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Direct extraction and characterization of microbial community DNA through PCR amplicon 

surveys and metagenomics has revolutionized the study of environmental microbiology and microbial 

ecology. In particular, metagenomic analysis of nucleic acids provides direct access to the genomes of 

the “uncultivated majority”. Accelerated by advances in sequencing technology, microbiologists have 

discovered more novel phyla, classes, genera, and genes from microorganisms in the first decade and a 

half of the 21st century than since these “many very little living animalcules” were first discovered by 

van Leeuwenhoek (Table 1). The unsurpassed diversity of soils promises continued exploration of a 

range of industrial, agricultural, and environmental functions. The ability to explore soil microbial 

communities with increasing capacity offers the highest promise for answering many outstanding who, 

what, where, when, why, and with whom questions such as: Which microorganisms are linked to 

which soil habitats? How do microbial abundances change with changing edaphic conditions? How do 

microbial assemblages interact and influence one another synergistically or antagonistically? What is 

the full extent of soil microbial diversity, both functionally and phylogenetically? What are the 

dynamics of microbial communities in space and time? How sensitive are microbial communities to a 

changing climate? What is the role of horizontal gene transfer for the stability of microbial 

communities? Do highly diverse microbial communities confer resistance and resilience in soils?  
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Although molecular techniques, including metagenomics, have revolutionized the study of 

microbial ecology, the sheer magnitude of soil microbial diversity has prevented full access to the 

scope and scale of relevant microbiology questions worth asking of this complex habitat. Indeed, we 

still lack the ability to link most microorganisms to their metabolic roles within a soil community. 

Increased sequencing capacity provided by high-throughput sequencing technologies has helped 

characterize and quantify soil diversity, yet these methodologies are commonly leveraged to process 

additional samples at a relatively shallow depth rather than survey all genomes from a single sample 

comprehensively. In addition to high diversity, methodological biases remain an enormous challenge 

for microbial community characterization. These biases include soil sampling, DNA extraction, 

adsorption of nucleic acids to soil particles, contributions of extracellular DNA, sample preparation, 

sequencing protocols, sequence analysis, and functional annotation. Because current sequencing 
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technologies generate millions of reads with every analysis, hurdles associated with interpreting these 

“big data” can add to the challenges faced by microbial ecologists in understanding soils and the 

involvement of different microorganisms in the range of services that soils provide. 
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Microbial surveys, such as the Earth Microbiome Project (EMP; (Gilbert et al., 2014)), 

TerraGenome (Vogel et al., 2009), the Brazilian Microbiome Project (Pylro et al., 2014), the China 

Soil Microbiome Initiative (http://english.issas.cas.cn/), EcoFINDERS (http://ecofinders.dmu.dk/), and 

MicroBlitz (http://www.microblitz.com.au/) are good examples of large-scale coordinated efforts to 

explore soil taxonomic and functional diversity (Table 1). Nonetheless, the degree to which data from 

these consortia reflect original soil sample community compositions is unknown. Illustrating the 

extent of this problem, soil DNA extraction methods are described in over 100 articles, yet no single 

criterion (e.g., quantity of DNA, quality of DNA, composition of DNA, sequence diversity) can be 

used as a benchmark for extraction and recovery efficiency because no single “true” reference or 

benchmark for soil microbial community composition has been validated to date. 

 Without a suitable benchmark methodology or dataset for confirming the fidelity of amplicon 

or metagenomic analyses, assessing whether the presence and activity of organisms are correctly 

evaluated is impossible. In this way, metagenomic exploration of soil microbial diversity is analogous 

to satellite remote sensing of Earth’s biodiversity with defective satellites. Consider a hypothetical 

survey of African savannah biodiversity by a satellite that cannot detect mammals, leading the 

observer to overlook a herd of water buffalo in a watering hole that was also colonized by a flock of 

pink flamingos; even browsed grass and compacted soil might simply be attributed to flamingos. In 

contrast, another flamingo-replete watering hole might have very tall grass and healthy soil. Thus, this 

one narrow view would prevent the accurate survey-based establishment of cause and effect (i.e., 

water buffaloes graze grass and compact soil). The satellites and their results are akin to soil DNA 

extraction techniques and sequence data, respectively and these methodological limitations that 

(could) prevent the detection of some abundant and active bacteria in soil can lead to the same critical 

level of misinterpretation as that due to a biased satellite that would not see the buffaloes responsible 

for the soil compaction. While an observer in the savannah would immediately infer the state of the 
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soil is due to the buffaloes, soil microbiologists cannot benefit from the in situ observer insight and 

might associate (erroneously) the unseen “buffalo” activity to any observed “flamingo” bacteria. This 

means that the use of limited techniques (flawed satellites and DNA extraction protocols) could have 

severe consequences on both the underestimation of microbial biodiversity and our understanding of 

the functional role of unobserved key players including associating critical activities to the wrong 

organisms. The use of alternate soil treatment protocols is like using other satellites with potentially 

different flaws, including an inability to detect birds, insects, or snakes. Each DNA extraction 

technique has its own bias that might produce additional apparent relationships. No single 

protocol/satellite would be considered sufficient in isolation. Therefore, the discovery of ecological 

principles would be strengthened when supported by sequence data/satellite imagery from multiple 

time points and multiple satellites. Even though comparing different ecosystems with the same 

satellite would be unlikely to identify the relationship between the presence of water buffalo and 

grazed grass, or soil compaction, all data collected from all satellites would increase the probability 

that a more representative list of animal biodiversity could be generated. Similarly, the taxonomic and 

potentially functional deciphering of the soil microbiota would critically benefit from a combination of 

methods.   
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Although conservation biologists can circumvent satellite data and benchmark remote 

observations by direct watering hole and savannah investigations, the single cell genomics approach 

requires significant technical development to physically isolate and sequence every microorganism in 

soil and the other meta–omics approaches (transcriptomics, proteomics, metabolomics) are also 

strongly affected by biases. In addition, identifying water buffalos, pink flamingos, and most other 

animals is considerably easier than the enormously Sisyphean task of interpreting metagenomic 

sequence data, measuring microbial diversity, and assigning putative functions to recovered 

metagenomes or small subunit (SSU) rRNA gene sequences. These challenges are exacerbated by the 

availability of only a few thousand bacterial genomes in public databases for comparison, akin to 

distinguishing a thousand distinct buffalo species that all look the same from satellite imagery alone. 

With differences in soil chemistry, plant cover, and underlying bedrock geology, there is no simple 

5 
 

In review



way to identify relative differences in soil DNA extraction efficiency from one sample versus another. 

The relative distribution of microbial populations deduced from a soil DNA extract may overestimate 

rare populations and extracellular DNA at the expense of abundant but lysis-recalcitrant bacteria. 

Microbiologists may well be missing 99% of soil microbial populations in exchange for capturing 

microbial “flamingos” that are far more readily detected.  
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 Using amplicon surveys or metagenomic approaches for comparing soil microbial 

communities and correlating indicator species with specific environmental perturbations or specific 

land usage tends to produce statistically valid trends whether the selection of the different methods 

minimize the bias of subsequent results or not. However, different DNA extraction techniques, 

amplification methodologies, sequencing protocols, bioinformatic analyses, databases used for 

comparing and annotating sequences - all of these steps influence both the qualitative and quantitative 

results of molecular surveys and metagenomics (Delmont et al., 2013). True replicates cannot be 

performed because of soil compositional changes, even at the micro-scale level; one gram of soil is not 

the same as another. Another challenge is that the total number of species present in a single sample of 

soil is completely unknown, with wildly variable estimates. Even identifying all species present (i.e., 

“alpha diversity”) has not been accomplished for any single soil sample; no soil microbial “species” 

accumulation curve has yet reached an asymptote. The first question of the five “Ws” (i.e., who is 

where?) remains unanswered for soil microbiologists. 

 Soil microbiologists are faced with substantial challenges, a little bit like the hero of the 

famous 1985 movie “Back to the future” who, after having been accidently sent back to the past, must 

adapt his actions to make the future possible. There is no silver bullet for soil metagenomics, but there 

are possible experimental approaches that could help quantify the extent of methodological bias, 

define ecological theories, and provide a more solid foundation for future studies. 

One important first step toward addressing some of the issues faced by soil microbiologists is to begin 

generating a comprehensive catalogue of all microbial community members and functions for at least 

one reference soil. Such a relatively complete reference dataset would shed light on the as-yet-

unknown shape of a soil microbial species frequency distribution and could serve as a future reference 

6 
 

In review



for assessing community composition changes across soil landscapes (i.e., beta diversity). In other 

words, the extent of bias with any individual approach (i.e., a single DNA extraction method) could be 

explicitly determined by comparing extraction methods coupled with comprehensive characterization 

of the selected reference soil. The objectives should include identifying minimally biased methods (or 

combinations of methods) for soil characterization, differentiating between active soil microorganisms 

and dormant cells (and extracellular DNA), assessing seasonal variability, and quantifying the full 

scope and scale of soil microbial taxonomic and functional diversity, including the diversity of “rare 

biosphere” microorganisms that typically dominate assessments of soil microbial diversity (Lynch and 

Neufeld, 2015).  
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 The reverse engineering of a reference soil could also generate additional discoveries through 

complementary datasets. For example, including the isolation and characterization of cells via single-

cell genomics can help target phylogenetically distinct microbial "dark matter" from this reference 

soil, as has been demonstrated recently for selected aquatic samples (Rinke et al., 2013). Experimental 

and computational techniques (Albertsen et al., 2013; Howe et al., 2014) for the assembly of complete 

genomes by differential abundance binning of metagenomic data could be enabled by large datasets 

derived from multiple extraction methods. Coupled with comprehensive DNA-based characterization 

of the collected reference soil microbial community, this research initiative should ideally also assess 

multiple levels of gene expression, at the level of RNA (metatranscriptomics), proteins 

(metaproteomics), and metabolites (metametabolomics). Together, these complementary datasets 

would converge towards an exhaustive inventory of all microbial taxa and functional genes present in 

a single soil or several reference soils, offering powerful insight into soil taxonomic and functional 

structure at a scale thought impossible even a decade ago. By identifying how a reference soil 

community is structured, both spatially and temporally, the information from this coordinated effort 

could help provide missing links between conventional soil analyses and the underlying composition 

of soil microbial communities. 

 In-depth exploration of a single reference soil must involve experiments far beyond the usual 

metagenomic analyses applied to soil samples. Instead, this initiative will require extensive 
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benchmarking of the sampling strategy itself, which is linked to identifying a suitable reference site 

and exploring the spatial heterogeneity of the selected soil microbial community. Several soil systems 

are ideal candidates for acting as a reference soil, including the internationally recognized agroecology 

field site in Rothamsted, UK (Delmont et al., 2012; Torsvik, 1980; Vogel et al., 2009) and one of the 

American native prairie soils investigated by high throughput sequencing (Fierer et al., 2013; Howe et 

al., 2014). The number and size of the samples must be carefully adapted at different spatial (gram, 

core, field, landscape) and temporal (seasonal variation) scales in conjunction with experimental 

constraints related to sieving and homogenization of the largest samples, without neglecting the local 

soil heterogeneity down to the smallest microstructures. Such an endeavor would require a coordinated 

interdisciplinary consortium of expertise spanning microbiology, biochemistry, soil physics and 

chemistry, genomics, metagenomics, bioinformatics, and molecular biology. The results of the 

initiative could form an objective basis for establishing standardized protocols for future and ongoing 

soil microbiological investigations. Indeed, we argue that this reductionist reverse engineering 

approach to soil microbiology and broad scale surveys are synergistic and that these approaches 

should be performed in parallel. In doing so, fundamental knowledge gathered on the reference soil 

would serve to aid future soil survey efforts, reducing bias and increasing objectivity for analysis and 

comparison of multiple samples. 
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 The scientific community requires both reductionist approaches and broad scale surveys to 

better describe soil microbial communities, understand microbial dynamics, explore microbial and 

environmental interrelationships, detect and decipher microbial diversity, discover functions that can 

be exploited for industry and agriculture, and elucidate microbial adaptation and evolution within the 

context of soil services. Microbial ecologists have been dependent on the interpretation of limited data, 

akin to microbial satellite imagery, for far too long. The extent of methodological bias remains 

unknown and a comprehensive catalogue of soil microorganisms and functional genes does not yet 

exist for any soil. We still do not know the extent of what we do not know. There are more than a 

million times as many microorganisms on our planet in soil than stars in the universe and we argue 

that the time has come for humans to tackle the challenge of soil microbial diversity. 
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310  Table 1. Timeline of advances in genomic and metagenomic methods and large-scale projects 
focusing on soil biodiversity analysis: cracking the soil black box. 

 
Date Advances Reference 

1980 Direct extraction and purification of DNA from soil opening the 
world of soil molecular ecology 

(Torsvik, 1980) 

1990 DNA re-association experiments revealing the magnitude of 
genetic diversity in soil to be above 4000 different genomes per 
cm3 

(Torsvik et al., 1990) 

1992 First description of fluorescent in situ hybridization (FISH) method 
using rRNA sequence as a taxon specific probe applied to a soil 
environment 

(Hahn et al., 1992) 

1998 Description of a new method for cloning high-molecular weight 
soil DNA in bacteria artificial chromosome for bioactive molecules 
mining and first use of the term “metagenomic” 

(Handelsman et al., 
1998) 

2005 First soil DNA cloning and shotgun sequencing study generating 
100Mbp of data 

(Tringe et al., 2005) 

2006 The first soil metatranscriptomic study using cDNA high-
throughput sequencing to investigate active ammonia oxidizers. 

(Leininger et al., 2006) 

2007 Metatranscriptomic investigation of soil poly-adenylated cDNA 
revealing eukaryotic microbes functional diversity 

(Bailly et al., 2007) 

2009 Announcement of the TerraGenome consortium (Vogel et al., 2009) 
2009 High-throughput genetic screening of a soil fosmid library by 

probe hybridization on high-density membranes. 
(Demanèche et al., 
2009) 

2010 Announcement of the Earth Microbiome Project (Gilbert et al., 2010) 
2014 Assembly attempt of one of the biggest soil sequencing effort to 

date illustrating the major computational challenges associated 
with large and complex sequence datasets 

(Howe et al., 2014) 

2014 Announcement of the Brazilian Microbiome project (Pylro et al., 2014) 
2014 Announcement of the China Soil Microbiome Initiative english.issas.cas.cn 

2015 Assembly of nearly complete genomes from a prairie soil using a 
microcosm enrichment approach 

(Delmont et al., 2015) 

2015 Alaska permafrost soil study combining targeted 16S rRNA gene, 
metagenomic and metatranscriptomics sequencing as well as 
shotgun mass-spectrometry analysis of metaproteomics. 

(Hultman et al., 2015) 
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