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ABSTRACT

Descriptions of optical beams with structured wawefs or vector polarizations are widely cast i of classical field

theory. The corresponding fully quantum counteipaften present new insights into what is physycalbserved, and

they are especially of interest when tackling issuiech as entanglement. Similarly, when determgiamgular momentum
densities, it appears that the separate rolesaibptspin and beam topological charge can onlyakisfactorily addressed
within a quantum framework. In some such respéieesgquantum versions of theory might be considevédtroduce an

additional layer of complexity; in others, they ade@arly and very substantially simplify the thetaral representation. At
the photon level, the fully quantized descriptioh®pologically structured and singular beams tlogless raise important
fundamental questions and puzzles, whose resolatintinue to invite attention. Many of the meclséiniinterpretations

and predictions (those that appear to be suppbstedtrue congruence between classic and quanttioabgescriptions,

essentially conflating electromagnetic field anatestwavefunction concepts) can lead to theoretiitillls. This paper

highlights some physical implications that emengarf a fully quantum treatment of theory.

Keywords: structured light, optical vortex, twisted beam,teepolarized light, quantum optics, singular ligiapological
light, nanophotonics.

1. INTRODUCTION

Our increasing dependence on telecommunicationsséates new and improved methods for efficiena dansfer. As
a result, the suitability and future prospectswfent methods are under greater than ever scrulihg polarization states
of Gaussian light offer a binary basis, essentiaifig bit per photon. One possibility for achievinmarked improvement
in data transmission is to utilize structured ligithe potential for such light to convey more mi@ation than Gaussian
light is held within a ‘twist’ that is applied tdé optical wavefront. ‘Structured light’ is, incta an umbrella term that
encompasses many families of intensity, phase afatipation topology that in principle has the bignef having non-
interference between each mode. Such beams aeeafjgmroduced by introducing a wavefront modifica, usually
applied to a conventional Gaussian beam, and asthiby passage through a number of optical eleménihe device
that offers the widest variety of radiation modeustures is a spatial light modulatémhich has the boon of dynamic
control over the pixel formation and resultant snamssion structure. The form of structured lighatthas been most
widely studied is the Laguerre-Gaussian (LG) medeerein each photon is capable of conveying anlanguomentum
that is not associated with spin charaéter.

Many recent articles concerning such twisted besuggest a capacity for one or two orders of magaitacrease in data
transfer raté:*> Such aspirations reflect the fact that topoldgaterges with a magnitude of more than 100 haesbe
reported to dat& Moreover, the grounds for such advances in conization are not limited to simple photon transfer,
but may also exploit quantum entanglement betweparate photons, with recent work achieving tharggiement of a
second degree of freedom: the orbital angular compbin addition to the spin stdfe'®
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At the photon level, the fully quantized descripSmf topologically structured and singular beamfact raise important
fundamental questions and puzzles, whose resolabatinue to invite attention. It is not simplyethotion of a photon
travelling along a path ostensibly longer thanraight line (as several recent papers have sugiistbat offers a
conundrum. For example, can a single photon cam ligh fidelity convey the entire structure of #d l;am? Here, we
highlight the quantum features intrinsic to a pimoito the analysis of each aspect of the structlighd. The context is
that methods similar to those involved in opticaitex production can be deployed to detect a sipetojpological chargg
— the detection process is fundamentally subjettiecsame principles as its time inverse countéfpaemission, which
has been addressed in several publicafitffs.

The next section begins our analysis by introdueingew expression for the fundamental photon coratiaut relation,
taking particular heed to the range of individus@cteristics each photon carries; the analyfisesjuently incorporates
LG light and the associated additional photon degedf freedom. The following, third section conts by considering
the commutation relations — specifically the photamber-phase commutator and the associated umtgnpainciple.
Finally, the combined implications of all these jpositions are considered in a discussion sectitichwaddresses their
context within the current literature.

2. ORTHOGONAL MODESAND QUANTUM COMMUTATION

Within the purview of quantum optics, photons aestroften regarded as quanta associated with speadfiation modes.
Designating those modes with labgld’ etc., the boson character of these quanta is dé&billhrough the associated
canonical commutation relations for the photon hitetion operatora,, and counterpart creation operaiaﬁ. The
general relation is commonly displayed in Kroneatelta form:

(a8l =4 (1)

However, the full quantum depiction formally reaasra further sub-division of these modes accortbntheir wave-
vectork and polarization state, the latter denoted byrséary labels7 and/'. This introduces another level of restriction
on the commutation relatios:

[a(ﬂ) (k),a’r(ﬂ') (k')} = GOy 2)

Nonetheless, although the latter form is more ateuboth representations are somewhat flawed. pidt@em is most
readily identified in the latter, in which the forafi the first delta is improper, as it containsar pf indices that do not
refer to an orthogonal basis. More correctly, theorrect commutation relation can be correctiyas in a form suitable
for the limiting case of an infinite plane wave reagsing a Dirac delta function, as follows;

(a7 (k)" (k)| = (8] 0%k =K) 8, &)

whereV is the quantization volume, and the single Kroeedelta in equation (3) is fully restricted toharjonal basis
sets — such as might be represented by any ppwinfs on opposite sides of a Poincaré spherepgésing we note that
it is this orthogonality of basis polarization st&that represents the usual binary basis for ggmyg@hoton information.)
The constants on the right-hand side of equatip@r@ derived to satisfy the dimensionless charadtthe commutator.



For structured laser light, which has a specifiection of propagation, equation (3) is best aastiindrical coordinates:

[a(ﬂ) (k),a"™ (k’)} =(87%v) " o(k, k) 5k ~K) 5(4 ~ 1) . 4)

Figure 1. A representation of the wavevedtdor light with a structured aspect in terms ofadénd radial components;, andk:
respectively, and an azimuthal angie.

In equation (4), the product of four delta functignifies that if two radiation modes differ inyaone or more of the
parameters;, k., ¢ ands, they are orthogonal — and therefore have the dgpacconvey independent information.
However, it has to be recognized that precise modalogonality cannot always be secured — at laash result of
experimental limitations, but also conceivablyfieore fundamental quantum uncertainty reasons thdoeissed in a later
section. To reflect this, it is appropriate toastcthe longitudinal wave-vector constraint in terofi a limit. There are
various choices available for representing the ®dfalta function in such a form. For our presamppses — and truest to
the physicality of beam propagation — we choose ltbeentzian form, effectively representing the extef local
divergence between beams with axial wave-vectompoorantsk; and k; ;

5(kz—k;):ilim — ()

Here, a nonzere indicates a degree of walk-off from the beam wawvetere specifically, it is the HWHM (half-width at
half-maximum) linewidth of the distribution describirfgetwave-vector offset.

We now turn to consider LG light in particular. ldethe photon creation and annihilation operatonrootation relation
emerges as:

a7 (k2), a1 (k'2) | =(8v) " 6k, ~K.) 8, 6,3, - (6)

The azimuthal and radial functions are now separalle within the paraxial approximation the radistribution takes
the following form;



where, CWIT is the constant arising during the process of normaizaty, is the Gaussian beam-waist for light of
topological charge I%; this expression also introduces a radial inge®, The main features present are a product of a
Gaussian with an associated Laguerre polynon'ii(a*), the latter being one of the solutions of thedwiing partial
differential equation:

0%Lf (x) oLP (x)
X———-L+(p+1-x)———2L+ILP(x)=0. 8
L (pr1m) L () ®
Note that it is the modulus bthat appears in equation (7), signifying that agtiortices of opposite topological charge

have identical radial distributions; their physicdfetiences arise through their phase factors, considesiedv.

Orthogonality amongst the associated Laguerre poljaisris usually specified with respect to those of theesadexp.
The form that is relevant for Laguerre-Gaussian bgapfiaations, which also introduces a weighting facitexpressible
as follows;

jowe'xxphp(x) L) (x)dx = -3 9)

More generally?® it may be noted, fofl (,u) >-1;m,n0ON, the following in terms of hypergeometric functiossound;

j: xXHe LY (X)L (><)0'><=(I T p](l ' pl,_ﬂ_ljst(—m,wl,ﬂ— P +Lp+lu-p-n+ LIr(u+)  (10)

We are now in a position to establish the vector m@kfor a Laguerre-Gaussian mode,:8
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First, it is observed that the mode sum is taken ovwergarameters, essentially signifying four degrees effioen. These
contrast with the usual four degrees of freedom #etife in a conventional plane wave expansion, nathede for the
three Cartesian components of the wave-vector, apdf@mthe polarization state. The difference israportant one,
forming the basis for the conveyance of additionfdrimation per photon. It is also worth pointing thit the indexp
has to be included in the summation in equation (ft)generality and completeness of the modal decwsitipn*
However in applications seeking to exploit mode ortiradity, then for a givek, 77, it is sufficient to consider only the
| values to be different, and hergés often ignored, or not discriminated, or simply assd to be 0. Recently, however,
it has been acknowledged that inges more important than initially thought and, as sutk its role has seen a growth
in interest?>?® The €'? factor in the analytic signal for LG modes is consisteith the orthogonality of modes with
different topological charge, reflected in tlp factor in the photon commutation relation. It is thr¢hogonality of
disparate modes — through either their radial or Endunctions, or both — that offers the basis for daieing the requisite
information content in a detected beam.
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Figure 2. Phase map with superimposed intensstyiblution for @) | =3,p=0and ) | = 3,p=1. Sweeping circularly around
either simulation, for a given radial position, tifease cycles through®

Although methods have been devised to sort opticalesiod the basis of their orbital angular momentum (OAddgh
that each mode can confidently be sorted from temane othet values, incomplete modal orthogonality for differént
values is evident in the results of most experim&ris.Imperfections are also apparent in recent expersnentthe
multiplication of OAM valueg®? These imperfections could be arising from experialegiror; however, we anticipate a
fundamental limit of quantum character, which carbetrossed.

Figure 3 provides a representation for the evolutiba beam with an LG nature; tracing the progressfgrhase (one is
seen in Figure 2) through a series of wavefront crostieses, three helical surfaces of constant and etpriv@hase can
be identified.

Figure 3. Procession in wavefront for an LG beaith W= 3 over the course of three wavelengths, depiasettiree interleaved
helices, each representing a surface of constaseph



3. QUANTUM OPTICAL PHASE ISSUES

The stochastic nature of any real radiation sourcesgavdistribution of photon numbers, and associatedplsbatistics.
A distribution of phase also arises, leading to beameptims such as degrees of coherence that are measirigtes
individual photons. Quantum phases are relativestesy wavefunctions are arbitrarily multiplicable byrdversal phase
factor, with the dynamics unchanged — and only becoreaningful when registered as a difference. Beflogemid-
1980s, it had been widely believed that no Hermifeam of operator for optical phasé, existed. This was understood
on the basis of assuming a connection between forms suetPaand €” with the photon creation and annihilation
operators, accounting for their non-commutativityneQvidely accepted solution to this surprisingly tgxommoblem was
proposed by Pegg and Barn&ttlinvolving a result of the same form as the earliessRind-Glogower operato?éexcept
that the behavior of the phase operator is convérted ‘ladder’ to ‘cycle’. Explicitly, in an arbiarily limited (s+1)-
dimensional Fock space, this operator is given by;

67 =[0)(1+ (3 + .| }s] +e = |9)( 6 (12)

wheresis the highest number state in a series and thetémnal gives the cyclic behavior to the operator. @ssarise in
taking the formal limit as — o, as discussed in more detail elsewfreAn alternative derivation of the Pegg-Barnett
phase operator, which involves applying a canonieaisformation to the action and phase-angle variatflasharmonic
oscillator, is also found in the literatute.So far it remains not entirely clear as to whethere exists a completely well-
behaved definition for a phase operator, upon wtodbuild a commutator with the photon number operatéowever,
one defensible form of commutation with the photombar operator i}

[ﬁ,eiAﬂ} ) (13)

From this relationship, we observe that the Hermitihase operatos?, does not commute with the number operafor,
In specific connection with LG modes, the expectatialue of the phase operator is, from equation (Q.Hz),+|qo).

The commutation relation (13) can be understood afotheal basis for an uncertainty relation between photomber
and optical phase. There has, in fact, been maegnpts to formulate a number-phase uncertainty reldten Dirac

onwards, but a clear statement appears in Heitlet®atative 1954 text, expressedas:

AnAS =1, (14)

More specifically, it follows from Heisenberg's unartty principle that the variances in the correspogdiroperties
represented by operatogsand N must satisfy?®

(15)

As a result of this interplay of uncertainty it prevdifficult to measure optical phase, the fundameutalertainty
convincingly established by Beck et al. in 1993Nonetheless, various ingenious techniques have begestad in the
attempt to identify at least an approximate valueofatical phasé“°and one of them has achieved notable sucéess.



We now turn to examine the commutation relation ofagignm (13) in more detail. Once again, the simplioit its form
belies some important detail. Most of the theoretinalysis on this topic assumes there is just one opticde mb
interest. However, there is a distinction to be nfanl® quantum optical commutators such as the followiing;

[q (r).b, (r')}:‘ig—hsijk;?d(r—r'), (16)

in which each of the operators within the commutasories an implied mode summation over wave-vedtpsd that the
whole is to be understood as afspace representation. In fact, the converse apmidhet commutation relation
equation (13); the number operator is clearly meaasyghithout reference to a specific mode, and the wéisen
therefore extends to the left-hand side of equatl@®) &s a whole. In other words, this commutator rekatedk-space
representation of modes that extend over all spadéhus the left-hand side requires reference tceaisp mode, which
in turn means the right-hand side must too. It is fbeeeclear that the optical phase operator must alsoduie-specific.
This throws new light on the physical meaning, andithiations of such meaning, that can be attachesptizal phase.
Clearly, it is associated with a radiation state nathen representing a property of any individualtpho Moreover it
does not signify a relative phase between individbakt@ns, but instead denotes a relative phase betweaadration
state vectors. The phase operator does not detadtarpphase at a specific point in space, but ratleeetiire mode’s
structure. Equally, the number-phase uncertaintgyrbapplies individually to each mode of an orthwgaset.

4. DISCUSSION

The detection of a structured optical wave-fronhis basis for the many emerging applications in imatiigand data
transmissiort?*®notwithstanding the fact that some of the issues asecoming under scrutind?. Such methods usually
require a modal decomposition to sort out each othalgmode comprising the beam. Attempting to maxintime
information density (and resolution), by exploitintaege number of orthogonal modes delivering the saaé¢intensity,
leads to low numbers of photons per mode. As a restlitgfa degradation of modal orthogonality can lemnde become
more prominent, and as such the beam characterizstifiers. Taking the lower limit of mode occupanhgre is a
fundamental limit at which point it becomes necessadjsoriminate between modes; with the ultimate limfiere modal
structure confers no clear advantage, most obvioyglgrent when the mode occupancy is restricted toaypbasis: 0
and 1,i.e. &An,, , <1, at which point the optical phase is indeterminaD.course, with higher photon flux it would
matter less; with 100 photons present the phase unugrfar the same mode detection would be negligildentrary to
the lessons of ‘Young’s slits’ plane-wave experimentkat intensities®5! single-photon optics with structured light
cannot be entirely identified with beam or ray ogti

Thus, whereas the principle of achieving heightermatent at lower intensities can be exploited faadeansmission,
imaging and adaptive optics, it is conceivable Hisgome point a trade-off will be met, where incregsive topological
charge ceases to deliver an advantage. Explicityerhighly structured light at low intensities suéfenore strongly the
consequences of photon number-phase uncertainty, coniging complete mode orthogonality. The ultimate tjmi
where modal structure confers no clear advantagesds the number of photons per mode drops to an esiégbinary
basis, a mode occupation number of 0 or 1. Here,camyentional detection method will most strongly suffee
consequences of photon number-phase uncertainty, corging the complete mode orthogonality that is necg<dsar
complete fidelity in transmission and detection. sTipresents a fundamental limitation on the informatimmveyable
by a single photon.
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