
Genome Reconstruction and
Combinatoric Analyses of
Rearrangement Evolution

Luca Penso Dolfin

PhD thesis

School of Computing Sciences

University of East Anglia

January 2016

©This copy of the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that no quotation from the thesis, nor any information

derived there from, may be published without the author or supervisor’s prior written consent.

space

space

space

space

space

space

space

space

space

space

space

space

space

Research is to see what everybody else has seen,

and to think what nobody else has thought.

space
Albert Szent-Gyorgyi

Contents

Table of Contents i

List of Figures iv

List of Tables vi

1 Introduction 1

1.1 What is DNA? . 1

1.2 Genetic code and protein synthesis . 4

1.3 Mitosis and DNA replication . 5

1.4 Cancer in the western world: from the classic age to the genomic era . . . 8

1.5 The rapid evolution of an aberrant genome 10

1.6 DNA loss and amplification . 10

1.6.1 Breakage-fusion-bridge cycles . 11

1.6.2 Segmental duplications and deletions 13

1.6.3 Unbalanced translocations . 15

1.7 Copy-number-preserving rearrangements 17

1.7.1 Inversions . 17

1.7.2 Balanced translocations . 17

1.8 Chromothripsis . 18

1.9 Microhomology mediated break induced replication 20

1.10 Detecting rearrangements using Paired End Sequencing 22

1.11 Evolutionary distance between genomes . 24

1.12 The combinatorics of gene duplications . 26

1.13 Aim of the Study . 27

2 An Eulerian path approach for the reconstruction of a cancer genome

sequence 29

2.1 Graph theory and genome representation 29

2.2 Constructing Directed Graphs . 36

i

2.3 Finding all Arborescences of a Directed Graph 38

2.4 Constructing Eulerian Cycles . 41

2.5 Computational Analyses . 46

2.6 Conclusions . 49

3 An algorithmic approach for the inference of a cancer genome evolution 51

3.1 Implications of the Breakpoint Reuse Constraint 64

3.2 Unique word representation . 69

3.3 Producing a set of evolutions from observed data 70

3.4 Analysing real data . 75

3.5 Simulations . 77

3.5.1 Simulating unconstrained evolutions 82

3.5.2 Simulating evolutions with segment side reuse 83

3.6 Conclusions . 85

4 The combinatorics of Tandem Duplication 88

4.1 Representing a TD process with order information 93

4.2 The space of connection evolutions . 95

4.3 Using posets to count TD Evolutions . 97

4.3.1 Zig-zag plots . 98

4.3.2 2d-trees . 98

4.3.3 Linear Extensions . 102

4.4 The size of TD space . 105

4.5 Computational Analyses . 107

4.6 The combinatorics of TD temporal words 113

4.6.1 The construction of a temporal poset 122

4.7 Conclusions . 123

5 The combinatorics of Inverted Duplication 125

5.1 Representation . 127

5.2 The space of connection evolutions . 131

5.3 Using posets to count ID evolutions . 134

ii

5.3.1 Zig-zag plots . 134

5.3.2 2d-trees . 134

5.3.3 Linear Extensions . 137

5.4 The size of ID space . 157

5.5 Induced evolutions . 158

5.6 Conclusions . 164

6 Discussion 165

6.1 Biological implications of the project . 165

6.2 General conclusions . 166

References 172

7 Appendix 188

7.1 Introduction . 172

7.2 Representation . 175

7.3 Counting Connection Evolutions . 179

7.4 Counting Evolutions with Posets . 181

7.4.1 Zig-zag plots . 181

7.4.2 2d-trees . 182

7.4.3 Linear Extensions . 186

7.5 The Size of TD Space . 197

7.5.1 A Motivating Example . 198

7.5.2 Induced Evolutions . 200

7.5.3 β-trees . 209

7.5.4 Proving the Main Result . 226

7.6 Conclusions . 228

iii

List of Figures

1.1 the DNA double helix structure. 3

1.2 schematic representation of a Breakage-Fusion-Bridge(BFB) 12

1.3 Schematic view of a tandem duplication arising from a recombination event. 14

1.4 Replication slippage . 15

1.5 Schematic representation of an unbalanced translocation 16

1.6 schematic representation of a reciprocal translocation. 18

1.7 Schematic representation of a chromothripsis event 20

1.8 schematic representation of a Microhomology-Mediated Break-Induced Repli-

cation, following the appearance of a single DS break 22

1.9 Sequencing and alignment of paired end sequences 24

2.1 Bidirected graph and list of constraints for the construction of directed graphs 31

2.2 The construction of a bidirected graph . 34

2.3 Schematic representation of a directed graph 35

2.4 Schematic representation of two directed graphs 44

2.5 The Arborescence algorithm . 49

3.1 Example of a bidirected graph constructed from paired end data 52

3.2 Schematic representation of the four possible orientations (‘shapes’) of a

somatic connection . 57

3.3 Full list of DCJ operations . 62

3.4 Full list of BIR operations . 63

3.5 Implications of an alternative model of rearragement evolution 66

3.6 Schematic representation of some special series of operations and the genome

graphs for the resulting genomes . 67

3.7 Schematic representation of some special series of operations and the genome

graphs for the resulting genomes . 68

3.8 Example of calculation of the final genome score 75

3.9 genome graph of a cluster of somatic connections found in chromosome 2,

sample PD4243; read coverage of the locus 78

iv

3.10 Example of a low-scoring evolution for the allelic and somatic graphs shown

in Figure 3.9 . 79

3.11 Genome graph for a cluster of somatic connections found in chromosomes 1

(nodes 1 to 16) and 15 (nodes 17 to 22), breast cancer sample PD4243 . . 80

3.12 Representation of an evolution using 10 somatic edges from the genome

graph shown in Figure 3.11A . 81

4.1 A Tandem duplication Process . 89

4.2 Evolution of a temporal word . 90

4.3 Schematic representation of the number of possible connection words up

to the third TD. Nodes represent words. Numbers on edges indicate the

number of choices [89]. 96

4.4 Representation of the TD Process . 99

4.5 Zig-zag plots of structures arising from two TDs 103

4.6 Inference of the copy number profile from an evolutionary matrix 111

4.7 The deconstruction process . 119

4.8 Schematic representation of all connection evolutions up to the third TD . 120

4.9 The deconstruction process . 121

5.1 An Inverted duplication Process . 126

5.2 Evolution * of Figure 5.1B . 129

5.3 Example of tandem duplication evolution leading to the same breakpoint

ordering as in Figure 5.2A . 130

5.4 Number of possible ID words . 132

5.5 Representation of the ID Process . 135

5.6 Evolutions arising from two IDs . 140

5.7 Zig zag plot and the nesting structure of different types of branches from

the major tree in B . 146

5.8 The nesting structure of a branch of a major tree 151

5.9 Full set of evolutions induced from 11→ 1121
−1

2 162

5.10 Full set of major trees for the evolutions induced from 11→ 1121
−1

2 . . . 163

7.1 A Tandem Duplication Process . 174

7.2 Schematic representation of the number of possible TD words 179

v

7.3 Representation of the TD Process . 183

7.4 Zig-zag plots of structures arising from two TDs 188

7.5 Major and minor edge structure . 192

7.6 Full sets of tree operations . 211

7.7 The general form of a 2d-tree . 221

List of Tables

3.1 Statistics for unconstrained simulated evolutions 84

3.2 Statistics for simulated evolutions showing segment side reuse 85

4.1 Counts of TDs, Words, CNVs and TD-Evolutions. 97

5.1 Counts of copy number vectors, words and ID evolutions 133

5.2 Comparison of TD and ID features . 139

7.1 Counts of Connection and TD Evolutions. 181

vi

Acknowledgements

At the end of this PhD experience, I have to thank many people who have been close to

me during this three years in Norwich.

Thanks to Chris Greenman and Taoyang Wu for their excellent guidance, and for all that

I have learnt in these years.

Thanks to my friends in Norwich, for always making me feel home, and to the older ones

in Venice, for constantly reminding me where I come from.

Last, but not least, thanks to my family, for always supporting me in the good and in the

bad time.

vii

Index of terms and abbreviations

Allele:alternative forms of a gene, differing from one another in the DNA sequence [26]

Allelic ratio: ratio between the intensity of the two alleles of a SNP, typically provided

by a microarray experiment[42]. Amplicon: in cancer genetics, DNA material which has

been amplified through some rearrangement mechanisms [17]. ATP : adenosine triphos-

phate [26].

Deletion: a mutation in which one or more base pairs is removed from a DNA sequence [26].

DNA: deoxyribonucleic acid [61]

Enzyme: a type of protein that speeds the rate of a specific biochemical reaction, making

it fast enough to be compatible with life [70].

Eukaryote: organism whose cells have a nucleus and other specialed organelles. The genetic

material typically consists of a nuclear genome, and a smaller mithocondrial genome. Gene:

a region of DNA (deoxyribonucleic acid) coding either for the messenger RNA encoding

the amino acid sequence in a polypeptide chain or for a functional RNA molecule [26].

Genome: the complete genetic constitution of an organism, a cell, or a virus [61].

Genotype: 1) the particular combination of alleles for a particular locus or 2) the set of

genes possessed by an individual organism [37].

Heterozygous : an individual organism that possesses different alleles at a locus [37].

Haploid : condition of cells or organisms possessing a single chromosome complement, hence

a single gene copy at each locus [37].

Haploinsufficiency : the appearance of a mutant phenotype in an individual cell or organ-

ism that is heterozygous for a normally recessive trait [90].

Helicase:an enzyme that unwinds and separates the two strands of the DNA double he-

lix [31]. homologous genes : evolutionarily related genes, having descended from a gene in

a common ancestor [90].

Homologous pair of chromosomes : two chromosomes that are alike in structure and size

and that carry genetic information for the same set of hereditary characteristics. One chro-

mosome of a homologous pair is inherited from the male parent and the other is inherited

from the female parent [90].

viii

Homologous recombination: exchange of genetic information between homologous DNA

molecules [90].

Insertion: a mutation that occurs when one or more base pairs is added to a DNA se-

quence [90].

Inversion: a 180 reversal of the orientation of a part of a chromosome, relative to some

standard chromosome [37].

Karyotype: description of the number, size and morphology of the chromosomes in a cell

[100].

Locus : the position of a gene along a chromosome; often used to refer to the gene itself [37].

Marker : an allele that serves as a probe to follow a specific phenotype [31].

Mitosis : the process of nuclear division in Eukaryotic cells that occurs when a parent cell

divides to produce two identical daughter cells [31].

mRNA: messenger RNA, the intermediate form of the genetic code between DNA and

protein [31].

NAHR: Non-Allelic Homologous Recombination, a mechanism of recombination between

non homologous sequences.

Oncogene: dominant-acting gene that stimulates cell division, leading to the formation of

tumors and contributing to cancer; arises from mutated copies of a normal cellular gene

(proto-oncogene) [90]. Phenotype: the outward appearance of an organism for a given

characteristic [90].

read coverage/ read depth: for a genome, average number of times each base has been

sequenced. For a particular region, fractional average of the read depth of each nu-

cleotide [57].

Replication: DNA replication is a process by which a double-stranded DNA molecule is

copied into two, identical DNA molecules [31].

RNA: ribonucleic acid [61].

SNP : Single Nucleotide Polymorphism [61].

tandem duplication: duplication of a chromosome segment that is adjacent to the original

segment [90].

Telomeres : repetitive sequences found at both ends of a chromosome [32].

Translocation: movement of a chromosome segment to a non-homologous chromosome or

ix

to a region within the same chromosome; also movement of a ribosome along mRNA in

the course of translation [90].

tRNA: transfer ribonucleic acid (tRNA) is a type of RNA molecule that helps decode a

messenger RNA (mRNA) sequence into a protein [31].

Tyrosine kinase: an enzyme that can transfer a phosphate group from an ATP molecule

to a protein [25].

ABSTRACT

Cancer is often associated with a high number of large-scale, structural rearrangements.

In a highly selective environment, some ‘driver’ mutations conferring clonal growth ad-

vantage will be positively selected, accounting for further cancer development. Clarifying

their nature, as well as their contribution to the pathology is a major current focus of

biomedical research. Next generation sequencing technologies can be used nowadays to

generate high-resolution data-sets of these alterations in cancer genomes.

This project has been developed along two main lines: 1) the reconstruction of cancer aber-

rant karyotypes, together with their underlying evolutionary history; 2) the elucidation of

some combinatorial properties associated with gene duplications.

We applied graph theory to the problem of reconstructing the final cancer genome se-

quence; additionally, we developed an algorithmic approach for the reconstruction of a

multi-step evolution consistent with read coverage and paired end data, giving insights

on the possible molecular mechanisms underlying rearrangements. Looking at the com-

binatorics of both tandem and inverted duplication, we developed an algebraic formalism

for the representation of these processes. This allowed us to both explore the geometric

properties of sequences arising by Tandem Duplication (TD), and obtain a recursion for

the number of tandem duplications evolutions after n events. Such results are missing

for inverted duplications, whose combinatorial properties have been nevertheless deeply

elucidated. Our results have allowed: 1) the identification, through an original approach,

x

of potential rearrangement mechanisms associated with cancer development, and 2) the

definition and mathematical description of the complete evolutionary space of specific re-

arrangement classes.

xi

1 Introduction

Cancer cells typically show a collection of genetic mutations which distinguish them from

normal human cells. The causal relation between some of these transformations and the

development of the pathology has been widely described in the scientific literature (a re-

view on some crucial discoveries is given in [103]). Clarifying the molecular mechanisms

responsible for such changes, as well as their contribution to the pathology represents a

crucial challenge of modern biomedical research. One particular type of cancer genetic

modification is represented by rearrangements, that is mutations causing a change in the

genome organisation and possibly in the number of copies of some genetic material. This

thesis will focus on the combinatorial properties of some specific types of rearrangements,

as well as on the challenge of reconstructing cancer genomic organisation using Next Gen-

eration Sequencing data.

Following is a short overview on some crucial concepts of cell biology, the different classes

of rearrangements, as well as the scientific literature and methodologies related to this

thesis.

After this introduction, the main research goals will be presented: firstly, an Eulerian graph

approach (fully described in chapter two) and an algorithmic approach (chapter three) to

the genome reconstruction challenge; secondly, a mathematical description of the combi-

natorial properties of two types of rearrangements: tandem duplication (chapter four) and

inverted duplication (chapter five).

1.1 What is DNA?

The acronym DNA stands for Deoxyribonucleic Acid, that is the molecule used by all

known living organisms as a source of instructions for their biological development and

functioning throughout the whole life. Along with RNA and proteins, DNA is one of the

1

three major macromolecules essential for all known forms of life. This information consists

of a sequence of just 4 different units, the nucleobases Guanine, Adenine, Thymine and

Cytosine generally indicated by the letters G, A, T and C , respectively. These units

are typically organised in couples of long polymers (that is, a macromolecule consisting of

repeating structural units), forming two strands where alternating sugars (deoxyribose) and

phosphate groups (PO3−
4) belonging to the same chain are linked by phosphodiester bonds

(Figure 1.1). The two strands interact to each other through hydrogen bonds between

nucleotides (i.e. a nucleobases linked to a deoxyribose and a phosphate group), resulting

in a superstructure which is generally described as a double-helix, as each chain wraps

itself around the other. Just two types of interactions between these coupled helices are

possible: A:T (linked by 2 hydrogen bonds) and G:C (3 hydrogen bonds)[112].

In each strand one backbone is labelled 3’ (three prime) and the other 5’ (five prime). The

3’ end terminates at the hydroxyl (OH−) group of the third carbon in the deoxyribose,

and is known as the tail end. The two strands are anti-parallel, meaning that the 3’ end

of the former corresponds to the 5’ end of the latter.

However, the whole genetic material (genome) of an Eukaryotic organism does not usually

consist of a single molecule: it is rather organized in several, more complex structures

called chromosomes. Long stretches of DNA are wrapped around proteins, the histones,

which allow the double helix to be repetitively coiled and thus efficiently packed, saving

much useful space inside cell. Chromosomes may either be located in the nucleus, if that

structure is present, or otherwise in the space between the cell’s organelles, the cytoplasm.

Each chromosome may be even present in several copies. An organism carrying just one

copy of each chromosome is called haploid. Similarly, in a diploid organism (like our species,

Homo sapiens) the number of copies is 2, while the term polyploid generally refers to all

conditions where 3 or more copies are present (triploid,tetraploid,pentaploid,...). Different

copies of the same chromosome are said to be homologous to each other.

The total length of the genetic material is extremely variable across species, varying from

a fraction of a Megabase (corresponding to 106 nucleotides) to several tens of Gigabases

2

(109). For instance, the haploid set of our nuclear human genome is made up of 23 chro-

mosomes, corresponding to a total sequence of about 3.2x109 bases [34]. As we are diploid

organisms, it means that the total amount of DNA in each human cell is 6.4x109 bases!

tt

3’ 5’

5’ 3’

ADENINE
TIMINE
CYTOSINE
GUANINE
PHOSPHATE BACKBONE

Figure 1.1: the DNA double helix structure.

3

1.2 Genetic code and protein synthesis

How is the genetic information encoded inside the DNA molecule? Like the letters of an

alphabet, the sequence of its four nucleotides form a series of instructions for the cell’s

molecular machinery to build up RNA (Ribonucleic Acid, a molecule which is chemically

very close to DNA itself) and proteins. The ‘words’ of this language (the genetic code) are

all made up of three adjacent nucleotides, called triplets or codons. A DNA region (more

technically defined as a locus) which is used for the synthesis of either a protein or an RNA

molecule is called a gene[112]. These sequences, depending on the organism, may account

for a different fraction of the whole genome, but in humans they represent just 2 % of

it [33]. In the most common case of a gene being used for the synthesis of a protein, each

triplet indicates a particular unit to be chosen, that is a specific amino-acid [61]. Thus,

a sequence of codons corresponds to a chain of amino-acids(polypeptide) making up the

whole protein.

In Eukaryotes, the process of protein synthesis [112] can be divided into three steps:

1. transcription of the so called messenger-RNA (mRNA)

2. post-transcriptional modifications of the same mRNA molecule

3. translation of its sequence into an amino-acid chain, which becomes a functional

protein once it has acquired its proper three-dimensional structure

In the first step, a group of proteins called transcription factors binds to specific DNA

positions, helping the enzyme RNA Polymerase to operate RNA synthesis according to

the target gene genetic information. The two helices of DNA are separated by the enzyme

helicase, disrupting all hydrogen bonds between them. RNA polymerase reads one helix

(antisense or negative strand) from the 3’ end to the 5’, synthesizing a single-stranded mes-

4

senger RNA in the 5’-to-3’ direction. The resulting RNA molecule is almost identical to

the coding DNA sequence, a part from having all Thymines (T) replaced by another nucle-

obase, Uracil (U), and all sugar rings (rybose) carrying an additional oxygen atom bond to

their second carbon atom . This single strand of mRNA exits the nucleus through nuclear

pores, and migrates into the cytoplasm. The mRNA undergoes some post-transcriptional

modifications, which include capping with 7-methyl-guanosine, tailing with an Adenine

polymer(poly-A) and eventually splicing of introns (noncoding parts of the sequence, in

contrast with the retained coding parts, called exons). The processed mRNA can even-

tually enter the latter step, occurring in the cytoplasm with the support of other protein

complexes, the Ribosomes. mRNA is decoded to produce a specific polypeptide according

to the rules specified by the codon-based genetic code. With the help of transfer-RNAs

(t-RNA, molecules capable of providing the ribosome with all needed amino-acids) the

ribosome uses the mRNA sequence as a template to operate the synthesis of a chain of

amino-acids that will eventually form a complete protein.

1.3 Mitosis and DNA replication

The term Mitosis refers to the process of nuclear (karyokinesis) and cytoplasm division

(cytokinesis) of a single eukaryotic cell, leading to the formation of two daughters which

are both a perfect copy of their ‘mother’. Five stages are generally distinguished [28]:

1. Prophase. At this stage the chromatin begins to condense, making all chromosomes

much more visible, in a process that is going to continue until metaphase. In diploid

organisms, homologous chromosomes are physically linked together in correspondence

of the centromere site. Each partner of a couple is called chromatid.

5

2. Prometaphase. The nuclear envelope is fragmented into many small vesicles that will

eventually be equally shared by the future daughter cells. Specific proteic polymers

(the microtubules) can now access the chromosomes pairs, and will anchor to them

at specific sites. Each chromatid is then tugged by microtubules toward the opposite

cell pole with respect to its partner. These couples, however, have not been separated

yet.

3. Metaphase. Chromosomes assume an even more compacted state, and centromeres

of all chromosomes line up in a plane at the cell’s equator. A complex checkpoint

mechanism determines whether the plane is properly formed, in which case the cell

can enter the next stage.

4. Anaphase. Sister chromatids are eventually separated and move toward opposite

poles.

5. Telophase and cytokinesis. During the final stage, the chromosomes eventually reach

the poles. Following this, cytokinesis occurs: the nuclear membrane of each daughter

cell’s nucleus is built up, while chromosomes begin to de-condense into their original

conformation.

For the mitosis to give rise to two perfect copies of the ancestral cell, the whole genetic

material must be duplicated. This process starts with the separation of the 2 DNA helices

at specific, A-T rich sites, thanks to the activity of a group of proteins forming a pre-

replication complex. The resulting structure is called replication fork. Each chain will be

used as a template by the enzyme DNA polymerase, capable of linking each nucleotide

with a new copy of its complementary unit (A with T, G with C); the 2 newly synthesized

strands consist of a leading strand, and a lagging strand. The former is elongated in the

same direction as the growing replication fork. An enzyme called primase synthesizes an

RNA primer, that is a short nucleotide sequence carrying a free 3’-OH group, which binds

6

to the single stranded DNA and is used as a starting point for the copying activity of the

DNA polymerase. Because the synthesis of the new strand is made in the same direction

of the replication fork movement, which constantly extends to the adjacent nucleotides

while the template is being copied, the leading strand replication is allowed to continue

without interruptions. In the case of the lagging strand, however, its opposite orientation

with respect to the leading helix means that the 3’ to 5’ elongation, typical of every

newly synthesized strand, does not follow the movement of the replication fork. Therefore,

replication can only proceed with a separated synthesis of short adjacent sequences, the

Okazaki fragments, added one by one as soon as a new double helix region is included in

the fork. Eventually, the process ends with the primers’ removal, and the joining by a DNA

ligase of the short Okazaki fragments linked to the lagging strand, building up together a

complete complementary sequence.

DNA replication is not, however, a completely error-free process: mismatches in the two

resulting double helices will be formed in Eukaryotes at a rate of about 1 per every 100,000

nucleotides [5]. Effectively acquired mutations are however strongly limited by the presence

in the cell of efficient repair systems. Some mistakes are corrected even during replication,

through a process known as proofreading, while others are removed later on during the

mismatch repair process. After that, all incorrectly paired nucleotides that have not been

found by the repair machinery will become permanent mutations. The cell, indeed, will no

longer be able to recognize them as errors as soon as it enters a new cell division [5].

A newly synthesized strand may also loops out slightly, resulting in the addition, omission

of some nucleotide base, in a mechanism called strand slippage(Figure 1.4). The presence

of small repeated sequences makes a DNA locus particularly prone to this type of muta-

tion. Double strand breaks might also occur as the result of exposure to chemical agents,

irradiation or reactive oxygen species. Such breaks might be repaired through a variety of

mechanisms, including a simple rejoining of the broken ends with little or no modifications

(non homologous end joining, NHEJ) or a repair guided by homologous sequences (ho-

mologous recombination)[52]. However, we will see how mutations accumulated in cancer

cells might lead to an inefficient DNA repair. This in turn would favour the appearance

7

of additional sequence alterations, possibly conferring a selective advantage in terms of

survival and proliferation rates.

1.4 Cancer in the western world: from the classic age to the

genomic era

The earliest description of cancer was made by Hippocrates (ca. 460 BC ca. 370 BC),

who used to call these pathologies ‘carcinos ’: a term referring to the appearance of the cut

surface of a solid malignant tumor, with “the veins stretched on all sides as the crab has its

feet”. Hippocrate’s explanation of tumours was based on humoural theory, stating that all

human pathologies are caused by imbalances in the quantity of the four basic substances

(humours) making up our body. Specifically, he believed that cancer was the direct effect

of an excess of black bile. While superficial tumours were to be removed, deep ones were

to be left, thus allowing the patient to hold out for a longer time. These beliefs were gen-

erally supported until the Renaissance time, when the humoural explanation began to be

contested by the studies of Andreas Vesalius (1514-1561) on dissected human cadavers [87].

Eighteenth Century’s Enlightenment saw the definitive drop out of the humoural theory.

Ren Descartes (1596-1650) attempted to link cancer and lymphatic system in his lymph

theory. Considerable progress was achieved in the field of epidemiology: for instance, John

Hill (1714-1775) first observed a higher incidence of nasal cancer in snuff users. The first

hospital for the treatment of cancer was opened in 1740 in Rheims, France, and not much

later, in 1792, the first cancer institute in Middlesex, England. However, poor results were

to be experienced for a long time more, due to bad hygienic conditions and an evident lack

of knowledge of the underlying biological mechanisms [87].

The primary role of DNA began to be clear in the 19th Century, thanks to the studies

of David von Hansemann (1858−1920) [48] and Theodor Boveri (1862−1915) [20]. The

observation under the microscope of unusual chromosomal aberrations in cancer cells led

to the proposal that cancers are abnormal clones of cells, characterized and caused by

8

abnormalities of hereditary material. After the identification of DNA as the molecule of

inheritance [6] and determination of its structure [113], eventually the central role of the

genome in a cell’s life became clear. Next came the demonstration that mutagens (agents

causing DNA damage and mutations) are causally linked to cancer development [71]; more-

over, increasingly refined analyses of aberrant chromosomes in tumor cells showed that spe-

cific and recurrent genomic abnormalities, such as the translocation (an exchange of DNA

material) between chromosomes 9 and 22 in chronic myeloid leukaemia (known as the

Philadelphia translocation [81, 96]), are associated with particular cancer types. Inserting

a cancer human genome into wild-type (healthy) cells (a technique known as transforma-

tion) was shown to cause their conversion into cancer cells [66, 99]. Isolation of the specific

DNA sequence responsible for this transforming activity led to the identification of the

first naturally occurring, human cancer-causing sequence change, the single base G > T

substitution that causes an amino-acid substitution (glycine → valine) in codon 12 of the

HRAS gene [94, 104]. A new chapter of cancer research was about to begin, focusing on

the discovery of genes underlying the development of the pathology.

More recently, the development of next-generation sequencing technologies has lead to an

incredibly fast rise of available genomic information, giving the scientific community a

great chance to explore the mechanisms underlying the cancer genome’s evolution. Re-

sulting DNA sequences can be analysed in unprecedented detail, allowing the appearance

and constant growth of somatic(cancer-specific) mutations databases (for instance, [35]).

However, evidence suggests that much information about these processes is still missing:

further research is necessary for a complete, reliable explanation of the observed patterns

of variation in the genomic organisation, as well as in the number of copies of some genomic

regions.

9

1.5 The rapid evolution of an aberrant genome

A population of cancer cells is the result of an evolutionary history where stochastic mu-

tational events progressively build up a richer and richer set of genetic variants. Resulting

phenotypes will be subject to a mechanism of Darwinian selection, causing the decrease

in frequency, and perhaps complete disappearance of cells bearing deleterious mutations;

meanwhile, other mutants might acquire a proliferative advantage and higher survival rates,

and their genetic background will quickly spread across the population. The typical result

of this process is the continuous appearance, disappearance and size change of several sub-

populations (clones) of cells sharing some particular genetic variants. Within the same

patient, a small fraction of positively selected genotypes are likely to compete against each

other, and just in some cases a single cell may collect enough advantageous mutations to

proliferate very quickly, invade other tissues and cause a metastasis.

In the following sections, we will focus on one particular family of mutations typical of

cancer genomes: the structural and phenotypic alterations caused by the amplification,

loss or exchange between chromosomes of large fragments of DNA.

1.6 DNA loss and amplification

Copy number variation (that is, the change in the number of copies of a given chromosome

or DNA region) can be seen as one of the major sources of diversity evolutionary forces can

operate on. Loss of tumour suppressor genes (preventing the development of cancer) and

amplification of oncogenes (favouring mechanisms such as cell proliferation) are commonly

observed copy number changes associated with cancer evolution. Several molecular mech-

anisms underlying copy number variation have been described. In the following section,

an overview on such phenomena will be made.

10

1.6.1 Breakage-fusion-bridge cycles

Intrachromosomal, clustered, relatively narrow peaks of amplification are consistent with

the breakage-fusion-bridge (BFB) process [54], which was first proposed by Barbara Mc-

Clintock [77]. Among all putative explanations of the observed patterns of intrachro-

mosomal amplification, the BFB cycle is one of the most supported [106](Figure 1.2).

According to this model, the starting point of the process is a DNA double strand break

(DSB). In most cancer cells, given the poor functioning of the DNA checkpoints (that

is, the surveillance mechanisms capable of delaying the cell cycle in the presence of DNA

damage) and the repair machinery [68], a chromosome break doesn’t prevent mitosis from

starting: the cell cycle therefore proceeds through the pre-mitotic phases S and G2: at

this stage, all DNA material has already been replicated, giving rise to 2 identical bro-

ken chromosomes. The repair machinery will act on the four uncapped DNA ends, either

fusing them correctly to generate repaired chromosomes or fusing sister chromatids to gen-

erate palindromic chromosomes. These massive fragments may be either dicentric (with

two centromeres) or acentric (without any centromere). In the former case, such aberrant

chromosomes could be broken during chromosome segregation, because of microtubules

moving them in opposite directions. The result may be the inheritance, in the daughter

cells, of broken chromosomes with partially deleted or duplicated regions. The broken end

would be involved in further BFB cycles, causing the accumulation of palindromic dupli-

cations of chromosomal regions and an amplified copy number of some genes (palindromic

gene amplification). As long as broken ends are present, allowing for another sister chro-

matid fusion, these cycles can continue indefinitely, causing further amplification of genetic

material.

11

Reference

Duplication

Repair

Daughter Cell 2

Daughter Cell 1

x2 Daughter Cells

x2 Daughter Cells

Reference

12

2

1A)

B)

*

Figure 1.2: Schematic representation of a Breakage-Fusion-Bridge(BFB). A) A chromo-
some is represented, with the circle indicating a centromere, the red and yellow markers
hypothetical genes duplicated and deleted during the process. A DNA break (whose po-
sition is given by orange triangles) and the following duplication and repair result in a
palindromic chromosome with two centromeres. During cell division, microtubules attract
these centromeres in opposite directions causing another break, and the cycle continues.
B) The folded resulting structure (*) compared to the original reference genome. Based
on [43].

12

1.6.2 Segmental duplications and deletions

As opposed to Breakage Fusion Bridge cycles, intrachromosomal (inside a chromosome)

duplications are also observed in cancer genomes. Depending on the exact structural

transformation, distinct mechanisms might underlie these rearrangements:

• Many additional, adjacent copies (tandemly duplicated segments) arise from non-

allelic homologous recombination (NAHR, typically occurring between non-homologous

sequences), unequal crossing-over between sister chromatids (Figure 1.3) or replica-

tion slippage (Figure 1.4A). The first two mechanisms may also cause deletions or

inversion of the duplicated segment’s interposing sequences [106]. The latter accounts

for duplication (or deletions) of small sequences inside a replication fork (1-2 kb).

• Fragment capture by double strand break : an exogenous fragment can be inserted into

a double strand chromosomal break.

Deletions, on the other hand, result in the loss of a particular DNA sequence. Causes

include translocation events, unequal crossing over, replication slippage (Figure 1.4B) and

chromosome shattering followed by non homologous repair (the so called Non Homologous

End Joining, see Figure 1.7). The effects of these mutations may vary depending on the

size and location of the event. The deletion of a centromere creates an aberrant acentric

chromosome which will most likely be lost during cell division. Gene expression patterns

may be affected as well and result in a phenotypic change. In the case of both homologous

copies of a gene being transcribed in a (healthy) cell, the deletion of the entire coding

sequence in one chromosome leads to a condition called haploinsufficiency [27]. Deletions

of smaller sequences can lead to a modified, non functional gene; typically, in the case of

tumour suppressor genes such events can have a drastic positive effect on tumour develop-

ment. this is blank space

13

this is blank space

this is blank space

TANDEM
DUPLICATION

 A B C A

 A B C A

 A B C A A B C A

Figure 1.3: Schematic view of a tandem duplication arising from a recombination event (
NAHR or unequal crossing-over) . The presence of sequence homology between either two
sister chromatids can lead to a misalignment (region A in the figure) during crossing over,
causing a copy number change. Alternatively, the same structural change might arise from
the repair of a double strand break by NAHR, using a non-homologous (yet sharing some
sequence similarity) template.

14

TANDEM
DUPLICATION

DELETION

A

B

Template forms a
secondary structure

Polymerase dissociation and
upstream reassociation

Figure 1.4: Replication slippage. A) During replication of a region containing some re-
peats (yellow labelled), the polymerase might dissociate from one copy of the repeat and
re-associate on a different copy, located upstream. As shown in the figure, a portion of
the template sequence might thus be copied again, leading to the duplication of the red
segment. (B) Following the formation of a secondary structure in the lagging-strand tem-
plate, DNA polymerase dissociates and aligns to another sequence. Replication continues
leading to the deletion of the loop sequence (red).

1.6.3 Unbalanced translocations

A translocation is the movement of a DNA segment to another site, either within the same

chromosome or to a non-homologous one. These molecular rearrangements are generally

considered to be the primary cause of various cancers. Depending on the location of

breakpoints, such events can cause the disruption or misregulation of a gene’s typical

function. Over the past few decades, clinical cytogeneticists have been able to link specific

chromosome breakpoints to clinically defined cancers, including subtypes of leukemias,

15

lymphomas, and sarcomas. Virtually all of the translocations observed in tumors have

arisen through somatic mutations, so they are not inherited in families.

A translocation between two chromosome is typically designated as follows: t(chr a;chr

b)(region a; region b), where t indicates that a translocation has occurred; the first set of

parentheses indicates the two chromosomes involved in the translocation, and the second

set contains the breakpoints on the chromosome arms. The event is referred as unbalanced

if it causes the loss of some genetic material(Figure 1.5). Loss of heterozygosity (the loss of

one parental allele) following an unbalanced translocation is the typical outcoming genetic

alteration, possibly causing inactivation of a tumor suppressor gene in multistage human

carcinogenesis [84] . Cytogenetic studies have shown that unbalanced translocation is a

frequent chromosome alteration in a variety of human cancers, including acute leukemias

and colorectal cancer [79, 85].

Figure 1.5: Schematic representation of an unbalanced translocation. Two breaks lead to
the creation of a dicentric chromosome, while the left genetic material is often lost

16

1.7 Copy-number-preserving rearrangements

1.7.1 Inversions

An inversion occurs when a segment of a chromosome changes its orientation. The molec-

ular mechanism simply consists of a single chromosome breakage followed by a rearrange-

ment within itself. Inversions are of two types: paracentric and pericentric. depending on

whether they do or do not include the centromere. Such type of rearrangement, compared

copy number changing rearrangements and translocations, is generally less disruptive at the

DNA sequence level, and thus less likely to have a phenotypic effect in carriers. However, a

recent study on T-cell lymphomas has suggested that a recurrent inversion on chromosome

6 might cause the over-expression of the regulatory gene Dlx5, leading to an increased cell

proliferation [105].

1.7.2 Balanced translocations

A translocation is referred as balanced if it does not lead to any loss of genetic material (Fig-

ure 1.6). An example is represented by the recurrent translocation between chromosomes 8

and 14 found in patients with Burkitt’s lymphoma, which places the MYC proto-oncogene

(normally located on chromosome 8) under the control of the powerful immunoglobin

heavy chain gene (IGH) promoter on chromosome 14 [110]. The rearrangement induces

an overexpression of MYC in lymphoid cells, where the IGH promoter is normally active.

Another possible outcome of a balanced translocation is the creation of a new chimeric

gene, built up as a puzzle of sequences originally belonging to separated loci. The aberrant

gene products or the altered regulation of gene expression may eventually confer a selective

advantage to the cancer cell: an example is given by the Philadelphia chromosome, where

a translocation fuses the coding sequence of the BCR (breakpoint cluster region) gene on

17

chromosome 22 with the coding sequence of the ABL gene on chromosome 9 [3]. The

BCR-ABL fusion protein encoded by the chimeric gene constitutively activates signalling

pathways involved in cell growth and proliferation. In the case of the ETV6-NTRK3 gene

fusion in congenital fibrosarcoma, the new gene is produced by a translocation between

chromosomes 12 and 15 (t(12;15)). In this chimeric sequence, the 5’ region of ETV6 is

fused to the 3’ region of NTRK3, which is believed to affect NTRK3 signal-transduction

pathways [63].

Consistent associations of many gene fusions with specific tumour types have been demon-

strated, and the identification of such specificities raises the chances of developing thera-

peutic gene-targeting approaches.

Figure 1.6: schematic representation of a reciprocal translocation.

1.8 Chromothripsis

The recent advent of high-throughput DNA sequencing has highlighted some crucial as-

pects of cancer genome evolution: collected evidence to date suggests that the classical,

relatively simple rearrangements described so far are often grouped together into a unique

18

super-event, leading to dramatic structural and copy number changes. The term chro-

mothripsis is generally used to indicate these ‘catastrophic’ events [102].

After the cell enters mitosis and while DNA replication is still occurring, one or more chro-

mosomes might be shattered into many segments of variable size. Some of the resulting

fragments might be lost, while others will be rejoined together through a microhomology-

based mechanism: two double-strand breaks sharing a few nucleotides long regions of sim-

ilarity will be stuck together by the repair machinery, in a process called non-homologous-

end-joining (NHEJ) [55] (Figure 1.7). Chromosomes carrying complex, highly localized

rearrangements are the typical outcome of this process.

Although the causes of this initial physical damage of chromosome is unknown, these

clusters of double-strand breaks might well result from ionizing radiation. Alternatively,

dicentric chromosomes formed by Breakage-Fusion-Bridge could break during mitosis, as

they are pulled apart in opposite directions [102]. Rather than favouring the hypothesis

of a multi-step evolution, next generation data often points toward this ‘catastrophe’ ex-

planation. For instance, some segment copy number profiles, restricted to as few as two

states, are hardly consistent with sequential, independent rearrangements [102]. Under

this model, the number of different states observed would be expected to increase as the

number of breakpoints rises. Tandem duplications lead to a copy number increase and

when several such events overlap with one another, many segments are expected to be

repetitively amplified under the progressive rearrangements model. Deletion events would

clearly limit these increases in copy number, but the total set of rearrangements is very

unlikely to lead to a simple profile with just two copy number states, particularly when the

number of events is high. Other examples are regions of preserved heterozygosity which are

spanned by multiple rearrangements (like deletions, duplications and inversions). A dele-

tion occurring early in a successive series of rearrangements, would permanently eliminate

heterozygosity between its two breakpoints. A progressive model is therefore compatible

with chromothripsis only assuming that deletions have occurred late in the sequence of

events: an unlikely scenario when the number of rearrangements is very high. The chro-

mothripsis explanation is further supported by the observation that alternating regions of

heterozygosity (retention of a DNA fragment) and loss of heterozygosity are the natural

result of a rearrangement series caused by a unique event [102].

19

NHEJ

 A -B -E D

 A C D

LOST
FRAGMENT

MULTIPLE DS
BREAKS

 C E B

Figure 1.7: Schematic representation of a chromothripsis event: fragments produced by
multiple DS breaks are then stuck together through a mechanism of non-homologous-end-
joining (NHEJ).

1.9 Microhomology mediated break induced replication

Recently, experimental research with nuclease-induced breaks has shed light on a mecha-

nism called Microhomology Mediated Break Induced Replication (MMBIR), occurring in

cancer cells when a replication fork breakage exposes a single broken end. In these circum-

stances, repair by homologous recombination or nonhomologous end-joining, requiring a

couple of broken ends, is not an option[51]. MMBIR has been suggested as a mechanism

to repair broken ends in such situations, provided that stretches of single-stranded DNA

are available and share microhomology with the single-strand end from the collapsed fork.

20

Such mechanisms might originate from a variety of situations, including stalled transcrip-

tion complexes or at secondary structures in DNA caused by complex genomic architecture,

as well as in promoter regions and replication origins. Following strand invasion, elongation

of the broken end might continue for several kilobases, until a telomere is reached, or the

extended end is dissociated and annealed with a different template, possibly repeating the

process several times ([51, 101]) (see Figure 1.8). Consequences of MMBIR at the DNA

sequence level include as different rearrangements as duplications, inverted duplications,

deletions or unbalanced translocations([51]).

The possibility of template switching for any single-stranded DNA region sharing microho-

mology with the single stranded end involved in the mechanism would explain why MMBIR

is imprecise and prone to generate chromosomal structural changes. Recent research on

cancer genomic variation has highlighted the presence of microhomology associated with

somatically acquired connections ([17, 64, 119, 120]), giving support to a central role of

microhomology-mediated mechanisms in the formation of aberrant genomic architectures.

Moreover, the observation of large duplications and deletions implies that mechanisms dif-

ferent from replication slippage within a single replication fork are responsible for such

changes, making MMBIR a possible candidate.

21

Figure 1.8: Schematic representation of a Microhomology-Mediated Break-Induced Repli-
cation, following the appearance of a single DS break. Different genomic loci, connected by
microhomology junctions (arrow) are represented by distinct colours; arrows have a 5’-3’
orientation. The broken arm of a collapsed replication fork forms a new fork in (A). The
end is extended (A and C) and dissociated (B and D) several times reforming the fork
on different templates . (E) The switch returns to the original sister chromatid (blue),
forming a new replication fork and allowing for the completion of replication. The final
product (F) contains sequence from different genomic regions. Each line represents a DNA
nucleotide chain (strand). Based on [51].

1.10 Detecting rearrangements using Paired End Sequencing

Many different experimental techniques have been developed for the study of chromoso-

mal rearrangements. Fluorescent in situ hybridization [91, 107], chromosome painting [58],

22

spectral karyotyping [97] and comparative genome hybridization [59] are significantly lim-

ited by the low resolution of the results. The problem of describing the architecture of a

tumour genome accurately while limiting the costs can be solved using paired end sequenc-

ing(PES) [23, 36]. First, the tumour genome is cut into small, ∼ 500 bp long segments;

then the DNA material is copied several times through DNA amplification. Such a step may

be carried out through a cloning-based or cloning-free procedure. In the former method,

DNA fragments are linked to specific sequences called plasmids, creating a circular DNA

sequence which is later incorporated into E. coli cells (transformation). Rapid replication

of this bacterium will result in an analogous amplification of the contained insert, giving

a wide collection of identical fragments called a DNA library. In the cloning-free protocol,

on the other hand, circular products are amplified through the Polymerase Chain Reac-

tion(PCR) [29].

After amplification, both ends of each obtained fragment are sequenced: one read copies

the forward strand, while the other uses the reverse strand, so that the resulting reads

have opposite 5’ to 3’ directionality. All reads are then aligned to the reference human

genome, using an alignment algorithm such as BLASTN [78] or Bowtie2 [69]. Results will

show a set of concordant pairs of reads (mapping at a distance of about 500 bps, pointing

towards each other in opposite orientations) and a set of discordant couples, showing a

significant difference in mapping distance and/or an opposite orientation (Figure 1.9). This

also allows the detection of small insertions and deletions through the comparison between

read pairs and the average insert size of the genomic library. Typically, all end sequences

which don’t map uniquely in the reference genome are discarded, avoiding in this way any

ambiguity in the inference of rearrangement events [29].

23

A B B C

A B C

A -B C

TANDEM
DUPLICATION

REFERENCE
GENOME

INVERSION

- ++ -

- -

+ -+ -

+ 3’
- 5’

5’
3’

paired end read (30 bps)

Fragment (~500 bps)

+ -

Concordant pair of reads

~500 bps

A)

B)

+ +

+ -

Figure 1.9: Sequencing and alignment of paired end sequences. A) The two ends of each
fragment are sequenced, using opposite strands (forward,+ and reverse,-). B) Reads are
mapped to the reference genome. The red labelled paired ends map on opposite +,-
strands in the reference genome, similar to the rearranged one; however, their distance is
much bigger in the reference, suggesting a tandem duplication. Similarly, distance for the
green and the yellow pairs is bigger in the reference, as well as the alignment orientation.
Together, these two pairs of reads support the presence of an inversion.

1.11 Evolutionary distance between genomes

The challenge of finding a reliable set of operations to transform one genome to another

is a classical problem of computational biology. In 1995, a sorting by reversal approach

was proposed by Hannenhalli and Pevzner [8]. In that study, a sequence of n genes in a

24

genome was represented by a signed permutation on {1, . . . , n} and a + or - sign is

associated with every gene copy. In such a model, a reversal of a fragment always changes

both the order and the signs of the elements within that fragment. The reconstruction

of an evolutionary history is then equivalent to the reversal distance problem: finding the

minimum number of reversals to transform a permutation of π of the original gene order

into the identity signed permutation (1, 2, ..., n). For this purpose, the paper introduced

the notion of breakpoint graph: an edge coloured graph with n+2 vertices (0, 1, ..n, n+ 1),

where black edges connect couples of nodes which are consecutive in π, and the other edges

are grey labelled.

Further research lead to a new algorithm allowing for inversions, translocations, fissions

and fusions [46, 47].

A successful attempt to simplify these algorithms was made by Yancopoulos et al [114] who

invented the soon become popular Double Cut and Join (DCJ) operation. Their algorithm

allows a simple and efficient computation of reversals, translocations,fusions, fissions and

block interchanges (a generalised type of transposition).

In 2006, Hartman and Shamir noticed that the problem of sorting linear permutations by

transpositions is equivalent to the problem of sorting circular permutations by transposi-

tions. From this observation, they developed a more efficient algorithm to transform 2 and

3 cycle permutations into 1-cycle, thus sorting circular breakpoint graphs by transpositions

and transreversals [49, 50].

The problem of accounting for different occurrence rates for each rearrangement type was

later addressed by Bader and Ohlebusch [7] who took into account biologically realistic

weights for their method.

In 2008, Gog et al. [40] presented the new program GENESIS, allowing the sorting of

multi-chromosomal genomes by reversals, translocations, fusions and fissions in polyno-

mial time. GENESIS includes the algorithm presented by Bader and Ohlebusch [7]; an

improved version of the algorithm by Hannenhalli and Pevzner [46]; and a combination of

the two previous algorithms plus the DCJ method [114].

25

1.12 The combinatorics of gene duplications

The gene duplication process is known to be implicated in the formation of gene clusters

[82, 86] as well as amplicons in cancer [73, 92, 93, 115]. In both cases Darwinian selection

may be acting to increase the number of copies of a target gene. In addition to the biological

study of these process, there is a range of algorithmic and mathematical questions that

are also of interest. These include identification and alignments of tandem duplications

in data [9, 10, 11, 72, 65] and the construction of phylogenies describing their evolution

[12, 15, 14]. In [15] this was done in a quite general context, where duplications and losses

across multiple genomes were considered. In [14] tree operations were introduced that

allowed a full exploration of tandem duplication trees. A survey of algorithmic approaches

can be found in [95]. The combinatorial nature of these rearrangement operations leads

to some interesting questions. For instance, in [39] and [115] the problem of counting the

number of rooted and unrooted tandem duplication trees was addressed. Other studies

focused on the space of permutations arising from a tandem duplication-loss model [18]

and [19].

These methods are based on a range of assumptions regarding the available information

and the nature of the process. Among them, two issues are particularly important for the

problem of counting the number of evolutions by duplication.

The first is the genomic sequence information. In [15], a comparison among genomes

of the signed gene orders is carried out: ancestral orders which minimise the number of

inversions are then inferred. [39] and [115], on the other hand, consider a single copy of a

locus, providing the count of all possible distinct evolutions.

Secondly, in these works the important assumption that breakpoints can be reused is made.

Here breakpoints can be seen as either gaps between two contiguous loci, such as a pair of

genes in a gene cluster, which can cover a wide region and be implicated in more than one

26

duplication event with reasonable probability, or the precise end points of the duplicated

region. In such cases, when a duplication occurs, the two breakpoints are implicated in a

presumably random process. The probability of additional duplication events introducing

a break at the same exact positions is likely to be small, and we can reasonably assume

unique breakpoint use. The combinatorial questions considered in chapters four and five,

as well as the reconstruction problem of chapter three, are based on this assumption.

1.13 Aim of the Study

Results of this thesis will be organised into 4 different chapters, presenting the distinct

research challenges and approaches that we faced.

An Eulerian path approach for the reconstruction a cancer genome sequence

This study (presented in chapter 2) has focused on the problem of inferring the final

genomic architecture of a cancer genome, using paired end and copy number data as the

input information.

An algorithmic approach for the inference of a cancer genome evolution

The aim of this study (see chapter 3) was the reconstruction of multiple steps of a can-

cer genome evolution, looking for a series of rearrangements producing a final rearranged

genome which is most consistent with paired end and copy number variation data. We

generalized different classes of molecular double strand repair mechanisms through the use

of a particular Cut and Join operation (which we have called Cut and Repair, CR), along

with the unedited modelling of the Microhomology-Mediated Break-Induced Replication

(MMBIR). Based on available paired end reads and copy number variation data, our al-

27

gorithm models each new somatically acquired connection supported by PES data as a

‘rearrangement operation’, thus constructing multiple steps of structural and copy number

modifications of a genome, leading to a new aberrant karyotype. Solutions are then fil-

tered based on the comparison between the pattern of copy number variation in the digital

genome and read coverage data from the tumour sample.

The combinatorics of segmental duplication

We have developed an efficient algebraic representation of a tandem duplication (TD) evo-

lution (see chapter 4), representing chromosomes as numeric vectors (words) where each

TD-like connection is uniquely represented by a number. Based on such a representation,

we have faced the following challenges:

• Describing the full space of TD evolutionary paths in terms of number of words of

size m after k TD events

• Using Hasse diagrams, describing the combinatorial properties of the TD space; this

allowed us to define a series of constraints for the number of different breakpoint

orders which are consistent with a specific word.

Following this investigation, we addressed the same questions as above for a model of

inverted duplication evolution (presented in chapter 5).

28

2 An Eulerian path approach for the reconstruction

of a cancer genome sequence

We have seen in the introduction how Next Generation Sequencing technologies have re-

cently allowed the generation of high-resolution data-sets of cancer genome rearrangements.

There is a great biomedical interest in gaining knowledge about the resulting aberrant kary-

otypes, as well as the exact mechanisms responsible for such changes. While the latter point

is better addressed in the following chapter three, here we will focus on the former question:

how do we reconstruct chromosomes from copy number and rearrangement information.

We start by giving the following, crucial definition:

Definition 2.1. We call copy number vector the word of integers [cp1, cp2...cpn] where

each cpi represents the number of copies of the ith DNA segment.

We are thus able to informally state our problem:

Problem 2.1. Given a copy number vector and rearrangement information from a cancer

sample, use graph theory to reconstruct the set of digital karyotypes which best explain such

data.

We will first go through some more crucial definitions, allowing us to better formalise

problem 2.1. Next, we will present the different stages of the analysis in detail; conclusions

will complete the chapter.

2.1 Graph theory and genome representation

Starting from our two types of input information (copy number vector and rearrangement

data), we want to transform our challenge into a graph theory problem. We will be

29

using different types of graphs to represent the cancer genome as a path along nodes

(each corresponding to a DNA segment) and edges (representing germ-line or somatic

connections). First we give some important graph theory definitions.

Definition 2.2. An undirected graph is a graph in which the edges are not associated

with a particular direction. In such a graph, given two nodes A and B there will be no

distinction between A← B and B → A.

Definition 2.3. A directed graph is, conversely, a graph in which any particular edge is

designated a forward or a backward direction (thus A← B and B → A are distinct edges).

Definition 2.4. A spanning tree T of a connected, undirected graph G is a tree that includes

all of the vertices of G.

Definition 2.5. An arborescence (see Figure 2.4 for an example) is a directed tree in

which, for a vertex u called the root and any other vertex v, there is exactly one directed

path from u to v.

Definition 2.6. A bidirected graph is a graph in which both edge extremities lie either on

the right or the left side of the node it touches, giving rise to 4 possible connections.

Example 2.1. Consider Figure 2.1A. Blue numbers 1..5 represent the node labels. A red

edge connects the right side of node 2 with the right side of node 3. However, we also have

a distinct edge connecting the right side of node 2 to the left side of node 3. Thus we find

that for any couple of nodes we have more than one possible type of edge, depending on

which node extremities are touched.

Definition 2.7. Given a graph G = (V,E), two edges in V are called multiple or parallel

if and only if they connect the same couple of nodes.

Definition 2.8. A multigraph is a graph which allows for multiple edges between two

nodes.

30

ab+af bb+bf cb+cf db+df

gb+gf

fb+ff

2 3 3

BP1 BP2 BP3 BP4

1 2 3 4 5

3 2

∞
hb+hf

ib+if

af +eb = cp2,f

bf +ff = cp2,f

bb +fb = cp2,b

ab +ef = cp2,b

cp2,f +cp2,b = 3

bf +gb = cp3,f

cf +fb = cp3,f

cb +ff = cp3,b

bb + gf = cp3,b

cp3,f +cp3,b = 3

cf +gf = cp4,i,f

df +eb = cp4,i,f

db+ef = cp4,b

cb+gb = cp4,b

cp4,f +cp4,b = 3

df = cp5,i,f

hb = cp5,i,f

hf = cp5,b

db = cp5,b

cp5,f +cp5,b = 2

ib = cp1,f

af = cp1,f

ab = cp1,b

if = cp1,b

cp1,f +cp1,b = 2

if = cp∞,i,f

hf = cp∞,i,f

hb = cp ∞,b

ib = cp ∞,b

cp ∞,f +cp ∞,b = 2

2

A)

B)

eb+ef

Figure 2.1: A) Schematic representation of a bidirected graph. Nodes represent DNA segments.
Black edges represent wild type connections; coloured edges correspond to somatic connections.
Blue numbers indicate segment labels; Red numbers represent the copy number vector across
nodes. To each undirected edge k correspond two labels kb, kf . These refer to the variables shown
in B), and represent the number of copies of edge k with either of the two possible orientations
(arbitrarily assigned): backward (b) and forward (f). B) List of constraints for the construction
of directed graphs. cnk,b/f stands for the number of backward/forward segments represented by
node k, expected to sum up to the copy number of segment k.

Definition 2.9. A strongly connected component is a subgraph of a directed graph G such

that for every pair of vertices u, v in the subgraph, there is a directed path from u to v and

a directed path from v to u.

Definition 2.10. A directed cycle in a directed graph is a sequence of vertices starting and

ending at the same vertex such that, for each two consecutive vertices of the cycle, there

exists an edge directed from the earlier vertex to the later one.

Definition 2.11. An Eulerian cycle, Eulerian circuit or Euler tour in a graph is a cycle

31

that uses each edge exactly once.

Lemma 2.1. [38] A directed graph has an Eulerian cycle if and only if :

1. for every vertex v in V , indegree(v) = outdegree(v)

2. all of its vertices (with non-zero indegree and outdegree) belong to a single strongly

connected component

The information about genome connections deriving from paired end sequencing experi-

ments allows us to construct an initial bidirected graph (lacking the edge directionality

and copy number information). An example of that is shown in Figure 2.2C, where four

breakpoints define five DNA segments, represented by nodes 1 to 5. Alignment of paired

end reads to the reference genome is used to identify breakpoints, as well as adding somatic

connections to our graph. Consider Figure 2.2A-B as an example. If a pair of reads map

at the expected distance (about 500 bps) and with the expected orientation (Figure 2.2A,

pair connected by a brown curve) The rearrangement information can be then combined

to our second piece of information, the copy number vector. This can be derived from the

read depth (that is, the average number of times each base has been sequenced) observed

across the DNA region of interest, using an appropriate algorithm such as ASCAT [111]

or PICNIC [42]. I Figure 2.2D, we see that the read depth signal across segments 1 to 5 is

used to infer the copy number vector [2 3 2 3 2]. This tells us about the number of copies

of these five segments. Now, we want to use this information about the copy number to

infer directionality of the edges, thus constructing a set of directed (multi)graphs consis-

tent with the original bidirected one. These graphs then allow us to construct genome

sequences by walking through each of them. Adding directionality information means we

now have two nodes for each DNA segment: each of them representing a particular seg-

ment orientation, forward or backward. Because these graphs are consistent with the input

data, any complete cancer genome sequence must contain every edge from one of such di-

rected graphs, in exactly the same number of copies. This means that, if we make sure

32

that our graphs are Eulerian, the set of valid cancer genomes will correspond to the set of

Eulerian cycles of all directed graphs. Looking at the graph in Figure 2.1A, however, we

notice that nodes 1 and 5 can be indegree-outdegree balanced only with a further addi-

tion of node and edges: more precisely, we need an auxiliary node labelled ∞ and edges

{(5,∞), (∞,−5), (−1,∞), (∞, 1)} to make sure that our graph is Eulerian.

Example 2.2. Consider the directed graph of Figure 2.3. This graph can be derived from

the bidirected graph of Figure 2.1A.

We can now formalise Problem 2.1:

Problem 2.2. Eulerian reconstruction problem. Given a bidirected graph Gb obtained

from a cancer sample C, and associated copy number vector, determine the complete set

of consistent directed Eulerian graphs Gd,1, Gd,2...Gd,n and construct all Eulerian cycles for

each Gd,i.

In the following sections we will go through all steps of the analysis required for the solution

of Problem 2.2:

• Construction of all directed graphs (containing the edge directionality information

which is missing in the original bidirected graph)

• Inference of all arborescences for each directed graph

• Construction of Eulerian cycles of every directed graph, using the arborescences

obtained from the previous step

33

1 2 3 4 5

+ +

- -

- ++ -

Concordant pair: ignored

BP1 BP2 BP3 BP4

1 2 3 4 5
2 3 2 3 2

BP1 BP2 BP3 BP4

1 2 3 4 5

3 3

2 2 2

R
ea

d
co

ve
ra

ge

~500 bps

REFERENCE GENOME

A

B

C

D

Figure 2.2: The construction of a bidirected graph. Discordant paired end reads (indicated
by black arrows and coupled by coloured curves) is first used for the segmentation of the
genomic sequence. If the mapping location of two reads overlap they identify a unique
shared breakpoint (see breakpoints 3 and 4). The mapping orientation (forward,+ or
backward,-) is then used to infer the orientation of the edges in the bidirected graph.
N + 1 nodes are defined based on the N breakpoints inferred from the discordant read
pairs (N + 4 in our example) orientation.

34

2(1)

∞

1

2

2(1)

BP1 BP2 BP3 BP4

-1 -2 -3 -4 -5
0 0 1 0 0

2(1)
0

2(1)2(1) 1

0 0 0 0

1

2
0

0
0

f

b

1 2 3 4 5
2 3 2 3 2

Figure 2.3: Schematic representation of a directed graph derived from the bidirected graph
shown in Figure 2.1A. Top and bottom nodes represent copies of DNA segments with a
forward and backward orientation, respectively; transparent nodes/edges have a null copy
number. Fill edges represent one of the possible arborescences of the graph, and remaining
edges are dotted. Black numbers indicate the number n of copies of each edge, and in round
brackets the number n− 1 of copies which do not belong the arborescence; blue numbers
indicate segment labels; red numbers correspond to the copy number vector across nodes
(identical for the two graphs).

35

2.2 Constructing Directed Graphs

Problem 2.2 is defined in such a way that the copy number vector across nodes (that is

DNA segments) is part of the available input information. However, the reconstruction of a

cancer genome sequence necessarily requires the estimation of the multiplicity of all edges

in the original bidirected graph, allowing for the construction of all consistent directed

graphs. For this step of our analyses, we have make use of Gröbner bases theory and the

Buchberger’s algorithm [56].

Let P be a bidirected graph with n nodes {1, 2, ...n} (n is generally chosen as the infinity

node) C = [cp1, cp2...cpn] be the associated copy number vector. It is crucial to remember

that in such a graph no distinction is made between forward and backward orientation of a

segment, so that a particular segment is represented by just one node. Then we construct a

set of equalities based on the required conditions for a directed graph (where each segment

is represented by two nodes, accounting for the two possible orientations). Let Ej,deg,dir

be the sum of all incoming (deg=in) or outcoming (deg=out) directed edges of node j,

entering or exiting in a forward (exit on the right side or entrance on the left, dir = f) or

backward (exit on the left side or entrance on the right, dir=b) direction. For each node

j, we need five equations:

1. Ej,in,f = cpj,f

2. Ej,out,f = cpj,f

3. Ej,in,b = cpj,b

4. Ej,out,b = cpj,b

36

5. cpj,f + cpj,b = cpj

These equations are equivalent to the conditions:

1. the sum of copy numbers over all forward directed incoming edges of node j is equal

to the copy number of forward segment j, cpj,f

2. the sum of copy numbers over all forward directed outgoing edges of node j is equal

to the copy number of forward segment j, cpj,f

3. the sum of copy numbers across all backward directed incoming edges of node j

equals the copy number of backward segment j, cpj,b

4. the sum of copy numbers across all backward directed outgoing edges of node j equals

the copy number of backward segment j, cpj,b

5. the sum cpj,f + cpj,b equals the total copy number of segment j, cpj.

In these equations, every Ej,deg,dir represents a series of unknown monomials, every cpj,dir is

a single unknown monomial, while all cpj are known positive integer values. The output of

the Buchberger’s algorithm is a new set of equalities, which will be used to computationally

construct all compatible sets of connection copy numbers.

Example 2.3. Consider the bidirected graph of Figure 2.1A. The copy number vector

[23232] has been derived from read coverage information, represented in the plot of Figure

2.2D. The inference of edge directionality then relies on the set of equations listed in Figure

2.1B. One of the directed graphs which can be inferred is represented in Figure 2.4Ai. We

have 2 copies of segment 1, and if we check the equations for node 1 in Figure 2.1C, we

find that ib = af = cp1,f = 2, if = ab = cp1,b = 0, cp1,f + cp1,b = 2 + 0 = 2 as required for

37

any directed Eulerian graph.

Finding the solutions of these sets of equalities clearly implies the complete exploration of a

wide space of possibilities, which cannot be limited to Z+ but rather includes both positive

and negative integer solutions (Z). Moreover, the number of equations is equal to 5n, with

2m + (2n) unknown variables (where m is the number of edges in the starting bidirected

graph). The computational effort of the Buchberger algorithm and the number of solutions

found in Z therefore soon becomes a limiting factor with the increasing complexity of the

graph.

2.3 Finding all Arborescences of a Directed Graph

Now, recall that genomes correspond to Eulerian cycles. For the construction of these

cycles from a particular directed graph G, we will rely on the set of all arborescences

rooted at the auxiliary node∞. We have defined an arborescence (Definition 2.5) as a tree

touching all nodes in the graph, and having edges pointing towards the root. Now, each

arborescence can be used as a ‘guide’ for the construction of a particular subset of Eulerian

cycles. Indeed, to construct an Eulerian cycle we walk through the graph, choosing every

edge from the arborescence last. The path is completed when all copies of every edge has

been used (and we are back at the starting node). We will take advantage of this observa-

tion later in the chapter, in order to define an algorithmic approach for the construction

of Eulerian cycles.

For the challenge of finding all arborescences of a directed graph, we start from the Defi-

nition of Laplacian Matrix :

Definition 2.12. Given a directed simple graph G = (V,E) with m nodes, the correspond-

ing Laplacian matrix representation is an m by m matrix such that:

38

• For every edge e = (i, j) the off-diagonal entry in position (i, j) is −1

• The diagonal entry in position (i, i) is the absolute value of the sum of all entries

across line i

• All other entries are zero

Such definition proves very useful in the light of the following:

Theorem 2.1. [22] Matrix-tree theorem. The number of non-identical spanning trees of

a connected graph G is equal to any cofactor of its Laplacian matrix

Thus the theorem tells us the number of spanning trees in G, which in the case of a directed

graph, correspond to arborescences. We will now explain how to construct them with the

help of an example. Let G = (V,E) be a directed graph where V = {1, 2, 3, ...m} is the set

of vertices and E a set of edges of type (i, j) where {i, j} ∈ V . We first assign a monomial

xij to each e = (i, j) ∈ E. We then construct an n by n symbolic Laplacian matrix Mn(x).

This is a modified Laplacian matrix for G, such that:

• The off-diagonal entry in position (i, j) is −xij

• The diagonal entry in position (i, i) is the sum of the variables xi,j∀j 6= i

• All other entries are equal to zero

39


(x1,2 + ...x1,n) −x1,2 −x1,3 ... −x1,n
−x2,1 + ... (x21 + x23 + ...x2n) −x2,3 ... −x2,n

...

−xn,1 −xn,2 ... −xn,n−1 (xn,1 + ...+ xn,n)



Now, since we have a symbolic matrix, any calculated non zero cofactor corresponds to a

product of xj,i’s, a term representing a set of edges. We are interested in arborescences

rooted at the auxiliary node ∞, whose incoming and outcoming edges complete every

Eulerian tour. Assume that index n is used to represent node∞ (so entry (n, 1) corresponds

to edge (∞, 1), for example). Then the generating function Fn(M) for the arborescences

rooted at node ∞ is given by

Fn(M) = |Mn,n| (1)

where Mn,n is the square sub-matrix of Mn(x) obtained by deleting the rows and columns

with index n.

Example 2.4. Let G = (V,E) be the directed graph shown in Figure 2.4A. We have a

set V ′ = {1, 2, 3,−3, 4, 5,∞} of nodes with non zero degree, and the set of edges E =

{(1, 2), (2, 3), (3, 4), (4, 5), (5,∞), (∞, 1), (2,−3), (−3, 4), (4, 2)}, to which we associate the

monomials {a, b, c, d, e, f, g, h, i}, respectively.Then we construct the Laplacian matrix M :



a −a 0 0 0 0 0

0 (b+ g) −b 0 0 −g 0

0 0 c −c 0 0 0

0 −i 0 (d+ i) −d 0 0

0 0 0 0 e −e 0

0 0 0 −h 0 h 0

−f 0 0 0 0 0 f


40

we have associated row and column indexes 1...5 to nodes 1...5, 6 to node −3 and 7 to node

∞. Assuming that we want to find all arborescences rooted at vertex ∞, we shall then

calculate:

det(M[7,7]) = abcdeh+ acdegh

where each resulting term is the product of all ids assigned to the edges in the two arbores-

cences of G.

2.4 Constructing Eulerian Cycles

Once all directed graphs and associated spanning trees are found, we can construct all

possible Eulerian cycles. The BEST theorem [1] tells us how many such cycles exist for a

given directed graph P :

Theorem 2.2. [1, 2, 109]

Let P=(V,E) be a directed graph in which, for every vertex v ∈ V , the indegree and outdegree

have the same value, d(v) and all of its vertices with non zero degree belong to a single,

strongly connected component. Then G has at least one directed Euler tour, and the number

of such tours is given by

ε(P) = NA

∏
v∈V

(d(v)− 1)! (2)

where A is the set of arborescences rooted at a fixed vertex in G, and NA is the number of

such arborescences in A.

Now, in the case of a genomic connection being duplicated we find that we traverse the

41

same edge more than once; thus we require multigraphs for the reconstruction of genomic

sequences. This rises the problem of determining how many Eulerian cycles with distinct

order of vertices exist. For example, the graph of Figure 2.4Ai contains two copies of edge

(∞, 1) which is not part of the arborescence (represented by filled edges). Thus, when

we walk through the graph and reach the auxiliary node ∞, we are free to choose either

of the two copies, which inevitably results in the construction of distinct Eulerian cycles

with identical sequence of nodes. We thus formulate the following modified version of 2,

adapted for a multigraph. For the theorem presented we consider only the specific case

where the root of all arborescences (node ∞) has single ingoing edge (n,∞) and single

outgoing edge ((∞, 1)), as in Figure 2.4.

Lemma 2.2. Let G=(V,E) be a directed graph in which, for every vertex v ∈ V , the

indegree and outdegree have the same value, d(v) and all of its vertices with non zero

degree belong to a single, strongly connected component. Let A be the set of arborescences

for G rooted at a node x having a single outgoing edge (x, s) with multiplicity deg(x); let

also E ′ denote an arborescence from A. Then G has at least one directed Euler tour, and

the number of paths with distinct order of vertices is given by

ε(P) =
R∑
r=1

∏
v∈V

(nv − 1)!∏
ev,i∈E′r,ev,i=(x,s)(nev,i − 1)!

∏
ev,j /∈E′r,ev,i 6=(x,s) nev,j !

(3)

where nv is the indegree of node nv; R is the number of arborescences rooted at a fixed node

x in G; Er is an arborescence rooted at x; ev,i denotes an outgoing edge from v such that

exactly one copy belongs to Er; ev,j denotes an outgoing edge from v such that no copy

belongs to Er; nev,i/j is the number of copies of edge ev,i/j; nv is the outdegree of node v.

Proof. We know from Theorem 2.2 how to calculate the total number of Euler tours. Now,

if G is a multigraph then there will be some edge e present in more than one copy in each

Eulerian cycle. Select an arborescence Er of G. Then construct a circuit starting from node

42

s ∈ V (that is the ending node of edge (x, s)). The lemma assumes that node s such that

(x, s) ∈ E is unique in V . Now, for every edge e found in Er, exactly one copy of e belongs

to Er and must be chosen as the last one traversed along any Eulerian circuit. Then we

have exactly (Ne − 1)! ways of ordering all other copies, where Ne is the multiplicity of

edge e. For any edge e which is not found in Er, we find that if e 6= e′ = (x, s) the number

of orders is exactly (Ni)!; however, one copy of e′ must be chosen as the last one which

completes the circuit. This avoids the repetition of identical orders of nodes. Therefore we

have (Ne′ − 1)! ways of ordering the copies of e′. Also, we note that a similar reasoning

applies to the last edge of every cycle rooted at x, which we denote as (x, s). Thus we use

the same term (Ne′−1)! for such edge. Lastly, we note that the number of ways of ordering

all nv outgoing edges from a node v, subject to the above described constraints for each

distinct edge, is (nv−1)!∏
ev,i∈Er∨ev,i=(x,s)(ne′

v,i
−1)!

∏
ev,j /∈Er

nev,j !
. Such term must be calculated across

all nodes, for each distinct arborescence. Thus we require a sum over arborescences of the

product
∏

v∈V across all nodes.

The construction of each Eulerian circuit relies on an algorithm which takes a single ar-

borescence, its root and the set of remaining edges E ′ as the required input information.

It then constructs a path based on all possible edge choice orders for ‘complex’ nodes (that

is, nodes with more than one possible outgoing edge), ignoring at the same time all the

connections belonging to the arborescence, as long as other edges are available.

43

2(1)

∞

1

2

2(1)

BP1 BP2 BP3 BP4

0 0 1 0 0

2

2(1)

1(1)

 0 0 0 0

1(1)

2
0

2(1)
0

0
0

Circuits

 1 2 3 4 2 3 4 5 ∞ 1 2 -3 4 5 ∞

 1 2 3 4 5 ∞ 1 2 3 4 2 -3 4 5 ∞

2(1)

∞

1

2

2(1)

BP1 BP2 BP3 BP4

 -1 -2 -3 -4 -5
0 0 1 0 0

2(1)
0

2(1)

2(1) 1

 0 0 0 0

1

2
0

0
0

Circuits

 1 2 -3 4 2 3 4 5 ∞ 1 2 3 4 5 ∞

 1 2 3 4 2 -3 4 5 ∞ 1 2 3 4 5 ∞

 1 2 3 4 5 ∞ 1 2 -3 4 2 3 4 5 ∞

1 2 -3 4 5 ∞ 1 2 3 4 2 3 4 5 ∞

 0 1(1) 0 0

∞

2

2(1)

BP1 BP2 BP3 BP4

0 1 1 1 0

2(1)
0

1(1) 2(1)

1(1)

2
0

1(1) 0

2(1)

1(1)

0

Circuits

 1 2 -3 -2 -4 3 4 5 ∞ 1 2 3 4 5 ∞

 0 1 0 0

∞

2

2(1)

BP1 BP2 BP3 BP4

2(1)
0

1(1)

2(1)

1(1)

2
0

1(1)

2(1)

Circuits

 1 2 3 4 5 ∞ 1 2 -3 -2 -4 3 4 5 ∞

A)
 i ii

B)
 i ii

0

f

b

f

b

 1 2 3 4 5

 -1 -2 -3 -4 -5

 1 2 3 4 5

 -1 -2 -3 -4 -5

 1 2 3 4 5

 -1 -2 -3 -4 -5

 1 2 3 4 5

2 3 2 3 2 2 3 2 3 2

2 2 2 2 2

0 1 1 1 0

2 2 2 2 2

1(1) 0 0 0

Figure 2.4: A) Schematic representation of two directed graphs (A-B) derived from the bidi-
rected graph shown in Figure 2.1A, with associated arborescences (i-ii) and Eulerian cycles. Top
and bottom nodes represent copies of DNA segments with a forward and backward orientation,
respectively; transparent nodes/edges have a null copy number. Arborescences correspond to fill
edges, and remaining edges are dotted. Black numbers indicate the number n of copies of each
edge, and in round brackets the number n − 1 of copies which do not belong the arborescence;
blue numbers indicate segment labels; red numbers correspond to the copy number vector across
nodes (identical for the two graphs). Tables below show all Eulerian cycles constructed with the
represented arborescence, with each row corresponding to a distinct solution.

44

Example 2.5. Let G be the graph such that

E = {(1, 2), (1, 2), (2, 3), (2, 3), (3, 4), (3, 4), (4, 5), (4, 5), (5,∞), (5,∞), (∞, 1), (∞, 1)(2,−3),

(−3, 4), (4, 2)} and V = {1, 2, 3,−3, 4, 5,∞}. We have seen from Example 2.4 that graph

G has two arborescences rooted at ∞: S = {(1, 2), (2, 3), (3, 4), (4, 5), (−3, 4), (5,∞)} and

S ′ = {(1, 2), (2,−3), (−3, 4), (3, 4), (4, 5), (5,∞)}, corresponding to filled edges in Figure

2.4Ai and ii, respectively. According to the BEST theorem (2.2), the total number of cycles

for graph G (that is, considering both arborescences) is 2 ·(1!2!1!2!1!0!1!) = 8. However, the

number of cycles with distinct node sequences is 1!2!1!2!1!0!1!
(1!1!1!1!1!1!1!)(1!1!)

+ 1!2!1!2!1!0!1!
(1!1!1!1!1!1!1!)(2!1!)

= 4+2 = 6

(equation 3). This is due to the presence of 2 couples of identical cycles associated with

one of the arborescences (shown in 2.4Aii), that is only two distinct node sequences. In

each fraction, the numerator is the same as for Equation 2. The denominator includes

two terms: the former accounts for edges which do not belong to the arborescence, plus the

special edge (x, s) = (∞, 1) which concludes every cycle. The latter term accounts for all

remaining edges. Consider arborescence S. Now, every cycle starts at node 1 and uses the

edges from S as long as they are available; then the other edges are chosen. All resulting

cycles, organised according to the corresponding arborescence, are shown in Figure 2.4Ai-ii.

For example, looking at Figure 2.4Ai, we can start at node 1 and choose edge (1, 2); we

are forced to select the copy of this edge which is not in the arborescence. From node 2,

we choose edge (2,−3) and then the only outgoing edge available, (−3, 4); next we might

select (4, 2) which is not in the arborescence, and then (2, 3)(3, 4)(4, 5)(5,∞), all having

one copy in the arborescence but not the latter one. From ∞ we go bacj to node 1. Now,

the only subpath we can proceed on is (1, 2)(2, 3)(3, 4)(4, 5)(5,∞),which is made up of edges

all belonging to the arborescence. Lastly, we choose edge (∞, 1) which completes our cycle:

1, 2,−3, 4, 2, 3, 4, 5,∞, 1, 2, 3, 4, 5,∞(, 1). We have thus shown how to efficiently construct

an Eulerian cycle by choosing any edge from the arborescence last.

45

2.5 Computational Analyses

We provide now the pseudocode for two main Matlab [56] functions which were developed

for the automatic reconstruction of Eulerian cycles.

Arborescences :

We have seen how to identify arborescences using the Matrix-Tree Theorem. If we use a

symbolic matrix, the non zero products obtained indicate the sets of edges corresponding

to the arborescences, for example abcd. However, in the case of a numeric matrix (which

we want to use for our computations) arborescences will be a product of numerical entries,

which do not contain any information about the corresponding set of edges. Now, if we

have a graph G containing n distinct edges (that is with different source and/or sink nodes)

we can generate all possible numeric Laplacian matrices representing sets of n − 1 edges

(which is the number of edges in any arborescence). The number of possible matrices

might however be very high. In order to improve performance, we can look at which nodes

(different from the root) have only one type of outgoing edge (that is, only one possible

following node). Since such edges are necessarily part of the arborescence, we can then

ignore any Laplacian matrix which lacks one or more of such edges. Any generated matrix

having a non zero cofactor represents an arborescence. By keeping track of which set of

edges is considered each time (using a Boolean matrix) we can then determine the set of

edges corresponding to that matrix. The pseudocode for the implemented Matlab function

follows.

46

Arborescence algorithm:

space

Data: the set E of edges from a directed graph G = (E, V)

Result: Construct arborescences for each directed graph

Initialization;

Arborescences A = {};
set of remaining edges R = {};
Determine which node have a single outgoing edge in E ′; collect these edges in E ′′;

Construct all possible sets Si of na edges from E ′, such that E ′′ ⊂ Si.;

for each Si do
construct Laplacian matrix representation of Si, Mi, and calculate its

determinant d(Mi);

if d(Mi) == 1 then

add Si to A ;

add E \ Si to R ;

end

end

47

Eulerian algorithm:

space
Data: the sets A and R derived from function Arborescences

Result: the set E of corresponding Eulerian cycles

Initialization: E = ε;

for each arborescence A[i] and edge set R[i] do

C = ε;

Determine the set Vc of nodes with more than one different outgoing edge Ri;

Construct all possible combinations of single orders across all nodes

p(v1), p(v2)...p(|Vc|);
Write combinations in C;

for i = 1 : |C| do

starting node is n=1;

while A[i] not empty OR R[i] not empty do

if R[i] has an outgoing edge from n then

if n is in Vc(: it has at least two distinct outgoing edges) then

Choose outgoing edge from n appearing earliest in order C[i];

Remove the edge from R[i]

else
Choose single outgoing edge and remove it from R[i]

end

else

Choose single outgoing edge from and remove it from A[i];

Update n to the node the edge is directed to

end

end

end

Add resulting cycle to E

end

return E

48

 1 2 3 4 5 -3 ∞

1 1 -1 0 0 0 0 0

2 0 1 -1 0 0 0 0

3 0 0 1 -1 0 0 0

4 0 0 0 1 -1 0 0

5 0 0 0 0 1 0 -1

-3 0 0 0 -1 0 1 0

∞ -1 0 0 0 0 0 1

V= {1,2,3,4,5, -3 ∞ }

7-1 = 6 edges in arborescence

 a b c d e f g h i j k l m n o

[1 0 1 1 1 1 0 1 0 0 0 0 0 0 0]

[1 1 1 1 0 1 0 1 0 0 0 0 0 0 0]

[1 0 1 0 1 1 1 1 0 0 0 0 0 0 0]

…

[1 1 1 0 0 1 1 1 0 0 0 0 0 0 0]

Edge label

1 2 a

2 -3 b

-3 4 c

4 2 d

2 3 e

3 4 f

4 5 g

5 ∞ h

∞ 1 i

1 2 j

2 3 k

3 4 l

4 5 m

5 ∞ n

∞ 1 o

|M[∞ ,∞] |= 1

Save arborescence
{a,c,e,f,g,h}

 1 2 3 4 5 -3 ∞

1 1 -1 0 0 0 0 0

2 0 1 0 0 0 -1 0

3 0 0 1 -1 0 0 0

4 0 0 0 1 -1 0 0

5 0 0 0 0 1 0 -1

-3 0 0 0 -1 0 1 0

∞ -1 0 0 0 0 0 1

|M[∞ ,∞] |= 1
Save arborescence
{a,b,c,f,g,h}

A) B) C)

D)

E)

i

ii

Figure 2.5: The Arborescence algorithm. A) set E of edges from the directed graph of Figure
2.4A, with every edge being labelled with a letter. This represents the input data. B) 1 by
15 (the number of edges in E) boolean vectors are constructed which may correspond to an
arborescence. C-D) A Laplacian matrix is derived from each Boolean vector from B). If the
determinant of submatrix M[∞,∞] equals 1, the set of edges with Boolean value 1 is saved as an
arborescence (see Ei-ii).

2.6 Conclusions

We have succeeded in developing an Eulerian cycle approach for the reconstruction of rear-

ranged genomes consistent with paired end and copy number input information. We have

however observed a series of limitations intrinsic to this approach; in particular, both the

49

Gröbner bases for the construction of directed graphs explore a (possibly very vast) space

full of CN profiles/graphs, trying to detect a limited number of useful solutions. Moreover,

all Eulerian cycles obtained from directed graphs represent equally likely explanations of

the data. Some limits related to our code become also clear when dealing with complex

graphs, with high numbers of nodes and/or somatic connections. In such cases, both ap-

proaches for the generation of directed graphs become computationally demanding, if not

impossible to perform. Even the construction of spanning trees might represent a limiting

factor.

An additional unresolved matter is the probability of each chronological order of somatic

connections. For copy-neutral rearrangements, parsimony models have been developed [46]

and applied to cancer genome analysis [93]. Order information have also been inferred by

looking at cluster of rearrangements with duplications [92] or by combining duplications

and single-nucleotide mutations data [44, 30]. Our method gives little insight on the rear-

rangement classes underlying the complex structural and copy number changes; such area

of research will be considered in chapter 3 through an algorithmic approach.

Additional limitations are represented by the available input data. Mapping of discordant

paired reads is typically difficult for structural variants in repetitive regions of the human

genome, possibly leading to missing or incorrect somatic connections in the data. Simi-

larly, estimates of read depth are difficult to obtain in repetitive regions. Moreover, the

generated directed graphs do not contain any allelic information (ratio between the inten-

sity of alternative SNP alleles across the genome, provided by microarray experiments)

of the cancer genome. Lastly, our method also assumes the presence of a single genome

in the cancer sample, while in reality a cancer cell population will rather represent an

heterogeneous mix of genetically different populations of cells.

50

3 An algorithmic approach for the inference of a can-

cer genome evolution

In chapter 2 we addressed the challenge of reconstructing cancer aberrant haplotypes from

paired end data through the Eulerian path approach. However, such method gives little

insight on the molecular mechanisms underlying the complex structural and copy num-

ber changes, as well as the transitional states separating the wild-type and final cancer

sequences. It is then natural to ask the following question: how can we use the copy num-

ber and paired end information to reconstruct the intermediate stages of a rearrangement

history, from the reference to the final cancer genome?

We want to start introducing our problem with the help of a simple example. Consider the

bidirected graph represented in Figure 3.1A. This has two coloured edges, corresponding

to two somatic connections absent in the reference. Assume we want to start an evolution

from a reference chromosome consisting of segments 1, .., 4, corresponding to the nodes in

the graph and labelled according to their physical position inside the chromosome. Let

{[1, 2, 3, 4]} be the word of integers representing such a chromosome. Then if we add one

somatic connection at a time in either of the two possible orders, we can construct the

following evolutions:

{[1, 2, 3, 4]}→{[1, 2, 3− 3,−2,−1], [4]}→
{[1, 2, 3,−3,−2,−2,−1], [4]} → {[1, 2, 3,−3,−2,−2,−1]}

{[1, 2, 3, 4]}→{[1], [2], [3, 4]}→{[1], [2], [3,−3], [4]} → {[2]}

51

A

B

C

 1 2 3 4

1 3 2 4

3 -3 2 4 1

-3 -2 -1 4 3 1 2 2 1 3 4

2 -3 -2 -2 1 3 2 -1

-3 -2 -2 4 1 3 2 -1

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

Bins

R
ea

d
 c

o
ve

ra
ge

CN=[2 3 2 0] CN=[0 1 0 0]
green connection is
lost

i ii

Figure 3.1: A) Example of a bidirected graph constructed from paired end data: black
edges are connections observed in the reference; coloured edges are somatic connections,
exclusively observed in the cancer sample. B) schematic representation of two evolutions
consistent with the graph in A). Telomeres are indicated by circles. Somatic connections,
indicated by coloured lines between segments (rectangles), are added once at a time, start-
ing from an initial chromosome [1, 2, 3, 4]. In the last step, sequences lacking one or both
telomeric ends are eliminated. In C) an example of read coverage values (y) across 80
adjacent windows (x) is shown.

52

here every word delimited by square brackets represents a distinct sequence of segments

linked together into single chromosomes, and braces collect a set of these chromosome

words together, defining a genome. Overlined words indicate a circular chromosome (in

Figure 3.1B, we have a circular segment 2). Now, the red edge has been interpreted

differently in the two evolutions: either as a tandem duplication of segment 2, or its circu-

larization, leading to chromosome fragmentation. On the other hand, we have interpreted

the green connection as a Breakage Fusion Bridge event, producing a palindromic chro-

mosome [1, 2, 3,−3,−2,−1]. The last modification, common to both evolutions, is the

elimination of chromosome which don’t carry a telomere at both ends: that is, unrepaired

fragments. The result is a modified set of chromosome words: a rearranged genome. We

have thus shown that, by modelling each somatic connection as a rearrangement event (i.e.

a modification of some chromosome words) we are able to construct multiple steps of an

evolution which introduces a set of observed connections to a reference genome. Some of

these connections might be lost in the last step (Figure 3.1Bii); however, in other cases the

transformations might lead to a set of repaired chromosomes carrying all such connections

(Figure 3.1Bi). In the latter case, we can say that the evolution is consistent with paired

end information.

Moreover, each evolution provides us with a copy number vector (see Definition 2.1) across

segments for every single transformation step. Then the vector associated with the final

stage of an evolution must be consistent with read coverage values from the cancer sam-

ple. In Figure 3.1C, a putative read coverage plot is shown. Each segment corresponds

to 20 consecutive bins, that is 20 coverage values. The mean values across segments

1, 2, 3, 4 (indicated by blue lines) are respectively 196, 296, 200 and 10. We then define

C = [196, 296, 200, 10]. Now, evolution ii returns vector [0, 1, 0, 0], which compare badly to

the read coverage plot, or its vector of means C. Conversely, it is easy to observe that the

copy number vector for evolution i, [2, 3, 2, 0], is a much better copy number prediction for

our example.

In this chapter, we implemented an algorithmic approach for a multi-step construction of

cancer digital karyotypes, generalizing different classes of DNA break and repair mecha-

nisms through the use of a long menu of operations. We will describe our approach with

the help of genome graphs containing 2 different classes of connections: wild-type adjacen-

53

cies, linking segments which are adjacent in the reference genome sequence and somatic

adjacencies corresponding to genomic connections acquired during cancer development.

The main idea of our approach is to build up a rearrangement evolution as a sequence of

steps from a reference genome G0 to a modified set of chromosomes Gn, and finally to G′n,

collecting all repaired chromosomes in Gn but free from any DNA fragment, as discussed

further in the text.

We now clarify the crucial aspects of our model, with the help of the following definitions.

Definition 3.1. A genome graph is a bidirected graph P = (V,E) where each node in V

represents a segment, labelled with an integer number from 1 to n according to the position

along the reference genome. The set E is a collection of edges, each connecting one side

of a node i to one side of a node j, with possibly i = j. Any edge in P is represented

as e = (±i,±j) with i ≤ j. Each of i and j has a positive (resp. negative) sign if edge

e touches the right (resp. left) side of the corresponding node. If e is a loop touching

both sides of the same segment i (a connection often associated with tandem duplication),

we write: e = (−i, i). Every edge of the form (i,−(i + 1)) is called a wild type edge,

and simply represents the adjacencies between consecutive DNA segments in the reference

genome. All other edges are acquired during cancer development and are called somatic

edges (or somatic connections).

The definition of telomere will prove crucial later on, in order to distinguish between DNA

sequences which still carry one or two broken ends, or have been untouched/repaired (see

Definition 3.9). Such concept is related to the graph theory definitions of chromosome and

genomes, which we present next.

Definition 3.2. We call a linear chromosome word any word of integers taking the form

C = [±t1,±t2, ...,±tn]. We also call a circular chromosome word, any word of integers

taking the form C = [±t1,±t2, ...,±tn]. Every letter t1 in C is called a forward oriented

segment, and every letter −t1 in C is called a backward oriented segment.

Definition 3.3. Let e = [±i,±j] be an edge from a genome graph P . Then the chromosome

word representation of e corresponds to the single letter i if and only if i = j and segment

i is circularised. Otherwise, it corresponds to a couple of adjacent letters [±i,±j], where

54

the signs of i and j are chosen based on Definition 3.1.

text

Example 3.1. Consider e = [−2, 2] in the genome graph of Figure 3.1A, and the starting

genome represented in the Figure, G = {[1, 2, 3, 4]}. If we add edge e to chromosome G,

we are connecting the left side of segment 2 to the right side of the same segment. In

the evolution shown in Figure 3.1Bi, this leads to a tandem duplication of segment −2,

[... − 2...] → [... − 2,−2...] and e connects two copies of inverted segment −2. However,

in the evolution shown in Figure 3.1ii, adding the same edge leads to the circularization of

segment 2, corresponding to the single letter 2.

The other somatic edge in the graph is e′ = (3, 3), touching only the left side of segment 3.

When a palindromic chromosome is obtained (Figure 3.1i), we find that the correspondent

chromosome word is [1, 2, 3,−3,−2,−1]}, where subword [3,−3] corresponds to e′.

Definition 3.4. A word C is called a valid chromosome for a genome graph P = (V,E) if

and only if C is a chromosome such that all consecutive symbols x, y and all single symbols

x in C correspond to an edge in P (i.e. they are a word representation of an edge in P by

Definition 3.3).

Definition 3.5. Let P = (V,E) be a genome graph and G be a genome. Then we say that

G is a valid genome for P if and only if all chromosomes in G are valid chromosomes for

P .

Definition 3.6. Let P = (V,E) be a genome graph with N nodes. Define the kth chromo-

some, with k = {1, 2, ..., K}, as Ck = [1(k), 2(k)..., n
(k)
k]. Let also the sum of nodes across

chromosomes be equal to the number of nodes N :
K∑
1

n
(k)
k = N . Then the valid haploid

reference genome for P and the Ck’s takes the form G0 = {C1, C2, ..., CK}, while the valid

diploid reference genome is defined as G0,0 = {C1, C1, C2, C2, ..., CK , CK}.
Definition 3.7. Let P = (V,E) be a genome graph, and G a reference haploid genome for

P . For every chromosome Ck = [1(k), 2(k)..., n
(k)
k] from G we call the left side of 1(k) a left

telomere and the right side of n
(k)
k a right telomere. We also define all 1(k)’s and n

(k)
k ’s as

telomere nodes.

55

Now, with the help of the previous definitions, we present additional concepts regarding

specific types of chromosomes and genomes.

Definition 3.8. Given a reference haploid genome G with highest integer value N , we

define the corresponding set of breakpoints as the set: B = {1, 2, ...N − 1}, where every i

in B represents both the left end side of segment letter i and the right end side of segment

letter i+ 1.

Definition 3.9. Let P = (V,E) be a genome graph with N nodes, and T be the set of

telomeres. Then any linear chromosome such that one or both ends are not telomeres from

T is called a fragment for P and T .

Example 3.2. Consider evolution of Figure 3.1Bi. The first rearrangement produces

genome {[1, 2, 3,−3,−2,−1], [4]}. In the former, palindromic chromosome the leftmost

end is the left side of segment 1, which is defined as a left telomere (indicated by a circle).

On the opposite (right) end, we have an inverted segment 1, −1, where the same telomere

actually lies on the right side. Thus we find that both ends of the chromosome are telom-

eric. As for chromosome [4], its right end corresponds to a telomere, but not the left one.

Thus [4] is a fragment.

Definition 3.10. Given a genome graph P = (V,E), a genome sequence G is called a

valid final genome for P if and only if all nodes in G are also in P , and every edge in Er

corresponds to at least one couple of consecutive symbols x, y in G.

Definition 3.11. Let s, s′ be two letters in a genome word G = {...s...s′...} or G = {...s =

s′...}. If we add a somatic connection e linking s1 and s′, then such connection forms in

exactly one of the following ways:

• Tandem Duplication(TD) case: e connects the left of s to the right of s′ (Figure

3.2A)

• Deletion(DEL) case: p(s) < p(s′) and e connects the right of s to the left of s′(Figure

3.2B)

56

• left Inversion (l-INV) case: e connects the left of s to the left of s′(Figure 3.2C)

• it assumes a right Inversion(r-INV) case: e connects the right of s to the right of

s′(Figure 3.2D)

A

C

s s’… …… …s…. …s’… …

B

D

TD DEL

…s… s’… …

r-INV

s s’……… …

l-INV

Figure 3.2: Schematic representation of the four possible orientations (‘shapes’) of a somatic
connection. A) Tandem Duplication; B) Deletion; C) left Inversion; D) right Inversion.

The importance of concepts like valid chromosomes/genomes and fragments becomes clear

when we attempt to select final genomes which compare best with our input data. We

specifically want to select evolutions such that the final valid genome contains all somatic

edges from a graph P .

We now introduce the precise definitions of all the different types of operations.

Definition 3.12. A Double Strand Break(DSB) operation on a genome G is an operation

splitting a chromosome word C into two non empty subwords C1, C2.

Definition 3.13. A Duplication(D) operation on a genome G containing K chromosomes

is the following operation on one or more chromosomes Ci from G: Ci → {Ci, C ′i}, where

Ci = C ′i.

Definition 3.14. We call fragment elimination(FR) the operation on a genome G which

removes all fragment chromosomes.

Definition 3.15. A connection-free operation on a genome G is any operation of class

Double Strand Break(DSB), Duplication(D) or Fragment elimination (FR).

Definition 3.16. An intrachromosomal Double Cut and Join (DCJ) operation is one of

the following operations on a chromosome word C = XY Z:

57

1. XY Z → {X, Y , Z}, Y 6= ε (Figure 3.3A)

2. XY Z → {XZ, Y }, X, Y, Z 6= ε (Figure 3.3B)

3. XY Z → {X,−Y Z}, Y, Z 6= ε (Figure 3.3C)

4. XY Z → {X − Y, Z}, X, Y 6= ε (Figure 3.3D)

text

Definition 3.17. An interchromosomal Double Cut and Join (DCJ) operation is one of

the following operations on two chromosome words C = XY,C ′ = X ′Y ′:

1. {XY,X ′Y ′} → {X,X ′Y, Y ′}, X ′, Y 6= ε (Figure 3.3E)

2. {XY,X ′Y ′} → {XY ′, Y,X ′}, X, Y ′ 6= ε (Figure 3.3F)

3. {XY,X ′Y ′} → {X,−Y Y ′, X ′}, Y, Y ′ 6= ε (Figure 3.3G)

4. {XY,X ′Y ′} → {X −X ′, Y, Y ′}, X,X ′ 6= ε (Figure 3.3H)

text

Example 3.3. Consider Figure 3.6A. In the represented evolution, two DCJ events lead

to the formation of a repaired chromosome where segment 2 has been inverted.

text

Definition 3.18. An intrachromosomal Break-Induced Replication (BIR) operation is one

58

of the following operations on a chromosome word C = XY Z:

1. XY Z → {XY Y Z} Y 6= ε (Figure 3.4A)

2. XY Z → {XZ, Y Z} X, Y, Z 6= ε (Figure 3.4B)

3. XY Z → {XZ,XY } X, Y, Z 6= ε (Figure 3.4B)

4. XY Z → {X − Y, Y Z} X, Y 6= ε (Figure 3.4C)

5. XY Z → {XY −X,Z} X 6= ε (Figure 3.4C)

6. XY Z → {XY,−Y Z} Y 6= ε (Figure 3.4D)

7. XY Z → {X,−Z − Y Z} Z 6= ε (Figure 3.4D)

8. XY → {−XX, Y } X 6= ε (Figure 3.6C)

9. XY → {X, Y − Y } Y 6= ε (Figure 3.6D)

Next we introduce additional operations, allowing for the representation of copy-number-

increasing rearrangements:

Definition 3.19. An interchromosomal Break-Induced Replication (BIR) operation is one

of the following operations on two chromosome words C = XY,C ′ = X ′Y ′:

1. {XY,X ′Y ′} → {X,X ′Y,X ′Y ′}, X ′ 6= ε (Figure 3.4E)

59

2. {XY,X ′Y ′} → {XY,X ′Y, Y ′}, Y 6= ε (Figure 3.4E)

3. {XY,X ′Y ′} → {XY ′, Y,X ′Y ′}, Y ′ 6= ε (Figure 3.4F)

4. {XY,X ′Y ′} → {XY,XY ′, Y, Y ′}, Y 6= ε (Figure 3.4F)

5. {XY,X ′Y ′} → {X −X ′, Y,X ′Y ′}, X,X ′ 6= ε (Figure 3.4G)

6. {XY,X ′Y ′} → {XY,X −X ′, Y ′},Y 6= ε (Figure 3.4G)

7. {XY,X ′Y ′} → {X,−Y Y ′, X ′Y ′}, Y 6= ε (Figure 3.4H)

8. {XY,X ′Y ′} → {XY,X ′,−Y Y ′}, Y 6= ε (Figure 3.4H)

text

Example 3.4. Consider Figure 3.4A: we have a somatic connection touching the two

sides of segment 2. The result of a intrachromosomal BIR operation on chromosome

[1(1), 2(1), 3(1)] using that connection is a tandem duplication of segment 2 ([1, 2, 3] →
[1(1), 2(1), 2(1), 3(1)] in the chromosome word).

Example 3.5. Consider Figure 3.6C-D. The evolutions represented lead to palindromic

chromosome words [1(1),−1(1)] and [−2(1), 2(1)], equivalent to what might happen after a

single breakage fusion bridge cycle (see Figure 1.2).

Definition 3.20. Let P = (V,E) be a genome graph, and let G be a valid genome for

P . A connection operation on a genome G is an operation of class Double Cut and Join

or Break-Induced Replication (BIR) utilizing one and exactly one somatic edge e from E.

The operation is called intrachromosomal if e operates on a single chromosome word (see

Figures 3.3A-D and 3.4A-D), and interchromosomal otherwise (see Figures 3.3E-H and

3.4E-H).

60

Definition 3.21. Given a genome graph P = (V,E) and a valid evolution for P , E(P),

we define breakpoint reuse constraint the following set of conditions:

1. for all wild type edges e = (i,−(i + 1)), one and exactly one operation splits apart

two adjacent symbols connected by e;

2. no operation splits apart two letters corresponding to a somatic connection.

Definition 3.22. Let P = (V,E) be a genome graph. A valid evolution for P is a series

of connection and connection free operations, E(P), such that

1. every genome in the evolution is valid for graph P

2. every somatic edge ei in P is used by one and exactly one connection operation;

3. every operation in P is performed subject to the breakpoint reuse constraint;

4. the final genome word contains every somatic edge from E after performing fragment

elimination.

61

1 2 3 4

1 -2 4 3

1 2 3 4

1 -3 2 4

1 2 3 4

1 4 2 3

E) F)

1 2 3

1 -2 3

1 2 3

1 -2 3

1 2 3

1 2 3

1 2 3

1 3 2

A) B)

1 2 3 4

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 4

1 3 2 4

1 2 3 4 1 2 3 4

1 2 3 4

C) D)

G) H)

{[1, 2, 3]}

{[1] , [2], [3] }

{[1, 2, 3]}

{[1, 3] , [2] }

{[1, 2, 3]}

{[1, -2] , [3] }

{[1, 2, 3]}

{[1] , [-2, 3] }

{[1, 2, 3]}

{[1] , [3 2], [4]}

{[1, 2, 3]}

{[1, 4] , [2], [3]}

{[1, 2],[3, 4]}

{[1] , [-2, 4], [3]}

{[1, 2],[3, 4]}

{[1, -3] , [2], [4]}

Figure 3.3: Full list of DCJ operations, described using a schematic representation where each
rectangle corresponds to a different segment. Word representation and the genome graph are also
shown. A-D) Intra-chromosomal DCJ operations for the 4 possible edge shapes. A) TD shape:
adding edge [−2 2], results in a circular chromosome. B) Deletion shape, edge [1 − 3]. C) Left
inversion shape, edge [−2 − 3]. D) Right inversion shape, edge [1 2]. E-H) Inter-chromosomal
DCJ operations for the 4 possible connection shapes. E) TD shape, edge [−2 3]. F) Deletion
shape, edge [1 −4]. G) Left inversion shape, edge [−2 −4]. H) Right inversion shape, edge [1 3].

62

E) F)

1 2 3 4

-4 2 2 33 1

-4 -3 1-2 4

1 2 3 4

1 -3 -2 42 3

1 2 3 -1 4

1 2 3 4

1 32 2 3 4

1 2 3

1 3 2 3

1 3 1 2

A) B)

1 2 3 4

1 3 2 3 4

231 2 4

1 2 3 4

1 4 3 4 2

1 4 1 2 3

1 2 3 4

-2 4 13 4

2 2-4 1 3

1 2 3 4

1 -3 23 4

-1 23 1 4

1 2 3 4

1 2 3

C) D)

G) H)

{[1, 2, 3, 4]}

{[1, 2, 3, 2, 3, 4]}

{[1, 2, 3, 4]}

{[-4, 2, 3],[1, 2, 3]}

{[1], [3, 2],[3, 4]}

{[1, 2], [3, 4]}

{[-2, 4], [3, 4],[1]}

{[1, 2], [3, 4]}

{[1, 2], [3, 2], [4]}

{[-4, 2], [1, 2],[3]}

{[1, 2], [3, 4]}

{[1, -3], [3, 4], [2]}

{[1, 2], [3, 4]}

{[3, -1], [1, 2], [4]}

{[1, 4], [3 4], [2]}

{[1, 2], [3, 4]}

{[1, 4], [1, 2], [3]}

{[1, -3, -2], [2, 3, 4]}

{[1, 2, 3, 4]}

{[1, 2, 3, -1], [4]}

{[1, 3], [2, 3]}

{[1, 2], [3, 4]}

{[1, 3], [1, 2]}

{[-4, -3, -2, 4], [1]}
1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

Figure 3.4: Full list of BIR operations for all 4 possible edge shapes, described using a schematic
representation where each rectangle corresponds to a different segment. Green boxes correspond
to the copied segment sequence. Word representation and the genome graph are also shown.
A-D) Intra-chromosomal BIR operations. A) TD shape, edge [−2 3]. B) Deletion shape, edge
[1 −3]. C) Left inversion shape, edge [−2 −4]. D) Right inversion shape, edge [1 3]. E-H) Inter-
chromosomal BIR operations. E) TD shape, edge [−2 3]. F) Deletion shape, somatic connection
[1 − 4]. G) Left inversion shape, edge [−2 − 4]. H) Right inversion shape, edge [1 3].

63

Example 3.6. Consider the evolutions shown in Figure 3.1. In both evolutions, we observe

only connections present in the genome graph of Figure 3.1A (first condition of Definition

3.22) and each somatic edge is used exactly once (second condition). Moreover, both evo-

lutions do not break the same wild type edge more than once, nor they split apart segments

which are linked by somatic connections: thus they follow the breakpoint reuse constraints

of Definition 3.21, which is the third condition for a valid evolution. However, evolution Bi

creates a final genome with all somatic connections from the graph (fourth and last condi-

tion of validity), while in evolution Bii connection (3, 3) is lost after fragment elimination.

We conclude that evolution Bi is valid, while Bii is not.

With the help of all provided definitions, we now define the main problem we want to solve:

Problem 3.1. Given the paired end and read coverage input information from a cancer

sample, determine a set of consistent evolutions, subject to the breakpoint reuse constraint,

such that the final genomes after fragment elimination show a segment copy number profile

consistent with the observed read coverage.

3.1 Implications of the Breakpoint Reuse Constraint

Many models of genome evolution assume that more than one operation on a DNA se-

quence can introduce a break exactly in the same site: we will call this a breakpoint reuse.

Assuming that the series of rearrangement occurring in a cancer genome represents a ran-

dom process, the probability of two or even more chromosome breaks occurring in exactly

the same site is extremely low. The breakpoint reuse constraint (Definition 3.21) assures

that once a breakpoint has been introduced during an evolution, no other break on that

position can ever occur. It also makes sure that every somatic connection in P corresponds

to a single operation, i.e. is used only once across the evolution. It must be noticed that

differential recombination frequency due to mutation hotspots is not taken into account in

our model. It is known that fragile sites associated with 3 nucleotides repeats might form

64

hairpin structures during DNA replication, favouring recombination events [4]. In the case

of a breakpoint being implicated in more than one rearrangement operation and located

inside a known fragile site, it can be argued that the higher than expected recombination

rate could cause the same breakpoint to be introduced more than once. In the other cases,

accounting for recombinational hotspots has not a great impact on our evolutionary recon-

struction. For example, assume we observe a connection touches two breakpoints a, b and

b is located at a fragile site. If no other somatic connections implicate those breakpoints,

we find that the only two ways we can reintroduce breakpoint b is by 1) performing a DSB

break, or 2) reintroducing the same somatic connection once again (assuming this is possi-

ble without reintroducing breakpoint a as well). In case 1, we are creating a new fragment,

which will hardly produce a different, valid evolution. Indeed, such series of operations

is likely to produce unrepaired fragments (lost by fragment elimination) carrying somatic

connections (see Figure3.5). In general, this modification is very unlikely to determine any

improvement of our model. While case 2 is less problematic, we must notice that reusing

the same somatic connection represents an unnecessary overcomplication of our evolution-

ary reconstruction. What we want is a parsimonious explanation of how new connections

are acquired during cancer development. Associating several rearrangements to the same

discordant pair of reads can significantly increase the complexity of our reconstructions,

without providing any clear advantage. These are the reasons why we have excluded this

possibility from our model, associating each connection to exactly one operation. A simi-

lar reasoning is valid when breakpoints a, b map to a fragile site. Even if we allow for the

reintroduction of two breaks at positions a and b, we are restricted to the choice of either

perform two DSB operations or reusing the same somatic connection.

65

A

B

1 2

1 2 3

3

empty final genome

1 23 1 3

1 23

C D

final genome:
1 repaired chromosome

segment 2 is lost

segments 1,2 and 3 are lost

break reintroduces breakpoint

Recombination
frequency

low high

Figure 3.5: Implications of an alternative model of rearragement evolution, where break-
points lying on a recombination hotspot (red regions) can be reintroduced. The genome
graph (A) contains a single somatic connection, (1,−3), interpreted in our example of evo-
lution as the deletion of segment 2 (B). By re-introducing breakpoint 2 (between segment
1 and 2) through a DSB operation, a genome with 3 fragments (circles indicate the pres-
ence of a telomere) and no repaired chromosomes is generated (C), leading to an empty
final genome (E). Note that this evolution is not valid according to Definition 3.22. In the
original model, the DSB operation is not performed, leading to a final genome (part of a
valid evolution) consisting of a single repaired chromosome (D)

66

1 2 3

1 -2 3

1 -2 3

1 3-2

A

B 1 2 3

C D

1 2

-2 21

1 2

1 -1 2

1 2 1 2

1 2 3

1 2 3

1 2 3 4

{[1, 2, 3]}

{[1, -2] , [3]} {[1] , [-2 3]}

{[1, 2, 3] , [4], [2, 3]}1 2 3 4 32

1 2 3 4 32

321 2 3

{[1, 2, 3]}

{[1, 2], [3]}

{[1, 2, 3] , [4], [2 3] ,

[1, 2, 3] , [2, 3]}

{[1] , [-2, 2]} {[-1, 1], [2]}

{[1, 2]} {[1, 2]}

{[1, -2 , 3]}

1 2 3

duplication

DS break

DCJ

DCJ

BIR BIR

Figure 3.6: Schematic representation of some special series of operations and the genome
graphs for the resulting genomes. The two somatic connections (1, 2) and (−2,−3) perform
the inversion of segment 2. B) DS break operation on the right side of segment 2 C) Random
chromosome duplication operation: light green boxes represent duplicated DNA segments.
C) Left Breakage-Fusion Bridge: a BIR operation involving a unique breakpoint on the left
side of segment 2 results in a break and an inverted duplication of that segment. D) Right
Breakage-Fusion Bridge: a BIR operation involving a unique breakpoint on the right side
of segment 1 results in a break and an inverted duplication of that segment.

67

DS break

Duplication

BIR

DCJ

1 2 2 3 4 -2 4 3

1 2 3 4 2 3 4

1 2 2 3 4 2 3 4

1 2 3 4

1 -3 -2 -2 4

1 -3 -2 4

1 -2 -2-3 4

A

B

1 2 3 4

1 2 3 4

{[1, -3, -2, -2], [4]}

{[1, -3, -2, -2, 4]}

{[1, -3, -2], [4]}

{[1, 2, 3, 4]}

{[1], [2, 2, 3, 4], [-2, 4], [3]}

{[1], [2, 3, 4], [2, 3, 4] }

{[1], [2, 3, 4]}

{[1], [2, 2, 3, 4], [2, 3, 4] }

1 2 3 4

1 2 3 4

DCJ

BIR

DCJ

{[1, 2, 3, 4]}

Figure 3.7: Schematic representation of two possible ways of performing connection opera-
tions with edges (−2, 2), (2, 4), both touching node 2 (an example of segment side reuse). in
A), a DSB operation followed by a chromosome duplication create two copies of the break-
point between segments 1 and 2. This allows for both connection operations (coloured
edges in the graph) to be performed, without reintroducing the break. In B) , a combi-
nation of three connection operations allows for the breakpoint to be available at multiple
stages of the evolution, allowing for segment side reuse by connections (−2, 2) and (2, 4).

Figure 3.7 provides two examples of an evolution where the left side of node 2 (and therefore

68

the same breakpoint) is implicated in two different operations. This is a particular case of

breakpoint reuse, which we will call segment side reuse. Now, the breakpoint separating

segments 1 and 2, as all others, can be introduced only once, as the result of a single

operation. in A), a break followed by duplication makes two copies of the breakpoint

available, allowing for the two connection operations to take place under the breakpoint

reuse constraint. In B), on the other hand, an earlier DCJ operation first introduces the

breakpoint, which remains available throughout the next two evolutionary steps. Once

again, we find that a complete evolution can be constructed under the constraints of

Definition 3.21.

3.2 Unique word representation

We have already seen how to represent chromosomes as words of integers. However, we

must note that such representation is not unique. Consider the following examples where

two chromosome words are compared:

[1, 2, 3,−1]

[1,−3,−2,−1]

These correspond to the same set of segments carrying the same single somatic connection

(1, 3).

We use lexicographic ordering to choose among these two alternatives. We define our

ordering as follows.

Definition 3.23. Given the set of symbols L from a chromosome or a genome word, we

define the following increasing coefficients for lexicographic ordering:

{−min(L),min(L),−(min(L)+1),min(L)+1, ...,−(max(L)−1),max(L)−1,−max(L),max(L)}

69

where min(L) and max(L) are the lowest and highest letters (segment labels), respectively

If we look now at the example presented above, we find that both chromosomes start

with letter 1, which cannot be used to define their relative order. When we look at the

second letters, 2 and −3, we note that 2 < −3 based on Definition 3.23. Such procedure is

superfluous in the special case of palindromic words (which might arise by a BIR operation).

For example, chromosome word [1, 2,−2,−1] is identical to its reverse sequence.

3.3 Producing a set of evolutions from observed data

Following is a summary of the approach we have used in order to reconstruct a rearrange-

ment history. Six distinct steps can be distinguished:

1. Construction of a genome graph based on available paired end data

2. Definition of segment boundaries and association of each segment with a mean read-

depth value

3. Performing rearrangement operations

4. Eliminate fragments from each resulting genome

5. Discarding all final genomes lacking one or more somatic connections (selection of

consistent genomes)

70

6. Comparison of segment read depth values with the segment copy number profile of

each consistent genome and calculate a score for each comparison

Graph, segment boundaries and read coverage values. Paired end sequencing data gives

us the information about the precise mapping position (a window of about 500 bps) and

orientation of a pair of reads. We represent this information with the genome graph.

Paired end sequences are used to identify rearrangements and define DNA segments along

chromosomes, as described in Figures 1.9 and 2.2A-C. Recall that, in a typical paired end

experiment for the detection of structural variants, a library of ∼ 100−500 bps fragments is

generated. The two ends of each fragment are then sequenced (pairs of reads) and mapped

to the reference genome. The combination of fragment size and length of the reads will

then determine the precision in locating breakpoints. Assume, for instance, that an insert

size of 500 bps is used, and only the first 100 bps at each end are sequenced. This means

that any pair of reads is separated, in the cancer genome, by about 500−(100·2) = 300 bps.

Now, this type of data is guaranteed to detect a rearrangement, provided the breakpoints

are separated by at least 300 bps. However, special cases where two or more breakpoints

map very close together might be impossible to detect; for example, assume a small (≤ 300

bps) inversion occurred, and the inverted region is included in a fragment of our sequencing

library. The two paired end reads of that fragment might not be affected by the inversion,

and will map to the reference genome exactly like a concordant read pair. A small deletion

will be easier to identify, as the mapping distance of the two reads will be greater in the

reference genome. In general, we can confidently use this method for the detection of larger

scale rearrangements, the type of genomic variation we are interested in.

Performing operations. The reconstruction of a genome evolution is carried out by imple-

menting each couple of paired end reads as a rearrangement operation. Since no information

about the chronological order of these paired end reads/operations is available, for a graph

with n somatic connections all n! orders of operations need to be considered. For each

connection we have two choices for the operation type (DCJ or BIR) and possibly multiple

choices when the segments involved are present in more than one copy.

71

Eliminating fragments. We assume in our model that chromosomes showing at least one

aberrant telomere will be lost. Therefore, from every generated final genome we remove

all chromosomes showing at least one end different from the left side of segment 1 or the

right side of the last segment in the corresponding wild-type chromosome.

Selection of fragment-free valid genomes. After fragment elimination, it is crucial to check

which of the new resulting final genomes show all somatic connections present in the

genome graph. Any other genome that has lost all copies of one or more connections is

clearly the product of an evolution inconsistent with observed paired end data, and can be

then filtered out.

Calculating a score for each final genome. We expect the following linear relation to hold:

y = β0 + xβ1 + ε (4)

where y indicates the read depth; β0 is a constant; β1 is the read depth value correspond-

ing to one DNA segment copy; x is the observed copy number of that particular segment

and ε represents the error. Here we assume that ε ∼ N(0, σ2) (where σ represents the

variance) has a normal distribution, which is a valid assumption when dealing with sam-

ples sequenced at high coverage. We need to consider how well the copy number of a

fragment-free, valid final genome fits the available read depth data from the cancer sam-

ple. Given the paired end data and read coverage from a cancer sample C, assume we have

a genome graph P = (V,E) and the estimated breakpoint positions [bp1, bp2...bpn−1] where

n = max(E). Our tumor read coverage information is represented by mean values for each

500 bp window (bin) across the whole genome.

Let Xj = [x
(j)
1 , x

(j)
2 , ...x

(j)
n] be the set of consecutive coverage values such that bpj ≤ x

(j)
1 <

x
(j)
j ≤ bpj+1 and 1 ≤ j < n−1. Since bpj and bpj+1 define the boundaries of DNA segment

j, the values in Xj are exactly the observed coverage values across segment j. Note that

72

for special segments 1 and n, respectively the left and the right end rather correspond to

a telomere.

Now, suppose we want to compare the sets X1, X2, ..., XJ to the copy number vector

CN = [cp1, cp2, ..., cpJ] of a final genome word. From Equation 4, we expect a linear re-

lation between each read coverage value x
(j)
i and the copy number value cpj. However,

we notice that while cpj is a single number, we have a set of values Xj for segment j.

We then perform a regression analysis where the x
(j)
i ’s represent the dependent variable,

expected to be a function of the explanatory variable cpj. We have dependent variable

values Xj = [x
(j)
1 , x

(j)
2 , ...x

(j)
j], while the explanatory variable value cpj is identical across

all x
(j)
i . We then combine the values of all segments to get the complete dataset for our

regression:

explanatory variable(x): {cp(1)1 , cp
(2)
1 , ..., cp

(|X1|)
1 , cp

(1)
2 , cp

(2)
2 , ..., cp

(|X2|)
2 , ..., cp

(1)
n , cp

(2)
n , ...cp

(|XJ |)
n }

dependent variable(f(x)): {X1, X2, ...XJ}
From this analysis we derive the estimated coefficient m′ and constant value q′ which de-

fine the set of estimated coverage values, x
′(j)
i = m′ ∗ cpj + q′. These are the values which

minimize the sum of square residuals (i.e. the sum of square differences between the

(x
(j)
i − x

′(j)
i)2). Now, since such a discrepancy indicates how well our linear model fits

the data, we can utilize it in order to asses the goodness of a particular solution; more

precisely, we want this sum to be as small as possible. We then define the final genome

score as follows:

J∑
j=1

|Xj |∑
i=1

(x
(j)
i − x

′(j)
i)2

|Xj|
(5)

Thus we sum the square residuals across all coverage values of a particular segment, and

divide the result by the number of such values (i.e. the number of ∼ 500 bp intervals in

that segment). Weighting the sum of square residuals for each segment reflects the need

for normalising the values based on the different DNA segment lengths. We finally obtain

73

our score by summing these results across all segments.

It is important to notice here that different noise signals are expected in distinct sequencing

experiments, which makes the comparison of scores across cancer samples hard. This

problem has not been addressed in our study, which rather focused on the challenge of

selecting a set of optimal evolutions for a single rearrangement cluster. The final genome

score we have defined must then be intended as a measure relative to a specific sequencing

rearrangement example, rather than absolute.

this is some space

Example 3.7. Consider the evolutions in Figure 3.1. Evolution Bi leads to copy number

vector [2, 3, 2, 0]. For the calculation of the final genome score, we utilize the values plotted

in Figure 3.1C (shown in red) as the dependent variable values. Now, every segment in

our example corresponds to 20 coverage values (for 20 adjacent bins) so we simply repeat

each value in [2, 3, 2, 0] twenty times. We then obtain the following set of values for the

dependent variable

[21, 22, 23,220, 31, 32, 33,320, 21, 22, 23,220 , 01, 02, 03,020]

From the regression analysis we derive m = 96.12, q = 8.88 and a score value of 6.38. Thus

y = 96.12x+8.88 (where x is the copy number and y the predicted read coverage). Substitut-

ing x with the copy number value gives Y ′ = [201.12, 297.24, 201.12, 8.88]: such values are

plotted in blue across the four segment regions in Figure 3.1, and well describe the pattern

of read coverage values across all segments (blue line in Figure 3.8B). Applying the same

procedure to evolution Bii returns m = 160.88, q = 135.86 and a much higher score value of

251.13. We derive the predicted read coverage values Y ′ = [135.86, 296.74, 135.86, 135.86].

Now, the value 296.74 for segment 2 fits well the observed data. However, we have iden-

tical value 135.86 for segments 1, 3 and 4, despite a clear drop in the read coverage signal

from segment 3 to 4. Such value badly predict the coverage by either underestimating or

overestimating the coverage signal of the three segments (green line in Figure 3.8B).

74

A

B

 1 2 3 4

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

Bins

R
ea

d
 c

o
ve

ra
ge

CN=[0 1 0 0] y= 160.88x+135.86 score=251.13

CN=[2 3 2 0] y=96.12x+8.88 score=6.38

Figure 3.8: Example of calculation of the final genome score, using evolutions displayed in Figure
3.1. A) genome graph from Figure 3.1A. B) The read coverage values across 4 segments are plotted
in red. Blue lines indicate the predicted coverage values for copy number vector [2, 3, 2, 0] (from
evolution Bi of Figure 3.1), while green lines indicate the predicted coverage values for copy
number vector [0, 1, 0, 0] (from evolution Bii of Figure 3.1). Estimated linear equations and the
score values for each copy number vector are also shown.

3.4 Analysing real data

We explored the space of possible evolutions for cluster of rearrangements in different tu-

mour samples. The simplest cluster we analysed comes from the breast cancer sample

PD4243 and involves just chromosome 2. The genome graph for this cluster can be seen in

Figure 3.9A. Recall that, in the genome graph representation, we have the correspondence

one node:one segment, and each somatic connection might touch either the left or the right

75

side of a node (see Definition 3.1). We have been able to simulate all possible combinations

of connection operations for this case (without DSB or chromosome duplications), as it in-

volves a limited number of somatic connections. Consider the example shown in Figure

3.10. The evolution starts with the diploid reference genome {(1, 2, 3, 4, 5), (1, 2, 3, 4, 5)}
where chromosome 2 is divided into 5 DNA segments. Then, a series of 3 DCJ operations

plus fragment elimination returns a final genome with copy number profile [1, 2, 2, 2, 1].

Regressing these copy number values against observed read coverage data gives the fitted

coverage values (blue) shown in Figure 3.9B. The score of the final genome word (43.99)

is the minimum possible value we found for the graph in Figure 3.9A.

Figure 3.11A shows the genome graph for a much more complex cluster, involving chro-

mosomes 1 and 15 from the same breast cancer sample (PD4243). We shall notice two

breakpoint sides (left of breakpoint 1, right of breakpoint 10) which are touched each one

by two different somatic connections. Constructing all possible evolutions for a graph con-

taining 12 somatic connections is computationally too demanding, and we have been forced

to randomly explore the space of possibilities. For each randomly constructed evolution,

each connection operation has been assigned either of the two possible classes DCJ and

BIR, and a random chronological order for the 12 connection operations has been chosen

as well.

Such approach has proven useful, allowing us to identify several evolutions associated with

a low-scoring (365) final genome word. 44 evolutions with this exact score (therefore shar-

ing the same copy number) were identified. If we look at Figure 3.12, we see a schematic

representation of one optimal solution: two DS breaks and two chromosome duplications

are performed, together with 12 connection operations utilising the somatic edges from

the graph. For simplicity, the figure does not represent the operations using edges (17, 19)

and (−18,−20). Such rearrangements simply perform an inversion of subword [...18, 19...]

(analogous to the inversion in Figure 3.6A) without affecting the final copy number vector.

Our approach has thus proven useful in order to construct an hypothesis of evolution for

a sample which would have been otherwise particularly hard to interpret.

76

3.5 Simulations

We tested our reconstruction approach through simulations of evolutions with n = {1, 2, 3...9}
rearrangement operations. We used simulations to answer the following questions:

1. Is it always possible to reconstruct a simulated evolution Es?

2. Let G be the genome graph of a given evolution Es. How many other evolutions have

the same graph G? How many have the same final copy number as in Es?

3. Does the restriction to graphs with segment side reuse affect the answers of questions

1 and 2?

Question 1 is crucial for testing the correctness of the code for many different graphs and

all rearrangement operations. Answering question 2 gives us insight on how often the copy

number information can be used to distinguish between two different evolutions, assigning

a different score to each of them. Question 3 argues that the graph structure might affect

the number of optimal solutions.

77

Bins

R
ea

d
 c

o
ve

ra
ge

A)

B)

Figure 3.9: A) genome graph of a cluster of somatic connections found in chromosome 2,
sample PD4243. B) Plot showing read coverage values per bin (red labelled) against the
fitted values (blue labelled) of the regression for the evolution shown in Figure 3.10. The
copy number vector for the final genome in Figure 3.10 is shown in square brackets: the
final genome score is also displayed. Yellow and green vertical lines indicate the positions
of telomeres and breakpoints, respectively.

78

1 2 3 4 5 1 2 3 4 5

a=(2 4)

1 2 3 4 −2 −1 3 4 5 5

b=(−3 −4)

1 2 3 1 2 −4 3 4 5 5

c=(−2 3)

1 1 2 3 2 −4 3 4 5 5

fragments

elimination
1 2 3 2 −4 3 4 5

Figure 3.10: Example of a low-scoring evolution for the allelic and somatic graphs shown
in Figure 3.9 (based on a cluster on chromosome 2, tumour sample PD4243). Numeric
labels indicate DNA segments, ordered according to their position on the reference genome.
Colours change together with increasing numeric labels, from purple (segment 1) to blue
(segment 5). Lines represent the different steps of the evolution, ordered from top (starting
with the reference diploid genome) to bottom (final genome with no fragments). Each line
carries a description of the following event, indicating the newly introduced somatic edge, or
the type of connection free operation (fragment elimination); also, the position of somatic
connections is indicated by edge labels below each chromosome. Circles label telomeres.
The sequence of segments from 1 to 5 corresponds to chromosome 2.

79

 bins

R

ea
d

 c
o

ve
ra

ge

Tel 1

A

B

Figure 3.11: A) Genome graph for a cluster of somatic connections found in chromosomes 1 (nodes 1 to
16) and 15 (nodes 17 to 22), breast cancer sample PD4243. B) Plot showing read coverage values per bin
(red labelled) against the fitted values (blue labelled) of the regression for the evolution shown in Figure
3.12. The copy number vector for the final genome in Figure 3.12 is shown in square brackets: the score
of the regression is also displayed. Yellow and green vertical lines indicate the positions of telomeres and
breakpoints, respectively.

80

Figure 3.12: Representation of an evolution using 10 somatic edges from the genome graph shown in Figure 3.11A.
Missing edges k = (−17,−19) and l = (18, 20) are used to perform an inversion (see section 3.1) and do not change
the resulting final copy number; for clarity, the associated operations are not shown. Numeric labels indicate DNA
segments, ordered according to their position on the reference genome. Colours change together with increasing
numeric labels, from purple (segment 1) to black (segment 22). Lines represent the different steps of the evolution,
ordered from top (starting with the reference diploid genome) to bottom (final genome with no fragments). Each line
carries a description of the following event, indicating the newly introduced somatic edge, or the type of connection
free operation (duplication or fragment elimination); also, the position of somatic connections is indicated by edge
labels below each chromosome. Circles label telomeres. The sequence of segments from 1 to 16 corresponds to
chromosome 1, while the sequence 17 to 22 represents chromosome 15.

81

3.5.1 Simulating unconstrained evolutions

We performed simulations using the following method: for all values 1 ≤ n ≤ 7, the

simulation algorithm randomly created 50 evolutions containing n connection operations

followed by fragment elimination, each one with a specific associated graph; then for n ≤ 4

connection operations, we generated the complete set of evolutions for Ps and counted the

number of valid evolutions. We also counted how many evolutions had produced the same

final (integer) copy number as in the simulated evolution.

For n = 4, 5 connection operations, the space of possibilities becomes very large. There-

fore, we randomly generated 5000 valid evolutions for every genome graph (i.e. each of

the 50 graphs) and calculated the same statistics. As the number n grows, we expect

the average fraction of valid evolutions to decrease. The value 5000 was then chosen in

order to minimise the cases where no valid evolution was constructed, while keeping the

computational effort at acceptable levels. For a similar reasoning, the value was increased

to 10000 for n = 6, 7. Although these evolutions were randomly constructed allowing for

replacement, the number of different evolutions was counted.

Such simulations help answer questions 1 and 2. When the complete space of possibilities

was produced, the original algorithm constructed the simulated evolutions in 100% of cases.

As for the answer to question 2, it relies on the results shown on Table 3.1. Column 3 shows

the mean number of valid evolutions across the 50 graphs of the 50 simulated evolutions,

while column 4 gives the mean number of evolutions with the same copy number as the

original simulated evolution. For example, constructing all possible evolutions for each of

the 50 graphs with one somatic connection lead to an average only 2.2 valid evolutions,

of which 1.8 on average showed the same copy number as the simulated evolution (CN

specific). The copy number vector could identify a unique solution for 30 graphs out of 50

(indicated in column 6); in all other cases, we find that the simulated evolution shares the

copy number with one or more other valid solutions. The copy number vector, however,

proves less useful for the identification of optimal solutions when n > 1. With 2 somatic

edges, the number of unique solutions dramatically drops down (4 out 50) and remains

very low across all other n values. Thus, even with a limited number of rearrangements,

82

there is typically more than one valid solution for a specific copy number vector, and such

number tends to increase as the number of operations grows (see column 4). This can be

explained by various mechanisms. First, a set of operations might sometimes lead to the

same result even if the chronological order of the operations is changed. In other cases,

performing the same operations on different, but very similar chromosome words might

lead to the same final copy number profile. Less often, we would also expect very different

sets of operations creating distinct genomes, which nevertheless share the same final copy

number. The fraction of CN specific to valid solutions (column 5) tends to decrease as the

number of operations grows, suggesting that more copy number profiles are possible. The

absolute number of valid evolutions drops from 5 to 6 connection operations. This is most

probably due to the drop in the ratio between valid and inconsistent evolutions. For n > 6,

these values grow relatively slowly, despite the increased sample size from n = 5 to n = 6.

Once more this suggests that the fraction of valid evolutions to the total number of choices

rapidly decreases with increasing n. Such pattern is likely due to the increasing difficulty in

constructing evolutions where enough chromosomes are repaired, avoiding the loss of some

somatic connections during fragment elimination. Thus, especially with a high number

of connections, a significant fraction of the computational effort is used for the construc-

tion of inconsistent solutions. An improved algorithm enabling for an early discrimination

between valid and inconsistent evolutions would thus prove significantly quicker.

3.5.2 Simulating evolutions with segment side reuse

Next a similar method was used, but with the specific constraint of having all graphs

showing segment side reuse (see subsection 3.1): in these cases, genome graphs present

one or more nodes touched by two distinct somatic connections on their left or right side

(see Figure 3.11A, nodes 2 and 10). Based on such a graph structure, the reconstruction

algorithm produces two distinct sets of evolutions: the normal set of connection evolutions,

and additional solutions where the combination of early DS breaks followed by duplications

guarantee the creation of at least two copies of the reused segment end (see Figure 3.7A).

83

n connections n evols valid evols CN specific CN spec/val evols n unique sols

1 all(m = 2.48) 2.12 1.80 0.84 30
2 all(m = 16.36) 7.68 5.28 0.73 4
3 all(m = 283.56) 90.62 34.02 0.49 0
4 5000 134.88 48.64 0.59 1
5 5000 61.9787 19.00 0.36 4
6 10000 196.42 85.50 0.37 5
7 10000 132.48 52.76 0.29 4

Table 3.1: Statistics for unconstrained simulated evolutions. Rows correspond to the
number of connection operations. Column 1 shows the number of connections. Columns 2
to 6 respectively indicate: mean total number of evolutions (for n = 1, 2, 3 connections) or
the number of evolutions constructed for each of the 50 graphs; the mean number of valid
evolutions and mean number of valid evolutions with correct copy number, across the 50
graphs; the ratio (mean valid CN specific / mean valid evolutions); the number of times
(out of 50) a unique correct solution was found.

Simulated evolutions all consisted of n connection operations, with possibly a DS break

and a duplication as additional operations (n+ 2 operations in total). n = 1 is missing for

logical reasons (segment side reuse requires n > 1). The sampling approach was used for

n > 2 connection operations: 5000 for n = 3, 4, 5, 10000 for n = 6, 7. Once more, 100%

of the simulated evolutions was found in the set of constructed evolutions, which answers

the first part of question 3. We now consider the data shown in Table 3.2 to complete

our answer. As observed in Table 3.1, we find that the copy number information fails to

identify a single, optimal solution in many cases. No unique solutions (column 6) were

observed for n = 2, 3 connections, and the values for n > 3 are low and comparable to

those in Table 3.1. However, we notice that the mean fraction of CN specific evolutions

has a clearer and faster decreasing pattern than on Table 3.1, reaching its minimum, 0.12,

at n = 7 (minimum value for the unconstrained evolutions: 0.29 at n = 7, see Table

3.1). Thus we conclude, once more, that the fraction of valid evolutions to the complete

evolutionary space quickly decrease across n values. A parallel pattern is seen for the

number of CN specific solutions: increasing across values n = 2...4, but getting smaller

when more complex graphs (n ≥ 5) are considered. We can now complete the answer

to question 3: despite the general non-uniqueness of valid solutions, we observe more

84

CN specificity, and a lower number of valid solutions in graphs with segment side reuse.

We interpret these results as follows: chromosome duplication creates additional material,

which determines an increase in the number of rearrangement choices and presumably

in the number of copy number vectors produced. The increase of copy number vectors

determines a clear drop in the ratio values of Table 3.2 (column 5). Duplication events, on

the other hand, often lead to more chromosome shattering and additional difficulty for the

other operations to produce integer sequences. As a result, we observe more copy number

heterogeneity, while the number of valid evolutions remains quite low and comparable to

Table 3.1.

n connections n evols valid evols CN specific CN spec/val evols n unique sols

2 all(m = 40.7) 16.36 11.98 0.77 0
3 5000 107.88 49.62 0.60 0
4 5000 141.84 51.62 0.36 4
5 5000 81.95 18.97 0.23 7
6 10000 56.86 7.76 0.20 5
7 10000 72.94 11.16 0.12 6

Table 3.2: Statistics for simulated evolutions showing segment side reuse. Column 1 shows
the number of connections. Columns 2 to 6 respectively indicate: mean total number of
evolutions (for n = 2 connections) or the number of evolutions constructed for each of the
50 graphs; the mean number of valid evolutions and mean number of valid evolutions with
correct copy number, across the 50 graphs; the ratio (mean valid CN specific / mean valid
evolutions); the number of times (out of 50) a unique correct solution was found.

3.6 Conclusions

We have seen from simulations that the copy number does not necessarily distinguish

among all different evolutions, especially for simple graphs with 4 or less somatic edges.

The ratio between the number of valid and copy number specific valid evolutions is gen-

erally high, indicating a considerable fraction of solutions sharing an identical final copy

number vector. The situation slightly improves when we specifically consider genome

graphs showing segment side reuse: here we observe smaller fractions of CN specific solu-

85

tions, which are however still not unique. From the biological point of view, this can be

explained by a limited number of copy number profiles which can potentially arise from

an evolution consistent with paired end data; the copy number would prove less useful

exactly because it might represent a constraint for most, if not all, valid evolutions. Such

problem is strictly related to the generally high number of valid evolutions obtained, with

poor power of determining a single, optimal solution. Including allelic information, which

was not available for our data, might represent a valid strategy for better distinguishing

among the different generated explanations.

When constructing evolutions for clusters of 4 or more somatic connections, the space of

possible evolutions typically becomes computationally very demanding. The main expla-

nations are: 1) the rapid growth of the number n! of possible ways of ordering n connection

operations; 2) the tree-like structure arising from the multiple ways of performing each op-

eration on each single genome obtained in the previous step; 3) the construction of a high

number of inconsistent evolutions. One could assume that somatic connections involving

the same breakpoint are consecutive, and this would often result in a significantly smaller

space to explore. Also, any method allowing for the early discrimination between valid

and inconsistent evolutions would significantly restrict the space of constructed evolutions,

reducing the required computational effort.

Our approach has allowed us to always construct valid explanations of the observed data,

no matter the complexity of the rearrangement clusters considered; however, the obser-

vance of typically non unique solutions, together with the rapid increase in the number of

choices for high numbers of somatic edges currently represent a limit to the applicability

of our method. Our algorithm approach includes an unedited modelling of Break Induced

Replication, combined with a long menu of standard operations. The vast space of possi-

bilities, despite representing a limiting factor, is a direct consequence of the high number

of molecular mechanisms which have been modelled: the list includes simple double strand

breaks, chromosome duplications, inversions, deletions, tandem and inverted duplications,

(un)balanced translocations, breakage-fusion-bridge and chromosome circularization. Such

86

completeness allows our approach to highlight many potential mechanisms associated with

tumor development, and can be applied to different research fields including comparative

genomics, population genomics and molecular evolution.

87

4 The combinatorics of Tandem Duplication

Paired end and copy number information give us crucial insights on the evolution of a

DNA sequence; they can be used to infer a rearrangement history, looking at both the

structural changes and chronological orders of acquired somatic connections. However, we

have seen in chapter 3 that a multiple-rearrangement model is typically associated with a

combinatorial explosion of evolutionary choices; in these cases, the consistency with paired

end and copy number information often leads to the identification of multiple optimal

explanations of the data. Restricting a model of evolution to a single rearrangement class

might allow for an improved power of restricting the space of optimal solutions. We have

thus developed a tandem duplication model of evolution, a relatively simple process leading

to DNA copy number variation. For our model, we have the constraint of unique breakpoint

use. Given that paired end data can resolve breakpoints to the base-pair level, tandem

duplications can be revealed and mapped with great precision in cancer data, as well as for

other type of samples. When a tandem duplication occurs, it is reasonable to assume that

the two associated breakpoints are generated in a random process; therefore, the chance for

exactly the same nucleotide positions being implicated in another TD is likely to be small.

Assuming unique breakpoint use is then reasonable in these circumstances. Looking at the

space of chromosome structures that can originate from a tandem duplication (TD) process,

we have noticed how these are associated with interesting combinatorial properties, which

can lead to a complete mathematical description of the tandem duplication evolutionary

space.

Consider the example shown in Figure 4.1A. We have a three step evolution starting with

linear chromosome 12345. This is the representation of a series of five contiguous regions,

labelled with numbers 1, 2, 3, 4 and 5. We will call such an initial structure the refer-

ence. The second step of the evolution corresponds to the new sequence 123412345(Figure

4.1Aii). That is the outcome of a Tandem Duplication copying 234 and inserting the new

copy next to the original one. Note that we have introduced bold symbol 1, indicating a

88

A B

i

ii

iii

Figure 4.1: A Tandem duplication Process. A) Three structures i)-iii) arising from two
tandem duplications on a reference of five regions; 1, 2, 3, 4, 5. B) Eleven possible evolutions
with two tandem duplications. The example in A is highlighted by *. Underlined numbers
are segments. Red labelled, bold italicized numbers indicate connections between segments
formed in the nth tandem duplication.

newly introduced connection between the right side of segment 4 and the left side of seg-

ment 2. The third and last step of the evolution corresponds to structure 123412323412345,

where a second bold symbol (connection) has been introduced. This event has duplicated

region 3423, and the associated connection 2 links the right side of segment 3 to the left

side of another copy of the same segment. Now, we notice that connection 1 maps between

segments 1 and 2 on one end, and segment 4 and 5 on the other, while connection 2 maps

respectively between segments 2, 3 and 3, 4. Thus every position has been implicated by

exactly one TD event: an example of unique breakpoint use. In general, we see that N

tandem duplications will implicate exactly 2N breakpoints and 2N + 1 segments.

The example above is just one among 11 different evolutions arising from two tandem

duplications, under the constraint of unique breakpoint reuse (Figure 4.1B).

We are interested in gaining understanding about the general space of evolutions for N

events. We then informally define our first problem as follows.

Problem 4.1. Count the number of different ways that an initial string of 2N+1 segments

can evolve under N tandem duplications, without reusing breakpoints.

89

Figure 4.2: Evolution of a temporal word. A) Schematic representation of all different ways of
deconstructing word [a b a c d]. Each letter indicates a specific TD connection. Nodes represent
words. Edges indicates the direction of TD evolutions and are labelled with the newly added
TD number. From each node, either a symmetry of the form [Y x Y] (underlined letters) can
be reduced to Y , or a single letter (which is not part of any [Y x Y] subword) is removed,
thus reversing the evolution. B) Hasse diagram of a partially ordered set, representing the order
restrictions among TD events (nodes) for word [a b a c d]. Node ε is the source node and does not
correspond to any TD event. Orientation of edges indicate the chronological order constraints
among two nodes. The diagram is associated with 12 linear extensions. This corresponds to the
number of TD evolutions represented in A). C) The 12 linear extensions compatible with the
Hasse diagram in B), together with the corresponding connection words. These are obtained by
substituting each symbol in [a b a c d] with its positions (1, 2 or 3) in the linear extension.

Solving this problem has required a deep understanding of the labels we have just presented.

First, we have tried to simplify the representation as much as possible, by ignoring all

the labels representing segments. For example, the sequence 12345 → 123412345 →
1234122412345 can be converted into the simpler sequence ε→ 1→ 121, where ε denotes

the empty word. The use of bold symbols, which we will call connection symbols, will be the

basis for our representation of a TD process. We will refer to sequences restricted to this

type of symbols as connection words. Now, in a connection word the numerical value of each

symbol clearly indicates the relative order in which TD events have occurred. Assume now

we do not include this type of information, and use letters of the alphabet as our connection

symbols: we thus get a different representation. For example, in evolution ε→ a→ ac→

90

acd → abacd (See Figure 4.2A) final word abacd does not contain information about the

relative order of symbols a, b, c and d. We call such a word a temporal connection word

(or simply temporal word). Being left with no a priori knowledge of the relative order

of TD events leads to a different type of question: can we gain some understanding on

the possible chronological order of events by simply looking at the word structure? Let us

consider word abacd again. It is straightforward to notice a symmetry around letter b in the

subword aba. This is the same structure observed in word 121, in evolution ε→ 1→ 121,

for example. Intuitively, we could then infer that, in the same way as connection 2 has

duplicated connection 1, event b must have duplicated connection a and thus formed the

observed structured aba. As for letters c and d, they are not intercalated between any

repeated pattern, so they appear not to have duplicated any connection symbol. We also

notice that, while symbol a is duplicated, b, c and d are present in a single copy in abacd.

We then conclude that, whatever the evolution leading to that structure, a cannot possibly

represent the latest TD event, since that symbol is duplicated.

This reasoning suggests that, by looking at the structure of a word, we can gain some

insights on all TD evolutions it might have arisen from. Figure 4.2A, for example, shows

all possible ways of deconstructing word abacd (i.e. going back to ε through the recursive

elimination of symmetries and remaining single letters). We will later use this process

for a precise reconstruction, backward in time, of all TD evolutions which might lead to

a specific temporal word. Clearly, such deconstruction approach also provides us with

the number of evolutions associated with a specific word. However, the question arises

whether it is possible to infer the number of TD evolutions without the time consuming

construction of graphs such as in Figure 4.2A. This leads to the Hasse diagram of Figure

4.2B, where some order constraints (edges) among TD events (nodes) are inferred by just

looking at the structure of word abacd: as already discussed, b clearly appears to have

duplicated symbol a; thus we require b to have occurred later than a, and we add the edge

a→ b in the diagram. No other restriction can be inferred, and we find there are 12 linear

extensions associated with our diagram: exactly the number of TD evolutions represented

in Figure 4.2A. We will later present a detailed description of how to include the order

information in a Hasse diagram. This leads to the definition of our second problem:

Problem 4.2. Given a particular structure arising by n TDs with no breakpoint reuse,

91

determine the number of deconstruction choices down to the (connection-free) reference

structure.

The method presented for the solution of Problem 4.2 has a potential application in the

fields of cancer and comparative genomics, for the aim of clarifying the evolution of tandem

repeated regions; however, it is based on the strong assumption that both the reference

and target genome sequences are available.

It is important to notice here that, both in the case of temporal words and connection

words, we deal with a representation which does not always correspond to a single evolution.

In Figure 4.2A we have several ways of deconstructing our word down to the empty word

ε. We then find that, by choosing different paths from abacd to ε, we are building different

series of temporal words, corresponding to distinct possible TD evolutions.

As for connection words considered in Problem 4.1, when we look at Figure 4.1B we find

that three out of the eleven final structures share exactly the same connection evolution ε→
1 → 12 (restricting the words to bold symbols, highlighted in red). This non-uniqueness

will be explored in the first sections of this chapter in connection words. First, the nature

of connection words will be considered, observing how each word actually corresponds

to many different TD-Evolutions (section The Space of Connection Evolutions). Next, a

partially ordered set (poset [80]) based approach will be presented, allowing for the count

all distinct TD-evolutions corresponding to a single connection word, (section Using posets

to count TD Evolutions). Thirdly, we will see how these two pieces of information can be

used to derive the number of possible evolutions for a given number of tandem duplications

(that is Problem 4.1, see section The Size of TD Space). The last section of the chapter

will focus on temporal words, exploring their properties and presenting a modified poset

methodology to infer the number of deconstruction choices.

92

4.1 Representing a TD process with order information

We start by formalizing our representation of a TD process. As previously seen in the ex-

ample of Figure 4.1, this is based on two different types of symbols: segment and connection

symbols.

Definition 4.1. A segment symbol i represents a copy of the ith segment along the reference

chromosome, where i ∈ {1, ..., 2N + 1}.
Definition 4.2. A connection symbol i is the representation of a connection between two

reference segments introduced during the ith TD, where i ∈ {1, ..., N}. These symbols

always have a segment symbol on either side, so that we have a subword of the form min.

Such representation indicates that i connects the right hand side of the DNA segment

represented by m, with the left hand side of the DNA segment represented by n.

We have seen from the examples in Figure 4.1B that a TD has the effect of copying a

subsequence of contiguous segments, leading to a modified longer sequence. We formalize

this process with the following definition:

Definition 4.3. A TD evolution U is defined as any sequence of TD words [U0 → U1 →
...→ UN] such that

• U0 = 1 · 2 · ... · (2N + 1) represents the initial reference sequence, divided into 2N + 1

segments

• Every TD on a word Un−1 = [X Y Z] can be represented as a transformation of the

form Un−1 = [X Y Z] → [X Y n Y Z] = Un for non empty subwords X, Y, Z all

beginning and starting with a segment symbol

We call n the TD number. We also define breakpoint numbers na and nb as the value

of the rightmost symbol of X and the value of the rightmost symbol of Y , respectively.

93

Any TD evolution is generated in such a way that na and nb are 2N distinct values where

n ∈ {1, ..., N}. Breakpoint numbers 0a and 0b are defined as 0 and 2N + 1, respectively,

representing the start and end of the original reference sequence. We let UN denote the set

of possible TD evolutions arising from N TDs.

It is important to note here that connection symbol n has the last symbol of Y on the left

side and the first symbol of Y on the right side. We also know that Y begins and ends

with a segment symbol, so n is bordered by segment symbols on either side, as required

by Definition 4.2.

Example 4.1. Consider the evolution * of Figure 4.1B: E = [12345 → 123412345 →
123412323412345]. The second TD duplicates segments 34123 in the TD word 123412345.

We then find that the subwords X, Y and Z correspond to 12, 34123 and 45, respectively.

2a, the value of the rightmost symbol in X, is 2, while 2b, the value of the rightmost symbol

in Y , is 3. Note that these two values demarcate breakpoints of the duplicated region; the 2nd

breakpoint is implicated by the left end of the duplicated region 34123, between segments 2

and 3, and the 3rd breakpoint is implicated by the right end of the duplicated region between

segments 3 and 4.

The values na and nb defined above correspond to the leftmost and rightmost breakpoints

implicated in the nth tandem duplication.

As already mentioned, the representation which will be actually used to solve Problem 4.1

relies uniquely on connection symbols. We formally define it as follows.

Definition 4.4. Given a valid TD evolution U = [U0 → U1 → ... → UN], we define the

corresponding connection evolution E to be the restriction of U to connection symbols:

[E0 → E1 → ...→ EN]. We refer to each word of this new sequence as a connection word.

We also define EN to be the set of all possible connection evolutions arising from N TDs

Example 4.2. In the evolution * of Figure 4.1B we have: U = [12345 → 123412345 →
123412323412345] which becomes E = [ε → 1 → 121] when the segment symbols are

94

removed.

We are now able to formalize Problem 4.1.

Problem 4.3. Determine the size of the set UN .

In order to solve Problem 4.3 we need to know first what different connection evolutions

E ∈ EN are possible, and secondly, for each such connection evolution, how may different

orderings of breakpoint numbers {na, nb}n for n = 1, 2, ..., N are feasible. For example,

the five structures represented in Figure 4.5C, despite being associated with five distinct

breakpoint orderings, however, all correspond to the same connection evolution ε → 1 →
121. This gives us three problems of increasing complexity; firstly, how to count the number

of connection evolutions, secondly how to count the TD evolutions that share a specific

connection evolution, and thirdly, how to count the total number of TD evolutions and

solve Problem 4.3. We consider these in turn.

4.2 The space of connection evolutions

We shall start by considering the space of connection evolutions arising from N TDs. If we

take a two event evolution as an example, then we find that the first TD always produces

word 1, while the second TD can produce words 12, 21 or 121, giving 3 evolutions in total.

Thus, we observe that with two TDs different choices are possible, leading to distinct final

connection words: additionally, we observe that two of these final words have length 2 and

one has length 3.

Theorem 4.1. [89]

wm,n =
m−1∑
k=bm

2
c

(2k −m+ 2)wk,n−1,

95

TDs 1 2 3

Word Length 1

3

4

5

6

7

2

3

1
2

3

1

2

4
3
2
1

Figure 4.3: Schematic representation of the number of possible connection words up to the
third TD. Nodes represent words. Numbers on edges indicate the number of choices [89].

where wm,n denotes the number of connection evolutions arising from n TDs such that the

final connection word has length m, with initial value w0,0 = 1. The complete space of

words for the first three TDs is shown in Figure 4.3.

Proof. Given a connection word En of k symbols, adding a TD leads to the duplication

of a subword Y (see Definition 4.3) of length r ∈ {0, 1, .., k}. For any such values, we

find that we can choose among k − r + 1 different sets of r consecutive symbols in En:

that is, we have k − r + 1 ways of choosing a duplicated subword of length r. Given

that a tandem duplication copies r connection symbols and introduces one new connection

symbol, we obtain a new connection word of m = k+r+1 symbols. Then k = m−r−1 for

r ∈ {0, 1, .., k} and any connection word of length m can derive from a connection word of

length k ∈ {bm
2
c, ...,m− 1}. Lastly, we note that the number of different ways of deriving

such a word of length m is a function of k and m themselves. More precisely, it is equal to

k − (m− k − 1) + 1 = 2k −m+ 2, as stated in the theorem.

Example 4.3. Consider the representation of all possible choices shown in Figure 4.3.

Here values wm,n correspond to the sum of products of the edge values along paths to the

associated node, from the node labelled 1. For example, the node labelled 5 in the third

96

column of nodes corresponds to w5,3 and has two paths, one with product 2 · 1, the other

with 1 ·3 and we find w5,3 = 2+3 = 5, five connection words of length five; 12312, 21321,

13121, 12321 and 12131.

Such finding was confirmed by computationally generating the complete space of connection

evolutions. Also, we developed algorithms to determine the number of copy number profiles

and TD evolutions as a function of the number of events (see Section Computational

Analyses). The counts arising from the first few TDs can be seen in Table 4.1.

TDs 1 2 3 4 5 6

Words 1 3 22 377 15,315 1,539,281
CNVs 1 7 225 27,839 - -

TD-Evolutions 1 11 627 154,869 156,882,297 640,550,418,651

Table 4.1: Counts of TDs, Words, CNVs and TD-Evolutions.

4.3 Using posets to count TD Evolutions

We have already seen, earlier in this chapter, that the connection evolutions representation

is not unique. This naturally leads to problem of counting the number of TD evolutions

corresponding to a single connection evolution. Every such TD evolution corresponds

to a specific order of the 2N breakpoint numbers {na, nb}n along the reference, for n ∈
{1, 2, ..., N}. For example, in Figure 4.1A we have N = 2 tandem duplications, 2N = 4

breakpoints and the reference sequence is divided 2N + 1 = 5 segments. We have faced

this challenge with the help of three different representations:

1. a zig-zag plot representation, facilitating the visualization of breakpoint numbers

along a chromosome;

2. a 2d-tree representing the choices of the different orders of breakpoint numbers;

97

3. a Hasse diagram, whose associated number of linear extensions will provide the

number of TD evolutions.

4.3.1 Zig-zag plots

For our model of TD evolution, any connection symbol n implicates two distinct break-

points na, nb, which define the boundaries of the duplicated region. The new copy is then

inserted in our sequence next to the original one. We want to represent the resulting

structure in the form of a plot of horizontal lines representing segments, and diagonal lines

representing connections: we will call such a representation a zig-zag plot. Consider Figure

4.4A for an example. The breakpoint order 0a < 1a < 2a < ... < 3b < 0b along the reference

is indicated at the top. The plots correspond to the connection evolution given in Figure

4.4E. For each stage of the evolution, the sequence of segment symbols is represented from

top to bottom as horizontal filled lines, while diagonal dotted lines represent the connec-

tion symbols introduced by the TD events. For example, in Figure 4.4Aiii we have the

plot corresponding to connection word 121. The four intervals [0a, 1b], [1a, 2b], [2a, 1b] and

[1a, 0b] represent sequences of one or more adjacent segment symbols, connected together

by a series of dashed lines (the connection symbols).

4.3.2 2d-trees

We now present a tree representation of a TD process, which will allow us to obtain

the different possible orders of the breakpoint numbers. Precisely, we will use a 2-d tree

representation, which can be defined as a graph such that all nodes (except root nodes)

have exactly 2 parental nodes.

98

3a 3b

4a 4b

4a 4b

4
3

1a 1b

0a 0b

2a 2b

3
1
-1

i

ii

iii

iv

v

A B C D

1213

121

1

E F G H

2a 2b

1a 1b

3a 3b

8
5
-1

4a 4b

1a 1b

0a 0b

2a 2b

3a 3b

4a 4b

121413

2324

232

2

232524 213214

21321

21

213215214

1

4
3

-1

3
2
-1

2a 2b

1a 1b

3a 3b

10
6

-1

5a 5b

4
3

Figure 4.4: Representation of the TD Process. In A) we have zig-zag plots for a sequence
of four TDs, resulting in five structures i)-v). The green regions indicates the region dupli-
cated during each TD. Dashed lines indicate a connection between segments. Coordinates
na and nb indicate the end positions of the nth duplicated region. B) Corresponding 2d-tree.
Nodes correspond to breakpoints and edges demarcate an ordering. Red and blue colours
indicate lower and upper bound breakpoints. Dashed and plain edges indicate minor and
major edges. C) Corresponding Hasse diagram. D) The major graph corresponding to
evolution E. F) Increases each symbol of E by 1. G) An induced evolution from F. H)
The major graph corresponding to induced evolution G. The black nodes indicate the
corresponding 1-nodeset.

Consider then how the zig-zag plots build up in the structures in Figures 4.4A i-v. The

starting structure corresponds to the reference chromosome, the interval [0a, 0b] represented

in Figure 4.4Ai. In the 2-d tree of Figure 4.4B, we note the presence of a red node labelled

99

0a and a blue node labelled 0b. Red and blue respectively corresponds to node types a and

b, indicating a left(a) and a right(b) end of an interval. The two nodes are bridged by an

edge representing their ordering in the reference; 0a < 0b. Four TDs will be introduced in

this evolution, resulting in eight breakpoint numbers placed between 0a = 0 and 0b = 9.

The first TD event leads to the duplication of segment sequence highlighted in green (Figure

4.4Ai). Two breakpoints are implicated at this stage, 1a and 1b, resulting in the zig-zag

diagram of Figure 4.4Aii. Such two positions both lie between the coordinates of 0a and

0b, so that we have order constraint 0a < 1a < 1b < 0b. In the corresponding 2d-tree, we

represent coordinates 1a, 1b with two nodes, both connected to parental nodes 0a and 0b.

We must notice that parental node 0a represents the lower bound for both 1a and 1b, while

0b corresponds to their upper bound. We include this information in the tree by labelling

edges from node 0a as type a (red) and edges from node 0b as type b (blue). Last, we

observe the presence of a black edge, which we call a fence (similar to (0a, 0b)). This edge

connects 1a to 1b, representing the restriction 1a < 1b.

The second TD event duplicates the green region in Figure 4.4Aii, which also includes the

first connection, forming two breakpoints 2a and 2b. The breakpoint 2a is on the upper

interval [0a, 1b] of Figure 4.4Aii and so must lie between positions 0a and 1b. These are its

two parental nodes. The blue edge from node 1b to 2a indicates 1b is an upper bound of

2a. The red edge from 0a to 2a indicates 0a is a lower bound of 2a. Similarly, breakpoint

2b forms on interval [1a, 0b] and has parental nodes 1a and 0b.

Lastly, we notice that we have filled and dotted edges in the 2-d tree of Figure 4.4B. This

allows us to include another type of information, which we call the major (solid) or minor

(dashed) status of each pair of parental edges to a node: these terms refer to the parental

nodes with higher and lower TD numbers, respectively. For example, 2a has parents 1b

and 0a, the TD numbers satisfy 1 > 0, so the edge from 1b is the major, and that from 0a

is the minor.

100

We then proceed through the TDs building up the 2d-tree representation. We label each

node as either type a (red colour) or type b (blue colour), depending whether the corre-

sponding breakpoint represents the left or the right end of a segment. Then for any node

na (resp. nb, if the associated breakpoint lies on an interval [ua, vb] in the zig-zag diagram,

we add a type a (red) edge from ua to na (resp. nb), and a type b (blue) edge from vb to

na (resp. nb). The edge from max(ua, vb) is denoted major (solid), while the edge from

min(ua, vb) is class minor (dashed). If na and nb lie on the same segment (i.e. event n does

not duplicate any connection) we have order constraint na < nb represented by an edge of

class fence (black) between nodes representing breakpoint numbers na and nb (this always

includes 0a and 0b).

Now, based on the construction method described above the choice of major and minor is

ambiguous for the first TD. Both 1a and 1b lie on the same interval [0a, 0b] and thus have

parental nodes 0a and 0b with equal TD-number 0. It has however proven consistent for

the solution of Problem 4.3 to define them as follows: 1a has major (resp. minor) parental

nodes 0b (resp. 0a), 1b has major (resp. minor) parental nodes 0a (resp. 0b)[89]. In all

other cases, the TD numbers of the two boundaries of any interval are different, so that

we can unambiguously define the major and minor parental nodes.

Based on what we have discussed so far, we can make a summary of some important

observations:

• The zig-zag representation is equivalent to the corresponding TD evolution

• The TD evolution is equivalent to the associated connection evolution and a specific

ordering of breakpoint numbers

Now, what does the 2d-tree exactly correspond to? The answer to this question can be

derived from a simple example like the following: if we take the connection evolution

101

[ε→ 1→ 12], we have intervals [0a, 1b], [1a, 2b] and [2a, 0b] in the zig-zag plot. Now, if both

breakpoints 3a and 3b from the next TD are placed in [2a, 0b], we find that we could have

both 3a and 3b before 2b along the reference, both after, or 2b in the middle position. For

these three cases we will have different zig-zag plots and breakpoint orderings, but exactly

the same 2-d tree. Thus the 2-d tree does not contain the same information as the other

representations and is not equivalent.

We need a way to use these 2d-tree structures to count the number of TD evolutions

corresponding to the same connection evolution. This will be discussed in the next section.

4.3.3 Linear Extensions

In order to infer the number of TD evolutions associated with a single connection evolution,

the use of a partially ordered set [80] has proved extremely useful.

Definition 4.5. A poset is a set of elements related to each other by some order con-

straints. Typically, it is represented in the form of a Hasse diagram. This is a directed

graph where nodes represent the poset elements, and a directed edge between two nodes

indicates an order relation between the two corresponding elements. Any ordering of all

elements in the poset which is compatible with all relations (constraints) is called a linear

extension.

We know that the 2-d tree includes some ordering information of the breakpoint orders.

More precisely, it represents the order constraints between a breakpoint and the bounds

of the interval it lies on (as discussed in the previous section). However, how can we

convert this graph representation into a Hasse diagram representing a poset? Recall the

intrinsic property of our 2-d trees: that is, any node x except for the root nodes has two

parental nodes. The b parent is an upper bound for x, while the a parent is a lower

bound. Given that we always have edge orientation from parental to daughter node, we

102

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

A

i

ii

iii

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[21]

2a 2b

B

i

ii

iii

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a2b

C
i

ii

iii

iv

v

Figure 4.5: Zig-zag plots of structures arising from two TDs. A) Three structures associated
with connection word 12. B) Three structures associated with connection word 21. C) Five
structures associated with connection word 121 [89].

can conclude any edge na → x from the a parent correctly represents the order relation

between the connected nodes, while any edge nb → x from the b parent actually represent

the constraint x < nb. Consequentially, we find that by changing the orientation of all

type b edges results in a correct representation of the order constraints between any couple

of parental and daughter nodes. If we then direct all fence edges from na to nb, what

we obtain is precisely a Hasse diagram of all order relations associated with a connection

evolution. Note also that this diagram has single source node 0a and single sink node 0b

(representing the two bounds of the chromosome).

Example 4.4. Consider Figure 4.4B-C. We have an edge from parental node 0a to 1a in

the 2-d tree of Figure 4.4B, which correctly represents the order relation 0a < 1a, found

in the Hasse diagram (Figure 4.4C). However, looking at edge from 0b to 1a, we find that

its orientation in the 2-d tree does not match the order constraint of the Hasse diagram

(1a < 0b).

Counting TD evolutions is then equivalent to counting the number of linear extensions

associated with the poset. Now, the Hasse diagram obtained with this procedure, despite

being a reliable representation of the order constraints, actually proves to be overly com-

plicated. More precisely, we find that if we restrict the Hasse diagram to major edges and

fence edges (that is, we remove the minor edges) we obtain a simplified graph, yet contain-

103

ing all the required ordering information [89]. We will refer to this type of graph obtained

from any 2d-tree T (E) of a connection evolution E as the major graph, denoted Tmaj(E).

This new topology enables us to obtain a formula for the number of linear extensions, that

is the number of TD evolutions. For the Theorem which follows, the Proof is beyond the

scope of this thesis and can be found in [89].

Theorem 4.2. [89] Consider a major graph where the nodes 0a, 0b and daughter edges have

been removed. For each remaining node x let x1, ..., xK be the number of nodes belonging to

each of the K descending branches. If any pair of daughter nodes are connected by a fence,

they contribute a factor
(
y1+y2
y1

)
− 1, where y1 and y2 count the number of nodes descending

down each branch connected by the fence. We then consider these two branches as a single

branch with y1 + y2 daughter nodes, and associate the number m(x) =
(

x
x1,...,xr

)
with node

x. The number of distinct evolutions is then the product of these terms across nodes and

fences.

Example 4.5. Consider the connection evolution E = [1 → 121 → 1213 → 121413]

with 2d-tree in Figure 4.4B. After removing nodes 0a and 0b and restricting the graph to

major and fence edges we obtain the graph of Figure 4.4D. Two fence edges are present

in this major tree. The upper fence bridges nodes 1a, 1b, which have respectively two and

five descendants, corresponding to a count
(
8
5

)
− 1 = 55 (1a, 1b are included). We note that

node 1a has three branches descending; one fenceless branch with a single node 2b, and two

branches bridged by a fence: one branch with single node 3a, the other containing nodes

3b and 4b. These two branches with the fence then have
(
3
1

)
− 1 = 2 orders and are then

treated as a single branch of three nodes. There are then
(
4
3

)
= 4 ways of interlacing the

position of 2b from the other branch descending from 1a and the amalgamated branch with

three nodes. The total number of linear extensions, and so TD-evolutions, associated with

connection evolution E is then 55 · 2 · 4 = 440.

104

4.4 The size of TD space

In the previous sections, we have presented an algebraic formalism for the representation of

a TD evolution. Also, we have provided a method to calculate the number of TD evolutions

corresponding to a single connection evolution, using its major graph. The elucidation of

these properties, intrinsic to TDs, has been the basis for the solution of a more challenging

problem: determining the total number of TD evolutions. This corresponds, for example, to

the 11 evolutions arising from two TDs, represented in Figure 4.5; we clearly see that three

of such evolutions correspond to word 12, three to 21 and five to 121. Such evolutionary

space has the following size:

Theorem 4.3. [89] The number Nn of distinct evolutions arising from n TDs is given by:

Nn =
n∏
k=1

(4k − (2k + 1))

This can be exemplified by calculating N2 = (41 − (2(1) + 1)) · (42 − (2(2) + 1)) = 11, for

example, which is in agreement with Figure 4.5. The first few terms in this series can be

seen in the bottom row of Table 4.1.

The full proof of this result can be found in [89]. It relies on a way of relating space of all

n TD structures to that of n+ 1 TD structures via the inducement of evolutions, which is

now presented.

Consider the following connection evolutions:

E = [1→ 12→ 12312→ 1231242]

E+ = [2→ 23→ 23423→ 2342353]

105

E ′ = [1→ 121→ 1213→ 2134213→ 213421353]

We can easily note that the first two connection evolutions only differ by the labelling of

TD events: precisely, if we increase each symbol in E by 1 we get E+. On the other hand,

evolution E ′ is made up of five TD events. Now, the important thing to note is that, by

deleting all copies of symbol 1 in E ′ we obtain evolution E+. Conversely, we find that E ′ is

the result of introducing a new first TD event in E+. We can then formulate the following

definition:

Definition 4.6. If a new first TD is introduced to word evolution E ∈ En, the resulting

evolution E ′ ∈ En+1 is called an induced evolution.

Any word evolution E ′ ∈ En+1 can be uniquely represented as an induced evolution from

some word evolution E ∈ En.

Lemma 4.1. Let D(E) be the process where we eliminate all copies of TD symbol 1 from

word evolution E and reduce each connection symbol in value by 1. This process has the

following properties:

i) If E ∈ En+1, then D(E) ∈ En is a valid word evolution.

ii) For any word evolution E ∈ En, there exists a word evolution E ′ ∈ En+1 such that

D(E ′) = E.

Proof. i) Any connection evolution E starts with connection word 1. The second TD in

E results in connection evolution [1 → 12], [1 → 21] or [1 → 121]. In all these cases,

removing connection symbol 1 from the evolution results in the new word 2, which becomes

1 when the symbols are reduced in value by 1. We then find that the process results in the

correct initial word for D(E). Now any TD event corresponds to a mapping of the form

AXB → AX(n + 1)XB, for possibly empty subwords A, X or B, for the (n + 1)th TD.

106

By eliminating all copies of the symbol 1 from the subwords A, X and B, and reducing

all symbols by 1 to give A′, X ′ and B′, respectively, we obtain a mapping of the form

A′X ′B′ → A′X ′nX ′B′ which is a valid step in the nth step of a TD word evolution, as

required.

ii) For any evolution E = [X1 → X2 → X3 → ... → Xn] from En we simply construct

E ′ = [1 → 1X ′1 → 1X ′2 → 1X ′3 → ... → 1X ′n] where word X ′i is obtained from Xi by

increasing the value of each symbol by 1. This is a valid word evolution in En+1. Then

applying D to E ′ results in E, as stated in the lemma.

Thus it is possible to obtain all word evolutions for n+1 TDs from the set of evolutions with

n TDs by introducing a new first event. Also, we find that for any connection evolution E

on n TDs, the sum across all induced (with a new first TD event) evolutions of the number

of TD evolutions is equal to N (E)(4n+1 − (2(n + 1) + 1)) (where N (E) is the number

of TD evolutions associated with word evolution E). This is consistent with Theorem

4.3, stating that the size of the TD space increases by a factor 4n+1 − (2(n+ 1) + 1) after

adding the (n+1)th TD. Moreover, the major graphs of all the induced word evolutions are

tightly related to the trees of the original evolution. A detailed description of the subtree

operations required to construct an induced 2-d tree can be found in [89].

Such findings are the last important step towards the formulation and proof of Theorem

4.3.

4.5 Computational Analyses

Both Theorems 4.1 and 4.3 have been confirmed computationally, using Matlab [56]. A

description of the code for the count of all TD evolutions is now presented.

107

Linear extensions count algorithm The algorithm utilizes a matrix representation of TD

evolutions. For n TD events we can define an n by 2 matrix M , where the ith entry along

the first column indicates the interval (a filled line in the zig-zag plot, separated by two

diagonal dotted lines) where breakpoint ia is added, and the ith entry along the second col-

umn indicates the interval where breakpoint ib is positioned. We call this an evolutionary

matrix. For example, matrix


1 1

1 2

4 4

3 4



represents the evolution of Figure 4.4A. Positions 1a, 1b lie on the first interval along the

zig-zag plot, [0a, 0b] (which is always true, given that the reference sequence corresponds

to a single interval [0a, 0b]). Breakpoint 2a is added on the first interval [0a, 1b] of the new

structure, while 2b is added on the second interval [1b, 0b]. Both breakpoint 3a and 3b lie

on the fourth interval [2a, 1b], giving entries [4, 4] in the third row. This corresponds to

connection evolution ε→ 1→ 121→ 1231.

Now, the increase in the number of intervals following the nth TD is given by:

k′ = k + 1 + (ib − ia) (6)

where k is the number of intervals prior to the nth TD, and k′ is the new number of

intervals obtained by adding nb on the ibth interval and na on the iath interval. For

example, in Figure 4.4A we start with a single interval (k = 1), then we get new structure

with k′ = 1 + 1 + (1 − 1) = 2 intervals after the first TD, then k′ = 2 + 1 + (2 − 1) = 4,

k′ = 4 + 1 + (4− 4) = 5 and finally k′ = 5 + 1 + (4− 3) = 7.

108

Let S = {M1,M2, ...Mk} be a collection of n by 2 evolutionary matrices. Let also I =

{j1, j2, ..., jk} be the collection of values representing the number of intervals in the zig-zag

plot for the evolutions represented by the Mi’s in S. Then we counted the size of TD space

with the following pseudocode:

Generate evolutionary matrices for n TD events

Data: the number of TD events, n

Result: the complete set of nx2 evolutionary matrices

Initialization;

Initialise with segments a = 1, b = 1, number of intervals for each TD word I = {1},
set of associated evolutionary matrices S = M1 = [1, 1];

if n = 1 then
return M1

else

for x = 2...n do

S ′ = ε;

I ′ = ε;

for every Mi in S and associated number of intervals ji in I do

for every couple of integers a, b, 1 ≤ a ≤ b ≤ ji do
add row [a, b] to Mi as the last (xth) row; and add the new matrix to

S ′; calculate the associated new number of intervals and add it to I ′;

end

end

update S to the new set of evolutionary matrices: S = S ′;

update I to the new set of interval counts: I = I ′

end

end

109

count the number of TD evolutions:
Data: the set of matrices in S

Result: count of the number of TD evolutions

Initialization;

count = 0

for each matrix m in S do

Translate m into order constraints, represented by numeric vectors;

Use function M2bp orders (described below) to generate all linear extensions for

the set of constraints; determine their count x;

Generate connection evolution corresponding to matrix m;

Use linear extensions and connection evolution to count the copies of each

segment;;

Construct the segment copy number profile of each TD evolution;

count = count+x
end

return number of TD evolutions count

this is some space

Example 4.6. function M2bp orders: we now provide an example of how to derive break-

point orders from an evolutionary matrix. Consider the evolution of Figure 4.6A. We want

to assign an integer value to each breakpoint: let then 1a = 1, 1b = 2, 2a = 3, 2b = 4; let also

0a = 5, 0b = 6. Note these numbers are labels and do not indicate an order. Thus we have

an integer representation of our breakpoint which can be used as an input for our Matlab

function. We have evolutionary matrix M starting with row (1, 1). This corresponds to

linear order 0a < 1a < 1b < 0b after the first TD. We represent that with numeric vector

[5 1 2 6], made up of the integer values assigned to the four breakpoints and including their

relative order: 1a and 1b lying between 0a and 0b. The second row of M is (1, 2), repre-

senting the fact that 2a lies on interval [0a, 1b] and 2b lies on interval [1a, 0b]. We similarly

represent these constraints with vectors [5 3 2] and [1 4 6]. Now from [5 1 2 6] and [5 3 2]

we find that 1 and 3 both lie between 5 and 2. We can then combine the two vectors and

write:

110

1a 1b 0a 2a 2b 0b

1

1

2

1

Figure 4.6: Inference of the copy number profile from an evolutionary matrix. A) Zig zag
plot representation; B) corresponding evolutionary matrix C) a single linear extension for
M , corresponding to the breakpoint order in A; D) connection evolution; E) counting the
copies of each segment through the zig-zag structure: the counts can be inferred from the
zig-zag plot, or computationally providing the final word in C and breakpoint ordering in
D.

111

[5 3 1 2 6] (A)

[5 1 3 2 6] (B)

Now, remaining vector [1 4 6] tells us where element 4 can be added. Thus we have to

intercalate 4 in every position between 1 and 6, in both vector A and B. We then obtain

the following vectors:

5 3 1 4 2 6

5 3 1 2 4 6

5 1 4 3 2 6

5 1 3 4 2 6

5 1 3 2 4 6

representing all linear extensions associated with the evolution in Figure 4.6A.

Example 4.7. inferring the copy number from a single linear extension: consider the evo-

lution of Figure 4.6A. We want to infer the copy number profile of the represented evolution.

Now, we notice from the zig-zag plot that we have breakpoint ordering 1a < 2a < 1b < 2b,

corresponding to vector v = [5 1 3 2 4 6] from Example 4.6. Recall that such a vector

also defines the boundaries of the five segments arising in the evolution: [5, 1], [1, 3], [3, 2],

[2, 4] and [4, 6]. Now, it is possible to construct corresponding evolution [1 → 121] from

evolutionary matrix M . We are then provided with two types of information: the complete

linear extension and the final connection word w = [121]. We then proceed with the infer-

ence of the copy number profile.

The first symbol in w is 1, and indicates that the first interval of the sequence is [0a, 1b].

1b = 2 is in position 4 along v: this means the first interval covers segments 1 to 4:

[5, 1], [1, 3], [3, 2] and [2, 4]. Similarly, subword [12] in w indicates the second interval is

[1a, 2b]: this corresponds to segments 2 to 4. Subword [21] indicates interval [2a, 1b], that is

single segment 3. Lastly, the third symbol in w corresponds to a somatic connection from

1b to 1a: thus the last interval spans from 1a to telomere 1b. Based on vector v, we find

this interval is formed by segments 2 to 5. We are now able to count the number of copies

of each segment through all intervals in the structure corresponding to w: our copy number

vector is then [1 3 4 2 1].

112

4.6 The combinatorics of TD temporal words

In the previous sections of this chapter we have seen how to represent a tandem duplication

evolution with words of integers, using symbol n to represent the nth event. Also, from

Definition 4.3 we have learnt that any TD on a word [XY Z] copies a possibly empty

subword Y , leading to new structure [XY nY Z].

We will now focus on Problem 4.2, where we no longer know the order of events and

the symbols are thus unordered. We want to infer the number of connection evolutions

consistent with a given word. The problem has already been introduced with the example

of Figure 4.2. We start from the intuition, based on Definition 4.3, that reversing the

TD process implies the elimination of a duplicated subword around a unique symbol n.

However, can we always perform this kind of operations in a recursive way, and being

confident about the validity of our deconstruction of the TD process? Can we include

the order information in a Hasse diagram, and thus infer the number of TD evolutions

for a specific word? In this section, we will show that these questions require a deeper

understanding of the geometric properties of connection words.

We start with a formalisation of some key concepts and definitions.

Definition 4.7. A word G of TD symbols is called a TD word if and only if it is equal to

the empty vector ε or it is arises from a connection evolution ε→ G1 → ...→ Gn with no

breakpoint reuse.

Definition 4.8. A temporal word is a TD word of connection symbols for which the

chronological order of the corresponding TD events is unknown.

Example 4.8. Consider connection evolutions E = [ε→ 1→ 12→ 1312] and E ′ = [ε→
1 → 121 → 1213]. If we look at final connection words [1312], [1213] and assume that the

three TD symbols are unordered, we find that both words can be represented by temporal

word [a b a c]. Thus we notice that the definition of temporal word is more general than

the connection word of Definition 4.2.

We next formalise the concept of symmetries in a word arising from a tandem duplication.

113

Definition 4.9. Any subword Be in a temporal word G is called a proper block if and only

if it takes the form [Y e Y], where e is unique in G and Y is the biggest repeated subword

around e. Symbol e is called centre of the block Be. Be is defined trivial if and only if it

contains only e.

Definition 4.10. Let G = [Y X e X Z] be a temporal word resulting from n TDs, and

let Be = [X e X] be the proper block centred at e. Then the deconstruction operation for

event e is the transformation [Y X e X Z] → [Y X Z].

Example 4.9. Figure 4.2A shows the possible evolutions of temporal word [a b a c d].

Yellow circles indicates trivial blocks, while proper blocks are underlined in red. Edges

connect nodes (words) separated by a single deconstruction step. For example, edge from

[a b a c d] to [a c d] represent the reduction of block [a b a] to a. The number of evolutions

back to the empty word correspond to the number of paths in the graph, that is 12. Clearly

some paths share some nodes, i.e. there are distinct evolutions generating the same temporal

word at some stages.

We must notice here that the definition of proper block does not fully describe the structural

properties of connection (and thus temporal) words. Indeed, the structure of a proper block

may be modified by one or more following TD events. We account for such situations in

the following definition.

Definition 4.11. A subword B in a TD word G is called a masked block for the proper

block B0 = [W e′ W] if and only if the structure of B0 in G is modified by subsequent TD

events.

Example 4.10. Consider the temporal word [a b c a d a b]. We have symbols a, b which

are duplicated, while c and d are present in a single copy. Now subword [a d a] is a proper

block, suggesting that d has duplicated symbol a. We can then conclude that unique letter d

is a candidate last event. Undoing d results in new word [a b c a b] which is also a proper

block. This describes the key concept of a masked block: a proper block whose structure has

been disrupted by one or more internal TDs. Formally, we say that we have proper block

[We′W] = [a b c a b] turning into masked block [V W ′ e1 W
′ Z] = [a b c a d a b] where

V = [a b c], W ′ = a, e1 = d (the event which modifies the original structure) and Z = b.

114

Next we need to consider an important class of unique symbols, providing a better under-

standing of the relation between deconstruction operation and TD evolutions.

Definition 4.12. a letter e in word G is called a candidate last event if and only if

1. it is the centre of a proper block Be = [W e W]

2. there exists at least one way of recursively deconstructing one proper block at a time,

starting with Be, until all symbols are removed and we obtain trivial word ε.

We must notice that the definition above does not allow for the precise identification of

candidate last events from the final TD word alone. An improved definition of this class

of symbols would require deeper investigation on the geometric structure of TD words,

avoiding any ambiguity in the identification of unique symbols which cannot be eliminated.

Example 4.11. Consider word G = [a b a c a b a d a b a e c a b a]. We have proper

blocks Bd = [a b a d a b a] and Be = [e]. Subword [a b a c a b a] is not a proper

block since c is duplicated. Undoing symbol d leads to word [a b a c a b a e c]. The

only unique symbol is indeed e, so the next deconstruction must eliminate e to give word

[a b a c a b a c]. However, such a word has no proper blocks to deconstruct. We then find

that such a structure cannot arise by a TD process, and therefore d is not a candidate last

event in G. Moreover, we notice that, after undoing d and e, we have adjacent repetitions

of subword [a b a c]. We will see further in the text that such structures cannot arise

by a TD process (Theorem 4.4). Undoing symbol e first, however, leads to proper block

[a b a c a b a d a b a c a b a], and G can be deconstructed to the trivial word ε with

temporal order of TD symbols e < d < c < b < a. Thus G corresponds to a masked block.

In summary, there are two different types of structures within a temporal word: proper

blocks and masked blocks. We will later show that any word arising from a TD process

(i.e. a TD word) can be represented as a concatenation of subwords, each belonging to

exactly one of these block categories.

115

Now, note that proper blocks include some important order information: event b in the

example of Figure 4.2 has duplicated symbol a and thus must have occurred after a.

Similarly, in Example 4.10, [a b c a d a b] we find that c and d are candidate last events.

We are thus getting a clearer idea on how the structure of TD words can help us in the

inference of chronological orders.

We are now able to formalise Problem 4.2 as follows:

Problem 4.4. Given a temporal word on n symbols arising from n tandem duplications,

determine the order constraints between events, and use this information to count evolutions

compatible with that word.

The number of evolutions associated with a temporal word can be clearly derived by a

graph like the one shown in Figure 4.2A. However, this might become very complex for

words made up of many different symbols. Specifically, we need a better understanding

of the geometric properties of words arising from a TD evolution, considering the way

multiple events can affect the complexity of the final structure. Here we present the key

concept of this section: a Hasse diagram adapted to the solution of Problem 4.4.

Definition 4.13. A temporal poset graph for a TD word G on n symbols is a graph I =

(V,E) where each node in V represents a TD event in {1, 2, ...n}, and E is the set of edges

representing some temporal order constraints between TD events.

The construction of a temporal poset graph relies on some machinery we need to introduce.

We now go through all these findings, which allow for the inference of order relations among

TD symbols in a temporal word. For better clarity, we introduce notation ind(e) to denote

the set of positions of all copies of symbol e along the word it belongs to. Similarly, we

denote ind(Wj) the set of positions occupied by the jth copy of a subword W along the

word it is part of.

Theorem 4.4. For any two copies of a duplicated subword X, the duplicating event e for

X must be positioned between those two copies.

116

Proof. Assume ...XX... is a possible subword for contradiction. For any two consecutive

letters a...a there must be a later duplicating letter between. In ...XX... pick the latest

letter y. Then we have y...y and all letters between the two copies of y are earlier. This is

a contradiction which proves the statement of the Theorem.

From the theorem we can then conclude the following:

Corollary 4.1. For any two copies of a duplicated subword X the sequence [X X] cannot

be formed by any TD evolution.

We now consider the more complex case of multiple symmetries around the same symbol.

Theorem 4.5. Given the centre e of proper block Be in a TD word, for any subword repeti-

tion [W e W] around e different from Be, we have general structure Be = [W Y W e W Y W],

where Y is not empty.

Proof. By Definition 4.9 we know that a proper block includes the biggest repeated subword

around its centre. We then assume that B′e = [W e W] ⊂ Be. Let Be = [Z W e W V]

where [Z W] = [W V] since Be is a proper block. Then we have |Z| = |V |. If |Z| ≤ |W |
then W = ZY and W = Y ′V implying Be = [Z Z Y e Y ′ V V]. This contradicts Corollary

4.1. If |Z| > |W | then Z = WY and V = Y ′W , implying Be = [W Y W e W ′ Y ′ W].

Then Y = Y ′ and Be = [W Y W e W Y W] as stated in the Theorem.

We have already defined the deconstruction operation as the elimination of a proper block

from a TD word. However, the presence of multiple symmetries around a symbol naturally

leads to some ambiguities about the extent of the duplicated subword. We deal with this

issue in the following theorem.

Theorem 4.6. Let e be a unique letter in a temporal word. Assume e is the centre of a

proper block Be = [W Y W e W Y W]. Then the deconstruction [...W e W...] → [...W...]

is not part of any TD evolution.

117

Proof. Deconstructing B′e leads to the new subword De = [W Y W Y W] which contains

two adjacent copies of subword [W Y]: such structure cannot arise by a TD process

according to Corollary 4.1. We conclude that the deconstruction of B′e is not part of a TD

evolution.

Example 4.12. Consider temporal word [a b a c a b a] corresponding to a proper block.

We have candidate last event c (the only unique letter) and duplicated proper block [aba].

We then easily note the structure [W Y W e W Y W] described in Theorem 4.5, with

W = a, Y = b and e = c. Undoing block [a c a] leads to word [a b a b a] where adjacent

copies of [a b] (and [b a]), incompatible with Corollary 4.1, are observed.

Now we are still lacking a discussion on particular situations, where two or more proper

blocks share some duplicated symbols. For example, consider temporal word [1 2 3 1 2 4 2],

where proper blocks [1 2 3 1 2] and [2 4 2] overlap. In these cases, we find that the following

is true:

Theorem 4.7. Let By and Bx be two distinct and possibly overlapping proper blocks in G,

centred at candidate last events x and y. Then both deconstruction orders x < y, y < x

are possible.

Proof. Assume first the two blocks do not overlap. Then we can represent G with the

structure [Z Bx W By V], for possibly empty subwords Z,W and V . Assume also, w.l.o.g.,

that Bx is on the left of By. Now any deconstruction order of the two blocks will lead to

the same new word G′ = [Z X W Y V] where X and Y are the duplicated subwords of Bx

and By, respectively. By Definition 4.12, G′ is assumed to be part of a valid TD evolution,

and we find that both deconstruction orders x < y, y < x are possible.

If the two blocks overlap then G has structure [Z B′x W B′y V], where W is the not-

empty intersection between By and Bx. We notice that x (resp. y) cannot be part of

the duplicated subword Y (resp. X), since the centre of symmetry of any proper block is

unique by Definition 4.9. Consequentially we require x, y /∈ W . Now we can rewrite the

structure of G as [Z X ′ W x X ′ W Y ′ y W Y ′ V] where [X ′ W] = X, [W Y ′] = Y . Any

118

e c d c e b c a e

e c e b c a e e c d c e c a e e c d c e b c e

e c e c a e e c e b c e e c d c e c e e c d c e e c e b c e

e c e

e

ᵋ

A) B)

d< a< b< c< e  5 4 1 4 5 3 4 2 5

a< d< b< c< e  5 4 2 4 5 3 4 1 5

a< b< d< c< e  5 4 3 4 5 2 4 1 5

C)

Figure 4.7: The deconstruction process. A) Representation of all deconstruction paths for
temporal word [e c d c e b c a e], as well as some incorrect deconstruction operations. Yellow
labelled substrings indicate last event proper blocks, green-labelled letters represent last event
trivial blocks, while red-labelled substrings represent other blocks. Note that deconstructing the
red class of subwords does not lead to a new TD word (in words [e c e c a e] [e c d c e c e] we find
adjacent repetitions of [e c] and [c e], resp., which are incompatible with Corollary 4.1). Edges
represent single deconstruction steps, colour labelled according to the type of block involved in
the operation. B) Hasse diagram for the temporal poset based on word [e c d c e b c a e]. Nodes
represents TD events, while edges represent temporal order relations. The combinatorial term
for the number of deconstruction paths is also shown. C) The three linear extensions compatible
with the Hasse diagram in B), together with the corresponding connection words. These are
obtained by substituting each symbol in [e c d c e b c a e] with its positions (1, 2, 3, 4 or 5) in the
linear extension.

deconstruction order of x and y then leads to new word [Z X ′ W Y ′ V].

Thus we have provided a series of rules allowing for the inference of order relations among

TD symbols. The deconstruction of a proper block centred at a candidate last event

represents an operation which is part of a complete TD evolution (Definition 4.9, Theorem

4.4), and the elimination of any smaller symmetry around a candidate last event leads to

an invalid word (Theorems 4.5,4.6). Proper block structure tell us about existing order

119

3
2
1

1

2

12

121

123;132;312
1232;1312
12312

1213;1231;1321;3121
12131;12321;13121
121321;123121
1213121

1

1

3
2
1

 4
 3
 2
 1

21

ɛ

213;231;321
2131;2321
21321

Figure 4.8: Schematic representation of all connection evolutions up to the third TD.
Red/blue rectangles indicate proper blocks, while masked blocks are underlined. Remain-
ing letters represent trivial blocks.

constraints between duplicated and duplicating symbols. Such relations among symbols

can be represented as edges between nodes in a temporal poset graph, like in Figure 4.9B.

Moreover, Theorem 4.7 guarantees that centres of symmetry are not restricted in order

relative to each other. A series of problems have yet to be addressed though, which we

discuss in the following section.

120

Figure 4.9: The deconstruction process. A) Representation of temporal word
[a b a c d a c e a c f e a c]. B) Corresponding temporal poset graph, with the number of
linear extensions n expressed as a sum across values for graphs in C-G. Node ε is the root; all
other nodes represent TD events. Edges are inferred from the temporal word in A) and indicate
order relations; dotted ones give redundant information. Any linear extension for this graph has
exactly one of b, d or f (differentially colour-labelled) as the last element. C-G) reduction of the
original poset graph to a set of simpler structures, each representing a subset of the solutions for
the graph in B. The set of newly added order constraints is given for each graph, as well as the
resulting number of linear extensions, n.

121

4.6.1 The construction of a temporal poset

Based on the Definition and Theorems presented, we now describe the procedure of con-

structing a temporal poset graph from a TD temporal word. Consider the word in Figure

4.9A: proper blocks are highlighted by coloured squares, while the correspondent centres

are yellow labelled. We start the construction of the temporal poset by representing each

symbol a, b, c, d, e, f in Figure 4.9A with a node. Then we proceed in the identification of

order relations. From proper block a b a we infer order constraint a < b and we add an

edge from a to b. From a c d a c we derive restrictions a < d, c < d and we add edges

(a, d),(c, d) to our graph. Similarly, we infer order relations e < f, a < f, c < f from the

rightmost proper block [e a c f e a c], and corresponding edges complete the construction

of our temporal poset. Figure 4.9B shows the complete graph we have obtained. We must

notice here that the restriction to exactly two parents, typical of 2-d trees, is lost in the case

of temporal poset graphs: for example, we see that node f has three parents, while node c

has single parent ε, representing the root. Thus we cannot construct a result analogous to

Theorem 4.2 for the temporal poset case. The inference of all deconstruction paths for the

word in Figure 4.9A leads to 27 different evolutions. Such number can be inferred from

the corresponding poset graph (Figure 4.9B) by converting the structure into multiple,

more tractable graphs: restricting the solutions to the case where d is the last event, for

example, leads to the new graph of Figure 4.9C. This is equivalent to adding restrictions

b < d, f < d in the poset. Now if we ignore edge a→ e we have a bubble structure where

a, b are unrestricted to c, e, f . The number of ways of ordering these five elements is then(
5
3,2

)
= 10. However, edge a→ e excludes three of these ten solutions: specifically the cases

[c < e < a < b < f < d], [c < e < a < f < b < d] and [c < e < f < a < b < d]. Thus we

have 10− 3 = 7 linear extensions for this graph. In the graph of Figure 4.9G we have set

f as the last event, and c later than a: that is additional restrictions d < f, b < f, a < c.

Now, the bubble containing e and d has count
(

2
1,1

)
= 2, while c, e, d and b can be ordered

in
(

4
3,1

)
= 4 different ways. The graph then has 2 · 4 = 8 different solutions. Summing

the results across graphs in Figure 4.9B-G results in n = 7 + 3 + 3 + 6 + 8 = 27 linear

extensions, as found with the deconstruction approach.

122

Moreover, the generalisation of the concept of masked block proved to be very challeng-

ing. Masked blocks provides with crucial additional information about the order relations

among symbols. For example, consider temporal word [e c d c e b c a e] represented in

Figure 4.7A. Such a word contains two masked blocks: [e c d c e] and [c e b c a e]. The

former has unique symbol d as the centre of proper block [c d c]. Undoing d reveals a

pre-existing proper block, [e c e]. Thus d is an event added to [e c e] forming a masked

block, and we have order relation c < d. As for the latter masked block, we notice that de-

constructing a reveals proper block [c e b c e], and we write b < a. Despite the relative ease

in identifying such structures in these examples, the complexity of the TD word structure

rapidly increases with the number of TD events, making the inference of all order relations

harder. Thus, counting the linear extensions corresponding to all evolutions proved to be

a non-trivial problem.

4.7 Conclusions

We have seen in Table 4.1 that the number of different evolutions increases hyper-exponentially.

This means that beyond five or six tandem duplications it is at present unrealistic to at-

tempt to computationally explore this space in its entirety. This makes it difficult to

compare any observations to the entire set of possibilities. This is further compounded

by the non-uniqueness of copy number vectors, which grow at a far slower rate than the

number of evolutions. This means that even if the precise copy number vector is known,

it will correspond to a multitude of evolutions, all of which explain the data equally well.

One could attempt to apply the type of analyses of [72] to TDs; it is an open problem to

determine the number of copy number vectors, or even an efficient algorithm to determine

whether a copy number vector can arise from a process of tandem duplication under the

assumption of unique breakpoint use.

A parallel investigation on the temporal properties of words arising by TD has also been

123

implemented. We showed how to include the order relations information in a graph, in

order to determine the number of evolutions associated with a particular word structure.

However, the complexity of these graphs, free from the two parents restriction typical of

2-d trees, represents the main limiting factor of this approach, for which a general formula

for the count of linear extensions has not been obtained. While complex calculations and

modifications of the graph can provide the solutions of the most challenging cases, the

method suffers for a limited understanding of the space of possible poset graph structures.

Moreover, the fast increasing complexity of word structures makes it non trivial to identify

all order relations associated with TD evolutions.

The methods we have presented here are closely related to those used to study breakage

fusion cycles [43]. This suggests it may be possible to describe a more general space

of rearrangements using a largely equivalent approach. Since tandem duplication and

breakage fusion cycles are known to play a major role in the formation of large scale copy

number variation in cancer genomes, a generalization of these methods to the combined

space of these rearrangement processes may help to better understand the evolution of

such aberrant genomes.

124

5 The combinatorics of Inverted Duplication

Following the work on tandem duplication, we have focused on a similar evolutionary

process occurring in cancer cells: inverted duplication (ID). The combinatorial questions

arising from such a process are equivalent, but the structures obtained in such a modified

model are more complex, making the challenge of describing the space of structures more

difficult. By using modified versions of the bi-coloured 2d tree and zig-zag plot, we have

described such structures, with associated similarities and differences compared to the

corresponding findings for TDs. Inverted duplications can be responsible for aberrant

neurodevelopmental phenotypes, as well as for gene amplifications in cancer genomes. The

molecular mechanisms underlying inverted duplications are still not clear. Recently, a Fold-

back model of inverted duplication was proposed [53]. This model predicts a variety of

outcomes: inverted duplication with terminal deletions, adjacent to translocated sequences,

or circular inverted duplicated chromosomes. Being mainly interested in comparing the

combinatorial properties of TDs and IDs together, we will consider a simpler model where

the new copy of the duplicated region is inserted adjacent to the original one, without

any additional rearrangement or circularisation. This allows us for an easier comparison

between the TD and ID evolutions, while avoiding our challenge to get overly hard by

considering more than one type of rearrangements.

In the example of Figure 5.1A we start with a reference sequence divided into five con-

tiguous regions. Using the same representation as for TDs, we label these regions with

symbols 1, 2, 3, 4 and 5, respectively. The initial inverted duplication copies region 23

and inserts this new copy next to the original one with inverted orientation: this results in

the new sequence 12313−12−1145. In this example we have used bold symbols 1 and 1 to

indicate the two newly introduced connections. The right side of segment 3 is connected

to itself, indicating the beginning of the inverted sequence; the left side of segment 2 is

connected to the left side of segment 4 (Figure 5.1A). Note also that the left hand end

of the duplicated region 23 implicates the reference position between segments 1 and 2,

125

the right hand end implicates the reference position between segments 3 and 4. Here we

introduce the concepts of starting and ending breakpoint of a connection: in the case of

type x connections, we have identical starting and ending breakpoint, corresponding to the

beginning of the inverted sequence; for a connection x, the start and the end breakpoint

represent, respectively, the ending and the starting point of the inversion. In our example,

1 has single breakpoint 3, while 1 connects breakpoint 1 to breakpoint 3.

Next we have the second inverted duplication, copying region 2−14 to finally give

12313−12−11424−11
−1

225. We now have another pair of connections, labelled 2,2: the

former connects the right side of segment 4 to itself, the latter links the right side of

segment 2 to the left side of 5, as seen in Figure 5.1A. The leftmost end of the inverted

duplicated region 214 implicates the reference position between 2 and 3, the rightmost end

implicates that between 4 and 5. We have thus implicated all four breakpoints between

the five reference segments exactly once; a process with unique breakpoint use.

i

ii

iii

A B

Figure 5.1: An Inverted duplication Process. A) Three structures i)-iii) arising from two
tandem duplications on a reference of five regions; 1, 2, 3, 4, 5. B) Eleven possible evolutions
with two inverted duplications. The example in A is highlighted by *. Underlined numbers
are segments. Red labelled, bold italicized numbers indicate connections between segments
formed in the nth tandem duplication.

Figure 5.1B shows all 11 different ways that two inverted duplications can act on five

segments with unique breakpoint reuse. This is exactly the same count as for two tandem

duplications, suggesting that the complete evolutionary space might be the same size.

We want now to formulate the following problem, equivalent to Problem 4.1:

Problem 5.1. Count the number of different ways that an initial string of 2N+1 segments

126

can evolve under N inverted duplications, without reusing breakpoints.

5.1 Representation

We now formalize the representations described in the examples above. We first define N

as the total number of IDs that take place. Similar to TDs, we have words made up of two

classes of symbols: segment and connection symbols. However, we find that for inverted

duplications we need two different connection symbols for each event n, which we denote

n and n.

Definition 5.1. We define i±1 to be a segment symbol, where sign indicates the orienta-

tion. This represents a copy of the DNA segment originally in the ith reference position,

where i ∈ {1, ..., 2N + 1}.
Definition 5.2. We define any i and i to be a connection symbol. These symbols always

have a segment symbol on either side. In any subword of the form m±1 i/i n±1, i (or i)

represents a connection between the end of the DNA segment represented by m±1, and the

start of the DNA segment represented by n±1, formed during the ith ID, where i ∈ {1, ..., N}.

Then we can construct our ID evolutions as follows:

Definition 5.3. An ID evolution U is defined as any sequence of ID words [U0 → U1 →
... → UN] generated as follows. We initialize the sequence with ID word U0 = 1 · 2 · ... ·
(2N + 1). We obtain an ID word Un from Un−1 as follows. Write Un−1 = X · Y ·Z as any

product of three non-empty subwords that each begin and end with a segment symbol. Then

Un = X · Y · n · Y −1n · Z. We define nA as the value of the rightmost symbol of X, x, if

that symbol is not reversed, and x−1 − 1 otherwise. We also define nB as the value of the

rightmost symbol of Y ,y, if such symbol is not reversed, and y−1 − 1 otherwise. We have

an ID evolution provided nA and nB are 2N distinct values for n ∈ {1, ..., N}. The values

nA and nB are referred to as breakpoint numbers, and the underlying value n is the ID

127

number. We also define breakpoint numbers 0A and 0B to be 0 and 2N + 1, respectively,

representing the start and end of the set of original reference segments. We let UN denote

the set of possible ID evolutions arising from N IDs.

Example 5.1. In the evolution of Figure 5.2A we have E = [12345→ 12313−12−1145→
12313−12−11424−11

−1
225]. The second ID duplicates subword 2−114 in ID word

12313−12−1145. The subwords X, Y and Z are then 12313−1, 2−114 and 5, respectively.

We then find that the rightmost symbol in X 3−1 is reversed, and thus we have 2A = 3−1 =

2; the value of the rightmost symbol in Y is 4, hence 2B = 4. Note that 2A, 2B demarcate

breakpoints of the duplicated region; the 2nd breakpoint is implicated by the left end of the

duplicated region 2−114, between inverted segments 2 and 3; the 4th breakpoint is implicated

by the right end of the duplicated region between segments 4 and 5. For a comparison with

a TD evolution with 2 events, producing the same breakpoint ordering along the reference

(1A ≤ 2A ≤ 1B ≤ 2B), refer to Figure 5.3A. Note the absence of inverted segment symbols

in the TD case, as well as the presence of a unique connection symbol for each TD event.

Now, we shall recall Definition 4.4 for Tandem Duplication, showing how any TD evolution

can be restricted to connection symbols, leading to a simpler algebraic representation. We

can then use the same concept for the ID process, as shown in the following example:

Example 5.2. In the evolution * of Figure 5.1B we have: U = [12345→ 12313−12−1145→
12313−12−11424−11

−1
225] which becomes E = [ε → 11 → 1121

−1
2] when the segment

symbols are removed.

Definition 5.4. The function C, mapping any connection symbol m or m to the corre-

sponding starting (s) or ending (e) breakpoint is defined as follows:

C(m, s) = mB

C(m−1, s) = mB

C(m, s) = mA

C(m−1, s) = mB

C(m, e) = mB

C(m−1, e) = mB

128

1 2 3 1 3-12-1 1 4 5

bp1 bp3

1 2 3 1 3-12-1 1 4 2 4-1 1-1 2 2 5

bp2 bp4

1 2 3 4 5

Y= 2-1 1 4; 2B=y=4; 2A=x-1 -1=2

Y=23; 1B=y=3; 1A=x=1

bp: 1 2 3 4
 (1A) (2A) (1B) (2B)

A) B)

1

1

2

2

1

1

Figure 5.2: A) Evolution * of Figure 5.1B, with further explanation on the correspondence
between breakpoint values NA, NB and adjacent letters x, y. B) inverted duplication graphs
showing reference (black) and somatic (coloured) connections at each evolutionary step.
Somatic connections labelled with the same colour belong to the same ID event.

C(m, e) = mB

C(m−1, e) = mA

Example 5.3. Consider Figure 5.2B. We note that for connections of type m ∈ (1, 2),

mB is both the starting and the ending breakpoint. Thus we have, for example, C(1, s) =

C(1−1, s) = C(1, e) = C(1−1, e) = 1B. As for connection of type m 1, it connects 1A and

1B together. After two ID events, we get a word containing both letters 1 and 1
−1

. From

Figure 5.2B we see that connection 1 starts at breakpoint 1 = 1A and ends at breakpoint

3 = 1B. So we have C(m, s) = mA, C(m, e) = mB. Conversely, letter 1
−1

is crossed in

the opposite direction, from 1B to 1A; thus C(m−1, s) = mB, C(m−1, e) = mA. this is some

spacing

Lemma 5.1. Let m and n be consecutive connection symbols in any connection word Ei,

129

1 2 3 1 2 3 4 5

bp1 bp3

1 2 3 1 234 2 3 4 5

bp2 bp4

1 2 3 4 5

Y= 234; 2B=4; 2A=2

Y=23; 1B=3; 1A=1

bp: 1 2 3 4
(1A) (2A) (1B) (2B)

A) B)

1

21

Figure 5.3: A) Example of tandem duplication evolution leading to the same breakpoint
ordering as in Figure 5.2A, with further explanation on the correspondence between break-
point values NA, NB and adjacent letters x, y. B) Tandem duplication graphs showing
reference (black) and somatic (coloured) connections at each evolutionary step.

induced from ID word Ui. Then m and n are either separated in Ui by segment symbols

C(m, e) + 1 · ... · C(n, s) if C(m, e) < C(n, s) or (C(m, e))−1 · ... · (C(n, s) + 1)−1 if C(m, e) >
C(n, s) . If m is the first connection symbol in Ei, in Ui it is preceded by segment symbols

1 · ... · C(m, s). If n is the last connection symbol in Wi, in Ui it is followed by segment

symbols C(n, e) + 1 · ... · 2N + 1.

Proof. If we have consecutive symbols mn in a connection word, then in the correspond-

ing ID word the two connections must be separated by a series of segments bounded

by breakpoints C(m, e) and C(n, s). We have two possibilities: either C(m, e) < C(n, s)
along the reference sequence, or vice versa. In the former case, we find that the seg-

ment sequence corresponds to C(m, e) + 1 · ... · C(n, s); in the latter, we have sequence

(C(m, e))−1 · ... · (C(n, s) + 1)−1.

130

Example 5.4. Consider the final ID word of Figure 5.2A,1231 3−12−11424−1 1−1225.

We have consecutive connection symbols 1 and 1 separated by segments 3−12−1. We have

C(1, e) = 1B = 3 and C(1, s) = 1A = 1, so C(1, e) > C(1, s). according to Lemma 5.1

these connection symbols must be separated by sequence of segment symbols (C(1, e))−1 · ... ·
(C(n, s) + 1)−1 From Definition 5.4 we have C(1, e) = 1B = 3 (the third breakpoint along

the chromosome, see Figure 5.2B) and we find that C(1, e)−1 = 3−1 is the first segment

after connection symbol 1. Similarly, we have C(1, s) = 1A = 1 and (C(1, s) + 1)−1 =

(1 + 1)−1 = 2−1 is the second last segment symbol separating the connection symbols. If

we consider consecutive connection symbols 1 and 2 we find they are separated by segment

symbol 4. Now, C(1, e) = 1B = 3 and C(2, s) = 2B = 4, so C(1, e) < C(2, s). Thus,

according to Lemma 5.1 these connection symbols must be separated by sequence of segment

symbols C(1, e) + 1 · ... · C(2, s). From Definition 5.4, we find that C(1, e) + 1 = 1B + 1 =

3 + 1 = 4, and C(2, s) = 2B = 4. Thus the sequence of segments is the single symbol 4.

It is then straightforward to formalize Problem 5.1:

Problem 5.2. Determine the size of the set UN for inverted duplications.

We will next present a proof for the recursion on the number of ID connection evolutions.

Also, we will provide an empirical evidence for an identical evolutionary space size between

tandem and inverted duplication, based on the construction of all evolutions up to the third

event.

5.2 The space of connection evolutions

We now consider how many connection evolutions can arise from N IDs, the size of the

set EN . In Figure 5.4 we see a graph representation of the possibilities, where values

wm,n (number of connection words of size m after n IDs) are equivalently obtained by

131

Figure 5.4: Schematic representation of the number of possible ID words. Numbers at
nodes indicate the length of ID words. Numbers on edges indicate the number of choices.

taking products of the edge values along paths to the associated node, from the node

labelled 1, and summing. For example, the node labelled 12 in the third column of nodes

corresponds to w12,3 and has two paths, one with product 2 · 1, the other with 1 · 3 and

we find w12,3 = 2 + 3 = 5, five connection words of length 12; 1121
−1

232
−1

12−11
−1

1−13,

121−12131
−1

2
−1

12−11−13, 1121
−1

1−1232
−1

112−13, 1121
−1

1−13112−11
−1

32 and

1121
−1

312−11
−1

1−131−12.

We have obtained the following general result.

Theorem 5.1. Initialise with w0,0 = 1. Then the number of words of size m after n

132

inverted duplications (ID) is given by

wm,n =
m−2∑

k=d(m−2
2

)e

(2k −m+ 3)wk,n−1 (7)

Proof. For a word of size k we have k+ 1− i ways of performing an inverted duplication of

an i letters long subword. Since we add 2 new letters at each event, the minimum increase

of word size an ID can determine is 2(i.e. we have a new word of size k + 2), while the

maximum is equal to k+2 (i.e. we have a new word of size k+k+2 = 2k+2) Also, we have

that an event transforming a word of size k to a word of size m (k+2 ≤ m) has duplicated a

subword of size m−2−k. Consequentially, we have i = m−2−k and the number of ways of

transforming a word of size k to a word of size m is k+1−i = k+1−(m−2−k) = 2k−m+3.

Such equation is to be applied to the range of possible k values, i.e d(m−2
2

)e : m− 2.

The counts of connection evolutions arising from the first few IDs can be seen in Table 5.1.

The counts |Wn| =
∑

mwm,n of words arising from n IDs can be seen in Table 5.1.

IDs 1 2 3 4

CNVs 1 6 169 -
Words 1 6 115 5887

ID-Evolutions 1 11 627 -

Table 5.1: Counts of copy number vectors, words and ID evolutions.

133

5.3 Using posets to count ID evolutions

5.3.1 Zig-zag plots

We will be using a modified version of the zig-zag plot representing a TD evolution. Hori-

zontal (solid) lines still indicate DNA segments, diagonal dotted lines represent connection

symbols of type n, while dotted curved lines correspond to connection symbols of type n.

An example of plot is shown in Figure 5.5A.

5.3.2 2d-trees

We now introduce the ID structure using the example in Figure 5.5. Similar to TDs, we

start with a single segment [0a, 0b], represented as an horizontal line in Figure 5.5Ai. Node

0A is assigned a type start (coloured red), indicating it is the starting point of a segment.

Node 0B is assigned a type end, (coloured blue) indicating the end of a segment. As in

TDs, these two nodes are bridged by a directed edge (fence) which represents their ordering

in the reference; 0A < 0B. Note that here we use lower cases to represent segment ends

in the zig-zag plot, and upper cases to represent corresponding nodes in the 2-d tree; this

distinction will prove crucial further down in the text.

Next comes the first ID event. This corresponds to the inverted duplication of a specific

single region (coloured green in Figure 5.5Ai) and involves two positions; the left and right

ends of the inverted-duplicated region. These correspond to a left breakpoint nA and a

right breakpoint nB. Walking through the zig-zag plot in Figure 5.5Aii we find that the first

inverted duplication starts at position 1B, introduces somatic connection linking position

1B to itself, a new following segment bounded by positions 1A, 1B, and then terminates

with a second, new somatic connection from 1A to 1B: in total, we encounter position 1A

only once, but position 1B three times. Consequentially, we use a single label 1a for the

134

1a

0A 0B

2A 2B
1
1

3A 3B

i

ii

iii

iv

2

1

0A 1A 2A 1B 3A 2B 3B 0B

3

1

3

2

1

A B C D

1

1-1

2

1

2

1

2-1

22

1121-1232-113

1121-12

11

2232-1343-124

2A 2B

1A 1B

0A 0B

3A 3B

2232-13

121-1232-1131

11

121-1232-11343-11-1241

121-121 2A 2B

1A 1B

3A 3B

4A 4B

1A 1B

3

1

2

2

3

E F G H

2A 2B

1A 1B

3A 3B

2
2

1
1

1b

1c

2b

2c

3b

3c

3a

2a

1d

2d

3d

1
1 1

2
3

3
2 3

1

1-1

1

7
6,1

Figure 5.5: Representation of the ID Process. In A) we have zig-zag plots for a sequence
of three IDs, resulting in four structures i)-iv). The green regions indicate the inverted-
duplicated region during each ID. Dashed lines indicate a connection between segments.
Coordinates nA and nB indicate the end positions of the nth duplicated region. B) Cor-
responding 2d-tree. Nodes correspond to breakpoints and edges demarcate an ordering.
Red and blue colours indicate the start and the end breakpoints. Dashed and plain edges
indicate minor and major edges. C) Corresponding Hasse diagram. D) The major graph
corresponding to evolution E. F) Increases each symbol of E by 1. G) An induced evolution
from F. H) The major graph corresponding to induced evolution E.

unique copy of the left end position 1A, and three labels 1b, 1c, 1d for the three copies of 1B,

assigned according to the order they are found along the zig-zag plot. End 1b is connected

to 1c in the duplication process, represented by the dashed line in the zig-zag diagram

of Figure 5.5Aii. Similarly, 1a is connected to 1d, representing the end of the inverted

duplication. These are the first couple of somatic connections, respectively labelled with

numerical symbols 1 and 1. Therefore the first word of Figure 5.5E is 11, different from the

135

initial TD word 1. Now segment ends 1a and 1b are both bound between the coordinates

of 0a and 0b. In the 2d-tree representation, we have two nodes, representing coordinates

1A and 1B. These nodes both have edges connected to two parental nodes 0A and 0B. We

have edges of type start (red) from node 0A to 1A and 1B representing the fact that 0a is

the starting position in the segment where 1A and 1B are added. Similarly we have edges of

type end (blue) from 0B to 1A and 1B, representing the fact that 0b is the ending position

of that segment. The black edge is termed a fence after the equivalent class of edges used

for TDs; it connects node 1A to 1B, representing the restriction 1a < 1b.

Our second ID duplicates the green portion in Figure 5.5Aii, lying on the right side of 1d,

and forming two new breakpoints: 2A and 2B. Position 2A is on segment [1d, 0b] of Figure

5.5Aii and so must lie between positions 1B and 0B. These implies that 1B, 0B are its

two parental nodes. We must note here that edge (1B, 2A) is labelled with number 3: this

indicates that 2A lies on a segment bounded by 1d on one end. Similarly, we will see that

label numbers 1 or 2 are used for edges of type (nB, xA/B) when xA/B lies on a segment

bounded by nb or nc, respectively.

The blue edge from node 1B to 2A indicates 1d is the start bound of 2a, since we walk

left to right (we say forward) from 1d to 0b in the zig-zag plot. For the same reasoning,

0b is the end bound of 2a, indicated by the red edge from 0B to 2A. Note that the notion

of start and end refers to the word structure represented by the zig zag plot, and does

not necessarily correspond to leftmost and rightmost along the reference sequence. For

instance, position 3A in Figure 5.5Aiii lies on a segment [2b, 1b] starting at position 2b on

the right side of the end position 1b; in this case we walk right to left (backward) through

the segment in the zig-zag plot, and we find that node 3A has a right, start parental node

2B, while 1B is a left end parent.

The status of major (solid) and minor (dashed) is also assigned to each pair of parental

edges to a node, in the same way as for TDs.

In the following section we will describe the use of 2d-tree structures to count the number

of ID evolutions corresponding to a single connection evolution.

136

5.3.3 Linear Extensions

Looking at ID evolutions, it is easy to observe that distinct breakpoint orders might be

compatible with the same connection evolution. We will see how to count all linear ex-

tensions associated with a 2-d tree, equivalent to the total number of ID evolutions. The

nature of inverted duplications adds difficulties to the original TD problem. Here are the

main differences between the two processes.

• Inverted duplications are characterised by A and B breakpoint types; while each A

breakpoint implicates just one segment end, B breakpoints implicate three different

ones. As for TDs, there is always a one to one breakpoint-segment end correspon-

dence.

• An ID evolution creates inverted (backward) segments having a start breakpoint lying

on the right side of the end breakpoint along the reference sequence; in TDs the start

breakpoint(node) is always on the left of the end one, so that the orientation of all

segments is preserved with respect to the reference.

All that follows will take into account such differences in order to formulate a theorem for

the count of linear extensions from a 2d-tree.

If we look at Figure 5.6A, we notice there is a single order of breakpoints 1A, 1B, 2A, 2B

along the reference which is compatible with word evolution 11→ 1122. However, looking

at Figure 5.6C we find three possible breakpoint orderings (i.e. evolutions) for word evo-

lution 11→ 2211. We will now have a closer look at how these different orderings arise.

The first two events result in four breakpoints that divide the original interval [0a, 0b] into

five regions A, B, C, D and E. For word evolution 11 → 2211, we must consider the

three choices that use two pairs of breakpoints uniquely such that the second somatic

connection precedes the first. If we underline the inverted duplication and use ‘|i’ and

‘|i’ for the two somatic connections of the ith event, the three possible evolutions are:

137

ABCDE → ABCD|1D−1|1E → AB|2B−1|2CD|1D−1|1E, ABCDE → ABCD|1D−1C−11
E

→ ABC|2C−1B−1|2D|1D−1C−1|1E and ABCDE → ABCD|1D−1C−1B−1|1E
→ ABC|2C−1|2D|1D−1C−1B−1|1E. Each evolution correspond to a set of possible break-

point positions that are subject to the restrictions 1A < 1B from the first event, and

2A < 2B < 1B from the second.

We now present a generalization for inverted duplications, allowing for the construction of

a Hasse diagram from the 2d-tree corresponding to a word evolution.

Lemma 5.2. If the direction of the edges from the right parental nodes are reversed in the

2d-tree, and the orientation of fences is preserved, a Hasse diagram with single source node

0A and single sink node 0B is obtained.

Proof. (of Lemma 5.2) When we add any node x ∈ {nA, nB} to the 2d-tree, it has two

parental nodes us and ve. By construction, the node x represents a breakpoint that is

placed on the segment [us, ve], where us is the start and ve the end bound of the segment.

In terms of reference position we have the ordering us < x < ve if [us, ve] is a forward

segment, and ve < x < us otherwise. The edge directed from the leftmost breakpoint

nl ∈ {us, ve} to x represents the ordering nl < x, while the edge from nr = {us, ve} \ {nl}
corresponds to the ordering x < nr. We note then that the direction of the edges in T (E)

does not always reflect the order of the breakpoints along the reference, and we must select

the appropriate direction of the edges in order to represent increasing reference position in

the Hasse diagram. More precisely, we keep the direction of edges from the left most parent

nl unchanged, while we select the opposite direction for edges connecting the right most

parent nr to its daughter. If we have a fence, we are adding two positions nA and nB to the

same segment, and thus we have the additional ordering nl < nr, where nl = nA, nr = nB

(resp. nl = nB, nr = nA) if the two breakpoints are added on a forward (resp. backward)

segment. This is represented in the 2-d tree by the direction from nA to nB (resp. nB to

nA).

Consider now that for every ID evolution, we have necessarily 0A < 1A < 1B < 0B after

the first ID event. The two breakpoints of the second ID event, 2A, 2B are subject each

to some restriction of the form j < 2i < k, i ∈ {A,B}, where j, k indicate the parental

138

nodes of 2i; also, since 0A, 0B are by definition the first and the last positions along the

reference, either j = 0A or 0A < j < 2i, and either k = 0B or 2i < k < 0B. Then if the

direction of the edges in the 2d tree are changed according to the above described rules, we

find that 0A, 0B are the source and sink nodes of the tree, respectively. For any breakpoint

ni from the nth ID event, let jJ , kK be the new parental nodes, J,K ≥ 1. Each parental

node is either a telomere (i.e. it has ID number 0), or is positioned in between their two

parental nodes. The same reasoning applies to the parents of its parents, and so on until

a telomere node is found. We then have restrictions of the form 0A < j1 < j2...jJ < ni,

and ni < k1 < k2...kK < 0B. That is, any new breakpoint position is restricted in between

two parental breakpoints, as part of a chain starting with 0A and ending with 0B. Such

finding is valid regardless to the presence/absence of some fences in the 2d tree.

rearrangement TD ID

inverted segments no yes
a-left,b-right correspondence yes no

no. letters per event 1 2
no. of copies of a B bp 1 3
no. of copies of an A bp 1 1

Table 5.2: Comparison of TD and ID features.

Definition 5.5. Let T be a 2-d tree corresponding to an ID evolution E. The corresponding

major tree T (E) is obtained by selecting, for each node in T , the edge from the major parent.

text

Lemma 5.3. The restriction of the 2-d tree to the major edges results in two trees rooted

to nodes 0A and 0B.

Proof. In the construction of the 2-d tree, every node x 6= {0A, 0B} has two parental

nodes, labelled us and ve, arising from the segment [us, ve] that breakpoint x is formed

upon. These two nodes are connected to x by a major and minor parental edge, where

139

Figure 5.6: Evolutions arising from two IDs. A) Structure associated with word 1122.
B) Structure associated with word 1221. C) Three structures associated with word 2211.

D) Three structures associated with word 1121
−1

2. E) Structure associated with word

121−121. F) Two structures associated with word 1121
−1

1−12.

140

max(u, v) and min(u, v) are the major and minor ID numbers, respectively. Thus if we

are restricted to the major edges, each node has one parental node, resulting in two trees

attached to roots 0A and 0B.

We now formulate a theorem for the count of linear extensions associated with a 2-d tree

from an ID evolution. We will first go through all related Lemmas and Corollaries which

are needed for the proof, then conclude the section with the main result, Theorem 5.2.

text

Definition 5.6. Given a zig-zag plot Z, for any segment end ni in Z, i ∈ {a, b, c, d}, the

function

µ(ni) : ni → nJ (8)

with J ∈ {A,B} maps ni to one and exactly one corresponding node nJ ∈ T (E), such that

• J = A if and only if i = a

• J = B if i = b, c, d

text

Example 5.5. Consider the first ID event, common to any evolution. This results in

the first zig-zag plot structure of Figure 5.5A, where segments ends 1a, 1b, 1c, 1d have been

introduced. Every new end is positioned at one and exactly one of breakpoints 1A, 1B; more

precisely, we have 1a mapping to 1A and all other ends to 1B. This is accurately described

by the function µ, mapping each segment end of {1a, 1b, 1c, 1d} to exactly one breakpoint in

{1A, 1B}. space

141

Lemma 5.4. Suppose that [us, ve] is any segment arising from an ID evolution E. Let

T (E) be the 2-d tree for evolution E. Then there exists an edge in T (E) connecting nodes

uX = µ(us) and uY = µ(ve) together. In addition, precisely one of the following cases

holds:

A) u = v, nodes uX and vY are of opposite A/B type and are connected by a fence (Figure

5.7C); we then have either of the order constraints uX < vY and vY < uX .

B) u 6= v, nodes uX , vY are connected by a single directed major edge (Figure 5.7D) and

the positions satisfy either of the order constraints uX < vY and vY < uX .

C) u 6= v and nodes uX and vY are connected by a minor directed edge; then there exist

nodes with ID numbers in the order uX ≤ n1 < n2 < ... < nI < vY that are connected in

a chain of major edges if n1 has an ID number different from min(u, v) (Figure 5.7Eii);

otherwise in a chain starting with a fence between nodes n′A and n′B, and continuing with a

series of major edges (Figure 5.7Ei). These nodes are found in the same order such that:

i) if uX < vY along the reference sequence, all internal nodes ni are right nodes and the

positions satisfy either of the following single linear extensions:

i1) uX < vY < (nI) < ... < (n2) < (n1) with n1 6= uA and nodes uX and vY connected by a

chain of major edges;

i2) uX < vY < (nI) < ... < (n2) < (n1) with uX = uB, n1 = uA and nodes uX and vY

connected by a chain starting with the fence connecting nodes uA, uB and continuing with

1 or more major edges.

ii) if uX > vY along the reference sequence, all internal nodes ni are left nodes and the

positions satisfy either of the following single linear extensions:

142

ii1) (n1) < (n2) < ... < (nI) < vY < uX , with n1 6= uA and nodes uX and vY connected by

a chain of major edges;

ii2) (n1) < (n2) < ... < (nI) < vY < uX , with uX = uB, n1 = uA and nodes uX and vY

connected by a chain starting with the fence connecting nodes uA, uB and continuing with

1 or more major edges.

Proof. We prove this by induction. Initially we start with a single segment [0a, 0b] and

the first ID results in three segments [0a, 1b], [1c, 1a] and [1d, 0b]. Now, in segment [0a, 1b]

we have that µ(0a) = 0A is the major parent of µ(1b) = 1B and the situation satisfies

criterion B; in segment [1c, 1a] we have that µ(1c) = 1B and µ(1a) = 1A have the same

ID number and are connected by a fence (criterion A); in segment [1d, 0b] we have that

1d = us is the left end of a segment and there is a chain (consisting of a fence and a major

edge) {(0A, 0B), (0B, 1B)} corresponding to the linear extension 0A < 1B < 0B: that is

n1 < uX < vY , consistent with criterion Cii2. All situations thus satisfy the conditions of

the lemma.

For the induction we next assume that any segment [us, ve] satisfies the conditions of the

lemma for all u, v < n. For each segment we thus have one of the following situations: 1)

a single major edge connecting nodes uX and vY , 2) a minor edge connecting them along

with either a chain of major edges or a chain consisting of a fence followed by one or more

major edges, or 3) a single fence edge. We then introduce the nth ID duplicating a region

with endpoints nA and nB. We need to check all resulting segments satisfy the Lemma.

We have four cases to check.

Case I: The entire segment [us, ve] is duplicated or unmodified; then the poset graph is

unchanged between nodes us and ve and we have nothing to do.

Case II: breakpoint nA, lies in [uc, ua] and the two nodes uA = µ(ua), uB = µ(uc) are

connected by a fence. Then we have new segment [ua, na]. Then node nA is connected to

uA by a single major edge and the situation satisfies criterion B of the lemma.

143

Case III: Breakpoint nA lies in [us, ve], u 6= v. We thus obtain a new segment [ve, na].

Node nA then has major and minor parents with ID number max(u, v) and min(u, v).

If u < v we have a new major edge vY → nA, and segment [na, ve] satisfies criterion B of

the Lemma. If u > v we have a single minor edge vY → nA and major edge uX → nA

with some order uX < nA < vY or vY < nA < uX . In the former case, we find that

the new segment [ve, na] has a backward orientation, with left end na. Then the order

uX < nA < vY corresponds to nI < vY < uX of case Cii1. In the latter case, we find

that the new segment [ve, na] has a forward orientation, with right end na. The order

vY < nA < uX corresponds to uX < vY < nI of case Ci1.

Now, by assumption of the induction hypothesis, we have two cases to consider:

Case IIIa: nodes uX and vY are connected by a major edge. Then the new segment

[ve, na] satisfies exactly one of situations B, Ci and Cii of the lemma;

Case IIIb: nodes uX and vY are connected by a minor edge, along with a chain of major

edges, or a fence followed by some major edges. As for case IIIa, the new segment [ve, na]

satisfies exactly one of situations B, Ci and Cii of the lemma.

Case IV: If a breakpoint nB is added to [us, ve] and u 6= v, we get three new segments:

[us, nb], [nc, us] and [nd, ve]. Then we have 2 cases to consider:

Case IVa: nodes us and ve are connected by a major edge, and the same reasoning as for

case IIIa applies.

Case IVb: nodes us, ve are connected by a minor edge, along with a chain of major edges

or a fence followed by one or more major edges; then the same reasoning as for case IIIb

applies.

144

Case V: If a breakpoint nB is added to [uc, ua], we get new segments [uc, nb], [nc, uc] and

[nd, ua]. Node nB = µ(nb) = µ(nc) is connected to uB = µ(uc) by a single minor edge;

moreover, there is a chain of two edges {(uA, uB), (uA, nB)} starting with a fence which is

followed by a major edge, where uA = µ(ua). This chain corresponds to either of the order

constraints uA < nB < uB and uB < nB < uA, which satisfy criteria Cii2 (nI < vY < uX)

and Ci2 (uX < vY < nI) of the lemma, respectively.

Case VI: If both breakpoints nA and nB lie in [us, ve], with possibly u = v we obtain

segments [us, nb], [nc, na] and [nd, ve]. These are the same segments as in cases II-V and

the same arguments are valid.

Example 5.6. Figure 5.7A shows a zig-zag plot compatible with the major graph in B

(same as in Figure 5.5H), as well as different types of branches (C-E) which are part of the

associated major graph. For example, in Figure 5.7D we have nodes 1B, 2B corresponding

to the boundaries of segment [1c, 2b] in the zig-zag plot (Figure 5.7Aiii). We then find that

the two nodes are separated by a chain of edges starting with a fence, which is followed by

major edge (1A, 2B). In Figure 5.7Av we have segment [2d, 4a], and correspondent nodes

2B, 4A are connected by a chain of major edges, as shown in Figure 5.7Eii.

145

3a

2b

2c

3a

1d

i

ii

iii

iv

v

1-1

1

1A 3B 2B

0A 4B 4A 2A 3A 1B 0B

1

1

2

A

1

2

2-1

1b

1c

3b

3c

1a

2a

1d

3d 3

2B (vY)

1A 1B (ux)

1A (vY) 1B (uX)

1A(vY)

2B(ux)

4A (vY)

2B (ux)

3B

C D

E

i) ii)

1-1

1

1

2

2

2a

3

1c

1b
2d

2-1

3

1-1

1

1

2

2

2a

3

4b

1

4b

4c

4

3a

v

3d 3

2-1

3

1-1

1

1

2

2

2a

3

2

1-1

3-1

4

4d

1

1

1A 3B 2B

0A 4B 4A 2A 3A 1B 0B

B

2A 2B

1A 1B

3A 3B

4A 4B

3

1

2

2

3

Figure 5.7: Zig zag plot (A) and the nesting structure of different types of branches from
the major tree in B. The green regions in Ai-v indicate the inverted-duplicated region
during each ID Each branch connects a node uX (corresponding to the start bound us of
a segment [us, ve]) to a node vY (corresponding to the end bound ve of the same segment).
Red and blue colours indicate the start and the end parents, red-blue gradient indicate
both colours are possible in the structure; fill and dotted lines connect nodes to its major
and minor parents, respectively. B) Single fence edge (uX = 1B, vY = 1A). C) Single major
edge (where any of). Di) A chain starting with a fence and continuing with a series of
major edges. The two gradient coloured edges must be of opposite start-end (red-blue)
type. Dii) A chain of major edges.

146

Definition 5.7. Given an ID evolution E, the corresponding zig-zag plot Z and a chain

n1 → n2 → ... → nN of major edges in the major tree T (E), any type A node nj, j ≤ N

in C is called a left node if and only if na is a left end of a segment in Z, and right node

otherwise. Also, any type B node nj, j ≤ N in C is called a left node (resp. right node)

if and only if j < N and nj is the left (resp. right) parent of nj+1, or j = N and nb, nc are

formed as left (resp. right) ends of a segment. text

Lemma 5.5. Let E be an ID evolution and T (E), Z the corresponding major tree and

zig-zag plot. Let also nA, nB ∈ T (E) be two nodes bridged by a fence. Then nA, nB are of

opposite type left-right.

Proof. Consider adding two breakpoints nA, nB on a segment [us, ve]. We get new segments

[us, nb], [nc, na] and [nd, ve]. First assume us is a left end; then ve must be a right end. We

then find that nb, nc are of the same type right as ve, while na is of the same type left as us.

The same correspondence is true if we assume us is a right end, with left-right swapped.

Now we have the following two cases to consider:

i) us, na are left ends, ve, nc are right ends; then by Definition 5.7 µ(na) = nA is a left node

and µ(nc) = nB is a right node.

ii) us, na are right ends, ve, nc are left ends; then by Definition 5.7 µ(na) = nA is a right

node and µ(nc) = nB is a left node.

Thus we conclude that if nA, nB are connected by a fence they must be of opposite type

left-right.

text

Corollary 5.1. If any node has a major parental left node (resp. right), its minor parent

is the most recent common ancestor (in the major graph) of opposite type right (resp. left).

147

Proof. Now by Lemma 5.4 any two nodes µ(us) and µ(ve) corresponding to the boundaries

of a segment [us, ve] are either linked by a major edge, a minor edge or a fence. If a new

node x corresponding to a new breakpoint in this interval is formed, us and ve are the

major and minor parents, in some order. We will write L,R to indicate the left and right

end of segment [us, ve], respectively. We have five cases to check:

Case I: (ID numbers µ(L) < µ(R), major edge from µ(L) to µ(R)). Then x has minor

parent µ(L) and major parent µ(R). The minor parent µ(L) is then connected to x by the

chain of major edges µ(L)→ µ(R)→ x. Node x has a major parent of type right and the

minor parent µ(L) is the most recent ancestor of type left in the major graph.

Case II: (ID numbers µ(L) > µ(R), major edge from µ(R) to µ(L). Analogous to Case I;

swap L and R and left/right in argument.

Case III: (ID numbers µ(L) < µ(R), minor edge from µ(L) to µ(R)). Since µ(L) is the

left parent of µ(R), we must have order constraint µ(L) < µ(R); then we find by Lemma

5.4 that minor node µ(L) is connected to major µ(R) by a chain of major edges (or a fence

followed by major edges) of the form µ(L) → (n1)r → (n2)r → ... → (nI)r → µ(R) for

some internal nodes of type right. Now node x has major parental node µ(R) so there is

also a major edge µ(R)→ x. Together we have the chain of major edges µ(L)→ (n1)r →
(n2)r → ...→ (nI)r → µ(R)→ x. We then find x has a major of type right and the minor

µ(L) is the most recent ancestor of type left in the major graph.

Case IV: (ID numbers µ(L) > µ(R), minor edge from µ(R) to µ(L)). Analogous to Case

III; swap L,R and left/right in argument.

148

Case V: (ID numbers u = v, fence connecting µ(L) with µ(R)). Then the A parent is

the major one. We have two cases to consider:

Case Va: (major node µ(L) of type A). Then there is also a major edge µ(L) → x and

we have the chain consisting of a fence and a major edge µ(R)→ µ(L)→ x. We then find

x has a major of type left and the minor µ(R) is the most recent ancestor of type right in

the major graph.

Case Vb: (major node µ(R) of type A). Analogous to case Va, with L,R and left/right

swapped in argument.

We can now explain why minor edges can be removed from the Hasse diagram of an ID

evolution. As it happens in TDs, any set of nodes connected by a directed chain of major

edges is associated with a single ordering. text

Corollary 5.2. Consider any single directed chain of major edges connecting nodes {li, rj :

i = 1, ..., I, j = 1, ..., J} where any li is a left parent or the last node (of type left by

Definition 5.7) of the chain, and any rj is a right parent or the last node (of type right)

of the chain. Suppose furthermore that these nodes are in some order such that li is an

ancestor of li+1 for i = 1, 2, ..., I − 1, and rj is an ancestor of rj+1 for j = 1, 2, ..., J − 1.

These nodes have a single linear extension of the form:

l1 < l2 < < lI < rJ < < r2 < r1.

Proof. Now consider any sub-chain of nodes connected by major edges of the form l1 →
r1 → r2 → ... → rn. Then ri+1 has right major parent ri, so ri+1 < ri. Also, r1 has

left major parent l1 so l1 < r1. We also know that r2, ..., rn all have l1 as their minor

parent by Corollary 5.1, so l1 < ri for i = 2, 3, ..., I. Together we then have the single

order l1 < rn < ... < r2 < r1. If the chain then continues as a chain of type l nodes

149

rn → l′1 → l′2 → ... → l′m, we similarly find that l′1 < l′2 < ... < l′m < rn. However, l′1 has

minor parent l1 by Corollary 5.1 so l1 < l′1. We then find that these two orders combine

into the single order l1 < l′1 < l′2 < ... < l′m < rn < ... < r2 < r1. Thus we find that as

we move down a chain of nodes connected by major edges, the l and r nodes lie in one

single nested structure where the l nodes are increasing and the r nodes are decreasing in

reference position as we move down the major graph; a single linear extension.

Example 5.7. Consider the example of Figure 5.8. We have node 6B with left major

parent 5A, and we find that its minor parent is the most recent common ancestor of type

right, 2B. Similarly, 2B has major right parent 1B. Once more we find, by looking at the

whole chain of edges starting with a fence, that its minor parent is the most recent common

ancestor of opposite type left, 1A.

In order to formulate a theorem for the calculations of the number of linear extensions,

we need to fully describe some important typical features of inverted duplications. As

presented above, when dealing with IDs we have a particular type of B breakpoint, acting

as a bound of three different segments at the same time. This has great implications on

the structure of 2d-trees, as well as on the calculation of associated linear extensions. On

the other hand, breakpoints of type A always bound a single specific segment, similar to

what happens with TDs. Following are some crucial definitions about these two types of

breakpoints, and the corresponding nodes in the 2d-tree.

150

 l1 l2 l3 l4 r1 r2 r3

Reference

position

1B

2B

3B

4A

5A

6B

1A

Figure 5.8: The nesting structure of a branch of a major tree. Orange and green colours
indicate left and right parental nodes; red and blue colours indicate the start and the end
parents; fill and dotted lines connect nodes to its major and minor parents, respectively.

Corollary 5.3. Let uA be a type A node in a major tree T (E). Then we have exactly one

of the following two cases:

1. we have order constraint uA < v for all descendants v of u, or

151

2. we have order constraint uA > v for all descendants v of u.

Proof. Now, being node u of type A, we have unique corresponding segment end µ−1(uA) =

ua. Assume we have a chain of k ≥ 1 major edges down from uA. Then for any node xA/B

in such chain descending from uA, one the following cases holds:

Case I: x is of type A. Remind that any left/right segment end of type a corresponds to

a left/right A node by definition 5.7. Then we have 4 possible situations:

Case Ia: if ua and xa are both left ends of a segment, we find from Corollary 5.2 that the

order constraint uA < x holds;

Case Ib: if ua is a left end and xa is a right end of a segment, we find from Corollary 5.2

that the order constraint uA < xA holds;

Case Ic: if ua is a right end and xa is a left end of a segment, we find from Corollary 5.2

that the order constraint uA < xA holds;

Case Id: if ua and xa are both right ends of a segment, we find from Corollary 5.2 that

the order constraint xA > uA holds;

Case II: x is of type B. Keeping in mind Definition definition 5.7 we look at the following

cases:

Case IIa: if ua and xb are both left ends of a segment, then uA, xB are left nodes and we

find from Corollary 5.2 that the order constraint uA < xB holds;

Case IIb: if ua is a left end and xb is a right end of a segment, then uA is a left node, xB

is a right node and we find from Corollary 5.2 that the order constraint uA < xB holds;

Case IIc: if ua is a right end and xb is a left end of a segment, then uA is a right node,

xB is a left node and we find from Corollary 5.2 that the order constraint xB < uA holds;

Case IId: if ua and xb are both right ends of a segment, then uA and xB are right nodes

and we find from Corollary 5.2 that the order constraint xB < uA holds;

The above reasoning leads to the following conclusion: if uA is a left node then uA < xA/B

152

for all descendants xA/B, which corresponds to situation 1 of the lemma; if uA if a right node

then uA > xA/B for all descendants xA/B, which corresponds to situation 2. All possible

situations therefore satisfy one and exactly one of the cases described by the lemma.

Lemma 5.6. i)Suppose N = J +K +L branches descend from a single B node nB in the

major graph, such that

• J branches start with an edge labelled 1, and the xth branch, 1 ≤ x ≤ J , contains jx

descendant nodes

• K branches start with an edge labelled 2, and the yth branch, 1 ≤ y ≤ K, contains

ky descendant nodes

• L branches start with an edge labelled 3, and the zth branch, 1 ≤ z ≤ L, contains lz

descendant nodes

Suppose also that none of the daughter nodes in any branch descending from nB are

connected by a fence. Let j =
J∑
x=1

jx, k =
K∑
y=1

ky, l =
L∑
z=1

lz and m = j + k + l.

Then the number of linear extensions involving the associated m breakpoints is CB =(
j

j1,j2...jJ

) (
k

k1,k2...kK

) (
l

l1,l2...lL

) (
j+k
j,k

) J∏
x=1

φx
K∏
y=1

φy
L∏
z=1

φz. Here
(
j+k
j,k

)
is the number of ways

of intercalating the j nodes from all jx’s branches with the k nodes from all ky’s branches;

φx, φy, φz are the number of linear extensions associated with the xth branch with label 1,

the yth branch with label 2 and the zth branch with label 3, respectively.

ii) Suppose I branches descend from a single A node nA in the major graph, such that the

rth branch, 1 ≤ r ≤ I, contains ir descendant nodes. Suppose also that none of the daughter

nodes in any branch descending from nA are connected by a fence. Then the number of

linear extensions involving the associated m breakpoints is CA =
(

i
i1,i2...iI

) I∏
r=1

φr, where φr

153

is the number of linear extensions associated with the rth branch down node nA.

iii)Suppose 2 of the branches descending from a single node z in the major graph con-

tain m1 and m2 descendant nodes, respectively, and the two daughter nodes nA, nB of

z in these branches are connected by a fence. Let i, j, k, l be the number of nodes de-

scending from nA, and from node nB with labels 1, 2 and 3, respectively. We then as-

sociate the set of I + J + K + L branches down from A and from B to the product

CnA,nB
=
(

i
i1,i2...iI

)(
j

j1,j2...lJ

) (
k

k1,k2...kK

) (
l

l1,l2...lL

) (
j+k
j,k

)(
i+j+k+1
i+1,j+k

)
. Here we multiply the terms

associated to the branches down nodes nA, nB by the fence factor:
(
i+j+k+1
i+1,j+k

)
. Such factor

represents the number of ways of intercalating nA and its descendants with the nodes in all

jy and kz branches down node nB (i.e. the branches with label numbers 1 and 2).

Proof. i) We have φh linear extensions associated with any branch h down a node nB. If

we select one linear extension from each branch we have, by Corollary 5.2, N = J +K +L

orderings of the form:

(x
(h)
i1

)l < (x
(h)
i2

)l < ... < (x
(h)
imh

)r < (x
(h)
imh+1

)r

Here (x
(h)
ij

)l/r are the breakpoints represented by the nodes in branch h, and mh is the

number of descendants from nB in branch h. Now node nB is the common ancestor of the

N branches and so arises from the earliest ID. Then by Corollary 5.2 we find that nB is

restricted in position between all nodes n1,2 from all branches of type 1 and 2, and all n3’s

from type 3 branches. Indeed, we have n1/n2 < nB < n3 or n1/n2 > nB > n3 for any

triplet n1, n2, n3. Now node nB is fixed in position and common to all N branches. Any

pair of nodes within a branch h have one relative order from the linear extension selected

from the φh possibilities of that branch. We then need to count the number of ways of

intercalating j1 nodes from the first branch of type 1, with j2 nodes from the second branch

of type 1, through to jJ nodes from the jth of type 1. We need the same counts for the ky’s

154

and lz’s branches. There are respectively
(

j
j1,j2,...,jJ

)
,
(

k
k1,k2,...,kK

)
and

(
l

l1,l2,...,ll

)
ways to do

this. Moreover, all j nodes from the branches of type 1 are unrestricted relative to all nodes

from type 2 branches, and the number of ways of intercalating the former set of nodes with

the latter is precisely
(
j+k
j,k

)
. Lastly, we notice that all l nodes from the lz branches are

restricted relative to the nodes from the other branches, thus we simply include the term

for the branches of type 3 into the general product.

ii) Applying the same reasoning as for case i, we find that by picking up a single order for

each branch h down a node nA, we get I orderings of the form

(x
(h)
i1

)l < (x
(h)
i2

)l < ... < (x
(h)
imh

)r < (x
(h)
imh+1

)r

where nA is either the leftmost or the rightmost node and can thus be ignored, while

mh is the number of descendants from nA in branch h. We have φI linear extensions

associated with any of such branches. Additionally, we need to count the number of ways

of intercalating i1 nodes from branch 1, with i2 nodes from branch 2, through to the nodes

from the last, I th branch: there are
(

i
i1,i2,...,iI

)
ways to do that.

iii) We now consider the case of a fence between two daughter nodes nA and nB of a node

z, which results in either of the extra conditions nA < nB and nA > nB. Since nA, nB are

connected by a fence, they must be of opposite type left-right by Lemma 5.5. Let nl, nr

be the left and right nodes from {nA, nB}. By Corollary 5.2, if z is of type l the branches

down nodes nA, nB will take the form:

(z)l < nl < (x
(1)
i2

)l < ... < (x
(1)
im1

)r

(z)l < (x
(2)
i1

)l < ... < (x
(2)
im2−1

)r < nr

155

Otherwise they will have the form

nl < (x
(1)
im2

)l < ...(x
(1)
im1

)r < (z)r

(x
(2)
i1

)l < ...(x
(2)
im2−1

)r < nr < (z)r

Here (x
(1)
ij

)l/r and (x
(2)
ij

)l/r are the breakpoints represented by the nodes descending from

nA and nB, respectively. We need the combinatorial terms
(

i
i1,i2...iI

) (
j

j1,j2...lJ

) (
k

k1,k2...kK

)
and

(
l

l1,l2...lL

)
for all distinct sets of branches down nodes nA, nB, as well as the term

(
j+k
j,k

)
accounting for the intercalation between nodes from branches of type jx and type ky. Now,

the presence of the fence implies that although we have the constraint nl < nr (nA, nB

in some order), nodes down nA (inclusive) are not restricted with respect to nodes from

branches of type jx and type ky. Thus we add the fence factor
(
i+j+k+1
i+1,j+k

)
, where 1 accounts

for node nA, representing the number of ways of intercalating these 3 sets of branches given

the constraint nl < nr.

Example 5.8. Consider Figure 5.5H. We have nodes 1A, 1B bridged by a fence. We have

five daughter nodes of 1A, and single daughter node 2A descending from 1B with label

number 1. We then have i = 5, j = 1, k = 0, and the count for the fence factor is(
5+1+0+1
5+1,1+0

)
= 7. Consider now node 3B: we have a branch of type 2 with single node 4A, a

branch of type 3 with single node 4B, and no type 1 branches. We notice that 4A and 4B

are restricted to each other, based on the branch types they belong to. Also, each branch is

associated with a single linear extension: φy = φz = 1 We then find, using the formula of

Theorem 5.2 for B nodes, that 3B is associated with number
(
0
0

)
·
(
1
1

)
·
(
1
1

)(
1
0,1

)
· 1 · 1 = 1.

Noticing that also all other nodes are associated with a count of 1, we conclude that we

have 7 linear extensions for the 2-d tree of Figure 5.5H.

We are now able to formulate a Proof for the following Theorem, allowing for the count of

linear extensions of a 2-d tree:

Theorem 5.2. Let the nodes 0A, 0B and daughter edges be removed from the graph. For

156

each node x remaining let x1, ..., xK denote the number of nodes that are present in each of

K descending branches. If any pair of daughter nodes are connected by a fence, the fence

contributes a factor
(
i+j+k+1
i+1,j+k

)
. We then associate the number m(nA) =

(
i

i1,...,iI

)
if n is of

type A, and m(nB) =
(

j
xj,1,...,xj,J

)
·
(

k
xk,1,...,xk,K

)
·
(

l
xl,1,...,xl,L

)
·
(
j+k
j,k

)
. The number of distinct

evolutions is then the product of these terms across nodes and fences.

text

Proof. (Proof of Theorem 5.2) Any ID evolution starts with segment [0a, 0b] being divided

into 3 new segments [0a, 1b], [1c, 1a] and [1d, 0b]. All segments produced later in the evolution

will always have at least one parental node with an ID number greater then 0 so the only

major edge from 0A leads to 1B and the only major edge from 0B leads to 1A. Then 0A

and 0B both have single branches descending. Now, applying Lemma 5.6 to any node with

a single descending branch containing n nodes results in a combinatorial term of the form
n!
n!

= 1(lemma 5.2). The combinatorial factors from 0A and 0B can thus be ignored. For

the remaining nodes we see from Lemma 5.6 that the orders φm associated with nodes

in individual branches are multiplied into the combinatorial terms associated with the

parental node. For A nodes, the single term
(

i
i1,i2...iI

)
is multiplied into the product of

the φr’s across every descending branch. For B nodes, we have a combinatorial term for

each of the three sets of branches labelled with numbers 1, 2, 3, multiplied into the products

across the φj’s, φk’s and φl’s; we also account for the possible intercalation among branches

of type 1 and 2 by adding a factor
(
j+k
j,k

)
. Lastly, if a fence is present we add the factor(

i+j+k+1
i+1,j+k

)
to the general product.

5.4 The size of ID space

We have seen how to represent an ID process as an automaton on words, as well as how

to obtain the number of ID-Evolutions represented by a specific word evolution from the

corresponding major graph. Following the same procedure adopted for TDs, we now look

157

at the problem of determining the total number of ID-Evolutions.

In Figure 5.6 we see all eleven evolutions that arise from two IDs; one single evolution

corresponding to each of the words 1122 and 1221, three corresponding to 1122, one evolu-

tion corresponding to 1121
−1

2, three corresponding to 121−121 and the last two evolutions

corresponding to word 1121
−1

1−12.

Looking at the complete space of structures arising from the first 3 inverted duplications,

we found the following counts: N1 = 1,N2 = 11,N3 = 627. This is indeed what we found

for Tandem Duplication (Table 4.1), suggesting that the two duplication processes, despite

being clearly different, might share the same evolutionary space size. The results for 1 to

3 events have been obtained by manually calculating the sum over all major graphs of the

number of liner extensions, as well as computationally.

Next, we discuss how the induction of evolutions works for IDs, and describe some impor-

tant combinatorial properties we have been able to identify.

5.5 Induced evolutions

For the inducement of ID evolutions we will partly rely on the notation previously used

for TDs, as well as on the concepts we have introduced early in the chapter.

We shall first prove that, similar to TDs, any word evolution E ′ ∈ En+1 can be uniquely

represented as an induced evolution from some word evolution E ∈ En.

Lemma 5.7. Let D(E) be the process where we remove all copies of ID symbols 1 and

1 from word evolution E and reduce each symbol by 1. This process has the following

properties:

i) If E ∈ En+1, then D(E) ∈ En is a valid ID word evolution.

ii) For any word evolution E ∈ En, there exists a word evolution E ′ ∈ En+1 such that

158

D(E ′) = E.

Proof. i) Any evolution E starts with trivial word 11. The next ID in E results in 6 possible

word evolutions: [11 → 1122], [1 → 1221], [1 → 2211], [1 → 1121
−1

2], [1 → 121−121] or

[1 → 1121
−1

1−12]. For all these six choices, removing symbols 1, 1 from the evolution

leaves us with 22, which become 11 when the symbols are reduced in value by 1. Thus we

obtain the correct initial word for D(E). Now the word evolution is constructed by the ID

word automaton as a mapping of the form AXB → AX(n+ 1)X−1(n+ 1)B, for possibly

empty subwords A, X or B, for the (n+ 1)th ID. If we remove all copies of the symbols 1

and 1 from the subwords A, X and B, and reduce all symbols by 1, to give A∗, X∗ and B∗,

respectively, we get a mapping of the form A∗X∗B∗ → A∗X∗nX∗−1nB∗ which is a valid

step in the nth iteration of the ID word automaton, as required.

ii) For any evolution E = [X1 → X2 → X3 → ... → Xn] from En we simply construct

E ′ = [11→ 11X ′1 → 11X ′2 → 11X ′3 → ...→ 11X ′n] where word X ′i is obtained from Xi by

increasing each symbol by 1. This is a valid word evolution in En+1. Then applying D to

E ′ recovers E, as required.

We now highlight a possible approach with an example. First we need some notation for

the branches descending from the two roots 1A, 1B in any major graph Tmaj(E
′). We call

any descendant from a B node a type 1, 2 or 3 node after the label number of the edges

in the branch it belongs to. We also let i, j, k be respectively: the number of descendants

from node 1A plus one; the number of descendants from node 1B of type 1 and 2, plus

one; the number of descendants from node 1B of type 3, plus one. We will also use round

normal brackets to represent triplets of counts (i, j, k), and square brackets to indicate the

number of linear extensions associated with a particular graph.

A motivating example

Consider the original evolution

11→ 1121
−1

2

159

which becomes

22→ 2232
−1

3

after increasing ID numbers by 1. The original 2-d tree is shown in Figure 5.10i, and is

associated with a number of orders n(T) = 1. For this example, we have a range of 15

possible induced evolutions, shown in Figure 5.9. The correspondent major trees are shown

in Figure 5.10. If we look at the patterns of (i, j, k) counts across this set of major trees,

we note the following:

• If we sum over induced trees with identical (i, j, k) triplets we get combinatorial term(
i+j−1
i,j−1

)
n(τ)

• The sum i+ j + k = N = 2n+ 1 = 7 has a fixed total

• Summing all entries for a fixed k value results in term (2N−k−1 − 1) · n(τ)

Moreover, we notice that the total number of induced evolutions is 1+3+7+15+31 = 57,

and n(τ) · 22n− (2n− 1) = 1 · 26− (6− 1) = 57, in agreement with Theorem 4.3 of Tandem

Duplication. We now try to relate the counts across k values with the recursion of Theorem

4.3. Now, the sum of the first 2n elements of a geometric progression [41] with common

ratio 2 is given by:

2n−1∑
m=0

2m = 22n − 1 (9)

We have a range of possible values k = {1, 2, ...2n − 1} (2n = 6 in the example of Figure

5.10). Substituting these values into the count (2N−k−1−1) ·n(τ) presented above, we find

160

that the exponent m = N − k − 1 has possible values {N − (2n− 1)− 1, N − (2n− 2)−
1, ...N −2}. Then replacing N with 2n+1 we find m ∈ {1, 2, ...2n−1}. We can then write

the sum of counts across m values as follows:

2n−1∑
m=0

(2m − 1) = 22n − 1− 2n+ 1 =
2n−1∑
m=1

(2m − 1) =

22n − 2− 2n+ 1 = 4n − (2n+ 1)

(10)

Such term must be multiplied by the number n(τ) of linear extensions in the original major

tree, thus obtaining exactly the same formula as in Theorem 4.3.

161

112232-13 (a)

12232-131 (b)

122131-12-13 (c)

 2232-1311 (d)

1221

221131-11-12-13 (f)

 22131-12-131 (e)

2211

121-1232-131 (g)

121-12131-12-13 (h)

121-1232-1131 (i)

121-12131-12-113 (j)

1121-1232-13 (k)

1121-1232-113 (l)

1121-11-1232-13 (m)

1121-11-1232-113 (n)

1121-11-1232-1113 (o)

121-121

1121-11-12

1121-12

1122 11 I

II

III

IV

V

VI

Figure 5.9: Full set of evolutions induced from 11→ 1121
−1

2. Choices for the second event
are labelled with Roman numbers.

162

3

3A 3B

2A 2B

1A 1B
1

1

3A 3B

2A 2B

1A 1B
1

1

3A 3B

2A 2B

1A 1B
1

1

3A 3B

2A 2B

1A 1B
1

3

3A 3B

2A 2B

1A 1B

1

3A 3B

2A 2B

1A 1B

1

2

3

3A 3B

2A 2B

1A 1B

1

2 3

3A 3B

2A 2B

1A 1B
3

3

3

3A 3B

2A 2B

1A 1B

3

3A 3B

2A 2B

1A 1B

3

3A 3B

2A 2B

1A 1B

3

3

3A 3B

2A 2B

1A 1B

3

3

2

3A 3B

2A 2B

1A 1B

3

31

3A 3B

2A 2B

1A 1B

3

31

3A 3B

2A 2B

1A 1B

3

31

2

(1,1,5)

[1]

(a)

(5,1,1)

[1]

(b)

(4,1,2)

[1]

(c)

(1,5,1)

[5]

(d)

(2,4,1)

[10]

(e)

(1,4,2)

[4]

(f)

(3,3,1)

[10]

(g)

(2,3,2)

[6]

(h)

(4,2,1)

[5]

(i)

(3,2,2)

[4]

(j)

(3,1,3)

[1]

(k)

(2,1,4)

[1]

(l)

(1,3,3)

[3]

(m)

(2,2,3)

[3]

(n)

(1,2,4)

[2]

(o)

2A 2B

1A 1B
2

3

2A 2B

1A 1B

3

(2,1,2)

[1]

(1,5,1) 5 (d)

(2,4,1) 10 (e)

(3,3,1) 10 (g) k=1

(4,2,1) 5 (i)

(5,1,1) 1 (b)

(1,4,2) 4 (f)

(2,3,2) 6 (h)

(3,2,2) 4 (j)

(4,1,2) 1 (c)

(1,3,3) 3 (m)

(2,2,3) 3 (n) k=3

(3,1,3) 1 (k)

(1,2,4) 2 (o)
(2,1,4) 1 (l)

(1,1,5) 1 (a) k=5
k=2

k=4

i)

ii)

iii)

I II III

IV V

VI

3

3

Figure 5.10: ii) Full set of major trees for the evolutions induced from 11 → 1121
−1

2
(major graph shown in i). Roman numbers label subsets of evolutions corresponding to
the same connection evolution, in a similar way to Figure 5.9. Red and blue edges connect
each node respectively to its start and to its end parent (when present). At the bottom of
each graph, the corresponding (i, j, k) triplet is shown, as well as the number of orders in
square brackets. iii) Counts across (i, j, k) triplets are shown, grouped according to the k
value.

163

5.6 Conclusions

The description given above must be the base for a generalisation of the β-trees used

for tandem duplications [89]. Although we did not manage to generalise the TD results

fully for IDs, we calculated the total size of the ID space up to the third event, using

both a manual and a computational construction of evolutions. This was combined with

additional trials for n > 3 step evolutions, giving support to the assumption of a number of

evolutions identical to TDs. However, the differences in the two processes are evident when

we look at the space of word evolutions, increasing at a higher rate in inverted duplications

(see Table 5.1); if the evolutionary spaces have indeed the same size, this would imply a

’compensation’ between the number of word evolutions and the number of linear extensions

associated with each of them. What is still lacking is a clear definition of β-subtrees [89] for

inverted duplications. Such step forward would allow for an attempt to prove the recursion

on the total number of evolutions for inverted duplication, most probably using the same

induction approach applied to TDs in [89].

164

6 Discussion

6.1 Biological implications of the project

This PhD project has combined the applied bioinformatics works of Chapters 2 and 3 with

more mathematical and theoretical studies, presented in Chapters 4 and 5. The Eule-

rian path approach and the rearrangement evolution algorithm address the challenge of

gaining a deeper understanding of cancer genome architecture, with the additional power

of visualising a set of likely intermediate steps, separating the reference from the rear-

ranged genome sequence. Such methods thus have the potential of elucidating the path

taken by cancer cells towards the final karyotype, a series of transformations associated

with increased tumour aggression (proliferative advantage and high survival rates). The

comparison of early-mild versus late-aggressive cancer stages can potentially highlight the

link between rearrangements and tumour aggression. An extremely interesting aspect is

represented by the comparison of structural variation and genome evolution between dif-

ferent patients. One could possibly identify common rearrangements, acting as signatures

of the pathology (similar to the Philadelphia translocation [67]). Analyses at multiple

stages of cancer progression could even identify different early-stage karyotypes leading to

an identical, late-stage genome. These cases are predicted by our model of rearrangement

evolution, and potentially have serious implications in cancer prognosis. Analysis of the

sequences flanking the breakpoints inferred from discordant paired end reads could identify

signatures of extensive or short sequence homologies. The presence of microhomologies at

junctions associated with copy number changes would support replication based mecha-

nisms like MMBIR. The comparison of these observations with generated valid evolutions

would be of great interest, giving additional indications towards some particular solutions

proposed by the algorithm. Moreover, such analyses could be used in order to infer the rel-

ative contribution of different rearrangement types (including NAHR,MMBIR and NHEJ)

to the aberrant cancer genome architectures.

Along with cancer genomics, the algorithmic approach of Chapter 2 has a clear appli-

165

cability to any pathological condition associated with structural variants. For instance,

the Potocki-Lupsk syndrome is known to be caused by recurrent duplications, and repli-

cation based mechanisms of DNA repair are a possible explanation of these structural

changes [118]. An other exciting application could be represented by the study of species

evolution. Many organisms, especially Eukaryotes, have undergone extensive structural

changes during their evolution, which can sometimes provide the necessary background

for their adaptation to the environment. One could look at the extent of structural and

copy number variation along different evolutionary time scales, performing pairwise species

comparisons. The availability of genome assemblies for many Eukaryotic organisms would

represent an important, additional information for the validation of constructed evolutions,

and would imply the reformulation of Problem 3.1 into the challenge of reconstructing a

known, target genome sequence (similar to the classical rearrangement distance problem

[114, 47, 88, 46, 49, 50, 44]). The combinatoric studies of gene duplication provide a pic-

ture of the complete space of possibilities arising from a single rearrangement type. This

picture also includes a set of possible copy number profiles. Comparing them to karyotypes

from cancer patients would give insights on the possible evolutions leading to that genomic

sequence, in a similar way of what could be done using the approach of chapter 2. The

tightest link between our theoretical study and any applied work is represented by temporal

words. Indeed, when studying a rearranged genomic sequence using paired end data, the

chronological order in which somatic connections were introduced is unknown, differently

from the case of connection evolutions used to infer the TD space. Thus, the study of

temporal words we carried on has potential applications for the inference of chronological

orders of TD events, provided the complete rearranged sequence is available.

6.2 General conclusions

In this PhD project we have touched on different research areas in combinatorics, linear

algebra, informatics and genomics, keeping all the subject together thanks to the com-

166

mon link with cancer large-scale rearrangements. Our first work was the Eulerian cycles

approach, generating cancer karyotypes without giving any insights on the intermediate

evolutionary steps leading to the final sequence. An equivalent approach has been recently

published [83], although showing slight differences in the graph representation: specifi-

cally, the adjacency graph (as the authors call the equivalent of our bidirected graphs) is

an undirected graph where every node correspond to a segment end, similar to the break-

point graphs described in [8, 47]; in our directed graphs, every node rather represents an

entire DNA segment with a specific orientation, forward or reverse. The study presented

in [83] explored some additional aspects of the general genome reconstruction problem:

in the case where the copy number vector is unknown, the authors proposed a method of

maximum likelihood assignment of edge multiplicities in the graph, based on observed read

depth data. The possibility of telomere loss is also discussed, and a method is proposed

to detect these events based on drops in read depth signal. Conversely, our work explored

the problem of constructing directed graphs from the original bidirected graph and copy

number vector in more detail, introducing a Gröbner basis approach for the inference of

edge multiplicity.

We are aware of a series of limitations for our Eulerian cycle approach; as a consequence

of exploring a space full of potential solutions, the construction of directed graphs soon

becomes inefficient as the numbers of nodes and edges increase; an additional limiting

factor relates to the computational effort in constructing the arborescences for each graph.

As for the set of consistent Eulerian cycles obtained from directed graphs, the approach

does not allow for the distinction of different order of events, or the nature of the underlying

rearrangements.

In this research context, an unresolved matter is the calculation of a probability for each

chronological order of somatic connections. In the case of copy-neutral rearrangements,

parsimony models have been developed [46] and applied to cancer genome analysis [93].

Order information have also been inferred by looking at cluster of rearrangements with

duplications [92] or by combining duplications and single-nucleotide mutations data [44,

30].

167

Further limitations concern the available input data. Mapping of discordant paired reads is

typically difficult for structural variants in repetitive regions of the human genome, possibly

causing missing or incorrect somatic connections in the data. These regions also represent

a challenge for the estimation of read depth. Moreover, our method assumes the presence

of a single genome in the cancer sample, while a cancer cell population will typically consist

of an heterogeneous mix of genetically different sub-populations. Lastly, our method gives

little insight on the molecular mechanisms underlying the complex structural and copy

number changes.

The algorithmic reconstruction approach was designed to further improve our possibili-

ties of highlighting the molecular basis of rearrangements, gaining insights about genomic

structures at intermediate stages of an evolution, as well as solving some intrinsic limita-

tions of the Eulerian cycle approach. Higher complexity graphs can be considered, and

the effect of specific rearrangements operations and orders evaluated. Despite these advan-

tages, the high number of valid solutions can sometimes represents a limitation. Typically,

we observe that the available input information identifies a set of optimal solutions, rather

than a unique explanation. This might well be the direct consequence of the limited input

information used for our inferences. However, it is also a representation of the wide space

these rearrangements operate on: a result of both the combinatorial explosion of possible

chronological orders, and the high number of choices in the introduction of every single

operation. Any attempt to limit the number of solutions should not reduce the range

of operations included in the algorithm, crucial for a complete description of biologically

meaningful mechanisms. The next step would rather be to focus on additional input in-

formation for the algorithm. Recent studies, for example, often provide information about

the relative contribution, for each genomic region, of the maternal and paternal copies of

the chromosomes. This information is typically derived from SNP (Single Nucleotide Poly-

morphism) array, and is widely used for the study of copy number variation, especially in

cancer. Extending the current approach by including this type of input data would prob-

ably help limiting the number of optimal solutions. However, the identification of unique

solutions without any associated information loss is likely to represent am utopia.

168

A wide range of algorithms for sorting a rearranged genome into a reference have been

developed, including the following major contributions: [114, 47, 46, 49, 50, 40, 8, 7].

However, we addressed the problem of constructing an evolution forward in time with the

crucial constraint of avoiding breakpoint reuse; moreover, our method includes an original

modelling of microhomology based repair mechanisms leading to gene amplification, in an

attempt to achieve a refined, more complete description of rearrangements associated with

copy number variation.

Chapters 4 fully describes the structures arising from a TD process, providing a method

to count the number of evolutions associated with a specific connection evolution. These

findings lead to the main result that we have published in [89], where a formula for the

complete space of TD evolutions is presented. Thus, we have observed the over-exponential

growth of the number of different TD evolutions, which makes a full exploration of the space

beyond 4 TD events computationally very demanding. Such space is a specific subset of

evolutions for the reconstruction algorithm described in chapter 3, as TD can arise by an

intrachromosomal BIR operation. We have also shown that the number of copy number

vectors grows at a slower rate than the TD space, meaning that each of these vectors may

correspond to a variety of evolutions. Such situation parallels the observations made for

our algorithmic reconstruction approach (Chapter 3), indicating that our input information

does not contain enough information to identify unique solutions.

A parallel challenge has been represented by the description of the geometric properties of

TD connection words. Our findings has allowed for the development of a graph represen-

tation (temporal posets) of chronological order constraints associated with a word, useful

when no a priori knowledge on the order of events is available. Such information can be

used for a reliable inference of the number of TD evolutions associated with a specific word

structure. However, as a result of the complex structure of these graphs, we were unable to

derive a formula for an easy calculation of the number of solutions, as for the breakpoint

ordering problems. A precise definition of the poset graph properties (which take the easier

form of a 2-d tree for breakpoint-ordering problem) is still lacking. Moreover, we found

169

that the complexity of TD word structures sometimes makes it hard to identify all order

relations associated with a specific word. Precisely, simple patterns of duplication can be

highly modified by newly added symbols, and a complete generalisation of the resulting

structures is still missing from this study.

Despite the similarities with TDs, the description of the ID space in chapter 5 has proven

much more challenging. The presence of two different types of connections, as well as three

different types of edges down from B nodes in a 2-d tree, makes the model more difficult

to tract. Moreover, the presence of inverted segments implies that the correspondence a

node-left segment ends, and b nodes-right segment ends is lost when dealing with IDs.

Nevertheless, we have introduced a modified algebraic representation along with new types

of 2-d trees and zig-zag plots, allowing for a complete description of the process. Similar

to TDs, we have observed that the number of copy number profiles increases very slowly

compared to the number of ID evolutions, leading to equivalent problems in the analysis of

real data. As a consequence of the introduction of two new connections per event, different

from the single connection of TDs, the number of words increases faster, as well as the

maximum word size for k events.

Although manual and computational calculations strongly indicated that the number of

solutions is identical to TDs, we were not able to formally prove this observation. Addi-

tional work is needed to elucidate the exact rules for inducing evolutions, with an approach

parallel to what was done for TDs [89].

Inverted duplications do not correspond to any single connection operation described in

chapter 3. They can rather result from a series of 2 operations, corresponding to a couple

of connections x, x in the ID algebraic formalism.

The methods here used for TDs and IDs, together with those developed for the description

of Breakage Fusion Bridge cycles [43] suggest there may be a more general space in which

all different types of rearrangements operate and these methods apply; a generalization

of these methods to the combined space of these rearrangement processes could lead to a

deeper understanding of cancer genome evolution.

170

Highlighting the mechanisms responsible for cancer development, as well as confidently

inferring the aberrant cancer genomic organisation, will require a strong effort from the

scientific community; however, technological advances have dramatically changed the way

this pathology is studied, shading light on its genomic features and associated mutation

mechanisms; this description has reached a level of detail which would have been hard

to imagine just a few decades ago. Knowledge from biology, mathematics, informatics,

chemistry, sequencing technology and many other fields can now, as never before, create a

powerful combination of expertises, whose potential has just started to be understood. This

charming interdisciplinary research, tightly related with team working and international

collaborations, is likely to be the key of our major steps towards better cancer treatments.

And that is, indeed, what research is always about: gaining some knowledge, and seeking

the next step forward.

171

References

[1] T. Aardenne-Ehrenfest and N.G. Bruijn. Circuits and trees in oriented linear graphs.

Simon Stevin: Wis-en Natuurkundig Tijdschrift, 28:203, 1951.

[2] William W Adams and Philippe Loustaunau. An introduction to Gröbner bases,

volume 3. American Mathematical Society Providence, 1994.

[3] Anjali S Advani and Ann Marie Pendergast. Bcr–abl variants: biological and clinical

aspects. Leukemia research, 26(8):713–720, 2002.

[4] Andrés Aguilera and Belén Gómez-González. Genome instability: a mechanistic view

of its causes and consequences. Nature Reviews Genetics, 9(3):204–217, 2008.

[5] David P. Clark and. Molecular Biology. Academic Cell, 2009.

[6] O.T. Avery, C.M. MacLeod, and M. McCarty. Studies on the chemical nature of the

substance inducing transformation of pneumococcal types induction of transforma-

tion by a desoxyribonucleic acid fraction isolated from pneumococcus type iii. The

Journal of experimental medicine, 79(2):137–158, 1944.

[7] Martin Bader and Enno Ohlebusch. Sorting by weighted reversals, transpositions,

and inverted transpositions. In Research in Computational Molecular Biology, pages

563–577. Springer, 2006.

[8] Vineet Bafna and Pavel A Pevzner. Genome rearrangements and sorting by reversals.

SIAM Journal on Computing, 25(2):272–289, 1996.

172

[9] Gary Benson. Sequence alignment with tandem duplication. Journal of Computa-

tional Biology, 4(3):351–367, 1997.

[10] Gary Benson. Tandem repeats finder: a program to analyze DNA sequences. Nucleic

acids research, 27(2):573, 1999.

[11] Gary Benson. Tandem cyclic alignment. In Combinatorial Pattern Matching, pages

118–130. Springer, 2001.

[12] Gary Benson and Lan Dong. Reconstructing the duplication history of a tandem

repeat. In ISMB, pages 44–53, 1999.

[13] Jon Louis Bentley. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM, 18(9):509–517, 1975.

[14] Denis Bertrand and Olivier Gascuel. Topological rearrangements and local search

method for tandem duplication trees. Computational Biology and Bioinformatics,

IEEE/ACM Transactions on, 2(1):15–28, 2005.

[15] Denis Bertrand, Mathieu Lajoie, and Nadia El-Mabrouk. Inferring ancestral gene

orders for a family of tandemly arrayed genes. Journal of Computational Biology,

15(8):1063–1077, 2008.

[16] Denis Bertrand, Mathieu Lajoie, and Nadia El-Mabrouk. Inferring ancestral gene

orders for a family of tandemly arrayed genes. Journal of Computational Biology,

15(8):1063–1077, 2008.

173

[17] Graham R Bignell, Thomas Santarius, Jessica CM Pole, Adam P Butler, Janet Perry,

Erin Pleasance, Chris Greenman, Andrew Menzies, Sheila Taylor, Sarah Edkins,

et al. Architectures of somatic genomic rearrangement in human cancer amplicons

at sequence-level resolution. Genome research, 17(9):1296–1303, 2007.

[18] Mathilde Bouvel and Elisa Pergola. Posets and permutations in the duplication–

loss model: Minimal permutations with d descents. Theoretical Computer Science,

411(26):2487–2501, 2010.

[19] Mathilde Bouvel and Dominique Rossin. A variant of the tandem duplicationrandom

loss model of genome rearrangement. Theoretical Computer Science, 410(8):847–858,

2009.

[20] T. Boveri. Zur frage der entstehung maligner tumoren. Gustav Fischer, 1914.

[21] Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3):225–

242, 1991.

[22] F Buekenhout and M Parker. The number of nets of the regular convex polytopes

in dimension 4. Discrete mathematics, 186(1):69–94, 1998.

[23] P.J. Campbell, P.J. Stephens, E.D. Pleasance, S. O’Meara, H. Li, T. Santarius,

L.A. Stebbings, C. Leroy, S. Edkins, C. Hardy, et al. Identification of somatically

acquired rearrangements in cancer using genome-wide massively parallel paired-end

sequencing. Nature genetics, 40(6):722–729, 2008.

[24] J Marshall MR Stratton PJ Campbell CD Greenman, SL Cooke. Modelling breakage-

fusion-bridge cycles as a stochastic paper folding process. arXiv, page 1211.2356,

174

2013.

[25] Pamela C Champe, Richard A Harvey, and Denise R Ferrier. Biochemistry. Lippin-

cott Williams & Wilkins, 2005.

[26] J.K. Conner and D.L. Hartl. A Primer of Ecological Genetics. Sinauer Associates,

2004.

[27] John K Cowell. Molecular genetics of cancer. Gulf Professional Publishing, 2001.

[28] Elizabeth R Cregan. All About Mitosis and Meiosis. Capstone, 2010.

[29] UC San Diego. Covaris DNA shearing. http://htg.ucsd.edu/services/covaris,

2013.

[30] Steffen Durinck, Christine Ho, Nicholas J Wang, Wilson Liao, Lakshmi R Jakkula,

Eric A Collisson, Jennifer Pons, Sai-Wing Chan, Ernest T Lam, Catherine Chu,

et al. Temporal dissection of tumorigenesis in primary cancers. Cancer discovery,

1(2):137–143, 2011.

[31] Nature Education. Glossary. http://www.nature.com/scitable/glossary, April

2013.

[32] Dan TA Eisenberg. An evolutionary review of human telomere biology: the thrifty

telomere hypothesis and notes on potential adaptive paternal effects. American Jour-

nal of Human Biology, 23(2):149–167, 2011.

175

http://htg.ucsd.edu/services/covaris
http://www.nature.com/scitable/glossary

[33] Greg Elgar, Tanya Vavouri, et al. Tuning in to the signals: noncoding sequence

conservation in vertebrate genomes. Trends in genetics: TIG, 24(7):344, 2008.

[34] National Center for Biotechnology Information(NCBI). Human genome assembly

data. http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

data, 2015.

[35] Simon A Forbes, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi Bindal,

Harry Boutselakis, Minjie Ding, Sally Bamford, Charlotte Cole, Sari Ward, et al.

Cosmic: exploring the world’s knowledge of somatic mutations in human cancer.

Nucleic acids research, 43(D1):D805–D811, 2015.

[36] M.J. Fullwood, C.L. Wei, E.T. Liu, and Y. Ruan. Next-generation DNA sequencing

of paired-end tags (pet) for transcriptome and genome analyses. Genome research,

19(4):521–532, 2009.

[37] D. Futuyma. Evolution. Sinauer Associates, 2009.

[38] Jean Gallier. Discrete Mathematics. 2011. Springer.

[39] Olivier Gascuel, Michael D Hendy, Alain Jean-Marie, and Robert McLachlan. The

combinatorics of tandem duplication trees. Systematic Biology, 52(1):110–118, 2003.

[40] Simon Gog, Martin Bader, and Enno Ohlebusch. Genesis: genome evolution scenar-

ios. Bioinformatics, 24(5):711–712, 2008.

[41] Eric Gosset. Discrete mathematics with proof. 2009. Wiley-Blackwell.

176

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data

[42] C.D. Greenman, G. Bignell, A. Butler, S. Edkins, J. Hinton, D. Beare, S. Swamy,

T. Santarius, L. Chen, S. Widaa, et al. Picnic: an algorithm to predict absolute

allelic copy number variation with microarray cancer data. Biostatistics, 11(1):164–

175, 2010.

[43] CD Greenman, SL Cooke, J Marshall, MR Stratton, and PJ Campbell. Modeling

the evolution space of breakage fusion bridge cycles with a stochastic folding process.

Journal of mathematical biology, pages 1–40, 2015.

[44] Chris D Greenman, Erin D Pleasance, Scott Newman, Fengtang Yang, Beiyuan Fu,

Serena Nik-Zainal, David Jones, King Wai Lau, Nigel Carter, Paul AW Edwards,

et al. Estimation of rearrangement phylogeny for cancer genomes. Genome research,

22(2):346–361, 2012.

[45] Robert C Griffiths and Paul Marjoram. Ancestral inference from samples of dna se-

quences with recombination. Journal of Computational Biology, 3(4):479–502, 1996.

[46] Sridhar Hannenhalli and Pavel A Pevzner. Transforming men into mice (polynomial

algorithm for genomic distance problem). In Foundations of Computer Science, 1995.

Proceedings., 36th Annual Symposium on, pages 581–592. IEEE, 1995.

[47] Sridhar Hannenhalli and Pavel A Pevzner. Transforming cabbage into turnip: poly-

nomial algorithm for sorting signed permutations by reversals. Journal of the ACM

(JACM), 46(1):1–27, 1999.

[48] D. Hansemann. Ueber asymmetrische zelltheilung in epithelkrebsen und deren biol-

ogische bedeutung. Virchows Archiv, 119(2):299–326, 1890.

177

[49] Tzvika Hartman and Ron Shamir. A simpler and faster 1.5-approximation algorithm

for sorting by transpositions. Information and Computation, 204(2):275–290, 2006.

[50] Tzvika Hartman and Roded Sharan. A 1.5-approximation algorithm for sorting

by transpositions and transreversals. Journal of Computer and System Sciences,

70(3):300–320, 2005.

[51] PJ Hastings, Grzegorz Ira, and James R Lupski. A microhomology-mediated break-

induced replication model for the origin of human copy number variation. PLoS

genetics, 5(1):e1000327, 2009.

[52] PJ Hastings, James R Lupski, Susan M Rosenberg, and Grzegorz Ira. Mechanisms

of change in gene copy number. Nature Reviews Genetics, 10(8):551–564, 2009.

[53] Karen E Hermetz, Scott Newman, Karen N Conneely, Christa L Martin, Blake C

Ballif, Lisa G Shaffer, Jannine D Cody, and M Katharine Rudd. Large inverted

duplications in the human genome form via a fold-back mechanism. PLoS genetics,

10(1), 2014.

[54] J. Hicks, A. Krasnitz, B. Lakshmi, N.E. Navin, M. Riggs, E. Leibu, D. Esposito,

J. Alexander, J. Troge, V. Grubor, et al. Novel patterns of genome rearrangement

and their association with survival in breast cancer. Genome research, 16(12):1465–

1479, 2006.

[55] Andrew J Holland and Don W Cleveland. Chromoanagenesis and cancer: mecha-

nisms and consequences of localized, complex chromosomal rearrangements. Nature

medicine, 18(11):1630–1638, 2012.

178

[56] The MathWorks Inc. MATLAB 7.11.0(R2010b). 2010. Natick, Massachussets.

[57] Broad Institute. Coverage. http://www.broadinstitute.org/crd/wiki/index.

php/Read_coverage, May 2013.

[58] A. Jauch, J. Wienberg, R. Stanyon, N. Arnold, S. Tofanelli, T. Ishida, and T. Cremer.

Reconstruction of genomic rearrangements in great apes and gibbons by chromosome

painting. Proceedings of the National Academy of Sciences, 89(18):8611–8615, 1992.

[59] A. Kallioniemi, O.P. Kallioniemi, D. Sudar, D. Rutovitz, J.W. Gray, F. Waldman,

and D. Pinkel. Comparative genomic hybridization for molecular cytogenetic analysis

of solid tumors. Science, 258(5083):818–821, 1992.

[60] Alexander Karzanov and Leonid Khachiyan. On the conductance of order markov

chains. Order, 8(1):7–15, 1991.

[61] Robert C King, Pamela Mulligan, and William Stansfield. A dictionary of genetics.

OUP USA, 2013.

[62] Bonnie Kirkpatrick, Yakir Reshef, Hilary Finucane, Haitao Jiang, Binhai Zhu, and

Richard M Karp. Comparing pedigree graphs. Journal of Computational Biology,

19(9):998–1014, 2012.

[63] S.R. Knezevich, D.E. McFadden, W. Tao, J.F. Lim, and P.H.B. Sorensen. A novel

etv6-ntrk3 gene fusion in congenital fibrosarcoma. Nature genetics, 18(2):184–187,

1998.

179

http://www.broadinstitute.org/crd/wiki/index.php/Read_coverage
http://www.broadinstitute.org/crd/wiki/index.php/Read_coverage

[64] Takashi Kohno and Jun Yokota. Molecular processes of chromosome 9p21 deletions

causing inactivation of the p16 tumor suppressor gene in human cancer: Deduction

from structural analysis of breakpoints for deletions. DNA repair, 5(9):1273–1281,

2006.

[65] Roman Kolpakov, Ghizlane Bana, and Gregory Kucherov. mreps: efficient and flex-

ible detection of tandem repeats in DNA. Nucleic acids research, 31(13):3672–3678,

2003.

[66] T.G. Krontiris and G.M. Cooper. Transforming activity of human tumor DNAs.

Proceedings of the National Academy of Sciences, 78(2):1181–1184, 1981.

[67] Razelle Kurzrock, Hagop M Kantarjian, Brian J Druker, and Moshe Talpaz. Philadel-

phia chromosome–positive leukemias: from basic mechanisms to molecular therapeu-

tics. Annals of internal medicine, 138(10):819–830, 2003.

[68] P. Langerak, P. Russell, P. Langerak, and P. Russell. Regulatory networks inte-

grating cell cycle control with DNA damage checkpoints and double-strand break

repair. Philosophical Transactions of the Royal Society B: Biological Sciences,

366(1584):3562–3571, 2011.

[69] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2.

Nature methods, 9(4):357–359, 2012.

[70] R Lewis. Human Genetics Concepts and Applications, 7th edition. McGraw-Hill

Higher Education, 2007.

[71] L.A. Loeb and C.C. Harris. Advances in chemical carcinogenesis: a historical review

180

and prospective. Cancer research, 68(17):6863–6872, 2008.

[72] Kinsella M and Bafna V. Modelling the breakage-fusion-bridge machanism: Combi-

natorics and cancer genomics. Recomb 2012, LNBI(7262):148–162, 2012.

[73] David J McBride, Dariush Etemadmoghadam, Susanna L Cooke, Kathryn Alsop,

Joshy George, Adam Butler, Juok Cho, Danushka Galappaththige, Chris Greenman,

Karen D Howarth, et al. Tandem duplication of chromosomal segments is common in

ovarian and breast cancer genomes. The Journal of pathology, 227(4):446–455, 2012.

[74] Cooke SL Alsop K George J Butler A Cho J Galappaththige D Greenman CD

Howarth KD Lau KW Ng CK Raine K Teague J Wedge DC Australian Ovarian

Cancer Study Group Caubit X Stratton MR Brenton JD Campbell PJ Futreal PA

Bowtell DDL McBride DJ, Etemadmoghadam D. Bouvel m and rossin d, a vari-

ant of the tandem duplication-random loss model of genome rearrangement, 2009,

Theoretical Computer Science, 410, 847-858. 2012.

[75] Cooke SL Alsop K George J Butler A Cho J Galappaththige D Greenman CD

Howarth KD Lau KW Ng CK Raine K Teague J Wedge DC Australian Ovarian

Cancer Study Group Caubit X Stratton MR Brenton JD Campbell PJ Futreal PA

Bowtell DDL McBride DJ, Etemadmoghadam D. Bouvel m and pergola e, posets and

permutations in the duplication-loss model: Minimal permutations with d descents,

2010, Theoretical Computer Science, 411, 2487-2501. 2012.

[76] Cooke SL Alsop K George J Butler A Cho J Galappaththige D Greenman CD

Howarth KD Lau KW Ng CK Raine K Teague J Wedge DC Australian Ovarian

Cancer Study Group Caubit X Stratton MR Brenton JD Campbell PJ Futreal PA

Bowtell DDL McBride DJ, Etemadmoghadam D. Allouche j. 2012. and Shallit J.

2003, Automatic Sequences, Theory, Applications, Generalizations, CUP.

181

[77] B. McClintock. The stability of broken ends of chromosomes in zea mays. Genetics,

26(2):234, 1941.

[78] Scott McGinnis and Thomas L Madden. Blast: at the core of a powerful and diverse

set of sequence analysis tools. Nucleic acids research, 32(suppl 2):W20–W25, 2004.

[79] Felix Mitelman. Recurrent chromosome aberrations in cancer. Mutation Re-

search/Reviews in Mutation Research, 462(2):247–253, 2000.

[80] Joseph Neggers and Hee Sik Kim. Basic posets. World Scientific, 1998.

[81] PC Nowell. A minute chromosome in human chronic granulocytic leukemia. Science,

132:1497, 1960.

[82] Tom MW Nye. Modelling the evolution of multi-gene families. Statistical methods

in medical research, 18(5):487–504, 2009.

[83] Layla Oesper, Anna Ritz, Sarah J Aerni, Ryan Drebin, and Benjamin J Raphael. Re-

constructing cancer genomes from paired-end sequencing data. BMC bioinformatics,

13(Suppl 6):S10, 2012.

[84] H Ogiwara, T Kohno, H Nakanishi, K Nagayama, M Sato, and J Yokota. Unbalanced

translocation, a major chromosome alteration causing loss of heterozygosity in human

lung cancer. Oncogene, 27(35), 2008.

[85] H Ogiwara, T Kohno, H Nakanishi, K Nagayama, M Sato, and J Yokota. Unbalanced

translocation, a major chromosome alteration causing loss of heterozygosity in human

182

lung cancer. Oncogene, 27(35):4788–4797, 2008.

[86] Susumu Ohno et al. Evolution by gene duplication. London: George Alien & Unwin

Ltd. Berlin, Heidelberg and New York: Springer-Verlag., 1970.

[87] M. Olszewski. Concepts of cancer from antiquity to the nineteenth century. University

of Toronto Medical Journal, 87(3):181–186, 2010.

[88] Michal Ozery-Flato and Ron Shamir. Two notes on genome rearrangement. Journal

of Bioinformatics and Computational Biology, 1(1):71–94, 2003.

[89] Luca Penso-Dolfin, Taoyang Wu, and Chris D Greenman. The combinatorics of

tandem duplication. Discrete Applied Mathematics, 194:1–22, 2015.

[90] Benjamin A Pierce. Genetics: A conceptual approach. WH Freeman, 2010.

[91] D. Pinkel, J. Landegent, C. Collins, J. Fuscoe, R. Segraves, J. Lucas, and J. Gray.

Fluorescence in situ hybridization with human chromosome-specific libraries: detec-

tion of trisomy 21 and translocations of chromosome 4. Proceedings of the National

Academy of Sciences, 85(23):9138–9142, 1988.

[92] Benjamin J Raphael and Pavel A Pevzner. Reconstructing tumor amplisomes. Bioin-

formatics, 20(suppl 1):i265–i273, 2004.

[93] Benjamin J Raphael, Stanislav Volik, Colin Collins, and Pavel A Pevzner. Recon-

structing tumor genome architectures. Bioinformatics, 19(suppl 2):ii162–ii171, 2003.

183

[94] E.P. Reddy, R.K. Reynolds, E. Santos, M. Barbacid, et al. A point mutation is

responsible for the acquisition of transforming properties by the t 24 human bladder

carcinoma oncogene. Nature, 300(5888):149–152, 1982.

[95] Eric Rivals. A survey on algorithmic aspects of tandem repeats evolution. Interna-

tional Journal of Foundations of Computer Science, 15(02):225–257, 2004.

[96] J.D. Rowley. A new consistent chromosomal adnormality in chronic myelogeneus

leukaemia identified by quinacrine fluorescence and giemsa staining. Landmarks in

Medical Genetics: Classic Papers with Commentaries, 243(51):104, 2004.

[97] E. Schröck, S. Du Manoir, T. Veldman, B. Schoell, J. Wienberg, MA Ferguson-

Smith, Y. Ning, DH Ledbetter, I. Bar-Am, D. Soenksen, et al. Multicolor spectral

karyotyping of human chromosomes. Science, 273(5274):494–497, 1996.

[98] Charles Semple and Mike Steel. Phylogenetics. 2003.

[99] C. Shih, LC Padhy, M. Murray, R.A. Weinberg, et al. Transforming genes of carcino-

mas and neuroblastomas introduced into mouse fibroblasts. Nature, 290(5803):261–

264, 1981.

[100] Ram J Singh. Plant cytogenetics. Taylor and Francis Group, 2003.

[101] Catherine E Smith, Bertrand Llorente, and Lorraine S Symington. Template switch-

ing during break-induced replication. Nature, 447(7140):102–105, 2007.

[102] Philip J Stephens, Chris D Greenman, Beiyuan Fu, Fengtang Yang, Graham R

184

Bignell, Laura J Mudie, Erin D Pleasance, King Wai Lau, David Beare, Lucy A

Stebbings, et al. Massive genomic rearrangement acquired in a single catastrophic

event during cancer development. Cell, 144(1):27–40, 2011.

[103] Michael R Stratton, Peter J Campbell, and P Andrew Futreal. The cancer genome.

Nature, 458(7239):719–724, 2009.

[104] C.J. Tabin, S.M. Bradley, C.I. Bargmann, R.A. Weinberg, A.G. Papageorge, E.M.

Scolnick, R. Dhar, D.R. Lowy, E.H. Chang, et al. Mechanism of activation of a

human oncogene. Nature, 300(5888):143, 1982.

[105] Y. Tan, R.A. Timakhov, M. Rao, D.A. Altomare, J. Xu, Z. Liu, Q. Gao, S.C. Jhan-

war, A. Di Cristofano, D.L. Wiest, et al. A novel recurrent chromosomal inversion

implicates the homeobox gene dlx5 in t-cell lymphomas from lck-akt2 transgenic

mice. Cancer research, 68(5):1296–1302, 2008.

[106] H. Tanaka and M.C. Yao. Palindromic gene amplificationan evolutionarily conserved

role for DNA inverted repeats in the genome. Nature Reviews Cancer, 9(3):216–224,

2009.

[107] C.T. Thompson and J.W. Gray. Cytogenetic profiling using fluorescence in situ

hybridization (fish) and comparative genomic hybridization (cgh). Journal of Cellular

Biochemistry, 53(S17G):139–143, 1993.

[108] Howard Turtle and W Bruce Croft. Evaluation of an inference network-based retrieval

model. ACM Transactions on Information Systems (TOIS), 9(3):187–222, 1991.

[109] WT Tutte. Graph theory. Cambridge University Press, 2001.

185

[110] Alexandra Valera, Olga Balagué, Luis Colomo, Antonio Mart́ınez, Jan Delabie,

Lekidelu Taddesse-Heath, Elaine S Jaffe, and Eĺıas Campo. Ig/myc rearrangements

are the main cytogenetic alteration in plasmablastic lymphomas. The American

journal of surgical pathology, 34(11):1686, 2010.

[111] Peter Van Loo, Silje H Nordgard, Ole Christian Lingjærde, Hege G Russnes, Inga H

Rye, Wei Sun, Victor J Weigman, Peter Marynen, Anders Zetterberg, Bjørn Naume,

et al. Allele-specific copy number analysis of tumors. Proceedings of the National

Academy of Sciences, 107(39):16910–16915, 2010.

[112] James D Watson. Molecular biology of the gene/. 2008.

[113] J.D. Watson and FHC Crick. Molecular structure of nucleic acids: A structure

for deoxyribose nucleic acid. Annals of the New York Academy of Sciences-Paper

Edition, 758:12, 1995.

[114] Sophia Yancopoulos, Oliver Attie, and Richard Friedberg. Efficient sorting of ge-

nomic permutations by translocation, inversion and block interchange. Bioinformat-

ics, 21(16):3340–3346, 2005.

[115] Jialiang Yang and Louxin Zhang. On counting tandem duplication trees. Molecular

biology and evolution, 21(6):1160–1163, 2004.

[116] Jiang Zeng. Multinomial convolution polynomials. Discrete Mathematics,

160(1):219–228, 1996.

[117] Cheng-Zhong Zhang, Mitchell L Leibowitz, and David Pellman. Chromothripsis and

beyond: rapid genome evolution from complex chromosomal rearrangements. Genes

186

& development, 27(23):2513–2530, 2013.

[118] Feng Zhang, Lorraine Potocki, Jacinda B Sampson, Pengfei Liu, Amarilis Sanchez-

Valle, Patricia Robbins-Furman, Alicia Delicado Navarro, Patricia G Wheeler, J Ed-

ward Spence, Campbell K Brasington, et al. Identification of uncommon recurrent

potocki-lupski syndrome-associated duplications and the distribution of rearrange-

ment types and mechanisms in ptls. The American Journal of Human Genetics,

86(3):462–470, 2010.

[119] Yanming Zhang, Pamela Strissel, Reiner Strick, Jianjun Chen, Giuseppina Nucifora,

Michelle M Le Beau, Richard A Larson, and Janet D Rowley. Genomic DNA break-

points in aml1/runx1 and eto cluster with topoisomerase ii DNA cleavage and dnase

i hypersensitive sites in t (8; 21) leukemia. Proceedings of the National Academy of

Sciences, 99(5):3070–3075, 2002.

[120] Yanming Zhang, Nancy Zeleznik-Le, Neelmini Emmanuel, Nimanthi Jayathilaka,

Jianjun Chen, Pamela Strissel, Reiner Strick, Loretta Li, Mary Beth Neilly, Tomohiko

Taki, et al. Characterization of genomic breakpoints in mll and cbp in leukemia

patients with t (11; 16). Genes, Chromosomes and Cancer, 41(3):257–265, 2004.

187

7 Appendix

Following is the journal paper, based on the work presented on Chapter 4, which was ac-

cepted for publication in Discrete Applied Mathematics [89]. The work directly attributable

to the candidate includes

• The development of the algebraic formalism, which forms the background for the

definition of the main mathematical problem addressed in the paper

• The development of Matlab code which first allowed for the calculation of both the

full TD space and the connection evolutions space

• An active involvement in the study of the inducement of evolutions, assessing the

necessary graph operations required to transform the original tree into the induced

one.

188

The Combinatorics of Tandem Duplication

Penso-Dolfin L1, Wu T1 and Greenman CD1,2*

1School of Computing Sciences, University of East Anglia, Norwich, UK, NR4 7TJ.
2The Genome Analysis Center, Norwich Research Park, Norwich, UK, NR4 7UH.

Abstract

Tandem duplication is an evolutionary process whereby a segment of DNA is repli-

cated and proximally inserted. The different configurations that can arise from this

process give rise to some interesting combinatorial questions. Firstly, we introduce

an algebraic formalism to represent this process as a word producing automaton.

The number of words arising from n tandem duplications can then be recursively

derived. Secondly, each single word accounts for multiple evolutions. With the aid

of a bi-coloured 2d-tree, a Hasse diagram corresponding to a partially ordered set is

constructed, for which the number of linear extensions equates to the number of evo-

lutions corresponding to a given word. Thirdly, we implement some subtree prune

and graft operations on this structure to show that the total number of possible

evolutions arising from n tandem duplications is
n∏
k=1

(4k − (2k + 1)). The space of

structures arising from tandem duplication thus grows at a super-exponential rate

with leading order term O(4
1
2
n2

).

*Corresponding Author: Email C.Greenman@uea.ac.uk, Tel. +44 (0)1603 592300, Fax +44 (0)1603
593345

7.1 Introduction

Tandem Duplications occur when a region of DNA is duplicated and inserted adjacent to

the original segment, such as portrayed in Figure 7.1A.

This biological process has long been known to be implicated in the formation of gene

clusters [86], [82] and more recently has been implicated in the formation of amplicons in

cancer [73], [92], [93], [117]. In both cases Darwinian selection may be acting to increase

the number of copies of a target gene. In addition to the biological study of these process,

there are a range of algorithmic and mathematical questions that are also of interest. These

include identification and alignments of tandem duplications in data [72], [9], [11], [10], [65]

and the construction of phylogenies describing their evolution [12], [15], [14]. In [15] this

was done in a quite general context, where duplications and losses across multiple genomes

were considered. In [14] tree operations were introduced that allowed a full exploration

of tandem duplication trees. A survey of algorithmic approaches can be found in [95].

The combinatorial nature of these rearrangement operations leads to some interesting

combinatorics. The number of rooted and unrooted tandem duplication trees that arise

from the tandem duplication of a loci of interest are explored in [39] and [115]. The space

of permutations arising from a tandem duplication-loss model is characterized in [74], [75].

These methods make a range of assumptions regarding the information that is available

and the process that takes place. In particular, there are two issues that relate to the

problem we consider.

Firstly, the genomic sequence information. In [16], the signed gene orders of several

genomes are compared and explanatory phylogenetic evolutions derived. In [39] and [115]

a single copy of a loci is analysed, and all the possible different evolutions that can take

place counted. In the problem we consider, we also start with a single region of known

(reference) sequence, and investigate the number of different possible evolutions that arise.

172

Our approach differs from [39] and [115] with regard to the second issue.

This relates to the assumption that breakpoints can be reused. A breakpoint in this context

can mean the gap between two contiguous loci, such as a pair of genes in a gene cluster,

which can cover a wide region and be implicated in more than one duplication event with

reasonable probability, or it can mean the precise end points of the duplicated region,

which are less likely to be implicated on more than one occasion (for larger scale tandem

duplications at least). Modern sequencing (paired-end) data can resolve breakpoints to the

basepair level and reveal tandem duplications to great precision, such as with cancer data

[73]. In such cases, when a tandem duplication occurs, two breakpoints are implicated in

a presumably random process. The chance that precisely the same nucleotide positions

are subsequently implicated in another TD is likely to be small and assuming unique

breakpoint use is reasonable in these circumstances. The questions considered in this work

are restricted to the case of unique breakpoint use. We now outline the main problem we

consider.

In Figure 7.1A we start with five contiguous regions, labeled 1, 2, 3, 4 and 5. This is

the original configuration and is termed the reference. We then have an initial tandem

duplication, copying region 234 and inserting a new copy next to the first to give sequence

123412345. Here we have used (not underlined, bold symbol) 1 to indicate our first con-

nection between two segments not seen in the reference; the right side of segment 4 is

connected to the left side of segment 2, as seen in Figure 7.1Aii. Note also that the left

hand end of the duplicated region 234 implicates the reference position between segments 1

and 2, the right hand end implicates the reference position between segments 4 and 5. Next

we have the second tandem duplication, copying region 42 to finally give 1234122412345.

We now have another connection, labeled 2, between the right side of segment 2 and the

left of segment 4, as seen in Figure 7.1Aiii. Note that we now have two copies of the con-

nection labeled 1, which was also duplicated. The left hand end of the duplicated region

412 implicates the reference position between 3 and 4, the right hand end implicates that

between 2 and 3. We have thus implicated all four breakpoints between the five reference

173

1

First Tandem
Duplication

12345

1234145

12341345

1231345

123412345

12312345

1212345

121234245
12312342345

12312342312345
12323412345

123412323412345
1234122412345 *
12341232345

1231342231345
12322341345

12341322341345
122234145

A B5432

1 432 5432

1 432 2 4 5432

i

iii

ii

Second Tandem
Duplication

Figure 7.1: A Tandem Duplication Process. A) Three structures i)-iii) arising from two tandem duplica-
tions on a reference of five regions; ABCDE. B) Eleven possible evolutions with two tandem duplications.
The example in A is highlighted by *. Underlined numbers are segments. Bold italicized numbers n
indicate connections between segments formed in the nth tandem duplication.

segments exactly once; unique breakpoint use.

In Figure 7.1B we see all 11 different ways that two tandem duplications can act on five

segments with unique breakpoint reuse. Note that N tandem duplications will implicate

2N breakpoints and so 2N + 1 segments. We are then primarily interested in solving the

following problem.

Problem 7.1. Count the number of different ways that an initial string of 2N+1 segments

can evolve under N tandem duplications, without reusing breakpoints.

To solve this involves a better understanding of the connections we have labeled. If we

ignore all the labels representing segments, we get simpler sequences to consider. For ex-

ample, the sequence 12345→ 123412345→ 1234122412345 becomes the simpler sequence

ε→ 1→ 121, where ε denotes the empty word. Although this representation is simpler, it

is not unique - five of the eleven cases in Figure 7.1B contain this sequence of connections.

However, we will need to consider these sequences in more detail to solve Problem 7.1.

We then attack the problem as follows. Firstly, we formalize the representations by seg-

ments and connections given above. We then explore the size of the space of words involving

connection symbols. Each such word will be seen to correspond to many different struc-

174

tures formed by tandem duplications. Thus, thirdly, we consider how to count the distinct

cases that all correspond to a single word containing connection symbols. This involves

counting linear extensions of a suitable partially ordered set (poset). Fourthly, we combine

these two pieces of information and provide an explicit formula to answer Problem 7.1.

Concluding remarks complete the paper.

7.2 Representation

We now formalize the representations described in the examples above. We use the acronym

TD to denote tandem duplication. In the following N denotes the total number of TDs

that take place. Now, we have words that involve two classes of symbols:

Definition 7.1. We define i to be a segment symbol. This represents a copy of the DNA

segment originally in the ith reference position, where i ∈ {1, ..., 2N + 1}.
Definition 7.2. We define i to be a connection symbol. These symbols always have a

segment symbol on either side. In any subword of the form min, i represents a connection

between the right hand side of the DNA segment represented by m, and the left hand side

of the DNA segment represented by n, formed during the ith TD, where i ∈ {1, ..., N}.

From the examples in Figure 7.1B we see that each TD duplicates a subsequence of con-

tiguous segments. We then construct words with the following automaton [76]:

Definition 7.3. A TD evolution U is defined as any sequence of TD words [U0 → U1 →
... → UN] generated as follows. We initialize the sequence with TD word U0 = 1 · 2 · ... ·
(2N + 1). We obtain a TD word Un from Un−1 as follows. Write Un−1 = X · Y · Z as

any product of three non-empty subwords that each begin and end with a segment symbol.

Then Un = X · Y · n · Y · Z. We define na as the value of the rightmost symbol of X

and nb as the value of the rightmost symbol of Y . We have a TD evolution provided na

and nb are 2N distinct values for n ∈ {1, ..., N}. The values na and nb are referred to

as breakpoint numbers, and the underlying value n is the TD number. We also define

175

breakpoint numbers 0a and 0b to be 0 and 2N + 1, respectively, representing the start and

end of the set of original reference segments. We let UN denote the set of possible TD

evolutions arising from N TDs.

Note that connection symbol n has the last symbol of Y on the left side and the first

symbol of Y on the right side. We also know that Y begins and ends with a segment

symbol, so n is bordered by segment symbols on either side, as required by Definition 4.2.

Example 7.1. In the evolution * of Figure 7.1B we have: E = [12345 → 123412345 →
1234122412345]. The second TD duplicates segments 412 in the TD word 123412345. The

subwords X, Y and Z are then 123, 412 and 345, respectively. We then find that 2a, the

value of the rightmost symbol in X, is 3, and 2b, the value of the rightmost symbol in Y ,

is 2. Note that these two values demarcate breakpoints of the duplicated region; the 3rd

breakpoint is implicated by the left end of the duplicated region 412, between segments 3

and 4, and the 2nd breakpoint is implicated by the right end of the duplicated region between

segments 2 and 3.

The values na and nb then have the following useful interpretation.

Lemma 7.1. If the reference position between segments i and i+ 1 be labelled as i, which

we interpret as the ith breakpoint, then the duplicated region in the iteration of Definition

7.3 corresponding to the nth TD has a left breakpoint at reference position na and a right

breakpoint at reference position nb.

Proof. We know from Definition 4.3 that the set of symbols in the subword Y are dupli-

cated. This implicates two breakpoints. The first is between the last segment represented

in X and the first segment represented in Y . The rightmost segment in X is defined to be

na, and so the left most segment in Y is na + 1. The breakpoint number between these

segments is na. Similarly, the second breakpoint is between the last segment represented

in Y and the first segment represented in Z. The rightmost segment in Y is nb. The

rightmost breakpoint between these segments is therefore the reference position between

176

segments nb and nb + 1, which has label nb, as required.

Definition 7.4. Restricting a valid TD evolution U = [U0 → U1 → ...→ UN] to connection

symbols induces a connection evolution E = [E0 → E1 → ... → EN] and each member

of the sequence is a connection word. We define EN to be the set of possible connection

evolutions that arises from N TDs.

Example 7.2. In the evolution * of Figure 7.1B we have: U = [12345 → 123412345 →
1234122412345] which becomes E = [ε→ 1→ 121] when the segment symbols are removed.

We now formalize Problem 7.1:

Problem 7.2. Determine the size of the set EN .

The construction of connection evolutions is required to solve this problem. Toward this

end the following observation proves to be useful:

Lemma 7.2. Let m and n be consecutive connection symbols in any connection word Ei,

induced from TD word Ui. Then m and n are separated by segment symbols ma + 1 · ... ·nb
in Ui. If m is the first connection symbol in Ei, in Ui it is preceded by segment symbols

1 · ... ·mb. If n is the last connection symbol in Wi, in Ui it is followed by segment symbols

na + 1 · ... · 2N + 1.

Proof. From the iteration in Definition 7.3, we firstly note that the segment symbols start

in consecutive reference order, and the only disruption occurring to this ordering are to the

symbols adjacent to connection symbols. More specifically the word Un = X · Y · n · Y · Z
is formed during the nth TD from Un−1 = X · Y · Z. The symbol to the left of n, the

last symbol of Y , is segment nb by definition. The symbol to the right of n, is the first

symbol of Y. Now the last symbol of X is na by definition. This is adjacent to the first

symbol of Y , which is also a segment symbol, which being in consecutive reference order

must be na + 1. We thus find that if we have consecutive symbols mn in a connection

word, in the corresponding TD word, we have the segment symbol ma + 1 to the right

of m and nb to the left of n. These must run in consecutive reference order giving the

177

segments stated. Noting from Definition 7.3 that the first and last segments are always 1

and 2N + 1 completes the Lemma.

This has the following important consequence.

Corollary 7.1. To each distinct TD evolution U there corresponds a unique connection

evolution E and ordering of 2N breakpoint numbers {na, nb}n, where n ∈ {1, 2, ..., N}.

Proof. If we have a given connection evolution E and ordering of breakpoint numbers

{na, nb}n, where n ∈ {1, 2, ..., N}, then for any connection symbol m in a connection word

we can use Lemma 7.2 to identify the segment symbols that lie on either side of m in

the corresponding TD word. Repeating this for all the words in the connection evolution

results in a uniquely specified TD evolution.

Example 7.3. If we take the last word of the connection evolution [ε → 1 → 121] and

the breakpoint number ordering (1a, 2b, 2a, 1b) = (1, 2, 3, 4) then by Lemma 7.2, between

connection symbols 1 and 2 we have segment symbols 1a + 1 · ... ·2b = 2 in the corresponding

TD evolution. Similarly between connection symbols 2 and 1 we have segment symbols

2a + 1 · ... · 1b = 4 in the corresponding TD evolution. Before the first copy of connection

symbol 1 we have segment symbols 1 · ... ·1b = 1234, and after the second copy of connection

symbol 1 we have segment symbols 1a + 1 · ... · 2(2) + 1 = 2345. For the full TD word we

then obtain 1234122412345. Note that not all breakpoint number orderings are feasible. For

example, if we attempt to use (2a, 2b, 1a, 1b) = (1, 2, 3, 4), then between connection symbols

1 and 2 we try to place 1a + 1 · ... · 2b = 3 · ... · 2, which is not an increasing sequence of

segment symbols.

Thus to solve Problem 7.2 we need to know firstly what different connection evolutions

E ∈ EN are possible, and secondly, for each such connection evolution, we need to know

how may different orderings of breakpoint numbers {na, nb}n for n = 1, 2, ..., N are feasible.

This gives us three problems of increasing complexity; firstly, how to count the number

178

TDs 1 2 3

Word Length 1

3

4

5

6

7

2

3

1
2

3

1

2

4
3
2
1

Figure 7.2: Schematic representation of the number of possible TD words. Numbers at nodes indicate
the length of TD words. Numbers on edges indicate the number of choices.

of connection evolutions, secondly how to count the TD evolutions that share a specific

connection evolution, and thirdly, how to count the total number of TD evolutions and

solve Problem 7.2. We consider these in turn.

7.3 Counting Connection Evolutions

We next consider how many connection evolutions can arise from N TDs, the size of the

set EN . For example, a first TD always produces word 1, a second TD can produce words

12, 21 or 121, giving 3 evolutions in total. Note that two of the final three words have

length 2 and one has length 3. In general we have the following result.

Theorem 7.1. If wm,N is the number of connection evolutions E = [E0 → ... → EN]

arising from N TDs such that connection word EN has length m, we have the following

recursion,

wm,n =
∑m−1

k=bm−1
2
c(2k −m+ 2)wk,n−1

179

where we have initial values wi,0 = {1,i=0
0,i≥1

Proof. If we have a connection word En with k symbols then the subword Y of any cor-

responding TD word Un that is duplicated in definition 7.3 can be chosen to contain any

number of them, so we can duplicate r ∈ {0, 1, .., k} of those symbols. Furthermore there

are k − r + 1 sets of r consecutive symbols in En that we can choose to duplicate. Note

that a TD duplication copies r connection symbols and also introduces one new connection

symbol, resulting in a connection word with m = k+r+1 symbols. Then k = m−r−1 for

r ∈ {0, 1, .., k} and any connection word of length m can derive from a connection word of

length k ∈ {bm−1
2
c, ...,m−1}. Lastly, we note that there are k−(m−k−1)+1 = 2k−m+2

ways to do this.

Example 7.4. In Figure 7.2 we see a graph representation of the possibilities, where values

wm,n are equivalently obtained by taking products of the edge values along paths to the

associated node, from the node labelled 1, and summing. For example, the node labelled 5

in the third column of nodes corresponds to w5,3 and has two paths, one with product 1 ·2 ·1,

the other with 1 · 1 · 3 and we find w5,3 = 2 + 3 = 5, five connection words of length five;

12312, 21321, 13121, 12321 and 12131.

It is natural to attempt to find a general formula for the number of words arising from n

TDs by constructing a generating function from this recursion. However, this approach did

not prove fruitful suggesting a closed form expression for the connection evolution count

is not forthcoming.

The counts of connection evolutions arising from the first few TDs can be seen in Table

7.1.

180

TDs 1 2 3 4 5 6

Connection Evolutions 1 3 22 377 15,315 1,539,281
TD Evolutions 1 11 627 154,869 156,882,297 640,550,418,651

Table 7.1: Counts of Connection and TD Evolutions.

7.4 Counting Evolutions with Posets

We are now interested in the number of TD evolutions that all correspond to a single

connection evolution. From Corollary 7.1 we see that this is equivalent to counting the

number of feasible orders of the 2N breakpoint numbers {na, nb}n, for n ∈ {1, 2, ..., N},
that arise from the TD process in Defintion 7.3. In order to do this, in section 7.4.1 we

first describe a visual zig-zag representation which is a useful way of seeing the breakpoint

numbers accumulate through a TD evolution. In section 7.4.2 we then use 2d-trees to

encapsulate the choices of the different orders of the breakpoint numbers. Finally, in

section 7.4.3 we will use this to construct Hasse diagrams, for which the number of linear

extensions will provide the desired count.

7.4.1 Zig-zag plots

Now from Lemma 7.2 we see that if we have consecutive symbols mnk in a connection word,

then in the corresponding TD word, m and n are separated by segment symbols ma + 1

to nb. By Lemma 7.1, relative to the reference, these segments stretch from breakpoint ma

to nb. In a zig-zag plot we represent these as a horizontal (solid) line across the interval

[ma, nb]. Similarly, the segments symbols in the TD word between connection symbols n

and k are represented by interval [na, kb]. The segments represented by the two intervals

[ma, nb] and [na, kb] are connected together in the TD word by connection symbol n. In

the zig-zag diagram this is a (dashed) line from the right end of the line representing

interval [ma, nb] to the left end of the line representing interval [na, kb]. In Figure 7.3A we

181

have such an example. The ordered breakpoint numbers are arranged along the top. The

plots correspond to the connection evolution given in Figure 7.3E. For example, in Figure

7.3Aiii we have the plot corresponding to connection word 121. Each connection symbol

is represented by a dashed line connecting the four intervals [0a, 1b], [1a, 2b], [2a, 1b] and

[1a, 0b] together. In general we have the following.

Definition 7.5. If we have a connection word n(1) ·n(2) · ... ·n(K), along with corresponding

breakpoint numbers n
(k)
a and n

(k)
b , where k ∈ {1, 2, ..., K}, then we construct an initial inter-

val [0a, n
(1)
b], internal intervals [n

(1)
a , n

(2)
b],[n

(2)
a , n

(3)
b], ..., [n

(K−1)
a , n

(K)
b] and a final interval

[n
(K)
a , 0b]. Each interval [x, y] is plotted horizontally (solid line) from reference coordinate

x to y. Their vertical coordinates descend down the page in sequence (the scale is not

important). The right end of the kth (k ≤ K) interval is connected to the left end of the

(k + 1)th interval in this sequence of intervals with a dashed line.

Lemma 7.3. The zig-zag representation is equivalent to the TD evolution it represents.

Proof. Using Lemmas 7.1 we find that the intervals in the zig-zag representation of Defi-

nition 7.5 contain precisely those segments in Lemma 7.2. Furthermore, each dashed line

connects intervals of the form [n
(k−1)
a , n

(k)
b] and [n

(k)
a , n

(k+1)
b]. The TD number n(k) common

to both intervals provides the value of the connection symbol required to complete the

corresponding TD word.

Each zig-zag construction is thus just a visual representation of (and equivalent to) a TD

word.

7.4.2 2d-trees

We now consider how a 2d-tree representation, which generalizes the notion of trees can

allow us to obtain the different possible orders of the breakpoint numbers. Trees can be

182

Figure 7.3: Representation of the TD Process. In A) we have zig-zag plots for a sequence of four TDs,
resulting in five structures i)-v). The green regions indicates the region duplicated during each TD. Dashed
lines indicate a connection between segments. Coordinates na and nb indicate the end positions of the
nth duplicated region. B) Corresponding 2d-tree. Nodes correspond to breakpoints and edges demarcate
an ordering. Red and blue colours indicate lower and upper bound breakpoints. Dashed and plain edges
indicate minor and major edges. C) Corresponding Hasse diagram. D) The major graph corresponding to
evolution E. F) Increases each symbol of E by 1. G) An induced evolution from F. H) The major graph
corresponding to induced evolution G. The black nodes indicate the corresponding 1-nodeset.

characterized as connected graphs such that each node has a single parental node, apart

from a single root node. We can define an nd tree to be a graph such that all nodes

(except root nodes) have n parental nodes. This kind of graph has been applied to data

forms arising from search algorithms [13], [108] and have seen other applications in genetics

as recombination graphs [45], and pedigree graphs [62], for example.

Consider then how the zig-zag plots build up in the structures in Figures 4.4A i-v. We start

with a single set of reference segments; the single interval [0a, 0b] in Figure 7.3Ai. The node

183

0a is assigned a type, a (coloured red), indicating it is the left end of an interval. Node

0b is assigned a type, b, (coloured blue) indicating a right end of an interval. These labels

are associated with the top two nodes of the 2d-tree in Figure 7.3B. These are bridged by

an edge which will represent their ordering in the reference; 0a < 0b. Now we have four

TDs to introduce, resulting in eight breakpoint numbers to be placed between 0a = 0 and

0b = 9.

We then next consider the first TD event. This involves the duplication of a specific single

set of contiguous segments (coloured green in Figure 4.4Ai), and implicates breakpoint

numbers 1a and 1b, by Lemma 7.1, resulting in the zig-zag diagram of Figure 7.3Aii. Now

the two positions 1a and 1b are both bound between the coordinates of 0a and 0b, so

the only restriction is 0a < 1a < 1b < 0b. To encapsulate these choices in the 2d-tree

representation, we have two nodes representing coordinates 1a and 1b. These nodes both

have edges connected to two parental nodes 0a and 0b. We have edges of type a (red) from

node 0a to 1a and 1b representing the fact that 0a is a lower bound of 1a and 1b. Similarly

we have edges of type b (blue) from 0b to 1a and 1b, representing the fact that 0b is an

upper bound of 1a and 1b. The black edge is a third class of edge, termed a fence, and

connects 1a to 1b, representing the restriction 1a < 1b.

Our second TD then duplicates the segments in the green portion in Figure 4.4Aii, which

includes the first connection, forming two breakpoints 2a and 2b. The breakpoint 2a is

on the upper interval [0a, 1b] of Figure 4.4Aii and so must lie between positions 0a and 1b.

These are its two parental nodes. The blue edge from node 1b to 2a indicates 1b is an upper

bound of 2a. The red edge from 0a to 2a indicates 0a is a lower bound of 2a. Similarly,

breakpoint 2b forms on interval [1a, 0b] and has parental nodes 1a and 0b.

The status of major (solid) and minor (dashed) is assigned to each pair of parental edges

to a node, where major and minor refer to the parental nodes with higher and lower TD

numbers, respectively. For example, 2a has parents 1b and 0a, the TD numbers satisfy

184

1 > 0, so the edge from 1b is the major, and that from 0a is the minor. This distinction

will later be important.

We then proceed through the TDs building up the representations. In general we have the

following 2d-tree construction:

Definition 7.6. All nodes na are designated type a (coloured red), and nb designated type

b (coloured blue). If the breakpoint represented by na (resp. nb) lies on the interval [ua, vb]

in the zig-zag diagram we have a type a (red) edge from ua to na (resp. nb), and a type b

(blue) edge from vb to na (resp. nb).

If u > v, the edge from ua is designated class major (solid), the edge from vb is class minor

(dashed). This is reversed if u < v.

If na and nb are formed on the same segment (meaning no connections are duplicated)

we have na < nb which we represent with an edge of class fence (black) between nodes

representing breakpoint numbers na and nb (this always includes 0a and 0b).

Note that the choice of major and minor is ambiguous for the first TD. Both 1a and 1b are

placed on the same interval [0a, 0b] so have parental nodes 0a and 0b that have equal TD-

number 0. It will prove consistent to define them as follows; 1a has major (resp. minor)

parental nodes 0b (resp. 0a), 1b has major (resp. minor) parental nodes 0a (resp. 0b).

Note that in all other cases either a type a node na is placed on [ua, vb], where n > {u, v}
resulting in new interval [na, vb], with n 6= v, or a type b node nb is placed on [ua, vb],

where n > {u, v} resulting in new interval [ua, nb], with n 6= u. Thus apart from the initial

interval, the TD numbers of the endpoints of any interval are distinct and the major/minor

is well defined.

Note also that it is only when the fence edges are removed that each node has two parents,

each edge connects a parent node to a daughter node, and we have a 2d-tree. Inclusion of

185

fence edges implies structures such as Figure 4.4B take a more general form than a 2d-tree.

For convenience we use the phrase 2d-tree with that understanding in mind.

We introduced fences for the situation where na and nb form on the same segment. This

means that the nth TD does not duplicate any connections. In terms of the connection

words, this corresponds to a step where no connection symbols are duplicated; no symbol

is duplicated in the following step of a connection evolution; [121→ 3121], for example.

We have seen that a zig-zag representation is equivalent to the TD evolution it is based

upon, which is in turn equivalent to the induced connection evolution and corresponding

ordering of breakpoint numbers. However, the corresponding 2d-tree does not contain the

same information and is not equivalent. For example, if we take the connection evolution

[ε→ 1→ 12→ 12312], the last word contains two copies of the pair 12, corresponding to

two copies of the interval [1a, 2b] between connection symbols 1 and 2. If both breakpoints

4a and 4b from the next TD are placed in either of these intervals during the fourth TD,

the same 2d-tree results, even though the TD evolution may differ.

We next describe how to use the 2d-tree structures to count the number of TD evolutions

that correspond to the same connection evolution.

7.4.3 Linear Extensions

Although we counted the number of connection evolutions with relative ease in section

4.2, there maybe several different TD evolutions that correspond to a single connection

evolution. We see from Figure 7.4A, for example, that there are three TD evolutions that

have a corresponding connection evolution [ε → 1 → 12], where the second connection

follows one copy of the first. These three cases have the following explanation in terms

186

of breakpoint ordering. Once the first duplication has occurred, the two breakpoints 2a

and 2b associated with the second TD need to be positioned. Now, the first TD requires

1a < 1b resulting in intervals [0a, 1b] and [1a, 0b] (see Figure 7.3Aii, for example). To

obtain the connection word 12 from connection word 1 we find that we must not copy

the first connection, and both 2a and 2b must lie on the second segment [1a, 0b], so we

have 1a < 2a < 2b. We then find that the three cases depend on whether 1b is less than,

in between, or greater than 2a and 2b. The three evolutions in Figure 7.4A i-iii then

correspond to the three orders 1a < 2a < 2b < 1b, 1a < 2a < 1b < 2b or 1a < 1b < 2a < 2b.

These distinct orders represent possible breakpoint number orders, subject to the restric-

tions 1a < 1b from the first TD, and 1a < 2a < 2b from the second TD. Articulating

these restrictions more generally requires the construction of a suitable partially ordered

set (poset) [80]. A poset is a set of elements with some order relationships between the

elements. Posets are usually represented by a Hasse diagram. This is a directed graph

where nodes represent the poset elements, and a directed edge between two nodes indi-

cates an order relation between the two corresponding elements. Any single ordering of the

elements that satisfies such a set of restrictions is known as a linear extension. The Hasse

diagram for any connection evolution can be readily constructed from the corresponding

2d-tree as follows.

Lemma 7.4. If the direction of the type b (blue) edges are reversed in the 2d-tree, and

fences are directed from na to nb whenever they occur, a Hasse diagram with single source

node 0a and single sink node 0b is obtained.

Example 7.5. For example, in Figure 7.3B we see the 2d-tree corresponding to the con-

nection evolution given in Figure 7.3E. In Figure 7.3C we see the same graph except the

blue edge directions have been reversed, and the three fences are directed. Note that all fully

extended, directed paths lead from 0a to 0b. Any linear extension, such as 0a < 3a < 4a <

1a < 2a < 2b < 2b < 4b < 3b < 1b < 0b at the top of Figure 7.3A, is satisfied by this Hasse

diagram.

Proof. (of Lemma 7.4) When we add any node x ∈ {na, nb} to the 2d-tree, it has two

187

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

0b0a 1a 1b

[12]

2a 2b

A

i

ii

iii

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[21]

2a 2b

0b0a 1a 1b

[21]

2a 2b

B

i

ii

iii

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a 2b

0b0a 1a 1b

[121]

2a2b

C
i

ii

iii

iv

v

Figure 7.4: Zig-zag plots of structures arising from two TDs. A) Three structures associated with
connection word 12. B) Three structures associated with connection word 21. C) Five structures associated
with connection word 121.

parental nodes ua and vb. By construction, the node x represents a breakpoint that is

placed on the segment [ua, vb] with leftmost reference position ua and rightmost position

vb, thus we have the ordering ua < x < vb in terms of reference position. Now the type a

edge directed from ua to x represents the ordering ua < x. We then select direction of the

edges in the Hasse diagram to represent increasing reference position. Now x < vb, so we

require a directed edge from x to vb, which is obtained by reversing the direction of the

type b edge in the 2d-tree from vb to x. Finally we note that if we have a fence, we are

adding two position na and nb to the same segment. We then have the additional ordering

na < nb which is represented by the addition of a direction from na to nb.

Counting the number of different TD evolutions associated with a given connection evo-

lution then reduces to counting the number of linear extensions associated with the corre-

ponding poset. Although finding any single linear extension from a poset can be achieved

in polynomial time [60], counting the number of linear extensions is known to be #P-

complete [21] and in general is slow to implement [80]. However, for the problem we have,

we will show that restricting the Hasse diagram to major edges and fence edges (that is,

removing the minor edges) contains all the ordering information. This simplified topology

will enable us to obtain a closed form expression for the number of linear extensions.

For any connection evolution E, we will refer to the graph obtained from 2d-tree T (E) by

188

selecting just the major and fence edges as the major graph, Tmaj(E).

The next result tells us that this simplified structure contains two trees if we also ignore

the fences.

Lemma 7.5. The restriction of the Hasse diagram to the major edges results in two trees

rooted to nodes 0a and 0b.

Proof. In the construction of the poset graph, every node x 6∈ {0a, 0b} has two parental

nodes, labeled ua and vb, arising from the segment [ua, vb] that breakpoint x is formed

upon. These two nodes are connected to x by a major and minor parental edge, where

max(u, v) and min(u, v) are the major and minor TD numbers, respectively. Thus if we

are restricted to the major edges, each node has one parental node, resulting in two trees

attached to roots 0a and 0b.

The following result describes how major and minor status relates to the segments of the

form [ua, vb] involved in the TD process. It will be used to explain why removing the minor

edges from the Hasse diagram does not lose any information.

Lemma 7.6. If [ua, vb] is any interval from a zig-zag plot arising in a connection evolution

then either:

A) Nodes ua and vb are connected by a single directed major edge from the node with TD

number min(u, v) to node with TD number max(u, v). The positions satisfy the single

linear extension ua < vb.

Or:

B) Nodes ua and vb are connected by a minor directed edge from the node with TD number

189

min(u, v) to that with TD number max(u, v). Furthermore there exist nodes with TD

numbers in the order min(u, v) < n1 < n2 < ... < nI < max(u, v) that are connected in a

chain of major edges in the same order such that:

i) If u > v, all internal nodes are type a (red) and the positions satisfy the single linear

extension,

(n1)a < (n2)a < ... < (nI)a < ua < vb,

ii) If u < v, all internal nodes are type b (blue) and the positions satisfy the single linear

extension,

ua < vb < (nI)b < ... < (n2)b < (n1)b.

Proof. We prove this by induction. Initially we start with a single interval [0a, 0b] and the

first TD results in two intervals [0a, 1b] and [1a, 0b] (such as in Figure 7.3Aii). Now node

1b has major parental node 0a and 1a has major parental node 0b. Thus each of these

segments has a single major edge connecting the corresponding nodes and so satisfy the

conditions of the lemma.

For the induction we next assume that any interval [ua, vb] satisfies the conditions of the

lemma for all u, v < m. For each segment we thus have either a single major edge connect-

ing nodes ua and vb, or a minor edge connecting them along with a chain of major edges.

We then introduce the mth TD duplicating a region with endpoints ma and mb. We need

to check all resulting segments satisfy the Lemma. We have four cases to check.

Case I: The entire interval [ua, vb] is duplicated or unmodified; then the poset graph is

190

unchanged between nodes ua and vb and we have nothing to do.

Case II: The breakpoint ma lies in [ua, vb]. We thus obtain a new interval [ma, vb]. A new

node ma then has major and minor parents with TD number max(u, v) and min(u, v).

We then have two possibilities depending on whether u and v are connected by a major or

minor edge.

Case IIa: If they are connected by a major edge then we see that if u < v then we have a

new major edge from ma → vb, and interval [ma, vb] satisfies criterion A of the Lemma. If

u > v, then we have a minor edge ma → vb and a chain of two major edges vb → ua → ma,

which satisfy ua < ma < vb, and interval [ma, vb] matches criterion Bi of the Lemma.

Case IIb: Now u and v are connected by a minor edge, along with a chain of major edges

as described in the theorem. Then if u < v we have a single major edge vb → ma, and

the conditions of the theorem are met. If u > v we have a single minor edge vb → ma

and major edge ua → ma with order ua < ma < vb. If we combine this condition with

the inductive hypothesis of the theorem; (n1)a < (n2)a < ... < (nI)a < ua < vb, we obtain

(n1)a < (n2)a < ... < (nI)a < ua < ma < vb, which again has the correct structure.

Case III: If the breakpoint mb lies in [ua, vb], a parallel set of reasoning to case II applies.

Case IV: If both breakpoints ma and mb lie in [ua, vb], we obtain intervals [ua,mb] and

[ma, vb]. These are the same segments as cases II and III and the same arguments apply

to both segments.

We now use this result to describe the inheritance nature of major and minor edges.

Corollary 7.2. If any node has a major parental node of type a (resp. b), its minor parent

is the most recent common ancestor (in the major graph) of opposite type b (resp. a).

191

ua

b1

b2

bJ

vb

nb

na
na

nb

vb

ua

a1

a2

aI

ua

vb

nb

na

ua

vb

nb

na

A
i

ii

iii iv

a1

Reference

Positiona2 a6a5a4a3 b1 b5b4b3b2 b6a7

B C
a1

a2

b3

b2

b1

a5

a4

a3
b5

b4

b7

b6

Figure 7.5: Major and minor edge structure. A) The addition of new nodes preserves major-minor
structure. B) The nesting structure of a branch of a major tree. C) The general major-minor structure.

Example 7.6. Consider the branch in Figure 7.5C. Node a3 has a major type a parental

node a2. The most recent type b ancestor of a3 is node b6, which is its minor parent. Node

b5 has a major type b parental node b4, we have to go back to node a1 for its most recent

type a ancestor, its minor parental node.

Proof. (of Corollary 7.2) Now by Lemma 7.6 any two nodes ua and vb bridging an interval

[ua, vb] are linked by a major or a minor edge. If a new node x ∈ {na, nb} corresponding

to a new breakpoint in this interval is formed, ua and vb are the major and minor parents,

in some order. We have four cases to check:

Case I: (u < v, major edge from ua to vb). Then x has minor parent ua and major parent

vb. The minor parent ua is then connected to x by the chain of major edges ua → vb → x.

Node x has a major parent of type b and the minor parent ua is the most recent ancestor

of type a in the major graph (see Figure 7.5Ai).

Case II: (u > v, major edge from vb to ua). Analogous to Case I; swap u and v, and swap

a and b in argument (see Figure 7.5Aii).

192

Case III: (u < v, minor edge from ua to vb). Then by Lemma 7.6 minor node ua is

connected to major vb by a chain of major edges of the form ua → (n1)b → (n2)b →
... → (nI)b → vb for some internal nodes of type b. Now node x has major parental node

vb so there is also a major edge vb → x. Together we have the chain of major edges

ua → (n1)b → (n2)b → ... → (nI)b → vb → x. We then find x has a major of type b and

the minor ua is the most recent ancestor of type a in the major graph (see Figure 7.5Aiii).

Case IV: (u > v, minor edge from vb to ua). Analogous to Case III; swap u and v, and

swap a and b in argument (see Figure 7.5Aiv).

We can now explain the sense in which minor edges can be removed from the Hasse diagram.

Specifically, we find that any set of nodes connected by a directed chain of major edges

has a single ordering. More precisely:

Corollary 7.3. Consider any single directed chain of major edges connecting nodes {ai, bj :

i = 1, ..., I, j = 1, ..., J} where ai are nodes of type a and bj are nodes of type b. Suppose

furthermore that these nodes are in some order such that ai is an ancestor of ai+1 for

i = 1, 2, ..., I − 1, and bj is an ancestor of bj+1 for j = 1, 2, ..., J − 1. These nodes have a

single linear extension of the form:

a1 < a2 < < aI < bJ < < b2 < b1.

Thus as we follow any single path down the major tree, the types a and b of the nodes

can be intermixed. However, the TD numbers of the a nodes increases down the path, as

does the TD numbers of the b nodes. Furthermore, the reference positions of the a nodes

increase and b nodes decrease towards each other (see Figure 7.5B for an example).

Proof. Now consider any sub-chain of nodes connected by major edges of the form a1 →
b1 → b2 → ... → bn. Then bi+1 has major parent bi (of type b), so bi+1 < bi. Also, b1 has

193

major parent a1 (of type a) so a1 < b1. We also know that b2, ..., bn all have a1 as their

minor parent by Corollary 7.2, so a1 < bi for i = 2, 3, ..., I. Together we then have the

single order a1 < bn < ... < b2 < b1. If the chain then continues as a chain of type a nodes

bn → a′1 → a′2 → ...→ a′m, we similarly find that a′1 < a′2 < ... < a′m < bn. However, a′1 has

minor parent a1 by Corollary 7.2 so a1 < a′1. We then find that these two orders combine

into the single order a1 < a′1 < a′2 < ... < a′m < bn < ... < b2 < b1. Thus we find that as

we move down a chain of nodes connected by major edges, the a and b nodes lie in one

single nested structure where the a nodes are increasing and the b nodes are decreasing in

reference position as we move down the major graph; a single linear extension.

We now explain how to count the linear extensions using the major graph. In all that

follows
(
m
r

)
= m!

r!(m−r)! represent binomial coefficients, and
(

m
m1,...,mI

)
= m!

m1!...mI !
represent

multinomial coefficients. There are two situations we need to deal with.

Lemma 7.7. i) Suppose K branches descend from a single node z in the major graph, such

that the kth branch contains mk descendant nodes, and none of the K daughter nodes of

z are connected by a fence. Then the number of linear extensions involving the associated

m + 1 breakpoints is
(

m
m1,...,mK

) K∏
k=1

φk, where m =
K∑
k=1

mk, and φk is the number of linear

extensions associated with the mk nodes in branch k.

ii) Suppose two of the branches descending from a single node z in the major graph con-

tain m1 and m2 descendant nodes, respectively, and the two daughter nodes of z in these

branches are connected by a fence. Then the number of linear extensions involving the

associated m+ 1 breakpoints is (
(
m
m1

)
− 1)φ1φ2, where m = m1 +m2, and φ1 and φ2 are the

number of linear extensions associated with the m1 and m2 nodes in the respective branches.

Proof. i) We have φk linear extensions associated with branch k. If we select one linear

extension from each branch, we have, by Corollary 7.3, K orderings of the form:

194

(x
(k)
i1

)a < (x
(k)
i2

)a < ... < (x
(k)
imk

)b < (x
(k)
imk+1

)b

Here (x
(k)
ij

)a/b are the breakpoints represented by the nodes in branch k. Now node z

is the common ancestor of the K branches and so arises from the earliest TD. Then by

Corollary 7.3 either z = (x
(1)
i1

)a = ... = (x
(K)
i1

)a is the left most node and is of type a, or

z = (x
(1)
im1+1

)b = ... = (x
(K)
imK+1

)b is the right most node and is of type b (in Figure 7.5B

for example, the red node from the earliest TD is type a and has the lowest position).

Now node z is fixed in position and common to all K branches. Any pair of nodes from

different branches are unrestricted relative to each other. Any pair of nodes within a branch

k have one relative order from the linear extension selected from the φk possibilities of that

branch. We then need to count the number of ways of intercalating m1 nodes from branch

1, with m2 nodes from branch 2, through to mK nodes from the last branch. There are(
m

m1,m2,...,mK

)
ways to do this.

ii) We now consider the case of a fence between two daughter nodes na and nb of z, which

results in the extra condition na < nb. We have an ordering from each branch. By Corollary

7.3, if z is of type a they will take the form:

(z)a < na < (x
(1)
i1

)a < ... < (x
(1)
im1−1

)b

(z)a < (x
(2)
i1

)a < ... < (x
(2)
im2−1

)b < nb

Here (x
(1)
ij

)a/b and (x
(2)
ij

)a/b are the breakpoints represented by the nodes descending from na

and nb, respectively. Now there are
(
m
m1

)
ways to interlace these two orders. Furthermore,

precisely one of these interlacements contradicts the extra condition na < nb, and that is:

(z)a < (x
(2)
i1

)a < ... < (x
(2)
im2−1

)b < nb < na < (x
(1)
i1

)a < ... < (x
(1)
im1−1

)b

195

We subtract this single order from the count
(
m
m1

)
to give the desired result.

The case where z is of type b is similar with the same conclusion.

Finally we put this information together to count the number of linear extensions arising

from the 2d-tree.

Theorem 7.2. Let the nodes 0a, 0b and daughter edges be removed from the major graph.

For each node x remaining let x1, ..., xK denote the number of nodes that are present in

each of K descending branches. If any pair of daughter nodes are connected by a fence,

they contribute a factor
(
y1+y2
y1

)
− 1, where y1 and y2 count the number of nodes descending

down each branch connected by the fence. These two branches are then treated as a single

branch with y1 + y2 daughter nodes. We then associate the number m(x) =
(

x
x1,...,xr

)
with

node x. The number of distinct evolutions is then the product of these terms across nodes

and fences.

Proof. The TD process starts with interval [0a, 0b] which produces two intervals [0a, 1b]

and [0b, 1a] after the first TD. All future segments produced will always have at least one

parental node with a TD number greater then 0 so the only major edge from 0a leads

to 1b and the only major edge from 0b leads to 1a. Then 0a and 0b both have single

branches descending. Now, applying Lemma 7.7 to any node with a single descending

branch containing n nodes results in a combinatorial term of the form n!
n!

= 1. The

combinatorial factors from 0a and 0b can thus be ignored. For the remaining nodes we

see from Lemma 7.7 that the orders φm associated with nodes in individual branches are

multiplied into the combinatorial terms (such as
(

m
m1,...,mK

)
) associated with the parental

node. We thus multiply the terms of the form
(

m
m1,...,mK

)
from nodes and

(
m

m1,...,mK

)
− 1

from fences.

Example 7.7. Consider the connection evolution E = [1 → 121 → 3121 → 3124121]

with 2d-tree in Figure 7.3B. Once 0a and 0b are removed we have two fences corresponding

196

to TD numbers 1 and 3. The restriction to major and fence edges then results in the graph

in Figure 7.3D. The upper fence has two nodes attached to one side and six nodes to the

other. This results in a count
(
8
2

)
− 1 = 27. We note that node 1b has three branches

descending; one fenceless branch with two nodes, and two branches bridged by a fence;

one and two nodes down each branch. The latter two branches with the fence then have(
3
1

)
− 1 = 2 orders and are then treated as a single branch of three nodes. There are then(

5
2

)
= 10 ways of interlacing the five positions from the remaining branch with two nodes

and amalgamated branch with three nodes. The total number of linear extensions, and so

TD-evolutions, associated with connection evolution E is then 27 · 2 · 10 = 540.

Note that in the proof we saw that a node with a single descending branch containing n

nodes results in a combinatorial factor n!
n!

= 1. This is true in general and explains why

combinatorial terms from nodes with one descending branch were ignored in this example.

We thus now can count both the number of TD words, and the number of distinct evolutions

for each word. We next consider how to combine this information and count the total

number of evolutions for a given number of TDs.

7.5 The Size of TD Space

We have seen that a TD evolution can be represented as an automaton on words. Further-

more, the number of TD evolutions represented by any single connection evolution can be

obtained from the corresponding major graph using the methods of the previous section.

This naturally leads to the problem of determining the total number of TD evolutions.

For example, in Figure 7.4 we see all eleven evolutions that arise from two TDs; three

evolutions corresponding to word 12, three corresponding to 21 and five corresponding to

121. The aim of this section is to prove our main discovery:

197

Theorem 7.3. The number Nn of distinct evolutions arising from n TDs is given by:

Nn =
n∏
k=1

(4k − (2k + 1))

Thus N2 = (41 − (2(1) + 1)) · (42 − (2(2) + 1)) = 11, in agreement with Figure 7.4, for

example. The first few terms in this series can be seen in the bottom row of Table 7.1.

7.5.1 A Motivating Example

Before constructing a proof of Theorem 7.3, we discuss a motivating example. Recall that

En is the set of word evolutions on n TDs. Consider the following examples.

E = [1→ 121→ 3121→ 3124121]

E+ = [2→ 232→ 4232→ [4235232]

E ′ = [1→ 12→ 12312→ 1412312→ 1412352312]

The first two word evolutions both use four symbols; E,E+ ∈ E4. These only differ in the

labeling of TDs; all we have done is increase each symbol in E by 1 to get E+. In E ′ we

have a word evolution involving one more TD; E ′ ∈ E5.

There are two things to note.

198

Firstly, if we delete the symbol 1 in E ′ we recover evolution E+. That is, conversely,

introducing a new first TD event to E ∈ E4 results in E ′ ∈ E5. This suggests we can

generate TD evolutions in general by the repeated introduction of initial TDs. This leads

to the following definition:

Definition 7.7. If a new first TD is introduced to word evolution E ∈ En, the resulting

evolution E ′ ∈ En+1 is called an induced evolution.

Secondly, the major graph of E ′ is given in Figure 4.4H. Although we can form this directly

from the word evolution E ′ using the 2d-tree construction from the previous section, we

note that Figure 7.3H is a subgraph of the 2d-tree from the original evolution E (Figure

7.3B). This suggests we can get the major trees of induced evolutions from the 2d-trees of

the originating evolutions.

This implies in general that there may be a connection between En−1 and En, both in terms

of word evolutions, and in terms of major graphs. We need to explore both of these links

in more detail.

Firstly we observe that for any word evolution there are a range of ways that a new first TD

can be introduced. For example, take the trivial TD-Evolution E = [1], and increase the

symbols by 1; E+ = [2]. We can introduce a new first TD in three ways; E ′ = [1 → 12],

E ′ = [1 → 21] or E ′ = [1 → 121]. Note that all three word evolutions reduce back to

evolution E+ = [2] if all copies of connection symbol 1 are deleted. We will show something

stronger in general; each single word evolution E ∈ Ek−1 leads to a unique subset of induced

evolutions E ⊂ Ek.

We will secondly show that all the major graphs for the word evolutions of E can be

obtained from the 2d-tree for E. Now for any individual word evolution E, we can use

the major graph Tmaj(E) to count the number of associated TD evolutions using Theorem

4.2. We will extend this and show that the number of TD evolutions corresponding to E is

199

equal to the number of TD evolutions corresponding to E multiplied by a constant factor

4n− (2n+ 1). Applying this observation recursively to the spaces E1, E2, ..., En will then be

seen to result in Theorem 4.3.

7.5.2 Induced Evolutions

For induced evolutions to be a useful concept, we must establish that any word evolution

E ′ ∈ En+1 can be uniquely represented as an induced evolution from some word evolution

E ∈ En.

Lemma 7.8. Let D(E) be the process where we remove all copies of TD symbol 1 from

word evolution E and reduce each connection symbol in value by 1. This process has the

following properties:

i) If E ∈ En+1, then D(E) ∈ En is a valid word evolution.

ii) For any word evolution E ∈ En, there exists a word evolution E ′ ∈ En+1 such that

D(E ′) = E.

Proof. i) Any connection evolution E starts with trivial connection word 1. The next TD

in E results in connection evolution [1→ 12], [1→ 21] or [1→ 121]. For all three choices,

removing the initial connection symbol 1 from the evolution leaves us the single symbol 2,

which becomes 1 when the symbols are reduced in value by 1, thus we obtain the correct

initial word for D(E). Now the word evolution is constructed by the TD word automaton

as a mapping of the form AXB → AX(n + 1)XB, for possibly empty subwords A, X or

B, for the (n + 1)th TD. If we remove all copies of the symbol 1 from the subwords A, X

and B, and reduce all symbols by 1, to give A′, X ′ and B′, respectively, we get a mapping

of the form A′X ′B′ → A′X ′nX ′B′ which is a valid step in the nth iteration of the TD word

200

automaton, as required.

ii) For any evolution E = [X1 → X2 → X3 → ... → Xn] from En we simply construct

E ′ = [1 → 1X ′1 → 1X ′2 → 1X ′3 → ... → 1X ′n] where word X ′i is obtained from Xi by

increasing the value of each symbol by 1. This is a valid word evolution in En+1. Then

applying D to E ′ recovers E, as required.

This allows us to partition the space En as follows:

Corollary 7.4. Let E(E) denote the set of induced evolutions from E. Then:

i) For any two evolutions E1, E2 ∈ En, the two corresponding sets of induced evolutions do

not overlap; E(E1) ∩ E(E2) = φ.

ii) The set of induced evolutions satisfies the relation, Wn+1 =
⋃

E∈Wn

E(E).

Proof. i) We have shown from Lemma 4.1i that deletion of symbol 1 creates is a well

defined mapping D : En+1 → En. Conversely, therefore, we therefore cannot have distinct

word evolutions E1, E2 ∈ En that produce the same induced evolution E ′ when a new first

TD is introduced; E(E1) and E(E2) are thus distinct.

ii) We know from Lemma 7.8ii that for any E ∈ En, E(E) ∈ En+1. This implies that⋃
E∈En
E(E) ⊂ En+1. Conversely, from Lemma 7.8i we know that

⋃
E∈En
E(E) ⊃ En+1.

Thus we can generate all of the word evolutions in En+1 as a disjoint union of induced

evolutions from En.

201

We wish to construct the major graphs Tmaj(E
′) of all the induced word evolutions E ′ ∈

E(E) from the 2d-tree T (E) of the original evolution. To do this we need to relate the

positions of new symbol 1 in the new evolution E ′ to the nodes of the 2d-tree T (E). In all

that follows X represents unspecified subwords in a word evolution. We have the following

definition.

Definition 7.8. Let Z = {1a, 1b, 2a, 2b, 3a, 3b, ..., na, nb} be the node labels for a 2d-tree

T (E+), where E+ is the connection evolution after the TD numbers have been increased

by 1 in some connection evolution E. For any evolution E ′ induced from E, a 1-nodeset

N ⊆ Z is defined as follows:

i) If the word XmX in word evolution E+ becomes word X1mX in induced evolution E ′,

then mb ∈ N .

ii) If the word XmX in word evolution E+ becomes Xm1X in induced evolution E ′, then

ma ∈ N .

iii) 1a, 1b ∈ N
Example 7.8. In Figure 7.3F,G we have evolutions:

E+ = [2→ 232→ 4232→ 4235232]

E ′ = [1→ 12→ 12312→ 1412312→ 1412352312]

Now 2 in E+ becomes 12 in E ′, so 2b ∈ N . Similarly, X3X becomes X31X so 3a ∈ N
(see italic symbols above). We see X4X becomes X141X, the symbol 4 picking up a 1

either side in the induced evolution, so that 4a, 4b ∈ N . Finally we note that 5 remains

isolated from the symbol 1 so 5a, 5b 6∈ N . Thus N = {1a, 1b, 2b, 3a, 4a, 4b}.

202

Now each 1-nodeset is a subset of the node labels for the 2d-tree. We find these sets have

the following tree like structure:

Lemma 7.9. Let T (E) be the 2d-tree for a connection evolution E, and N be the 1-nodeset

corresponding to an induced evolution E ′. Then if x ∈ N ,

i) If x is not a root node, its parents are in N .

ii) If x is the parental node of a fence, at least one of the daughter nodes must be in N .

Conversely, any set of nodes N from T (E) satisying i) and ii) is a 1-nodeset for some

induced evolution E ′.

Thus the 1-nodesets have the tree like property that for any node belonging to the 1-

nodesets, all its ancestors are also present. In particular, the root nodes belong to N .

Consider the example above; N = {1a, 1b, 2b, 3a, 4a, 4b}, these are the (solid) nodes in

Figure 4.4H which satisfy these criterion. The two roots 1a and 1b are in N . There is a

fence between 2a and 2b, which have parental nodes 1a, 1b that are members of node set

N . At least one of 2a, 2b must therefore be in N , and in this case 2b is.

Proof. (of Lemma 7.9) Consider the nth TD in evolution E. We have two cases to consider.

Case I: The TD is not a fence. Then we have a node na with parents ua and vb, and node

nb with parents u′a and v′b. We also have step XuvXu′v′X → XuvXu′nvXu′v′X in the

corresponding connection evolution E, where the connections from v to u′ (inclusive) are

duplicated. Note that subword XuvX represents somatic connections across the region

containing the breakpoint na, and Xu′v′X similarly covers breakpoint nb.

203

We consider changes to the parts XuvX and Xu′v′X of word XuvXu′v′X when symbol

1 is introduced in the induced evolution separately.

Case Ia: If we have word XuvX after symbol 1 has been introduced into E ′, then by

Definition 7.8, ua, vb 6∈ N . We then find we have evolution step XuvX → XuvXnvX in

E ′ and so symbol n is not adjacent and left of symbol 1 and we find that na 6∈ N . That

is, if the major parent of na is not in N , na cannot be in N .

If we have Xu1vX after symbol 1 has been introduced, then by Definition 7.8, ua, vb ∈ N .

That is, the parents of na are in N . Now we have two possibilities. Firstly, we can have

evolution step Xu1vX → Xu1vXnvX in E ′, where the connection 1 is not duplicated.

In this case we find symbol n is not adjacent to a 1 so by Definition 7.8, na 6∈ N . Secondly,

we can have evolution step Xu1vX → Xu1vXn1vX, where the somatic connection 1 is

duplicated. In this case we find symbol n is adjacent and left of symbol 1 so by Definition

7.8, na ∈ N . Thus if the parents of na are in N , na may or may not be in N depending

upon the choice of the induced evolution.

Note that the converse is also true and if the parents of na are in N , we select the evolution

step depending on whether na is in N .

Case Ib: The argument for node nb, which depends upon Xu′v′X, is analogous, with the

same conclusions.

Case II: Consider the case that the nth TD results in a fence.

In that case we have a step XuvX → XunvX in E. Then if we have corresponding step

XuvX → XunvX in induced evolution E ′ we find that ua, vb 6∈ N by Definition 7.8 and

both na, nb 6∈ N .

204

Alternatively we may find that we have a step of the form Xu1vX → X in E ′. Then

parental nodes ua, vb ∈ N and we have three possibilities to consider.

We may have Xu1vX → Xu1nvX. Here the 1 is not duplicated, but we find n is to the

right of a 1 and so nb ∈ N .

We may have Xu1vX → Xun1vX. Here the 1 is not duplicated, but we find n is to the

left of a 1 and so na ∈ N .

Lastly, we may have Xu1vX → Xu1n1vX. Here the 1 is duplicated and both na, nb ∈ N .

Thus when the parent nodes of a fence are in N , at least one of the daughter nodes na or

nb must be.

Conversely, when the parent node and one or more of na or nb are in N , we select the

corresponding evolutionary step.

We can now show how to construct the major graph Tmaj(E
′) from the parental 2d-tree

T (E).

Lemma 7.10. For any evolution E ′ induced from E, let N be the corresponding 1-nodeset

obtained from Lemma 7.9. Let T (E) be the 2d-tree corresponding to E. The major graph

Tmaj(E
′) is constructed as follows.

i) Select all nodes from T (E) and increase each TD number in the node labels by 1.

ii) If any type a (resp. b) node (that is not a root) is a member of N , select the parental

edge of the same type, a (resp. b).

205

iii) If any type a (resp. type b) node (that is not a root) is immediately adjacent (but not

in) N , select the parental edge from the opposite type, b (resp. a).

iv) If any node na (resp. nb) is neither a member of, or immediately adjacent to, N , select

the major edge of na from T (E).

v) If na and nb are connected by a fence in T (E) (for TD number n ≥ 2), select the fence

if and only if na 6∈ N or nb 6∈ N .

vi) Place a fence between 1a and 1b and swap these two node labels.

Example 7.9. Consider again the original 2d-tree T (E) in Figure 7.3B, where E is the

evolution in Figure 7.3E. We wish to construct and the major graph Tmaj(E
′) (of induced

evolution E ′) given in Figure 7.3H by applying the Lemma. We found the 1-nodeset corre-

sponding to evolution E ′ previously as N = {1b, 1a, 2b, 3a, 4a, 4b}, the black nodes in Figure

7.3H. Then to construct Tmaj(E
′) we take the nodes of T (E) and first increase the TD

numbers by 1, swap the two labels with TD number 1, and place a fence between them.

Node 2a 6∈ N is adjacent to N so we select the edge from the node of opposite b type by

Lemma 7.10iii. This was 0b, which is now mapped to 1a, so we select edge 1a → 2a. Node

2b ∈ N , so we select the parental edge of same node type b. This was also 0b, so we select

the edge from mapped node 1a → 2b. By Lemma 7.10v, we furthermore select the fence

between nodes 2a and 2b. Now 3a ∈ N thus we select the edge from type a parent, the node

1b (mapped from 0a). Node 3b is not in or adjacent to N so we select the major edge from

T (E); 2a → 3b. Now 4a, 4b ∈ N so we select the edges from parental nodes of same type;

1b → 4a and 2b → 4b parental node 2b. Nodes 5a, 5b are adjacent to N so we select its

parent edges of opposite type; 2b → 5a and 3a → 5b.

Observe that the differences between T (E) and Tmaj(E
′) are a form of subtree prune and

graft operations [98]; when the major edge is swapped for the minor edge we are pruning

from the major parental node and grafting to the minor parental node.

206

Proof. (of Lemma 7.10)

i) All the breakpoints from evolution E remain in evolution E ′ so we inherit the repre-

sentative breakpoints. The introduction of a new first TD increases each TD number by

1.

ii) Consider the case that we have a type a node na ∈ N . Then we have evolution step

XuvX → XuvXnvX in E+, and na has major and minor parents ua and vb in T (E) (in

some order, depending upon whether u > v). This evolution step becomes Xu1vX →
Xu1vXn1vX in E ′. Then the connection symbol 1 is duplicated and breakpoint na occurs

between connections u and 1. The major and minor parents are then ua, 1b in T (E ′). Now

u > 1 so the major parent of na in T (E ′) is the node ua. Thus if we have a type a node

na ∈ N , we select the parental edge of the same type; ua → na, irrespective of whether it

was the major or minor in T (E). The argument for nb is analogous.

iii) Consider the case that na is adjacent to a node in N , that is, its major and minor

parents are in N . Then we have evolution step XuvX → XuvXnvX in E that becomes

Xu1vX → Xu1vXnvX in E ′. This time, in the induced evolution, the major and minor

parents of na are 1a, vb. Now v > 1 so the major parent of na in E ′ is node vb. Thus if

we have a type a node na ∈ N , we select the parental edge of the opposite type; vb → na,

irrespective of whether it was the major or minor in the original evolution E. The argument

for nb is analogous.

iv) Consider the case that na is neither adjacent to a node in, or a member of N . Then we

have evolution step XuvX → XuvXnvX in E that becomes XuvX → XuvXnvX in

E ′. Now the major/minor status of na does not change from the original. The argument

for nb is analogous.

v) If na and nb are connected by a fence we have a step of the form XuvX → XunvX

207

in E. The corresponding step in the induced evolution E ′ takes one of four forms. Firstly,

if Xu1vX → Xu1n1vX in E ′, then n is adjacent to 1 on both sides, so na, nb ∈ N .

Note that the nth TD has duplicated symbol 1, so we do not have a fence in Tmaj(E
′).

Secondly, if we have Xu1vX → Xu1nvX in E ′, then na 6∈ N and nb ∈ N . Note

that n has not duplicated the symbol 1 and we still have a fence. Thirdly, the evolution

Xu1vX → Xun1vX in E ′ similarly preserves the fence, with na ∈ N and nb 6∈ N . Finally,

if we have XuvX → XunvX in E ′, the fence is preserved and na, nb 6∈ N . Thus Tmaj(E
′)

contains the fence if and only if at least one of na 6∈ N or nb 6∈ N is true.

vi) Firstly note that the initial TD in any evolution must occur on the single reference

segment, and so must be fence because there are no prior TDs to duplicate, thus we place

a fence between nodes 1a and 1b.

Consider the nth TD for some n ≥ 2. Note that the only way that node na or nb can have

a parental node 0a or 0b is to have a step of the form X → nX or X → Xn in connection

evolution E. Consider first the step X → nX. Note that n must represent a fence because

there are no symbols to the left of n which could have been duplicated. Then na and nb

have minor parents 0a and some major parent vb. The induced evolution can then be in

one of three forms.

Firstly, we can have corresponding step 1X → n1X in E ′. In this case, from Definition

7.8 we find na is in N and so is connected to its type a parent 0a by ii) above. Now

because connection symbol n corresponds to a fence, nb has the same parents as na, so is

adjacent to N in T (E). Then using iii) above we find nb is connected to its type a parent,

also 0a. However, constructing the major tree directly from the 2d-tree corresponding to

connection evolution E ′, we find that connection symbol n represents a fence with major

parent 1b. Thus to get an equivalent form from the original 2d-tree, we map 0a to 1b.

The case for 1X → 1nX is similar, resulting in a map from 0b to 1a.

208

For the third choice, the step becomes 1X → 1n1X in E ′. We then find that na, nb ∈ N
by Definition 7.8 as n is adjacent to 1 on both sides. Thus in the major graph for E ′, na

is connected to its type a parent 0a and nb is connected to its b parent ub. However, direct

from E ′ we see that na has major parent 1b and nb has major parent ub, so again we map

0a to 1b for a consistent correspondence.

The argument using step X → Xn and node na from E is entirely similar with parallel

conclusions.

In summary, we now know that for any connection evolution E ∈ En−1 there is a unique

subset of induced evolutions E(E) ∈ En, each member E ′ of which corresponds to a 1-

nodeset from the 2d-tree of E. We can now use this to produce the major graph T (E ′)

for the induced evolution using Lemma 7.10. We can then calculate the number of TD

evolutions associated with each E ′ from Theorem 4.2. We thus need to sum the TD-

Evolution counts across the set of 1-nodesets corresponding to E(E). Whilst this is possible,

leading to 4n− (2n+ 1) induced TD evolutions for each connection evolution E, the proof

relies on a more general space of graphs than we have considered so far, which we now

introduce.

7.5.3 β-trees

Firstly we generalize the notion of the 2d-tree obtained from TDs.

Definition 7.9. A β-tree T is any directed graph such that:

i) All nodes and edges are classified as either type a or type b

ii) There is a root node (A) of type a and a root node (B) of type b, and all directed edges

209

point away from the roots.

iii) All other nodes have a type a parental node and a type b parental node. The two edges

from the parental nodes are also of type a and b, respectively. Either the two parents are

the two roots, or one parent is a descendant of the other. The edge from the more recent

ancestor is the major, the other is the minor.

iv) A type a node and type b node may be linked by a fence if they have the same parental

nodes, or are the two roots.

Thus the 2d-trees defined from TDs are β-trees, for example. Note that β-trees are more

general; take Figure 7.6A,B, for example, they do not have an even number of nodes and

cannot arise from a TD process, but satisfy the requirements of a β-tree.

Similar to the 2d-tree construction, the major graph Tmaj(T) of a β-tree T is the graph

obtained when the minor edges are removed.

Secondly, we generalize the notion of 1-nodesets.

Definition 7.10. A β-subtree τ of a β-tree T is a subset of nodes from T such that:

i) The two root nodes are in τ .

ii) If a node in τ is the parent of a fence, one of the two daughter nodes bridged by the

fence must also be in τ .

iii) If a node is in τ , both parental nodes are also in τ .

Example 7.10. Consider Figure 7.6A,B. Here the original β-trees are in Figures 7.6A,Bi.

210

A B

[6] [18] [4] [5] [5] [18] [12] [6] [6] [8] [12] [3] [3] [2]

4 3

[2]

5 2

[8]

6 1

[20]

3 4

[6]

2 5

[6]

2 5

[6]

1 6

[20]

4 3

[12]

3 4

[6]

3 4

[6]

2 5

[8]

5 2

[12]

4 3

[3]

4 3

[3]

3 4

[2]

5 2 6 1 3 4 2 5 2 5 1 6 4 3 3 4 3 4 2 5 5 2 4 3 4 3 3 4

[20]

n1,6 = 20

n2,5 = 6 + 6 + 8 = 20

n3,4 = 6 + 6 + 6 + 2 = 20

n4,3 = 2 + 12 + 3 + 3 = 20

n5,2 = 8 + 12 = 20

n6,1 = 20

[18]

n1,6 = 18

n2,5 = 5 + 5 + 8 = 18

n3,4 = 4+ 6 + 6 + 2 = 18

n4,3 = 12 + 3 + 3 = 18

n5,2 = 6 + 12 = 18

n6,1 = 18

A

B

i

ii

iii iv v vi

i

ii

iii iv v vi

vii

vii

a1

a2

b1

b3b2

A B

a1

a2

b1

b3b2

f

Figure 7.6: Full sets of tree operations. In A) we have a fenceless structure, in B) we have the same
structure with a fence f . i) The full 2d-trees; blue are type b nodes or edges, red are type a nodes or
edges. Solid lines are major edges, dashed lines are minor edges. Black edges are fences. ii) The major
graph when nodes A and B are contracted. iii)-vi) Major graphs corresponding to β-subtrees indicated by
blackened nodes. β-subtrees are partitioned into subgraphs τA connected to node A and τB connected to
node B. iii) Major graphs when both τA, τB = φ are empty. iv) Major graphs when τA = φ and τB 6= φ.
v) The trees when τA 6= φ and τB = φ. vi) Major graphs when τA, τB 6= φ. vii) The total nr,7−r of
combinatorial terms of trees with r nodes in component connected to node A.

The β-subtrees are indicated in Figure 7.6A,B iii-iv by the solid nodes. Note that the two

roots are always in τ . These are the parents of the fence f in Figure 7.6B and so in

agreement with Definition 7.10ii we find that at least one of the two nodes a1 and b1

bridged by f lies in τ .

The β-subtree τ of a β-tree T can be used to define a modified major graph, analogously

to the construction of Tmaj(E
′) in Lemma 7.10, as follows:

Definition 7.11. For a β-tree T and β-subtree τ , the induced tree T (τ) is the major graph

obtained from T by the following operations.

211

i) Select all nodes from T .

ii) For any node (that is not a root) in τ of type a (resp. b), select the parental edge of

same type a (resp. type b).

iii) If any node (that is not a root) of type a (resp. b) is immediately adjacent (but not in)

τ , select the parental edge of opposite type b (resp. type a).

iv) If any node is neither a member of, or immediately adjacent to, τ , select the major

parental edge from T .

v) If two nodes are connected by a fence in T , select the fence if and only if one or both

nodes are not in τ .

Note that this definition differs from Lemma 7.10 in one important way. By Definition

7.10, any β-subtree contains both root nodes. By Definition 7.11v, any fence between the

two root nodes is not selected in T (τ). However, we find by Lemma 7.10ii that Tmaj(E
′)

will contain a fence between the two roots. We will later see that this difference has an

important implication for the calculation of the total number of possible TD evolutions.

In order to introduce the main property of β-trees that will allow us to count TD evolutions

we need to introduce some notation.

Terminology

• For any 2d-tree T with major graph T (τ) corresponding to β-subtree τ :

212

– T (τ) is the graph obtained when the two root nodes of T (τ) are contracted

together.

– C(τ) is the product of combinatorial coefficients across nodes and fences of T (τ)

given by Theorem 7.2.

• S denotes the set of valid β-subtrees according to Definition 7.10.

• ε denotes the trivial β-subtree containing just the two root nodes.

• For any node or fence x in T :

– Nx(τ) is the number of nodes from x and its descendants in T , attached to the

A root in T (τ).

– τx denotes the restriction of τ to x and its descendants.

– Sx denotes the set of possible subsets τx.

– Cx(τ) denotes the product of factors of C(τ) arising from x and its descendants.

– cx(τ) denotes the single factor associated with node (or fence) x.

– Terms with an overline added, such as cx(τ), are the corresponding terms using

T (τ) instead of T (τ).

213

– When terms, such as cx(τ) (and Cx(τ)), only depend upon x (and its descen-

dants) in T (τ), we equivalently use notation cx(τx) (and Cx(τx)).

Example 7.11. In Figure 7.6Bii we have a β-tree. The graphs in each of Figures 7.6Biv-

vi are the possible major graphs T (τ), where each β-subtree τ can be identified from the

solid nodes. The counts NA(τ) can be seen above the A node for each graph. Node b1 in

the β-tree in Figure 7.6Bii has two daughter branches with one node each, so we write

cb1(ε) =
(
2
1

)
= 2. We trivially have cb2(ε) = cb3(ε) = 1 for leaf nodes b2 and b3; the

descendants of b1, so can also write Cb1(ε) = cb1(ε) · cb2(ε) · cb3(ε) = 2.

We are finally in a position to describe the following fundamental result, which will allow

us to determined the total number of TD evolutions.

Theorem 7.4. Let T be any β-tree with N nodes, and S the corresponding set of β-subtrees.

Then for any r ∈ {1, 2, ..., N − 1} we have:

∑
{τ∈S:NA(τ)=r}

C(τ) = C(ε) (11)

Example 7.12. We see in Figure 7.6Bii the major graph T (ε), where the two root nodes

have been contracted together. There are two non-trivial combinatorial terms. One from

the fence f below the root, which has two nodes descending the left side, three the right,

resulting in combinatorial coefficient cf (ε) = (
(
5
2

)
− 1) = 9, by Theorem 7.2. The other

term comes from the daughter node b1 to the right of the root, which has two daughter

branches with one node each, resulting in combinatorial term cb1(ε) =
(
2
1

)
= 2. All other

nodes give coefficient 1. Together we get the factor C(ε) = cf (ε) ·cb1(ε) ·1 = 18, the number

in square brackets given below the graph. Now there are two major graphs T (τ1), T (τ2) for

which NA(τ1) = NA(τ2) = 5; the first graph in Figure 7.6Biv, which has combinatorial term

C(τ1) = 6, and the fifth graph in Figure 7.6Bvi, which has combinatorial term C(τ2) = 12.

These add up to the same value 18 we found for the graph with contracted roots, agreeing

with Equation (11) for r = 5.

214

Proof. (of Theorem 7.4) We prove this by induction on the number of nodes in the β-tree.

Induction Initial Case

Firstly consider β-trees with N = 2 nodes in total. There are two root nodes A and B

of type a and b, respectively. There are only two possible β-trees depending on whether

A and B are linked by a fence. Now any subtree from S must contain the two roots

by Definition 7.10i, so there is only the one subtree ε = {A,B} to consider. If there is

a fence between A and B then by Definition 7.11v, the fence does not belong to T (ε).

Thus for both cases T (ε) contains both root nodes and no edges. Now the only value that

r ∈ 1, ..., N − 1 = 1 can take is 1 and NA(τ) = r = 1; the number of nodes attached to

node A is 1. Now from Theorem 7.2, the combinatorial term associated with each node A

and B is 1. Furthermore, the contracted tree T (ε) is a single node, which similarly has a

combinatorial term of 1. We then find that:

∑
{τ∈S:NA(τ)=r}

C(τ) = 1.1 = 1 = C(ε)

The result is therefore correct for β-trees with N = 2 nodes.

Inductive Assumption

Next we make the inductive hypothesis that the theorem is true for all β-trees with N ≤
K − 1 nodes, for some K > 2. We now consider a β-tree T with N = K nodes. We have

two root nodes, A and B. The daughter nodes from these two roots may be either type a

nodes from root node B, type b nodes from root node A, or fences descending from both

nodes, as portrayed in Figure 7.7Ai.

215

Note also that although the original β-tree T can have type a nodes with major parent

A, or type b nodes with major parent B, they can effectively be assumed to have opposite

parentage. More specifically, if we have a daughter node xa of type a descending from

either root node, then when any β-subtree τ not including xa (such as ε) is used, we find

xa is attached to B in T (τ) by Definition 7.11iii. Also, for any β-subtree τ including xa

(such as the entire nodeset from T), we find xa is attached to A in T (τ) by Definition

7.11ii. When the two roots are contracted in T (ε) we find node xa attached to the single

root. Thus the choice of which root to use as the major parent of xa has no affect on the

validity of Equation (11) and we take the root B as stated. The argument for daughter

node xb is similar. This is equivalent to assuming T = T (ε).

Although there may be any number of these type of branches descending from the roots,

for the sake a simpler exposition we provide the proof just for the four branches drawn

in Figure 7.7Ai. The generalization is relatively straightforward (see comment at end of

proof).

Now we require a sum over β-subtrees τ such that NA(τ) = r. That is, we require r nodes

in the component of T (τ) attached to root node A. We suppose that in the original tree

T (see Figure 7.7Ai) there are na, nb and nf nodes contained in each of the two branches

containing nodes a and b, and the two branches containing the fence f , respectively, where

nf = na′ + nb′ . We suppose that there are subsequently ra, rb and rf = ra′ + rb′ of these

nodes attached to A in major tree T (τ), such as in Figure 7.7Aii. The count r includes

node A so we require ra + rb + rf = r − 1.

Now C(τ) is a product of terms across the nodes and fences, which can be split into A, B,

the nodes in the two branches containing a and b, and the two branches bridged by fence

f . Recalling the terminology introduced above, we can split the combinatorial term for

major tree T (τ) as:

216

C(τ) = cA(τ) · cB(τ) · Ca(τa) · Cb(τb) · Cf ({τa′ , τb′})

Note that τa, τb, τa′ and τb′ are the subsets of τ the include nodes a, b, a′ and b′ and

their descendants, respectively. Thus when we have trivial β-subtree τ = ε, we find these

subsets are empty; τa = τb = τa′ = τb′ = φ.

The left hand side of Equation (11) can then be split into sums across the four branches

as follows:∑
{τ∈S:

nA(τ)=r}

C(τ) =
∑

{ra,rb,rf :
ra+rb+rf
=r−1}

cA(τ)cB(τ)·
∑
{τa∈Sa:

Na(τa)=ra}

Ca(τa)·
∑
{τb∈Sb:

Nb(τb)=rb}

Cb(τb)·
∑

{τa′∈Sa′ ,τb′∈Sb′ :
Nf ({τa′ ,τb′})=rf
∼(τa′ ,τb′=φ)}

Cf ({τa′ , τb′})

(12)

Now the sum is restricted to β-subtrees with r− 1 nodes in the branches descending from

A. We have three branches from node A with node counts ra, rb and rf = ra′ + rb′ , where

the two branches containing a′ and b′ are treated as a single branch in accordance with

Theorem 7.2. Thus we find that we associate node A with the multinomial coefficient:

cA(τ) =

(
r − 1

ra, rb, rf

)
(13)

We similarly find we have:

cB(τ) =

(
K − r − 1

na − ra, nb − rb, nf − rf

)
(14)

217

We thus have expressions for two terms in Equation (12). To calculate the remaining

terms we show that each branch corresponds to a smaller β-tree (< K − 1 nodes) which

will enable us to use the inductive hypothesis. We have three cases to consider.

Case I: Dealing with Type a Branches

Instead of the full β-tree T (represented in Figure 7.7Ai), consider the β-tree in Figure

7.7Bi which we obtain by removing all branches except the branch containing a, removing

edge B → a and contracting nodes A to a together. We call the resulting β-tree T ′. The

corresponding major graphs for T and T ′ are represented in Figures 7.7A,Bii.

Now every β-subtree τ ′ of T ′ can be written as τ ′ = {τa, B} for some τa ∈ Sa. This

correspondence applies for every τa 6= φ. For this single case, τa = φ we find the root a for

T ′ is missing from {τ, B}, and we do not have a valid β-subtree of T ′. We thus treat the

two cases of τa = φ and τa 6= φ separately.

Case Ia (τa = φ). Now the major branch of 2d-tree T containing a is unmodified in T (τ).

Thus all na nodes in the branch containing the a node are in one component connected to

the root B node, and so Na(τa) = ra = 0. Now for any τa 6= φ, node a is attached to the

root A in T (τ) by Definition 7.11ii, so ra > 0. Thus the only case with ra = 0 is τa = φ.

For this case we note that Ca(τa) = Ca(ε), and the following equation holds true.

∑
{τa∈Sa:

Na(τa)=ra}

Ca(τa) = Ca(ε) (15)

Case Ib (τa 6= φ) We next verify Equation (15) for values ra 6= 0.

218

Now for τa 6= φ we have well defined β-subtrees τ ′ = {τa, B}. Furthermore, the descendants

of root a in the major graph T ′(τ ′) match the descendants of node a in major graph T (τ),

and we find that the combinatorial term associated to tree T ′(τ ′) will be precisely Ca(τa).

Noting that T ′ has at least one less node than T , we can apply the inductive hypothesis

using Equation (11) to T ′ and hence derive Equation (15) for the remaining cases where

ra > 0.

Case II: Dealing with Type b Branches

By a symmetric argument on the branch with node b we obtain an analogous equation of

the form:

∑
{τa∈Sb:

Nb(τb)=rb}

Cb(τb) = Cb(ε) (16)

Case III: Dealing with Daughter Fences

We are interested in the remaining combinatorial term Cf ({τa′ , τb′}) from Equation (12)

that we have yet to examine. This corresponds to the two branches containing nodes a′

and b′, and the fence f between them. We thus define β-tree T ′ as the restriction of T to

these two branches (see Figure 7.7Ci). If we also remove the fence f , we get the β-tree in

Figure 7.7Di, which we call T ′′. We use terms, such as C ′ and C ′′ for example, to refer to

combinatorial terms associated to T ′ and T ′′.

The reason for doing this is because the combinatorial terms of the two sets of induced

major graphs are closely related, which we will exploit. For example, in Figure 7.6A we

see a β-tree with a fence and in 7.6B we see the same β-tree with the fence removed.

219

The combinatorial terms (in square brackets below each graph in Figures 7.6A,Biii-vi) are

identical in all cases except when either τa′ = φ or τb′ = φ is empty.

First consider T ′′. For the graph in Figure 7.7Di we have nb′ nodes descending from node A

and na′ from node B. Now because there is no fence f present in T ′′ we have two separate

branches; one from root A down the branch containing node b′, the other from root B

down the branch containing node a′. We can then apply the same methods as Cases I and

II above to conclude Equation (11) is valid for T ′′ (Figure 7.7D). This gives us:

∑
{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′) = C
′′
a′(ε) ·C

′′
b′(ε) ·

(
na′ + nb′

na′

)
= Ca′(ε) ·Cb′(ε) ·

(
na′ + nb′

na′

)
(17)

Here we have used the fact that the components C
′′
a′(ε) and C

′′
b′(ε) derived from the β-tree

T ′′ (corresponding to the two triangles in Figure 7.7Diii) are identical to the components

Ca′(ε) and Cb′(ε) derived from the original β-tree T (see Figure 7.7Aiii). The combina-

torial term
(
na′+nb′
na′

)
arises because when the two root nodes are contracted together the

single resulting node has two descending branches containing na′ and nb′ nodes (see Figure

7.7Diii), and we then apply Theorem 7.2.

Now we want the corresponding sum to Equation (17) for tree T ′. We have four cases to

consider depending on whether τa′ or τb′ are empty.

Case IIIi (τa′ , τb′ 6= φ) Now if both subsets τa′ and τb′ are non-empty, we find from

Lemma 7.10v that node a′ is attached to root A and node b′ is attached to root B, and

the fence is not part of T ′. This results in the identical situation to T ′′, where there was

no fence f in the first place. We then find that:

220

A Bi

ii

A

a a’ b’ b

na

Ta’

na’

Ta
TbTb’

nb

nb’

r N-r

n1-r1 rb
rb’

ra ra’
nb-rbna’-ra’

nb’-rb’

Ta Ta’
Tb’

Tb

Bi a

Ta

ii

na-ra
Ta

ra

na

A BiC

a’ b’

Ta’

na

Tb’

nb

ii r’ N-r’

rb’ra’

na’-ra’
nb’-rb’

Ta’ Tb’

AB
iii

a a’ b’ b

na

Ta’

na’

Ta
TbTb’

nbnb’

iii
aB

Ta

na

Ba

B

AB
iii

a’ b’

Ta’

na’

Tb’

nb’

A BiD

a’ b’

Ta’

na

Tb’

nb

ii r’ N-r’

rb’ra’

na’-ra’
nb’-rb’

Ta’ Tb’

AB
iii

a’ b’

Ta’

na’

Tb’

nb’

f f

Figure 7.7: A) The general form of a 2d-tree. Triangles indicate a 2d-tree substructure. Dashed lines
indicate possible presence of a fence. B) Reduction to a single branch. C) Reduction to a descending fence.
D) The graphs of C with the fence removed. i) 2d-trees. ii) Trees T (τ). iii) Trees T (τ) after root node
contraction.

∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′({τa′ , τb′}) (18)

An example of this can be seen in Figure 7.6A,Bvi, where the combinatorial terms (in

square brackets) are equal between the two groups.

Now from Equation (12) we are interested in the subsets τa′ and τb′ such that the number

of nodes either bridged by, or descending from, fence f is equal to rf = ra′ + rb′ for some

value rf . We have just seen that when τa′ and τb′ are both non-empty, the two sums in

Equation (15) corresponding to trees T ′ and T ′′ are equal for all values of rf . For the

221

remaining three cases, where at lease one of τa′ and τb′ is empty, we will see that there is a

constant difference between the sums arising from trees T ′ and T ′′. Furthermore, the value

rf will be seen to arise in exactly one of these three cases.

Case III ii (τa′ , τb′ = φ and rf = nb′) The β-subtree τ = ε is trivial and there are

no changes to the major graph. We then find there are nb′ nodes present in the branch

descending from A in T ′′(τ). We thus find this case applies if rf = nb′ . Now this situation

does not apply to T ′ (when the fence f is present). The parental nodes of f (the roots in

this case) lie in τ = ε, so one of the two nodes bridged by f must lie in the β-subtree τ

by Definition 7.10ii. We thus find that although ε ∈ S ′′ in a valid β-subtree for T ′′, ε 6∈ S ′

is not a valid β-subtree for T ′ (Figure 7.6A,Biii only has a contribution for the fenceless

graph, for example). For T ′′, the trivial conditions τa′ , τb′ = φ result in a single induced ma-

jor tree (corresponding to Figure 7.7Di), with major edges that match the original β-tree

T , and we obtain combinatorial term C ′′f (ε) = Ca′(ε) · Cb′(ε). We thus find:

∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′)− Ca′(ε) · Cb′(ε) (19)

Case III iii (τa′ = φ, τb′ 6= φ and rf < nb′) Now τa′ is trivial, so the arm descending from

B containing node a′ is unchanged from the original major graph for both trees T ′ and T ′′,

and all na′ nodes remain in the component of the major graph containing B (ra′ = 0). After

the changes induced by τb′ , the other arm splits with rb′ nodes belonging to the component

of the major tree containing A, and nb′ − rb′ nodes belonging to the component containing

B. Thus in total there are rf = rb′ nodes from the original two branches that end up in

the component of the major graph containing A, for some rb′ ∈ {1, 2, ..., nb′ − 1}. This

case will thus apply provided rf < nb′ . Now the combinatorial term from the unmodified

a′ branch matches those from the original β-tree; Ca′(ε). Now in the tree T ′′ (without the

fence f) the branch containing node b′ can be treated with the inductive hypothesis, like

222

Case II above, and we find that:

∑
{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′′(τa′ , τb′) =

Ca′(ε) ·
∑
{τb′ 6=φ

Nb′ (τb′)=rf}

C ′′b′(τb′) ·
(
nb′ − rb′ + na′

na′

)
=

Ca′(ε) · Cb′(ε) ·
(
nb′ − rb′ + na′

na′

)
(20)

Here we pick up a combinatorial factor
(
nb′−rb′+na′

na′

)
from the two branches descending from

node B. Now for the tree T ′ (with fence f), the only combinatorial factor that differs

between any pair of induced major trees T ′(τ) and T ′′(τ), is the combinatorial term from

node B in T ′′(τ), which becomes the fence factor for f ;
(
nb′−rb′+na′

na′

)
− 1 in T ′(τ). That is:

C′′({τa′ ,τb′})
(nb′−rb′+na′

na′
)

=
C′({τa′ ,τb′})

(nb′−rb′+na′
na′

)−1
.

Substituting this into Equation (20) gives us:

∑
{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) = Ca′(ε) · Cb′(ε) ·
((

nb′ − rb′ + na′

na′

)
− 1

)
(21)

Then subtracting Equation (21) from Equation (20) reveals the same constant difference

223

observed in the previous case:

∑
{τa′=φ
τb′ 6=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′=φ
τb′ 6=φ

NA=rf+1}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε) (22)

Case III iv: (τb′ = φ, τa′ 6= φ and rf > nb′) The argument is analogous to Case III ii and

the same difference is obtained where we find:

∑
{τa′ 6=φ
τb′=φ

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑
{τa′ 6=φ
τb′=φ

NA=rf+1}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε) (23)

Thus in all three cases (III i-iii) the difference between the tree with and without the

fence is Ca′(ε) · Cb′(ε). Furthermore, for any single value of rf , one of these three cases is

applicable. We thus find, using Equations (19), (22) and (23) with (18) that:

∑
{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) =
∑

{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′′({τa′ , τb′})− Ca′(ε) · Cb′(ε)

Then substituting this into Equation (17) gives us:

224

∑
{τa′∈Sa′
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

C ′({τa′ , τb′}) = Ca′(ε) · Cb′(ε) ·
(
na′+nb′
na′

)
− Ca′(ε) · Cb′(ε)

= Ca′(ε) · Cb′(ε) · (
(
na′+nb′
na′

)
− 1)

(24)

Now C ′({τa′ , τb′}) matches the combinatorial term from the fence and its descendants,

Cf ({τa′ , τb′}). Furthermore Ca′(ε), Cb′(ε) and (
(
na′+nb′
na′

)
− 1) match the terms in the graph

T obtained from the branch containing node a′, the branch containing node b′, and fence

f (by Theorem 7.2), and so equal C
′
(ε). Thus we find that:

∑
{τa′∈Sa
τb′∈Sb′

Nf ({τa′ ,τb′})=rf}

Cf ({τa′ , τb′}) = Cf (ε) (25)

Completing the Induction

Thus finally substituting Equations (13), (14), (15), (16) and (25) into Equation (12) we

find that we have:

∑
{τ∈S:NA(τ)=r}

C(τ) = Ca(ε) · Cb(ε) · Cf (ε) ·
∑

{ra,rb,rf :
ra+rb+rf
=r−1}

(
r−1

ra,rb,rf

)(
K−r−1

na−ra,nb−rb,nf−rf

)

Then applying the multinomial version of the Vandermonde identity [116] results in:

225

∑
{τ∈S:NA(τ)=r}

C(τ) = Ca(ε) · Cb(ε) · Cf (ε) ·
(

K−2
na,nb,nf

)

However, the multinomial coefficient is identical to the combinatorial term we get if nodes

A and B are contracted to a single root. In Figure 7.7Aiii we see two branches containing

nodes na and nb, these have combinatorial terms equal to Ca(ε) and Cb(ε). We also have

fence f bridging the two branches containing nodes na′ and nb′ . Application of Theorem

4.2 to f for the root contracted graph T (ε) (given in Figure 7.7Aiii) returns precisely the

term
(

K−2
na,nb,nf

)
. We thus find that we have all the coefficients of C(T) and Equation (11)

is obtained.

If we have more than one branch descending from the root nodes, the only change to the

argument above is that we sum over a greater number of ri values. The Vandermonde

identity still applies and the same result is obtained.

7.5.4 Proving the Main Result

Finally, we can use this inductive relationship to determine the number of different evolu-

tions that arise from a TD process, and prove our main result.

Proof. (Proof of Theorem 7.3) Let E ∈ En−1 be a connection evolution on n − 1 TDs

with 2d-tree T , and E(E) ⊂ En the corresponding subset of induced evolutions. Let N (E)

and N (E(E)) denote the number of TD evolutions corresponding to connection evolution

E, and set of induced connection evolutions E(E), respectively. Now for every induced

evolution E ′ we know that there corresponds a 1-nodeset τ such that the major graph

Tmaj(E
′) corresponding to E ′ is obtained from Lemma 7.10. By Definition 7.10, τ is also

a β-subtree, and we have an induced major graph T (τ). We also know from Theorem 7.4

226

that for any induced major graph T (τ) we can sum C(τ) over the β-subtrees τ to obtain

C(ε).

Now the difference between T (τ) and the major graph Tmaj(E) is that the latter has a

fence between the two root nodes, this difference arising from Lemma 7.10vi.

Now E ′ is a connection evolution on n TDs so Tmaj(τ) has 2n nodes. Furthermore, Tmaj(E
′)

can have r nodes at the type a root, for some r = {1, 2, ..., 2n − 1}, along with 2n − r

nodes at the type b root. Then given the extra fence between the roots, by Theorem 7.2,

the number of TD evolutions associated with Tmaj(E
′) is given by (

(
2n
r

)
− 1)C(τ). Then,

using Theorem 7.4, the total number of TD evolutions induced by E is given by:

N (E(E)) =
2n−1∑
r=1

∑
{τ∈S:NA(τ)=r}

(
(
2n
r

)
− 1)C(τ) =

2n−1∑
r=1

(
(
2n
r

)
− 1) ·

∑
{τ∈S:NA(τ)=r}

C(τ)

=
2n−1∑
r=1

(
(
2n
r

)
− 1) · C(ε)

= C(ε) · ((
2n∑
r=0

(
2n
r

)
− 2)− (2n− 1))

= C(ε).(22n − (2n+ 1))

Now by Theorem 7.2 C(ε) is the number of TD evolutions associated with connection

evolution E. Thus we have:

N (E(E)) = N (E) · (4n − (2n+ 1)) (26)

Furthermore, by Corollary 7.4, the set of induced evolutions from En−1 gives rise to a

disjoint union of En. Thus summing Equation (26) across all E ∈ En−1 gives Nn = Nn−1 ·

227

(4n−(2n+1)). Starting a recursion from the single TD-Evolution with N1 = 1 then proves

the theorem.

7.6 Conclusions

We have seen in Table 7.1 from our main result that the number of different evolutions

increases with uncompromising velocity. This is primarily a theoretical result involving

some interesting combinatorical approaches, however, it does have some biological rele-

vance. In particular, the vast number of evolutions means that beyond five or six tandem

duplications it is at present unrealistic to attempt to computationally explore this space in

its entirety. This will make it difficult to compare any observations, such as copy number

information [72], [24], to the set of possible TD structures to determine evolutions that

may explain the data.

The methods utilized in this work largely parallel those used to examine breakage fusion

cycles [24]. These are a distinct form of rearrangement which suggest there may be a

more general space in which rearrangements operate and these methods apply. Given that

tandem duplication and breakage fusion cycles are leading candidate rearrangements in the

formation of large scale copy number increases such as those found in amplicons in cancer,

a generalization of these methods to the combined space of these rearrangement processes

may help to better understand their evolution.

In this study we have treated the process in a strictly discrete manner, treating the break-

point numbers as a discrete count of the number of DNA segments that lie on one side of

the breakpoint. However, one could consider TD as a continuous process, where break-

points occur as a random process on the real line (or stretch of DNA) and investigate the

relative likelihoods of different structures arising, as has been done with breakage fusion

228

bridge cycles in [24].

The methods above and in [24] can be viewed as mathematical operations on the real

line. It would seem plausible that other duplication mechanisms beyond those found in

biological rearrangements would yield to similar analyses, which may shed light on the

applicability of these methods which link combinatorics, general automaton on symbolic

algebra and duplicating mappings on intervals.

229

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	What is DNA?
	Genetic code and protein synthesis
	Mitosis and DNA replication
	Cancer in the western world: from the classic age to the genomic era
	The rapid evolution of an aberrant genome
	DNA loss and amplification
	Breakage-fusion-bridge cycles
	Segmental duplications and deletions
	Unbalanced translocations

	Copy-number-preserving rearrangements
	Inversions
	Balanced translocations

	Chromothripsis
	Microhomology mediated break induced replication
	Detecting rearrangements using Paired End Sequencing
	Evolutionary distance between genomes
	The combinatorics of gene duplications
	Aim of the Study

	An Eulerian path approach for the reconstruction of a cancer genome sequence
	Graph theory and genome representation
	Constructing Directed Graphs
	Finding all Arborescences of a Directed Graph
	Constructing Eulerian Cycles
	Computational Analyses
	Conclusions

	An algorithmic approach for the inference of a cancer genome evolution
	Implications of the Breakpoint Reuse Constraint
	Unique word representation
	Producing a set of evolutions from observed data
	Analysing real data
	Simulations
	Simulating unconstrained evolutions
	Simulating evolutions with segment side reuse

	Conclusions

	The combinatorics of Tandem Duplication
	Representing a TD process with order information
	The space of connection evolutions
	Using posets to count TD Evolutions
	Zig-zag plots
	2d-trees
	Linear Extensions

	The size of TD space
	Computational Analyses
	The combinatorics of TD temporal words
	The construction of a temporal poset

	Conclusions

	The combinatorics of Inverted Duplication
	Representation
	The space of connection evolutions
	Using posets to count ID evolutions
	Zig-zag plots
	2d-trees
	Linear Extensions

	The size of ID space
	Induced evolutions
	Conclusions

	Discussion
	Biological implications of the project
	General conclusions

	References
	Appendix
	Introduction
	Representation
	Counting Connection Evolutions
	Counting Evolutions with Posets
	Zig-zag plots
	2d-trees
	Linear Extensions

	The Size of TD Space
	A Motivating Example
	Induced Evolutions
	-trees
	Proving the Main Result

	Conclusions

