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Nonradiative resonance energy transfer (RET) provides the ability to transfer excitation energy
between contiguous nanowires (NWs) with high efficiency under certain conditions. Nevertheless,
the well established Förster formalism commonly used to represent RET was developed for energy
transfer primarily between molecular blocks (i.e. from one molecule, or part of a molecule, to
another). Although deviations from Förster theory for functional blocks such as NWs have been
previously studied, the role of the relative distance, orientation of transition dipole moment pairs,
and the passively interacting matter on electronic energy transfer, are to a large extent unknown.
Thus, a comprehensive theory that models RET in NWs is required. In this context, analytical
insights to give a deeper and more intuitive understanding of the distance and orientation dependence
of RET in NWs is presented within the framework of quantum electrodynamics. Additionally,
the influence of an included intermediary on the rate of excitation energy transfer is illustrated,
embracing indirect energy transfer rate and quantum interference. The results deliver equations
that afford new intuitions into the behavior of virtual photons. In particular, results indicate that
RET efficiency in a NW system can be explicitly expedited or inhibited by a neighbouring mediator,
depending on the relative spacing and orientation of NWs.

PACS numbers: 31.30.J-,78.70.-g,33.50.Hv,78.67.De,78.67.Uh,78.67.Hc

I. INTRODUCTION

Radiationless near-field transportation of energy from
a donor particle, initially in its excited electronic state, to
an acceptor in its ground state, is of considerable interest
for diverse applications in science and engineering. Be-
yond wavefunction overlap, a compelling photo-physical
process known as resonance energy transfer (RET) gains
control. RET, also often known as electronic energy
transfer (EET) [1], has been extensively exploited in
artificial light harvesting antenna devices [2–4], spasers
[5, 6] and especially in biology as a spectroscopic ruler to
study conformational dynamics [7]. The study of RET
in nanostructures has recently envisaged various prospec-
tive applications ranging from solar cell systems [8–10]
to optical switching [11–14].

Nanotechnology offers means to study and fabricate
nanostructures with large aspect ratios and small diame-
ters, commonly termed nanowires (NWs) [15, 16]. These
have been the focus of extensive research during the last
few decades [17–20]. Their length is sufficiently large for
easy manipulation as building blocks in fabricating su-
perstructures. Electronic interactions between NWs at
the nanoscale elevate the properties of a superstructure.
Here, too, one of the important mechanisms for strong
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interaction is the RET, which results from Coulomb in-
teraction between excitons confined in NWs [21–23].

Numerous studies have previously been reported on
resonance energy transfer mechanism and related effects
in systems consisted of NWs [24–26]. In many respects,
the process of RET is well illustrated by semiclassical the-
ories of radiationless energy transfer [26]. In this form
of representation, the phenomenon is commonly consid-
ered as a first order perturbative process. However, in
reality, RET processes are fully quantum mechanical in
nature and they are formally described within the frame-
work of quantum electrodynamics (QED) [27–33]. Here,
the direct energy transfer emerges as a second-order pro-
cess, mediated by the intermolecular propagation of vir-
tual photons. The higher order reflects taking due ac-
count of causality and retardation; the electronic decay
of one component and the resultant excitation of an-
other, at a different point in space, cannot be simulta-
neous. Moreover, indirect energy transfer emerges via a
vicinal neighbouring object occurs as a fourth-order pro-
cess [34]. Therefore, QED has been widely applied to
electronic coupling between the donor and acceptor over
all distances, producing a unified theory that reconciles
both RET and radiative energy transfer as the short- and
long-range asymptotics of one mechanism [35, 36].

The main purpose of this paper is to investigate RET
in NW systems analytically, by developing a comprehen-
sive quantum electrodynamical analysis including state-
sequence methodology. Here, we extend our recent anal-
ysis [37], by relaxing uniaxial constraint imposed on the
coupling photon. Of particular interest to this study is
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the distance and orientational dependence of a pair of
NWs, embedded within another vicinal NW. Interest-
ingly, a path is established towards a formalism that will
allow the identification of specific attributes to expedite
or inhibit electronic energy transfer, providing a detailed
picture and understanding of RET in NWs. In Sec. II
of this paper, the background molecular QED theory of
RET is reviewed for both direct and third-body modified
energy transfer. The direct and indirect RET for NWs
are presented in Sec. III and Sec. IV respectively. Re-
sults are discussed in Sec.V followed by the conclusions
in Sec. VI.

II. EXCITATION ENERGY TRANSFER: QED
PERSPECTIVE

A. System Hamiltonian

It is appropriate to begin with the generic quantum
energy operator for a system comprising of a number of
particles and the radiation field, described by multipo-
lar formulation of molecular QED. This Hamiltonian is
expressible as follows [28]:

Htotal =
∑
ξ

Hint(ξ) +
∑
ξ

Hmat(ξ) +Hrad (1)

where Hint(ξ) is the interaction Hamiltonian of the par-
ticle ξ with the radiation field, Hmat(ξ) is the matter
Hamiltonian of the particle ξ, and Hrad represents the
second-quantized radiation field Hamiltonian of the inci-
dent light field. The Hint(ξ) describes interactions such
as absorption and emission, (equally for either real or
virtual photons), and it is described using the multipolar
Hamiltonian in the dipole approximation [28]

Hint = −µ(ξ).E(Rξ) (2)

where the interaction Hamiltonian compromises contri-
butions for each species ξ located at Rξ, the µ(ξ) is the
electric-dipole moment operator and E(Rξ) is the oper-
ator for the electric displacement field at the specified
location Rξ.

The transfer of energy beyond significant wavefunction
overlap, generally entails a mechanism known as RET,
mainly associated with electric dipole-electric dipole
(E1-E1) coupling. In this event, an excited donor
(D) emits excitation energy which is transferred to an
acceptor (A); the donor falls back to its ground state
while the acceptor is excited corresponds to the process

Dα +A0 −→ D0 +Aβ .

Here, superscripts denote donor and acceptor states.
In the QED theory, this process is mediated by a
virtual photon, coupling the donor decay and acceptor
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FIG. 1. State-sequence diagram (a) for direct RET. In each
box, the state of donor D is represented by the symbol on the
left and the state of acceptor A by the symbol on the right,
p denotes virtual photon. The Feynman diagrams show the
time-order: (b) (X)→(Y); (c) (Y)→(X).

excitation through its creation and subsequent annihi-
lation. The quantum amplitude for RET is based on
a Schrödinger state vector representation of quantum
dynamics, where matrix element for RET is represented
as a sum of differently time-ordered contributions [28].
However, one can apply alternative formulations, for
example, in terms of a density matrix in Liouville space
[38]. The state sequence representation of the two time
ordered contributions is depicted in Fig.1 (a) and the
corresponding Feynman diagrams [39] are depicted
in Fig.1 (b),(c). As shown in the figures, tracing the
upper pathway; the virtual photon is created at D and
annihilated at A. The lower path depicts the case where
virtual photon is created at A and annihilated at D,
as is also consistent with the time-energy uncertainty
basis for conventional time orderings. As both paths
lead to the same final state, calculation of the full RET
quantum amplitude requires their summation.

B. Direct energy transfer and the influence of an
included intermediary

The standard starting point for the development of the
QED formalism of RET is the Fermi’s golden rule rate
equation. For a system proceeding from its initial state
I to final state F , the transfer rate (probability per unit
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FIG. 2. State-sequence diagram for the indirect RET. Time
progresses left to right, each of the 16 boxes representing one
of the possible overall states of the system in one of the five
stages I, R, S, T, F , p, q denote virtual photons

time) is explicitly given by,

Γtran =
2π

}
|MFI |2ρ (3)

where ρ represents the density of final states, and MFI is
the matrix element connecting the initial and final states
of the system (sometimes loosely termed the quantum
amplitude of the energy transfer process), which has the
perturbation expansion

MFI = 〈F |Hint|I〉+
∑
R

〈F |Hint|R〉〈R|Hint|I〉
EI − ER

+

∑
R,S

〈F |Hint|R〉〈R|Hint|S〉〈S|Hint|I〉
(EI − ER)(EI − ES)

+

∑
R,S,T

〈F |Hint|T 〉〈T |Hint|S〉〈S|Hint|R〉〈R|Hint|I〉
(EI − ER)(EI − ES)(EI − ET )

+ ..

(4)

where I,F are initial, final states respectively and
R,S,T denote intermediate states. If ζ = I,F,R,S,T,
then Eζ denotes the corresponding eigenenergy.

For the case of direct energy transfer, electronic energy
transfer from a donor to an acceptor in the absence of a
surrounding medium is calculated from the second term
in the time-dependent perturbation series given in Eq.
4. Thus, the general formula for the direct interaction
between two nano-particles can be expressed as

Md
FI =

µ0α
n (D)µβ0m (A)

2V ε0

∑
a

E∗an(RD)Eam(RA)p

k − p
−

Ean(RD)E∗am(RA)p

k + p

(5)

Here a concise notation for the transition dipole mo-
ments is introduced, e.g. µ0α(D) ≡ 〈D0|µ(D)|Dα〉, and
a = {p, λ} represents the photonic modes, V is an arbi-
trary quantization volume and i, j are cartesian coordi-
nates; also p is the corresponding photon wave number
which need not be equal to k.

The exchange of an additional virtual photon with an
included intermediary is the lowest-order coupling pro-
cess that promotes RET to third-body-mediated RET
[40–42]. In our previous work, we have described how
the four distinct matter-radiation interaction events (W,
X, Y, Z in Fig. 2) modify the direct RET rate to third-
body-modified RET [37], Fig. 2 illustrates the systems
evolution through all five stages in one state-sequence
diagram. Essentially, at each event, one particle under-
goes a transition between states 0, α, r, β and one photon
is either created or annihilated by giving rise to 4!=24
Feynman diagrams. Therefore, the coupling matrix el-
ement for the case of third-body-mediated is calculated
from the fourth term in the time dependent perturbation
series stated in Eq. 4

M i
FI = −

∑
a

∑
b

( }cp
2V ε0

)( }cq
2V ε0

)
µ0α
n (D)µβ0m (A)αkl(M ; k)

×
{Ean(RD)E∗ak(RM )Ebm(RA)E∗bl(RM )

(p− k)(q − k)
+
Ean(RD)E∗ak(RM )E∗bm(RA)Ebl(RM )

(p− k)(q + k)
+

E∗an(RD)Eak(RM )Ebm(RA)E∗bl(RM )

(p+ k)(q − k)
+
E∗an(RD)Eak(RM )E∗bm(RA)Ebl(RM )

(p+ k)(q + k)

}
(6)

αkl(M ; k) =
∑
r

µr0k (M)µ0r
l (M)

{ 1

Er0 − }ck
+

1

Er0 + }ck

}
(7)
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FIG. 3. Schematics for the direct resonance energy transfer
(a) NW to NW; (b) the orientational factors in Eq.(17), θD
and θA are the angles formed by the donor and acceptor tran-
sition dipole moments with respect to the displacement vector
R, and θDA, the angle between the two transition dipole mo-
ments.

Here, also, αkl(M ; k) is the dynamic polarizability of
particle M [43, 44].

The total matrix element is given by the sum of second
and fourth terms in Eq. (4), and the transfer rate is then
seen to be a sum of three terms, namely

Γtotaltran =
2π

}
|Md

FI +M i
FI |2ρ

=
2π

}
[|Md

FI |2 + |M i
FI |2 + 2ReM

d

FIM
i
FI ]ρ

(8)

where the third term is a quantum interference contri-
bution to the rate arising from both direct and indirect

mechanisms.

III. DIRECT COUPLING OF TWO NANOWIRE
SYSTEM

We consider a system which comprises of the radiation
field, and two NWs of length L separated by a distance R
(center to center separation) as depicted in Fig. 3 (a). In
contrast to our previous work [37], the significance is on
removal of the directional constraint on the coupling pho-
ton. Owing to the cylindrical symmetry of NWs, it is con-
venient to model EM waves using Hankel function of or-
der n [25, 45, 46]: e(λ)(p)

∑
nHn(pR)einα, where e(λ)(p)

is the polarization vector R and α are the radial and an-
gular coordinates respectively. Directly substituting into
Eq. (5) and converting the discrete summation over vir-
tual photon wave vector [25, 46],

∑
p ⇒

∫
A

(2π)2 d
2p to

an integral yields

Md
FI =

µ0α
n (D)µβ0m (A)

8π2Lε0
(−∇2δnm +∇n∇m) (9)∫ ∞

0

∫ 2π

0

H
(1)
0 (pR)

k − p
− H

(2)
0 (pR)

k + p
dφdp

Expanding the Hankel function, performing contour
integration and by the residue theorem

Md
FI =

µ0α
n (D)µβ0m (A)

2πLR2ε0
(−∇2δnm +∇n∇m) (10)∮

c

ikRY0(c) + c2J0(kR)

(kR− c)(kR+ c)
dc

Md
FI =

µ0α
n (D)µβ0m (A)

4Lε0
(−∇2δnm +∇n∇m) (11)

{Y0(kR)− iJ0(kR)}

where Y0(kR), J0(kR) are zero order second and first
kind of Bessel functions respectively.

Md
FI =

µ0α
n (D)µβ0m (A)

4Lε0

[
kδnm

{
− Y2(kR) +

Y1(kR)

kR

}
− k
{
Y1(kR)

(δnm − R̂nR̂m
R

)
+ (12)

kR̂nR̂m

(
− Y2(kR) +

Y1(kR)

kR

)}
− ikδnm

{
− J2(kR) +

J1(kR)

kR

}
+ ik

{
J1(kR)

(δnm − R̂nR̂m
R

)
+

kR̂nR̂m

(
− J2(kR) +

J1(kR)

kR

)}]

We now deploy the asymptotic series for 0 < kR�
√
n+

1 and n 6= 0 [47]

Yn(kR) ∼ −Γ(n)

π

( 2

kR

)n
+

1

Γ(n+ 1)

(kR
2

)n
cot(nπ)

(13)
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Jn(kR) ∼ 1

Γ(n+ 1)

(kR
2

)n
(14)

By applying near-field limits 0 < kR � 1 on Eq.12
yields

Md
FI =

µ0α
n (D)µβ0m (A)

4Lε0

{Γ(1)

π

( 2

kR

)(δnm − R̂nR̂m
R

)
+kR̂nR̂m

(
− Γ(2)

π

( 2

kR

)2
+

Γ(1)

πkR

( 2

kR

))}
(15)

where Γ(n) is the standard Gamma function which is
expressed in

∫∞
0
tn−1e−tdt = (n− 1)Γ(n− 1). Therefore,

Eq.15 becomes

Md
FI =

µ0α
n (D)µβ0m (A)

2πLR2ε0
(δnm − 2R̂nR̂m)

=
κDA|µ0α

n (D)||µβ0m (A)|
2πLR2ε0

(16)

where |κDA|2 is an orientation factor. |κDA|2 describes
the influence of the relative orientations of the transition
dipole moments of the donor and acceptor NWs, as given
by

κDA = µ̂0α
n (D)(δnm − 2R̂nR̂m)µ̂β0m (A)

= cos(θDA)− 2 cos(θD) cos(θA)
(17)

where θD is the angle between donor and separation vec-
tor (R), and θA is the angle between acceptor and R.
θDA is the angle between donor and acceptor NWs ( Fig.
3 (b)).

The energy transfer rate can be obtained from Eq. (3)
and emerges in the following simple form:

Γdtran =
|κDA|2|µ0α

n (D)|2|µβ0m (A)|2ρ
2πL2R4ε02}

(18)

A. Distance dependance

From Eq. (18), it is observed that the direct energy
transfer in NWs exhibits an inverse fourth power de-
pendence on the separation distance. This is because
quantum amplitude is inversely proportional to the
spacing between donor and acceptor (Md

FI ∝ R−2), and
the energy transfer rate is proportional to the square
modulus of the quantum amplitude of RET process
(Γtran ∝ |Md

FI |2). The plots of Eq. (16), Eq. (18)
are shown in Fig. 4 and Fig. 5 respectively. In the
development of the plots, the following values were used
[48]: |µ0α(D)| = |µβ0(A)| = 5×10−30 C m ; ρ = 2×1025

J−1. Fig. 4 (a) shows the functional dependence of
resonant dipole-dipole interaction (RDDI) for various

values of the donor-acceptor separation distance (R).
It is observed that due to the behaviour of the virtual
photon propagation in a 2D realm, the RDDI decreases
with R by following an inverse square power dependence,
resulting in a gradual decline of the energy transfer
efficiency with the distance as illustrated in Fig. 5 (a).
Fig. 4 (b) and Fig. 5 (b) compares the NW-to-NW
coupling and transfer efficiency with quantum dot (QD)
to QD as a function of R, where distance dependance
of latter is sharper than former, signifying the high
physical loses in the transmission medium due to the
spherical symmetry of the QD.

B. Orientational dependence

The relative orientation of the donor and acceptor, and
their individual orientations with respect to relative sep-
aration vector (see Fig. 3 (b)), influence the RDDI in
Eq.(16) in a variety of different ways, as depicted in Fig.
4 (c). Here, we explore the variation of RDDI at different
θD values ranging from 0 to π

2 for fixed θDA (at 0 and
π), θA (at 0). The coupling matrix element reaches its
peak when the donor the is orthogonal to the displace-
ment vector (θD = π

2 ), θDA = 0 and also when θD = 0,
θDA = π. Further, it becomes minimum when θD = π

2 ,
θDA = π and also θD = 0, θDA = 0. Therefore, the
transfer rate strongly depends on the orientation factor.
It is clear from the Eq.(17) that κ2 does not does not
change if following operations are performed [29]:

1. flip the donor transition moment (µ̂0α(D) →
−µ̂0α(D)),

2. flip the acceptor transition moment (µ̂β0(A) →
−µ̂β0(A)),

3. allow the donor and acceptor to trade places (R→
−R),

4. interchange the donor and acceptor transition mo-
ments (µ̂0α(D)↔ µ̂β0(A)).

The angles θDA, θD, θA are dependent on one another.
Therefore, we consider three cases to study the orienta-
tional dependence of RET rate.

1. case 1: θDA = 0, θD = 0, θA = 0; κDA = −1, (Fig.
6 (a))

2. case 2: θDA = 0, θD = π
2 , θA = π

2 ; κDA = 1, (Fig.
6 (b))

3. case 3: θDA = π
2 , θD = π

2 , θA = π
2 ; κDA = 0, (Fig.

6 (c))

As can be anticipated, the orientation factor becomes
most favourable when the transition dipole moments are
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parallel (or anti-parallel) to one another and to the dis-
placement vector. This is classic Förster behaviour. Ad-
ditionally, the coupling may also be prohibited between
NWs by arranging them such that the transition dipole
moments are mutually orthogonal. We further investi-
gate this factor by keeping θDA, θA fixed at 0 and varying
θD from 0 to π

2 . Interestingly, the orientation dependence
of rate becomes weaker as the separation distance be-
tween donor and acceptor decreases, which is illustrated
in Fig.5 (c). This is similar to the numerous studies re-
ported for molecules and QDs discussed in [49, 50], with
one important difference. Due to the cylindrical sym-
metry and the physical nature of the exchanged photon
virtue in the 2D geometry, the orientation factor varies
from 0 ≤ κ2 ≤ 1.

IV. NANOWIRE TO NANOWIRE RET IN THE
VICINITY OF ANOTHER NANOWIRE

We now insert a third NW, M , which acts as a bridge
species between D and A as shown in Fig.7 (a). M is
engaged in relaying energy between donor and acceptor,
but otherwise remains unchanged overall. Direct substi-
tution into Eq. (6) yields

M i
FI = −µ

0α
n (D)µβ0m (A)

(2V ε0)2

∑
p

∑
q

e(λ)n (p)e
(λ)
l (p)e(λ)m (q)e

(λ)
k (q)αkl(M ; k)p2q2 ×

{H(2)
0 (pR′)H

(1)
0 (qR′′)

(p− k)(q − k)
+
H

(2)
0 (pR′)H

(2)
0 (qR′′)

(p− k)(q + k)
+
H

(1)
0 (pR′)H

(1)
0 (qR′′)

(p+ k)(q − k)
+
H

(1)
0 (pR′)H

(2)
0 (qR′′)

(p+ k)(q + k)

}
(19)

where R′ = RM −RD and R′′ = RA −RM , so that R = RA −RD.

M i
FI = −µ

0α
n (D)µβ0m (A)

(2V ε0)2

∑
p

∑
q

e(λ)n (p)e
(λ)
l (p)e(λ)m (q)e

(λ)
k (q)αkl(M ; k)p2q2 ×

(H(2)
0 (pR′)

p− k
+
H

(1)
0 (pR′)

p+ k

)
×
(H(1)

0 (qR′′)

q − k
+
H

(2)
0 (qR′′)

q + k

)
(20)

By converting the discrete summation over p, q to an integral yields

M i
FI = −µ

0α
n (D)µβ0m (A)

(8π2Lε0)2
(−∇2δnl +∇n∇l)(−∇2δmk +∇m∇k)

∫ ∞
0

∫ 2π

0

∫ ∞
0

∫ 2π

0

αkl(M ; k)×

(H(2)
0 (pR′)

p− k
+
H

(1)
0 (pR′)

p+ k

)
×
(H(1)

0 (qR′′)

q − k
+
H

(2)
0 (qR′′)

q + k

)
dqdφdpdϕ (21)

In a similar manner as the previous case in Sec. (III)
the quantum amplitude, on performing contour integra-

tion and using the residue theorem twice over two virtual
photons, becomes
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M i
FI = −µ

0α(D)µβ0(A)αkl(M ; k)

(4Lε0)2

[
kδnl

{
− Y2(kR′) +

Y1(kR′)

kR

}
− k
{
Y1(kR′)

(δnl − R̂′nR̂′l
R′

)
+ kR̂′nR̂

′
l

(
− Y2(kR′)

+
Y1(kR′)

kR′

)}
− ikδnl

{
− J2(kR′) +

J1(kR′)

kR′

}
+ ik

{
J1(kR′)

(δnl − R̂′nR̂′l
R′

)
+ kR̂′nR̂

′
l

(
− J2(kR′) +

J1(kR′)

kR′

)}]
[
kδmk

{
− Y2(kR′′) +

Y1(kR′′)

kR′′

}
− k
{
Y1(kR′′)

(δmk − R̂′′mR̂′′k
R

)
+ kR̂′′mR̂

′′
k

(
− Y2(kR′′)

+
Y1(kR′′)

kR′′

)}
− ikδmk

{
− J2(kR′′) +

J1(kR′′)

kR′′

}
+ ik

{
J1(kR′′)

(δmk − R̂′′j R̂′′k
R′′

)
+ kR̂′′mR̂

′′
k

(
− J2(kR′′) +

J1(kR′′)

kR′′

)}]
(22)

The Eq.(22) for matrix element can be simplified by
imposing near-field limits and using Eq.(13), (14)

M i
FI = −µ

0α(D)µβ0(A)

(2πLR′R′′ε0)2
[(δnl − 2R̂′nR̂

′
l)(δmk − 2R̂′′mR̂

′′
k)

αkl(M ; k)]

(23)

Therefore, in the presence of a neighbouring mediator,
the matrix element for the mechanism of RET is duly
modified to Eq.(23), which can also be written in the
following form

M i
FI = −|µ

0α(D)||µβ0(A)|κDMκMA

(2πLR′R′′ε0)2
|αkl(M ; k)| (24)

where κDM , κMA are expressed as

κDM = µ̂0α(D)(δnl − 2R̂′nR̂
′
l)µ̂

r0(M)

= cos(θDM )− 2 cos(θ′D) cos(θM )
(25)

κMA = µ̂0r(M)(δmk − 2R̂′′mR̂
′′
k)µ̂β0(A)

= cos(θMA)− 2 cos(θ′M ) cos(θ′A)
(26)

in which θ′D is the angle between µ(D) and D-M sepa-
ration vector (R′), and θ′A is the angle between µ(A) and
R′′. θDM is the angle between µ(D) and µ(M), θMA is
the angle between µ(M) and µ(A). θM , θ

′
M are angles

formed by µ(M) with respect to R′ and R′′ (Fig. 7 (b)).
The application of the Fermi’s golden rule now gives

rise to the following expression for the transfer rate

Γitran =
|µ0α(D)|2|µβ0(A)|2||κDM |2|κMA|2αkl(M ; k)|2ρ

8π}(L2R′2R′′2ε02)2

(27)

Ideally, the result in Eq. (27) should be used to eval-
uate the indirect contribution to the RET rate mediated
by neighbouring body M in near field regime. Undoubt-
edly, the key factors are the position, orientation, and
the trace polarizability of the passive NW.

D

M

A

ħk

θD

θDM

θMAθA

θM

D

M

A

Donor transition

 dipole plane

Acceptor transition

 dipole plane

Passive NW transition

 dipole plane

R 
/

R 
//

(b)

(a)

FIG. 7. Schematics for the third-body modified resonance
energy transfer of (a) NW to NW; (b) the orientational factors
in Eq.(25), (26), θD, the angle between the donor and the
displacement vector, θA, the angle between the acceptor and
the displacement vector. θDM , is the angle between the D,M
transition dipole moments and θMA, the angle between the
M,A transition dipole moments

In the development of the plots in Sec. (IV), the fol-
lowing values were used [48]: |µ0α(D)| = |µβ0(A)| =
5×10−30 C m; ρ = 2×1025 J−1. Again, αkl(M ; k) is the
ground state dynamic polarizability of the passive nanos-
tructure. Polarizability values are related to refractive in-
dex by the Clausius- Mossotti equation, and an in-depth
analysis of relevance to the current application has been
carried out in [41, 43, 44]. Therefore, in the development
of the graphs, we assume |αkl(M ; k)| of the included in-
termediary takes a typical value of 25× 10−35J−1C2 m2

[42].

It is important to note that, values of R,R′, R′′ < 1
nm will generally signify the possibility of wave function
overlap. In this regime, an alternative mode of energy
transfer occurs, called the Dexter mechanism, and it is
predicted to have an essentially exponential dependence
on separation distance. In the present study, we restrict
ourselves to separations where RET processes are me-



9

4 8 12 16 20
0

2

4

6
x 10

−3

4 8 12 16 20
0

5

10

15

10 30 50 70 90

0

1

2

3

4

E
n

e
re

g
y 

tr
a

n
sf

e
r 

ra
te

 (
n

s-1

R (nm)
/ R (nm)

/

D
ir

e
ct

 R
E

T
 t

o
 In

d
ir

e
ct

 R
E

T
 r

a
ti

o

E
n

e
re

g
y 

tr
a

n
sf

e
r 

ra
te

 (
n

s-1

θM (degrees)

3 nmR =
/

5 nmR =
/

10 nmR =
/

(a) (b) (c)

) )

FIG. 8. Indirect RET rate: (a) as a function of the relative distance between D and M , (R′), keeping R constant at 20 nm;
(b) as a ratio of direct RET with respect to R′, keeping R constant at 20 nm; (c) as a function of θM for three different relative
distances (3 nm, 5 nm, 10 nm) between D and M .

diated only via Coulombic interactions. Therefore, the
values of quantum amplitude and energy transfer rate
in this region should not be regarded as physically sig-
nificant (also in Dexter zone, expressions presented in
our work are less meaningful as the neighbouring matter
could no longer be regarded as an electronically separate
entities).

A. Distance dependance of indirect RET rate

From the matrix element for indirect RET given in Eq.
(23), it can be seen that the RDDI depends on relative
position of all three particles, exhibiting inverse square
power dependence on each of the donor and acceptor dis-
tances relative to body M . Moreover, compared to the
direct interaction of two NWs derived in Eq. (16), cre-
ation and annihilation of two virtual photons reduce the
quantum amplitude of the indirect interaction, display-
ing a (R′)−4(R′′)−4 distance dependence of indirect RET
rate (see Eq.27). Furthermore, indirect RET rate grad-
ually decreases as a function of displacement of A from
M and D (keeping M at the midpoint of the D-A axis).
In addition, indirect transfer rate is less distinguishable
when M is located in the center of the D-A axis, as shown
in Fig.8 (a).

We now focus on the important possibility of altering
the energy transfer rate by indirect energy transfer, by
analysing the ratio of the, direct to indirect transfer
rates. This is depicted in Fig.8 (b) for various R′ values
at fixed R. It can be observed that the influence of
the included intermediary NW, (M), becomes more
prominent when it is situated close to either donor or
acceptor.

B. Orientational dependance of indirect RET rate

The relative orientation of the D,M,A, and their
individual orientations with respect to relative separa-
tion vectors, strongly influence the quantum amplitude
(M i

FI ∝ |κDM ||κMA|) and the indirect energy transfer
rate (Γitran ∝ |κDM |2|κMA|2). We now conduct a com-
prehensive analysis of how the transfer rate varies as a
function of θM for various R′ and R values. As illus-
trated in Fig.8 (c), the orientation dependence of rate
becomes substantial when M gets closer to either the
acceptor or donor. The orientation factor is less signif-
icant when the passive NW is placed at the center of
the donor-acceptor displacement vector. Moreover, anal-
ogous to the direct energy transfer, orientational factor
becomes stronger when the acceptor is placed near to the
donor.

The angles given in Eq. (25) and Eq. (26) are de-
pendent on one another. Once again we identify three
non-trivial cases to study the orientational dependence
of third-body modified energy transfer.

1. case 1: θDM = θMA = 0, θ′D = θ′A = θM = θ′M = 0;
κDM = κMA = −1, (Fig. 9 (a))

2. case 2: θDM = θMA = 0, θ′D = θ′A = 0, θM = θ′M =
π
3 ; κDM = κMA = 0, (Fig. 9 (b))

3. case 3: θDM = θMA = π
3 , θ
′
D = θ′A = θM = θ′M =

π
3 ; κDM = κMA = 0, (Fig. 9 (c))

In all three cases θDA = θD = θA = 0.
The first case corresponds to situations when the tran-

sition dipole moments are parallel (or antiparallel) to
each other and separation vectors, leading to |κDM |2 =
|κMA|2 = 1. These geometrical configuration of three
NWs gives highest indirect RET rate. In the second
case, we keep all angles unaltered except θM , θ

′
M , here the

dipole moment of M formes angle π
3 with respect to both
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FIG. 9. Indirect RET orientation factor in Eq. (25) and Eq. (26): (a) M lies in the D-A separation vector, and all D,M,A
are parallel to each other; (b) M lies in the D-A separation vector, θM = θ′M = π

3
, and θDM = θMA = 0; (c) θDA = π

3
,

θM = θ′M = θ′D = θ′A = π
3

. Note that in all cases θDA = θD = θA = 0

R′,R′′, leading to a prohibited indirect energy transfer
rate. The case three is similar to the case two, except the
plane of M makes an angle of π

3 with respect to donor
and acceptor transition dipole planes. This configuration
of the NW system makes indirect RET rate contribution
to the total energy transfer rate to be vanished.

C. Quantum interference contribution to the
transfer rate

From the matrix elements for direct, and indirect
transfer, it is straightforward to calculate the third term
of Eq. (8), that arises from the interference of these two
processes.

Γinttran =
4πρ

}
Re{Md

FIM
i
FI}

= −|µ
0α(D)|2|µβ0(A)|2κDAκDMκMA|αkl(M ; k)|ρ

2π2L3R2R′2R′′2ε03}
(28)

The quantum interference, Eq. (28), displays the in-
verse square power dependence on each relative displace-
ment component (R,R′, R′′). Fig. 10 (a) shows the in-
terference dependence as a function of the position of the
third NW. As can be anticipated, it is clear from the plot
that the quantum interference acquires higher values for
lower or higher values of R′, delivering minimum direct
to interference ratio when M is at the center of the D-A
displacement, as illustrated in Fig. 10 (b).

Inspection of Fig. 10 (c) allows one to gain insight
into how the interference term is influenced by the rela-

tive orientation of particles, exhibiting the quantum in-
terference variation with respect to θM when θDM = 0, π.
In both cases, quantum interference is maximum when
θM = π

3 , and minimum when θM = 0, π2 . For a collinear
arrangement of the three NWs, the quantum interference
between direct and indirect transfer can be negative, de-
creasing the total exchange rate.

Thus, the total third-body-modified energy transfer
rate becomes

Γtotaltran =
|µ0α(D)|2|µβ0(A)|2|κ|2ρ

2πL2R4ε02}
+

|µ0α(D)|2|µβ0(A)|2|κDM |2|κMA|2|αkl(M ; k)|2ρ
8π}L4R′4R′′4ε04

−

|µ0α(D)|2|µβ0(A)|2κDAκDMκMA|αkl(M ; k)|ρ
2π2L3R2R′2R′′2ε03}

(29)

The result, Eq. (29) can be interpreted as the rate for
RET between donor and acceptor NWs, modified by the
presence of the passively interacting medium.

V. DISCUSSION

We have derived resonance energy transfer rate equa-
tions for a system consisting of nanowires of the same
dimensionality. The calculations are presented for direct
RET and the influence of a passive NW on the energy
transfer rate. The results have demonstrated the relative
spacing between NWs along with the relative orientation
of the transition dipoles determine the controllability of
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resonance energy transfer rate. Furthermore, the RET
in NW systems displays a slower spatial decay compares
to a system consisted of QDs.

In Sec. III, unmediated RET between two NWs has
been studied, applying the second order perturbation
theory. The results have demonstrated the energy trans-
fer rate exhibits R−4 distance dependence. The orienta-
tion factor, |κ|2 varies from 0 to 1. Moreover, in Sec. IV
third body-mediated RET has been investigated, exploit-
ing the fourth order perturbation mechanism. Here, the
passive NW, M , remains in its ground state but is ex-
cited in intermediate states. It participates in the trans-
fer of excitation as a polarizable body coupled to the
electromagnetic field. Therefore, the energy transfer rate
embraces additional contributions associated with indi-
rect RET rate and quantum interference. We obtained
analytical expressions for both indirect energy transfer
rate and quantum interference contribution to the total
third-body mediated RET rate. The indirect coupling
of resonance energy transfer becomes more significant as
the density of particles M increases. In a nutshell, these
results suggest that when designing an artificial energy
transfer system, optimal configurations for fast transfer
between nearby sites are those where the NW transition
dipole moments and the separation vector are collinear.
However, coupling may also be “switched off”between
particles by arranging them such that the transition
dipole moments are perpendicular to each other. This
can, in effect, enable one to design a nano-antenna sys-
tem that are optimized to focus the energy transfer to
specific points. Moreover, an interacting third NW can
effectively enhance or inhibit the RET between donor
and acceptor, and this contribution can be significant if
a sufficient number of passive objects (M) are present.

VI. CONCLUSIONS

In this article, the direct RET between two NWs and
the influence of a passively interacting NW have been
studied using the theory of molecular quantum electro-
dynamics. Within the QED context, treatment of reso-
nance energy transfer in both cases, exchange of excita-
tion is mediated by electromagnetic signals propagating
at the speed of light. Thus, the coupling matrix elements
and rate equations are derived for both cases, and the
intricate interplay of the relative distance, orientation,
and the effect of the passively interacting medium on the
transfer efficiency have been studied to a greater extent.

Summarizing, the ensuing results demonstrated the
possibility of altering the strength and the directivity
of the resonance energy transfer between two NWs by
careful engineering of the spacing, orientation and in-
clusion of an additional quantum objects in the vicinity.
The analysis thus provides pointers to the means of con-
trolling and optimizing the transfer of energy between
discrete components, potentially in any multi-nanowire
system, inviting surface and layer applications. There-
fore, this research opens up substantial opportunities to
develop a thorough understanding on well-known RET
mechanism in NWs, based on quantum electrodynamics.
In particular, the results we have secured should support
the further improvement of design of biological sensors,
organic photovoltaics and light-driven catalysis, optical
switching, through the achievement of new methods for
optically controlled transmission.
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