,i(s) =

∫

R+

vgF−g(x)dFg(x)−

∫

R+

xdFg,i(x). (2.4)

The first integral in Equation 2.4 represents the expected value of winning the prize, and

the second integral represents the expected cost of effort for player i.

Definition 2.4. Given a strategy sg,i of player i in group g, the individual support Sg,i

is the closure of set of all points of increase of the cumulative distribution function Fg,i

corresponding to sg,i:

Sg,i = Cl({x ∈ R+ : Fg,i(x− ǫ) < Fg,i(x) < Fg,i(x+ ǫ) for all ǫ > 0}).

Definition 2.5. Similarly, given group g’s strategy sg, the group support of sg is the clo-

sure of set of all points of increase of the cumulative distribution function Fg corresponding

to sg, and will denoted by Sg:

Sg = Cl({x ∈ R+ : Fg(x− ǫ) < Fg(x) < Fg(x+ ǫ) for all ǫ > 0}).

Note that a support may fail to be connected. This happens when a subset of the

convex hull of the support is omitted by a player, i.e., chosen with probability zero.

Definition 2.6. A tuple x⋆ = (x⋆1, x
⋆
2), where x⋆g is group g’s effort level (see Definition

2.1), is called a pure strategy equilibrium if

ug,i(x
⋆
g,i, x

g⋆
−i) ≥ ug,i(xg,i, x

g⋆
−i) for every player i in group g and every xg,i ∈ R+.

Definition 2.7. A tuple s⋆ = (s⋆1, s
⋆
2), where s∗g is group g’s strategy (see Definition 2.3),

is called a mixed strategy equilibrium if

ug,i(s
⋆
g,i, s

g⋆
−i) ≥ ug,i(sg,i, s

g⋆
−i) for every player i in group g and every sg,i ∈ Sg,i.

7

Note that a pure strategy equilibrium is a special case of a mixed strategy equilibrium,

but we specifically define it here, because there is generally no pure strategy equilibrium

in all-pay auctions. The following result is obvious and we state it without a formal proof.

7The term s
g⋆
−i is defined analogously to x

g⋆
−i.
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Theorem 2.8. All equilibria in pure strategies are as follows.

xg,i = λ for all i ∈ Ig, g = 1, 2 (2.5)

where λ ∈ [0, v22 ]. Furthermore the total effort expended in the pure strategy equilibria is

(k1 + k2)λ, which varies between 0 and (k1+k2)v2
2 .

Hence, even under an all-pay auction CSF, there exist pure strategy equilibria. This

is the opposite of what is observed in standard all-pay auctions when only mixed strat-

egy equilibria exist.The intuition behind this is simple. Due to the weakest-link effort

technology, players use symmetric strategies within each group resulting in the PSNE.

Now we discuss the non-degenerate mixed strategy equilibria in this model. We focus

on symmetric equilibria in which the players within a group employ the same strategy.

For the purpose of brevity, from now on we use the term mixed strategy equilibria instead

of non-degenerate symmetric mixed strategy equilibria. First, let us investigate so-called

semi-pure strategy equilibria in which some players employ a pure strategy, while others

use a mixed strategy.

Definition 2.9. Given an individual support Sg,i of player i, the upper bound of the

support is

s̄g,i = sup {x : x ∈ Sg,i}.

Similarly, the lower bound of the support is

sg,i = inf {x : x ∈ Sg,i}.

The upper and lower bounds of a group support Sg are defined analogously, with Sg in

place of Sg,i in the above definition. For each group g, let S⋆
g+ = S⋆

g ∩ R++ = {x > 0 :

x ∈ S⋆
g}. Let s

⋆
g+ = inf

{

x : x ∈ S⋆
g+

}

and s̄⋆g+ = sup
{

x : x ∈ S⋆
g+

}

.

In the Appendix, we present all the proofs and the auxiliary results, Lemmata 4.1, 4.2,

4.3, and Corollary 4.4, which describe the properties of the mixed strategy equilibria. The

following theorem characterizes the semi-pure strategy equilibria.

Theorem 2.10. The symmetric semi-pure strategy equilibria are as follows.
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(1) Each player in group 1 contributes v2
2 (1− a)k2−1 and each player in group 2

contributes zero with probability a and v2
2 (1− a)k2−1 with probability 1 − a, for

0 < a < 1.8

(2) If v1 = v2 = v, then in addition there exists a continuum of equilibria where, for

0 < a < 1, each player in group 1 contributes 0 with probability a and v
2 (1− a)k1−1

with probability 1− a and each player in group 2 contributes v
2 (1− a)k1−1.

This is another type of equilibrium which is not very common for all-pay auction. This

type of equilibrium is obtained again due to the specific network externalities generated

by the weakest-link technology.

Note that it is not an equilibrium for each player in one group to randomize over two

strictly positive effort levels, while all players of the other group expend some positive effort

level with probability one. This is because any player of the former group would deviate

from the lower bound of their group support to zero. Notice that supports of the type
[

s1, s2
]

∪
[

s3, s4
]

, that is, piecewise-continuous supports, are not possible for the following

reason. By Lemma 4.2 in the Appendix, no player puts mass at either s2 or s3. Therefore

for a sufficiently small ǫ > 0, efforts in (s3, s3+ǫ) yield only a small increase in the group’s

chances of winning, compared to effort level s2, while s2 provides a discrete reduction in

costs compared to (s3, s3 + ǫ), thus any player would shift mass from (s3, s3 + ǫ) to s2,

leading to a contradiction. Similar considerations show that it is not possible to sustain a

strictly positive s+ in any semi-symmetric mixed strategy equilibrium.

From Lemmata 4.2, 4.3 and Corollary 4.4, we see that if the equilibrium supports are

nontrivial (i.e., non-singletons), then the following are the only possible candidates for the

mixed strategy equilibria. In equilibrium, the support of each player i in group g should

be either:

(1) the interval [0, s̄⋆];

(2) the union [0, s̃⋆] ∪ s̄⋆.

More specifically, the following results characterize all (symmetric) mixed strategy equi-

libria. Let every player in group 1 randomize according to a cdf F ; denote the correspond-

ing cdf for a player in group 2 by G.

8Note that, when a = 0 and a = 1, the continuum of the semi-pure strategy equilibria degenerate to the
pure strategy equilibria where each player contributes v2

2
or 0, respectively.
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Theorem 2.11. A mixed strategy equilibrium where all players randomize over some

interval without a gap is unique.

(1) If k1v2
k2v1

≤ 1, then the support is S⋆
g,i = [0, s̄⋆] for all players, where s̄⋆ =

(

k1v2
k2v1

)k2
·

k2v1
k1+k2−1

,

F (x) = 1−
(

1−
x

s̄⋆

)
1

k1+k2−1

, and

G(x) =

(

1−
k1v2

k2v1

)

+
k1v2

k2v1
F (x) = 1−

k1v2

k2v1

(

1−
x

s̄⋆

)
1

k1+k2−1

.

(2) If k1v2
k2v1

> 1, then the support is S⋆
g,i = [0, s̄⋆] for all players, where s̄⋆ =

(

k2v1
k1v2

)k1
·

k1v2
k1+k2−1

,

G(x) = 1−
(

1−
x

s̄⋆

)
1

k1+k2−1

,

F (x) =

(

1−
k2v1

k1v2

)

+
k2v1

k1v2
G(x) = 1−

k2v1

k1v2

(

1−
x

s̄⋆

)
1

k1+k2−1

.

Corollary 2.12. (Symmetric valuations) Assume v1 = v2 = v and without loss of

generality k1 ≤ k2, then the unique mixed strategy equilibrium where all players randomize

over some interval without a gap is as follows. The support is S⋆
g,i = [0, s̄⋆] for all players,

where s̄⋆ =
(

k1
k2

)k2
· k2v
k1+k2−1

,

F (x) = 1−
(

1−
x

s̄⋆

)
1

k1+k2−1

, and

G(x) =

(

1−
k1

k2

)

+
k1

k2
F (x) = 1−

k1

k2

(

1−
x

s̄⋆

)
1

k1+k2−1

.

Corollary 2.13. Let s⋆ be the mixed strategy equilibrium of Theorem 2.11. If k1v2
k2v1

≤ 1,

then every player in group 1 earns equilibrium payoff u1(s
⋆) = 1− k1v2

k2v1
, and every player

in group 2 earns u2(s
⋆) = 0. If k1v2

k2v1
> 1, then u1(s

⋆) = 0 and u2(s
⋆) = 1− k2v1

k1v2
.

Given a function f : R+→→R+, let Jf (x) denote the jump of f at x ∈ R. In other words,

Jf (x) is the mass that f puts at x (recall that if f is continuous at x, then Jf (x) = 0).

Define s̃ as the upper bound of the continuous part of the support. The next theorem

pins down the equilibria with possible disjoint support.
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Theorem 2.14. Equilibria where the support of each player is of the form [0, s̃⋆]∪ s̄⋆ are

as follows:

(1) If k1 = k2, then G(x) = 1− v2
v1

+ k1v2
k2v1

F (x), F (0) = 0, and F is continuous for all

0 ≤ x ≤ s̃†; JF (s̄†) = a, and JG(s̄†) = av2
v1
, where 0 < a < 1.

(2) (a) If k1 > k2, then G(x) = 1 − v2
v1

+ k1v2
k2v1

F (x), F (0) = 0, and F is continuous

for all 0 ≤ x ≤ s̃‡; JF (s̄‡) = a, and JG(s̄‡) = av2
v1
, where max{0, k1v2−k2v1

v2(k1−k2)
} ≤

a < 1.

(b) If k1v2
k2v1

> 1, then, in addition, the following equilibria exist.

F (x) =
[

1− a1 −
k2v1
k1v2

+ k2
k1
a1

]

+ k2v1
k1v2

G(x), G(0) = 0, and G is continuous for

all 0 ≤ x ≤ s̃⋄; JF (s̄⋄) = a, and JG(s̄⋄) = av2
v1
, where 0 < a ≤ k1v2−k2v1

v2(k1−k2)
.

(3) If k1 < k2, then G(x) = 1− v2
v1

+ k1v2
k2v1

F (x), F (0) = 0, and F is continuous for all

0 ≤ x ≤ s̃∇; JF (s̄∇) = a, and JG(s̄∇) = av2
v1
, where 0 < a < 1.

Corollary 2.15. Equilibrium payoffs in mixed strategy equilibria of Theorem 2.14 are as

follows.

(1) If k1 = k2, then each player in group 1 earns u1(s
⋆) = 1− v2

v1
, and every player in

group 2 earns u2(s
⋆) = 0.

(2) If k1 > k2, then

(a) If F (0) = 0, then u1(s
⋆) = 1− a1

v2
v1
− k1v2

k2v1
(1− a1) and u2(s

⋆) = 0.

If k1v2
k2v1

> 1, then u1(s
⋆) = 0 and u2(s

⋆) = 1− a1 −
k2v1
k1v2

+ k2
k1
a1.

(3) If k1 < k2, then u1(s
⋆) = 1− a1

v2
v1
− k1v2

k2v1
(1− a1) and u2(s

⋆) = 0.

Theorems 2.8, 2.10, 2.11, and 2.14 characterize all equilibria. Note that the equilibria

are definitely not pay-off equivalent. In the equilibria of Theorems 2.11 and Theorem 2.14,

at least one group earns zero payoff. In contrast, there is a continuum of pure strategy

equilibria where all players earn a positive payoff (Theorem 2.8). Figure 1 helps to visualize

the distinction between equilibria of Theorems 2.11 and 2.14.

[Figure 1 about here]



     

 

                      

 

 

 

Figure 1. Equilibria in the model 
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Although we generally cannot obtain a closed-form solution for s̃ and s̄ in Theorem

2.14, in some simple cases we are able to do so. Consider the following example.

Example 2.16. Suppose two groups compete in an all-pay auction with the weakest-link

impact function and a group-specific public good prize. Group 1 has two players, and group

2 has three players. The group valuations are v1 = 2 and v2 = 1. Group 1 is a stylized

representation of a small and strong group (in the sense of group valuation). There exists

a continuum of pure strategy equilibria where each player expends an effort of λ, where

0 ≤ λ ≤ 1

2
. In the semi-pure equilibrium each player in group 1 always contributes 1

8
, while

each player in group 2 contributes zero and 1

8
with equal probability. Since k1v2

k2v1
= 1

3
< 1,

Theorem 2.11.1 implies that there exists a mixed strategy equilibria of the following form.

Each player in group 1 randomizes according to the cdf F (x) = 1− (1− 18x)
1

4 , and each

player in group 2 – G(x) = 1 − 1

3
(1− 18x)

1

4 , over the common support [0, 1

18
]. Each

player earns in group 1 an equilibrium payoff of 2

3
, while each player in group 2 earns zero.

As expected, the larger group is disadvantaged and earns nothing, while the “small and

strong” group enjoys a positive payoff.

Moreover, Theorem 2.14.3 implies that there exists a continuum of mixed strategy

equilibria with piecewise-continuous supports possessing atoms, as follows. Each player

in group 1 randomizes according to the cdf F with F (0) = 0, which is continuous for all

0 ≤ x ≤ s̃ and puts mass 0 < a < 1 at the upper bound of the continuous part of the

support. Each player in group 2 randomizes according to the cdf G(x) = 1

2
+ 1

3
F (x) over

[0, s̃] and puts mass a

2
at s̄. We compute the parameters of the distributions of the players’

strategies as follows. Equation 4.20, which determines F , becomes

1

18
(2 + a− 2F (x))2 (1− F (x)) dF = dx (2.6)

Integrating both sides of (2.6) and using the condition F (0) = 0, we obtain the following

implicit function which defines F as a function of x.

(2 + a)2F (x)−
1

2
(2 + a)(6 + a)F (x)2 +

4

3
(3 + a)F (x)3 − F (x)4 = 18x (2.7)
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Observe that since 0 < a < 1 and 0 < F (x) < 1 − a for all 0 < x < s̃, the expression

(2 + a− 2F (x))2 (1− F (x)) is always nonzero. Therefore by the Implicit Function The-

orem there exists a unique continuously differentiable function F (x) satisfying Equation

2.7. Using the condition F (s̃) = 1− a we can calculate x̃ from Equation 2.7.

s̃ =
1

108

(

−17a4 + 3a2 + 8a+ 6)
)

(2.8)

Finally, we can calculate the isolated point where each player puts mass, s̄, from Equa-

tion 4.15.

s̄ =
1

216

(

−7a4 + 6a2 + 16a+ 12)
)

(2.9)

Notice that when a = 0, such equilibrium degenerates to the mixed strategy equilibrium

of Theorem 2.11.1 with the upper bound of the support equals 1

18
; when a = 1, the

equilibrium degenerates to the semi-pure equilibrium. The plot of s̃ and s̄ for each value

of a ∈ [0, 1] is presented in Figure 2. The equilibrium cdfs are presented in Figure 3. The

top part of the figure corresponds to the mixed strategy equilibrium where group 1 puts

no mass at the upper bound of the continuous part of the support. The bottom part of

Figure 3 corresponds to the semi-pure equilibrium.

[Figure 2 about here]

[Figure 3 about here]

Each player in group 1 receives a payoff of u1 =
2

3
−

1

6
a, which ranges from 2

3
to 1

2
, and

each player in group 2 earns u2(s
⋆) = 0.



 

Figure 2. The plot of 𝑠̃ and 𝑠̅ 
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Figure 3. The equilibrium CDF when 𝑎 = 0 and 𝑎 = 1 
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3. A general model with n groups

In the previous section, we addressed the case of two groups where the valuation of the

prize was the same for all players within a group. We now extend that model and assume

that there are n > 2 groups, and that individual valuations may differ within as well as

across groups. As in Section 2, denote a generic group by g. As before, suppose group g

has kg ≥ 2 players. Without loss of generality, vg,1 ≥ vg,2 ≥ · · · ≥ vg,kg within each group.

Definition 3.1. Given group g’s pure strategy xg, group g participates if B(xg) > 0.

Without loss of generality groups are ordered according to the lowest valuation in the

descending order, i.e., v1,k1 ≥ v2,k2 ≥ · · · ≥ vg,kg . The following result suggests that

there exist pure strategy equilibria in which not all groups participate. The number of

participating groups depends upon the distribution of valuations.

Let Pn denote the the set of all subsets of {1, 2, · · · , n} that contain at least two elements.

The following result is a generalization of Theorem 2.8.

Theorem 3.2. The pure strategy equilibria are as follows. For each subset J of Pn,

xg,i = λ for all i ∈ Ig, g ∈ J, and (3.1)

xg,i = 0 for all i ∈ Ig, g /∈ J, (3.2)

where 0 ≤ λ ≤ 1
m
ming∈J vg,kg , and m is the cardinality of J .

To better understand this result, consider the following example.

Example 3.3. Suppose there are 3 groups with valuations {1, 2}, {2, 3, 4}, and {2, 2}.

Then the following pure strategy equilibria could arise.

(1) No group participates.

(2) All groups participate and all players put the same effort level λ, where 0 ≤ λ ≤ 1
3 .

(3) Only groups 1 and 2 (or groups 1 and 3) participate, and every player in a partic-

ipating groups expends the same effort λ such that 0 ≤ λ ≤ 1
2 .

(4) Only groups 2 and 3 participate, and every player in a participating group expends

the same effort λ such that 0 ≤ λ ≤ 1.
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One can verify that Lemmata 4.1, 4.2, 4.3 and Corollary 4.4 generalize to the case of

asymmetric valuation because the proofs of these results do not rely on the assumption

that the valuation is the same within a group. Note that it is hard to solve for equilibria

in a more general setting for the following reasons. First, for the common valuation case

where n > 2, one would need to solve a system of n differential equations, containing

terms of the form F ′1F
′

2 · · ·F
′

n−1. Second, even if n = 2 but the valuations are asymmetric

within a group, different groups may put different atoms at zero, which would significantly

complicate the derivation. Combining these two settings together would exacerbate the

problem. We conjecture, however, that all symmetric mixed strategy equilibria (if any)

must be of the following form.

(1) All players in any of the participating groups randomize continuously and without

a gap over some interval [0, s̄], possibly putting mass at zero.

(2) All players in any of the participating groups randomize continuously and without

a gap over some interval [0, s̃] and put mass at some s̄ > s̃.

Though the derivation of these equilibria (as well as the payoff configuration) is beyond

the scope of our paper and may be an avenue for future research, we only conjecture that

high-valuation players put larger mass at s̄.

4. Discussion

We construct and analyze the ‘Max-Min group contest’, in which the minimum effort

exerted among the group members represents the group effort, and the group with the

maximum group effort becomes the winner. Examples of such structure include R&D

competitions, sequential production, supply-chain process, negative product or political

campaigns, various sporting events, territorial conflicts. We fully characterize the pure

strategy and symmetric mixed strategy equilibria for two groups. We find that there

exists a continuum of pure strategy equilibria. In addition, there exist semi-pure strategy

equilibria, where all the members of a group play the same pure strategy, whereas all the

members of the other group play the same mixed strategy. There are two further types

of non-degenerate mixed strategy equilibria, with and without continuous supports. We

find that different combinations of the prize valuations and the number of players in each

group may result in different types of equilibria with distinct rent dissipation and payoffs.
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For the case of more than two groups, we fully characterize the pure strategy equilibria

and point out candidates for mixed strategy equilibria.

Our results are different from those of the weakest-link public goods games, or the

weakest-link group contest with the logit-type CSF. While players within each group

employ the same strategy, as in those games due to the perfect complementarity, both the

variety of equilibria and the corresponding payoffs remain different. The most important

part of the difference is the ‘group size effect’; in our model the relative group size plays

an important role, unlike in the other studies.

The results are also distinguishable from group all-pay auction with other impact func-

tions. Those contests do not possess pure or semi-pure strategy equilibria; while in our

model, there is a continuum of pure strategy equilibria. In such equilibria a very wide

range (from full to negligible) of rent dissipation is possible. Due to the weakest-link

technology, in any equilibrium all players are active provided that the entire group is ac-

tive. This is in contrast with the free-riding equilibria under the best-shot or perfectly

substitute technologies where only a few (possibly one) players are active.

Obtained results such as the existence of a pure or a semi-pure strategy equilibrium,

a gap in the equilibrium support, or the group size effect are different from the standard

all-pay auction literature. First, it is known that PSNE may exist in the case of incom-

plete information (Krishna and Morgan, 1997) and for a non-monotonic payoff function

(Chowdhury, 2009). Although our model does not satisfy any of those, due to the specific

network externalities, a continuum of PSNE exists. It is also uncommon to observe the

semi-pure strategy equilibrium, in which some players play a pure strategy whereas some

others play a mixed strategy. This type of equilibrium is noted by Krishna (1989) in trade

theory and by Clark and Konrad (2007) for multi-battle contest with network effects. We

show that such equilibria may even exist in group contests due to the network effects.

The effects of network externalities and relative group size result in a jump in equilibrium

support which is also not observed in the all-pay auction studies. Finally, unless valuation

distribution is changed, the group size does not affect equilibrium strategies and payoffs in

standard group contests. We find that in case of the Max-Min group contest, the ‘relative

valuation’ scaled by the group size determines equilibrium effort. This makes parts of the

current results comparable to the group contests with private good prizes.

Similar to the minimum-effort coordination game of Van Huyck et al. (1990) and

Anderson and Goeree (2001), in which players’ effort levels are perfect complements in
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providing public goods, there exist multiple pure and mixed strategy Nash equilibria in our

model, since the group impact function for each group depends on the minimum effort level

within the group. Hence, the existence of multiple equilibria brings in the relevant and

important issues of coordination problems and equilibrium selection principles. Especially,

in the common valuation case where all the players in a group have the same valuation of

the prize, those issues will be important.

Some standard assumptions employed in our study can be relaxed to explore further

avenues. It is possible to extend the structure to cover situations in which the prize is a

private good. Some real life situations could be modeled within an incomplete information

framework. Finally, the assumption of risk neutrality can be relaxed to incorporate risk

aversion. We leave these issues for future research.
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Appendix: Proofs of the results

Lemma 4.1. Let s⋆ be a symmetric mixed strategy equilibrium, then the following state-

ments are true.

(1) s̄⋆g,i = s̄⋆g for all i ∈ Ig.

(2) S⋆
1+ = S⋆

2+, particularly s⋆1+ = s⋆2+ = s⋆+.

(3) If S⋆
1 = S⋆

2 , then s⋆ = 0, where s⋆ is the common lower bound of the supports.

(4) At most one group puts mass at zero.

Proof. (1) Suppose without loss of generality that s̄⋆g,i > s̄⋆g,j , then player j is better-off

shifting mass from (s̄⋆g,i, s̄
⋆
g,j ] to s̄⋆g,i, leading to a contradiction.

(2) Suppose S⋆
1+ 6= S⋆

2+. Without loss of generality let x be such that x ∈ S⋆
1+ but

x /∈ S⋆
2+. Consider the following cases.

(a) If x > s̄⋆2+, then any player in group 1 is better-off switching from x to x− ǫ

for some small ǫ > 0, which is a contradiction.

(b) If x < s⋆2+, then any player in group 1 is better-off deviating from x to 0

(observe that x > 0 since x ∈ S⋆
1+).

(c) If s⋆2 < x < s̄⋆2 (in which case the support of group 2 is not connected), then

any player in group 1 would deviate from x to x− ǫ for some small ǫ > 0.

Therefore S⋆
1+ = S⋆

2+, which implies s⋆1+ = s⋆2+ = s⋆+.

(3) Suppose that S1 = S2 and the common lower bound is s⋆ > 0. We claim that

every group must put an atom at s⋆. Suppose not, say group 1 does not put an

atom at s⋆, then the payoff of any player i in group 2 from playing s⋆ is

u2,i(s
⋆, s⋆

−i) = −s
⋆ < 0.

Hence player i is better-off deviating to 0, which establishes the claim. But if every

group puts some mass at s⋆, then any player could increase her payoff by deviating

from s⋆ to s⋆ + ǫ for some small ǫ > 0, which is a contradiction.

(4) Suppose not, then any player would shift mass from zero to a very small positive

effort.

Lemma 4.2. Let s⋆ be a symmetric mixed strategy equilibrium, then no player puts mass

at x for any x ∈ [s⋆+, s̄
⋆) ∩ R++.
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Proof. First, let us show that no player puts mass in (s⋆+, s̄
⋆). Suppose without loss of

generality group 1 puts mass at a such that s⋆+ < a < s̄⋆. It is easy to see that F1 has a

jump discontinuity at a. Then any player in group 2 would shift mass from (a − ǫ, a] to

a + δ for some small ǫ, δ > 0. If no member of group 2 puts mass in (a − ǫ, a], then it is

not optimal for group 1 to put mass at a, which establishes a contradiction.

It remains to show that if s⋆+ > 0, then no player puts mass at s⋆+. Assume s⋆+ > 0, and

observe, following the argument of Lemma4.1(3), that at most one group puts mass at s⋆+.

Without loss of generality, suppose group 1 puts mass at s⋆+ and group 2 does not. But

then group 1 is better-off shifting mass from s⋆+ to some very small positive effort since

no group puts mass in (0, s⋆+), contradicting our assumption.

Proof of Theorem 2.10. Let s⋆ be an equilibrium which is symmetric and semi-pure.

By Lemma 4.1(2) we have S⋆
1+ = S⋆

2+. By Lemma 4.2 no player puts mass above zero.

Notice that it is not possible for both groups to put mass at zero, for otherwise any player

of the other group could increase her payoff by deviating from zero to some small ǫ > 0.

Therefore the only possibility is for every player in one group to always contribute some

x > 0 and for every player in the other group (group g) to randomize between zero and

x. Let every player in group g put mass 1 − a at x. Since every player in group g earns

zero payoff and is indifferent between his pure strategies of zero and x, it must be that

x =
vg
2
(1− a)kg−1.

Clearly, no player j in group (−g) wants to deviate from x provided that

u−g,j(s
⋆) = v−g(1−

1

2
(1− a)kg)− x ≥ 0,

which is satisfied if and only if

2− (1− a)kg

(1− a)kg−1
≥

vg
v−g

. (4.1)

Condition 4.1 holds if and only if vg ≤ v−g, i.e., vg = v2 and v−g = v1, in which case it

holds for all 0 ≤ 1− a ≤ 1. This completes the proof.



24

Lemma 4.3. Let s⋆ be a symmetric mixed strategy equilibrium for which there exists

0 < z < s̄⋆ such that x ∈ S1 ∩S2 for all z ≤ x ≤ s̄⋆. Then no player puts mass at s̄⋆ (i.e.,

it is not the case that all players of some group put an atom at s̄⋆).

Proof. Suppose not, and without loss of generality group 1 puts an atom at s̄⋆. Consider

two possible cases.

(1) Group 2 also puts a positive mass at s̄⋆. Then any player i in group 1 is better-

off increasing her effort from s̄⋆ − ǫ to s̄⋆ for a sufficiently small ǫ > 0 for the

following reason. If player i expends effort level s̄⋆, then group 1 ties with group 2

with a positive probability (in the event that the effort level of both groups is s̄⋆).

However if player i expends effort s̄⋆ − ǫ, then group 1’s effort is always less than

s̄⋆ due to the weakest-link effort technology, and group 1 does not get a chance

to tie with group 2 at s̄⋆, resulting in a loss of payoffs for all players in group

1. For a sufficiently small ǫ such loss exceeds the economy on the effort cost for

player i, which is equal to ǫ. This implies that the support S⋆
1,i is disconnected,

contradicting our initial assumption.

(2) Group 2 does not put a positive mass at s̄⋆. Again, we claim that any player i

in group 1 is better-off increasing her effort from s̄⋆ − ǫ to s̄⋆ for a sufficiently

small ǫ > 0. If player i chooses s̄⋆, then with a positive probability group 1’s

effort exceeds that of group 2 (which happens when group 1’s effort is s̄⋆. If player

i expends effort level s̄⋆ − ǫ, then group 1’s effort is always less than s̄⋆, which

results in a payoff loss for player i. Consequently, the support S⋆
1,i is disconnected,

contradicting our initial assumption.

Corollary 4.4. Let s⋆ be a symmetric mixed strategy equilibrium which is not semi-pure,

then the equilibrium group support S⋆
g has uncountably many elements for each g = 1, 2.

Proof. Immediate consequence of Lemmata 4.1(2), 4.1(3), and 4.2.

Proof of Theorem 2.11. Suppose s⋆ is an equilibrium such that the support of each

player’s strategy is the interval [0, s̄⋆]. Recall that the effort distribution of group g, given



25

the individual distribution functions Fg,i’s of its players, is given by

Fg(x) = 1−
∏

i∈Ig

(1− Fg,i(x)) for each 0 ≤ x ≤ s̄⋆. (4.2)

Equation 2.4 implies that the payoff of player i in group 1 from expending an effort

x ∈ (0, s̄⋆] is

u1,i(x) = v1

[
∫ x

0
F2(z)dF1,−i(z) + F2(x) (1− F1,−i(x))

]

− x (4.3)

Since F2 and F1,−i are continuous on (0, s̄⋆] (due to the continuity of each player’s strategy

by Lemmata 4.2 and 4.3), u1,i(x) is continuous on the same interval. Because player i

is randomizing over (0, s̄⋆] without a gap, u1,i is constant on a dense subset of (0, s̄⋆].

Combined with the fact that u1,i is continuous, we conclude that u1,i is constant on that

interval. Therefore, u1,i is continuously differentiable on (0, s̄⋆), and the derivative is equal

to zero.9 Thus,

u′1,i(x) = v1
[

F2(x)F
′

1,−i(x) + F ′2(x)−
(

F ′2(x)F1,−i(x) + F2F
′

1,−i(x)
)]

− 1

= v1F
′

2(x) [1− F1,−i(x)]− 1

= 0

Denote the cdf of a generic player in group 1 by F , and the cdf of a generic player in group

2 by G, then 4.2 implies that F2(x) = 1− (1−G(x))k2 and F1,−i(x) = 1− (1− F (x))k1−1.

Therefore

v1k2 (1−G(x))k2−1G′(x) (1− F (x))k1−1 = 1 (4.4)

Now fix player j in group 2, and follow the same lines to conclude that

v2k1 (1−G(x))k2−1 F ′(x) (1− F (x))k1−1 = 1 (4.5)

Equations 4.4 and 4.5 imply that v2k1
v1k2

F ′(x) = G′(x) for all x ∈ (0, s̄⋆).

1. Assume v2k1
v1k2

≤ 1. Notice that

1−G(x) =

∫ s̄⋆

x

G′(z)dz =
k1v2
k2v1

∫ s̄⋆

x

F ′(z)dz =
k1v2
k2v1

(1− F (x)) (4.6)

Substituting this into 4.4 yields

k2v1

(

k1v2
k2v1

)k2

(1− F (x))k1+k2−2 F ′(x) = 1 (4.7)

9We are indebted to David A. Malueg and Stefano Barbieri for introducing this technique to us.
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The above differential equation determines F . To calculate F , integrate both sides of

4.20.

k2v1

(

k1v2
k2v1

)k2 1

k1 + k2 − 1
(1− F (x))k1+k2−1 = C − x, (4.8)

where C is a constant of integration. Therefore, F is of the form:

F (x) = 1−

(

c1 − x

c2

)
1

k1+k2−1

,

where c1 and c2 are some constants. Observing that F (0) = 0 and F (s̄⋆) = 1, we conclude

that c1 = c2 = s̄⋆, therefore

F (x) = 1−
(

1−
x

s̄⋆

)
1

k1+k2−1
, and (4.9)

G(x) =

(

1−
k1v2
k2v1

)

+
k1v2
k2v1

F (x) = 1−
k1v2
k2v1

(

1−
x

s̄⋆

)
1

k1+k2−1
(4.10)

Notice that each player in group 2 places mass
[

1− k1v2
k2v1

]

at zero (hence group 2 places

mass

[

1−
(

k1v2
k2v1

)k2
]

at zero), while group 1 randomizes continuously over [0, s̄⋆]. There-

fore the expected payoff of any player in group 1 is v1

[

1−
(

k1v2
k2v1

)k2
]

, while any player in

group 2 earns zero expected payoff. To pin down s̄⋆, observe that by differentiating 4.9

we obtain

F ′(x) =
1

s̄⋆(k1 + k2 − 1)

(

1−
x

s̄⋆

)2−k1−k2
=

1

s̄⋆(k1 + k2 − 1)
(1− F (x))2−k1−k2 (4.11)

Express F ′(x) from 4.20 and equate it to the right hand side of 4.11, which yields

s̄⋆ =

(

k1v2
k2v1

)k2

·
k2v1

k1 + k2 − 1
(4.12)

Equations 4.9, 4.10, and 4.12 characterize a mixed strategy equilibrium under the condi-

tion v2k1
v1k2

≤ 1, which is unique in the subclass of strategy profiles where players randomize

over an interval without a gap.

2. Assume v2k1
v1k2

> 1. Follow the lines of the previous case to conclude that s̄⋆ =
(

k2v1
k1v2

)k1
· k1v2
k1+k2−1

, G(x) = 1−
(

1− x
s̄⋆

)
1

k1+k2−1 , and F (x) =
(

1− k2v1
k1v2

)

+ k2v1
k1v2

G(x).
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Proof of Theorem 2.14. Suppose s⋆ is a symmetric equilibrium such that the support

of each player is the union [0, s̃⋆]∪ s̄⋆. Let ag be the mass that each player in group g puts

at s̄⋆. As any player i is indifferent between s̃⋆ and s̄⋆, for g = 1, 2 we have

ug,i(s̄
⋆
g,i, s

g⋆
−i, s

⋆
−g)− ug,i(ŝ

⋆
g,i, s

g⋆
−i, s

⋆
−g) =

vg
2
(a−g)

k
−g(ag)

kg−1 − (s̄⋆ − ŝ⋆) = 0, (4.13)

Consequently,
a1
a2

=
v1
v2

, (4.14)

which yields

s̄⋆ − ŝ⋆ =
v1
2

(

v2
v1

)k2

ak1+k2−1
1 . (4.15)

Clearly, 0 < a1 < 1 and 0 < a2 < 1 must be satisfied. Observe that player i is indifferent

between expending effort levels ŝ⋆ and z for any 0 < z < ŝ⋆. For each x ∈ [0, ŝ⋆] the

expected payoff of player i in group 1 is

u1,i(x) = v1

[
∫ x

0
F2(z)dF1,−i(z) + F2(x) (1− F1,−i(x))

]

− x. (4.16)

Follow the lines of Theorem 2.11 to conclude that Equations 4.4 and 4.5 hold for all

0 ≤ x ≤ ŝ⋆, thus k1v2
k2v1

F ′ = G′. Note that for 0 ≤ x ≤ ŝ⋆ we have

1− a1 ·
v2
v1
−G(x) =

∫ ŝ⋆

x

G′(z)dz =
k1v2
k2v1

∫ ŝ⋆

x

F ′(z)dz =
k1v2
k2v1

(1− a1 − F (x)) . (4.17)

We thus have the following candidates for equilibrium cdfs on [0, ŝ⋆].

(1) Type I equilibrium:

G(x) =

[

1− a1
v2
v1
−

k1v2
k2v1

(1− a1)

]

+
k1v2
k2v1

F (x), (4.18)

where F is strictly increasing and F (0) = 0.10

(2) Type II equilibrium:

F (x) =

[

1− a1 −
k2v1
k1v2

+
k2
k1

a1

]

+
k2v1
k1v2

G(x), (4.19)

such that G is strictly increasing and G(0) = 0.

Consider three possible cases:

10This is because F and G cannot both have atoms at zero, for otherwise any player would deviate from
zero to a very small positive effort. Note that this is not always the case in an individual all-pay auction.
We proved earlier that every player within a group plays the same strategy, thus if F had an atom at zero,
then the effort distribution of the entire group (group 1) would have an atom at zero.
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(1) k1 = k2; it should be evident that type II equilibrium does not exist because

1 − a1 −
k2v1
k1v2

+ k2
k1
a1 = 1 − v1

v2
< 0. Let us investigate type I equilibria. When

k1 = k2, Equation 4.18 implies that G puts mass 1− v2
v1

at zero for any 0 < a1 < 1.

The case a1 = 0 is a degenerate case where all players randomize without a gap;

it is taken care of in Theorem 2.11. When a1 = 1 the equilibrium degenerates to

the semi-pure equilibrium of Theorem 2.10.

(2) k1 > k2, then type I equilibrium exists only if max{0, k1v2−k2v1
v2(k1−k2)

} ≤ a1 < 1,11

and type II equilibrium exists only if k1v2
k2v1

> 1 and 0 < a1 ≤
k1v2−k2v1
v2(k1−k2)

(these

conditions are implied by the fact that the atoms at zero should be non-negative).

Note that when a1 = k1v2−k2v1
v2(k1−k2)

, neither F nor G put mass at zero, so type I

and type II equilibria blend into a single equilibrium with F (0) = G(0) = 0 and

G(x) = k1v2
k2v1

F (x) for all 0 ≤ x ≤ ŝ⋆.

(3) k1 < k2, then type I equilibrium exists only if 0 < a1 ≤
k1v2−k2v1
v2(k1−k2)

, while type II

equilibrium fails to exist because under the condition v1 > v2 the mass placed by

F at zero cannot be at most one. Note that since k1v2−k2v1
v2(k1−k2)

> 1, the necessary

condition for type I equilibrium becomes 0 < a1 < 1.

To verify that the above candidates are equilibria and solve for F and G one needs to

plug Equations 4.18 and 4.19 into 4.4. This yields the initial-value problems.

k1v2

[

k1v2
k2v1

− a1
v2
v1

(

k1
k2
− 1

)

−
k1v2
k2v1

F (x)

]k2−1

[1− F (x)]k1−1 F ′(x) = 1, F (0) = 0

(4.20)

k2v1

[

a1 +
k2v1
k1v2

−
k2
k1

a1 −
k2v1
k1v2

G(x)

]k2−1

[1−G(x)]k2−1G′(x) = 1, G(0) = 0 (4.21)

To solve it, we need to employ the basic techniques of the theory of the first-order

ordinary differential equations. There is no closed-form solution to the initial-value prob-

lems 4.20 and 4.21, however each possesses a unique solution by Picard-Lindelöf theorem

(Coddington and Levinson, 1955, Theorem 3.1, p.12). Indeed, F ′ is differentiable in F

and continuous in x, when one expresses F ′ as

F ′ =
1

k1v2

[

k1v2
k2v1

− a1
v2
v1

(

k1
k2
− 1

)

−
k1v2
k2v1

F (x)

]1−k2

[1− F (x)]1−k1 .

11It is easy to verify that k1v2−k2v1
v2(k1−k2)

< 1 since v1 > v2.
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Similarly, G′ is differentiable in G and continuous in x. Thus, the strategy profiles listed

in the above three cases are indeed equilibria. To solve for a type I equilibrium, one needs

to solve the initial-value problem 4.20, then find s̃ as the solution to F (ŝ) = 1 − a1, and

finally pin down s̄ from Equation 4.15. Type II equilibrium is solved similarly using 4.21.

Proof of Theorem 3.2. Fix a subset J of {1, 2, · · · , n} having m ≥ 2 elements, and

λ ∈ [0, 1
m
ming∈J vg,kg ]. Intuitively, J is the list of participating groups. Consider a

strategy profile s such that each player of any group in J contributes λ, and the rest of

the players do not participate. It is clear that no player in group ℓ /∈ J wants to deviate

by contributing a positive amount, because group k’s effort would still be zero, and the

deviator would get a negative payoff. It remains to show that no player of any group in J

wants to deviate. Suppose player i of some group k ∈ J deviates to some s′ > λ. It is easy

to see that the winning probability of group k is the same, hence uk,i(s
′, s−i) < uk,i(s),

which is a contradiction. Suppose player i deviates to some ŝ < λ, then group k loses

with certainty, hence uk,i(ŝ, s−i) < uk,i(s), leading to a contradiction. This completes the

proof.


