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1. Introduction

Studies of animal behaviour have found many prastighich create collective benefits at some
apparent cost or risk to individual participanExamples include alarm calls, food-sharing,
grooming, and participation in inter-group warfaf@ne of the most fundamental problems in
evolutionary biology since Darwin (1859) has bezextplain how such forms of cooperation
evolve by natural selection. An analogous probileeconomics has been to look for explanations
of cooperative human practices, such as the fudfiinof market obligations, the provision of public
goods through voluntary contributions, and the ngan@ent of common property resources, that are
consistent with the traditional assumption of indiaal self-interest. Many different theories have
been proposed by biologists and economists aslpesslutions. Among the mechanisms that
have been modelled are direct and indirect reciprddn selection, group selection, and the ‘green
beard’ mechanism. (For an overview of these mdash®s) see Nowak, 2006. Tomasello (2014)
provides a comprehensive account of why and how&@tion may have evolved among early
humans. His hypothesis is that early humans wercedl by ecological circumstances into more
cooperative modes of life, and this led to the ettoh of ways of thinking that were directed
towards coordination with others to achieve joioalg.) Some economists have combined
biological and economic modes of explanation, hgpsising that human cooperation in the
modern world is a product of genetically hard-witesdts that evolved by natural selection to equip
Homo sapiensor life in hunter-gatherer societies. In somesians of this hypothesis, those traits
act as equilibrium selection devices in the modgame of life’ (e.g. Binmore, 1994, 1998); in
others, they can generate non-selfish behaviooradern societies (e.g. Boyd et al. 2005; Bowles
and Gintis, 2011).

However, a recent trend in biology has been totgpresvhether such sophisticated
explanations are always necessary. Many formpédi@ntly cooperative behaviour have been
found to be forms of mutualism: the ‘cooperatingdividual derives sufficient direct fithess benefit
to make the behaviour worthwhile, and any effecthenfitness of others is incidental (e.g. Clutton-
Brock, 2002, 2009; Sachs et al., 2004). The Snifwgrme (Sugden, 1986), in which equilibrium

involves cooperation by one player and free-riddigghe other, is increasingly used in biology as a

LIn parallel with attempts to explain human coogerain terms of self-interest, there is a largerhiture in
economics in which cooperation is explained asodypet of non-selfish motivations, such as altruism,
preferences for equality, fairness or welfare-masation, team reasoning, or intrinsic desires wpevate.
Without denying the existence of such motivatioms think it is useful to investigate the explangtoower
of the self-interest assumption.



model of such behaviour. In this paper, we preaeardw model of the evolution of cooperation
which fits with this trend of thought.

Our methodological approach treats the biologacal economic problems of cooperation as

isomorphic to one another. That is, we hypothe$iaethe emergence and reproduction of human

cooperative practices are governed by evolutionaghanisms that are distinct from, but
structurally similar to, those of natural selectidbandidate mechanisms include trial-and-error
learning by individuals, imitation of successfulgtgours, and cultural selection through inter-
group competition. Analyses which use this appnaaay be both informed by and informative to
theoretical biology. For example, Sugden’s (198&lysis of the emergence of social norms was
inspired by the earlier work of theoretical biolsgi, but it developed new models (in particulag, th
Snowdrift and Mutual Aid games) which have sincerbeidely used in biology (e.g. Leimar and
Hammerstein, 2001; Nowak and Sigmund, 2005). Tbdehthat we present in this paper can be

interpreted as a representation either of natetatson or of trial-and-error human learning.

Our modelling strategy is distinctive in that #as$ three assumptions which in combination
rule out most of the mechanisms that feature isteg theories of cooperation. Specifically, we
assume that interactions are anonymous, that évoltakes place in a large, well-mixed
population, and that the evolutionary process $ekcategies according to their material payoffs.
The assumption of anonymity excludes mechanismescbas reputation, reciprocity or third-party
punishment. The assumption of well-mixedness edagunechanisms of group or kin selection.
The assumption that selection is for material psyexcludes mechanisms which postulate non-
selfish preferences as an explanatory primitiveorkivig within the constraints imposed by these
assumptions, we are able to generate a simplecdndtrmodel of cooperation.

Our model adapts the familiar framework of a Rrexts Dilemma that is played recurrently
in a large population. We introduce two additiofeatures, which we suggest can be found in

many real-world cases of potentially cooperativteriaction, both for humans and for other animals.

The first additional feature is that participatiarthe game is voluntary. One of the
restrictive properties of the Prisoner’s Dilemmahiat, in any given interaction, an individual must
act eithempro-socially (the strategy of cooperation)anti-socially (the strategy of defection or
cheating, which allows a cheater to benefit atetkigense of a cooperator). There is no opportunity
to be simplyasocial. We add an asocial strategy, that of optunigof the interaction altogether. Of
course, if the only difference between anti-soaral asocial behaviour was that asocial individuals

did not benefit when their co-players chose to evafe, asociality would be a dominated strategy.



It is an essential part of our model that if boldwyprs cheat, both are worse off than if they had
opted out of the interactioh.

The second additional feature is that the paywit €ach player receives if they both
cooperate is subject to random variation. Befti@osing his (or her, or its) strategy, each player
knows his own cooperative payoff, but not the ofhlayer’s. With non-zero probability, the payoff
from mutual cooperation is greater than that frévaating against a cooperator. Thus, there are
circumstances in which it would be profitable fgolayer to cooperate if he were sufficiently
confident that the other player would cooperate tGoucially, however, it is neveommon
knowledgehat the payoffs are such that mutual cooperai@aNash equilibrium. In our model,
players receive no information at all about thdisaion of the random component of their co-
players’ cooperative payoff. This is obviouslyeireme assumption; we use it only as a
modelling simplification. In real interactionsagkers often haveomesuch information. (For
example, explanations of animal behaviour in asytmmeontests often depend on the assumption
that both contestants recognise some feature @fatree which signals which of them is more likely
to attach the higher value to the disputed resoiMegnard Smith and Parker, 1976].) But the
main qualitative results of our model require oitigt each player has some private information
about his own payoffs such that, with non-zero pholity, a player may know that cooperation is a
non-dominated strategy for him without knowing wietthe same is true for the other player.

As an illustration of the kind of interaction tr@air model represents, we offer the following
variant of Rousseau’s (1755/ 1988, p. 36) storfyusfting in a state of nature. Two individuals
jointly have the opportunity to invest time and igyeto hunt a deer. The hunters can succeed only
by acting on a concerted plan out of sight of omatlaer. A hunt begins only if both individuals
agree to take part. Each can then cheat by urdltg@ursuing a smaller prey, which the other’s
deer-hunting tends to flush out and make easieatith. The anticipated benefit of deer-hunting to
an individual, conditional on the other’s not chiegt can be different for different individuals and
on different occasions. Sometimes, but not alwtys benefit is sufficiently low that unilateral
cheating pays off.

21n some simplified models of the Prisoner’s Dilemmach player makes an independent decision about
whether to incur a fixed cost to confer a largeedi benefit on the other player; payoffs in therfeossible
outcomes are defined as sums of these costs aeréitberBecause we want to distinguish betweentaigpa
and non-patrticipation, our model does not havedttivity property.

3 The game would be very different (and rather thifaall payoffs were common knowledge. In thase,
there would be a Nash equilibrium in which thereswa cheating and in which each player cooperéted i
and only ifboth players gained more from mutual cooperation thhamfcheating against a cooperator.
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As a more modern illustration, consider two indivals who make contact through the
internet. One of them is offering to sell some@adich has to be customised to meet the specific
requirements of the buyer; the other is lookinguy such a good. If they agree to trade, each
individual invests resources in the transactiortifexging information, producing and dispatching
the good, sending payment). Each may have oppbesito gain by deviating from the terms of
the agreement. Sometimes, but not always, thefibeheompleting the transaction is sufficiently

low that unilateral cheating pays off.

We will show how the interaction of voluntary peipation and stochastic payoffs can
induce cooperation. Of course, it is well knowattholuntary participation can facilitate
cooperation when players can distinguish betweere mod less cooperative opponents. If such
distinctions are possible, voluntary participataam allow cooperators to avoid interacting with
cheats. This can sustain cooperation without deslrfor informationally and cognitively more
demanding strategies of reciprocity or punishmean +dea that can be traced back to Adam
Smith’s (1763/ 1978, pp. 538-539) analysis of tmasthiness among traders in commercial

societies. But such mechanisms are ruled out baoonymity assumption.

In our model, voluntary participation facilitatesoperation by a different route. Because
would-be cheats have the alternative option of participation, and because non-participation is
the best response to cheating, the equilibriumuieaqy of cheating is subject to an upper limit. If
cheating occurs at all, the expected payoff fromatimg cannot be less than that from non-
participation. Thus, for any given frequency obperation, the frequency of cheating is self-
limiting. The underlying mechanism is similar k@t of the Lotka—Volterra model of interaction
between predators and prey: the size of the pregafmlation (the frequency of cheating) is

limited by the size of the prey population (thegirency of cooperation).

Clearly, however, this mechanism can support emain only if, when the frequency of
cheating is sufficiently low, some players choasedoperate. This could not be the case if, as in
the Prisoner’s Dilemma, cooperation vewaysa weakly dominated strategy. In our model,
random variation in the payoff from mutual coopenatnsures that players sometimes find it
worthwhile to cooperate, despite the risk of megtrcheat. The players who cooperate are those
for whom the benefit of mutual cooperation is stiéfint to compensate for this risk. Because
cooperators are self-selecting in this way, theaye payoff in the game is greater than the payoff
to non-participation. In other words, despite pihesence of cheats, beneficial cooperation occurs.

As a first step in developing an evolutionary moeked begin (in Section 2) by presenting

our variant of the Prisoner’s Dilemma as a one-gaote and identifying its symmetric Bayesian



Nash equilibria. We show that, provided the ugdpmind of the distribution of cooperative benefit
is not too low, the game has at least one sucHilegum in which beneficial cooperation occurs.

In Section 3 we investigate some comparative-spatperties of equilibria in this game. We show
that as the distribution of cooperative benefitdmees more favourable, the maximum frequency of
cooperation that is sustainable in equilibrium @ases. In Section 4 we examine the dynamics of
the model, using simple analytical methods. IntiSa® we supplement this analysis by computer
simulations based on replicator dynamics. Ouryamakhows that, in the neighbourhood of
‘interior’ equilibria in which some but not all plars choose non-participation, the dynamics are
similar to those of predator-prey models. Depegdin the payoffs of the game, interior equilibria
may be locally stable (with evolutionary paths aling in from a large zone of attraction) or
unstable (with evolutionary paths spiralling outlaamding at an equilibrium of non-participation).
In Section 6, we discuss the contribution thatrmodel can make to the explanation of cooperative
behaviour. We show that, despite sharing somefesibf existing biological models of mutualism

and voluntary participation, our model isolatesstinict causal mechanism.

2. Themodd: equilibrium properties

In this Section and in Section 3, we present ounggan one-shot form and analyse its equilibrium
properties. This is a game for two players 1 ané@r each playear {1, 2}, the benefitx that he
gains if both players cooperate is an independsiisation of a random variab¥ewhose
distributionf(.) is continuous with supporin, Xmay. Each player knows his own benefit but not
that of the other player. Given this knowledgeplays a game with three pure strategies — to

cooperate (C), to cheat (D), or not to particigdty The payoff matrix is shown in Table 1.

Table 1: Payoff matrix for the game

player 2
N C D
N 0,0 0,0 0,0
player 1 C 0,0 X1, X2 b, a
D 0,0 a, b -C, —C




Xmax>a > Xmin= 0;b>c > 0.

The essential features of the game are containdistructure of best responée$he
conditionxmax > a > xmin IMmplies that either C or D (but not N) may be listter response to C,
depending on the relevant player’s realisatioX.of The conditiorb > ¢ implies that, as in the
Prisoner’s Dilemma, D is better than C as a resptm®. Given that the payoff to N is normalised
to zero,a > 0 implies that cheating gives a higher payaddintimon-participation if the opponent
cooperates; > 0 implies that the opposite is the case if thpament cheats. No assumption is
made about whether—b (i.e. the net benefit of an interaction in whiakelayer cooperates and
the other cheats) is positive, zero or negativés éasy to imagine real-world applications (sash
our example of internet trading) in which any ofsb possibilities would be plausiBleThe
conditionxmin = 0 (which is not essential for our main resultsplies that players are never worse

off from mutual cooperation than from non-parti¢ipa.

We now consider symmetric Bayesian Nash equili@BNE) of the game. Although our
formal analysis in this Section and in Sectioneats the game as one-shot, our ultimate concern is
with SBNESs as possible stationary points in an @wmhary process in a well-mixed population.

We will say that a pure strategy (N, C or Dplayed ina given equilibrium if and only if

the unconditional probability with which it is pleg is nonzero. Some significant properties of
SBNE hold for all parameter values. First, theranon-participation equilibriumn which only N

is played; in this equilibrium, players’ payoffearero and unilateral deviations lead to neither ga
nor loss. Second, there is no SBNE in which daggd but D is not. (Against an opponent who
might play C but will not play Di;'s best response plays D wherk a.) Third, there is no SBNE in
which D is played but not C. (Against an opponehownight play D but will not play C, N is the
unique best response.) Thus, only two types oiflibgum participation are possible. Depending
on the parameter values, there may batarior equilibriumin which N, D and C are all played;

and there may bel@undary equilibriumn which D and C are played but not N.

4 Provided that this best response structure is lenaed, the main implications of the model are pnes

It is not essential that the payoff from playing@@ainst C is stochastic and that all other payariésnot; but
there must be some random variation in the paysffsh that the best reply to C is sometimes C and
sometimes D.

51In our game, unlike the ‘additive’ Prisoner’s Dilera games described in footnote 2, the siga-eb
imposes no constraints on whether the payoff frtagipg C against C is greater or less than thahfro
playing D against D.



Since the only information on which a player candibon his strategy choice is private to
that player, and given the assumed propertié§)pfany SBNE can be described by the values of
two variables. The variab[& [Xmin, Xmay IS defined such that each playethooses C if and only
if i = [3. The variablat [0, 1] is the probability that each playeshooses D, conditional ohin
<X <. Inthe non-participation equilibriurf},= xmaxandrt= 0. In an interior equilibriunmin <

B <Xmaxand 0 <rt< 1. In a boundary equilibriummin < B < Xmax andrm= 1.

We now analyse these equilibria. Consider anyauliefacing an opponent whose strategy
is described byf}, 1), in an interaction in whick =3. LetVn, Vb, Vc andVwu be the expected
payoffs to player from playing N, D, C and M respectively, where Mhg mix of D with
probabilityrtand N with probability (17). Letg(x) = F(X)/[1-F(X)], whereF(.) is the cumulative

of f(.). It is straightforward to derive the followirexpressions

W=0 1)
Vb = [1-F(B)]a-F(p)me (2)
Ve = [1-F(B)IB - F(B)mb 3)
Vv = TiVp. 4)

In analysing equilibrium, it is convenient to warka (3, ) space defined ymin < B < Xmax
andrmt= 0. Notice that this space includes points at tviic 1. Although such points have no
interpretation within our model, equations (1)-&pve defind/n, Vb, Ve, andVw for all values of
T This allows us to define the loci of points lmst (3, ) space at which the mathematical
equations/n = Vp andVc = Vv are satisfied, and then to characterise equilibrtarms of these
loci, imposing the inequalitg< 1 as an additional constraint. This method ofyamsis useful in

simplifying the proofs of our results.

First, consider the locus of points in tlfie 1) space at whicNn =Vp. Any interior
equilibrium must be a point on thND locus with 0 <1< 1; any boundary equilibrium must be a

point at whichVn < Vp andmt= 1. By (1) and (2), this locus is determined by:
Vb= (or<)Vn < altc> (or <)g(B). (5)

This is a continuous and downward-sloping curvecilimcludes the poinkgax, 0) and is
asymptotic td3 = xmin. It divides the[§, ) space into three regions: the set of poamt$he locus, at
which Vn = Vp; the set of pointgisidethe locus (that is, below and to the left), atathn < Vp;
and the set of pointsutsidethe locus (that is, above and to the right), atolwMy > Vp.



Now consider the locus of points at whiéb=Vm. Every equilibrium must be a point on
this CM locus with eitherrt= 0 (the non-participation equilibrium), Ore< 1 (an interior
equilibrium), orrt= 1 (a boundary equilibrium). Combining equati¢2s-(4), this locus is

determined by:
Ve (or <)Vm = (B-ma)/[n(b-Tc)] > (or <)g(P). (6)

This is a continuous curve which includes the in, Xmin/a) and &na, 0) and has the property
thatrt< 1 whenB < a. It divides thef§, ) space into three regions: the set of poamshe locus, at
which Vc = Vu; the set of pointgisidethe locus, at whicNc > Viv; and the set of pointutsidethe

locus, at whichvm > Ve.

Propositions (5) and (6) together imply the foliogvresult about the relative positions of

the two loci:
if Vb =Vn andp <Xmaxandm> 0 thenVc> (or<)Vu < B> (or <) ablc. (7)

The loci intersect at the non-participation equilim (Xmax 0). If Xmax< abl/c, there is no other
intersection and hence no interior equilibrifimThis case is illustrated in Figure 1a. (The ke
shown by the curves ND and CM; N is the non-pgréition equilibrium. Sections of these loci
which pass abova = 1 are drawn in grey dots to signify that thesm{s have no interpretation
within the model. The arrows refer to the dynaamalysis, which will be presented in Section 4.)
If insteadxmax > abl/c, there is exactly one other intersectionf} atak/c. There are now three

alternative cases.
[Figure 1 near here]

In the first case, illustrated in Figure 1b, tmgersection is att< 1. This intersection,
denoted I, is an interior equilibrium, defined Py ab/c, = a/g(at/c).” These values ¢ andr
imply that the probability with which C is playechnditional on participation in the game (i.e.
conditional on Nhot being played) is/(a + c), ensuring thatp = 0. (Equivalently, the frequencies
with which C and D are played are in the ratia.) There may also be boundary equilibria; these

occur if the CM locus intersects the lime= 1 to the left of the ND locus.

%1n this case, it is possible that the CM locusiisgcts the line= 1, creating boundary equilibria.
However, this would require a high proportion c& ghrobability mass dfX) to be betweea andxmax
despite the fact thatax< ab/c.

"The equilibrium value oft can be derived from (2) by using the fact thagririnterior equilibriumyp = 0.
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In the second case, the loci interseat atl. Because the CM locus is continuous, and
becausemin/a < 1, there must be at least one valu@ of the intervab < 3 <ab/c at which the CM
locus intersects the limeé= 1 Any such point is a boundary equilibrium. Thise&sillustrated in
Figure 1c; B is a boundary equilibrium. In therdhcase (not illustrated), the loci intersect elyact

attt= 1. Then this intersection is a boundary equiliin. In this case, there may be other

boundary equilibria.

The foregoing argument establishes:

Result 1 If xmax> ab/c, there is at least one (interior or boundary) Eopuiim with 0 <1<

1 andXmin < B < Xmax

In other words, provided the upper tail of the rilisttion of cooperative benefit is not too short,
there is at least one equilibrium in which bothr@ ® are played.

We now consider players’ payoffs in such equiébrLetV*([3, ) be the ex ante expected
payoff to any playet, prior to the realisations of the random variaklgiven thai and his
opponent play according fpandrt We will call V*(3, ) thevalueof the game conditional o3 (

T0).

The following results are derived in the MathercatiAppendix:

Result 2 In every interior and boundary equilibrium, treue of the game is strictly

positive.

Result 3 Suppose there are two equilibri@, 19, (', 1t), such thafy <f3'. ThenV*(3, ) >
V(B ).

Result 2 establishes that in every interior andhib@uy equilibrium, cooperative activity creates
positive net benefits relative to the benchmarkai-participation, despite the nonzero probability
of cheating. If there are multiple equilibria, cofethese is distinguished by its having the lowest
value off3. (Since there can be no more than one interiollibgum, no two equilibria have the
same value oB.) Result 3 establishes that this is the equiirat which the value of the game is

greatest. We will call this tHeighest-value equilibrium

3. Themodd: compar ative statics

The frequency of cooperative behaviour that casustained in equilibrium depends on the
distribution of cooperative beneit To keep the exposition simple, we analyse tfecebf a

10



rightward shift from one distributior to an unambiguously superior distributi@when there is
no change in the suppokn, Xma. That is, for allkmin < Z < Xmax, G(2) <F(2). The values of all

other parameters are held constant.

Using (5) it can be shown that if some po[Bitrf) is on the ND locus for the distributidh
it is inside the corresponding locus fér Similarly, using (6), if some poinB(T) is on the CM
locus for the distributiof, it is inside the corresponding locus &r Thus, an improvement in the
distribution of cooperative benefit moves both logtwards. Figure 2 illustrates the effects of a
shift in the distribution fronf (inducing the loci NDE) and CME)) to G (inducing the loci NDG)
and CM@)).

As this diagram shows, if the game has interioiildgia for both distributions, those
equilibria have the same value[ffnamelyalk/c, but theG equilibrium has a higher value of
SinceG(ab/c) < F(ab/c), and since the frequencies with which C and Dpdaiged are in the fixed
ratioc: a, both C and D are played with higher frequencthaG equilibrium than in thé&
equilibrium. More intuitively, the relationship tveen cooperation and cheating is analogous to
that between prey and predator. If the distributbcooperative benefit becomes more favourable,
a higher frequency of cooperation is induced; hatrhore cooperation there is, the more cheating

can be sustained.

If the game has boundary equilibria for both dttions, the highest-valu@ equilibrium
must be to the left of the highest-vakiequilibrium. (This can be seen by consideringdffect of
an outward shift of the CM locus in Figure 1c.)uShthe former equilibrium induces a higher

frequency of cooperation than the latter.

The following general result is proved in the Apgien

Result 4 Supposemax>ab/c and letF, G be two distributions oX such that is rightward
of F. Then in the highest-valu& equilibrium, the frequency of cooperation andvhkie

of the game are both strictly greater than in tighdst-value= equilibrium.

Thus, as the distribution of cooperative benefitdmees progressively more favourable, the
maximum sustainable frequency of cooperation irsagh Increases in cooperation are associated

with increases in cheating until the frequency afi4participation falls to zero.

8 This comparative-static property is compatible vétiidence that in both human and non-human
interaction, the level of cooperation is greatee, higher the payoffs to cooperation (Clutton-Brd2®02;
Capraro et al., 2014).
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4. Themodd: dynamics

We now embed our game in an evolutionary proc@és.consider a finite population of potential
players, sufficiently large to legitimate the ugeh@ law of large numbers. In each of a longeseri
of periods, individuals from this population aredamly and anonymously matched to play the
game. Since we are presenting an evolutionarysisawe do not define any concept of ‘lifetime’
utility that players maximise. Instead, we assuinag, at the population level, behaviour gravitates
towards whatever pattern of playasrrently payoff-maximising for individuals, given the

behaviour of the population as a whole.

In this Section, we present a simple dynamic amatymt can be represented in tBetf)
space of Figure 1. For the purposes of this armysandrtare interpreted as descriptions of the
mix of strategies played in the population at aiveg time:3 [ [Xmin, Xmay iS the critical value oK
such that C is chosen by any playérand only ifx; > 3, andmrt[J [0, 1] is the relative frequency of
D choices among players for whoox 3. We assume th@tandrtevolve independently. (In a
biological application, this is equivalent to assugthatf3 andmtare determined by distinct sets of
genes.) Thus, the direction of chang® afepends on the relative valuesvefandVw: B tends to
increase (respectively: decreaselnf>Vc (Vm < Vc). The direction of change afdepends on
the relative values ofp andV: Tttends to increase (decreaseysf>Vn (Vb < Vn). This gives the

dynamics shown in phase-diagram form in Figure 1.

In the case shown in Figure 1a, the dynamics im#ighbourhood of the non-participation
equilibrium (N) are cyclical. At the level of genadity at which we are working, it is not possilte
determine whether this equilibrium is locally s@lbut it has a non-empty zone of attraction,
including at least all points at whi¢h=xmax In the cases shown in Figures 1b and 1c, the non
participation equilibrium is locally unstable. (imese cases, all paths from points close to N but
below the ND locus lead away from N, and must aeva&ht pass through or to the left of the
interior equilibrium 1. As in the case shown irgiie 1a, N has a non-empty zone of attraction.)
However, in states in which almost all players @®noon-participation, selection pressure is weak,

and so the dynamics shown in the diagrams mighk wery slowly in the region close to N.

It is clear from Figure 1b that, in the neighbowti@f an interior equilibrium, the dynamics
exhibit cyclical or spiralling paths. Describedt@mms of the evolution of the frequencies of the
three strategies N, C and D, these paths are sitnithose of the Rock—Paper—Scissors game. (The

frequency of cooperation is greatest towards thefdhe diagram, where the value®fs low.
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From there, evolutionary paths lead towards theityifi, where the values @fandmtare both

high, and the frequency of cheating is greatesbmRhere, paths lead towards the bottom right,
wheref is high andtis low, and the frequency of non-participatiogisatest. And from there,
paths lead back towards the left. If paths spitdvards, they may lead into the zone of attraction
of the non-participation equilibrium.) These patisemble predator—prey interactions, cheats

acting as predators and cooperators as prey.

If the CM locus cuts the line= 1 at a point wherp < ab/c, this point is a boundary
equilibrium. If, as in the case shown in Figure daints to the left of this equilibrium are outsid
the locus, the equilibrium is locally stable. Nditboundary equilibria have this property, but
whenever the ND and CM loci intersectret 1, there must be at least one locally stablentiacy

equilibrium.

5. Simulations

In this Section we briefly illustrate some basiattees of our theoretical model by means of
computer simulations. Using a simple determinisgicator dynamics, we analyse the evolution
of B andr over time, and the associated relative frequemsigsc andpp with which strategies N,
C and D respectively are played. Further detadspaovided in the Mathematical Appendix.

In applying replicator dynamics to our game, wentdrireat N-players, C-players and D-
players as distinct sub-populations which replicsearately. This is because, in our model,
players’ decisions about whether or not to coogearatiny given interaction are conditioned on the
relevant realisation of the random variallleOur method is to assume that at any given tjraé
players are characterised by the sappe)pair. In replicator dynamics, the growth rateod
population fraction using a given strategy is pmipoal to the difference between the current
payoff of that strategy and the weighted averagbeturrent payoffs of all strategies, each
strategy being weighted by the relative frequeniti which it is played (Taylor and Jonker, 1978).
For the purposes of our analysis, we define theeatipayoff to each strategy as the expected
payoff to any player from choosing that strategy, conditional on theext values opn, pc andpp
and conditional o being equal to the current valueff At each timd, the rates of change pf,

pc andpp are determined by the replicator equations; tceaages are then implemented through

°In a preliminary version of this paper, we presdrgimulations based on a stochastic evolutionarggss
in which selection acted directly grandz. However, as a referee suggested, the main evoduy
properties of our model can be conveyed more sitfiptyugh replicator dynamics.
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changes ip andzn. This method allows mathematically tractable datians while conserving the
essential features of the dynamics described tlieallg in Section 4

Our simulations use the parameter valmes3,b = 4, Xmin = 0 andxmax=9; the distribution
of X over the interval¥min, Xmay iS @ssumed to be uniform. We investigate theadyigs at
different values o€, with particular emphasis on values in the intef¥&83, 2.4] in which interior
equilibria occur. (It < 1.33,xmax< abl/c, and so the CM and ND loci intersect only at tba-n
participation equilibrium; it > 2.4, the loci intersect at> 1.) Intuitively, increases ia(that is,
increases in the cost incurred by each player vido#im cheat) reduce the rewards from cheating and

so favour cooperation.

Irrespective of the value of the non-participation equilibrium is unstable enceplicator
dynamics. (Since C is the best response to evarydegenerate mix of C and N, any path starting
at a point at whicht= 0 andxmax > 3 > Xmin must move away from the non-participation
equilibrium along the linet= 0.) However, there are also paths that conviergige non-
participation equilibrium. (Since N is the bestpense to every non-degenerate mix of N and D,
any path starting at a point at whiglx xmin and 1 >rt> 0 must have this property.) The stability
properties of interior equilibria are less immedigiobvious. It turns out that, avaries, there are
gualitative changes in the dynamics associated iwémior equilibria.

Table 2 reports the type and stability propertiethe interior equilibrium at different values
of ¢. This equilibrium is unstable for 1.33c<x 2.3094 but asymptotically stable for 2.309d <
2.4. Atc =2.3094 there is Hopf bifurcation(see the Mathematical Appendix for details).

Table 2: Type and stability propertiesof interior equilibria

c< 1.33 No interior equilibrium
1.33 <c < 1.66 Improper node, unstable
c = 1.66 Proper node, unstable

1.66 < c<2.3094 Spiral node, unstable
c = 2.3094 Hopf bifurcation occurs

2.3094 <c<24 Spiral node, asymptotically stable

c=24 No interior equilibrium

10 The main difference between the two ways of matgthe dynamics relates to states in which at leas
one ofpn, pc andpp is equal to zero (i.e. whefe= Xmin, p = Xmax 1= 0 orrt=1). In replicator dynamics, a
strategy that is not played in any one periogegerplayed, irrespective of its payoffs. Since ouimma
concern in this Section is with interior equilibrthis difference is not particularly significant.
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Figure 3 shows the dynamics at different values dh Figure 3a¢ =1 and the CM and ND
loci intersect only at the non-participation eduilum. Paths that start close to the non-
participation equilibrium but below the CM locustially move away from that equilibrium, but
then approach it from above ND locus; all pathsveoge asymptotically to th& = Xmaxline. Asc
increases (Figures 3b and 3c) the general pictnes dot change until the Hopf bifurcation occurs:
paths that start close to the interior equilibriementually approach the non-participation
equilibrium. But after this bifurcation, paths tiséart below the ND locus spiral in to the interio
equilibrium (Figure 3d). The implication is thaete is a range of parameter values for which a

stable interior equilibrium exists and has a largee of attraction.

[Figure 3 near here]

6. Discussion

We do not intend to claim that our model represtgrgsnechanism that underlies human and
animal cooperation. There is no good reason tpaagthat cooperation is a single phenomenon
with a unified causal explanation. We find it mptausible to view cooperation as a family of
loosely-related phenomena which may have multipleses. We offer our model as a stylised

representation ainemechanism by which cooperation might emerge ansigie

Our model is unusually robust in that it assuntdg materially self-interested motivations
and applies to anonymous, well-mixed populatidinsclaiming this as a merit of the model, we do
not deny that individuals sometimes act on proaaubtivations. It has long been known that
experimental subjects often cooperate in non-regeatd anonymous Prisoner’s Dilemmas (Sally,
1995). Nor do we deny that many recurrent cooparatteractions are between individuals who
are known to one another, or that populations ¢émqeal cooperators are often structured into
clusters of individuals who interact mainly witrethneighbours. Each of these factors can
contribute to the explanation of cooperation irtipalar environments. Nevertheless, theories that
depend on non-anonymity, or on population strustta&ing particular forms, have restricted
domains of application. And since self-interesd iery common and reliable motivation, models
which assume only self-interest can be expectdx foarticularly robust.

As an illustration of how theories with less robassumptions can be restricted in their
application, we consider the currently much-diseddsypothesis of altruistic punishment (Fehr and

Géachter, 2000; Gintis et al., 2005). The key ihsig that multilateral cooperation can be susthine
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in equilibrium if individuals have low-cost optiow$ punishing one another, and if even a relatively
small proportion of individuals have relatively vkgareferences for punishing non-cooperators.
However, the general effectiveness of this mechmawispends on the cost of punishing being low
relative to the harm inflicted, and on the absesfagpportunities for punishees to retaliate
(Herrmann et al., 2008; Nikiforakis, 2008); andeitjuires that at least some individuals have non-
selfish preferences for punishing. Such preferemncight be sustained lxyltural group selection

in hunter-gatherer economies, where groups ard amalinter-group warfare is frequent, but these
conditions are not typical of the modern world; maenong hunter-gatheretsplogical group
selection of altruistic punishment would be frustdhby inter-group gene flow (Boyd et al., 2005).
Altruistic punishment should be understood as ahaeism that can sustain cooperation in specific
types of environment, not #se solution to the problem of explaining cooperatidie claim no

more than this for our own model.

We have said that our model is in the same sErgome recent work by biologists, which
finds apparently cooperative behaviour to be diydmtneficial to the individual cooperator (see
Section 1 above). But, as we now explain, theanatbory principles used by these biologists are

not the same as those exhibited in our model.

One of the fundamental features of our modelas tine cooperative behaviour it describes
is reciprocally beneficial By this, we mean the following. Such cooperai®not simply a
unilateral action by one individual which, intemtadly or unintentionally, confers benefits on
another; it is theompositiorof cooperative actions by two or more individusiee combined
effect of which is to benefit each of them. Inetiwords, each cooperator benefits from his action
only if this action is reciprocated by one or more othdividuals. In the absence of enforceable
promises, reciprocally beneficial cooperation regmiat least one individual to choose a
cooperative action without assurance that othellg@dgiprocate. In our model, any player who
chooses to cooperate incurs a risk of loss, whigkalised if his opponent cheats. One might think
(as we are inclined to do) that reciprocal bensfé hallmark of genuine, as opposed to apparent,
cooperation (see also Sachs et al., 2004; West €087). In biological models of mutualism,

cooperation is not reciprocally beneficial, in #ense we have defined.

In the Snowdrift game, which is often used to maggparently cooperative animal
behaviour, cooperation and cheating are best regisdo one another. In the original story, two
drivers are stuck in the same snowdrift. Bothehsvhave shovels, and so each can choose whether
or not to dig. If either driver digs a way out fus own car, the other can drive out too. Each

would rather be the only one to dig than remaiglsturhis defines a game with Chicken payoffs;
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in a pure-strategy Nash equilibrium, one driveiscagd the other free-rides (Sugden, 1986). Such
an equilibrium is not a case of reciprocally betiefibehaviour.

Clutton-Brock (2009) offers the Soldier's Dilemm&aamodel of mutualism in biology. In
this game, a patrol of soldiers is ambushed byttemy. Soldiers who fire back attract incoming
fire and increase their chance of being killed. flBpg back, however, each individual reduces the
probability that the patrol will be overrun. Thaig from this may be such that from an individual’s
perspective there is no dilemma at all: firing batky give the best chance of individual survival,
irrespective of what the others do. A biologicglizalent to this game (or perhaps to Snowdrift)
can be found in the behaviour of certain birds mwashmals, such as Arabian babblers and meerkat,
which feed in predator-rich environments. Indiatkiof these species go on sentinel duty once
they have fed for long enough to be close to satigClutton Brock et al., 1999). In these games,
cooperation is chosen either as a dominant straiegyg a best response to other players’ non-

cooperation; it is not reciprocally beneficial.

In the story of the Soldier’'s Dilemma, it would batural to assume that cooperation would
be a dominant strategy only if the number of sefdie the patrol was relatively small, so that each
of them received a significant share of the totalddit created by his own cooperative action.
Hauert et al. (2002) present a model which cannaerstood as a version of the Soldier’s Dilemma
in which the size of the patrol is endogenous.sTeiam-player model of voluntary contributions
to a public good, but with an outside option of +patticipation. A player who takes the outside
option receives a small positive payofivith certainty, but forgoes any share in the bienef the
public good. Players who participate can eith@pevate (contribute to the public good) or cheat
(not contribute). Each cooperator incurs a codt ahd creates a benefitrofwhere 1 < <n andr
>0 + 1), which is divided equally between all pagits. This game has no pure-strategy Nash
equilibrium. (If all one’s opponents take the adsoption, the best response is to cooperate; if
they all cooperate, the best response is to clie¢agy all cheat, the best response is the outside
option.) There is a unique symmetrical mixed-sggtNash equilibrium in which the expected
payoff to all three strategiesas More intuitively, in equilibrium the expectedmber of
participants in each game is sufficiently smalk tt@operation and cheating are equally profitable.

Replicator dynamics have the Rock—Paper—Scissat®alypattern.

There are some similarities between Hauert ez aiddel and ours: both models include a
non-participation option, and both induce mixe@sgy equilibria with predator—prey
characteristics. However, Hauert et al.’s mod&ds from ours in two significant ways. Firsteth

mechanism that induces cooperation works througlatian in the number of participants in the
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cooperative activity. For this reason, the moa@einot represent cooperative activities which
require a fixed number of participants. In patacpit cannot represent activities which inhengntl
involve just two individuals — as, for example, mfigms of market exchange do. Second, because
the costs and benefits of contributing to the pugbod are non-stochastic, the expected payoffs to
cooperation, cheating and non-participation areakiguequilibrium. Thus, although some
cooperative activity takes place in equilibriumstactivity generates no net benefit relative ta-no

participation: it is not reciprocally beneficial.

We suggest that our analysis provides a stylise@&sentially realistic account of a
mechanism by which reciprocally beneficial cooperatan emerge and persist in anonymous,
well-mixed populations in which strategies are sielé according to their material payoffs. Using
two simple components — voluntary participation atwthastic payoffs — that have not previously

been put together, we have constructed a robustrglepurpose model of cooperation.

We are conscious that, for some theoretically-oeemconomists, the mechanism we have
described may seem rather prosaic. For decadePriboner's Dilemma has been used as the
paradigm model of cooperation problems, and thelpro of explaining cooperation in that game
has been treated as a supreme theoretical chall&figered in that perspective, a modelling
strategy which relaxes the assumption that coopera always a dominated strategy may seem
too easy. But we share the view of Worden andri.é2007) that many real-world cooperation
problems are less intractable than the Prisondal&rina. Neglecting these cases results in an
incomplete body of theory and fosters unwarranegspnism about the possibility of spontaneous

cooperation.
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Mathematical appendix

Proof of Result 2

Let (3, m) be any interior or boundary equilibrium, and ddas any player. With probability

F(B), x <p andi plays N or D. In an interior equilibriup =Vn = 0. In a boundary equilibrium,
Vb = Vn =0 and N is not played. In either casegexpected payoff is equal ¥p and is non-
negative. With probability 1 F(B), xi =3 andi plays C. Ifx =3, i is indifferent between C and D
and the expected payoff is agaln. If xi > 3, i plays C; his expected payoff (conditionabor 3)
exceeds that in the = case by [1 +(B)](x —B); here 1 -F(B) represents the probability that

opponent plays C. Hence:
VE(B, M = Vo + [1 -F(B)] E[max(xi —B, 0)], (A1)

where E is the expectation operator. Siise 0 andB < Xxmax the value ok*(B, 1) is strictly

positive.

Proof of Result 3

If (B, ) and (', 1) are both interior and/or boundary equilibria, ®#e8 can be derived from (A1)
using the fact tha¥p is decreasing if§ (an implication of (2)). Iff§, T) is the non-participation

equilibrium,V*(3, ) = 0 and so Result 3 follows trivially from ResAlt

Proof of Result 4

Suppose&max>ablc. Let B3, ) be the highest-value equilibrium and letff’, 1) be the highest-
valueG equilibrium. There are three possibilitie€ase 1 (3, m) and @', 1) are both interior
equilibria. Therf3 = =alk/candtt > 1t (This case is illustrated in Figure 2.) Si&(@') < F(B),
the frequency of cooperation is higher in @equilibrium. Using (A1) and the fact thés = 0 in
every interior equilibrium, it can be shown tha tralue of the game is strictly greater in @e
equilibrium. Case 2 (3, M) and @', 1) are both boundary equilibria. Then (becauseielocus
for G lies outside the CM locus féf) B' < andm =1t=1. Since5(’) <F(B), the frequency of
cooperation is higher in the equilibrium. Using (2), it can be shown théatis strictly greater in
the G equilibrium. Then, using (Al) in relation to tHestributionsF andG, it can be shown that
the value of the game is strictly greater in @equilibrium. Case3: (3, 1) is an interior
equilibrium and @', 1t) is a boundary equilibrium. Th@\< 3 and 1 =t > 1t SinceG(B') < F(B),

the frequency of cooperation is higher in @equilibrium. In the interior equilibrium/p = 0. In
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the boundary equilibrium\p = 0. Then, using (A1), it can be shown that theigalf the game is

strictly greater in th& equilibrium.

Mathematical details of replicator-dynamic analysis
As explained in Section 5, our simulations assumag &t any given timg all players are
characterized by the sanft ) pair. Under this assumption, and given our aggioms about the

distribution ofX, the frequency of cooperation and cheating impthygulation can be expressed as

. (A2)
pe(t) = 1— F(B(t)) = “max — PO

max

and

B(®)

po(® = (1= pc@)n® = (5 (A3)

) “n(t)

max

respectively. Let

0 0 0
A=|[0 B —b]
0 a —C

be the payoff matrix of the game andpél) = [py (), pc(t), pp(t)]’ indicate the frequencies of the
three strategies at As explained in Section 5, the payoff to eachatsety at is defined as the
expected payoff from that strategy for a playr whomx; = 3(t). Given this definition, the

payoff vector and the average payoff are given by

(A-p)" = 1[0,B(®)pc(t) — bpp(t), apc(t) — cpp(t)]
and

p'Ap = pc(B(t)pc(t) — bpp(t)) + pp(apc(t) — cpp(t))
respectively. In what follows, we drapo simplify notation.

A standard replicator equation with the game marinduces the following vector field on
the 2-simplex
pn = x|~ (pc(Bpc — bpp) + pplapc — cpp))]
pc = pc[(Bpc — brp) — (Pc(Bpc — bpp) + polapc — cpp))]
Pp = PD[(aPc —Cpp) — (PC(BPC — bpp) + pp(apc — CPD))]
Aspy =1 —p: — pp, we will consider the simplified dynamical system

?c] _ [F(pc,pn)] _ lpc[(ch = bpp) — (pc(Bpc — bpp) + po(apc — cpp))]
Pol  1G(pc,pp)l  |pp[(apc — cpp) — (pc(Bpc — bpp) + polapc — cpp))]
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This system has both interior and boundary fixedtspdepending on the parameter values. Here
we consider only the interior equilibrium. By @d (3) in the main text, this equilibrium is

C'Xmax—ab

- b
characterized b§* = a? andm” = £ma

By (A2) and (A3), the equilibrium frequencies oa@d D are given by = Imax B ang p

Xmax
(x : ). )
max

The Jacobian, evaluated at the interior equilibriis

*
D

63c% —216c+ 176 27¢% —120c + 112
_ - 3c3 9c2
J = 36¢3 —183¢? +312¢c - 176 9c3 — 75¢% + 168c — 112
c* - 3c3

with eigenvalues

o = 3c2+16 , Bc— 4)(J(9c4+ 180c3 — 768¢2 + 576¢ + 256))
12 =

6c3 6c3

and trace

TR = —

63c? —216c+176  9c¢3 —75c% + 168c — 112
3c3 3c3 )

At c = 2.3094, the trace of the Jacobian mairequals zero and a pair of imaginary
eigenvaluese; ,(I) = £i0.2402, cross the imaginary axis. This is a degeneratgf Hifurcation,
i.e. the resulting limit cycle is unstable, ashis tase for any bifurcation of this type in a twayer

3x3 symmetric game under (continuous-time) replicatoraginics (Zeeman, 1980; on this, see also
Ochea, 2010, 2013).
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Figure1l. Equilibriaand dynamics

Figure 1a: Non-participation the only equilibrium
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Figure 1b: An interior equilibrium

™=1

TT= Xmin/@
=0
= ® he)
I I 1
o
) g )
I3) 2

24



m = Xmax

B=ablc

B = Xmin

Figure 1c: A boundary equilibrium
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Figure 2: Effects of a shift in the distribution of cooper ative benefit
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Figure 3: Replicator dynamicsfor different valuesof ¢
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Figure 3a. Initial point$=8.9,7=0.01, c=1.
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Figure 3c. Initial poinP = 6,1 =0.74, c=2.
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