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Abstract 

Through the industrial revolution of the last 250 years, trace gases have had a significant 

impact on the climate. Of particular relevance to this work are species which facilitate the 

destruction of stratospheric ozone. In this thesis, I focus on four of these species.  

Understanding the release, reaction and transport pathways of the man-made 

chlorofluorocarbons (CFCs) could help us to mitigate their destructive effect. Previous 

studies have found that both source and sink processes significantly alter the isotopic 

composition of trace gases (e.g. N2O and CFC-12). Measuring these changes can be used 

to better constrain the interaction of these gases with the atmosphere. Atmospheric 

histories of δ(
37

Cl) and δ(
13

C) in CFC-11, CFC-12 and CFC-113 are presented, covering 

the last 20 – 60 years. Air samples came from Greenland (NEEM) and Antarctic (Fletcher 

Promontory) polar firn, with additional samples taken from an archive of Southern 

Hemispheric background air (Cape Grim, Tasmania). This study extends the novel 

approach to measuring trace gas isotope ratios in small air volumes (200 – 600 ml), using a 

single-collector gas chromatography-mass spectrometry system.  

Carbonyl sulphide (COS) is the principal source of sulphur in the stratosphere, where it 

breaks down into sulphate aerosol which catalyses the destruction of ozone. Air was 

extracted from Greenland (NEEM) and Antarctic (DE08, DML (BAS) and DSS) ice core 

samples and analysed for COS and a range of other trace gas mole fractions. The COS 

measurements were affected by a previously unknown post-extraction growth effect, 

leading to higher than expected values. This study also presents new COS measurements in 

firn air from NEEM and the Southern Hemisphere (EDML, Antarctica). The observed 

increase and subsequent decrease largely reflects changes in anthropogenic emissions 

during the 20
th

 century. These measurements also indicate that regional and site-specific 

effects have a significant influence on the recorded atmospheric history of COS. 
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Chapter 1: Scientific background 

Through the industrial revolution of the last 250 years, humans have had a significant 

impact on our climate and it is expected that Earth’s mean surface temperature will 

continue to rise in the coming decades. The link between climatic conditions and the 

composition of the atmosphere is strong, with levels of CO2 and CH4 higher today than at 

any point in the past 800,000 years (Figure 1.1). This latter information is obtained from 

the analysis of the air trapped in polar ice cores.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research presented in this thesis focuses on the measurement of trace gases in 

atmospheric air samples. A range of species are investigated, using a variety of sample 

sources (including ice core and firn air samples from Greenland and Antarctica). This 

chapter will begin with an introduction to the spheres of the climate system most relevant 

to this work (the atmosphere and the cryosphere). After this, each of the species under 

Age / thousands of years before present 

 

Figure 1.1. The atmospheric abundance of CO2 (Lüthi et al., 2008) and CH4 

(Loulergue et al., 2008) over the last 800,000 years, measured in air extracted from 

an Antarctic ice core (EPICA Community Members, 2004). Current atmospheric 

abundances are higher than at any point in this record and have reached 

approximately 400 ppmv (CO2) and 1800 ppbv (CH4) (Hartmann et al., 2013). 
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investigation will be discussed in the context of the climate system and the current 

understanding of the processes that govern them. 

 

1.1   The atmosphere 

The Earth’s atmosphere is mainly composed of nitrogen (78 %) and oxygen (21 %). It also 

contains a plethora of ‘trace gases’, so-called because of their relatively low atmospheric 

abundances. Of these trace gases, CO2 and CH4 are two of the most abundant with 2011 

mole fractions of 390 ppm and 1803 ppb, respectively (on the NOAA scale from Hartmann 

et al., 2013). Over the last few decades, improved measurement capabilities have allowed 

the reliable detection and characterisation of much lower abundance compounds (e.g 

carbonyl sulphide, methyl halides and chlorofluorocarbons). The sources of these gases are 

either natural or anthropogenic (man-made) or both. For example, a significant input of 

COS to the atmosphere is through volcanic eruptions. On the other hand, COS is also 

emitted through industrial activities and chlorofluorocarbons have only been synthesised 

artificially. 

The atmosphere can be separated into layers according to altitude-dependent variations. 

The layer closest to the surface is the troposphere, followed by the stratosphere, 

mesosphere, thermosphere and exosphere. The reaction pathways relevant to the species 

under investigation in this study occur in the first two layers. 

The troposphere extends from the surface to an altitude of approximately 12 km, becoming 

colder and less dense. Vigorous mixing (mostly driven by its surface heat source), 

combined with the availability of water vapour, produce most of the known weather 

effects. This makes it the most dynamic area of the atmosphere. The tropopause marks the 

transition to the stratosphere, which extends vertically by approximately 40 km. Ozone 

absorbs some of the Sun’s ultraviolet radiation, and its formation is associated with a 

temperature increase with altitude and much less turbulent conditions than in the 

troposphere. 

 

1.1.1   Radiative forcing 

The Earth’s energy budget is influenced by many factors, known as ‘forcings’ (e.g. the 

Sun’s output and the Earth’s orbital position and atmospheric composition) (Figure 1.2). 

Changing the atmosphere’s composition can alter the amount of radiation that is retained 

through the greenhouse effect, hence altering the balance of energy moving into and out of 
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the Earth system. In terms of their abundance, trace gases (e.g. CO2, CH4, N2O and water 

vapour) are of little significance compared to the major components of the atmosphere (N2 

and O2). However, in terms of their impact on our climate, trace gases make by far the 

biggest contribution. Many of these gases are referred to as ‘greenhouse gases’ because of 

their ability to absorb upwelling terrestrial infrared radiation. For example, the amount of 

CO2 in the atmosphere has increased by approximately 40 % since the start of the 

industrial revolution (1750), contributing to the observed global temperature increase over 

the last few decades (Bindoff et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assess the contribution of individual gases to the greenhouse effect, a standardised 

measure called the Global Warming Potential (GWP) is calculated. This factor combines 

Figure 1.2. An estimate of the Earth’s annual mean energy budget between March 

2000 and May 2004. The coloured sections containing arrows are sized in proportion 

to the magnitude of the energy flow they represent. The diagram was taken from 

Trenberth et al. (2009). 
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the ability of each molecule of a compound to absorb radiation over a specific time period 

with its atmospheric lifetime (Ramaswamy et al., 2001): 

            GWP(x) =  
∫ ax.[x(t)]dt
TH
0

∫ ar.[r(t)]dt
TH
0

                                                                 (1.1) 

In equation 1.1, TH is the time horizon over which the calculation is made, ax is the 

radiative efficiency of a gas and [x(t)] represents the way the abundance of a gas decreases 

over time. Generally, CO2 is used as the reference gas (the denominator in equation 1.1) 

and is assigned the value 1 (Forster et al., 2007). In this way, GWP values are used to 

compare the radiative effect of different compounds. Since these values are calculated on a 

per molecule basis, the high atmospheric abundance of CO2 has no effect on its GWP. 

Many lower abundance gases can be considered more potent based on their GWPs, even 

though their overall effect on the climate is less than that of CO2. For example, on the 100 

year time horizon, SF5CF3 has a GWP of 17,800 (Montzka et al., 2011) and a tropospheric 

abundance of 0.15 pptv (Sturges et al. 2012), while CO2 has a GWP of 1 and a 

tropospheric abundance of 400 ppmv (Hartmann et al., 2013). 

 

1.1.2   Ozone 

Ozone (O3) occurs naturally in the atmosphere at abundances ranging from a few tens to 

hundreds of pmol mol
-1

. It is found mostly in the stratospheric ‘ozone layer’, but there is 

also a significant presence near the Earth’s surface (Figure 1.3). 

O3 plays a part in both sustaining and damaging life on Earth. Tropospheric O3 is highly 

reactive, destroying certain biological molecules. It reduces crop yields and can cause 

serious lung complaints when inhaled. On the other hand, stratospheric O3 strongly absorbs 

biologically harmful UV-B radiation, preventing most of it from reaching the Earth’s 

surface. This makes it important to understand the processes governing its atmospheric 

abundance, so that we are better able to sustain it as a barrier. 

O3 production and loss mechanisms are dependent on many factors, such as latitude, 

season and atmospheric circulation patterns. This means that its global distribution is 

highly variable. Perhaps the most dramatic example of this variability was the discovery of 

the ozone hole over the Antarctic (Farman et al., 1985). This also made the public more 

aware of the damage being done by CFCs and other ozone depleting gases and served as a 

wakeup call for policy makers. 
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1.1.2.1   Ozone production 

Ultraviolet solar radiation is integral to the production of stratospheric O3. The radiation 

splits O2 molecules into highly reactive O atoms, which can combine with more O2 to give 

O3. This dependence on solar radiation means that O3 production is more prevalent in the 

tropics, which receive elevated levels of sunlight compared to higher latitudes. Equations 

1.2 and 1.3 outline these processes (Coffey and Brasseur, 1999): 

            O2 + ℎ𝑣
−
→O+ O (𝜆 < 242 nm)                                                (1.2) 

            O + O2 +M
−
→O3 +M                                                               (1.3) 

Figure 1.3. Ozone is present throughout the troposphere and stratosphere. The mid-

stratosphere ‘ozone layer’ is where ozone abundance peaks. There is a second, 

smaller peak close to the surface, caused by anthropogenic air pollution. 

This schematic diagram does not convey the way ozone varies based on other 

factors, such as latitude and season. The diagram was taken from Fahey et al. 

(2010). 
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where M is a gaseous species which carries off the excess energy produced by the O3 

formation. In the atmosphere, M is typically N2 or O2.  

Tropospheric O3 has two main sources. The first is stratospheric O3, transported through 

the tropopause. The second is from near surface chemical reactions which involve both 

natural and anthropogenic gases. Fossil fuel combustion is the primary source of the 

pollutant gases that lead to near surface O3 production (e.g. mono-nitrogen oxides (NOx) 

and hydrocarbons). For example (Liu and Ridley, 1999): 

            NO2 +  ℎ𝑣
−
→O +NO (𝜆 < 400 nm)                                          (1.4) 

The atomic oxygen produced in this reaction can then form O3 through equation 1.3. 

 

1.1.2.2   Ozone loss 

Equation 1.3 is one of a pair of reactions that describe the exchange of O3 and atomic O in 

the stratosphere. O3 is produced in equation 1.3 and converted back to atomic O through 

equation 1.5 (Coffey and Brasseur, 1999): 

            O3 +  ℎ𝑣
−
→O2 + O                                                                      (1.5) 

This mechanism forms part of the series of reactions put forward to explain the formation 

and destruction of the stratospheric ozone layer (Chapman, 1930). Subsequently, it has 

been shown that the overall atmospheric ozone abundance is overestimated by this 

mechanism, meaning that additional loss processes must be occurring. 

Catalytic cycles have been identified which contribute significantly to the destruction of 

stratospheric ozone (most notably involving NOx and species containing Cl and Br). A 

common catalytic cycle involving Cl will be discussed further because it is relevant to the 

work on CFC-11, CFC-12 and CFC-113, which all contain Cl (Chapter 3). With regards to 

O3, halogens are mostly inert within their organic source gases (e.g. CFCs, CH3Br and 

CH3Cl). However, when converted to reactive species in the atmosphere, they participate 

in several reaction pathways which result in the destruction of O3. For example, the 

photolysis of CFC-12 releases chlorine atoms (Holloway and Wayne, 2010): 

            CCl2F2 +  ℎ𝑣
−
→ CClF2 + Cl                                                         (1.6) 

Figure 1.4 illustrates an O3 destruction cycle that occurs widely at tropical and mid-

latitudes in the stratosphere. Its dominance at these latitudes is due to the higher solar 

radiation causing the formation of more atomic oxygen, which is required in this cycle. In 
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this example, the Cl atom is recycled meaning that it can go on to destroy many O3 

molecules. This preservation gives each Cl atom in the stratosphere a very high O3 

destruction potential.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The catalytic cycles involving NOx and species containing Cl and Br are largely limited by 

the conversion of reactive species (e.g. Cl and ClO) into inactive forms (e.g. HCl and 

ClONO2) (Coffey and Brasseur, 1999): 

            Cl + CH4
−
→HCl + CH3                                                               (1.7) 

            ClO + NO2 +M
−
→ ClONO2 +M                                                 (1.8) 

Figure 1.4. The overall reaction shown is the formation of molecular oxygen from 

ozone and atomic oxygen. The cycle involving Cl and ClO can be considered a 

catalytic one because these compounds are conserved as ozone is destroyed. The 

diagram was taken from Fahey et al. (2010). 
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In these examples, HCl and ClONO2 are termed “reservoir” species because they hold 

ozone destroying chemicals in an inactive form. To calculate the potential effect of ozone 

destroying chemicals, their total atmospheric load must be quantified, rather than just their 

presence as reactive species. This is because if Cl was released from one of its reservoirs, it 

would have the potential to destroy ozone. For example, the presence of HCl and ClONO2 

is important to the overall rate of O3 destruction under the dynamically and chemically 

perturbed conditions of the polar winter (see below). 

 

Over the last 50 years, the stratospheric conditions over the poles during winter have given 

rise to dramatic variations in the abundance of O3. There are two key factors which 

significantly affect O3 loss in the polar stratosphere during the winter (Holloway and 

Wayne, 2010):  

1. Strong circumpolar winds develop in the mid-lower stratosphere above Antarctica 

(and the Arctic, to a lesser extent) causing what is known as the ‘polar vortex’. This 

acts as a barrier to horizontal transport of air, isolating the polar regions. 

2. A reduction in solar radiation during this period produces low temperatures at both 

poles. These conditions induce the formation of polar stratospheric clouds (PSCs) 

which only form at temperatures below -78 °C. PSCs are particularly prevalent 

over Antarctica because temperatures are generally lower than over the Arctic (on 

average temperatures under -78 °C last for 1 – 2 months over the Arctic, compared 

to 5 – 6 months over the Antarctic). 

The gravitational settling of PSCs which contain nitric acid causes the removal of NOx 

species. This removal is termed ‘denitrification’ and results in the release of reactive 

species which destroy stratospheric ozone (e.g. equation 1.8). The work in this thesis 

relates to halogens rather than nitrogen species specifically, so denitrification will not be 

discussed further and subsequent examples will instead relate to chlorine. PSCs also 

provide a surface for the reservoir species produced in equations 1.7 and 1.8 to react on, 

releasing chlorine (Coffey and Brasseur, 1999): 

            ClONO2 +  HCl
−
→ Cl2 + HNO3                                                    (1.9) 

Due to the limited available sunlight, this is followed by the slow photodissociation of Cl2 

into Cl (Coffey and Brasseur, 1999): 

            Cl2 +  ℎ𝑣
−
→ Cl + Cl                                                                      (1.10) 
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A small amount of this atomic chlorine will enter the reaction cycle in Figure 1.4. 

However, lower levels of solar radiation reduce the abundance of atomic oxygen, limiting 

the rate of this reaction. An alternative cycle can be used to explain the observed ozone 

depletion events in the polar stratosphere. In this case, ClO is formed through the reaction 

of Cl (from equation 1.10) with O3 (Figure 1.4). At low temperatures, (ClO)2 can be 

formed which is then photolysed to produce two chlorine atoms, leading to the destruction 

of O3 (Coffey and Brasseur, 1999): 

            ClO +  ClO + M
−
→ (ClO)2 +M                                                   (1.11) 

            (ClO)2 +  ℎ𝑣
−
→ Cl + ClOO                                                          (1.12) 

            ClOO +  M
−
→ Cl + O2 +M                                                          (1.13) 

            2(Cl + O3
−
→ ClO + O2)                                                              (1.14) 

            2 O3 + ℎ𝑣
−
→ 3O2                                                               [Net] (1.15) 

In this way, the dynamically and chemically perturbed stratospheric conditions over the 

poles during the winter activate large amounts of inactive ozone destroying chemicals 

which significantly deplete O3 in early spring, leading to ‘ozone holes’. 

 

Typically, naturally produced sulphur compounds (e.g. CS2) are oxidised to SO2 in the 

troposphere (Fried and Tyndall, 1999). However, the longer-lived COS is the only reduced 

sulphur gas which regularly reaches the stratosphere. This is due to its relatively slow 

reaction rate with OH, giving it a tropospheric lifetime of approximately 10 years. In the 

stratosphere it is either oxidised by O atoms or through photolysis (Fried and Tyndall, 

1999): 

            COS + ℎ𝑣
−
→ CO + S                                                                    (1.16) 

            O + COS
−
→ CO + SO                                                                    (1.17) 

            S + O2
−
→ SO + O                                                                         (1.18) 

            SO + O2
−
→ SO2 + O                                                                     (1.19) 

            SO + NO2
−
→ SO2 + NO                                                               (1.20) 

Both mechanisms produce SO2, which is further oxidised to SO3 and H2SO4. Sulphate 

aerosol is produced when sulphuric acid condenses to form particles, which makes COS a 



Scientific background 

 

10 

 

precursor of sulphate aerosol. These particles act in a similar way to PSCs, providing a 

surface for reactions to occur on. Although COS does not cause stratospheric O3 depletion, 

its indirect role in the catalytic destruction process makes it a species of interest in this 

regard. 

 

1.2   The cryosphere 

Areas of the Earth’s surface where water is found in its solid form are collectively known 

as the cryosphere (e.g. mountain glaciers and frozen lakes). In the case of this study, 

samples are taken from the ice sheets covering Antarctica and Greenland. 

Polar ice deposits are formed through the gradual burial and compression of snow falling 

as precipitation. Air is incorporated into the ice during this burial process, meaning that 

samples of the paleo-atmosphere have been locked within polar ice since permanent ice 

sheets have covered the poles. By drilling into this ice, air can be extracted and analysed to 

determine the atmospheric composition hundreds of thousands of years into the past. This 

makes these cryospheric samples an invaluable tool in our attempts to understand the 

mechanisms by which the climate changes.  

 

1.2.1   Firn structure and processes 

The firn layer is the uppermost part of the polar ice sheet consisting of consolidated snow, 

progressively transforming into ice. The thickness of this layer varies geographically, 

depending on the depositional environment. Typically, the firn layer extends for 70 – 100 

m, providing samples of air corresponding to approximately the last 50 – 100 years (e.g. 

Martinerie et al., 2009; Buizert et al., 2012). The low density and open porosity allows 

large air volumes to be pumped out at a selected depth, making these samples ideal for 

producing atmospheric histories of trace gases over the last few decades. 

The convective, diffusive and lock-in zones are the three main sections of the firn column 

(Sowers et al., 1992; Buizert et al., 2012). They are defined according to the diffusion 

behaviour of gases and the physical properties of the ice at certain depths.  

 

Convective zone 

This layer consists of the least consolidated material and occupies the area closest to the 

surface. At most sites this zone does not extend below 12 m (Landais et al., 2006), but in 
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extreme environments this limit can be broken; at a site close to Vostok, with an 

accumulation rate approaching zero, Severinghaus et al. (2003) reported a 20 m convective 

zone. This zone has high porosity and is therefore well-mixed, meaning that its 

composition is representative of the contemporary atmosphere. Most of the air movement 

in this layer is driven by surface air motion (‘windpumping’, Colbeck, 1989) and the 

diffusion of gases due to temperature gradients across the convective zone (Severinghaus 

et al., 2001). 

 

Diffusive zone 

The weight of accumulating snow above this zone increases density and reduces porosity 

with depth. Gas movement in this region is dominated by molecular diffusion and 

gravitational settling (Sowers et al., 1992). These processes enrich heavier gases and 

isotopologues at the base of the firn (Craig et al., 1988; Schwander, 1989), according to the 

barometric equation: 

               
Pz

P0
= e

mgz

RT                                                                                        (1.21) 

where P represents the partial pressure of a species at depth z (m) and the surface (z = 0), m 

is the molecular mass of the species (kg mol
-1

), g is the acceleration due to gravity (9.8 ms
-

2
), R is the universal gas constant (8.314 J K

-1
 mol

-1
) and T is the temperature (K).  

These processes will occur at different rates according to the position in the firn since they 

require open porosity, which is a depth-dependent variable. Also, the physical properties of 

a specific gas (e.g. molecular mass and radius) affect its movement potential. This means 

that the movement of a gas is dependent not only on the effective diffusivity of the firn 

column, but also the diffusivity characteristics of the individual species. 

 

Lock-in zone 

Sometimes referred to as the non-diffusive zone, gases are much less free to move and any 

motion that occurs is dominated by advection. This zone typically takes up no more than 

the bottom 10 m of the firn column (Schwander et al., 1993 and 1997; Battle et al., 1996; 

Landais et al., 2006) and is the region where most bubble close-off occurs. There is some 

open porosity, meaning that air can still be pumped out. 
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1.2.2   Ice cores 

The bottom of the lock-in zone marks the firn-ice transition and is known as the close-off 

depth (COD). Below this point, air bubbles are no longer connected and the diffusion of 

gases ceases completely. This prevents air from being pumped out, necessitating the 

retrieval of ice samples, from which air is extracted for analysis. While firn air provides 

information regarding the most recent decades, ice cores preserve air from the preceding 

millennia. Currently, the oldest air retrieved from an ice core was drilled by the European 

Project for Ice Coring in Antarctica (EPICA) at the Dome C site. It extends the ice core 

record to approximately 800,000 years before present (e.g. EPICA Community Members, 

2004; Jouzel et al., 2007; Lüthi et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although there has been a permanent ice sheet covering Greenland for over 2 million years 

(Bartoli et al., 2005) and Antarctica for approximately 14 million years (Bo et al., 2009), 

they are in a constant state of unrest. At the surface, material is added through precipitation 

and removed by ablation. Also, the ice sheet flows across the landscape under the force of 

gravity leading to ice shelves at the land-ocean interface, from which sections break off to 

Figure 1.5. A simple illustration of flow patterns within an ice sheet. The figure was 

adapted from the original in Greve and Blatter (2009). 
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form ice bergs (Figure 1.5). This means that material deposited at a particular surface site 

in the past, will not necessarily be located directly beneath this spot in the present (arrows 

in the ice sheet in Figure 1.5 show potential paths of ice from its deposition to its eventual 

loss). When ice cores are dated, glaciological flow models are used to account for this 

motion (further details of ice core dating can be found in Section 2.3.1.1). Techniques such 

as radar are employed to determine sub-surface ice flow characteristics in an area. This 

information is used to select a site which is of adequate depth and has the least complex ice 

flow pattern possible. This means that drilling sites are often located at or close to a 

summit which typically undergoes relatively little sub-surface deformation (Figure 1.5). 

Compared to a firn air sample, extracting and analysing an ice core sample is a very time 

consuming process. Also, sample size is significantly reduced when dealing with ice. 

Hundreds of litres of air can be extracted per firn sample, whereas ice is approximately 10 

% air by volume, meaning that a typical 700 g sample will yield 70 ml of air. This limits 

the number and range of possible measurements that can be made on the air extracted from 

an ice core. Further details of the air extraction process can be found in Section 2.3.2. 

 

1.3   Chlorofluorocarbons (CFCs) 

Section 1.3 is based on a published paper, for which I am the lead author (Allin et al., 

2015). 

 

1.3.1   Background 

CFCs are compounds containing carbon, chlorine and fluorine. They are man-made and 

have been used since the middle of the 20
th

 century as refrigerants, aerosol propellants and 

foam blowing agents, due in part to their stability and their low flammability and toxicity. 

The work in this thesis refers to the three most abundant CFCs in the contemporary 

atmosphere (Table 1.1), which are CFC-11 (CCl3F), CFC-12 (CCl2F2) and CFC-113 

(CClF2CCl2F). 

A direct link between CFCs and stratospheric O3 depletion was suggested during the 1970s 

(e.g. Molina and Rowland, 1974). The importance of this work was publicly recognised 

when these authors were awarded the Nobel Prize for Chemistry in 1995, along with their 

collaborator, Dr. Paul Crutzen. It was not until 1985 that Farman et al. provided some of 

the first measurements dramatically demonstrating the environmental effect of CFCs. They 

presented evidence of significant O3 losses over Antarctica (a feature now commonly 
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referred to as the ‘ozone hole’). As the immediacy of the threat became apparent, the 

international community took the effects of CFCs seriously, agreeing a plan to phase out 

their production and consumption under the Montreal Protocol (1987) and its subsequent 

amendments. 

 

 

 

 

 

 

 

1.3.1.1   Atmospheric budget 

Measurements performed on air from porous firn (Section 1.2.1) show that CFCs were 

absent from the atmosphere before the middle of the 20
th

 century (e.g. Butler et al., 1999; 

Sturrock et al., 2002; Buizert et al., 2012), suggesting that they have no natural sources. 

CFC-11, CFC-12 and CFC-113 first appeared in the atmosphere in the 1940s – 1960s 

 Compound 

 CFC-11 CFC-12 CFC-113 

(a)
2009 mole fraction / 

pmol mol
-1 

243 535 76 

(b)
Atmospheric 

lifetime / years 
52 102 93 

(a)
Ozone Depletion 

Potential (ODP) 
1 0.82 0.85 

 

Table 1.1. Key atmospheric characteristics of CFC-11, CFC-12 and CFC-113. (a) 

NOAA/AGAGE mean values taken from Montzka et al. (2011) and (b) data from 

SPARC (2013). 
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(Sturrock et al., 2002; Martinerie et al., 2009), which coincides with the start of their 

widespread anthropogenic production. 

CFCs are typically produced through the fluorination of chlorinated hydrocarbons. For 

example, equation 1.22 describes the production of CFC-11: 

            CCl4 + HF 
catalyst
→      CCl3F + HCl                                                         (1.22) 

The main feedstock in this example (CCl4) has been synthesised by the chlorination of CS2 

and, more recently, CH4. The more technically challenging use of CH4 has been favoured 

over the last 50 years because it is less polluting (Rossberg et al., 2003).  

Atmospheric removal occurs in the stratosphere, where sink processes are dominated by 

photo-dissociation (equation 1.23) and reaction with O(
1
D) (equation 1.24), e.g. 

            CCl2F2 + ℎ𝑣 
−
→ CClF2 + Cl                                                                (1.23) 

            CCl2F2 + O( 𝐷−
1 )  

−
→ CClF2 + ClO                                                       (1.24) 

Cl and ClO released in these reactions catalyse the destruction of O3 (Molina and Rowland, 

1974) (Figure 1.4, Section 1.1.2.2). 

 

1.3.2   Trace gas stable isotope measurements 

By adding or subtracting neutrons from the nucleus of a chemical element, different 

isotopes of that element are created. For example, the nucleus of a carbon atom contains 6 

protons and typically 6 neutrons, producing the most common carbon isotope (carbon-12 

or 
12

C). 
13

C contains 7 neutrons and is the other stable isotope of carbon. Table 1.2 gives 

the natural abundances of the stable isotopes of carbon and chlorine, which are measured 

in CFCs in this thesis (Chapter 3). When these isotopes are contained within molecules, 

they are termed ‘isotopologues’. For example, 
12

CCl2F2 and 
13

CCl2F2 are isotopologues of 

CFC-12. Mass spectrometry can be used to separately measure and compare the abundance 

of these isotopes, producing an isotope ratio. This measured isotope ratio can then be 

compared to that of other samples by calculating an isotope delta (δ), expressed in per mill 

(‰) to represent each sample. From the above example, 

              𝛿( C−
13 ) =  

𝑅sample

𝑅standard
− 1                                                                      (1.25) 

In equation 1.25, R represents the 
13

C/
12

C abundance ratio of a sample or standard. In this 

example, measurements use an internationally agreed upon ‘standard’ material called 

Vienna Pee Dee Belemnite (VPDB) to ensure that all measurements are comparable.  



Scientific background 

 

16 

 

 

 

 

In general, lighter isotopes form weaker bonds (Hoefs, 2009), meaning that compounds 

behave differently in physical and chemical reactions, depending on the isotopes they 

contain. For example, it has been found that compared to its natural abundance, 
12

C is 

disproportionately concentrated in biological material, partly because CO2 containing 
12

C 

is preferentially used during photosynthesis (Gannes et al., 1998).  

Of particular relevance to this work is the isotope dependence of reactions which destroy 

trace gases in the stratosphere (e.g. equations 1.23 and 1.24). Using stratospheric δ 

measurements, this process has been partially quantified for several species, such as N2O 

(Röckmann et al., 2003; Kaiser et al., 2006) and CFC-12 (Laube et al., 2010a). These 

studies assume a Rayleigh-type fractionation mechanism where isotopes are partitioned by 

a constant factor as material is continuously removed from a reservoir (in this case, the 

stratosphere). By using the linear relationship in equation 1.26, this Rayleigh-type 

mechanism quantifies the way isotopologues of a species are partitioned during its 

stratospheric breakdown (defined as the apparent stratospheric isotope fractionation, εapp) 

(Kaiser et al., 2006) 

              ln(1 + 𝛿) ≈  휀app ln(
𝑦

𝑦𝑇
)                                                                    (1.26) 

Isotope Natural abundance / % 

35
Cl 76 

37
Cl 24 

12
C 99 

13
C  1 

 

Table 1.2. The natural abundances of the stable isotopes of carbon and chlorine. 
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In equation 1.26, δ represents the isotope delta measurements made on stratospheric air 

(e.g. δ(
37

Cl) in Laube et al., 2010a) and y and yT are the stratospheric and tropospheric 

mole fractions, respectively.  

As described above, measuring isotope ratios can provide information regarding the 

chemical reactions that break down a gas. In this way, isotope ratios measured in trace 

gases can be used to infer changes in their sources and sinks, as well as the ways in which 

they contribute to biogeochemical cycles (Brenninkmeijer et al., 2003; Goldstein and 

Shaw, 2003). Long-term studies have investigated a range of species in this way, for 

example, CH4 (Etheridge et al., 1998), CO2 (Francey et al., 1999; Rubino et al., 2013) and 

N2O (Röckmann et al., 2003; Kaiser et al., 2006).  

N2O is a much studied gas with similar sinks and a comparable lifetime to CFC-12, making 

it relevant to the work in this thesis. Various studies have used firn and ice core samples 

(Sowers et al., 2002; Röckmann et al., 2003; Bernard et al., 2006; Ishijima et al., 2007), as 

well as direct atmospheric samples (Yoshida and Toyoda, 2000; Kaiser et al., 2006) to 

investigate large scale N2O isotope and abundance changes. Source inputs depleted in 
15

N 

and 
18

O are thought to have caused the concurrent tropospheric N2O abundance increase 

and δ(
15

N) and δ(
18

O) decrease over the last century, while sink processes enrich 

stratospheric N2O in heavy isotopes (Röckmann et al., 2003). The heavier isotopes of 

nitrogen and oxygen form stronger bonds, requiring more energy to break them (as 

determined empirically in the activation energy term of the Arrhenius equation). This 

means that heavier N2O isotopologues are less likely to dissociate in stratospheric sink 

reactions and are broken down more slowly, leading to the observed enrichment. 

Subsequently, Kaiser et al. (2006) found that this stratospheric enrichment increases with 

altitude and as the sampling point moves towards the equator. These effects can be 

explained by a variety of factors, such as changes in mixing regimes at high altitudes and 

the effect of the dynamically isolated and reduced sunlight environment of the polar vortex 

(Kaiser et al., 2006). Firn air studies are limited in their temporal resolution because 

diffusion processes smooth inter-annual and seasonal variations. Direct atmospheric air 

samples have been used to study these shorter scale changes (Nevison et al., 2005; 

Röckmann and Levin, 2005; Nevison et al., 2011; Park et al., 2012). Nevison et al. (2007) 

found that a May minimum in N2O mole fractions at Cape Grim was replicated in CFC-11 

and CFC-12 data. Since these three compounds share a stratospheric sink, it was thought 

that the seasonal movement of stratospheric air to the surface was a more likely 

explanation for this effect than a change in local sources or sinks.  Subsequently, Nevison 
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et al. (2011) presented strong empirical evidence that the observed seasonal cycle in N2O 

mole fractions at Northern Hemisphere sites is influenced by stratospheric air, as 

previously suggested (Nevison et al. 2005). For example, Nevison et al. (2011) found that 

the observed N2O minimum was deeper in years when the lowest stratospheric 

temperatures were higher than average. A mechanism has not been put forward which fully 

explains this stratospheric influence. However, it is likely that the break-up of the polar 

vortex in late spring allows polar tropospheric air (which has been influenced by the 

stratosphere through Brewer-Dobson circulation) to be transported to lower latitudes 

(Nevison et al., 2011). Park et al. (2012) found that the N2O mole fraction minimum at 

Cape Grim approximately coincides with a maximum in δ(
15

N, N2O) and δ(
18

O, N2O). This 

finding supports the conclusions of Nevison et al. (2005 and 2011) since stratospheric air 

becomes enriched in δ(
15

N, N2O) and δ(
18

O, N2O) as N2O is removed. The tropospheric 

seasonality observed in isotope and mole fraction measurements has not been fully 

explained, but the seasonal movement of N2O-depleted air with a correspondingly enriched 

isotopic composition from the stratosphere to the surface seems likely to be a significant 

contributory factor.  

In contrast to N2O, the much lower abundance CFCs are poorly characterised because very 

few studies have investigated their isotope ratios. Redeker et al. (2007) measured 

tropospheric δ(
13

C) values for 37 hydrocarbons and halocarbons, including CFC-11, CFC-

12 and CFC-113, over the course of a year. In these three compounds, they found no 

diurnal or seasonal trends outside their analytical uncertainties. Zuiderweg et al. (2012) 

measured the stable carbon isotope fractionation of CFC-12 and CFC-11 by conducting 

UV photolysis experiments at stratospherically relevant temperatures. They found a 

fractionation (ε) of -55.3 ‰ for CFC-12, compared to -23.0 ‰ for CFC-11 (at 233 K). 

Zuiderweg et al. (2013) reported a large 
13

C depletion of CFC-12 measured on Greenland 

firn air, suggesting that a highly 
13

C-depleted reservoir has undergone significant 

enrichment (up to 80 ‰) from 1950 to 2009. This δ(
13

C) change is largely inferred from a 

single measurement at 1970, meaning that the veracity of these conclusions hinges on the 

reliability of this measurement. Several potential issues have been found relating to the 

measurements presented by Zuiderweg et al. (2013) and are discussed in Section 3.2.3.3. 

The only chlorine isotope ratio study of atmospheric CFCs measured the δ(
37

Cl) of CFC-12 

in the tropical stratosphere (Laube et al., 2010a). Enrichment with altitude, to a maximum 

of 27 ‰ relative to the tropospheric value, was attributed to sink reactions (equations 1.23 

and 1.24) occurring more readily with the lighter isotopologue (as seen for N2O). The 
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apparent stratospheric isotope fractionation (equation 1.26) was calculated to be (-12.1 ± 

1.7) ‰. Laube et al. (2010a) highlighted the large effect of sink reactions on the isotopic 

composition of CFC-12 in the stratosphere. They did not attempt to link this effect to 

tropospheric signals, which would allow source isotopic characterisation. It is expected 

that this stratospheric effect should, in the long-term, lead to a relative 
37

Cl-enrichment of 

tropospheric CFC-12 with respect to the average source isotope ratio through stratosphere-

troposphere air exchange, similar to observations made on other gases, such as CH4 

(McCarthy et al., 2001), H2 (Batenburg et al., 2012) and N2O (Röckmann et al., 2003). 

 

As shown by the extensive work done on N2O (discussed above), the isotopic 

characterisation of trace gases can improve our understanding of their reaction and 

transport pathways as well as their sources. In this thesis, measurements of δ(
37

Cl) and 

δ(
13

C) in CFC-11, CFC-12 and CFC-113 in tropospheric samples are made as a step 

towards the isotopic characterisation of these gases. Below are three examples of the 

advances that could be made based on isotopic studies of these gases:  

1. Equations 1.23 and 1.24 show the dominant stratospheric loss processes for CFCs. 

It could be that these reactions cause different fractionation effects. Measurements 

of δ(
37

Cl) in CFCs in the stratosphere (e.g. Laube et al., 2010a) and laboratory 

studies which isolate the effect of a single reaction (e.g. Zuiderweg et al., 2012) are 

informative in this regard. They could be used to quantify the lifetime of CFCs 

through individual reactions and calculate the relative contribution of each to CFC 

destruction. These measurements could also reveal spatial and temporal variations 

in these factors, as seen for N2O (e.g. Kaiser et al., 2006). 

2. Nevison et al. (2005) noted a similarity in the seasonal cycles of N2O, CFC-11 and 

CFC-12 mole fractions at Cape Grim. It seems reasonable to expect that δ(
37

Cl) and 

δ(
13

C) in CFCs will exhibit comparable seasonality effects as seen in δ(
15

N, N2O) 

and δ(
18

O, N2O) (Park et al., 2012). This would provide further evidence for the 

influence of large-scale circulation patterns, as suggested previously (Nevison et 

al., 2005 and 2011; Park et al., 2012). 

3. Zuiderweg et al. (2013) describe how industrial advances in the 20
th

 century altered 

the manufacturing processes used to produce CFCs. The most significant change 

occurred in the production of the main feedstock (CCl4). In the last 50 years it has 

been synthesised through the chlorination of CH4, whereas CS2 had previously been 

used in this way. If this change caused an alteration in the emissions δ(
37

Cl) or 
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δ(
13

C), a change in the atmospheric isotope delta could be produced (e.g. 

Zuiderweg et al., 2013). Whether this change was detectable or not would depend 

on its magnitude and timing. Earlier emissions of these gases represent a larger 

proportion of the total atmospheric load, meaning that atmospheric isotope 

measurements are increasingly sensitive to source changes the closer they are to the 

point of first release.  

 

Since CFC-11 and CFC-113 are destroyed through the same stratospheric processes as 

CFC-12, it is reasonable to expect that they will also exhibit sink reaction isotope 

dependencies. This study builds on the work of Laube et al. (2010a) to better characterise 

the source and sink reactions which affect the three most abundant CFCs.  

More work has been done to investigate the carbon isotopes of CFCs, leading to the 

discovery of several isotope dependencies. However, question marks remain regarding the 

reliability of some of these challenging measurements. This study intends to revisit the 

measurements made by Zuiderweg et al. (2013) and expand the knowledge base to a long-

term investigation of CFC-11, CFC-12 and CFC-113 in the troposphere.  

 

1.4   Carbonyl sulphide (COS) 

1.4.1   Background 

Carbonyl sulphide (COS) has been identified as the most abundant sulphur-containing 

trace gas in the atmosphere (Montzka et al., 2011). Its role as a precursor for stratospheric 

sulphate aerosols (Section 1.1.2.2), which catalyse the destruction of O3 (Andreae and 

Crutzen, 1997), makes it an important gas to characterise more fully.  

The global warming potential (GWP) of COS is 27 times higher than CO2 on the 100 year 

time horizon (Brühl et al., 2012). In opposition to this effect, sulphate aerosol formed from 

COS act to cool the planet by reflecting solar radiation away from the Earth’s surface. 

Brühl et al. (2012) have calculated that these two effects approximately cancel each other 

out. Therefore, while COS is important in stratospheric O3 destruction, it is not recognised 

as a net contributor to global warming in its capacity as a greenhouse gas (GHG).  
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1.4.2   Atmospheric budget 

Several studies have investigated the COS budget (Khalil and Rasmussen, 1984; Chin and 

Davis, 1993; Kettle et al., 2002; Watts, 2000; Montzka et al., 2007). This has proved a 

challenge because it is a highly complex system, with various terrestrial, oceanic and 

atmospheric processes contributing to the production and removal of atmospheric COS. 

The oxidation of carbon disulphide (CS2) in the atmosphere is thought to be the main 

source of COS (Watts, 2000). As well as its natural presence, CS2 is emitted during the 

production of viscose-rayon (an artificial fibre). This process began in Europe in 1910 and 

is still operational today, although production shifted to Asia by the early 1990s (source: 

Fiber Economics Bureau, Inc.). As well as an anthropogenic influence through the viscose-

rayon industry, domestic stoves and heating systems have been cited as direct sources of 

COS (Mu et al., 2002). COS is also the atmospheric oxidation product of dimethyl 

sulphide (DMS), an oceanic phytoplankton emission (Barnes et al., 1994). Other natural 

sources of COS include the oceans, biomass burning, volcanoes, wetlands and anoxic soils 

(Aydin et al., 2008). 

By far the largest COS sink is uptake by vegetation during photosynthesis (this link will be 

discussed further in Section 1.4.4). Other sinks include the oceans, soils, reaction with OH 

and stratospheric photolysis. These sinks give COS a tropospheric lifetime of 2 – 4 years 

(Montzka et al., 2007; Suntharalingham et al., 2008). 

The oceans are both a COS source and sink, depending on the season (Wilhelm et al., 

1977; DeBruyn et al., 1995; Weiss et al., 1995; Ulshofer et al., 1995, 1996). Out-gassing 

peaks during the summer/autumn (Ulshofer et al., 1996) and at the point of maximum 

daylight (Zepp and Andreae, 1994) due to various production mechanisms. It is thought 

that the oceans act as a global net source over an average annual cycle (Watts, 2000). 

 

1.4.3   Measurement history 

COS was first measured in the atmosphere approximately 40 years ago (Hanst et al., 1975; 

Sandalls and Penkett, 1977). Since then, Bandy et al. (1992) have presented a Northern 

Hemisphere time series over the period 1977 – 1991. They made more than 1000 aircraft- 

and ground-based measurements with a mean mole fraction of 512 pmol mol
-1

. However, a 

standard deviation of 119 pmol mol
-1

 made it difficult to draw conclusions regarding either 

annual or seasonal variations in this period. Bingemer et al. (1990) had similar variability 
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issues, only allowing the authors to tentatively suggest an anthropogenic source, based on a 

strong correlation with CO and CH4. 

Other direct atmospheric studies have focused on specific air environments. Kourtidis et al. 

(1995) used balloons to measure vertical profiles in the Arctic vortex. They show a steep 

decline in COS above the tropopause, as would be expected. Marine air has been 

investigated in an attempt to understand the COS budget (Thornton et al., 1996) and 

quantify its air-sea flux (Xu et al., 2001). Urban air presents an interesting study 

environment because of the proximate anthropogenic influence along with the natural 

background level. Mu et al. (2002 and 2004) measured generally elevated values in Beijing 

City as well as a diurnal cycle with high values at night (attributed to increased thermal 

convection during the day). 

Several short-term COS studies have successfully quantified its large seasonal cycle. For 

example, the Global Monitoring Division of the Earth System Research Laboratory 

(ESRL), at the National Oceanic and Atmospheric Administration (NOAA), has made high 

time resolution COS measurements since 2000 at 11 Northern and Southern Hemisphere 

sites (these data are published at http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html). 

Montzka et al. (2007) found the highest annual average mole fractions at the equator, with 

reduced abundances at higher latitudes in both hemispheres. The terrestrial vegetation sink 

is more prevalent in the Northern Hemisphere (NH) because land masses are concentrated 

there, leading to a COS minimum in the late NH summer. Conversely, the Southern 

Hemisphere (SH) COS cycle is dominated by the oceanic source, which produces a 

maximum in the Austral summer (February). Due to the dominance of a sink in the NH 

and a source in the SH, there is a mean inter-hemispheric gradient of approximately 3 % 

towards the SH (Montzka et al., 2007; Figure 1.6).  

 

 

 

 

 

 

 

 

http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html
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The analysis of firn air samples extended the measurement history to earlier in the 

twentieth century. This was first achieved by Sturges et al. (2001) when they analysed air 

extracted from firn at Devon Island (Canada), Dronning Maud Land and Dome Concordia 

(both Antarctica). A physical transport model was used to consider possible historical 

changes (a full inversion to actual trends was not possible at this time). At the Antarctic 

sites, they found lower COS in the early 20
th

 century and the Devon Island record revealed 

a possible NH decline in recent years of 8 ± 5 %.  

Montzka et al. (2004) reported a pre-1980s rise in the SH, before a fall of 60 – 90 pmol 

mol
-1

 to ambient levels of 480 – 490 pmol mol
-1

. A firn diffusion model was used to 

calculate the increasing trend to the 1980s and the subsequent decline was inferred largely 

from surface measurements made between 2000 and 2002 (from NOAA ground-based 

stations). The firn measurements at depths shallower than 40 m do not wholly agree with 

this decline between the 1980s and 2000. Montzka et al. (2004) suggest that rapid diffusion 

in the shallow firn has caused abrupt changes in atmospheric abundance to be smoothed, 

meaning that model-derived peak mole fractions are higher than those measured in the firn.    

Figure 1.6. The NOAA average annual COS mole fractions from up to 5 years of 

ground-based data, plotted against each station’s latitude. The figure was adapted 

from Montzka et al. (2007). 
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Data from other sources support a decrease since the 1980s, although there is some 

disagreement regarding its magnitude. For example, Rinsland et al. (2002 and 2008) found 

a small but statistically significant long-term NH free tropospheric COS change between 

1978 and 2002 of -0.25 ± 0.04 %/year, from solar absorption spectra.  

Most recently, the twelve NOAA ground-based stations have provided a continuous record 

of COS abundance from early in the 21
st
 century to the present day 

(http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html). These measurements show 

significant variation over this period due to the presence of strong seasonal cycles. 

However, based on these measurements, average annual tropospheric mole fractions have 

not changed significantly in the 21
st
 century. 

 

Aydin et al. (2002) found no evidence of COS loss in ice cores and suggested that a long-

term record of COS mole fractions could be measured. Aydin et al. (2007) found good 

agreement between Northern and Southern Hemisphere ice core records, concluding that 

the observed signals reflect real paleo-atmospheric variations. Subsequently, two studies 

have found evidence of contamination processes that would affect the COS record (Aydin 

et al., 2010 and 2014). Aydin et al. (2010) measured CFC-12 (an anthropogenic gas with a 

high contemporary abundance) in firn and ice from three sites. As expected, CFC-12 

decreased to zero at the base of the firn and was not present in ice core samples 

significantly below the deepest firn sample. However, ice core samples at the firn-ice 

transition showed elevated levels. A post-coring entrapment process was used to explain 

this observation. It is possible that some pores remain open at this depth, allowing modern 

air to be included as the core is recovered. Following this, Aydin et al. (2014) investigated 

the effect of water on measured COS values from ice core samples. They reported that 

hydrolysis of COS occurs within the ice core, leading to a progressive loss as the sample 

age increases. Thompson et al. (1935) first described the hydrolysis of COS in aqueous 

solution and subsequent studies have used reaction kinetic experiments to make COS 

hydrolysis lifetime estimates (Elliot et al., 1989; Assonov et al., 2005).  Aydin et al. (2014) 

infer a lifetime of ~10000 years at -30 °C (a typical mean surface temperature at their 

Antarctic drilling sites). Warmer sites exhibit the fastest hydrolysis rates, leading to the 

largest correction at a given age. Aydin et al. calculated that there was a loss of ~100 pmol 

mol
-1

 3000 years before present at the warmest site (Siple Dome C). Loss rates were 

calculated to be approximately half this at colder locations. 

 

http://www.esrl.noaa.gov/gmd/hats/gases/OCS.html
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The Saltzman/Aydin Research Group at the University of California, Irvine has published 

a series of studies regarding pre-industrial atmospheric COS in air extracted from ice cores 

(Aydin et al., 2002, 2008 and 2014; Montzka et al., 2004). 11 ice core samples with air 

ages ranging from 1616 to 1694 AD were analysed for COS mole fractions (Aydin et al., 

2002). A mean value of (373 ± 37) pmol mol
-1

 was reported, which is approximately 25 % 

lower than contemporary levels. Data from Montzka et al. (2004) agree with this 17
th

 

century level, as well as extending the record to establish a pre-industrial level of just 

under 350 pmol mol
-1

 between 1700 and 1900. Following this, Aydin et al. (2008) 

presented data from the SPRESSO ice core (South Pole), covering the last 2000 years. This 

work suggests that COS levels were relatively stable at slightly below 350 pmol mol
-1

 over 

the last 2000 years. These data (Aydin et al., 2008) do not show elevated COS levels 

during the 1600s, contradicting the measurements from the Siple Dome C core (Montzka et 

al., 2004; Figure 1.7). The slightly elevated levels during the 1600s from Siple Dome C ice 

Figure 1.7. COS measurements from South Pole SPRESSO (blue diamonds) and 

Siple Dome C (red diamonds) ice between 1550 and 1750. 1σ error bars are shown. 

The figure was adapted from Aydin et al. (2008). 
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(Montzka et al., 2004) represent the only significant change in the natural COS budget over 

the last 2000 years. However, these elevated Siple Dome C measurements have larger 

uncertainties than the South Pole measurements made over the same period (Aydin et al., 

2008; Figure 1.7). There are mean 1σ uncertainties of 23.0 and 11.8 pmol mol
-1

 from Siple 

Dome C and South Pole ice, respectively (between 1600 and 1700). The reason for this 

difference in uncertainties is not known, although it does cast some doubt on the 

robustness of the measurements made by Montzka et al., 2004. 

A longer-term study measured COS in ice from several Antarctic ice cores (Byrd, Siple 

Dome, South Pole, Taylor Dome and WAIS Divide), covering various age ranges, up to 

almost 8000 years before present (Aydin et al., 2014). After accounting for the observed 

COS losses due to hydrolysis, the authors report a slow COS increase which started 

approximately 5000 years ago. They suggest that a decline in the net terrestrial primary 

productivity during this period is the most likely cause. Further details of this link can be 

found in Section 1.4.4. 

 

A significant amount of work has been done on SH firn and ice (particularly by the 

Saltzman/Aydin group), but there is very little long-term NH data. The Devon Island 

record presented by Sturges et al. (2001) is the only NH record that extends pre-1978 

(judging by the CFC-12 mole fractions used as an age normaliser). The NH firn air 

measurements presented in this thesis (Chapter 4) provide a new constraint on the 

atmospheric history of COS in the NH during the 20
th

 century. 

 

1.4.4   COS and the carbon cycle 

The carbon cycle describes the ways in which carbon is exchanged between the 

atmosphere, hydrosphere, biosphere and lithosphere (Figure 1.8). Understanding these 

exchange processes helps to create a global carbon budget, which is a way of describing 

where all of the carbon on Earth is (Williams and Follows, 2011). Perhaps the most 

dynamic parts of this system are the atmosphere, biosphere and hydrosphere, which play 

host to a wide variety of reactions. Public awareness of the atmospheric component of the 

carbon budget is high, because of the well documented anthropogenic rise of CO2 levels 

and the harm this could cause. Other reservoirs are less well understood in the public 

forum, for example, the role of vegetation in this system (Sarmiento and Gruber, 2002). 
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As described in Section 1.4.2, uptake by vegetation is the dominant COS sink. Many 

studies have attempted to understand this terrestrial uptake process (e.g Kluczewski et al., 

1985; Goldan et al., 1988; Protoschill-Krebs and Kesselmeier, 1992; Protoschill-Krebs et 

al., 1996; Sandoval-Soto et al., 2005; Seibt et al., 2010; Stimler et al., 2010). It has been 

found that COS follows the same path as CO2 through leaf stomata, before being 

consumed by photosynthetic enzymes (particularly carbonic anhydrase). At this point COS 

is destroyed, whereas CO2 is subsequently released from the plant during respiration. This 

means that, subject to certain conditions (listed below), COS can be used as a proxy for 

terrestrial Gross Primary Production (GPP). GPP is a measure of the amount of chemical 

energy an ecosystem produces in a given time. This makes it a suitable variable to 

constrain when attempting to determine the state of the paleo-climate. This information can 

then be used to make predictions regarding future climatic conditions. 

 

 

 

 

Figure 1.8. An illustration of the complex interactions of the carbon cycle. The 

average anthropogenic (red) and natural (black) fluxes during the 1980s are 

represented by arrows (in petagrams of carbon per year). The figure was taken from 

Sarmiento and Gruber (2002). 
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The link between COS and the global carbon cycle has developed rapidly in recent years 

(e.g. Campbell et al., 2008; Suntharalingam et al., 2008; Blonquist et al., 2011; Berry et al., 

2013). Blonquist et al. (2011) provide a comprehensive summary of the current evidence. 

Four assumptions are made in order to use COS as a proxy for GPP: 

1. An identical diffusion pathway into the leaf is used by COS and CO2. 

2. Once inside the leaf, there is no subsequent COS release. 

3. COS and CO2 act entirely independently. 

4. The diffusion of COS into leaves is the only interaction between COS and the 

ecosystem. 

Assumptions 1 and 3 have been widely supported by leaf and canopy scale gas exchange 

studies (e.g. Xu et al., 2002; Stimler et al., 2010). However, nocturnal emissions have been 

recorded from a spruce forest tower site meaning that further work is required to fully 

satisfy the second and fourth conditions (Xu et al., 2002).  

In general, the overwhelmingly positive outcome of these gas exchange studies supports 

the use of COS as a proxy for GPP (Blonquist et al., 2011). However, the isolated 

examples of environments which violate the requirements should be investigated further to 

determine their overall significance.  

 

1.5   Research objectives 

This section outlines the broad research objectives of this work and how they relate to the 

field of atmospheric science in general. Chapters 3 and 4 will provide details regarding the 

expected scientific outcomes specific to the work presented in each chapter. 

 

1.5.1   An atmospheric history of the chlorine and carbon isotope composition of 

          CFC-11, CFC-12 and CFC-113 

Isotopic characterisation is an essential tool in understanding the atmospheric history of a 

trace gas. For example, source inputs depleted in 
15

N and 
18

O are thought to have caused 

the concurrent tropospheric N2O abundance increase and δ(
15

N) and δ(
18

O) decrease over 

the last century (Röckmann et al., 2003). 

 This study aims to produce a tropospheric chlorine and carbon isotope history of 

CFC-11, CFC-12 and CFC-113 as a step towards the construction of their global 
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isotope budgets. This work is vital in order to better understand the way these gases 

interact with the climate system. 

 The use of a single-collector GC-MS instrument to measure trace gas isotope ratios 

is a relatively new advance in this field. This study aims to expand the range of 

fragment ions available for effective analysis by developing methodological 

improvements to enhance measurement precision. 

 

1.5.2   Carbonyl sulphide (COS) in ice and firn 

Further characterisation of the atmospheric history of COS and its link to the global carbon 

cycle would improve our understanding of the way our climate has changed in the past, 

potentially leading to better climate change predictions.  

 This study aims to make high precision COS, CO2 and δ(
13

C, CO2) measurements 

on ice core samples from the last 1000 years to confirm or refute the discussed link 

between COS and the global carbon cycle. 

 Uncertainty remains over the global atmospheric history of COS during the 20
th

 

century. A new set of Northern and Southern Hemisphere firn air measurements 

will improve our understanding of COS mole fraction changes during this period. 
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Chapter 2: Experimental methodologies 

 

This chapter provides a general overview of the techniques used to perform this trace gas 

work. Methods developed for specific periods of analysis will be discussed in the relevant 

results chapters (3 and 4). 

 

2.1   Gas Chromatography-Mass Spectrometry 

In the last two decades, coupled gas chromatography-mass spectrometry (GC-MS) systems 

have become more widespread and are particularly useful in the analysis of multiple 

compounds in air samples. The high sensitivity of these systems has opened up the 

possibility of detecting gases at very low abundances. For example, Laube et al. (2014) 

measured HCFC-133a in archived air samples to a minimum abundance of approximately 

0.02 pmol mol
-1

. 

The measurements discussed in this thesis were performed using an Agilent 6890 GC, 

coupled to a VG/Waters “AutoSpec” EBE tri-sector mass spectrometer. This system was 

designed to make high precision measurements of pmol mol
-1

 level gases in small air 

samples. Details of previous work conducted using this system can be found in Laube et al. 

(2010b), Sturges et al. (2012) and Allin et al. (2015). A detailed description of GC-MS 

techniques can be found in Skoog et al. (2004) and Williams (2006). A general overview 

of gas chromatography and mass spectrometry is given below and a more detailed 

description of the instrument used in this work can be found in Section 2.1.1. 

 

Gas Chromatography 

Gas chromatography allows the separation of compounds according to their partitioning on 

a ‘stationary phase’, when transported across it by a ‘mobile phase’. In this case, the 

‘stationary phase’ is a porous layer on a capillary column and the ‘mobile phase’ is helium 

gas, flowing constantly through the system. It is important to regulate the temperature of 

the column so that the elution of compounds is predictable. In this work, the column was 

housed in a programmable Agilent GC oven. This control allows specific compounds to be 

observed at pre-determined points during an analysis (see Section 2.1.1 for more details).  
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Mass Spectrometry 

Once eluted from the column, compounds are transported into the ionisation source of the 

mass spectrometer. A heated filament produces a beam of electrons which bombard the 

sample gas molecules and produce molecular and fragment ions. For example, this process 

produces the molecular ion of CFC-11 (CCl3F): 

            CCl3F + e
−

.
→ CCl3F

+· + 2e−                                                     (2.1) 

As discussed in Section 2.1.1.1, the CCl2F
+
 fragment is typically used to measure CFC-11. 

This ion results from further fragmentation of the radical cation formed in equation 2.1 and 

can be produced through the loss of a Cl atom: 

            CCl3F
+·

.
→ CCl2F

+ + Cl−                                                             (2.2) 

The AutoSpec instrument used in this work is a tri-sector mass spectrometer, meaning that 

these ions pass through two electric sectors, one on either side of the magnetic sector. The 

electric sectors improve sensitivity through de-magnifying optics and reduce background 

noise through the removal of metastable ions. The magnetic sector deflects the ions 

according to their mass to charge ratio (m/z) towards the detector. The flight path within 

the mass spectrometer must be kept under vacuum using scroll and diffusion pumps. This 

prevents air molecules from interacting with the in-flight sample ions. The presence of air 

molecules would disrupt the sample detection by reacting with the ions or simply by 

deflecting them. 

The AutoSpec uses an off-axis ion detector which further reduces the background noise 

level by preventing neutral ions from striking the detector. A dual conversion dynode 

configuration releases electrons as sample ions strike its surface. These electrons then 

impact a phosphor screen which emits photons. Lastly, a photomultiplier tube converts 

these photons into an electronically detectable signal. This is achieved through the 

‘photoelectric effect’ (where photons impact a surface releasing electrons) and ‘secondary 

emission’ of electrons (where an electron strikes the surface of an electrode releasing 

several electrons). Section 2.1.1.4 describes how this signal is viewed and interpreted. 
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Table 2.1. An example of a programme used for measurements made in Selected 

Ion Recording mode on a 49 m GS-GasPro porous layer open tubular column. 

Empirical formulae are given and the monitored ions include the most abundant 

isotopes, unless otherwise stated. 

2.1.1   Measurement procedure 

2.1.1.1   Instrument setup 

Waters
®
 provide the software package ‘MassLynx’ as an interface between the instrument 

and user; it controls all aspects of the instrument setup. 

 

The MS was operated at a mass resolution of 1000 in EI-SIR (Electron Impact-Selected 

Ion Recording) mode. The SIR programme is split into functions which define set time 

periods after a sample has been injected into the GC-MS system. Based on the elution 

times of specific compounds, mass to charge ratios (m/z) are included in each function, 

which correspond to known source ionisation products of these species (e.g. Table 2.1).  

 

Function 
Start time / 

mins 

End time / 

mins 
Compound 

Monitored 

m/z 
Major ion 

1 5.5 7.4 

C2F4 

SF6 

C16H34 (lock mass) 

99.9936 

126.9641 

113.1330 

C2F4
+
 

SF5
+
 

C8H18
+
 

2 7.4 9.2 

CH2F2 

 

COS 

 

 

C16H34 (lock mass) 

51.0046 

52.0125 

59.9670 

60.9664 

61.9628 

57.0704 

CH2F2
+
 

CHF2
+
 

COS
+
 

CO
33

S
+
 

CO
34

S
+
 

C4H9
+
 

3 9.2 10.4 

C2ClF5 (CFC-115) 

 

C16H34 (lock mass) 

84.9657 

86.9627 

99.1174 

CClF2
+
 

C
37

ClF2
+
 

C7H15
+
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Table 2.1.  
  

 

 

4 10.4 11.2 

CCl2F2 (CFC-12) 

 

 

C16H34 (lock mass) 

100.9361 

101.9395 

102.9332 

99.1174 

CCl2F
+
 

13
CCl2F

+
 

C
35

Cl
37

ClF
+
 

C7H15
+
 

5 11.2 11.95 

CH3Cl 

 

 

CH2FCF3 (HFC-134a) 

C16H34 (lock mass) 

49.9923 

50.9957 

51.9894 

68.9952 

99.1174 

CH3Cl
+ 

13
CH3Cl

+ 

CH3
37

Cl
+
 

CF3
+ 

C7H15
+
 

6 11.95 12.8 

CS2 

 

C16H34 (lock mass) 

75.9441 

77.9399 

71.0861 

CS2
+ 

CS
34

S
+ 

C5H11
+
 

7 12.8 13.3 

CH3Br 

 

 

C16H34 (lock mass) 

93.9418 

94.9452 

95.9398 

99.1174 

CH3Br
+
 

CH2
81

Br
+
 

CH3
81

Br
+
 

C7H15
+
 

8 13.3 14.1 

CCl3F (CFC-11) 

 

 

C16H34 (lock mass) 

100.9361 

101.9395 

102.9332 

99.1174 

CCl2F
+
 

13
CCl2F

+
 

CCl
37

ClF
+
 

C7H15
+
 

9 14.1 15.3 

C2H5Cl 

 

CH2Cl2 

 

C16H34 (lock mass) 

64.0080 

66.0050 

85.9504 

87.9475 

85.1017 

C2H5Cl
+
 

C2H5
37

Cl
+
 

CH2Cl
37

Cl
+
 

CH2
37

Cl2
+
 

C6H13
+
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Table 2.1.   

10 15.3 16.3 

C2Cl3F3 (CFC-113) 

 

 

C16H34 (lock mass) 

100.9361 

101.9395 

102.9332 

99.1174 

CCl2F
+
 

13
CCl2F

+
 

CCl
37

ClF
+ 

C7H15
+
 

11 16.3 17.2 

CHCl3 

 

CCl4 

CH2ClBr 

C16H34 (lock mass) 

82.9455 

84.9426 

116.9066 

129.9008 

99.1174 

CHCl2
+
 

CHCl
37

Cl
+
 

CCl3
+ 

CH2
81

BrCl
+
 

C7H15
+
 

12 17.2 17.85 

C2HCl3 

 

C2H5I 

C16H34 (lock mass) 

129.9144 

133.9085 

156.9514 

141.1643 

C2HCl3
+ 

C2HCl
37

Cl2
+ 

C2H5I
+ 

C10H21
+
 

13 17.85 18.3 

CHCl2Br 

 

CH2Br2 

 

CH3CCl3 

C16H34 (lock mass) 

82.9455 

84.9426 

92.9340 

94.9319 

96.9612 

85.1017 

CHCl2
+
 

CHCl
37

Cl
+
 

CH2
79

Br
+
 

CH2
81

Br
+
 

CH3CCl3
+
 

C6H13
+
 

14 18.3 18.75 

C3H7Br 

 

C16H34 (lock mass) 

121.9731 

123.9711 

113.1130 

C3H7Br
+ 

C3H7
81

Br
+ 

C8H18
+
 

15 18.75 19.5 

(CH2Cl)2 

 

C2Cl4 

 

C16H34 (lock mass) 

61.9923 

63.9894 

93.9377 

95.9348 

71.0861 

C2H3Cl
+
 

C2H3
37

Cl
+
 

C2Cl2
+
 

C2Cl
37

Cl
+
 

C5H11
+
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Table 2.1.  
 

 

 

 

Each species is fragmented into a wide range of ionisation products. This means that 

several fragments of the same species can be measured in a single acquisition, allowing the 

investigation of multiple isotopologues (e.g. three ions represent three isotopologues of 

CFC-11 in function 8, Table 2.1). Figure 2.1 shows the mass spectra of the reference gas 

(hexadecane) and CFC-11. Each peak in Figure 2.1 represents a fragment ion of the parent 

molecule, with a unique mass to charge ratio (m/z). Given the extensive list of ionisation 

products which could be measured, a decision needed to be made regarding which 

fragment ions were included in the mass spectrometer programme (Table 2.1). This 

decision was made based on two factors: 

1. The size of the peaks. Both the target species (e.g. CFC-11) and the reference gas 

(hexadecane) must provide peaks which are large enough to be detected, but not so 

large that the detector will become saturated and prevent a robust measurement.  

2. The proximity of the peaks. In terms of their m/z values, the target species and 

reference peaks must be as close to each other as possible. Typically, the largest 

detectable m/z value in a function is 1.5 times the smallest detectable m/z value. 

In the case of CFC-11, the CCl2F
+
 ion is used (m/z 101) because it is the most abundant 

fragment ion and there are several close-by hexadecane peaks (m/z 85, 99 and 113) which 

can be used in the tuning and mass calibration process (Figure 2.1). 

 

16 19.5 20.6 

CHClBr2 

 

C16H34 (lock mass) 

126.8950 

128.8930 

127.1486 

CHClBr
+
 

CHCl
81

Br
+
 

C9H19
+
 

17 20.6 25 

C2H4Br2 

CHBr3 

 

C16H34 (lock mass) 

106.9496 

170.8445 

172.8425 

141.1643 

C2H4Br
+
 

CHBr2
+
 

CHBr
81

Br
+
 

C10H21
+
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To optimise the instrument’s performance, a daily process of tuning and mass calibration 

was necessary. Before any measurements were made, the ion repeller and focusing lenses 

were adjusted whilst observing a reference gas peak to produce a large, symmetric peak. 

This reference gas is contained in a glass vessel which is attached to a movable stainless 

steel tube, directly linked to the ion source. The flow rate is controlled using a valve and by 

adjusting the distance between the hexadecane and the ion source to achieve a constant 

flow at the desired level. The mass calibration process ensures that the m/z values of the 

various hexadecane fragment ions are correctly identified. This is particularly important for 

the hexadecane m/z value included in each function (known as the lock mass). The 

accelerating voltage jumps between masses in an appropriate range, matching peaks with 

known hexadecane fragment ions. This procedure allows small peak position changes to be 

tracked and corrected for, meaning that the masses corresponding to species of interest are 

reliably detected. 

 

2.1.1.2   Sample preparation 

A glass tube containing magnesium perchlorate (Mg(ClO4)2) was included in the inlet 

system (Figure 2.2). Due to its hygroscopic nature, it was used to dry all air before being 

introduced to the GC-MS system. A short 1/16
th

 inch outside diameter stainless steel pre-

concentration loop, packed with Heysep D (80/100 mesh), was cooled to -78 °C by 

immersion in a dry ice/ethanol mixture. Approximately 200 ml of the dried sample was 

passed through the loop, trapping the species of interest. A reference volume and a 

Baratron pressure sensor were used to measure the actual volume of air used. The loop was 

then opened to the carrier gas (research grade helium) which flows into the GC oven at a 

constant 2 ml/min. By removing the dry ice/ethanol mixture and immediately replacing it 

with hot water (~95 °C), the trapped gases were released. Figure 2.2 shows a schematic 

diagram of the inlet system. 

The GC oven contains a GS-GasPro column (length 49 m, ID 0.32 mm) which was cooled 

to a start temperature of -10 °C. After 2 minutes, the temperature was ramped up by 10 

°C/min to hold at a final temperature of 200 °C, thereby producing a set of elution times 

for the pre-concentrated compounds. 
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2.1.1.3   Sample analysis 

It is preferable for the system ‘blank’ to be quantified on each analysis day. This means 

that, rather than an air sample, an aliquot of the helium carrier gas is passed through the 

inlet system and injected into the GC-MS for analysis. A peak detected in a blank run 

constitutes the zero point and is subtracted from all other runs on that day. As well as this, 

the daily blank run is a useful diagnostic tool, for example, a higher than expected blank 

level is often the first sign of a leak in the system.  

It is necessary to begin the day with at least two standard runs, to allow the instrument to 

settle. Once a stable peak is achieved, samples are typically analysed twice in succession 

with standards bracketing the two runs. In this way, several samples can be analysed each 

day (typically three). After the instrument has stabilised, standard runs are used to track 

instrumental drift; bracketing samples with standards enable this drift to be corrected for 

during data processing (details in Section 2.1.1.4). 

The same standard (AAL-071170) was used for all of the work presented in this thesis. It 

was collected by the National Oceanic and Atmospheric Administration (NOAA) at Niwot 

Ridge, Colorado in 2006. It is a real air sample, contained in a pressurised Aculife-treated 

aluminium cylinder. The NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) 

analysed the sample for a range of trace gases, including all of the gases discussed in this 

work. This means that the mole fractions reported in this thesis are consistent with NOAA 

calibration scales. The root calibration scale has been updated several times using standard 

inter-comparisons, which track the ratio of one standard to another with respect to 

individual compounds. Details of the calibration scales and mole fraction values used in 

this thesis can be found in Table 2.2. Figure 2.3 shows how the COS content of two UEA 

standards has varied over time, with respect to each other. 
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Compound Scale 
Scale 

year 

AAL-071170 

mole fraction / 

pmol mol
-1

 

1σ uncertainty 

/ pmol mol
-1 

SF6 NOAA 2006 5.89 0.08 

CFC-11 NOAA 1993 249.61 2.25 

CFC-12 NOAA 2008 539.89 2.35 

CFC-113 NOAA 2002 79.15 0.55 

CH3CCl3 NOAA 2003 18.65 0.81 

COS NOAA 2004 666.23 5.18 

 

Table 2.2. Details of the calibration scales used to assign mole fraction values to six 

compounds in the AAL-071170 standard air. 1σ analytical uncertainties are also 

included. 
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Figure 2.3. An example of the results from standard inter-comparisons, which are used 

to assess the stability of COS and other species of interest within pressurised laboratory 

standards over long time periods. Measurements of COS in two laboratory standards 

(ALM-64957 and ALM-39753) between 1998 and 2013 are shown here as a ratio. 

Analytical uncertainties are not readily available for these measurements, so reasonable 

uncertainties are included for each point (2 %). Typically the GC-MS used in this thesis 

achieves between 1 and 4 % 1σ uncertainties. The consistency shown is excellent, with 

no apparent drift over time between the two standards. This comparison was used as an 

example because of its exceptional length. 
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2.1.1.4   Data processing 

As well as controlling the instrument setup (Section 2.1.1.1), MassLynx facilitates peak 

integrations and outputs the raw data necessary for all other data processing steps.  

A sample peak area of a compound (e.g. SF6) is compared to an equivalent peak from the 

laboratory standard (AAL-071170), after each area is normalised according to the exact air 

volume injected. This sample to standard ratio is then multiplied by the known mole 

fraction of SF6 in the standard, producing a sample SF6 mole fraction value. Figure 2.4 

shows example peak outputs. 

As mentioned in Section 2.1.1.3, the instrument is not entirely consistent between runs; 

there is a small amount of drift in the detector response during an analysis day. This means 

that comparing temporally distant sample and standard peaks introduces a bias in the 

resulting sample mole fraction. To minimise this effect, instrumental drift was tracked in 

the standard. To calculate a mole fraction, the sample was compared to a combination of 

its surrounding standards. Each standard is weighted according to its temporal proximity to 

the sample. Based on this weighting, a combined standard value is used to calculate the 

standard to sample ratio. 

The 1σ total analytical uncertainty of a measurement is calculated by combining the 

sample standard deviation (SD) and the daily standard SD, using equation 2.3: 

            Total uncertainty =  √SDsample
2 + SDstandard

2                                    (2.3) 

In most cases, equation 2.3 is sufficient. However, where a repeat analysis of the sample 

has not been made, the SD of a sample measured under similar instrument conditions is 

used to substitute into equation 2.3. In practice, this means that the substituting sample 

must have been analysed within a few days of the single repeat sample. A further 

requirement is that the substituting sample must contain similar levels of the species being 

measured because there is a general deterioration in the measurement precision achieved as 

mole fractions decrease. In the absence of a suitable substitute sample, the daily standard 

SD is doubled to produce an estimate of the total measurement uncertainty. 
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2.1.2   Isotope ratios 

Isotope Ratio Mass Spectrometry (IRMS) has been used for many years to measure the 

isotope ratios within a species. These instruments typically collect individual fragment ions 

in separate detectors, by exploiting differences in their m/z values, which affect their 
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Figure 2.4. Example chromatograms for SF6 and CFC-12 which have standard 

(AAL-071170) mole fractions of 5.9 and 539.9 pmol mol
-1

, respectively. The peaks 

peaks shown represent the fragment ions 
32

SF5
+
 (m/z 126.96) and 

12
C(

35
Cl2)F

+
 (m/z 

100.94). 
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degree of deflection in a magnetic field. In each detector, a hit count is converted to a 

current, which is then amplified before being displayed. By comparing the responses of 

individual detectors, an isotope ratio can be obtained. 

Although excellent precision can be achieved using IRMS, it is not always suitable for 

multiple trace gas isotope ratio analysis. Also, samples collected from air archives 

generally have small volumes (e.g. ice cores), making them unsuitable for IRMS analysis 

which typically requires many litres to get a large enough signal from low abundance gases 

(pmol mol
-1

 level).  

 

2.1.2.1   GC-MS isotope ratio analysis 

An alternative method for measuring isotope ratios in trace gases has been recently 

developed (e.g. Laube et al., 2010a) which uses a GC-MS system to overcome some of the 

inherent drawbacks to IRMS outlined above. This section provides a brief introduction to 

the potential advantages of using a GC-MS instrument to measure isotope ratios. Specific 

details of these methods can be found in Chapter 3, which is partially based on Allin et al. 

(2015). 

The GC-MS measurement procedure detailed in Section 2.1.1 is mostly unchanged when 

attempting to quantify isotope ratios, rather than mole fractions. Multiple m/z values are 

included in each function, corresponding to fragments of a species with different isotopic 

compositions (e.g. Table 2.1). The multi-detector array of IRMS systems means that 

information on each isotope is collected simultaneously. This is not possible in a single-

detector GC-MS system which cycles through the defined m/z values of a function, 

producing slightly offset peaks for all fragments. This is not a significant issue because the 

offset is very small (typically 80 ms).  

A major advantage of the GC-MS system is its high sensitivity. Compared to IRMS, 

smaller sample sizes can be used and less abundant species can be investigated, broadening 

the potential scope of isotope ratio studies. Also, the GC separation of species allows an 

unmodified air sample to be introduced to the system. Therefore, isotope analysis of 

multiple species is possible in a single measurement, making this technique highly efficient 

in terms of the temporal and sample volume requirements. 
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2.2   Firn air modelling 

Measurements of gases in firn air are initially reported verses depth, rather than as time 

series. Modelling techniques are used to perform the essential normalising step of 

converting firn depths to air ages, enabling comparisons between multiple data sets. As 

described in Section 1.2.1, the firn layer is a heterogeneous and highly dynamic 

environment, meaning that the process of assigning an air age to a given depth is not a 

simple one. The diverse depositional environments of different drilling sites and the 

inconsistent behaviour of various species within the firn preclude the use of a single air age 

versus depth scale. Instead, each site and each species must be modelled to arrive at 

individual time series. 

A firn diffusion model is used to simulate the movement of gases in the firn layer at a 

given site. This characterises the effective diffusivity of the site and allows mole fraction 

verses depth profiles to be used to reconstruct the atmosphere’s composition over time. 

 

2.2.1   The firn diffusion model 

The Centre National de la Recherche Scientifique – Laboratoire de Glaciologie et 

Géophysique de l’Environement (CNRS-LGGE) developed the model used in this thesis. 

An overview of the model is given below and a detailed description can be found in 

Rommelaere et al. (1997).  

Using environmental factors and site characteristics (e.g. close-off depth, convective layer 

depth, site temperature and site accumulation rate) as well as the physical properties of the 

gas being modelled (e.g. molecular diffusivity and molecular mass), the transport rate of 

the gas can be determined. This model incorporates similar physical properties to previous 

studies (Schwander et al., 1993; Trudinger et al., 1997), although Rommelaere et al. (1997) 

also accounted for the downward air flux created by the process of air trapping at the firn-

ice transition. These models all assume that the diffusivity profile of a site is in a steady 

state, the corollary being that external factors such as the climate have not changed over 

the study period. 

A site-specific tuning procedure is performed using a range of trace gases. A diffusivity 

profile is produced using the known atmospheric history of a gas (e.g. CO2), before 

optimising the fit to the measured firn air values (Buizert et al., 2012; Witrant et al., 2012).  

By optimising the fit of several gases, a better estimate of the firn diffusivity profile can be 

obtained (Buizert et al., 2012). It should be noted that the process of defining the effective 
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diffusivity of a site cannot account for heterogeneities in the firn, such as melt layers 

(Martinerie et al., 2009). Buizert et al. (2012) outline a multi-gas method which 

systematically analyses the inherent uncertainties and minimises them by monitoring a root 

mean square deviation value. The gases used as tuning species by Buizert et al. (2012) to 

model the 2008 drilling campaign at the NEEM site in Greenland were CO2, CH4, SF6, 

CFC-11, CFC-12, CFC-113, HFC-134a, CH3CCl3, Δ
14

CO2 and δ
15

N. Gases are chosen as 

tuning species based on two main criteria:  

1. Gases with distinct atmospheric histories are used to provide variety in the time 

series that the model is exposed to. For example, CO2 increases steadily during the 

20
th

 century whereas CH3CCl3 increased rapidly until the early 1990s before 

declining sharply. Constraining the model using both of these species improves its 

capacity to accurately characterise a variety of additional species. 

2. A gas that has increased or decreased steeply in abundance during the 20
th

 century 

provides a better temporal constraint in the tuning process. This is because the 

change in abundance over a given time period is greater than for a species which 

has increased or decreased more gradually. For example, CO2 and CH4 increased 

rapidly during the 20
th

 century and continue on this trajectory to the present day. 

This multi-gas approach has several advantages over using the reduced list of compounds 

previously included (often only CO2 and CH4). By including more gases, a wider range of 

atmospheric histories and transport behaviours are incorporated. This means that the 

movement of gases in the firn is characterised more completely. Consequently, the scope 

of the model’s output will be broadened. Finally, a significant underlying difficulty in this 

modelling process is that a diffusivity profile is always mathematically underdetermined. 

This means that a large number of solutions fit the data, rather than a single result 

(Rommelaere et al., 1997). Including more species in the tuning process allows the 

diffusivity profile to be constrained more strongly, making the result less underdetermined 

(Buizert et al., 2012). 

Once a site’s diffusivity profile has been defined, the transport of any gas through the firn 

can be modelled by inputting its molecular mass (Mgas) and diffusion coefficient (Dgas). 

The diffusion coefficient is scaled relative to CO2, meaning that a Dgas/DCO2 value is used 

for each species. Together, Mgas and Dgas/DCO2 values can be used to define the diffusion 

speed of a gas in firn. Table 2.3 lists these values for the species modelled in this thesis. 

Dgas values are calculated using equation 2.4 (Chen and Othmer, 1962): 
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              Dgas  =  
0.43 (

T

100
)
1.81

 (
1

M1
+ 

1

M2
)
0.5

P(
Tc1Tc2
10000

)
0.1405

 [(
Vc1
100
)
0.4
(
Vc2
100
)
0.4
]
2                                               (2.4) 

In equation 2.4, subscripts of “1” and “2” are used to identify quantities relating to air and 

a specific gas, respectively. T is the ambient temperature and TC is the critical temperature 

(both in K). M is the molar mass (g mol
-1

) and VC is the critical volume (cm
3
 mol

-1
). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Chapter 4 of this thesis (Section 4.2), I have used the model framework described above 

to produce firn air profiles of carbonyl sulphide (COS). An inverse version of the 

diffusivity model described above was used to reconstruct the atmospheric history of 

chlorine isotopes in CFC-11, CFC-12 and CFC-113, using measurements of δ(
37

Cl) in firn 

air and the known past atmospheric changes in their mole fractions (Section 3.1). These 

inverse methods are not described here because the work was conducted by Dr. Patricia 

Martinerie at LGGE (details can be found in Allin et al., 2015).  

 

 

Compound Mgas (g mol
-1

) Dgas/DCO2 

SF6 146.06 0.621 

CFC-11 137.37 0.575 

CFC-12 120.90 0.618 

CFC-113 187.38 0.495 

CH3CCl3 133.40 0.537 

COS 60.08 0.785 

 

Table 2.3. The molar mass (Mgas) and diffusivity relative to CO2 (Dgas/DCO2) are given 

for various compounds. Dgas values were calculated using the methodology outlined in 

Chen and Othmer (1962). 
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2.3   Ice core system 

The methods described in this section relate to work conducted in the Ice Core Extraction 

Laboratory (ICELAB) at the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) Marine and Atmospheric Research (CMAR) in Australia. Below is 

an overview of the “cheese grater” dry extraction system used; a more complete 

description can be found in Etheridge et al. (1988 and 1996) and Rubino et al. (2013).  

 

2.3.1   Sample selection 

The most important consideration when selecting an ice core sample is the age of the 

trapped gas. For a study to capture a time period of interest and to enable the temporal 

analysis of ice core measurements, an accurate depth versus age relationship for the ice 

core must be established (Section 2.3.1.1). Once a section with an appropriate air age range 

has been identified, several criteria are used to choose the specific piece of ice that will be 

sampled from within this section. These criteria relate to the quality of the ice; sections that 

have been damaged during drilling and transportation or through in-situ degradation are 

avoided (e.g. visible cracks or complete fractures). These features could interfere with the 

measurements if the damage has facilitated the ingress of modern air. This means that a 

single, unblemished piece is selected whenever possible. 

 

2.3.1.1   Ice core dating 

Typically, an ice core is dated using a range of techniques. Shallow cores (covering 

approximately the last 1000 years) are easier to date than deep cores, just as high 

accumulation sites can be dated more accurately than low accumulation sites. This is 

because a given time period will be represented by a larger range of depths in young ice or 

at a site where precipitation is high. Under these conditions, the resolution of 

measurements is greater, meaning that the site can be better characterised.  

Shallow cores can often be dated by observing seasonal cycles through various chemical 

analyses (e.g. Mulvaney et al., 2002; Hofstede et al., 2004). Figure 2.5 shows the results of 

some of these measurements and highlights the seasonal cycles within them. δ(
18

O) and δD 

in water act as a partial proxy for temperature, leading to a summer peak and winter trough 

(Figure 2.5). Also, species which are produced indirectly by phytoplankton display strong 

seasonality (e.g. non sea salt sulphate, nss SO4
2-

, and methane sulphonate, MSA
-
). 



Experimental methodologies 

 

48 

 

Electrical conductivity measurements are largely dependent on the acidity of the ice, 

meaning that the presence of compounds which are deposited as acids (e.g. nss SO4
2-

) can 

be used to discern seasonal cycles. The Electrical Conductivity Method (ECM) and 

dielectric profiling (DEP) are commonly used for this purpose (e.g. Mulvaney et al., 2002). 

After an initial depth versus age relationship is produced through annual layer counting as 

outlined above, verification from an independent method is required. Reference horizons 

can be used in this capacity, particularly through the identification of known volcanic 

eruptions in the ice record. Figure 2.6 shows the effect of some major eruptions on the 

sulphate content of the ice. Some of the larger eruptions can be seen globally (e.g. 

Tambora, Indonesia in 1815), whereas others have only a local influence (e.g. Laki in 

Iceland produces strong signals in Greenland, but not in Antarctica). 

These measurements can be compared to glaciological model outputs, providing an 

additional constraint on the depth versus age relationship. This type of model takes into 

account the near-surface accumulation rate (obtained through layer counting), a known 

density profile and a Nye thinning model (which factors in thinning due to lateral flow at 

the bedrock; Nye, 1963). Although slightly simplistic (a constant accumulation rate over 

the study period is assumed), this method is useful as a check of previous dating efforts. 

Finally, radioactivity peaks in 1954 and 1963 (caused by intense nuclear weapons testing) 

can be used to constrain the recent accumulation rate. The nuclear weapons debris can be 

clearly seen by measuring beta particles (a by-product of certain types of radioactive 

decay).  
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Figure 2.5. Seasonal cycles seen in various isotopes and species, with vertical lines 

representing the annual layers at Berkner Island. Above (56.0 – 58.8 m): A) stable 

isotopes of water (δ(
18

O) and δD); B) non sea salt sulphate (nss SO4
2-

) and 

methanesulphonate (MSA
-
). Below (69.8 – 71.6 m): C) chloride (Cl

-
) and nitrate (NO3

-
); 

D) nss SO4
2-

 and MSA
-
. All figures are taken from Mulvaney et al. (2002). 

A) 

B) 

C) 

D) 
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Additional complications arise when dating deep cores: 

 Glaciological models are less able to deal with the thinning process at great depth, 

eventually producing infinitesimally thin layers.  

 Deep cores traverse periods of significant climatic change which can significantly 

alter the accumulation rate (e.g. glacial transitions).  

 Volcanic eruptions are less well constrained further back in time, making it more 

difficult to use them as reference horizons.  

Figure 2.6. The nss SO4
2-

 peaks in the British Antarctic Survey’s Dronning Maud Land 

ice core record, representing the emissions of major sulphate-rich volcanic eruptions. 

These characteristic peaks help to date shallow ice cores, refining existing estimates 

from annual layer counting (Figure 2.5). This figure was provided through personal 

communication with Dr. Robert Mulvaney of the British Antarctic Survey. 
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 With increasing depth it becomes more difficult and eventually impossible to 

achieve the required measurement resolution for effective seasonal cycle 

identification.  

In this study, all of the samples were retrieved from shallow cores, avoiding these 

difficulties. 

 

2.3.2   Air extraction and measurement procedure 

Figures 2.7 and 2.8 are schematic diagrams which show aspects of the ice core extraction 

system. 
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Figure 2.7. A schematic diagram of the ice core extraction line in ICELAB at CMAR. 

A cross contained within a circle represents a valve. The figure was modified from the 

original diagram which was provided through personal communication with Dr. Mauro 

Rubino of the Commonwealth Scientific and Industrial Research Organisation. 
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2.3.2.1   The day before a set of extractions 

Core sections of appropriate ages were identified and samples between 0.7 and 1.5 kg were 

cut using a band saw (work carried out in the cold room at -20 °C). The outer 5 – 20 mm of 

the core was removed because the risk of contamination to exterior surfaces is high (e.g. 

through partial melting or contact with foreign materials). This process left samples of 

approximately 0.5 – 1.2 kg, which were sealed in polyethylene bags and cooled to -80 °C 

for 24 hours. This cooling makes the ice more brittle, promoting a higher grating efficiency 

and resulting in a higher air recovery percentage (typically 80 %). Also, at -80 °C the 

sample is less vulnerable to state changes, which would increase the chances of 

contamination. 
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Figure 2.8. A schematic diagram of the ice core extraction vessel, including the 

“cheese grater” component. A cross contained within a circle represents a valve. The 

figure was modified from the original diagram in Etheridge et al. (1988). 
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2.3.2.2   Extraction day 

The helium compressor (which drives the cryostat) was turned on several hours before the 

first extraction to allow time for it to cool. The extraction line and the ‘cold head jacket’ 

were then evacuated. (The ‘cold head’ is the part of the cryostat that reaches the lowest 

temperature and is where a ‘trap’ is positioned to collect the sample. The ‘jacket’ is the 

space surrounding the cold head and must be under vacuum to facilitate cooling. The traps 

have electro-polished stainless steel internal surfaces and Stellite (a cobalt-based alloy) 

stem tips.) 

The first sample was sealed inside the grater vessel using indium wire and a series of nuts, 

tightened to 5 Nm (Figure 2.8). The sample was then attached to the extraction line and the 

whole system was opened to an array of pumps. Vacuum was maintained through a 

roughing pump for 5 minutes before the system was backfilled with clean air and 

evacuated twice. (Backfilling the whole system with clean air flushes the line and ensures 

that the grater is not sealed by the partial vacuum created during cryogenic trapping.) 

Finally, a turbo pump was engaged and the vessel was evacuated for at least 10 minutes 

(the pressure must be <10
-4

 Torr). At this point, the grater vessel was sealed and removed 

from the extraction line. An ethanol/N2(l) mixture at approximately -100 °C was put in 

place, acting as a water trap (Figure 2.7). The sample was shaken vigorously for 10 

minutes and re-attached to the extraction line. When the cold head had reached -255 °C, 

the pumps were sealed off and the trap opened to the sample vessel. Complete cryogenic 

trapping took approximately 1 minute. The trap was sealed, removed from the cold head 

and partially immersed in tap water, gradually warming it to room temperature. (Pressure 

sensors are continually monitored to ensure adequate vacuum is achieved, complete 

trapping takes place and that the system is leak tight.) 

Samples of approximately 50 – 90 ml were collected through this method, which were then 

analysed using the steps outlined in Section 2.3.2.4. 

 

2.3.2.3   Post extraction 

The system was evacuated after each extraction, while using a heat gun to evaporate the 

water trapped by the ethanol/N2(l) mixture. Additionally, the next sample trap was inserted 

to begin cooling in the cryostat, and compressed air was used to clear the grater vessel of 

ice chip debris. 
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At the end of the day (typically after four extractions), the system was more thoroughly 

purged, preparing it for the next set of extractions. Firstly, the highly malleable indium 

wire seal was replaced because leaks quickly develop as the wire is flattened during the 

sealing process. Secondly, the grater vessel was more thoroughly cleaned, ensuring that all 

ice chip debris was removed. Also, the vessel was disassembled, rinsed with deionised 

water, baked at 120 °C and steam cleaned with deionised water-saturated air at 120 °C. 

 

2.3.2.4   Measurements 

Within an hour, the trapped sample was analysed on several Gas Chromatography (GC) 

instruments, which measure mole fractions of CO2, CH4, CO and N2O. After this, the 

remaining air was analysed for δ(
13

C) and δ(
18

O) of CO2 on an IRMS (MAT252, 

Finnigan). Approximately 30 ml and 40 ml aliquots of air were used for the CMAR mole 

fraction and isotope measurements, respectively. These measurements were performed by 

Dr. Mauro Rubino at CMAR. 

The complete set of analyses was performed only when sufficient air was available. The 

trace gas and isotope analysis at CMAR had to leave at least 15 ml of air for trace gas 

analysis at UEA. As detailed in Chapter 4, the main aim of this work was to obtain 

measurements of COS, CO2 and δ(
13

C, CO2) in each sample, in order to investigate the link 

between COS and Gross Primary Production (GPP, Section 1.4.4). This means that only 

CO2 and δ(
13

C, CO2) measurements were made at CMAR, unless there was more than ~80 

ml available. The trace gas analysis at UEA was conducted according to practices laid out 

in Section 2.1. Although COS was the primary target species in the UEA analysis, the MS 

programme used for firn air samples (Table 2.1) remained largely unchanged. This 

continuity was retained because naturally produced species such as CH3Cl and CH3Br have 

pre-industrial background levels, making measurements of these compounds in pre-

industrial air potentially scientifically valuable. Also, species with no natural sources act as 

sample integrity checks. For example, the presence of SF6 or CFC-12 in these samples 

could be an indication that the sample has been contaminated by modern air. 

 

2.3.3   Advantages of the CMAR system 

In general, bubbles occluded in ice cores provide a highly valuable archive of the 

atmospheric history of trace gases. This ice core resource is unique because air is preserved 

for thousands of years without alteration, allowing direct measurements to be made, 
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removing the need for proxies. The species of interest in this study contribute to ozone 

depletion and/or are significant greenhouse gases (GHG), making their characterisation 

important from an environmental perspective.  

The system developed at CMAR was designed to process large samples (Etheridge et al. 

1988). With a grater vessel that can accommodate up to 1.5 kg of ice, the system has a very 

large maximum sample yield (approximately 125 ml). In this air volume, less abundant 

species are more likely to be above analysis detection limits, increasing the array of 

measurements that can be made. The measurement output is also increased because the 

large sample size means that analyses can be made using multiple instruments. Finally, 

sample size often limits the measurement precision that can be achieved. The exceptional 

size of the samples generated leads to a more precise characterisation of the measured 

compounds. 
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Chapter 3: An atmospheric history of the chlorine and 

carbon isotope composition in CFC-11, CFC-12 and 

CFC-113 

 

Background information on CFCs and the way they deplete stratospheric ozone can be 

found in Sections 1.1.2.2 and 1.3. The atmospheric histories of CFC-11, CFC-12 and CFC-

113 are well characterised; however, the processes that govern their production and 

destruction are less well understood. This means that our understanding of their longevity 

and hence their ozone destruction potential (ODP) is compromised. 

This chapter aims to better characterise CFC-11, CFC-12 and CFC-113 by constraining 

their tropospheric chlorine and carbon isotope histories. This is an important step in the 

construction of a global isotope budget for these gases, which is an invaluable tool in 

understanding their atmospheric cycling. Subscripts of “T” and “S” are used in this chapter 

to indicate tropospheric and stratospheric measurements, respectively. 

 

3.1   Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-

12 and CFC-113 in firn, stratospheric and tropospheric air 

 

Section 3.1 is based on a published paper, for which I am the lead author:  

 

Allin, S. J., Laube, J. C.,  Witrant, E. Kaiser, J., McKenna, E., Dennis, P., Mulvaney, R., 

Capron, E., Martinerie, P., Röckmann, T., Blunier, T., Schwander, J., Fraser, P. J., 

Langenfelds, R. L., and Sturges, W. T.: Chlorine isotope composition in 

chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric 

air, Atmospheric Chemistry and Physics, 15, 6867-6877, doi:10.5194/acp-15-6867-2015, 

2015. 

 

To date, the only study to investigate the δ(
37

Cl) of CFCs measured the stratospheric 

fractionation of CFC-12 (Laube et al., 2010a). The continued isotopic characterisation of 

these gases could help to identify individual sources and better quantify the contribution of 
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different sink reactions. This could lead to better lifetime estimates and hence better ozone 

recovery predictions. Since CFC-11 and CFC-113 are destroyed in the same way as CFC-

12, it is reasonable to expect that they may be susceptible to the same isotope dependencies 

and therefore warrant the same examinations (Section 1.3). This section describes the 

novel measurements made to better characterise the δ(
37

Cl) of CFC-11, CFC-12 and CFC-

113 in the atmosphere.  

 

3.1.1   Research objectives 

 The GC-MS “AutoSpec” instrument at UEA has been used once before to make 

trace gas isotope ratio measurements (Laube et al., 2010a). This study will extend 

this work to two additional gases (CFC-11 and CFC-113) and new areas of the 

atmosphere. 

 Produce the first tropospheric chlorine isotope history of CFC-11, CFC-12 and 

CFC-113, from δT(
37

Cl) measurements. 

 Compare these measurements to modelled expectations, based on the current 

understanding of CFC production, breakdown and transport processes. 

 Evaluate the observed long-term tropospheric chlorine isotope changes in these 

gases in terms of source and sink processes to better constrain their atmospheric 

isotope budgets. 

 

3.1.2   Methodology 

Section 2.1.2.1 provides a brief overview of the potential benefits of using a GC-MS 

instrument to measure isotope ratios in trace gases. The specific methods used for 

calculating δ(
37

Cl, CFCs) values are outlined below. 

As defined in Section 1.3.2, an isotope delta (δ), expressed in per mill (‰), is used to 

denote the relative 
37

Cl/
35

Cl ratio difference of CFCs in sample air with respect to a 

standard 

              𝛿( Cl−
37 ) =  

𝑅sample

𝑅standard
− 1                                                                  (3.1) 

where R represents the 
37

Cl/
35

Cl abundance ratio of a sample or standard. There is no 

internationally recognised isotope standard for these measurements. For this reason, all 

delta values are relative to a laboratory standard (AAL-071170). This is a background air 
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sample collected in 2006 at Niwot Ridge, Colorado, by the National Oceanic and 

Atmospheric Administration (NOAA).  

The isotopologue ratios of the CCl2F
+
 fragment are considered, rather than directly 

measuring Cl
+
 ions. This is because the CCl2F

+
 fragment provides larger peaks than 

fragmented Cl
+
 ions, leading to better measurement precision (see Section 2.1.1.1 for full 

details). To accurately determine δ, it is important that the calculated R value introduces as 

little uncertainty as possible (equation 3.1). Three methods for determining R values were 

tested: 

1. The ‘plot method’. Figure 3.1 shows how the linear regression slope of the 

C
35

Cl
37

ClF
+
 against the C

35
Cl2F

+
 ion current over the duration of a peak is used to 

derive R. 

2. The ‘Gaussian fit method’ was developed at the University of Frankfurt (Laube, 

2008) and the work was performed by Dr. Johannes Laube. This method follows 

similar steps to the ‘plot method’, although a Gaussian distributed peak is fitted to 

the data before a linear regression slope is plotted. 

3. The ‘peak areas method’. As described in Section 2.1.1.4, the integrated peak area 

of fragment ions are typically used to infer species mole fractions. In this case, the 

ratio between the integrated peak areas of two fragment ions derived from a single 

species produce an R value. 

A static dilution series (details in ‘Determination of non-linearities’, Section 3.1.3) was 

analysed on three occasions between July and October 2013, using the three data 

processing steps outlines above. This dilution series contains a wide range of mole 

fractions (Table 3.3 in Section 3.1.3) which is representative of the range found in the 

samples analysed in this chapter. Figure 3.2 shows that each method produced consistent 

results in all three species. Based on this, it was decided that the method which induced the 

smallest analytical uncertainties would be adopted. Overall, the ‘Plot method’ (number 1 

from above) gave the smallest uncertainties (Table 3.1) and was used for all sample 

analysis in this chapter. Drift corrections and error calculations were made using the 

method described in Section 2.1.1.4. 
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Figure 3.2 (next page). A static dilution series (see ‘Determination of non-linearities’, 

Section 3.1.3) was measured for δ(
37

Cl), plotted against the integrated peak area of the 

CCl2F
+
 fragment ion (m/z 101). Three different methods were used to determine the 

ratio between the C
35

Cl
37

ClF
+
 (m/z 103) and C

35
Cl2F

+
 (m/z 101) fragment ions and to 

calculate δ(
37

Cl) values (equation 3.1). The analytical uncertainties in these 

measurements are summarised in Table 3.1. All delta values are relative to an air 

sample collected at Niwot Ridge in 2006 (AAL-071170). 

Figure 3.1. A) An example chromatographic output used to calculate a δ(
37

Cl) value. 

B) The peaks are isolated (outline in green in A) and the absolute detector response 

values are plotted against each other. The gradient of the resulting trend line is the 

ratio of C
35

Cl
37

ClF
+
 to C

35
Cl2F

+
 in a given sample or standard. This ratio is used to 

calculate a delta value. All data shown are from CFC-12. 
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No chromatographic interferences were found for these ions at the retention times 

corresponding to CFC-11 and CFC-12. However, CFC-113a has grown to a current 

atmospheric abundance of ~0.5 pmol mol
-1

 since its emergence in the 1960s (Laube et al., 

2014) and partially co-elutes with CFC-113. CFC-113a (Cl3C-CF3) is an isomer of CFC-

113 (Cl2FC-CClF2) and it was detected above the surrounding noise in one sample. This 

peak was manually excluded by beginning the linear regression slope after the CFC-113a 

peak, before calculating a delta value using equation 3.1. Within 1σ, this value is the same 

as the original delta value calculated (without removing the CFC-113a interference). Based 

on this, it was assumed that a correction was not necessary. 

Poor quality measurements were defined as a measurement with a standard deviation (from 

repeat analyses) of more than three times the average standard deviation of the Rstandard 

values during an analysis period. A new analysis period was deemed to have begun when a 

change was made to the GC-MS system which would significantly alter its performance 

(e.g. replacing the source filament). Typically, an analysis period would last a few weeks 

to months. Less than 1 % of the measurements were rejected as poor quality. 

Measurements were also rejected if there was uncertainty regarding the integrity of the 

sample; small system leaks can be identified through the analysis of other trace compounds 

Method 

Mean δ(
37

Cl) measurement uncertainty / ‰ 

CFC-11 CFC-12 CFC-113 

Gaussian fit 3.7 3.8 3.9 

Plot 2.0 3.7 3.1 

Peak areas 4.6 3.9 2.8 

 

Table 3.1. Three different methods were used to calculate δ(
37

Cl) values from the 

analysis of a static dilution series (see ‘Determination of non-linearities’, Section 

3.1.3). The mean analytical uncertainty is stated for each compound, through each 

method. 
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(e.g. sulphur hexafluoride, SF6). 2 % were excluded due to a suspected loss of sample 

integrity. 

Table 3.2 gives details of the samples used in this study. Firn air was sampled during the 

North Greenland Eemian Ice Drilling field campaign (NEEM Community Members, 2013) 

and from the Fletcher Promontory ice core site in Antarctica (Mulvaney et al., 2014). In 

each case, ice core drills progressively penetrated the firn column, stopping every few 

meters to allow the firn air to be recovered. The firn air extraction technique (Schwander et 

al., 1993) uses a bladder inflated at the bottom of the borehole to seal off ambient air from 

above. Gas pumps draw sample air from the firn surrounding the lowest level of the 

borehole, compressing the air into sample flasks at the surface. Additional samples were 

sourced from an archive of Southern Hemispheric background air (Cape Grim, Tasmania). 

 

 

 

 

Dr. Patricia Martinerie and Dr. Emmanuel Witrant used a model of gas transport in firn 

was used to obtain air ages for the firn air measurements. The migration of gases from the 

atmosphere through firn is largely controlled by diffusional and gravitational effects. In 

Sample type 
Sampling 

location 

Sampling 

dates 

Approx. 

air age 
Further details 

Free 

tropospheric 

air 

Cape Grim, 

Tasmania 

1978 – 

2010 

1978 – 

2010 

Sampling procedure previously 

reported (e.g Langenfelds et al., 

1996) 

Firn air 

Fletcher 

Promontory, 

Antarctica 

January 

2012 

1970 – 

2012 

Drilling and firn air pumping 

operations conducted by the 

British Antarctic Survey 

Firn air North Greenland July 2009 
1950 – 

2009 

Drilling and firn air pumping 

operations during the NEEM 

field campaign 

 

Table 3.2. Details of the samples used in this study. 
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this way, less diffusive gases move through the firn more slowly than more diffusive gases 

and heavier gases and isotopologues are enriched at depth relative to lighter gases and 

isotopologues. Consequently, there is no unique “age-of-air” at a given depth in the firn, 

rather an age distribution is calculated for a specific gas or isotopologue. Also, a gas can 

undergo significant isotope fractionation during its movement through the firn. A model of 

gas transport in firn must therefore include both diffusive transport and gravitational 

separation to reconstruct changes in atmospheric abundances and isotope ratios over time. 

The physical basis of the model is fully described in Witrant et al. (2012) and outlined in 

Section 2.2.1. The model was further refined to provide a more rigorous treatment of 

isotopes based on a forward firn model written in terms of delta values (Witrant and 

Martinerie, 2013). As described in Section 2.2.1, several species with well-known 

atmospheric histories are used to produce an holistic description of the diffusive behaviour 

of gases. These gases are referred to as ‘tuning species’ and include SF6, HFC-134a, CFC-

11, CFC-12, CFC-113 and CH3CCl3. Using the “AutoSpec” instrument, I performed the 

analysis of Fletcher Promontory and NEEM 2009 firn air to obtain mole fraction histories 

for these ‘tuning species’. 

Thermal diffusion was not incorporated into the model, despite an observed gradient of 2 

to 3 °C in the firn column at NEEM (due to recent local warming in Northwest Greenland; 

Carr et al., 2013). This is because, although the thermal diffusion effect on the CFC mole 

fractions is of the order of 0.2 %, the effect on the measured δT(
37

Cl) is estimated to be less 

than 0.02 ‰ (Leuenberger and Lang, 2002), since the measured isotopologues have similar 

masses. 

 

3.1.3   Results and discussion 

Determination of non-linearities 

Using the AutoSpec instrument, Laube et al. (2010a) verified that their isotope ratio 

measurements were not biased by the response behaviour of the analytical system. The 

tests performed by these authors were designed to assess the response behaviour of this 

system when measuring CFC-12 to a minimum of 77 pmol mol
-1

. The measurements 

presented in this thesis also include CFC-11 and CFC-113 and cover a wider range of 

sample mole fractions, meaning that a more extensive effort was necessary to remove the 

possibility of a bias. 
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An air sample collected at Niwot Ridge in 2009 (SX-0706077) was diluted with nitrogen 

and collected in three litre Silco-treated stainless steel containers. Pressure sensors were 

used to estimate the dilution factors and produce a static dilution series with a range of 

mole fraction values (Table 3.3). These samples were analysed to determine whether the 

measured isotope ratio of a sample is dependent on its mole fraction (i.e. whether a change 

in chromatographic peak size alters the measured isotope delta).  

 

 

 

 

Sample ID 

Measured mole fraction / pmol mol
-1

 

CFC-11
 

CFC-12 CFC-113 

SX-0706077 245.1 ± 3.6 540.0 ± 3.4 78.1 ± 0.2 

K1579 164.9 ± 2.4 363.4 ± 0.7 52.7 ± 0.1 

K1578 75.9 ± 0.7 167.0 ± 0.8 24.1 ± 0.1 

K1583 38.5 ± 0.3 84.1 ± 0.4 12.2 ± 0.1 

K1569 17.7 ± 0.2 38.8 ± 0.1 5.6 ± 0.02 

K1575 2.9 ± 0.02 6.6 ± 0.1 0.9 ± 0.01 

K1576 0 0.1 0 

 

Table 3.3. An air sample collected at Niwot Ridge in 2009 (SX-0706077) was diluted 

with nitrogen. Three litre Silco-treated stainless steel containers were used to hold the 

diluted air (sample IDs beginning with ‘K’). Mole fractions for CFC-11, CFC-12 and 

CFC-113 were measured using the most abundant fragment ion (m/z 101). 1σ standard 

deviations are given.  

Figure 3.3 (next page). Dilution series measured for δ(
37

Cl), plotted against the 

integrated peak area of the C
35

Cl
37

ClF
+
 fragment ion (m/z 103). 1σ standard deviation 

error bars are shown. Insets highlight the firn air measurements that fall within the 

depleted region of the dilution series analysis (red highlighted regions on the left). 

Regression lines are used to correct the firn sample measurements, based on the 

observed non-linear responses in the dilution series. Unaffected samples are not 

displayed. All delta values are relative to an air sample collected at Niwot Ridge in 

2006 (AAL-071170). 
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Figure 3.3 shows that delta values derived from the smallest peak areas exhibit erroneously 

low δT(
37

Cl) values for all three species, which requires a correction. 99 % of the samples 

analysed have peak areas in the region where the dilution series showed no bias. However, 

a total of 1 (CFC-11), 2 (CFC-12) and 2 (CFC-113) δT(
37

Cl) measurements were corrected, 

based on the results from the smallest peaks in the dilution series analysis (Figure 3.3 

insets). A regression line was used to track the depletion in the smallest dilution series 

peaks. This line was then used to correct the firn measurements, based on their peak areas. 

An additional uncertainty was applied to each corrected measurement based on the 

uncertainty in the regression line. This uncertainty was factored such that the size of the 

additional error applied to a measurement is directly related to the size of the correction 

required. 

The dilution series analysis shows an isotope delta bias which is limited to the lowest 

abundance samples; most samples display no bias. The unaffected samples cover a large 

range of mole fractions and were analysed using a variety of air volumes. Any systematic 

effect should be shown in these data. The absence of an effect suggests that the GC, MS 

and inlet systems do not affect isotope deltas. It is likely that the bias shown in small peaks 

is introduced during data processing, rather than during the measurement acquisition. 

 

Further quality assurance considerations 

CO2 gradually elutes from the column during a run and can sometimes cause peak 

distortion because of its much higher concentration (particularly in early eluting 

compounds). Sample K1569 (Table 3.3) was analysed for δ(
13

C) with and without 

removing CO2 using an Ascarite trap. (δ(
13

C) rather than δ(
37

Cl) measurements were used 

for this quality assurance test because it was performed after the period of δ(
13

C) analysis 

described in Section 3.2). For all compounds, delta values agreed within 1σ analytical 

uncertainties when analysed with and without the Ascarite trap. CFC-12 elutes earlier than 

CFC-11 and CFC-113 meaning that it is most susceptible to distortion by CO2. Figure 3.4 

shows CFC-12 peaks produced with and without the CO2 removed. The small differences 

in peak size and shape are likely to be caused by slight variations in the injected volume 

and other procedural variations. No systematic distortion is evident, suggesting that the 

effect of CO2 is not significant.  
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Figure 3.4. Smoothed data showing two CFC-12 peaks from the dilution series 

sample K1569 (Table 3.3). In two of the analyses, an Ascarite trap was added to the 

inlet system to remove CO2 from the air samples (the dashed blue line represents one 

of these). The remaining analyses were performed without an Ascarite trap (the green 

line represents one of these). The repeat analyses were indistinguishable from those 

presented and are not included. In all cases the peaks from the 
12

C
37

Cl2F
+
 fragment are 

presented. 

Ascarite present 

Without Ascarite 

Figure 3.5 (next page). δT(
37

Cl) measurements in CFC-11, CFC-12 and CFC-113. 

Black diamonds (NEEM firn air), green diamonds (Fletcher Promontory firn air) and 

red diamonds (Cape Grim air archive) represent the tropospheric chlorine isotope 

history of CFC-11, CFC-12 and CFC-113. The average repeatability for individual 

samples was ±2.7 ‰ (CFC-11), ±2.7 ‰ (CFC-12) and ±3.8 ‰ (CFC-113). 1σ 

standard deviation error bars are shown. Open symbols indicate that the measurement 

was subject to a small correction, based on the dilution series analysis (see 

‘Determination of non-linearities’, Section 3.1.3). All delta values are relative to an 

air sample collected at Niwot Ridge in 2006 (AAL-071170). 
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3.1.3.1   Tropospheric measurements 

Samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and firn air samples 

from NEEM (Greenland) and Fletcher Promontory (Antarctica) have been analysed for the 

δT(
37

Cl) of CFC-11, CFC-12 and CFC-113. A total of 44 (CFC-11), 74 (CFC-12) and 48 

(CFC-113) δT(
37

Cl) measurements are presented, approximately covering the last 60, 50 

and 45 years, respectively (Figure 3.5). 

In general, there is good agreement between the Cape Grim and firn air measurements. 

This agreement is in line with expectations from these well-mixed gases. In all three 

species, the measurements remain around the line of zero fractionation for almost the entire 

record (within their uncertainties). The oldest air samples in all species show a slight 

positive offset from zero. These samples are discussed in Section 3.1.3.3. 

 

Seasonality  

Firn air samples represent spatially and temporally averaged values, whereas each Cape 

Grim sample is representative of the Southern Hemisphere on a particular day. This means 

that Cape Grim samples have the potential to reveal short-term variations, such as seasonal 

cycles and spatial variations. 

Redeker et al. (2007) found annual variations in all three CFCs, with higher δT(
13

C) values 

in the summer. However, these changes were within analytical uncertainties. Park et al. 

(2012) observed seasonality in δ(
15

N, N2O) and δ(
18

O, N2O) at Cape Grim between 1940 

and 2005. The largest effect was seen in the δ(
15

N) of the central position nitrogen atom, 

which displayed a maximum seasonal offset of just under 1 ‰. Park et al. (2012) found 

that peak delta values (May-July) overlap with the period of minimum N2O mole fractions 

(April-May) (Figure 3.6). They suggested that this approximate synchronicity is partially 

caused by an increase in transport of N2O-depleted and 
15

N- and 
18

O-enriched stratospheric 

air to the surface. Given the parallels between N2O and CFC-12 (similar sinks and 

comparable lifetimes), similar seasonal effects may be expected in CFC-12. The stronger 

stratospheric fractionation seen in N2O (e.g. Kaiser et al., 2006) would suggest that the 

magnitude of seasonality in CFC-12 should be smaller than N2O (likely a maximum 

seasonal offset of less than 0.5 ‰). Figure 3.7 shows a CFC-12 seasonality analysis of the 

Cape Grim data compiled in this thesis. Measurements are grouped into three-month 

sections, corresponding to the maximum (‘peak’) and minimum (‘trough’) periods of N2O 

delta values from Park et al. (2012), as well as the intervening (‘transition’) periods. 
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Although the level of atmospheric variability is high, maximum and minimum delta values 

approximately correspond to ‘peak’ and ‘trough’ periods respectively. A study similar in 

scope to Park et al. (2012) would be needed to quantitatively assess this effect, although 

the magnitude of the expected seasonality is unlikely to be detectable at the current level of 

precision. The available CFC-11 and CFC-113 data were insufficient to extend this 

analysis to all three compounds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The mean N2O seasonal cycles, measured on the Cape Grim archive 

between 1978 and 2005. A) N2O mole fractions were measured by Nevison et al. 

(2005) (white diamonds) and Park et al. (2012) (black diamonds). B) δ(
15

N) values are 

given in ‰ (versus air-N2). The figures were taken from Park et al. (2012). 

A) 
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3.1.3.2   Transport modelling  

Since air is exchanged between the stratosphere and the troposphere, both source 

(troposphere) and sink (stratosphere) processes will affect tropospheric measurements of 

these gases. The CFCs discussed in this work are destroyed in the stratosphere through 

similar processes to N2O. These sink reactions have been shown to enrich the heavy 

isotopes of N2O and CFC-12, leading to increasing δS(
15

N), δS(
18

O) and δS(
37

Cl) with 

altitude (Kaiser et al., 2006; Laube et al., 2010a). If CFC-11 and CFC-113 are affected in 

the same way, the δT(
37

Cl) of all three CFCs should have increased as a result. 

 

96

98

100

102

104

106

-4

-2

0

2

4

6

Feb - Apr

('Transition')

May - Jul

('Peak')

Aug - Oct

('Transition')

Nov - Jan

('Trough')

δ
T
(3

7
C

l)
 /

 ‰
 

CFC-12 

n = 15 n = 14 n = 8 n = 5 

Figure 3.7. A boxplot of the δT(
37

Cl, CFC-12) from Cape Grim samples. The year is 

split into three-month sections, with the maximum value, upper quartile, median, 

lower quartile and minimum value displayed in each. The ‘Peak’, ‘Trough’ and 

‘Transition’ periods were identified from a seasonality analysis of δ(
15

N, N2O) 

(Figure 3.6, Park et al., 2012) and correspond to observed maximum, minimum and 

in-between periods. The sample count in each section is given on the plot. All delta 

values are relative to an air sample collected at Niwot Ridge in 2006 (AAL-

071170). 
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Stratospheric measurements 

In order to determine whether the CFC sink reactions are isotope dependent, stratospheric 

samples were collected and analysed for δS(
37

Cl). Mid-latitude (48.1 – 53.4 °N) 

stratospheric air was collected on an M55 Geophysica research aircraft in 2009, as part of 

the European Union’s FP7 project RECONCILE (von Hobe et al., 2013). 

Dr. Johannes Laube performed the laboratory work from 2009-2010 and Eimear McKenna 

performed the initial data processing as part of her Master’s project (McKenna, 2011). My 

contribution was an appraisal of the initial data processing, as well as completing the final 

steps (e.g. error calculations). 

Using equation 1.25 (Chapter 1), a statistical “bootstrap” analysis technique was used to 

determine εapp values and their uncertainties (Volk et al., 1997). In this technique, a data 

pool is created by describing each sample with three values (the measured delta value and 

this value ± 1σ). The “bootstrap” tool draws 500 random samplings from the complete 

stratospheric data pool (including the possibility of drawing the same value repeatedly) to 

produce an overall εapp value and a robust associated uncertainty range. Anomalous 

stratospheric samples were omitted using an iterative least squares method. Any sample 

more than two times the standard error of the ln(1 + δ) estimate away from the linear 

regression of the Rayleigh fractionation plot was removed. This process was repeated until 

all data points fell within two times the standard error of the ln(1 + δ) estimate, reducing 

the εapp standard error in all cases.  

After this outlier correction, a total of 31 (CFC-11), 33 (CFC-12) and 36 (CFC-113) 

measurements remained. Negative apparent isotope fractionations (εapp) have been 

calculated for all three species (Figure 3.8). This indicates that the heavier isotopologue is 

broken down more slowly by sink reactions, causing the observed enrichment in 
37

Cl.  

 

Figure 3.8 (next page). Rayleigh fractionation plots of CFC-11, CFC-12 and CFC-113 

chlorine isotope signatures, derived from mid-latitude stratospheric samples. Trend 

lines correspond to apparent fractionations (εapp) of -2.4±0.5 ‰ (CFC-11), -12.2±1.6 ‰ 

(CFC-12) and -3.5±1.5 ‰ (CFC-113). The standard error of the gradient is quoted for 

εapp values. The average repeatability for individual samples was ±2.3 ‰ (CFC-11), 

±3.2 ‰ (CFC-12) and ±3.2 ‰ (CFC-113). 1σ standard deviation error bars are shown. 
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Model predictions 

A modelling study was undertaken to calculate how the δT(
37

Cl) in CFC-11, CFC-12 and 

CFC-113 is expected to have changed over time, given the current understanding of 

transport and sink processes. These predictions can then be compared to the measured 

δT(
37

Cl) values (Figure 3.5). This will allow these measurements to be interpreted in terms 

of the isotope delta of emissions for each species. The modelling work described below 

follows Kaiser (2002) and Röckmann et al. (2003) and was performed by Prof. Jan Kaiser 

at UEA.  

To perform this work, the model atmosphere was split into two parts: the troposphere and 

the stratosphere. It was assumed that the CFCs only break down in the stratosphere and 

that the isotopic effect of this process is fully described by the εapp values calculated in 

Figure 3.8. These mid-latitude εapp values were used in the absence of globally 

representative values. Also, estimates of the stratosphere-troposphere exchange were made 

based on the differing definitions of the tropopause by Holton (1990) and Appenzeller et 

al. (1996). These studies used the 100 mbar and the 380 K isentrope, respectively. These 

factors were used to solve mass balance equations for the troposphere and stratosphere. By 

performing these calculations for both isotopologues, the difference can be used to 

reconstruct the expected δT(
37

Cl) changes in CFC-11, CFC-12 and CFC-113. Since 

measurements of δ(
37

Cl) in source materials have not been made, it was assumed that no 

changes have occurred for the purposes of this model. The validity of this assumption was 

tested by comparing the model predictions to δT(
37

Cl) measurements (Figure 3.9) and is 

discussed in Section 3.1.3.3. Full methodological details of the modelling can be found in 

Allin et al. (2015). 

Figure 3.9 shows how the δT(
37

Cl) of these three compounds would have changed over 

time, assuming no source variations. From their first release until the present-day, the 

δT(
37

Cl) of CFC-11, CFC-12 and CFC-113 are predicted to have increased by 1, 3 and 1 

‰, respectively. Maximum rates of increase are predicted to have occurred since 1990, 

which coincide with the sharp reduction in CFC emissions due to the introduction of 

legislation phasing out their production and consumption (Montzka et al., 2011). A drop in 

the anthropogenic input means that the existing atmospheric pool will become increasingly 

enriched, as demonstrated by the predicted acceleration of the δT(
37

Cl) increase after 1990. 

After 2010, mole fraction measurements are not available. Instead, the A1 scenario 

predictions in Daniel et al. (2011) are used to project δT(
37

Cl) changes into the middle of 

the 21
st
 century. The A1 scenario predicts continued reductions in CFC emissions, leading 
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to further δT(
37

Cl) increases. From their first release until 2050, the δT(
37

Cl) of CFC-11, 

CFC-12 and CFC-113 are predicted to increase by 2, 7 and 2 ‰, respectively. 

The areas of shading in Figure 3.9 represent the uncertainty envelopes. Approximately 

equal contributions to the uncertainty arise from: 

1. The differing interfaces for stratosphere-troposphere exchange used by Holton 

(1990) and Appenzeller et al. (1996). 

2. The 1σ uncertainty in εapp values (from Figure 3.8). 

3. The range of ‘most likely’ stratospheric CFC lifetime values from SPARC (2013). 

 

 

 

 

 

 

 

 

Figure 3.9 (next page). δT(
37

Cl) measurements, compared to model predictions and 

measured mole fractions (black dashed lines). Black diamonds (NEEM firn air), green 

diamonds (Fletcher Promontory firn air) and red diamonds (Cape Grim air archive) 

represent the tropospheric chlorine isotope history of CFC-11, CFC-12 and CFC-113. 

White trend lines represent model estimates of the temporal evolution of δT(
37

Cl). Two 

lines are displayed per species, one for each stratosphere-troposphere exchange flux 

estimate (Holton, 1990; Appenzeller et al., 1996). Blue (CFC-11), green (CFC-12) and 

orange (CFC-113) shading indicates the model uncertainty envelopes. These 

uncertainties are described in the text. Open symbols indicate that the measurement 

was subject to a small correction, based on the dilution series analysis (see 

‘Determination of non-linearities’, Section 3.1.3). All delta values are relative to an air 

sample collected at Niwot Ridge in 2006 (AAL-071170) and the model output has 

been adjusted so that it passes through 0 ‰ in 2006 to reflect this normalisation. 
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3.1.3.3   A chlorine isotope history 

From 1970 to the present-day, the modelled changes can be accounted for, within the 

analytical uncertainties of the δT(
37

Cl) measurements (Figure 3.9). For these three CFCs, 

the measured δT(
37

Cl)  values are consistent with an isotopically constant source signature, 

but the measurement uncertainty is too high to preclude the possibility that it has changed 

over time. Despite the noted parallels in atmospheric chemical behaviour between CFC-12 

and N2O, their atmospheric isotope histories differ because N2O has been present in the 

atmosphere for at least 800,000 years longer than CFC-12 (Spahni et al., 2005; Schilt et al., 

2010). When anthropogenic emissions began, atmospheric N2O isotope deltas were 

perturbed from a near steady-state source-sink system, whereas the industrial release of 

CFC-12 was not preceded by any atmospheric burden. This has caused δ(
15

N, N2O) and 

δ(
18

O, N2O) to decrease over the last century (Röckmann et al., 2003), while δT(
37

Cl, CFC-

12) is predicted to have increased slightly (Figure 3.9). 

Before 1970, there are 2 (CFC-11), 1 (CFC-12) and 2 (CFC-113) measurements 5 – 10 ‰ 

higher than expected, which could represent source δ(
37

Cl) changes. Emissions of these 

gases earlier in the record represent a larger proportion of their total atmospheric load, 

making the measurements more sensitive to potential source δ(
37

Cl) changes at this time. 

As the oldest samples, these five measurements contain the lowest CFC mole fractions, 

producing higher than average analytical uncertainties. Also, a small correction was 

applied to four of them, introducing an additional error (see ‘Determination of non-

linearities’, Section 3.1.1). The limited number and precision of these measurements make 

it premature at this stage to report a source δ(
37

Cl) change in these gases. 

 

3.1.4   Summary 

 CFC-11, CFC-12 and CFC-113 are isotopically enriched in the stratosphere by 

destruction processes. 

 This measured stratospheric isotope dependence and an assumed constant source 

δ(
37

Cl) were used to reconstruct the expected long-term changes in their 

tropospheric chlorine isotope signatures (using stratosphere-troposphere exchange 

flux estimates). 

 Samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and firn air 

samples from NEEM (Greenland) and Fletcher Promontory (Antarctica) have been 
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used to infer an atmospheric history of chlorine isotopes in CFC-11, CFC-12 and 

CFC-113. 

 These measurements approximately cover the last 60 (CFC-11), 50 (CFC-12) and 

45 (CFC-113) years and represent the first measurements of the δT(
37

Cl) in all three 

species. 

 The predicted trends are small due to their long atmospheric lifetimes and can 

largely be accounted for in the tropospheric measurements. Significant 

improvements in measurement precision may make identification of the predicted 

21
st
 century increases in δT(

37
Cl) detectable, at least in the case of CFC-12. 

 Across all species, five pre-1970 δT(
37

Cl) values are higher than predicted. Source 

δ(
37

Cl) changes could explain these offsets, but at present the available data are too 

limited in number and precision to confirm this.  

 

3.2   Carbon isotope composition in chlorofluorocarbons CFC-11, CFC-

12 and CFC-113 in firn air 

 

The UEA-based studies of CFC isotopes are unique in their use of small samples (a few 

hundred ml) and a single-collector GC-MS system (Laube et al., 2010a; Allin et al., 2015; 

this thesis). Previously, several studies investigated the δ(
13

C) of some CFCs using large 

samples (tens to hundreds of litres) and various IRMS systems. No seasonal or diurnal 

cycles outside of analytical uncertainties were found by Redeker et al. (2007) in their 

measurements of the δT(
13

C, CFC-12). Zuiderweg et al. (2012) reported strong isotope 

dependence during the laboratory UV photolysis of CFC-11 and CFC-12, simulating the 

most prevalent stratospheric sink reaction. This suggests that the δS(
13

C) of these gases 

would reveal a similar isotope dependence. Finally, Zuiderweg et al. (2013) reported a 

large CFC-12 carbon isotope enrichment from the 1950s to the present-day, based on firn 

air measurements.  

This section aims to describe the novel measurements made using the “AutoSpec” 

instrument to build on these studies and better characterise the δT(
13

C) of CFC-11, CFC-12 

and CFC-113. 
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3.2.1   Research objectives 

 Develop a method for making δ(
13

C) measurements in CFCs, using the GC-MS 

“AutoSpec” instrument. 

 Produce a tropospheric carbon isotope history of CFC-11, CFC-12 and CFC-113, 

from δT(
13

C) measurements. 

 Compare these measurements to modelled expectations, based on the current 

understanding of CFC breakdown and transport. 

 Evaluate the observed long-term tropospheric carbon isotope changes in terms of 

the source and sink processes of the three most abundant CFCs. 

 Confirm or refute the measurements made by Zuiderweg et al. (2013) of δT(
13

C, 

CFC-12) in NEEM firn air. 

 

3.2.2   Methodology 

For this work, significant adjustments were made to the methodology outlined in Section 

3.1.2. The same basic instrumentation was used, but significant changes were made to the 

experiment setup to optimise the measurement conditions. 

Before introducing these methodological alterations, δT(
13

C) measurements were made 

using the same instrument setup as for the δT(
37

Cl) measurements (Figure 3.10). Isotope 

deltas were calculated using equation 3.2, where R represents the 
13

C/
12

C abundance ratio 

of a standard or sample (from the 
13

CCl2F
+
/
12

CCl2F
+
 ratio): 

              𝛿( C−
13 ) =  

𝑅sample

𝑅standard
− 1                                                                   (3.2) 

The analytical precision achieved in these δT(
13

C) measurements was poor compared to the 

δT(
37

Cl) analysis (Table 3.4). Due to the naturally lower abundance of the 
13

C isotope 

compared to 
37

Cl (Table 1.2, Chapter 1), the 
13

C
35

Cl2F
+
 peak is much smaller than the 

12
C

35
Cl

37
ClF

+
 peak (Figure 3.11). A further discussion of these “original” results (Figure 

3.10) is presented in Section 3.2.3.3 as a comparison to the new measurements made 

through the methodological improvements detailed below. 

Figure 3.10 (next page). δT(
13

C) measurements in CFC-11, CFC-12 and CFC-113, 

using the original methodology. SF6 is used as an age normaliser because firn model 

derived air ages are not available for all data. All delta values are relative to an air 

sample collected at Niwot Ridge in 2006 (AAL-071170). 
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Figure 3.11. A) The mass spectrometer output produced by the most common CFC-

11 fragment ion (CCl2F
+
). The fragment containing 

13
C is the least abundant, 

followed by the fragment containing two 
37

Cl atoms. B) As in A, but with adjusted 

axes to highlight the two smallest peaks. The orange dotted box in A indicates the 

axes values in B. 
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Time / mins 

B) 

Measurement 

type 

Mean analytical 

uncertainty / ‰ 

Number of 

samples 

δT(
37

Cl) 3 175 

δT(
13

C) 8 76 

 

Table 3.4. The mean analytical uncertainty in δT(
37

Cl) (Section 3.1) and the original 

δT(
13

C) measurements. The uncertainties are mean values from all species and all 

tropospheric samples.  
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Methodological alterations were attempted in order to reduce this adverse effect of the 

precision of delta values calculated using the smallest peaks. An improvement of this kind 

would allow the δ(
13

C) of CFC-11, CFC-12 and CFC-113 to be better constrained. These 

adjustments were approached in two ways: 

1. Increase the size of chromatographic peaks.  

2. Increase the number of points on these peaks. 

It was thought that these changes would reduce the uncertainty in calculated delta values 

by more accurately constraining the regression lines which give R values. The specific 

adjustments made to achieve these improvements are detailed below and Section 3.2.3 

displays and discusses the results obtained using this new method. 

 

Instrument setup 

As described in Section 2.1.1.1, several fragment ions are included in each function (Table 

2.1). These ions correspond to fragments of one or several species, as well as a reference 

‘lock mass’ (from hexadecane which flows continuously into the ion source, see Section 

2.1.1.1). This allows multiple species with similar elution times to be measured in a single 

acquisition. In a given function, this single-collector instrument must continuously cycle 

between the selected m/z values. This means that over a given time period, reducing the 

number of m/z values in a function decreases its cycle time and therefore increases the 

number of cycles completed. For these measurements, a reduced number of fragment ions 

were included in the functions corresponding to CFC-11, CFC-12 and CFC-113. After 

these adjustments they contained two CFC fragment ions and one lock mass. This led to an 

increase in the number of points used to plot the regression lines that produce R values 

(equation 3.1).  

Table 3.5 details the changes made to the source and collector slit parameters. These slits 

define the width of the ion beam in the Y plane as it enters the first electrostatic analyser 

(source slit) and leaves the second electrostatic analyser (collector slit). Each parameter 

was adjusted to maximise the sensitivity of the instrument by monitoring a hexadecane 

(reference) peak. 
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In the mass spectrometer functions containing CFC-11, CFC-12 and CFC-113, the detector 

voltage was increased from 375 to 400 V to amplify the peaks. However, the CCl2F
+
 

fragment produced by CFC-11 gives a larger peak than CFC-12 and CFC-113, meaning 

that a detector voltage of 400 V will often cause the more abundant CFC-11 isotopologue 

peaks to saturate the detector. Reducing the detector voltage to 375 V in the CFC-11 

function was often necessary. The detector voltage and slit width changes increased the 

amplitude of the peaks and the length of the regression lines used to calculate R values 

(Figure 3.1 and equations 3.1 and 3.2). 

During a period of typical usage (which measures the mole fractions of many species), a 

mass resolution of approximately 1000 is achieved. While the adjustments made to the 

“Normal” operational parameters δT(
13

C) analysis 

Source 
  

Source 
  

 

91.60 47.40 

 

91.60 74.60 

 
66.80 20.80 

 
66.80 20.80 

      
Collector 

  
Collector 

  

 
51.00 54.00 

 
64.60 56.60 

 
41.80 46.60 

 
41.80 46.60 

      
Source Slit: 100 

 
Source Slit: 100 

 
Collector Slit: 70   Collector Slit: 93.12   

 

Table 3.5. Source and collector slit parameters. The numbers represent the various 

adjustable parts of the slits and are given as a percentage of their maximum width. The 

“normal” operational parameters correspond to the conditions used for multi-species 

mole fractions analysis. The “δT(
13

C) analysis” values quoted here are not fixed, they 

represent the optimum values at the time of tuning. The instrument performance 

determines these values for a given analysis period. In the same way, “normal” 

operational parameters can also change. 
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detector voltage and slit widths increased the instrument’s sensitivity, the mass resolution 

was reduced to approximately 500, making the measurements more vulnerable to 

interferences. CFC-113a partially co-elutes with CFC-113, although no CFC-113a peaks 

can be seen above the background noise in these δT(
13

C) measurements. There are no 

known interferences for CFC-11 and CFC-12 on any of the measured isotopologue 

fragments. This suggests that these measurements are free of interferences. 

Section 2.1.1.1 describes the daily task of tuning and mass calibration. Ordinarily, the 

instrument is tuned using the C4H9
+
 hexadecane fragment (m/z 57) because this produces 

the largest peak. The increased sensitivity due to the adjustments described above mean 

that the C4H9
+
 peak saturates the detector. The lower abundance C7H15

+
 fragment (m/z 99) 

is used instead. 

Before commencing measurements, it is also important to check that the reference gas 

fragments used in the mass calibration of each function are not saturating the detector. 

Detector saturation is most likely to occur in CFC-11, CFC-12 and CFC-113 because it is 

necessary to approach the upper limit of peak sizes in these functions. The lock mass (m/z 

99, C7H15
+
) along with the masses immediately above (m/z 113, C8H18

+
) and below (m/z 

85, C6H13
+
) are used in the calibration process. The mass calibration will be ineffective if 

any of these peaks reach saturation. 

 

Sample preparation 

200 ml samples were used during the δ(
37

Cl) analysis. In the inlet system, this corresponds 

to a Baratron pressure reading of 30 Torr (Section 2.1.1.2) and is a typical injection amount 

for this instrument. By injecting a larger sample, the peak sizes were increased. The 

pressure range of the Baratron limited the sample size to approximately 600 ml (90 Torr). 

Ordinarily, the release of CO2 from the column has no effect on peak shapes. However, 

analysing more than 500 ml causes significant distortion of early eluting peaks (e.g. SF6), 

although later peaks (including CFC-11, CFC-12 and CFC-113) were not affected (Figure 

3.12). 
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Data processing 

Before the optimisation process detailed above, the 
12

C
35

Cl2F
+
 fragment (m/z 101) 

produced a peak close to the upper limit of the measurement range in all three species. The 

adjustments to the instrument setup and sample preparation procedure outlined above 

increased the peak sizes. Consequently, the 
12

C
35

Cl2F
+
 peak is unusable because it saturates 
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Figure 3.12. Smoothed data showing the SF6 and CFC-12 peaks produced from 

different injection volumes. SF6 displays peak distortion caused by the release of CO2 

from the column. Later eluting peaks were unaffected (e.g. CFC-12). 
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the detector. This means that δ(
13

C) values cannot be calculated from the 

13
CCl2F

+
/
12

CCl2F
+
 ratio (equation 3.2). 

Section 3.1 shows that relative to AAL-071170 (an air sample collected in 2006), the 

δT(
37

Cl) of these gases is 0 ‰, within analytical uncertainties (at least since 1970). These 

values were obtained by comparing the ratio of 
12

C
35

Cl
37

ClF
+
 to 

12
C

35
Cl2F

+
. A δT(

37
Cl) 

value of 0 ‰ is produced when the 
12

C
35

Cl
37

ClF
+
 fragment changes concurrently with the 

12
C

35
Cl2F

+
 fragment. δT(

37
Cl

37
Cl) values derived from the ratio of 

12
C

37
Cl2F

+
 to 

12
C

35
Cl2F

+
, 

should follow the direction of the δT(
37

Cl) signal, but at twice the magnitude (due to the 

presence of two 
37

Cl atoms). Equation 3.3 was used to calculate δT(
37

Cl
37

Cl), expressed in 

‰: 

              𝛿( Cl−
37 Cl−

37 ) =  
𝑅sample

𝑅standard
− 1                                                                  (3.3) 

where R represents the 
37

Cl
37

Cl/
35

Cl
35

Cl abundance ratio of a standard or sample. In 

common with all delta values presented in this thesis, there is no internationally recognised 

isotope standard. For this reason, all isotope deltas are calculated relative to an air sample 

collected at Niwot Ridge, Colorado, by the National Oceanic and Atmospheric 

Administration (NOAA) in 2006 (AAL-071170).  

Measurements of δT(
37

Cl
37

Cl) were made on 5 NEEM 2009 firn samples in all species, 20 

Fletcher firn samples (CFC-11) and 12 (CFC-11) and 29 (CFC-12) Cape Grim samples. 

These data agree well with δT(
37

Cl) values (Figure 3.13). This means that the 
12

C
35

Cl
37

ClF
+
 

and 
12

C
37

Cl2F
+
 fragments both change concurrently with the 

12
C

35
Cl2F

+
 fragment peak (at 

least since 1970). As a result, the smaller 
12

C
37

Cl2F
+
 peak can be used instead of the 

12
C

35
Cl2F

+
 peak in calculations of δT(

13
C). This means that δT(

13
C) values can be calculated 

using the optimisations outline above (without saturating the detector). 

 

 

 

 

 

Figure 3.13 (next page). Comparison between all available δT(
37

Cl) (blue crosses) and 

δT(
37

Cl
37

Cl) (green, red and black diamonds) measurements in CFC-11, CFC-12 and 

CFC-113. 1σ standard deviation error bars are shown. All delta values are relative to 

an air sample collected at Niwot Ridge in 2006 (AAL-071170). 
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To quantify any instrument bias in these measurements, the dilution series detailed in 

Table 3.3 was also analysed for δ(
37

Cl
37

Cl). Similar to δ(
37

Cl) (see Section 3.1.3.1), the 

smallest peak areas displayed erroneously low delta values. However, all of the samples 

have peak areas in the region where the dilution series showed no bias, meaning that the 

δT(
37

Cl
37

Cl) measurements do not require any corrections. 

Equation 3.2 was used to calculate the relative 
13

C/
12

C ratio difference of CFCs in sample 

air with respect to a standard. As discussed above, the R value in this case was derived 

from the ratio between 
13

C
35

Cl2F
+
 and 

12
C

37
Cl2F

+
 (rather than the 

13
CCl2F

+
/
12

CCl2F
+
 ratio). 

There is no internationally recognised isotope standard for these measurements, so the 

same 2006 NOAA air sample was used as the reference material (AAL-071170). 

 

3.2.3   Results and discussion 

Determination of non-linearities 

The GC-MS AutoSpec instrument has been previously tested to characterise any biases in 

chlorine isotope ratio measurements (Laube et al., 2010a; Allin et al., 2015). This section 

details the first δ(
13

C) measurements attempted using this instrument. As described in 

Section 3.1, a static dilution series was analysed to assess the response behaviour of the 

analytical system. The static dilution series used in Section 3.1.3.1 (Table 3.3) were 

analysed for δ(
13

C) in CFC-11, CFC-12 and CFC-113.  

Figure 3.14 shows that delta values derived from the smallest peak areas exhibit larger than 

average uncertainties and erroneously low δ(
13

C) values for CFC-11 and CFC-12. In 

general, the smallest CFC-113 peaks also follow the pattern of progressive depletion. 

However, the smallest CFC-113 peak produces an enriched delta value. This discrepancy 

produces a greater level of uncertainty in the response behaviour of the instrument to small 

CFC-113 peaks. For this reason, corrections were not attempted for CFC-113, leaving a 

less extensive δT(
13

C, CFC-113) record compared to CFC-11 and CFC-12. 

Figure 3.14 (next page). Dilution series measured for δ(
13

C), plotted against the 

integrated peak area of the 
13

C
35

Cl2F
+
 fragment ion (m/z 102). 1σ standard deviation 

error bars are shown. Included are the firn air measurements that fall within the 

depleted region of the dilution series analysis (red diamonds). Linear regression lines 

are used to adjust the firn samples, based on the observed dilution series depletion. 

Unaffected samples are not displayed. All delta values are relative to an air sample 

collected at Niwot Ridge in 2006 (AAL-071170). 
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More than 90 % of the samples analysed have peak areas in the region where the dilution 

series showed no bias in isotope deltas. However, a total of 1 (CFC-11) and 2 (CFC-12) 

δT(
13

C) measurements were corrected based on the quantified instrument bias and 3 CFC-

113 measurements were discarded (due to the discrepancy in the smallest CFC-113 peaks, 

as outlined above). The corrections and additional uncertainty calculations were made 

using the method outlined in Section 3.1.3. 

 

3.2.3.1   Firn measurements 

Firn air samples from NEEM (Greenland), collected during the 2008 and 2009 field 

campaigns have been analysed for the δT(
13

C) of CFC-11, CFC-12 and CFC-113. A total of 

20 (CFC-11), 21 (CFC-12) and 18 (CFC-113) δT(
13

C) measurements are presented, 

approximately covering the last 55, 50 and 20 years, respectively (Figure 3.15). Based on 

the dilution series analysis (see ‘Determination of non-linearities’, Section 3.2.3), 1 (CFC-

11) and 2 (CFC-12) NEEM 2009 samples required a correction. Additionally, the 

uncertainty in the dilution series analysis at low CFC-113 abundances was too high to 

determine a robust correction factor. For this reason, the 3 deepest CFC-113 measurements 

were rejected. 

 

 

 

Figure 3.15 (next page). δT(
13

C) measurements in CFC-11, CFC-12 and CFC-113. 

Black diamonds (NEEM 2009 firn air) and blue diamonds (NEEM 2008 firn air) 

represent the tropospheric carbon isotope history of CFC-11, CFC-12 and CFC-113. 

The average repeatability for individual samples was ±2.0 ‰ (CFC-11), ±3.8 ‰ (CFC-

12) and ±2.0 ‰ (CFC-113). 1σ standard deviation error bars are shown. Open symbols 

indicate that the measurement was subject to a small correction, based on the dilution 

series analysis (see ‘Determination of non-linearities’, Section 3.2.3). All delta values 

are relative to an air sample collected at Niwot Ridge in 2006 (AAL-071170). 
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Section 3.1.2 details the methods used to infer air ages in firn samples. Due to time 

constraints, a model of gas transport in firn could not be used to obtain age of air estimates 

for the measurements in Figure 3.15. However, since the gas concentration gradients in the 

δT(
37

Cl) measurements are the same as the δT(
13

C) measurements, diffusional mixing is 

likely to be similar. Based on this assumption, the δT(
37

Cl) air ages have been used in the 

plots of δT(
13

C) and are referred to as ‘approximate ages’. Similarly, an approximate 

gravitational and diffusive correction was applied to these new data, based on the 

 

CFC-11 gravitational and diffusive fractionation corrections / ‰ 

Depth / m δT(
37

Cl) δT(
13

C) 

0 0 0 

10.5 0.103 -0.1545 

20.4 0.248 -0.372 

30.2 0.414 -0.621 

39.23 0.498 -0.747 

50.7 0.627 -0.9405 

60.3 0.67 -1.005 

62.02 0.641 -0.9615 

63.8 0.362 -0.543 

66.8 0.497 -0.7455 

69.4 1.674 -2.511 

71.9 3.048 -4.572 

 

Table 3.6. The gravitational and diffusive correction for the δT(
37

Cl) of CFC-11 in 

NEEM 2009 firn air, calculated by Dr. Patricia Martinerie using the LGGE firn 

diffusion model. These values are used to calculate the approximate correction required 

for the δT(
13

C) values. As described in the text, the δT(
37

Cl) correction at each depth 

was multiplied by -1.5 to give an approximate δT(
13

C) correction value. 
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correction calculated using the firn model for δT(
37

Cl) measurements. δT(
13

C) values are 

calculated based on the ratio between 
13

C
35

Cl2F
+
 and 

12
C

37
Cl2F

+
 (m/z 102 and 105), 

whereas δT(
37

Cl) values are calculated based on the ratio between 
12

C
35

Cl
37

ClF
+
 and 

12
C

35
Cl2F

+
 (m/z 103 and 101). Hence, the δT(

13
C) correction was assumed to be 1.5 times 

larger than the δT(
37

Cl) correction, and in the opposite direction (Table 3.6). This is a crude 

method, however the corrections are generally small (a mean value of 0.73 ‰ across all 

species), meaning that using a firn diffusion model to calculate accurate values would not 

have significantly altered the measurement values and would not change their 

interpretation. 

 

3.2.3.2   A carbon isotope history 

Laboratory UV photolysis measurements 

Section 3.1.3.2 describes how δS(
37

Cl) measurements were used to infer the chlorine 

isotope dependence of processes that destroy CFC-11, CFC-12 and CFC-113 in the 

stratosphere. The measured dependence is caused by the preferential inclusion of lighter 

isotopologues in sink reactions (dominated by UV photolysis), causing the observed 

enrichment in 
37

Cl. Measurements of δS(
13

C) are not available at this time. However, the 

carbon isotope dependence of CFC-11 and CFC-12 as they are photolysed by UV light has 

been investigated in a laboratory study (Zuiderweg et al., 2012).  

Zuiderweg et al. (2012) quantified the isotope dependence of carbon in CFC-11 and CFC-

12 during their photolysis by UV light. At atmospherically relevant temperatures, they 

found carbon isotope fractionations of (-23.8 ± 0.9) to (-17.7 ± 0.4) ‰ for CFC-11 and (-

66.2 ± 3.1) to (-51.0 ± 2.9) ‰ for CFC-12. UV photolysis is the dominant loss process of 

CFC-11 and CFC-12 in the stratosphere meaning that these values can be used to 

approximate the carbon isotope dependence of these gases in stratospheric sink reactions. 

There has been no such study of CFC-113, meaning that a model output cannot be 

produced for this species. 

 

Model predictions 

As described in Section 3.1.3.2 and Allin et al. (2015), the current understanding of 

transport and sink processes can be used in a modelling study to predict how the δT(
13

C) of 

CFC-11 and CFC-12 would have evolved over time. By comparing these predictions with 

measured values, the measurements can be interpreted in terms of the isotope delta of 
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emissions for each species (Figure 3.16). Since εapp values are not available, the 

measurements made by Zuiderweg et al. (2012) can be used alongside stratosphere-

troposphere exchange flux estimates to make these predictions. Again, Prof. Jan Kaiser 

performed the modelling work presented in this section. 

Figure 3.16 shows how the δT(
13

C) of CFC-11 and CFC-12 would have changed over time, 

assuming no source carbon isotope variations. From their first release until the present-day, 

CFC-11 and CFC-12 δT(
13

C) values are predicted to have increased by 4 and 5 ‰, 

respectively. As with δT(
37

Cl), maximum rates of increase are predicted to have occurred 

since 1990, coinciding with the introduction of legislation phasing out CFC production and 

consumption (Montzka et al., 2011). The predicted rise in the δT(
13

C) of these gases is 

caused by the enriching effect of isotope dependent stratospheric sink reactions. After 

2009, mole fraction measurements are not available. Instead, the A1 scenario predictions in 

Daniel et al. (2011) are used to project δT(
13

C) changes into the middle of the 21
st
 century. 

The A1 scenario predicts continued reductions in CFC emissions, leading to further δT(
13

C) 

increases as the remaining atmospheric pool becomes increasingly enriched. From their 

first release until 2050, CFC-11 and CFC-12 δT(
13

C) values are predicted to increase by 11 

and 18 ‰, respectively. These values are larger than the predicted δT(
37

Cl) increases for 

CFC-11 and CFC-12 over the same period (2 and 8 ‰, respectively). This is due to the 

higher isotope dependence of carbon compared to chlorine in sink reactions, inferred from 

δS(
37

Cl) measurements (Figure 3.8) and measurements presented in Zuiderweg et al. 

(2012).  
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Figure 3.16. δT(
13

C) measurements, compared to model predictions. The 

measurements are unchanged from Figure 3.15: black diamonds (NEEM 2009 firn air) 

and blue diamonds (NEEM 2008 firn air) represent the tropospheric carbon isotope 

history of CFC-11 and CFC-12. White trend lines represent model estimates of the 

temporal evolution of δT(
13

C). Two lines are displayed per species, one for each 

stratosphere-troposphere exchange flux estimate (Holton, 1990; Appenzeller et al., 

1996). Blue (CFC-11) and green (CFC-12) shading indicates the model uncertainty 

envelopes. These uncertainties are based on two independent sources of error: 1) the 

1σ uncertainty in UV photolysis δ(
13

C) values; 2) the range of ‘most likely’ lifetime 

values from SPARC (2013). All delta values are relative to an air sample collected at 

Niwot Ridge in 2006 (AAL-071170) and the model output has been adjusted so that it 

passes through 0 ‰ at 2006. 
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The areas of shading in Figure 3.16 represent the uncertainty envelopes. The same factors 

contribute to this uncertainty as described in Section 3.1.3.2. Within analytical 

uncertainties, there is good agreement between the firn measurements and modelled 

δT(
13

C) changes (Figure 3.16). This means that for CFC-11 and CFC-12, an isotopically 

constant source signature is consistent with the observations, based on the current 

understanding of transport and destruction processes. Between 1999 and 2009, there are 6 

δT(
13

C, CFC-11) measurements slightly lower than expected, which could indicate that 

changes to source or sink processes have occurred. However, the δT(
13

C) model output is 

derived from a laboratory study using higher than atmospheric concentrations (Zuiderweg 

et al., 2012), rather than stratospheric measurements. Only one sink reaction has been 

included in the model calculations, meaning that the errors assigned to the model output 

are likely to be underestimates. Also, the other 10 measurements in this period agree with 

expected values. It seems likely that the observed disagreement does not indicate a source 

or sink change, but can be attributed to natural variability and a slightly underestimated 

model uncertainty envelope. 

 

3.2.3.3   Comparison with other studies 

Methodological improvements 

As discussed in Section 3.2.2, δT(
13

C) measurements were initially made using the low 

abundance 
13

C
35

Cl2F
+
 fragment ion. Figure 3.17 shows how the original results compare to 

the measurements displayed in Figures 3.15 and 3.16 (using the methodological 

improvements detailed in Section 3.2.2). A total of 56 samples were analysed using the 

original method, of which 33 were also measured after the methodological improvements 

were implemented. Very good agreement is shown, with 30 of these producing δT(
13

C) 

values that are indistinguishable, within 1σ analytical uncertainties.  

 

Figure 3.17 (next page). δT(
13

C) measurements in CFC-11, CFC-12 and CFC-113. 

Results using the original methodology (red symbols) are compared to results obtained 

using the new methodology (black symbols), as described in Section 3.2.2. SF6 is used 

as an age normaliser because firn model derived air ages are not available for all data. 

An open symbol indicates that the measurement was subject to a small correction, 

based on the dilution series analysis (see ‘Determination of non-linearities’, Section 

3.2.3.1). All delta values are relative to an air sample collected at Niwot Ridge in 2006 

(AAL-071170). 
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There is a significant improvement in measurement precision from the original to the new 

analyses (Table 3.7). For a given species, the overall mean analytical uncertainty of each 

method cannot be compared because only a subset of samples were re-analysed using the 

new method. Samples with low mole fractions produce δT(
13

C) values with larger 

uncertainties than those at contemporary levels. To remove a bias due to variations in 

sample distribution, samples are grouped based on their age before comparing analytical 

uncertainties (Table 3.7). In ‘modern’ air (1995 – 2010), the mean 1σ analytical uncertainty 

has been reduced by 67 % (CFC-11), 71 % (CFC-12) and 79 % (CFC-113). 

 

 

 

 

 

Previous δT(
13

C, CFC-12) firn air measurements 

Zuiderweg et al. (2013) measured significant 
13

C enrichment in CFC-12 from NEEM 2009 

firn air (Figure 3.18) and cite changes in production processes as the most likely cause. 

However, as they concede, there is no direct evidence that the reported manufacturing 

methodology changes had any effect on the isotope signature of CFC-12. 

 

 

 

 

Table 3.7. A comparison between the analytical uncertainties of δT(
13

C) measurements 

in CFC-11, CFC-12 and CFC-113. The data are separated according to their air age 

(either pre-1995 or between 1995 and 2010). 

Age range 

Mean 1σ analytical uncertainty / ‰ 

CFC-11 CFC-12 CFC-113 

Original 

method 

New 

method 

Original 

method 

New 

method 

Original 

method 

New 

method 

1995 - 2010 4.8 1.6 10.6 3.1 9.5 2.0 

Pre-1995 4.8 3.7 14.5 6.8 11.7 - 
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Figure 3.18. A) Depth profile of δT(
13

C, CFC-12) measurements (black diamonds) 

from NEEM 2009 firn air and a best estimate scenario from a firn model (red curve). 

B) The firn measurements from A (green circles) are plotted alongside best estimate 

forward models (red and blue curves). Maximum and minimum uncertainty estimates 

are shown. Both figures were taken from Zuiderweg et al. (2013). 

 

A) 

B) 
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Figure 3.19 compares the measurements of Zuiderweg et al. (2013) to the results produced 

in this thesis. Two factors should be noted regarding the way the data from Zuiderweg et 

al. (2013) has been treated and presented: 

1. Zuiderweg et al. (2013) combusted CFC-12 to CO2 for IRMS analysis, using the 

methodology detailed in Zuiderweg et al. (2011). This means that these authors are 

able to quote their δT(
13

C) measurements on the international 
13

C standard scale 

(VPDB). In this study, δT(
13

C) values were obtained by directly measuring 

fragment ions, for which there is no recognised international standard. In order to 

plot the data on the same axes, the measurements made by Zuiderweg et al. (2013) 

were adjusted to ensure that the measurements made on modern air agreed with 

those of this study. Since the best precision was achieved in the measurements on 

modern air (due to higher mole fractions), it is likely that the two studies will agree 

here. It should be noted that a bias between the two analytical systems cannot be 

ruled out at this stage (a series of measurements are currently being undertaken to 

determine whether the data sets are consistent).  

2. Zuiderweg et al. (2013) calculated the 98 % confidence interval of the 

measurements at each depth and the mean of these values was then applied to all 

measurements (shown by the error bars in Figure 3.18A). It is unclear why this 

approach was taken, but perhaps the authors were assuming that the measurement 

uncertainty did not vary based on the sample’s CFC-12 mole fraction. It is clear 

from the data presented in Zuiderweg et al. (2013) that this is not the case, since the 

oldest samples exhibit significantly worse than mean precision. In this way, most 

samples (those containing CFC-12 at close to contemporary levels) have slightly 

overestimated uncertainties and the samples at greatest depths have significantly 

underestimated uncertainties (particularly the sample at 69.4 m). In Figure 3.19, 1σ 

uncertainties were applied to each measurement, based on the repeated 

measurement values only. 
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The NEEM 2009 firn air measurements made as part of this thesis can be directly 

compared to the measurements made by Zuiderweg et al. (2013) because the same samples 

were analysed in each case (Figure 3.19). As well as repeating the Zuiderweg et al. (2013) 

measurements, this study analysed a greater range of the available samples (e.g. the 

measurement at 1957). Within analytical uncertainties, this study finds no offset from zero 

between 1957 and 2009. Before 1981, measurements in this study disagree significantly 

with the large δT(
13

C) change reported by Zuiderweg et al. (2013) (Figures 3.18B and 

3.19). 

Figure 3.19. δT(
13

C) measurements on NEEM firn air collected in 2008 (blue 

diamonds) and 2009 (black diamonds) are presented. These measurements are 

compared to model predictions, as presented in Figure 3.16. δT(
13

C) measurements 

made by Zuiderweg et al. (2013) on NEEM 2009 firn air are also included (orange 

diamonds, black outline). The orange dashed line is a polynomial trend line, fitted to 

these data. Correct errors are not available for the Zuiderweg et al. (2013) 

measurements. Instead, partial 1σ analytical uncertainties are applied (discussed in the 

main text). 
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Given the significant disagreement between the conclusions of this study and those of 

Zuiderweg et al. (2013), it is likely that one or both of the data sets are erroneous. The 

measurements presented in this thesis are not reported relative to an international isotope 

standard, whereas Zuiderweg et al. (2013) are able to report absolute δ(
13

C) values against 

VPDB. It is possible that the relationship between the measurements in this thesis and the 

VPDB scale is not linear (as mentioned previously, quantifying this relationship is an 

important task that is still outstanding). Additionally, two potential sources of error have 

been identified in the analytical system and data processing steps used by Zuiderweg et al. 

(2013): 

1. It seems that a constant uncertainty was erroneously applied to all measurements 

(as discussed earlier in this section). Consequently, the magnitude of the model 

uncertainty envelope in the early part of the record is significantly underestimated.  

Figure 3.20. The chromatographic output from two NEEM firn samples have been 

manually offset for readability: 30.2 m (upper) and 69.4 m (lower). The proximity of 

CH3Cl and CFC-12 peaks is displayed. The figure is taken from Zuiderweg et al. 

(2013). 
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2. The methyl chloride (CH3Cl) and CFC-12 peaks partially co-elute on the column 

used by Zuiderweg et al. (2013) (Figure 3.20). This interference will affect the 

shape of the CFC-12 peak and hence the delta value calculated. This effect will be 

particularly significant in the oldest samples which have the smallest CFC-12 

peaks. A dilution series was analysed by Zuiderweg et al. (2013) which confirmed 

the linearity of their system for a large range of CFC-12 peaks (including the peaks 

produced by their oldest sample). In these dilutions, the CH3Cl peak was reduced 

by the same factor as CFC-12. However, in the deepest firn samples presented, the 

CH3Cl peak is proportionally much larger than that of CFC-12 (CH3Cl levels 

remain relatively constant into the middle of the 20
th

 century, whereas CFC-12 

levels decline sharply). This means that the linearity tests do not fully simulate 

effects in the firn samples.  

The proposed effect of the CH3Cl peak (as stated above) is qualitatively supported 

by an appraisal of the analytical uncertainties achieved in this thesis, compared to 

Zuiderweg et al. (2013) (Table 3.8). In this thesis, the analytical uncertainties are 

relatively uniform across all samples, with a slight increase in the three deepest 

samples (66.8, 69.4 and 71.9 m, which contain the lowest mole fractions). The 

analytical uncertainties achieved by Zuiderweg et al. (2013) follow a similar 

pattern, although the increase in uncertainty in their deepest sample (69.4 m) is 

much more pronounced. This greater than expected increased uncertainty could be 

caused by the observed interference from the CH3Cl peak as CFC-12 mole 

fractions decrease.  

 

 

 

 

 

 

 

 

 

 



Isotope composition in atmospheric CFC-11, CFC-12 and CFC-113 

 

104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4   Summary 

 The carbon isotope dependence of the photolysis sink reaction in CFC-11 and CFC-

12 (Zuiderweg et al., 2012) and an assumed constant source δ(
13

C) value were used 

to reconstruct the expected long-term changes in their tropospheric carbon isotope 

signatures. 

 Firn air samples from NEEM (Greenland) have been used to infer an atmospheric 

history of carbon isotopes in CFC-11, CFC-12 and CFC-113, covering the last 55, 

Depth / m 
CFC-12 mole fraction / 

pmol mol
-1

 

δT(
13

C) uncertainty 

from this thesis / ‰ 

Partial δT(
13

C) uncertainties 

from Zuiderweg et al. 

(2013) / ‰ 

0 534.0 2.3 
 

10.5 536.8 2.8 0.8 

20.4 537.9 3.5 0.4 

30.2 542.3 2.0 0.1 

39.2 544.1 3.1 0.8 

50.7 543.3 3.3 0.8 

60.3 531.2 3.5 1.6 

62.0 526.7 3.8 1.8 

63.8 463.2 4.0 0.7 

66.8 286.5 6.8 0.7 

69.4 133.5 6.6 5.9 

71.9 53.6 10.1   

 

Table 3.8. A comparison between the analytical uncertainties achieved in this thesis 

and by Zuiderweg et al. (2013) from measurements of δT(
13

C, CFC-12) on NEEM 2009 

firn air. Correct errors are not available for the Zuiderweg et al. (2013) measurements. 

Instead, partial 1σ analytical uncertainties are applied (discussed in the main text). 
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50 and 20 years, respectively. These include the first measurements of δT(
13

C) in 

CFC-11 and CFC-113. 

 The predicted δT(
13

C) trends in CFC-11 and CFC-12 are small due to the long 

atmospheric lifetimes of the species and can largely be accounted for in the 

tropospheric measurements. Based on this, these new measurements do not support 

a large change in the emissions carbon isotope composition of CFC-11 or CFC-12.  

Without information regarding the carbon isotope dependence of CFC-113 sink 

reactions and further measurements to extend the CFC-113 time series, it is 

impossible to infer the emissions carbon isotope history of this species.  

 These measurements were made following a successful methodological 

development process. The 1σ analytical uncertainty for δT(
13

C) measurements of 

modern samples (1995 – 2010) was improved by 67 % (CFC-11), 71 % (CFC-12) 

and 79 % (CFC-113). 

 These measurements represent a significant advancement in the approach used to 

measure δ(
13

C) in trace gases (pmol mol
-1

 level) in a few hundred millilitres of air. 

Previous studies have required tens to hundreds of litres of air to achieve this. 

These techniques can now be used to extend this pool of isotopic information to 

new sample sources and new gases. For example, the δ(
13

C) analysis of CFC-11, 

CFC-12 and CFC-113 in stratospheric samples would better constrain their global 

isotope budgets.  

 The conclusions of this study regarding the carbon isotope history of CFC-12 differ 

significantly from those of Zuiderweg et al. (2013). Potential sources of error in the 

previously published measurements have been highlighted. 
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Chapter 4: Carbonyl sulphide (COS) in ice and firn 

 

This chapter focuses on measurements of carbonyl sulphide (COS) in firn and ice core air. 

COS is currently the most abundant sulphur-containing trace gas in the atmosphere, at 

approximately 500 pmol mol
-1

. It acts as a precursor for stratospheric sulphate aerosols, 

which facilitate the destruction of ozone. COS has a large number of natural and 

anthropogenic sources and sinks, making its budget difficult to constrain. Since the 1970s, 

studies have attempted to characterise it over seasonal to centennial timescales. More detail 

can be found in Section 1.4. 

 

4.1   Antarctic and Greenland ice cores 

Measurements of COS in air from ice cores have revealed a relatively consistent level of 

approximately 350 pmol mol
-1

 over the last 2000 years of the pre-industrial era (Aydin et 

al., 2002 and 2008; Montzka et al., 2004). The only significant deviation from this natural 

background level appears to have been during the 1600s, when the atmospheric abundance 

is reported to have increased to a maximum of approximately 375 pmol mol
-1

 (Aydin et al., 

2008). This finding was the main motivation for the work presented in this section. By 

producing a continuous, high precision record over this period, this study aimed to confirm 

or refute this positive excursion. Further details can be found in Section 1.4.3. 

Separate studies have measured a decrease in CO2 which coincides with this COS increase 

(Etheridge et al., 1996; Siegenthaler et al., 2005; MacFarling Meure et al., 2006; Frank et 

al., 2010; Mitchell et al., 2011; Ahn et al., 2012). As discussed in Section 1.4.4, it has been 

suggested that measurements of natural COS levels can be used to track terrestrial Gross 

Primary Production (GPP), due to the link between the uptake of CO2 and COS by 

terrestrial vegetation (e.g. Blonquist et al., 2011). By also measuring CO2 and δ(
13

C, CO2) 

in the extracted ice core air, this thesis aims to provide the first record of COS and CO2 

from a single ice core and using only one sample for each set of measurements. 

Additionally, the δ(
13

C, CO2) measurements should indicate whether COS mole fractions 

can be used as a proxy for terrestrial GPP (providing information regarding the state of the 

carbon cycle during this period). 
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4.1.1   Research objectives 

 Extract air from Antarctic ice cores with gas ages between 1089 and 1953 AD at 

the CSIRO Marine and Atmospheric Research (CMAR) laboratories. 

 From each extraction, COS will be measured at UEA and CO2 and δ(
13

C, CO2) at 

CMAR, providing a high precision, continuous record. 

 From this, the reported peak in COS during the 1600s could be verified or refuted 

and the link between COS and the carbon cycle in this period will be investigated. 

 

4.1.2   Methodology 

Chapter 2 provides details regarding the methodological approach used in this work. 

Section 2.1 describes the trace gas analysis system at UEA and Section 2.3 describes the 

ice core extraction system at CMAR. 

The GC-MS inlet system (Figure 2.1, Chapter 2) was modified to allow the analysis of 

samples received from CMAR. An extra piece was added which could join, through a 

clamp and an aluminium O-ring, to the CMAR sample. This addition was made, rather 

than modifying the existing system, because firn samples were also being analysed during 

this measurement period. These firn samples required the original inlet set-up and 

changing between systems was not feasible. The attachment was positioned after the 

Mg(ClO4)2 water trap, making the instrument vulnerable to the effects of wet samples (e.g. 

chromatographic distortions). To mitigate these effects, water vapour in the CMAR 

samples was frozen out by immersion of the sample traps in ethanol, cooled to -25 °C in 

the laboratory freezer room. A temperature of -25 °C was used to ensure that as much 

water was prevented from entering the GC oven as possible, without removing species of 

interest. 

 

4.1.2.1   The sample cycle 

A variety of ice core samples were used in this work mostly sourced in Antarctica, with 

supplementary samples provided by the North Greenland Eemian Ice Drilling Project 

(NEEM) (Table 4.1). Samples from the British Antarctic Survey (BAS) core at Dronning 

Maud Land (DML) and from NEEM were selected, cut and packed at BAS in Cambridge 

(UK). Their air ages ranged from 1089 – 1953 AD, with the highest concentration of 

samples in the 1600s (the method for determining air ages is outlined in Section 2.3.1.1). 
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Freezer containers were used to transport these samples from the UK to Australia because 

soluble gases such as CO2 are vulnerable to contamination effects from partial melting. 

The samples were shipped in a box with ‘vacuum insulation panels’ and surrounded by ‘-

23 °C eutectic gel packs’ which acted as further insulation. A temperature logger was also 

included in the shipment which recorded a value every 20 minutes, providing a 

temperature history of the samples during transit. Figure 4.1 shows that the temperature 

increased steadily over the 6 day transit from -25 to -10 °C.  

 

 

 

 

This BAS/UEA ice was supplemented with samples from the DE08 (Law Dome east) and 

DSS (Law Dome south-southwest) cores, drilled by CSIRO (Table 4.1; Figure 4.2). This 

thesis will refer to the Dronning Maud Land ice samples as ‘DML (BAS)’, to distinguish 

them from the much deeper EPICA DML drilling project at the same site. 

 

Site (drill 

date) 
Location 

Surface 

elevation 

/ m 

Accumulation rate 

/ kg m
-2

 yr
-1

 

Total core 

depth / m 

Number of 

samples 

analysed 

NEEM (2008-

2010) 

77°27’ N, 

51°04’ W 
2479 202 2540 7 

DML (BAS) 

(1998) 

77°02’ S, 

10°30’ W 
2176 71 121.7 17 

DE08 (1987) 
66°43’ S, 

113°12’ E 
1250 1160 234 4 

DSS (1988-

1993) 

66°46’ S, 

112°48’ E 
- 600 772 2 

 

Table 4.1. The samples used in this study came from several drilling sites: NEEM 

(Rasmussen et al., 2013), DML (Hofstede et al., 2004), DE08 (Etheridge et al., 1992) 

and DSS (Rubino et al., 2013). The surface elevation at DSS is not specified, but is 

similar to the DE08 site. 
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At CMAR, an analysis cycle was adopted to extract and measure the air in the most 

efficient way possible. Several factors limited the effectiveness of this system. The major 

issue was that the trace gas measurements took place in the UK (because an AutoSpec 

instrument was not available at CMAR). This meant that for a given sample trap there was 

a minimum period of about two weeks between consecutive extractions. Further limitations 

regarding the number of extractions per day (4 – 5), and the number of sample traps 

available (10), allowed for a maximum measurement output of 5 per week. As well as this, 

the sample size limited the number of measurements possible, so maximising ice volume 

was crucial. 
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Figure 4.1. A record of the internal temperature of the shipping container used to 

transport ice from the UK to Australia.  
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Figure 4.2. The images are taken from the 

NEEM ice core drilling project (right) and 

the Landsat Image Mosaic of Antarctica 

(LIMA) Project (above). The locations of 

several research stations and drilling sites 

are shown, including the sites from which 

our samples originated (NEEM, DML 

(BAS), DE08 and DSS). 
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4.1.3   Results and discussion 

4.1.3.1   System tests 

Before extractions began, a series of tests were conducted to assess the system’s suitability 

to the planned measurement regime. These tests are detailed in Table 4.2 and discussed in 

this section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Details of the types of samples analysed during the period of system 

testing, before performing the planned air extractions from ice cores at CMAR. 

Test type Description 

Mock extractions These tests follow the extraction procedure detailed in Section 

2.3.2 (Chapter 2), with only slight adjustments. For example, if 

the ice is not to be grated, the grater vessel is attached to the 

shaker and left for 10 minutes, without being shaken. For the 

purposes of these tests, either bubble-free ice (BFI: grated or 

ungrated) or no ice was used to replace the ice sample.  By 

injecting gas (typically firn air) into the grater vessel 

immediately before shaking, a ‘real’ extraction is simulated 

most closely. 

“No gas” blanks “No gas” blanks were produced in the same way as mock 

extraction samples, with the air injection step omitted. BFI was 

again used in these tests, grated or ungrated. As detailed in 

Section 2.1.1.3 (Chapter 2), the UEA system blank is quantified 

almost daily. These “no gas” tests were valuable because they 

allowed the CMAR system blank to be quantified. At UEA, 

research grade helium was used to flush the CMAR sample 

traps, forcing any gas present into the GC-MS for analysis. 

Ice core samples A small number of ‘real’ ice core samples were selected for 

extraction and analysis during this period. Samples were 

selected using the following criteria: 1) 20
th

 century samples 

were selected in an attempt to overlap with and compare to firn 

air data; 2) samples of similar air ages were selected to give a 

measure of the extraction and analysis procedure repeatability. 
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Typically, pressure sensors are used to assess the integrity of an extraction line. For 

example, a significant leak can be recognised if a pump is not achieving a low enough 

vacuum, or if the pressure of a space under static vacuum rises. When measuring pre-

industrial air from ice cores, an additional means of making this kind of assessment is 

available. As described previously, the GC-MS AutoSpec instrument at UEA makes high 

precision measurements of a wide range of trace level compounds. This means that if an air 

sample from the 1600s contains anthropogenic compounds that did not exist until the 20
th

 

century (e.g. SF6), it must have been contaminated by modern air. Whilst pressure sensors 

are generally the best way to identify leaks in an extraction system, the sample could 

already be contaminated (e.g. through deformation processes in the ice or during drilling 

and transportation). This range of potential issues makes the measurement of 

anthropogenic gases a valuable quality assurance step.  

“No gas” blanks were used to test the integrity of the CMAR system (Table 4.2). It was 

found that the CMAR system does not add significantly to the UEA COS blank (UANs 

601373 and 601377, Table 4.3). As well as this, SF6 measurements in firn air during mock 

extractions showed excellent agreement, again suggesting that the samples are not 

contaminated by the CMAR system (UANs 601366 – 601369 and 601374 - 601376, Table 

4.4). In these mock extractions the agreement shown is less good for COS, with mole 

fractions slightly above those of previous measurements (UANs 601366 – 601369 and 

601374 - 601376, Table 4.3). Due to the small sample size and lack of repeats in ice core 

measurements, significantly worse precision is expected compared to firn air 

measurements. For example, Aydin et al. (2008) present an average 1σ uncertainty of ± 15 

pmol mol
-1

 in ice core air and ± 4.3 pmol mol
-1

 in firn air. Considering this, if uncertainties 

of ± 15 pmol mol
-1

 were included for the test values, 5 out of 7 tests would agree within 

1σ.  

It was suspected that COS concentrations in the UEA laboratory standard had drifted since 

the original firn sample analysis in 2009. This seemed like a reasonable assumption given 

the excellent blank test results, and the fact that all of the mock extractions produced 

measurements higher than expectated (rather than a more irregular distribution). This 

meant that, by taking into account the assumed calibration offset, all values were likely to 

agree, within 1σ uncertainties. 
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UAN 

Sample ID of 

gas used for 

test 

SF6 mole 

fraction / pmol 

mol
-1

 

1σ uncertainty / 

pmol mol
-1

 

SF6 mole fraction 

measured in test / 

pmol mol
-1

 

Difference / 

pmol mol
-1

 

601366 SC1242 4.5 0.07 4.4 -0.06 

601367 SC1241 0.1 0.00 0.1 0.00 

601368 SC1159 0.3 0.00 0.3 -0.02 

601369 SC1166 4.0 0.04 4.1 0.03 

601373 "No gas" 0.0 - 0.0 0.00 

601374 SC1166 4.0 0.04 4.0 -0.03 

601375 SC1166 4.0 0.04 4.0 0.01 

601376 SC1166 4.0 0.04 4.1 0.05 

601377 "No gas" 0.0 - 0.0 0.00 

 

Table 4.4. A summary of the SF6 measurements made during the system tests conducted 

as quality assurance during the period of system testing. The unique analysis number 

(UAN) and highlighting are used as described in Table 4.3. A description of the “no gas” 

blanks and details regarding the ice used in these tests are described in Table 4.2.  UANs 

601366 – 601369 were conducted using Kel-F stem tips and UANs 601373 – 601377 

with Stellite stem tips. Uncertainties are not shown when a measured value is obtained 

from a single analysis only. 

UAN 

Sample ID of 

gas used for 

test 

CFC-12 mole 

fraction / pmol 

mol
-1

 

1σ uncertainty / 

pmol mol
-1

 

CFC-12 mole 

fraction measured 

in test / pmol mol
-1

 

Difference / 

pmol mol
-1

 

601366 SC1242 536 3 546 9 

601367 SC1241 47 1 71 24 

601368 SC1159 110 1 137 26 

601369 SC1166 520 7 544 24 

601373 "No gas" 0 - 0 0 

601374 SC1166 520 7 518 -2 

601375 SC1166 520 7 517 -3 

601376 SC1166 520 7 521 1 

601377 "No gas" 0 - 0 0 

 

Table 4.5. A summary of the CFC-12 measurements made during the system tests 

conducted as quality assurance during the period of system testing. As described in the 

caption for Table 4.4. 
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In addition to SF6, CFCs were used as leak indicators since they are entirely anthropogenic 

in origin. Elevated levels of these compounds would indicate that modern air has 

contaminated the ice core air during the sample collection, transport or extraction. CFC-12 

has previously been used in this capacity (Aydin et al., 2007).  CFC-11, CFC-12 and CFC-

113 were measured during testing and found to be highly variable and, in general, 

significantly above expected levels. Given the strong evidence for a leak-tight system (“no 

gas” tests), it was unlikely that entrainment of laboratory air was the cause, suggesting that 

an internal source existed. The most obvious potential sources were the traps’ stem tips, 

which contain Kel-F (a chlorofluoropolymer). It is normal practice at UEA to use only 

stainless steel components in extraction lines leading to trace gas analysis. However, 

testing at CMAR has shown that stainless steel seals can produce CH4, which is a target 

species in their system. Copper tips would not release CFCs, but they have a tendency to 

degrade with time which does not allow the fine adjustments necessary to control the flow 

into instruments at CMAR. Stellite (a cobalt-based alloy) was identified as having the best 

potential for these measurements and was used to replace the Kel-F stem tips. After 

changing to Stellite stem tips, the test samples showed good agreement with measured 

CFC-12 levels (UANs 601374 – 601376, Table 4.5), although CFC-11 and CFC-113 

remained elevated. (Information used to determine the best replacement material was 

obtained through personal communication with Dr. David Etheridge, Dr. Mauro Rubino 

and Prof. Bill Sturges.) 

Aydin et al. (2007) found that measuring CFC-12 in each ice core sample was sufficient to 

identify modern air contamination. Since the CMAR-UEA system showed good results for 

both SF6 and CFC-12, it was decided that together, these species would be adequate to act 

in this capacity. The elevated levels of CFC-11 and CFC-113 meant that they could not be 

used alongside SF6 and CFC-12, but this was not considered a limitation. The source of 

this excess CFC-11 and CFC-113 is currently unknown and time constraints prevented 

further investigations. 

 

A suite of measurements were made at CMAR immediately following an extraction. 

Depending on the amount of air available, CO2, δ(
13

C, CO2), CH4, CO and N2O were 

measured. CO2 and CH4 were always measured and since their atmospheric abundances 

have increased dramatically over the past century, these measurements act as a further test 

of sample quality. Elevated levels of these gases indicate ingress of modern air, as in the 

cases of CFC-12 and SF6. 
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Table 4.6 gives details of the two ‘real’ extractions performed during the testing period. 

These samples were cut from adjacent pieces of ice in a single bag, giving the same air age 

and ensuring that any drilling, storage and transport effects were consistent. In this way, 

these samples provided a measure of extraction accuracy and precision. The consistency 

shown is excellent, giving confidence in the system. A comparison between these values 

and previous measurements (Aydin et al., 2008) show the same positive offset seen in the 

mock extractions which was again put down to a COS drift in the UEA laboratory 

standard. 

 

The low levels of contamination shown in “no gas” blanks were well within acceptable 

limits and the excellent reproducibility of SF6 and CFC-12 values in mock extractions 

suggested that contamination from small leaks was not a factor. It was thought that a COS 

calibration offset was the cause of the slightly high COS values measured in the mock 

extractions. An inter-comparison of standards at UEA was planned to quantify the drift and 

make the necessary adjustments to absolute values. Overall, the tests suggested that good 

COS measurements could be made using this system. 

 

 

 

 

Table 4.6. ‘Real’ test extractions from DE08 ice. Samples were cut from 

a single bag of ice, to ensure any pre-extraction processes affected both 

identically. Adjacent samples were cut to give the same air ages. 

Depth / m Air age / years AD COS / pmol mol
-1 

180.50 – 180.69 1886 404 

180.69 – 180.89 1886 398 
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4.1.3.2   Standard comparisons 

The comparison of various UEA standards took place at the same time as the extracted 

samples were being analysed. This meant that the comparison results were not fully 

compiled until after the majority of the extractions had taken place. 

The working standard (AAL-071170) was compared to two other standards (ALM-39753 

and SX-0706077), all of which had been calibrated for their COS content at NOAA and 

had been previously measured in a similar exercise (May 2010). The ability to make a 

historical comparison is vital when assessing whether a drift has occurred. 

Within 1σ analytical uncertainties, complete agreement was found between AAL-071170, 

ALM-39753 and SX-0706077 (Table 4.7). As described in Section 2.1,  mole fractions in 

pmol mol
-1

 are obtained by measuring the ratio between two air samples and multiplying 

that number by a known factor (i.e. the mole fraction of one of the air samples) to give the 

mole fraction in the other sample. Since the ‘known factor’ is the mole fraction in AAL-

071170, it is possible that the COS content of all three of these standards have simply 

drifted by the same factor, making their absolute values falsely consistent. This is unlikely 

to be the case here because SX-0706077 is contained in an electro-polished stainless steel 

cylinder, whereas both AAL-071170 and ALM-39753 are contained in an Aculife-treated 

aluminium cylinder. The variation in container type makes a synchronous drift unlikely.  

This means that the agreement shown in Table 4.7 can be accepted in absolute as well as 

relative terms, indicating that the COS content of the working standard has not drifted. 

Therefore, the positive offset between measurements and expectations (e.g. Section 

4.1.3.1) must have been caused by a different effect. At this point, it was unclear what the 

additional factor was. Section 4.1.3.4 explores this question in detail. 

 

 

 

 

 

 

 

 

Table 4.7. The standard comparison results from COS measurements. All 

measurements were made relative to AAL-071170.  

Standard ID 
Measured COS (May 2010) 

/ pmol mol
-1 

Measured COS (April 

2013) / pmol mol
-1 

ALM-039753 497.1 ± 8.7 487.8 ± 6.2 

SX-0706077 551.0 ± 9.7 548.7 ± 2.8 
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4.1.3.3   Extracted samples 

Throughout the extraction period, testing continued in a quality assurance capacity (details 

of test types in Section 4.1.3.1). The results of this testing are presented below and 

discussed further in Section 4.1.3.4.  

 

Quality assurance 

As discussed in Section 4.1.3.1, the measurement of anthropogenic gases provided an 

assessment of sample and extraction integrity. In general, these results confirmed that the 

samples were free of contamination (Figures 4.3 and 4.4). This means that the ice was in 

good condition at the point of extraction and that the extraction-transport-analysis cycle did 

not compromise it. However, Figures 4.3 and 4.4 highlight some samples that have 

elevated levels of these gases, indicating the presence of modern air. Below the depth at 

which firn samples can be collected, air occluded in ice has been found to exhibit some 

open porosity, leading to ingress of younger air (Aydin et al., 2010). Aydin et al. (2007) 

measured non-zero levels of CFC-12 in some ice core samples from well below the firn-ice 

transition, but found that other trace species were not affected in a significant way. An 

adequate explanation for this inter-species variation is not provided. In this study, COS 

results from samples with elevated levels of either SF6 or CFC-12 (or both) will be 

highlighted, but not discarded. 

The measurements at CMAR were compared to spline curves fitted to existing records 

(Trudinger et al., 1999 and Rubino et al., 2013). In general, the samples that exhibit 

abnormal CO2 and CH4 results (CMAR measurements) also gave poor SF6 and CFC-12 

results (UEA measurements). All of the NEEM samples and two DML (BAS) samples 

were high in CO2 (DML 6 and DML 9; sample details are compiled in Table 4.11, page 

126). With the exception of two of the NEEM samples (NEEM 6 and NEEM 7, Table 

4.11), these same extractions gave either high SF6 values, high CFC-12 values, or both 

(Figures 4.3 and 4.4). Again, samples identified as suspect based on their CO2 and CH4 

levels will be highlighted, but not discarded. 
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Figure 4.3. The measured SF6 abundance in extracted ice samples. An orange dashed 

line is drawn at 0.1 pmol mol
-1

 which is ~1.8 % of modern values (corresponding to the 

CFC-12 value used by Aydin et al. (2007) to indicate the potential ingress of modern 

air). Samples above this line are identified in subsequent plots using open symbols.  
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Figure 4.4. The measured CFC-12 abundance in extracted samples. An orange dashed 

line is drawn at 10 pmol mol
-1

 which is the level used by Aydin et al. (2007) to indicate 

the potential ingress of modern air. Samples above this line are identified in subsequent 

plots using open symbols.  
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COS results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 4.5. A) The measured COS abundance in extracted samples. B) As in A, but 

with adjusted axes to compare the lowest measurements made at UEA to ice core 

data from Aydin et al. (2008) and firn air measurements made at UEA (see Section 

4.2). The orange dotted box in A indicates the axes values in B. In both, open 

symbols indicate that the sample is suspect based on CO2, CH4, SF6 or CFC-12 

measurements. Uncertainties are not shown when points represent single analyses 

only. 
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The first set of extractions were of NEEM ice core air and gave COS mole fractions much 

higher than expected, based on the results of previous studies (e.g. Aydin et al., 2008). All 

of the NEEM samples were measured above 500 pmol mol
-1

 (approximate contemporary 

levels) and two were measured above 1 nmol mol
-1

 (Figure 4.5). Even taking into account 

the suspected calibration offset, these values are all higher than expected.  

Measurements of COS in DML (BAS) ice core air show a pattern similar to NEEM 

measurements: values are generally higher than expected and there are also some 

extremely high values (Figure 4.5). All DML (BAS) samples had COS levels above 400 

pmol mol
-1

 (approximately 25 % higher than expected). As well as this, of the 17 samples, 

7 were measured above ambient levels and 1 was above 2 nmol mol
-1

. This level of 

variation was not expected. 

Finally, a small number of DSS and DE08 samples were analysed. Only one sample 

contains COS above contemporary levels and no samples were measured in the nmol mol
-1

 

range (Figure 4.5A). However, as seen in the NEEM and DML (BAS) measurements, 

these Antarctic samples contain higher COS than previous studies have reported (Figure 

4.5B).  

 

The measurements displayed in Figure 4.5 are consistently higher than expected, with a 

very large range of values. Since there has been no standard drift (Section 4.1.3.2) to 

account for the observed positive offset, it seems likely that an additional systematic factor 

is causing the apparent production of COS during extraction and/or transport (Section 

4.1.3.4). 

 

4.1.3.4   Sources of error and corrections 

During the extraction period, it became apparent that several previously unidentified 

factors were affecting the measured COS levels. This section details the attempts made to 

characterise these factors and correct the results.  

 

Quality assurance tests 

Tables 4.8, 4.9 and 4.10 show the mole fractions measured in mock extractions performed 

during the extraction period of COS, SF6 and CFC-12, respectively. One of these tests was 
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included with each set of samples (typically 3 – 4 extractions), in an attempt to quantify 

daily variations in the CMAR system. 

Apart from one SF6 value (UAN 601458), SF6 and CFC-12 show good agreement with the 

original UEA measurements, suggesting that the system remains leak-tight (Tables 4.9 and 

4.10). Contrary to this, COS is elevated to a greater degree than it was during testing.  

Several mock extractions contain COS mole fractions significantly above peak known 

levels, meaning that ingress of air cannot account for the measured values (Table 4.8). 

Since the COS content of the standard air has not drifted (Section 4.1.3.2), the observed 

offset is likely due to a systematic production of COS. This effect seems to have 

significantly worsened since the system was tested (Section 4.1.3.1). 

Two “no gas” blanks were measured during the NEEM extractions, both yielding poor 

results for COS and CFC-12 (Tables 4.8 and 4.10). A sample trap at high pressure is 

unlikely to be compromised by a small leak because the prevailing movement of air will be 

outwards. This is not the case in “no gas” blank tests, where the trap is at significantly sub-

atmospheric pressure. A good “no gas” test result provides information (i.e. that the trap 

and extraction line are leak-tight), whereas the cause of a poor result is very difficult to 

trace. Although “no gas” blanks initially gave excellent results, it was decided that these 

tests were unreliable in this situation and should be discontinued. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 4 

123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P
u
rp

o
se

 o
f 

te
st

s 
U

A
N

 
M

as
s 

o
f 

ic
e 

/ 
g

 

N
u

m
b

er
 

o
f 

p
ie

ce
s 

G
ra

te
d

? 

S
a
m

p
le

 I
D

 o
f 

g
as

 u
se

d
 f

o
r 

te
st

 

C
O

S
 m

o
le

 

fr
ac

ti
o

n
 /

 p
m

o
l 

m
o

l-1
 

1
σ
 u

n
ce

rt
ai

n
ty

 

/ 
p

m
o

l 
m

o
l-1

 

C
O

S
 m

o
le

 f
ra

ct
io

n
 

m
ea

su
re

d
 i

n
 t

es
t 

/ 

p
m

o
l 

m
o

l-1
 

D
if

fe
re

n
ce

 /
 

p
m

o
l 

m
o

l-1
 

Q
u
al

it
y
 

as
su

ra
n
ce

 

d
u
ri

n
g
 i

ce
 

ex
tr

ac
ti

o
n
 

p
er

io
d
 

6
0

1
3
9

6
 

4
9
 

1
 

G
ra

te
d

 
S

C
1

1
6

6
 

6
3

5
 

1
3
 

7
2

1
 

8
6
 

6
0

1
4
0

1
 

0
 

0
 

N
o

 i
ce

 
“N

o
 g

a
s”

 
2

.2
 

- 
3

3
 

3
0
 

6
0

1
4
0

2
 

0
 

0
 

N
o

 i
ce

 
“N

o
 g

a
s”

 
1

.4
 

- 
3

3
4
 

3
3

2
 

6
0

1
4
0

6
 

4
4

5
 

1
 

U
n

g
ra

te
d

 
S

C
1

2
4

2
 

5
4

3
 

1
4
 

5
3

8
 

-5
 

6
0

1
4
1

5
 

4
8

9
 

1
 

U
n

g
ra

te
d

 
S

C
1

2
4

2
 

5
4

3
 

1
4
 

5
3

2
 

-1
1

 

6
0

1
4
2

4
 

8
1
 

1
 

G
ra

te
d

 
S

C
1

2
4

2
 

5
4

3
 

1
4
 

6
5

8
 

1
1

5
 

6
0

1
4
3

5
 

4
7

8
 

2
 

G
ra

te
d

 
S

C
1

2
4

2
 

5
4

3
 

1
4
 

5
3

1
 

-1
2

 

6
0

1
4
4

5
 

8
0
 

1
 

U
n

g
ra

te
d

 
S

C
1

0
9

5
 

5
5

5
 

8
 

5
7

9
 

2
4
 

6
0

1
4
5

8
 

4
4

0
 

1
 

G
ra

te
d

 
S

C
1

0
9

5
 

5
5

5
 

8
 

9
5

6
 

4
0

1
 

 

T
a
b

le
 4

.8
. 

A
 s

u
m

m
ar

y
 o

f 
th

e 
C

O
S

 m
ea

su
re

m
en

ts
 m

ad
e 

d
u
ri

n
g
 t

h
e 

sy
st

em
 t

es
ts

 c
o
n
d
u
ct

ed
 a

s 
q
u

al
it

y
 a

ss
u
ra

n
ce

 d
u

ri
n
g
 t

h
e 

ic
e 

ex
tr

ac
ti

o
n
 

p
er

io
d
. 

T
h
e 

u
n
iq

u
e 

an
al

y
si

s 
n
u
m

b
er

 (
U

A
N

) 
an

d
 h

ig
h
li

g
h
ti

n
g
 a

re
 u

se
d
 a

s 
d
es

cr
ib

ed
 i

n
 T

ab
le

 4
.3

. 
A

 d
es

cr
ip

ti
o

n
 o

f 
th

e 
“n

o
 g

as
” 

b
la

n
k
s 

an
d
 

d
et

ai
ls

 r
eg

ar
d
in

g
 t

h
e 

ic
e 

u
se

d
 i

n
 t

h
es

e 
te

st
s 

ar
e 

al
so

 d
es

cr
ib

ed
 i

n
 T

ab
le

 4
.3

. 
U

n
ce

rt
ai

n
ti

es
 a

re
 n

o
t 

sh
o
w

n
 w

h
en

 a
 m

ea
su

re
d
 v

a
lu

e 
is

 o
b
ta

in
ed

 

fr
o
m

 a
 s

in
g
le

 a
n
al

y
si

s 
o
n

ly
. 



Carbonyl sulphide (COS) in ice and firn 

 

124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UAN 

Sample ID of 

gas used for 

test 

SF6 mole 

fraction / 

pmol mol
-1

 

1σ uncertainty / 

pmol mol
-1

 

SF6 mole fraction 

measured in test / 

pmol mol
-1

 

Difference / 

pmol mol
-1

 

601396 SC1166 4.0 0.04 4.1 0.05 

601401 "No gas" 0.0 - 0.1 0.07 

601402 "No gas" 0.0 - 0.1 0.09 

601406 SC1242 4.5 0.07 4.5 -0.01 

601415 SC1242 4.5 0.07 4.5 -0.03 

601424 SC1242 4.5 0.07 4.5 -0.05 

601435 SC1242 4.5 0.07 4.4 -0.06 

601445 SC1095 6.7 0.10 6.5 -0.16 

601458 SC1095 6.7 0.10 5.7 -1.00 

 

Tables 4.9. A summary of the SF6 measurements made during the system tests 

conducted as quality assurance during the ice extraction period. The unique analysis 

number (UAN) and highlighting are used as described in Table 4.3. A description of 

the “no gas” blanks and details regarding the ice used in these tests are described in 

Table 4.2.  Uncertainties are not shown when a measured value is obtained from a 

single analysis only.  

 

UAN 

Sample ID 

of gas used 

for test 

CFC-12 mole 

fraction / pmol 

mol
-1

 

1σ uncertainty / 

pmol mol
-1

 

CFC-12 mole 

fraction measured 

in test / pmol mol
-1

 

Difference / 

pmol mol
-1

 

601396 SC1166 520 7 511 -9 

601401 "No gas" 0 - 65 65 

601402 "No gas" 0 - 22 22 

601406 SC1242 536 3 534 -2 

601415 SC1242 536 3 533 -3 

601424 SC1242 536 3 530 -6 

601435 SC1242 536 3 534 -2 

601445 SC1095 540 3 544 4 

601458 SC1095 540 3 540 -1 

Table 4.10. A summary of the CFC-12 measurements made during the system tests 

conducted as quality assurance during the ice extraction period. As described in the 

caption for Table 4.9. 
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COS measurements 

During their analysis at UEA, it was observed that, in general, a large amount of water was 

included in the NEEM sample air. Characteristic chromatographic interferences of a wet 

sample were seen (deformation of the CFC-113 peak and all those following it). Also, after 

the sample had been entirely flushed out of the system, residual water vapour was present 

in the GC column for at least an hour after analysis. The GC oven was baked at 230 °C and 

the flow rate increased to 3 ml/min until the water level returned to normal. This showed 

that the water traps in the CMAR and UEA systems were not removing all of the water. 

Multiple sections of ice were grouped to create each NEEM ice sample because the 

available samples were typically thinner than from other ice cores. This means that, 

compared to the two samples extracted during testing (DE08 469 and DE08 471, Table 

4.11), the surface area to volume ratio of the NEEM samples was much higher and they 

would have experienced a faster increase in temperature when moving from the -80 °C 

chest freezer to the -20 °C cold room. Consequently, the NEEM samples would have 

exhibited a higher sublimation rate. Additionally, the CH3CCl3 values measured at the 

UEA were highly variable, but generally lower than expected during testing. This is not a 

species of interest, except that as an anthropogenic gas it has the potential to act as another 

test of sample integrity. It was thought that the CMAR water trap was freezing out some of 

the CH3CCl3, leading to the variable and low values. For this reason, the trap temperature 

was increased to approximately -50 °C from -100 °C (Table 4.11). A -50 °C water trap has 

been successfully used by Dr. David Worton at UEA to remove water from ice core air 

extractions, suggesting that this temperature should be effective (information gained 

through personal communication with Prof. Bill Sturges). However, in this case it seems 

that the temperature increase reduced the trap’s effectiveness, allowing large amounts of 

water to be included with the NEEM samples. 

The CMAR trap was adjusted back to -100 °C for the extraction of DML (BAS), DSS and 

DE08 samples. These Antarctic samples were larger than those taken from NEEM, giving 

them a lower surface area to volume ratio and hence a lower sublimation rate. The 

chromatographic interferences due to the presence of water vapour noted during the 

analysis of NEEM samples were not seen again, suggesting that the Antarctic samples 

yielded drier air. However, all samples are elevated in COS to some degree, meaning that 

the production of COS persisted, even in the absence of excess water. 
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UAN Sample ID 
Air age 

[AD] 

CMAR water 

trap temperature 

/ °C 

Ice mass 

/ g 

Number 

of pieces 

COS / pmol 

mol
-1

 

601370 DE08 469 1886 -103 1285 1 404 

601397 DE08 471 1886 -96 1283 1 398 

601398 DE08 472 1953 -100 1132 1 793 

601399 DE08 473 1939 -93 1264 1 443 

601400 NEEM 1 1679 -98 698 7 719 

601403 NEEM 3 1486 -50 943 7 1283 

601404 NEEM 4 1400 -58 932 8 938 

601405 NEEM 2 1612 -46 679 5 2851 

601407 NEEM 5 1293 -98 742 8 504 

601408 NEEM 6 1149 -97 723 9 707 

601409 NEEM 7 1089 -96 740 6 539 

601416 DML 1 1563 -93 733 2 467 

601417 DML 2 1402 -87 726 2 465 

601418 DML 3 1344 -90 782 4 458 

601425 DML 4 1864 -90 663 3 2813 

601426 DML 5 1682 -88 702 3 953 

601427 DML 6 1783 -94 627 3 637 

601432 DML 9 1916 -105 690 3 681 

601433 DML 7 1838 -104 674 3 417 

601434 DML 8 1515 -100 764 3 451 

601442 DML 10 1808 -102 673 3 694 

601443 DML 11 1753 -103 627 3 434 

601444 DML 12 1717 -103 711 4 624 

601455 DML 20 1663 -114 810 4 458 

601456 DML 21 1589 -111 740 3 456 

601457 DML 22 1623 -122 652 3 653 

601460 DML 23 1643 -108 603 2 488 

601461 DML 24 1604 -105 635 2 489 

601459 DSS 31 1848 -109 950 2 385 

601462 DSS 32 1863 -106 614 2 411 

 

Table 4.11. Details of the ice core samples analysed. The UAN is the ‘unique analysis 

number’ given to each extraction at CMAR which is used for identification. Air age, 

water trap temperature, ice mass, measured COS mole fraction and the number of ice 

pieces in each sample are given.  
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Storage tests 

A series of storage tests were performed, in an attempt to quantify the systematic COS 

production. The objectives of these tests were: 

 To confirm whether COS is being produced in the sample traps. 

 To characterise this production in terms of variations due to sample moisture 

content and the differences between traps.   

Dried air (a UEA laboratory standard, AAL-071170) was stored for up to 12 days in the 

sample traps. The air was then analysed on the AutoSpec and a comparison made with 

known trace gas levels in AAL-071170. Additionally, air collected on the RRS James 

Clark Ross research ship (JCR121) was stored and analysed in the same way. This air was 

collected at the ocean-atmosphere interface, meaning that its water saturation level was 

very high. In this way, the growth of COS was quantified in both a dry and wet sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. COS measurements in dried air storage tests, using a UEA laboratory 

standard (AAL-071170). Only selected traps are shown, although maximum and 

minimum values across all traps are represented. The vertical dashed line indicates 

the average time between CMAR extraction and UEA analysis (just under 7 days). 

Uncertainties are not shown because points represent single analyses only. 
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Figure 4.6 shows the linear COS increase associated with dry air storage in four of the 

sample traps. All traps exhibited COS production, but their individual rates of increase are 

highly variable. A COS increase of between 20 and 80 pmol mol
-1

 is expected when a 

dried sample is stored for just under 7 days (the average transport time between CMAR 

and UEA; dashed line, Figure 4.6).  

Figure 4.7 shows how the same traps react to the storage of wet air. Again, all traps 

exhibited production and a large amount of variation is shown between traps. Over a 

similar period of storage the observed COS increases are much larger in wet air. This 

suggests that the presence of water does contribute to COS production in these sample 

traps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Wet air storage using a sample collected at the ocean-atmosphere 

interface from the RRS James Clark Ross (JCR121).  Only selected traps are shown, 

although maximum and minimum values across all traps are represented. The 

vertical dashed line indicates the average time between CMAR extraction and UEA 

analysis (just under 7 days). Uncertainties are not shown because points represent 

single analyses only. 
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Analytical uncertainties have not been calculated because the limited amount of air 

available prevented repeat measurements. However, where separate storage periods of a 

similar length have been used, some measure of uncertainty can be established for 

individual traps. Using this method, some traps show good precision (e.g. dry air in trap 5 

and wet air in trap 4), whereas others show poor precision (e.g. dry air in trap 4 and wet air 

in trap 3). 

This study does not attempt to constrain a reaction mechanism to explain the observed in-

situ COS production. However, the elements necessary to make up COS are all readily 

available. Oxygen is present in air and carbon and sulphur are contained in stainless steel 

(sulphur is sometimes added to stainless steel to aid the welding process, e.g. Fihey and 

Simoneau, 1982). Assuming that the production occurs through an interaction with the 

stainless steel surface, welds and other areas with large surface areas could increase the 

production rate. For example, Stedman et al. (1984) found that COS is produced through 

the oxidative decomposition of pyrite (FeS2) in the presence of organic matter and water. 

This mechanism could be used to qualitatively explain the higher COS production in 

Northern Hemisphere samples. As inferred earlier in this section (under ‘COS 

measurements’), significantly more water was collected along with the NEEM sample air, 

compared to the Antarctic samples.  

It is possible that the sample trap surface does not play a role in the observed COS 

production, although given the unique COS production behaviour of each trap, it is likely 

that the trap surface plays a significant role.  

 

The results of these tests can be summarised:  

 Both dried and wet air stored in these traps is subject to COS production. 

 Each trap displays unique COS production behaviour. 

 Wet air exhibits a much higher rate of COS production than dried air. 

Limitations in the experimental design make more quantitative information difficult to 

produce.  The amount of water present in the dried and wet air is not known. This means 

that a quantitative relationship between COS production and sample water content for each 

trap cannot be calculated. However, constraining this relationship would not enable 

corrections to be made to the ice core measurements because the water content of each ice 

core sample is not known and cannot be calculated retrospectively. Even if the storage tests 
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were performed on air of known water content, they could not be used to make wholesale 

corrections.  

 

Factors affecting sample water content 

Based on the assumption that the presence of water in the sample traps is the predominant 

cause of the observed COS production, three major variables have been identified which 

determine the amount of water present in each trap and the effect this will have on COS: 

1. The surface area to volume ratio of the ice sample 

This variable incorporates factors such as the initial ice mass, the number and shape 

of ice pieces and the presence of contaminants. A lower initial ice mass, a larger 

number of ice pieces and a lower concentration of contaminants will lead to a 

higher surface area to volume ratio and hence a faster sublimation rate.  

2. The trap used 

The storage tests showed significant differences in the behaviour of individual traps 

(Figures 4.6 and 4.7).  

3. The extraction history of the trap  

The extraction system and the sample traps have specific usage histories. Although 

the system was flushed with dried air and evacuated after each use, the amount of 

residual water after each measurement is unknown.  

The above is not an exhaustive list; inconsistent results (e.g. some of the variability seen 

during storage tests, Figure 4.7) indicate that other factors are involved. 

 

In an attempt to quantify the amount of water vapour contained in each ice core air sample, 

the link between the observed COS production rate and the extraction line pressure was 

investigated. After the ice sample has been sealed inside the grater vessel for 2 minutes, a 

pressure reading is taken. A small increase in pressure is expected (due to the release of 

water vapour from the sample surface), and a large increase is indicative of a leak in the 

grater. In a completely leak-tight system, the observed pressure increase could be used as a 

measure of the sublimation rate. NEEM extractions show significantly higher pressure 

readings than Antarctic samples, qualitatively supporting their high rates of COS 

production (Figure 4.8). However, overall there is a weak relationship between this 

pressure reading and the COS production rate (Figure 4.8). This poor fit is likely due to a 

number of factors (e.g. small leaks will diminish the accuracy of the reading). Also, at the 
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point of measurement, the sample is yet to be crushed which is the period of most rapid 

sublimation. This means that the extraction line pressure cannot be reliably used to 

estimate the amount of water vapour contained in each ice core air sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. A) Calculated COS production rates are plotted against the grater 

pressure (after it has been sealed for 2 minutes). By assuming that the 

measurements in Aydin et al. (2008) are correct, the observed offset and the time 

between extraction and analysis can be used to calculate the COS production rate. 

B) As in A, but with adjusted axes to highlight the samples with the lowest pressure 

readings. The orange dotted box in A indicates the axes values in B. 

In both, open symbols indicate that the sample is suspect, based on CO2, CH4, SF6 

or CFC-12 measurements. 
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Corrected COS data 

A simple means of fully accounting for the observed COS production does not exist. As a 

sensitivity study, an attempt was made to partially correct the data by accounting for the 

growth of COS in dried air (Figure 4.7). The time between extraction and COS analysis 

was used in conjunction with the observed growth rate in dried air to make ‘dried air 

corrections’. These corrected values are shown in Figure 4.9. 

As described previously, analytical uncertainties are not available because there was 

insufficient air for repeat measurements. However, using the AutoSpec instrument, 

analysis of COS in firn air has achieved a mean 1σ analytical uncertainty of ±8 pmol mol
-1

. 

This level of precision relates to samples with a mean abundance of 500 pmol mol
-1

 and no 

sample at less than 360 pmol mol
-1

. Based on this, it was thought that the UEA analytical 

system would achieve similar precision to previous studies (e.g. Aydin et al., 2008). Given 

the additional uncertainty associated with the correction process, it seems reasonable to 

assume that the ice core measurements presented in this thesis have significantly larger 

uncertainties than the ±15 pmol mol
-1

 achieved by Aydin et al. (2008). 

The corrected data (Figure 4.9B) are compared to previously published measurements 

(Aydin et al., 2008). All data points have been individually corrected, according to the trap 

used and their transport time. This downward shift improves the comparability to existing 

data sets, although a discrepancy remains in almost all points. The first measurements were 

made on the three DE08 samples with air ages in the late 19
th

 and early 20
th

 centuries. 

These extractions were performed during the system tests and the corrected values agree 

with Aydin’s data. This agreement suggests that, at this time, the system had not been 

contaminated by excess water. Extractions were then performed on NEEM, DML (BAS) 

and finally DSS samples. In general, the DML values are higher than expected, even after 

correction. This suggests that residual water from the wet NEEM extractions has 

contaminated the system and that dry air corrections are not sufficient to account for the 

COS growth. The DSS samples were extracted last, at which point some of the water from 

NEEM extractions may have dissipated, but it is difficult to draw conclusions from these 

data because a consistent pattern is absent. 
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Figure 4.9. A) The corrected COS abundance measurements based on the COS 

production rates observed in individual traps using dried air. B) As in A, but with 

adjusted axes to compare the lowest measurements made at UEA to ice core data 

from Aydin et al. (2008) and firn air measurements made at UEA (see Section 4.2). 

The orange dashed box in A indicates the axes values in B. In both, open symbols 

indicate that the sample is suspect based on CO2, CH4, SF6 or CFC-12 

measurements. Uncertainties are not shown when points represent single analyses 

only. 
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At the lowest COS concentrations, the corrected measurements (Figure 4.9B) show greater 

variability than the uncorrected values (Figure 4.5B). The variability shown in Figure 4.9B 

is unlikely to be natural variation and could represent the additional uncertainty introduced 

by the correction. 

It seems likely that the excess water released from the previously extracted NEEM ice 

samples was the main cause of the poor DML measurements. The agreement between 

corrected DE08 samples and previously published data suggest that the system was 

reasonably dry before the NEEM extractions were performed. After this, corrections 

became less effective due to the presence of water. 

 

4.1.3.5   Gases measured at CMAR 

Before being sent to UEA for trace gas analysis, the extracted air was analysed at CMAR 

for CO2, CH4 and CO (within 1 hour) and δ(
13

C, CO2) (within 12 hours). CMAR 

measurements of this sort have been previously reported (e.g. Etheridge et al., 1996; 

Francey et al., 1999; MacFarling Meure et al., 2006; Rubino et al., 2013). These high 

precision CO2 and δ(
13

C, CO2) measurements have helped to constrain the global carbon 

cycle in modelling studies covering the last 2000 years (e.g. Trudinger et al., 1999 and 

2005). 

The DML (BAS) samples provided for this study were used to increase the CO2 and δ(
13

C, 

CO2) measurement density in the 16
th

 and 17
th

 centuries to better constrain the δ(
13

C) 

increase and CO2 decrease during this period (Figure 4.10). Rubino et al. (in preparation) 

report a 0.14 ‰ increase in δ(
13

C) and a 7 ppm decrease in CO2 between 1502 and 1592 

from these new records. A Kalman Filter Double Deconvolution Model (KFDD, Trudinger 

et al., 2002a and 2002b) was then used to determine the relative contributions of the 

terrestrial biosphere and the ocean to the observed changes in CO2 and δ(
13

C). The 

terrestrial biosphere was found to be the main contributor in this case. Since respiration is 

more sensitive to temperature changes than photosynthesis (Trudinger et al., 1999), Rubino 

et al. (in preparation) argue that a decrease in global photosynthetic activity and respiration 

(due to a temperature decrease) is the most likely cause of the reported CO2 and δ(
13

C) 

changes. This conclusion is supported by their use of a COS budget to test the effect of a 1 

°C temperature decrease on the atmospheric abundance of COS (based on fluxes published 

by Berry et al., 2013). These authors found that this temperature change would have 

increased COS by 18 pmol mol
-1

, which can qualitatively explain the positive COS 

excursion reported by Aydin et al. (2008) during the 1600s. This means that the CO2 
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decrease and the δ(
13

C) and COS increases at this time can be qualitatively explained by a 

temperature-induced decrease in GPP and respiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The high quality of these CO2 and δ(
13

C, CO2) measurements provide evidence that the 

difficulties encountered in this project were confined to COS; other species were 

unaffected. From this, it can be deduced that the DML (BAS) ice core samples and the air 

extraction system were of high quality, with no sign of leaks in the extraction system. This 

assessment supports the view that the artificial COS growth occurred entirely post-

Figure 4.10. A record of CO2 mole fractions and δ(
13

C, CO2) from various 

Antarctic ice cores (see legend). Error bars give an estimate of the 1σ analytical 

uncertainties (see Rubino et al., 2013 for details of the calculation). The mean 

errors were 0.5 μmol mol
-1

 and 0.05 ‰. The figure was adapted from Rubino et al. 

(in preparation). 
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extraction and was related to the interior surface of the air sample traps, rather than the 

drilling and storage procedure. 

 

4.1.4   Summary 

 The CMAR laboratories in Australia were used to extract air from Northern and 

Southern Hemisphere ice core samples (NEEM, DE08, DML (BAS) and DSS). 

These samples were analysed for CO2 and δ(
13

C, CO2) at CMAR and a range of 

trace gases at UEA (including COS). The results from a total of 30 samples have 

been presented in this thesis. 

 The high quality CO2, δ(
13

C, CO2), SF6 and CFC-12 measurements show that the 

DML (BAS) ice core was not contaminated by ingress of modern air during its 

drilling, transport, storage, extraction and analysis. 

 The AutoSpec instrument described in this thesis was used to measure COS (at an 

abundance of a few hundred pmol mol
-1

), using a small amount of extracted air 

(approximately 30 ml). 

 It is likely that COS was produced in the sample traps, post-extraction. Storage 

tests confirmed that the growth rate varies from trap to trap, likely due to small 

differences in their interior surfaces. The presence of water provoked a range of 

growth rates in the traps as well as a generally accelerated increase. 

 The COS mole fraction measurements were corrected based on the partially 

characterised COS production and show no substantial trends over the last 1000 

years, in broad agreement with previously published values (Aydin et al., 2008).  

 The reported rise in COS abundance during the 1600s (Aydin et al., 2008) cannot 

be supported or refuted by these new data due to the post-extraction growth of 

COS. A large number of factors have been identified which contribute to this 

effect, not all of which can be quantified. The full scope of this issue could not be 

adequately constrained, meaning that wholesale corrections were not possible. 
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4.2   Northern and Southern Hemisphere firn air 

Very few studies have measured COS in firn air; question marks remain regarding its 

global atmospheric history and inter-hemispheric differences. This uncertainty is 

particularly apparent in the Northern Hemisphere (NH), for which Sturges et al. (2001) 

provide the only long-term study. Some recent work (e.g. Aydin et al., 2002 and 2008; 

Montzka et al., 2004) has suggested that COS levels increased from pre-industrial levels to 

peak in the 1980s, before decreasing to present-day levels. Uncertainty remains regarding 

the rate of decline from peak levels as well as the magnitude and timing of the COS peak. 

Given the role of COS in stratospheric ozone destruction, it is important to understand its 

atmospheric chemistry in order to support ozone recovery predictions. More detail can be 

found in Section 1.4. 

The original EDML and NEEM firn air analyses were performed at UEA by Dr. Francis 

Mani and Dr. Chris Hogan, respectively. These samples were collected at the EDML 

(EPICA European Project for Ice Coring in Antarctica/Dronning Maud Land) and NEEM 

(North Greenland Eemian Ice Drilling) sites. I reanalysed 25 of these firn samples as well 

as carrying out the modelling work presented in this section. The reanalysis was done for 

two reasons: 

1. To verify the integrity of the samples. COS is potentially unstable during storage 

(e.g. the growth effect seen in Section 4.1). By reanalysing these samples, any 

COS degradation can be identified. 

2. To ensure that all COS measurements are quoted using a single calibration scale. 

Where samples have not degraded, agreement between old and new measurements 

would demonstrate that the two sets of analysis are consistent with each other. 

Also, this would confirm that all measurements correspond to the NOAA (2004) 

calibration scale which is used to define the COS content of the working 

laboratory standard (AAL-071170). 

 

4.2.1   Research objectives 

1. Reanalyse a set of Northern and Southern Hemisphere firn air samples for COS and 

other trace gases, to ensure a consistent calibration scale and verify the integrity of 

the samples. 
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2. Use a firn diffusion model developed at the Laboratoire de Glaciologie et 

Géophysique de l'Environnement (LGGE), to infer new long-term Northern and 

Southern Hemisphere COS atmospheric histories from these firn air measurements. 

3. Use these time series to better constrain spatial variations in COS mole fractions. 

 

4.2.2   Methodology 

Section 2.1 describes the trace gas analysis system at UEA which was used to perform the 

reanalyses. Similar methods were used in the original measurement period (descriptions 

can be found in Mani, 2010 and Hogan, 2013). Section 2.2 describes the model used in this 

work. 

Previously published atmospheric time series were compiled to produce a best estimate of 

the atmospheric history of COS (Figures 4.11 and 4.12). The way these data were 

combined is outlined in Table 4.12. Since the inter-hemispheric ratio of COS has only been 

determined in recent years (with the inclusion of anthropogenic emissions), COS mole 

fractions measured in Antarctic ice cores were used as a global average up to the early 

1900s. After this, various firn air studies were used until the late 20
th

 century. Finally, 

ground-based stations run by NOAA were used to constrain the trends in the early 21
st
 

century. The NOAA stations at Summit (Greenland) and the South Pole were selected 

because they closely represent the environmental conditions at the firn air sites used in this 

thesis. There are trends in the high temporal resolution NOAA data, but the mole fractions 

change by < 1 pmol mol
-1

 yr
-1

, so a flat trend was assumed at the mean value for the first 

15 years of the 21
st
 century. Using these time series as the input to the firn diffusion model 

(Figure 4.13), site-specific depth profiles were produced. This allowed a comparison to be 

made between the previously published data and the new data presented in this thesis. 

Throughout Section 4.2 various atmospheric time series (model ‘input scenarios’) will be 

used to produce mole fraction depth profiles (model ‘output scenarios’). 
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Figure 4.11. Previously published COS mole fraction measurements in firn air. COS 

is plotted against CFC-12 (as an age normaliser) in firn air from (a) DML and Dome 

C in Antarctica and (b) Devon Island in the Arctic. Lines indicate various atmospheric 

trend scenarios. Symbols identify flask types and sampling locations. Filled (Dome C) 

and open (DML) circles represent samples collected in SilcoCans, with some DML 

samples also collected in MPI flasks (open squares) and NCAR flasks (shaded 

diamonds). Devon Island samples were collected in Stabilizer flasks (open triangles) 

as well as SilcoCans and NCAR flasks (symbols as above). The figures were taken 

from Sturges et al. (2001). 
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Figure 4.12. Previously published COS mole fraction measurements in firn and ice 

core air. A) COS is plotted against CO2 (as an age normaliser) in South Pole firn air, 

approximately representing the period from 1940 – 2000. The solid lines represent 

various optimised model relationships. B) Black symbols indicate COS measurements 

on Siple Dome (Antarctica) ice core air. The red line is the inferred atmospheric 

history based on the measurements in A. An open symbol indicates an anomalous 

measurement. The figures were taken from Montzka et al. (2004).  

A) 

B) 
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Figure 4.13. The initial input time series for the NEEM (blue line) and EDML (red 

line) sites. These scenarios were constructed using the constraints outlined in Table 

4.12. 
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Input scenario for NEEM site

Input scenario for EDML site

Time 

constraint 
Northern Hemisphere Southern Hemisphere 

1800s 

325 pmol mol
-1

 (Antarctic ice core air 

in Aydin et al., 2008 used as a global 

average) 

325 pmol mol
-1

 (Antarctic ice core 

air in Aydin et al., 2008 used as a 

global average) 

Early 1900s 
385 pmol mol

-1
 (firn and ice core air in 

Montzka et al., 2004) 

385 pmol mol
-1

 (firn and ice core air 

in Montzka et al., 2004) 

Mid-1980s 

525 pmol mol
-1

 (firn air in Sturges et 

al. (2001), CFC-12 values provide 

approximate air ages) 

525 pmol mol
-1

 (firn air in Montzka 

et al. (2004), CO2 values provide 

approximate air ages) 

Early 2000s 

and seasonality 

476 pmol mol
-1

 (2004 - 2014 average 

taken from the NOAA ground-based 

station at Summit, Greenland) 

490 pmol mol
-1

 (2000 - 2014 average 

taken from the NOAA ground-based 

station at the South Pole) 

 

Table 4.12. Based on previously published data, a best estimate of the atmospheric 

history of COS has been temporally constrained. The source of each constraint is given 

alongside the relevant data. Data from the NOAA ground-based station data can be 

found at: ftp://ftp.cmdl.noaa.gov/hats/carbonyl%20sulfide/OCS__GCMS_flask.txt. 

ftp://ftp.cmdl.noaa.gov/hats/carbonyl sulfide/OCS__GCMS_flask.txt)
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4.2.3   Results and discussion 

Of the 25 samples that were reanalysed, 12 were found to have degraded slightly over their 

period of storage (Figure 4.14). A sample was judged to have degraded if there was either 

growth or loss of a compound beyond analytical uncertainties. CCl4 and CH3CCl3 are 

typically the first species to exhibit growth or loss if the sample has degraded (assuming 

that the containers have not leaked, allowing the ingress of modern air). This effect is yet 

to be quantified and the reason for it is poorly understood, although a dependence on 

latitude and altitude has been noted 

(http://www.esrl.noaa.gov/gmd/hats/combined/CCl4.html). Where this effect was seen, the 

reanalysis was excluded and the original measurement is represented in subsequent figures 

using an open symbol (Figure 4.15). In the absence of sample degradation, good agreement 

is shown between the original measurements and those performed as part of this thesis 

(Figure 4.14). This suggests that both sets of measurements are consistent with the NOAA 

(2004) calibration scale and can be directly compared.  

Laboratory air standards are measured relative to each other with respect to a range of 

compounds every few years. This process is a further test of measurement consistency 

because it tracks how the COS content of these standards changes with respect to each 

other. Figure 2.3 (Chapter 2) displays a long-term comparison between two standards 

(ALM-64957 and ALM-39753) and Table 4.7 (Section 4.1.3.2) shows the results of a 

recent comparison between three standards (AAL-071170, ALM-39753 and SX-0706077). 

All of the available standards are analysed during an inter-comparison, rather than just the 

working standard and one other. This is because including a larger number of standards 

reduces the chance of co-variation being mistaken for stability. Although concurrent drift 

is unlikely, it is possible since there are similarities in the filling procedure and storage 

environment of these standards. A variety of standards will introduce a range of container 

vessel types and mole fraction amounts, meaning that any drift is more likely to be 

identified. These tests show that the COS content of these standards has not drifted with 

respect to each other. This means that the two sets of analysis are quantitatively 

comparable and can be combined into a single data set. 

Figure 4.14 displays the root firn air data used in this section. The initial best estimate 

atmospheric scenarios (Figure 4.13) were used as the input to the firn model. In this way, 

the previously published data can be compared to these new measured profiles (Figure 

4.15). 

 

http://www.esrl.noaa.gov/gmd/hats/combined/CCl4.html
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Figure 4.14. The results of the original firn air COS mole fraction measurements made 

by Dr. Chris Hogan (Hogan, 2013; blue diamonds) and Dr. Francis Mani (Mani, 2010; 

red diamonds), as well as the reanalyses conducted as part of this thesis (“Allin”; green 

diamonds). A) Samples from the NEEM site (Greenland), collected in 2008. B) 

Samples from the EDML site (Antarctica), collected in 2005/2006. 1σ analytical 

uncertainties are included. Empty symbols indicate that there was evidence of 

degradation in the sample (as defined in the main text). The final data are displayed in 

Figure 4.15. 
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Figure 4.15. COS is modelled based on best estimate atmospheric scenarios (Figure 

4.13). Using NEEM (A) and EDML (B) parameters, the model is run to produce site-

specific output scenarios (blue lines). The firn measurements displayed in Figure 4.14 

are combined to give these data. Where the original and new measurements at a given 

depth are both shown to be robust (as defined in the main text), the values were 

averaged. Where the reanalysis revealed slight degradation the original measurement 

was used and represented by an open symbol. A) Samples from the NEEM site 

(Greenland), collected in 2008 (blue diamonds). B) Samples from the EDML site 

(Antarctica), collected in 2005/2006 (red diamonds). 1σ analytical uncertainties are 

included. When multiple measurements are combined, the total uncertainty is 

calculated using equation 2.3 (Chapter 2). 
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The model output in Figure 4.15A shows good agreement with the deepest (72 – 76 m) and 

shallowest (0 – 50 m) NEEM measurements. The fit is less good near the surface where 

seasonal variability could be having an impact. Also, between approximately 55 and 70 m 

there is a large positive excursion in the firn measurements which is not replicated in the 

model output. Figure 4.15B shows that the Southern Hemisphere model output follows the 

shape of the EDML profile very well, although the firn measurements are consistently 

slightly lower than the model output. This offset is least significant as COS mole fractions 

reach their peak (85 – 88 m). The effect of seasonal variability on near-surface 

measurements is explored in Sections 4.2.3.1 and 4.2.3.2. 

From this point, the input scenarios will be adjusted in atmospherically relevant ways (e.g. 

by including a seasonal cycle), to assess the potential reasons for the differences between 

measured and expected values (Figure 4.15). 

 

4.2.3.1   Northern Hemisphere results 

Figures 4.17A and 4.18A display NH input scenarios, to illustrate the adjustments that 

were made. These act as sensitivity tests, to determine the model output produced from 

various input scenarios. 

 

Seasonality 

Input 2 in Figure 4.17A includes seasonal variability into the original best estimate 

scenario (Figure 4.13). Seasonality data were taken from the ground-based NOAA site at 

Summit (Greenland) which covers the period from 2004 – 2014 (Table 4.12). The seasonal 

signal from the 12 months immediately preceding the drilling date at NEEM (Figure 4.16) 

was extrapolated to the whole record. 

Surface variability is only transmitted to the highly diffusive upper part of the firn column, 

meaning that output 2 is very similar to output 1 at depths greater than approximately 20 m 

(Figure 4.17B). Closer to the surface, the model output tracks the firn profile very well, 

suggesting that these measurements have captured seasonal differences at NEEM.  
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Regional anthropogenic emissions  

The NH best estimate scenario (Figure 4.13) is constructed based on measurements from 

several sites. The NEEM site is closer to European anthropogenic emissions than the 

published 20
th

 century constraints (Table 4.12). It could be that this proximity can explain 

the higher than expected COS values in the NEEM firn. The available data quantifying the 

hemispheric partitioning of anthropogenic emissions is limited. The most recent 

evaluations of the COS budget include large uncertainties (Kettle et al., 2002; Montzka et 

al., 2007). The size of these uncertainties precludes the possibility of quantifying the 

proposed proximity effect at NEEM. Instead, input scenario 3 (Figure 4.17A) was 

constructed based on the available data regarding the major anthropogenic source of COS 

(CS2 released through viscose-rayon production). This production was constant between 

1970 and 1990, before dropping by 24 % over the next 9 years (source: Acordis company). 

Sturges et al. (2001) calculated that this 24 % drop in global viscose-rayon production 

Figure 4.16. COS mole fraction measurements made at the NOAA ground-based 

station at Summit (Greenland). These measurements cover the 12 month period 

immediately preceding the firn air sampling at the nearby NEEM site. A polynomial 

trend line has been fitted to the data. The data were taken from 

ftp://ftp.cmdl.noaa.gov/hats/carbonyl%20sulfide/OCS__GCMS_flask.txt. 
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would result in a 4 % drop in COS mole fractions. Regionally, this decrease is likely to 

have been larger due to changes in the location of CS2 production over the same period. In 

the 1970s over a third was produced in Europe, compared to 7 % in the 1990s (Sturges et 

al., 2001). Linked to this, Asian synthetic fibre production made up 24 % of the global 

industry in 1977, rising to 65 % by 1997 (source: Fiber Economics Bureau, Ltd). Based on 

this, it is reasonable to assume that the change in COS mole fractions over Europe (and at 

NEEM) would have been larger than the global value calculated by Sturges et al. (2001). 

During the mid-1980s (as anthropogenic emissions peaked), COS mole fractions have been 

increased to 660 pmol mol
-1

 for input scenario 3 (Figure 4.17A). The adjusted mole 

fractions decrease linearly before and after this point, reflecting the lower anthropogenic 

emissions away from this peak. This large change in COS mole fractions has been 

simulated because input scenario 3 is intended as a sensitivity test, comparing the potential 

effect of a large regional shift in CS2 emissions on local COS mole fractions.  

Figure 4.17B shows that the magnitude of some firn measurements is replicated more 

closely using this scenario (e.g. between 65 and 70 m). However, the fit is worse in the 

deepest (72 – 75 m) and shallowest (0 – 50 m) measurements. Also, the peak in the firn 

measurements comes at a shallower depth than in the model output. This suggests that 

although model output 3 is closer in magnitude to the measurements between 50 and 72 m, 

the shape (and therefore the timing) of the COS peak is not replicated. In contrast to the 

mid-1980s peak reported by previous studies (e.g. Montzka et al. 2004), it seems that a 

significantly enhanced COS flux into the atmosphere after this point is required to 

reconcile these NEEM data. 
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Figure 4.17. A) Northern Hemisphere model input scenarios for COS (a brief 

description is given here, with full details in the main text). Input 1: best estimate 

scenario from Figure 4.13. Input 2: as input 1, with the seasonal signal from Summit 

(Greenland) added (Table 4.9 and Figure 4.16). Input 3: as input 1, but assuming a 

greater proportion of anthropogenic COS emissions were recorded at NEEM, with 

minimal influence on other sites. B) COS mole fraction measurements made on NEEM 

firn air (as described in Figure 4.15). COS is modelled based on the input atmospheric 

scenarios shown in A. Specific output scenarios (solid lines) are numbered according to 

the input scenario that they result from. 
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Emission events 

Localised emissions events and unusual meteorological activity are two possible 

explanations for the excess COS found in these firn samples. For example, a period of 

elevated emissions from a viscose-rayon factory, a biomass burning event or a volcanic 

plume coupled with meteorological conditions altering their distribution, could lead to 

unusually high levels of COS at a particular sampling site. Based on 15 years of 

measurements at ground-based NOAA stations, there is no direct evidence that these 

events occur, meaning that the scenarios presented in this section (Figure 4.18A, inputs 4 

and 5) are unlikely to represent realistic atmospheric scenarios. 

Input 4 (Figure 4.18A) takes the original best estimate scenario (Figure 4.13) and adds a 

COS level of 10,000 pmol mol
-1

 for three months in 1999. An event of this magnitude and 

duration is unlikely to have remained localised, making this an extreme scenario. It was 

designed to determine whether this could replicate the size of the measured peak in firn air 

mole fractions.  

Figure 4.18B shows that the magnitude of the positive excursion in the data has been 

replicated by this event and the fit between the model output and the firn measurements is 

good between 62 and 75 m. At shallower depths, the model output shows a gradual 

decrease from peak to surface levels, reflecting the more open porosity in this part of the 

firn. In contrast, the firn measurements show a sharp decline over the same period. This 

suggests that an emissions event and the model-constrained firn processes cannot fully 

explain the firn air measurements made at the NEEM site. 

Input 5 is identical to input 4, except that the 3 months at 10,000 pmol mol
-1

 are in 1965, to 

determine whether events of this nature would be detectable early in the firn record. 

Figure 4.18B shows that the magnitude of this event is more significantly damped when it 

occurs earlier in the firn record. However, output 5 is still clearly visible above output 1, 

suggesting that this type of event should be detectable anywhere in the firn column 

(assuming a high enough sampling frequency). The measurement at 70 m could be due to a 

localised, short duration event characterised by very high COS. However, as stated 

previously, there is no evidence that the events described in inputs 4 and 5 occur. The 

section titled ‘Other potential sources of elevated COS in firn’ explores this in more detail. 
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Figure 4.18. A) Northern Hemisphere model input scenarios for COS (a brief 

description is given here, with full details in the main text). Input 1: best estimate 

scenario from Figure 4.13. Input 4: as input 1, with a COS level of 10,000 pmol mol
-1

 

for 3 months in 1999. Input 5: as input 1, with a COS level of 10,000 pmol mol
-1

 for 3 

months in 1965. B) COS mole fraction measurements made on NEEM firn air (as 

described in Figure 4.15). COS is modelled based on the input atmospheric scenarios 

shown in A. Specific output scenarios (solid lines) are numbered according to the input 

scenario that they result from. 
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Model sensitivity to COS diffusivity  

As described in Section 2.2 (Chapter 2), the movement of any gas in firn is constrained by 

its molecular mass and its diffusivity. In this study, the diffusivity of COS was calculated 

using the method outlined in Chen and Othmer (1962). As a final sensitivity test, the 

diffusivity constraint in the model was adjusted to be 25 % higher (Input 6) and 25 % 

lower (Input 7) than the calculated value. The original best estimate atmospheric scenario 

(Input 1, Figure 4.17A) was used without alteration. 

Figure 4.19 shows that the large adjustments made to the diffusivity parameter have very 

little effect on the model output compared to the effect of potential atmospheric changes 

(Inputs 2 - 5). It is unlikely that an error in the diffusivity would have a significant effect 

on the model output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. COS mole fraction measurements made on NEEM firn air (as described 

in Figure 4.15). COS is modelled based on input 1 (Figure 4.17A) and varying the 

COS diffusivity (as described in the main text). Specific output scenarios (solid lines) 

are numbered according to the input scenario that they result from. 
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Other potential sources of elevated COS in firn 

In Section 4.2.3.1, atmospheric phenomena have been explored in an attempt to reconcile 

the NEEM firn air measurements with previously published COS atmospheric data. The 

magnitude of the large positive excursion between 50 and 72 m has been successfully 

replicated through a high intensity emissions event, although the rate of decline from 62 to 

50 m cannot be reproduced. The emissions events discussed earlier in this section were 

designed to be unrealistic in order to show that the observed values can only be replicated 

with unrealistic atmospheric scenarios. This suggests that in-situ processes (which are 

confined to the section between 50 and 72 m) are likely to be producing the excess COS.  

Several studies have presented trace gas measurements made on these NEEM samples 

(Hogan, 2013; Petrenko et al., 2013; Helmig et al., 2014). Hogan (2013) measured a wide 

range of trace gases using these samples. The mole fractions of several halogenated 

compounds (CH3Cl, CHCl3, CH2Cl2, CCl2CCl2, CH2ClCH2Cl, C2H5Cl, CH2BrCH2Br, 

C2H5Br, CH2BrCl, CHBrCl2 and CF3CHBrCl) were found to have increased and decreased 

in the atmosphere, in a similar way to COS. However, these halogenated species peak 

before COS and do not display the same rapid decline from a COS peak at 62 m to 

contemporary levels at 50 m. Helmig et al. (2014) reconstructed a 60 year NH atmospheric 

history of ethane, propane, i-butane, n-butane, i-pentane and n-pentane. In common with 

COS, all of these species were found to increase and decrease in abundance with a peak at 

approximately 1980. However, there is good agreement between the measurements and 

emissions inventories from Western Europe and North America. Petrenko et al. (2013) 

present a record of CO from these NEEM samples (Figure 4.20) which was shown to 

conflict with the predicted atmospheric history of CO over Greenland. A chemistry-climate 

model (CAM-Chem, (Lamarque et al., 2010)) was used to make these predictions, by 

setting emissions inventories as an input parameter. Petrenko et al. (2013) calculated that at 

1950, measured CO is as much as a factor of 2 higher than expected. Also, emissions 

reductions were found to have occurred approximately 10 years earlier than reported 

(approximately 1980 compared to 1990) and the emissions reductions in the last 2 – 3 

decades have been underestimated by as much as a factor of 2.5. Previous studies have 

found evidence of in-situ production of CO in NH firn and ice (Clarke et al., 2007; Haan 

and Raynaud, 1998). Figure 4.20 shows that peak CO and COS levels do not coincide, 

suggesting that if both peaks are caused by in-situ production, they are being produced 

through different mechanisms. The production mechanisms are not known, although it is 

assumed that the substrate in both cases is trace organic material. Petrenko et al. (2013) 
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reasoned that if an organic-rich layer at NEEM were the cause of the high CO levels at the 

lock-in depth, this layer would also be present in nearby drilling sites. Elevated CO levels 

were found at the neighbouring NGRIP site, but the mean ice-age of these layers was offset 

by 45 years from those at NEEM. Based on this finding, Petrenko et al. (2013) concluded 

that in-situ production was not the cause of the elevated CO mole fractions and that large 

errors in the emissions inventories were the most likely cause of the conflict between 

measured and predicted CO mole fractions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. Measurements of CO (red diamonds) and COS (blue diamonds) mole 

fractions on NEEM 2008 firn air. The CO data were taken from Petrenko et al. 

(2013). 
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4.2.3.2   Southern Hemisphere results 

Figures 4.21A and 4.23A display the SH input scenarios, to illustrate the adjustments that 

were made. These act as sensitivity tests, to investigate the discrepancies between 

measured and expected values (Figure 4.15) and to assess the effect of the NH scenarios 

discussed in Section 4.2.3.1. 

 

Seasonality 

Input 2 in Figure 4.21A includes seasonal variability into the original best estimate 

scenario (Figure 4.13). Seasonality data were taken from the ground-based NOAA site at 

the South Pole which covers the period from 2000 – 2014 (Table 4.12). The seasonal 

signal from the 12 months immediately preceding the drilling date at EDML (Figure 4.22) 

was extrapolated to the whole record. 

Below the diffusive upper part of the firn column, surface processes (including seasonal 

changes) have no significant effect. This has resulted in outputs 1 and 2 being almost 

identical at depths greater than 20 m (Figure 4.21B). The predicted increase from 15 m to 

the surface (based on South Pole seasonality data, Figure 4.22) is reproduced in the EDML 

firn measurements. However, the model predicts an increase of 15 pmol mol
-1

, compared 

to the 30 pmol mol
-1

 increase seen in the EDML measurements over the same period. This 

difference could reflect the greater distance between the South Pole and the oceanic COS 

flux, compared to EDML. Figure 4.21B also shows that there is an offset of 30 – 50 pmol 

mol
-1

 between the measurements and the model output over the whole profile. The 

consistency of this offset suggests that the difference is significant and not due to 

measurement uncertainties. The likely cause of this difference is discussed later in this 

section, under “Natural source variability”.  
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Figure 4.21. A) Southern Hemisphere model input scenarios for COS (full details in 

the main text). Input 1: best estimate scenario from Figure 4.13. Input 2: as input 1, 

with the seasonal signal from the South Pole added (Table 4.12 and Figure 4.22). Input 

3: as input 1, with a COS level of 7500 pmol mol
-1

 for 3 months in 1999. B) COS mole 

fraction measurements made on EDML firn air (as described in Figure 4.15). COS is 

modelled based on the input atmospheric scenarios shown in A. Specific output 

scenarios (solid lines) are numbered according to the input scenario that they result 

from. 
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Emission event 

Short duration, intense emissions events in the NH have been suggested in Section 4.2.3.1 

as a possible mechanism to explain some of the high COS measurements in NEEM firn air 

(Figure 4.18B). Input 3 in Figure 4.21 investigates the potential effect of one of these 

events on the record at EDML. Based on the 1999 NH emission event described in Section 

4.2.3.1 (Figure 4.18A, Input 4) and assuming a 25 % loss during transport, this leaves a 

COS level of 7500 pmol mol
-1

 for three months in the SH (Figure 4.21A, Input 3). The 

emissions are assumed to have originated in the NH because an anthropogenic source is 

more likely to produce a high intensity release like this and they are mostly located in the 

NH. Equation 4.1 describes how a loss rate of 25 % was calculated.  

Figure 4.21B shows that this type of event would impact many of the measurements at 

EDML and would be clearly visible in the record. This scenario is not supported by the firn 

measurements which show no positive excursions above expected values. It is possible that 

Figure 4.22. COS mole fraction measurements made at the NOAA ground-based 

station at the South Pole. These measurements cover the 12 month period immediately 

preceding the firn air sampling at the EDML site. A polynomial trend line has been 

fitted to the data. The data were taken from 

ftp://ftp.cmdl.noaa.gov/hats/carbonyl%20sulfide/OCS__GCMS_flask.txt. 
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due to meteorological factors an emissions event in the NH was much more localised, 

although it seems unlikely that the effect of such a large event would be completely absent 

in the SH record. This supports the conclusion in Section 4.2.3.1 that the higher than 

expected mole fraction values measured on NEEM samples are not the result of 

atmospheric composition changes. 

 

Natural source variability 

The EDML measurements are generally slightly lower than expected (based on recent 

atmospheric measurements; Table 4.12), with the best agreement found as COS mole 

fractions reach their peak (88 – 85 m). An optimised SH input scenario has been produced 

to determine the atmospheric time series that provides the best fit to the measurements. 

Output 2 showed that the magnitude of the seasonal cycle at the South Pole was 

approximately half that of EDML (Figure 4.21B). The South Pole seasonal cycle (Figure 

4.22) was doubled to produce the seasonality data for the optimised scenario (input 4, 

Figure 4.23A). To improve the fit over the whole firn profile, the original best estimate 

scenario (Figure 4.13) was lowered by 10 % at 1920, 2 % at 1984 and 8 % at 2006. The 

amount of lowering was changed linearly between these values and all points before 1920 

were reduced by 10 % (Figure 4.23A). 

Figure 4.23B shows that the atmospheric history of COS at EDML is different to 

previously published SH records (Table 4.12, Figure 4.13). Within the analytical 

uncertainties of the measurements and assuming a similar uncertainty in the output 

scenario (output 4, Figure 4.23B), all of the measurements agree with this optimised 

scenario. To achieve this fit, the relative adjustment required decreased to a minimum as 

COS peaked in the mid-1980s. This means that as anthropogenic emissions contribute 

more to COS sources, the difference between measurements from EDML and other SH 

sites reduces. Based on this, it seems likely that the natural COS budget is the main driver 

of this difference. It is unlikely that sink processes could produce this difference because 

the major sink (uptake by vegetation) is mostly located in the NH. The remote Antarctic 

sites used in this study (EDML and South Pole) are unlikely to be influenced differently by 

this distant sink. On the other hand, the oceans act as a significant net source of COS in the 

SH (Kettle et al., 2002). Regional variations in this source due to ocean dynamics and 

biological activity (e.g. the strength and location of phytoplankton blooms) provide the 

most viable cause of the difference between EDML and other SH sites. To investigate this 

further, these new EDML data should be incorporated into a chemical transport model (e.g. 
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GEOS-Chem, (Suntharalingam et al., 2008)) in order to better understand the temporal and 

spatial flux of COS from the oceans. In this case, the Southern Ocean would be of 

particular interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. A) Southern Hemisphere model input scenarios for COS (full details in 

the main text). Input 1: as described in Figure 4.13. Input 4: peak COS levels are 2 % 

lower than input 1 and mole fractions decrease on either side of this peak to 10 % lower 

than input 1 at 1920 and 8 % lower at 2006. The seasonal signal from the South Pole 

(Figure 4.22) is doubled and added to input 4. B) COS mole fraction measurements 

made on EDML firn air (as described in Figure 4.15). COS is modelled based on the 

input atmospheric scenarios shown in A. Specific output scenarios (solid lines) are 

numbered according to the input scenario that they result from. 
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Model sensitivity to COS diffusivity 

The diffusivity constraint in the model was adjusted to be 25 % higher (Input 5) and 25 % 

lower (Input 6) than the calculated value, as a final sensitivity test. The original best 

estimate atmospheric scenario (Input 1, Figure 4.21A) was used without alteration. 

Figure 4.24 shows that these adjustments to the diffusivity parameter have a small effect 

on the model output, particularly at depths below the lock-in zone. Assuming an 

atmospheric input scenario uncertainty of 3 %, the changes shown in outputs 5 and 6 are 

not significant (Figure 4.24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. COS mole fraction measurements made on NEEM firn air (as described 

in Figure 4.15). COS is modelled based on input 1 (Figure 4.21A) and varying the 

COS diffusivity (as described in the main text). Specific output scenarios (solid lines) 

are numbered according to the input scenario that they result from. 
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4.2.4   Summary 

 New Northern and Southern Hemisphere firn profiles of COS mole fractions have 

been presented.  

 A firn diffusion model has been used to compare these profiles with previously 

published data. 

 Using high temporal resolution data from ground-based stations as a comparison, 

the seasonal variability of COS mole fractions has been captured well at both sites. 

This suggests that the measurements in the diffusive part of the firn column are 

largely robust. 

 The previously reported decline in the COS mole fractions since the 1980s is seen 

in both data sets.  

 The Northern Hemisphere NEEM data show a significantly accelerated decline 

from very high levels between 50 and 65 m, compared to a previously reported 

Devon Island record. Although a causal mechanism has not been identified which 

can account for these elevated values, it has been shown that a high magnitude, 

short duration event at the turn of the century could account for the highest 

measurements, but not the observed rate of decline. 

 In-situ production could have caused the high values at NEEM as well as the 

subsequent rapid decline, although there is no direct evidence to substantiate this. 

Evidence of in-situ production in the wide range of other trace species measured in 

these samples is also lacking.  

 The Southern Hemisphere EDML measurements are slightly lower than predicted, 

based on previously published Antarctic data. It is likely that this discrepancy 

during the 20
th

 and 21
st
 centuries is due to regional changes in natural COS sources, 

although direct evidence has not been produced.  
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Chapter 5: Conclusions and recommendations 

This chapter provides a summary of the main findings in this thesis and outlines how these 

results could be used to guide future inquiry. 

 

5.1 An atmospheric history of the chlorine and carbon isotope 

composition in CFC-11, CFC-12 and CFC-113 

CFCs are ozone depleting substances entirely of anthropogenic origin. It is important to 

understand how these gases interact with the environment to determine their likely impact 

on the climate system. Based on research directly linking CFCs to the destruction of 

stratospheric ozone (e.g. Molina and Rowland, 1974; Farman et al., 1985), the Montreal 

Protocol and its subsequent amendments were instigated. These agreements have been 

largely successful in phasing out the production and consumption of known ozone 

depleting substances. At this point, research into these gases should be directed at better 

understanding their behaviour, with a view to predicting and preparing for the atmospheric 

conditions of the future. In this study, significant progress has been made in the 

characterisation of the three most abundant CFCs (CFC-11, CFC-12 and CFC-113). Part of 

this work has been published (Allin et al., 2015), with a second publication in progress. 

 

Previous studies have used IRMS techniques to measure isotope deltas in trace gases (e.g. 

Zuiderweg et al., 2013). Large samples of air, typically hundreds of litres, were needed to 

achieve measurable chromatograph peaks. Laube et al. (2010a) used a single-collector GC-

MS instrument to analyse much smaller aliquots, to make the first stratospheric δ(
37

Cl, 

CFC-12) measurements. The measurements presented in this thesis also required small 

samples (200 - 600 ml) and were used to infer an atmospheric history of chlorine and 

carbon isotopes in CFC-11, CFC-12 and CFC-113. These measurements are the first to 

quantify the long-term changes of tropospheric δ(
37

Cl) and δ(
13

C) in CFC-11, CFC-12 and 

CFC-113. 
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Tables 5.1 – 5.3 provide a summary of the δ(
37

Cl) and δ(
13

C) measurements made on CFC-

11, CFC-12 and CFC-113 in this study. This information can act as a starting point for 

future work investigating the δ(
37

Cl) and δ(
13

C) of these trace gases in the atmosphere. At 

present, a constant chlorine and carbon emissions isotope delta is compatible with the 

tropospheric measurements presented in Chapter 3. However, measurement uncertainty is 

too high to preclude the possibility of a change in the average emissions isotope delta. 

Measuring the isotope delta of CFCs at their point of release (e.g. old refrigeration units) 

would allow this to be constrained directly. The results of this study disagree with δ(
13

C, 

CFC-12) measurements made by Zuiderweg et al. (2013). It is likely that a 

chromatographic interference in the Zuiderweg et al. (2013) data can account for this 

difference at low mole fractions. In an attempt to add weight to this conclusion, the 

Compound Sample source 
Number of 

samples 

Overall mean values 

δ(
37

Cl) 

uncertainty / ‰ 

Mole fraction / 

pmol mol
-1

 

CFC-11 

Fletcher firn  20 3.2 221 

NEEM 2009 firn  12 1.9 197 

Cape Grim archive 12 2.6 222 

CFC-12 

Fletcher firn  20 3.2 471 

NEEM 2009 firn  12 2.3 421 

Cape Grim archive 42 2.5 493 

CFC-113 

Fletcher firn  20 4.6 63 

NEEM 2009 firn  11 2.6 58 

Cape Grim archive 17 3.5 61 

 

Table 5.1. A summary of the δ(
37

Cl) measurement uncertainties achieved during this 

study. The ranges of mole fractions included are 7 - 258 pmol mol
-1

 (CFC-11), 22 - 544 

pmol mol
-1

 (CFC-12) and 1 - 81 pmol mol
-1

 (CFC-113), corresponding to approximate 

air ages of 1946 - 2012 (CFC-11), 1955 - 2013 (CFC-12) and 1962 - 2012 (CFC-113). 

A sample volume of approximately 200 ml was used for these measurements. 
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samples measured for δ(
13

C) of CFC-11 and CFC-12 by Zuiderweg et al. (2012) will be 

reanalysed using the UEA system (as described in this thesis). This analysis is an important 

task because it will determine whether δ(
13

C) measurements made using the systems 

described in this thesis and in Zuiderweg et al. (2013) are entirely comparable.  

Zuiderweg et al. (2012) found a significant relative 
13

C/
12

C enrichment of CFC-11 and 

CFC-12 during UV photolysis experiments. This suggests that the stratospheric breakdown 

of these species will show a similar fractionation. It would be informative to make δ(
13

C) 

measurements of CFCs in stratospheric samples to calculate apparent stratospheric isotope 

fraction (εapp) values. This constraint is currently missing from the global isotope budget of 

these gases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 
Sample 

source 

Number of 

samples 

Overall mean values 

δ(
13

C) 

uncertainty 

/ ‰ 

δ(
13

C) uncertainty 

before methodological 

improvements / ‰ 

Mole 

fraction / 

pmol mol
-1

 

CFC-11 
NEEM 2009 

firn 
11 2.4 3.5 201 

CFC-12 
NEEM 2009 

firn 
12 3.7 11.2 436 

CFC-113 
NEEM 2009 

firn 
10 1.9 10.0 71 

 

Table 5.2. A summary of the overall δ(
13

C) measurement uncertainties achieved during 

this study. A comparison is made to the equivalent uncertainties achieved before the 

methodological improvements were implemented (Section 3.2.2). The range of mole 

fractions included are 20 - 258 pmol mol
-1

 (CFC-11), 54 - 544 pmol mol
-1

 (CFC-12) and 

23 - 81 pmol mol
-1

 (CFC-113) corresponding to approximate air ages of 1953 - 2009 

(CFC-11), 1955 - 2009 (CFC-12) and 1975 - 2009 (CFC-113). A sample volume of 

approximately 600 ml was used for these measurements. 
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The techniques described in this thesis could be extended to other trace gases. For 

example, investigating the atmospheric isotope history of CFC-114 and CFC-115 would 

provide constraints regarding their interaction with the atmosphere, just as the present 

study has for CFC-11, CFC-12 and CFC-113. The AutoSpec instrument at UEA is run at a 

mass resolution of 1000, meaning that it is simpler to measure isotope ratios in gases 

without interference ions (e.g. CFCs do not contain hydrogen which can cause 

interference). This makes CFC-114 and CFC-115 good candidates for isotopic analysis. 

Also, the high sensitivity of the AutoSpec instrument opens up the possibility of measuring 

the isotope delta of trace gases in the small air samples extracted from ice cores. This 

means that gases with both anthropogenic and natural sources could be investigated (e.g. 

COS, CH3Cl and CH3Br). 

Compound 
Sample 

source 

Number of 

samples 

Modern mean values 

δ(
13

C) 

uncertainty 

/ ‰ 

δ(
13

C) uncertainty 

before methodological 

improvements / ‰ 

Mole 

fraction / 

pmol mol
-1

 

CFC-11 
NEEM 2009 

firn 
7 1.7 2.7 251 

CFC-12 
NEEM 2009 

firn 
9 3.1 9.6 529 

CFC-113 
NEEM 2009 

firn 
8 1.7 9.6 78 

 

Table 5.3. A summary of the ‘modern’ δ(
13

C) measurement uncertainties achieved during 

this study. A comparison is made to the equivalent uncertainties achieved before the 

methodological improvements were implemented (Section 3.2.2). The range of mole 

fractions included are 231 - 258 pmol mol
-1

 (CFC-11), 527 - 544 pmol mol
-1

 (CFC-12) 

and 75 - 81 pmol mol
-1

 (CFC-113) corresponding to approximate air ages of 1991 - 2009 

(CFC-11), 1999 - 2009 (CFC-12) and 1996 - 2009 (CFC-113). A sample volume of 

approximately 600 ml was used for these measurements. 
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The link between COS and the terrestrial carbon cycle makes this a species that should be 

targeted for isotopic analysis in firn and ice core air samples. However, measuring isotope 

ratios in COS presents an analytical challenge because the mass resolution of the AutoSpec 

will limit which fragments can be robustly measured. The molecular ion of COS (m/z 60) 

is typically measured because it produces the largest chromatograph peak. However, the 

isotopologues of this molecular ion are subject to significant isotopic interferences. For 

example, the presence of 
18

O precludes the possibility of making robust δ(
34

S) 

measurements. In this case, measuring individual fragment ions may be the only way to 

measure sulphur isotopes in COS (i.e. by measuring the S
+
 ion at m/z 32, 33 and 34). It is 

likely that this approach will stretch the sensitivity of the instrument because in this case 

individual fragment ions produce smaller peaks than the corresponding molecular ions. To 

maximise the chance of success, potential methodological optimisations should be 

investigated (e.g. as described in Section 3.2.2). 

Finally, although the methodology changes outlined in Section 3.2.2 produced a significant 

advance in the δ(
13

C) measurement precision, the current analytical uncertainties (Tables 

5.2 and 5.3) can be improved further through additional adjustments. By increasing the size 

of chromatographic peaks, there was a risk that the detector would become saturated, 

preventing its use. To avoid this and to allow for the day-to-day variation in AutoSpec 

performance, peaks were kept well below the upper limit. This conservative approach 

limited the size of the peaks and therefore the precision achieved. By performing daily 

optimisations and approaching closer to the upper limit of detection, improvements in 

precision can be achieved. 

 

5.2 Carbonyl sulphide (COS) in ice and firn 

COS is the most abundant sulphur-containing trace gas in the atmosphere and has a wide 

range of natural and anthropogenic sources and sinks (Montzka et al., 2011). Since the 

1970s, studies have focused on quantifying the atmospheric abundance of COS in an 

attempt to better understand its ozone depletion potential and the implications this has for 

the atmosphere (e.g. Hanst et al., 1975; Bandy et al., 1992; Sturges et al., 2001). Recently, 

COS has been investigated with a view to determining the nature of the link it shares with 

the carbon cycle through its uptake by terrestrial vegetation (e.g. Stimler et al., 2010; 

Blonquist et al., 2011; Berry et al., 2013). 
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The potential use of COS in global modelling makes a well constrained Northern and 

Southern Hemisphere atmospheric history over the last century highly valuable. In the 

same way, measuring the mole fractions of COS and CO2, as well as δ(
13

C, CO2) (in the 

same air sample) will better constrain the link between COS and terrestrial Gross Primary 

Production (GPP) in the ice core record. 

 

5.2.1   Antarctic and Greenland ice cores 

Due to the small size of the samples and the highly dynamic nature of the polar 

environment, making robust measurements of trace gases in ice core air is very 

challenging. This study has presented the results of COS measurements made on 30 ice 

core samples from NEEM (Greenland) and DE08, DML (BAS) and DSS (Antarctica). The 

extractions were performed and CO2 and δ(
13

C, CO2) measurements made at the CMAR 

laboratories in Australia, with the COS analysis performed at UEA. The ice core drilling 

and the air extraction procedure did not introduce any contamination into the samples, with 

excellent measurements made at CMAR (Rubino et al., in preparation). This shows that the 

extraction and analysis system was highly effective and produced robust data (the most 

notable exception to this is COS). 

The COS mole fraction measurements presented in this thesis show no substantial trends 

over the last 1000 years, broadly in agreement with the record reported by Aydin et al. 

(2008). This work was a significant technical challenge because it involved quantifying a 

trace compound (at an abundance of a few hundred pmol mol
-1

), in small air samples 

(approximately 30 ml). However, these measurements were compromised by a previously 

unknown effect, leading to higher than expected values. Due to this post-extraction growth 

of COS, the measurements presented in this study cannot be used to support or refute the 

previously reported increase of COS mole fractions during the 1600s (Aydin et al., 2008). 

This growth effect was qualitatively constrained, but the complexity of the contributory 

factors precluded a quantitative assessment. The presence of water (through sublimation 

from the ice surface) was shown to be the most significant factor in the COS growth rate. 

To reduce this effect, the surface area to volume ratio of the sample should be minimised. 

This can be achieved by maximising the size of the sample and minimising the number of 

ice pieces per sample. Finally, improving the sample drying procedure would reduce the 

amount of water vapour in the samples. For example, a magnesium perchlorate water trap 

could be included in the ice extraction system. 
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In stainless steel extraction systems, it is strongly recommended that all surfaces are 

electro-polished and Silco-treated, decreasing the overall reactivity of the surface. The firn 

air samples measured in Section 4.2 were treated in this way and show good stability over 

periods of 4 (NEEM) and 7 (EDML) years. At the very least, surfaces in prolonged contact 

with extracted air (e.g. the sample traps) should be treated in this way. If constructing a 

new extraction system, an inert material (e.g. glass) could be used. However, it would be 

very difficult to use only glass in an extraction system because certain components are 

subjected to significant stresses. For example, in the CMAR system very low temperatures, 

high pressures and vigorous shaking are essential for a successful extraction. It seems that 

electro-polishing and Silco-treating the existing stainless steel systems at UEA and CMAR 

gives the highest chance of success. Following this approach, individual components 

should be tested before the system is fully integrated.  

The logistical challenges associated with a collaboration between research groups in the 

UK (UEA) and Australia (CMAR) introduced additional potential sources of error. For 

example, transporting the ice from the UK to Australia left the samples vulnerable to 

partial melting and the long transport time meant that the success of the COS 

measurements was dependent on the sample’s stability within the traps. In future studies, if 

the COS growth cannot be eliminated entirely, the measurements should be made as soon 

after the extraction as possible to minimise the growth effect. In practice, this means that 

the analysis should take place as soon as the trapped sample has been allowed to 

equilibrate. Eliminating the transport time by performing the extraction and COS analysis 

at UEA would limit the output of the extractions because CMAR provided CO2 and δ(
13

C, 

CO2) measurements which cannot be performed at UEA. However, in any future study, the 

priority must be to achieve robust COS measurements. The collaboration outlined in this 

thesis enabled the direct comparison of COS, CO2 and δ(
13

C, CO2) measurements in a 

single air sample (due to the large volume of the CMAR extractor vessel). This capability 

would be lost if only one laboratory were to undertake these measurements, although 

compromises could be made to achieve a similar outcome. For example, if each ice core 

sample were split along its length, one half could be sent to CMAR for CO2 and δ(
13

C, 

CO2) analysis and the other half could be analysed for COS at UEA. 

 

5.2.2   Northern and Southern Hemisphere firn air 

Two new firn profiles of COS mole fractions have been presented. The air samples were 

collected from the NEEM (Greenland) and EDML (Antarctica) drilling sites. A firn 
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diffusion model developed at the Laboratoire de Glaciologie et Géophysique de 

l'Environnement (LGGE) was used to compare these new data with previously published 

COS atmospheric histories.  

COS mole fractions measured at EDML are slightly lower than previously reported 

measurements from the South Pole (Montzka et al., 2004). It is likely that this small 

difference is caused by regional differences in the oceanic COS flux, although direct 

evidence is currently lacking.  

The new NEEM data exhibit a large positive excursion between 65 and 50 m which is a 

feature not previously seen in the Northern Hemisphere record. Potential atmospheric 

causes of these unexpectedly high measurements were included in the firn model input 

scenarios. For example, the impact of a short duration, high intensity emission event was 

tested. This was done to simulate the effect of these atmospheric phenomena on the firn 

profile, to determine whether the changes imposed could produce the measured values. 

These sensitivity tests showed that the large positive excursion can be partially explained 

by a localised short duration, high intensity emission event. However, it is unlikely that an 

event of this size would occur and if it did, it would be clearly visible in the Southern 

Hemisphere record, which it is not. Also, the effects of this type of event would reach the 

diffusive upper section of the firn column, significantly altering the most recent 

measurements. As stated previously, the fit in the upper part of the firn is very good and 

there is no evidence of a large emission event. It is likely that in-situ production of COS 

caused the high measurements which are confined to a small section of the firn column. 

However, there is no direct evidence to support this and previous studies which have 

measured a variety of trace gases in these NEEM samples have not found conclusive 

evidence of in-situ production (Hogan, 2013; Petrenko et al., 2013; Helmig et al., 2014). 

It would be beneficial to make additional Northern Hemisphere measurements, particularly 

covering the period of peak COS mole fractions. Using the LGGE firn diffusion model, it 

was determined that atmospheric processes cannot fully account for the measurements in 

this period. Supplementary measurements would provide a reliable atmospheric history 

over this period. 

The recent partial reanalysis of these firn air samples revealed some evidence of sample 

degradation. To determine the full extent of this effect, a complete reanalysis should be 

carried out. Once a complete and robust set of COS measurements from Northern and 

Southern Hemisphere firn air are available, further modelling studies can be used to infer 

changes in its atmospheric budget. A full inversion to atmospheric trends using the LGGE 
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firn diffusion model should be undertaken to obtain robust COS atmospheric time series. 

These should then be used as an input parameter in a chemical transport model, e.g. 

GEOS-Chem (Suntharalingam et al., 2008), to investigate the evolution of the carbon cycle 

and regional variations in COS mole fractions.  

Finally, as demonstrated in Chapter 3 and discussed in Section 5.1, the AutoSpec 

instrument described in this thesis is able to measure isotope ratios in trace gases. Making 

δ(
34

S) and even δ(
33

S) and δ(
13

C) measurements in COS on firn and ice core air is a 

reasonable goal for the team at UEA over the next few years. These measurements could 

potentially provide information regarding COS sources and sinks, better constraining its 

atmospheric budget. 
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Abbreviations 

BAS 

BFI 

c. 

CFC 

CNRS 

COD 

COS 

CS2 

CMAR 

CMDL 

CSIRO 

δ 

δT and δS                            

. 

DEP 

Dgas 

DML 

DMS 

EI-SIR 

ESLR 

GC-MS 

GHG 

GPP 

GWP 

ICELAB 

Input scenario. 

British Antarctic Survey 

Bubble-free ice 

Circa 

Chlorofluorocarbon 

Centre National de la Recherche Scientifique 

Close-off depth 

Carbonyl sulphide 

Carbon disulphide 

CSIRO Marine and Atmospheric Research 

Climate Monitoring and Diagnostics Laboratory 

Commonwealth Scientific and Industrial Research Organisation 

The isotope ratio difference between a standard and a sample 

Subscripts of “T” and “S” refer to the troposphere and 

stratosphere, respectively 

Dielectric profiling 

Diffusion Coefficient 

Dronning Maud Land 

Dimethyl sulphide 

Electron Impact-Selected Ion Recording 

Earth System Research Laboratory 

Gas Chromatography-Mass Spectrometry 

Greenhouse gas 

Gross primary production 

Global warming potential 

Ice Core Extraction Laboratory 

An atmospheric COS mole fraction time series used as the input 



  Abbreviations 

171 

 

……. 

IRMS 

LGGE 

Mgas 

m/z 

MSA
-
 

NEEM 

NH/SH 

NOAA 

Nss SO4
2- 

Output scenario. 

…. 

ppbv 

ppmv 

pptv 

PSCs 

τ 

UEA 

UV 

VPDB 

‰ 

for a firn diffusion model (Section 4.2) 

Isotope Ratio Mass Spectrometry 

Laboratoire de Glaciologie et Géophysique de l'Environnement 

Molecular mass of a gas 

Mass to charge ratio 

Methane sulphonate 

North Greenland Eemian Ice Drilling Project  

Northern Hemisphere/Southern Hemisphere 

National Oceanic and Atmospheric Administration 

Non sea salt sulphate  

A depth profile of COS mole fractions produced by a firn 

diffusion model (Section 4.2) 

Parts per billion by volume 

Parts per million by volume 

Parts per trillion by volume 

Polar stratospheric clouds 

Atmospheric lifetime 

University of East Anglia 

Ultra violet light 

Vienna Pee Dee Belemnite 

Per mill 
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