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Abstract 

High resolution proxy data (stable isotopes, trace elements) from coral 

skeletons is an established method to reconstruct seawater growth 

temperatures for palaeoenvironmental studies. In this work the temperate, 

colonial, Mediterranean scleractinian coral Cladocora caespitosa was 

investigated. First modern Adriatic corals from Mljet (Croatia) where growth 

temperatures were known were studied. A clear sinusoidal cyclicity is present in 

both the δ18O and trace element (Sr, Mg, U, etc.) composition of the modern 

coral skeletons. Cyclicity approximately matches the number of seasonal 

growth band pairs in each corallite, implying a genetic link between these cycles 

and factors that determine seasonal growth band development, in this case 

mainly water temperature. It is found that C. caespitosa do not calcify in 

equilibrium with seawater in respect to any of the proxies analysed. Much intra-

site variation is observed in trace element composition between coral colonies 

so this is not useful for production of a reliable palaeothermometer. For δ18O 

and ∆47 however, the offset, from what would be expected for aragonite 

precipitated in equilibrium with water, appears constant and so it was possible 

to derive a species-specific δ18O-temperature calibration equation, although 

more work needs to be done on ∆47. The δ18O-temperature calibration equation 

was applied to well-preserved corals collected from late Pleistocene deposits, 

MIS 1, 5, 7, in central Greece. The fossils contain ‘similar to modern’ δ18O 

values and variability in all proxies preserving growth environment seasonal 

signatures. MIS 5e, which has the best supporting contextual palaeoclimatic 

information, was found to be the warmest period studied with a lower than 

modern seasonal temperature range. The Early-Mid Holocene probably 
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experienced the coolest temperatures while conditions in MIS 7a/c were 

probably the wettest with most freshwater input into the Gulf. 
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1. Introduction 

1.1. Overview 

1.1.1.  Aims and objectives 

The purpose of this research was to study the potential of the Mediterranean 

coral Cladocora caespitosa as a multi-proxy palaeoclimate archive for the 

interglacials of the late Pleistocene back to Marine Isotope Stage (MIS) 7. To 

complete this aim, the specific objectives were: 

 To obtain stable isotope, clumped isotope and trace element data from 

modern samples of C. caespitosa collected from an environment where 

growth conditions were known. 

 To use the modern data to assess the water temperature dependence of 

potential proxies and the reliability of C. caespitosa as a palaeoclimate 

archive. 

 To use any proxies that prove reliably linked to water temperature, along 

with the known modern growth conditions, to calibrate species-specific 

proxy-temperature relationships, with the aim of producing 

palaeothermometers.  

 To obtain stable isotope, clumped isotope and trace element data from 

well preserved fossil samples of C. caespitosa collected from a range of 

well dated sites around the Perachora Peninsula, Greece.  

 To apply the modern C. caespitosa calibrated palaeothermometers to the 

fossil samples to attempt to reconstruct quantitative seasonal 
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palaeoclimate conditions for the interglacials of the late Pleistocene and 

Holocene in this area.  

1.1.2.  Thesis structure 

In this thesis the background to the current research is discussed first: the study 

covers a broad range of disciplines and techniques and each is introduced 

individually. The science of sclerochronology is summarised as a whole and the 

target of this study, the coral species Cladocora caespitosa, is introduced. The 

theory behind each analytical method/temperature proxy is discussed along 

with a brief overview of why it is potentially suitable for use to fulfil the aims of 

this study. The methods section includes the sample sites and field localities, 

along with detailed methodologies for each analytical technique used. The 

results of each technique and an analysis and discussion of their individual 

meanings for this work are contained within their own chapters; this allows each 

proxy, with its own advantages or disadvantages, to be kept separate initially. 

The discussion chapter summarises and brings together the findings of the 

individual techniques with a summary of the outcomes achieved that improve 

our understanding of Mediterranean climate through the last few interglacials: 

there is also a discussion on the potential causes of the observed disequilibrium 

calcification in C. caespitosa. The thesis is concluded with an overview of the 

main findings and potential avenues for future work.  
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2. Background to current research 

Due to the relatively wide scope of fields and techniques (i.e. branches of 

geology, biology, chemistry and physics) brought together in this research it is 

necessary to review the literature relevant to these main topics. This section 

provides an overview on the main topics and theories underpinning the current 

research. 

2.1. Sclerochronology 

Sclerochronology is the study of time-series data contained within the 

mineralised tissues of plants and animals which were deposited by accretion 

over time. This technique is very similar to dendrochronology, as the growth 

increments in carbonate skeletons can be very similar to tree rings in both 

appearance and content. Due to the mineralogical nature of the study material it 

is possible to use geochemical time-series data (e.g. stable isotope or trace 

element composition) to facilitate both the measurement of elapsed time and 

examine environmental changes throughout the life of the studied 

individual/colony  (Toland et al., 2000; Johnson et al., 2009). 

The subjects of sclerochronological studies range from modern bivalves 

(Stecher III et al., 1996; Schöne et al., 2003; Schöne et al., 2005) to dinosaurs 

(Sander and Klein, 2005). However, probably the most common group of 

organisms for this kind of research, and the topic of this thesis, are the 

scleractinian corals. These aragonite skeletoned organisms are ideally suited to 

this kind of technique due to their longevity (some colonies can provide 

unbroken records of growth going back hundreds of years (e.g. Dunbar et al., 

1994; Quinn et al., 1998)) and fast growth rate (with species such as 
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Montastrea annularis reaching up to 9 cm yr-1 (Gladfelter et al., 1978)) allowing 

data on a sub-monthly scale to be resolved (e.g. Montagna et al., 2007).  

Numerous studies have therefore been able to show the potential of 

scleractinian corals as high resolution palaeoenvironmental archives by 

comparing various environmental proxies of living corals to both laboratory 

controlled (Armid et al., 2011) and natural measured (Montagna et al., 2007) 

growth conditions and looking for significant relationships that can be used to 

back calculate the conditions in which ancient corals grew. 

2.2. Cladocora caespitosa   

The species of coral used in this research was Cladocora caespitosa (Figure 

2.2.1). This species was chosen due to its relative abundance around the 

Mediterranean region both now and through the late Pleistocene to mid 

Holocene  (Bernasconi et al., 1997; Peirano et al., 1998; Kružić, 2002; 

Montagna et al., 2007).   
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Figure 2.2.1 Living C. caespitosa with open polyps (photograph from www.pagurus.it) 

2.2.1.  Ecology  

C. caespitosa is a temperate colonial scleractinian coral of the family Faviidae 

(Linnaeus, 1767). According to the classification scheme of Schuhmacher & 

Zibrowius (1985); C. caespitosa is an ahermatypic, constructional, zooanthellate 

coral. This means that although it is not considered a reef building coral, in the 

sense of tropical reef builders (such as Porites), it is said to be physiologically 

and ecologically close to them (Schuhmacher and Zibrowius, 1985; Schiller, 

1993). Where abundant, C. caespitosa  may still form large formations or 

‘banks’ which can up to a metre in height and cover several square metres in 

surface area (Peirano et al., 1998). Mostly, however, C. caespitosa is found as 

separate, distinct sub-spherical colonies, 15-60cm in diameter, and where 

abundant these form ‘beds’ (Aguirre and Jimenez, 1998; Peirano et al., 1998; 

Peirano et al., 2005). Because it is a zooanthellate (i.e. lives with symbiotic 

photosynthetic algae) C. caespitosa is restricted to living in the photic zone and 
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is most common at depths of 7-25 m, although it can be found down to 40 m 

where the waters are clear enough for sunlight to penetrate (Rodolfo-Metalpa et 

al., 2008), which usefully constrains the depth of deposition of fossil 

assemblages. 

2.2.2.  Distribution 

As shown in Figure 2.2.2, C. caespitosa is most commonly found in the 

Mediterranean; however, there are records of colonies also being found in the 

East Atlantic, southern Portugal and Morocco (Peirano et al., 1998). Extensive 

biostromes of C. caespitosa are very rare today; the largest known living C. 

caespitosa bank, and the only one truly comparable to a tropical reef, is found in 

Lake Veliko Jezero (‘Big Lake’), Mljet National Park, Croatia (Kružić et al., 2008; 

Kružić and Benković, 2008). However, extensive fossil deposits show that large 

banks dominated by this species were much more widespread in the previous 

interglacials of the late Pleistocene to mid Holocene (Bernasconi et al., 1997; 

Pirazzoli et al., 1997; Houghton et al., 2003; Leeder et al., 2003; Mastronuzzi et 

al., 2003; Peirano et al., 2009). This is especially true around southern Italy and 

the Gulf of Corinth, Greece. Here they have been used extensively to date 

uplifted marine terraces by 234Uranium-230Thorium methods (Pirazzoli et al., 

1997; Houghton et al., 2003; Leeder et al., 2003; Leeder et al., 2005; Peirano et 

al., 2009; Roberts et al., 2009). This means there is plenty of readily accessible 

study material from deposits that have already been dated by other studies. 

It has been suggested that the recent reduction in the distribution of C. 

caespitosa is related to climate change and human activity (Laborel, 1987); 

however, it seems likely that conditions were more favourable to this species 
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proliferation during past interglacials compared to the present, with or without 

anthropogenic effects.  

C. caespitosa can occupy a wide variety of habitats; from sandy to rocky 

substrates and from areas with high turbulence to more sheltered settings. This 

is possible as the morphotype of colonies is adaptable to different conditions. In 

low energy areas they can grow taller and have an inverted cone morphology; 

whereas in higher energy areas (e.g. beach facies) they are flatter and have 

more rounded outlines (Aguirre and Jimenez, 1998; Peirano et al., 1998); which 

are presumably less susceptible to breakage. Unlike most species of coral, C. 

caespitosa is commonly found around estuaries, being well adapted to living in 

turbid waters with a high content of particulate organic matter and zooplankton 

food sources, and being able to survive purely by heterotrophy for weeks at a 

time (Tremblay et al., 2011). It may well be this adaptability that has allowed this 

species to be so dominant in the fossil record and makes it such a promising 

target for palaeoclimate research. 
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Figure 2.2.2 Known distribution of modern and fossil (late Pleistocene - mid Holocene) C. caespitosa colonies in the NW Mediterranean 
(Chassefi and Kremer, 1972; Schiller, 1993; Chintiroglou, 1996; Fornos et al., 1996; Mauz et al., 1997; Pirazzoli et al., 1997; Aguirre and 
Jimenez, 1998; Stamatopoulos et al., 1998; Peirano et al., 2001; Kružić and Požar-Domac, 2002; Pedley and Grasso, 2002; Houghton et al., 
2003; Zecchin et al., 2004; Peirano et al., 2005; Goy et al., 2006; Montagna et al., 2007; Kružić and Benković, 2008; Roberts et al., 2009; 
Santoro et al., 2009; Zecchin et al., 2010) 
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2.2.3.  Growth 

C. caespitosa corallites have an average growth rate of 1.36 to 5.20 mmyr-1 

(Peirano et al., 1998; Peirano et al., 1999). Growth of the corallites occurs by 

two processes: the lengthening of the corallite wall and the internal fusion of 

skeletal elements. The dominance of these two processes differs between times 

of the year leading to the formation of annual pairs of visible growth bands. 

Growth by corallite wall lengthening is more dominant in the summer and 

produces low density bands, whilst the process of internal fusion dominates 

during the winter producing high density bands. This has been shown to be 

related to the seasonal change in water temperature and irradiation, and 

appears to be unrelated to the growth depth of the colony (Peirano et al., 1999).  

These seasonal changes in growth patterns are believed to be a response to 

the seasonality of the Mediterranean. There are more nutrients available to the 

coral in the winter (due to increased runoff from high rainfall and re-suspension 

of bottom sediments) providing both an increased food source for the coral 

polyps and nutrients for the zooxanthellae. This is suggested to allow a greater 

rate of carbonate precipitation and thus allows the formation of a denser 

skeleton (Peirano et al., 1999; Rodolfo-Metalpa et al., 2008). During the 

summer,  because of the regular occurrences of dangerously high irradiance 

and temperature, the coral polyp builds longer and less dense calyx walls which 

it is able to completely recede into in times of high stress (Peirano et al., 2005). 
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2.2.4.  Suitability for a high resolution sclerochronology 

The suitability of modern C. caespitosa for high resolution sclerochronology has 

already been proven by the studies of Silenzi et al. (2005) and Montagna et al. 

(2007) and this thesis aims to build upon their work.  

Like all other shallow-water scleractinian corals, C. caespitosa secretes an 

aragonite skeleton as it grows. Although this species grows slowly in 

comparison to tropical reef building corals, it is a major carbonate producer in 

the Mediterranean (Laborel, 1987).  

As with many species of tropical reef-building corals (Lea et al., 1989; 

Mitsuguchi et al., 1996; Allison and Finch, 2004; Correge, 2006; Armid et al., 

2011), both the stable isotope and trace elemental compositions of C. 

caespitosa have been shown to represent a natural archive for the physical and 

chemical features of the surrounding environment at both low (seasonal (Silenzi 

et al., 2005)) and high (weekly to fortnightly (Montagna et al., 2007)) 

resolutions. Both of these studies showed that, although (like other corals) C. 

caespitosa does not precipitate its skeleton in equilibrium with the surrounding 

sea water (presumably due to some biological control or ‘vital effect’ (Weber 

and Woodhead, 1972)), trends seen in oxygen isotope ratios and trace element 

concentrations are significantly correlatable with sea surface temperature 

(SST).  

This study is novel in taking these ideas and applying them to fossil and sub-

fossil samples of C. caespitosa dating back to previous interglacials as far back 

as MIS 7. 
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2.3. Stable isotope theory 

Stable isotope ratios are commonly used in palaeoclimate research and stable 

isotope theory is one of the major principles on which a large section of this 

thesis is founded.  

Isotopes are species of an element that are identical in their numbers of protons 

and electrons but differ in their number of neutrons. This means that they have 

the same atomic number and thus exhibit almost identical chemical behaviour. 

However, due to their differing number of neutrons, they have different masses 

(atomic weights) and so have subtly different physical and chemical properties 

(Hoefs, 2004). 

Stable isotopes do not break down by radioactive decay. In most cases where 

an element has multiple isotopes, there is one stable isotope that is much more 

common than the others (Hoefs, 2004); for example 16O has a natural 

abundance of 99.76% while 17O and 18O are only present at 0.04% and 0.20% 

respectively (Nier, 1950).  

2.3.1. Isotopic fractionation 

The subtle chemical and physical differences between isotopes of the same 

element lead to fractionation of the isotopes when there is exchange of isotopes 

between two pools/substrates through chemical or physical processes (Urey, 

1947).   

The fractionation factor (α) quantifies the degree of isotope distribution between 

two end member pools and this is described by Equation 2.3.1. In this equation 

A and B are the two end members that isotope exchange is occurring between 
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while RA and RB are the least to the most abundant (generally the heavy to the 

light) ratios of isotopes in the two end members, A and B, respectively. 

∝=
𝑅𝐴

𝑅𝐵
 

Equation 2.3.1 

Fractionation happens through both mass-dependent and mass-independent 

processes, however only mass-dependent fractionation is relevant to the 

current study:  

Equilibrium fractionation occurs between two substances in chemical 

equilibrium. The strength of bonds containing heavier isotopes are higher than 

in the bonds containing lighter isotopes (Faure and Mensing, 2005). This is 

because the bonds between heavier isotopes need more vibrational energy (in 

the form of latent heat) to be broken. Because of this heavier isotopes become 

relatively concentrated in solid phases (as these have higher bond forces) while 

lighter isotopes will concentrate in gas phases. In the reaction most relevant to 

this study, between liquid water (H2O) and solid aragonite (CaCO3) the isotopes 

16O and 18O will most readily partition themselves between these 2 phases to 

concentrate (heavy) 18O in the aragonite and (light) 16O in the water:  

H2 O18 + Ca12C16O3 ↔ H2 O16 + Ca C12 O18 O16 O18  

Equation 2.3.2 

The equilibrium constant (K) for this reaction is: 

𝐾 =
(Ca C12 O18 O16 O18 ) ∙ (H2 O16 )

(Ca12C16O3) ∙ (H2 O18 )
 

Equation 2.3.3 
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This can be simplified, as the exchange concerns just a single nuclide, to: 

( O18 O16⁄ )𝐶𝑎𝐶𝑂3

( O18 O16⁄ )𝐻2𝑂

=∝𝐻2𝑂/𝐶𝑎𝐶𝑂3

𝑂 (𝑇, 𝑃) 

Equation 2.3.4 

The fractionation constant ∝𝐻2𝑂/𝐶𝑎𝐶𝑂3

𝑂 (𝑇, 𝑃) replaces the equilibrium partition 

constant K to signal that the exchange concerns just a single element (O) and is 

dependent on temperature and pressure (T, P). Fractionation factors and their 

relationships to temperature and pressure have been defined for many stable 

isotope pairs between varied phases as well as the 16O/18O; H2O/CaCO3 

relationship looked at here (which was calculated by Epstein et al. (1953)). As 

the molar volumes of the different stable isotopes of an element are very similar 

this relationship is actually virtually independent of pressure (Clayton et al., 

1975) so that the main controlling factor is temperature, with equilibrium 

fractionation being strongest at lower temperatures.  

Kinetic fractionation is also mass dependent. Lighter isotopes react quicker than 

heavier isotopes and at high reaction rates equilibrium cannot be reached so 

that the light isotopes, requiring lower energies to react, are exchanged more 

rapidly (Hoefs, 2004). This is important in geobiochemistry as organisms (by 

use of enzymes and other metabolic processes) speed up reaction rates. This 

leads to organic molecules becoming significantly enriched in light isotopes in 

comparison to both the environment in which they formed and abiological 

minerals formed under similar environmental conditions. 

Together, the processes of equilibrium and kinetic fractionation form the basis 

of the most widely used isotope palaeothermometers. 
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The largest differences in behaviour are in the light elements as there are 

greater relative differences in their isotope’s atomic weights than for the heavier 

elements. For example 2H has approximately twice as much mass as 1H, while 

208Pb is only 0.48% heavier than 207Pb. Because of this it is the lighter isotopes 

that fractionate more readily and so are more studied for palaeoclimate work. 

2.3.2.  Delta notation and standards 

Measuring the absolute abundances of isotopes in a sample is difficult; instead, 

relative isotope abundances are measured with respect to an internal standard 

to allow the comparison of measurements of isotope abundances between 

different materials and different laboratories.  

The delta notation expresses the abundance of a given isotope in a sample 

relative to the abundance of that isotope in a standard material with a delta 

value arbitrarily set to zero. This delta value of a sample is expressed as:  

𝛿(‰) = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) 

Equation 2.3.5 

Where R is the heavy to light isotopic abundance ratio of the sample and 

standard respectively. Due to the small variations in isotopic abundance 

studied; the delta values are reported in per mil (‰) or parts per thousand. 

Positive δ values indicate that the sample is enriched in the heavy isotope with 

respect to the standard, while negative δ values indicate that the sample is 

depleted in the heavy isotope with respect to the standard. 

Relevant to this study, the international standard for carbon and oxygen isotopic 

analysis of carbonate is the Vienna Pee Dee Belemnite (VPDB) and the one for 



Sam Royle  Background to current research 

15 
 

hydrogen isotope analysis of water is Vienna Standard Mean Ocean Water 

(VSMOW). 

2.3.3. The carbonate-water δ18O palaeothermometer 

Early studies such as Urey et al. (1947), McCrea (1950) and Epstein et al. 

(1953) showed that there was a clear relationship between the oxygen isotopic 

composition of both inorganically and organically precipitated carbonates and 

temperature (due to the fractionation processes discussed above). This led to 

the development of the carbonate-water isotope temperature scale which has 

been one of the most widely used palaeothermometers. 

This palaeothermometer is based around a heterogeneous isotope exchange 

reaction where oxygen isotopes are exchanged between calcium carbonate 

(aragonite or calcite) and water (Eiler, 2011) in the form: 

H2 O18 + CaC16O3 ↔ H2 O16 + CaC O18 O2
16  

Equation 2.3.6 

Experimental work has shown that, for calcite precipitated in isotopic equilibrium 

with the water, the degree of fractionation of the oxygen isotopes is related to 

temperature. The original work by Epstein et al. (1953) has been modified by 

Craig (1965) and Anderson and Arthur (1983) to produce the 

palaeotemperature equation for calcite precipitating in isotopic equilibrium:  

𝑇 = 16.0 − 4.14(𝛿 𝑂𝐶 −18 𝛿 𝑂𝑊) + 0.13(𝛿 𝑂𝐶 −18 𝛿18 O𝑊)218
 

 Equation 2.3.7 
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More relevant to the corals studied here, the Grossman and Ku (1986) 

palaeotemperature equation for aragonite precipitated in isotopic equilibrium, 

modified by Goodwin et al. (2001):  

𝑇 = 20.60 − 4.34(𝛿 𝑂𝐴 − (𝛿 𝑂𝑊
1818 − 0.20) 

Equation 2.3.8 

These equations clearly show that to calculate temperature (T, in degrees 

Celsius), for the carbonate-water thermometer, we need to know both the 

oxygen isotopic composition (‰, VPDB) of the calcite (δ18OC) or aragonite 

(δ18OA) and the oxygen isotopic composition (‰, VSMOW) of the water it 

precipitated from (δ18Ow). For the majority of palaeotemperature and mineral 

formation studies the δ18O of the water is a relative unknown and so an 

assumption must be made. Usually if dealing with marine carbonates the 

seawater is assumed to have been 0‰, however this is not always an accurate 

assumption, especially in areas where water masses are not well mixed with the 

open ocean (such as the Mediterranean (Gat et al., 1996; Pierre, 1999)) or 

during periods when global sea level and glacial extent have been different to 

modern (Thompson and Goldstein, 2005; Thompson and Goldstein, 2006). This 

introduces some uncertainty and a margin of error into the technique. 

As well as the unknown oxygen isotopic value of the waters, this 

palaeothermometer also relies on equilibrium fractionation being the only 

process occurring during precipitation. In corals, however, isotopic fractionation 

does not occur in equilibrium with the water, the isotopic values of coralline 

aragonite being generally isotopically lower relative to inorganically precipitated 

carbonates.  
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This offset is called the “vital effect” (Weber and Woodhead, 1972) and is 

believed to be due to the kinetic (affected by rates of precipitation) and 

metabolic (affected by respiration and photosynthesis) effects caused by the 

coral altering its preferential uptake of oxygen isotopes from seawater into 

carbonate. At the site of calcification, carbonate is believed to gradually move 

towards isotopic equilibrium with the water that is present in the calcifying fluid, 

which will be in equilibrium with the seawater. Therefore, as calcification rate 

increases, the isotopic disequilibrium with seawater is more marked 

(McConnaughey, 1989a): this is thus partially controlled by growth rate (de 

Villiers et al., 1995). It has also been suggested that the disequilibrium also 

varies with pH variations in the microenvironment at the site of precipitation 

(Rollion-Bard et al., 2003a; 2003b). However, if the amount of disequilibrium 

caused by the vital effect is constant, and can be corrected for, then a coral’s 

isotope composition may still be a useful indicator of palaeotemperature (Weil et 

al., 1981).  

2.4. Carbonate clumped isotope thermometry 

Isotopologues are molecules that are chemically identical but differing in their 

isotope composition (as opposed to isotopes which are solitary atoms with 

differing isotope compositions); see Table 2.4.1 for all carbonate and carbon 

dioxide isotopologues and their natural abundances. 

2.4.1.  Theory of carbonate clumped isotope thermometry  

Carbonate clumped isotope thermometry is a relatively new technique which is 

less well established than, but has clear advantages over, the traditional 

carbonate δ18O thermometer discussed above. 
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Carbonate clumped isotope thermometry is based on the temperature induced 

ordering of the heavy stable isotopes of carbon and oxygen, into bonds with 

each other in the same carbonate molecule (e.g. 13C – 18O). Carbonate 

minerals contain 20 different (stable) isotopologues of the carbonate ion group 

(Table 2.4.1). The most abundant of these, present at around 98.2%, 12C16O3
2- 

contains no rare (heavy) stable isotopes, the next 3 are only singularly 

substituted (i.e. only containing one rare isotope) – and together these 4 make 

up around 99.99% of all the carbonate ions in a natural carbonate mineral, thus 

controlling their bulk isotopic compositions. It is the remaining approximately 

0.01% of the ions which are the ‘heavy’ clumped isotopologues, with their 

double, triple and quadruple substituted bonds, which this technique exploits 

(Ghosh et al., 2006).  
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Table 2.4.1 Abundances of isotopologues of CO2 and CO3, assuming bulk 
13

C/
12

C ratios 
equal to PDB, bulk 

18
O/

17
O/

16
O ratios equal to SMOW, and a random distribution of 

isotopes (after Ghosh et al., 2006) 

CO3 Isotopologue Mass Abundance 
12

C
16

O
16

O
16

O 60 98.20% 
13

C
16

O
16

O
16

O 61 1.10% 
12

C
17

O
16

O
16

O 61 0.11% 
12

C
18

O
16

O
16

O 62 0.60% 
13

C
17

O
16

O
16

O 62 12 ppm 
12

C
17

O
17

O
16

O 62 405 ppb 
13

C
18

O
16

O
16

O 63 67 ppm 
12

C
17

O
18

O
16

O 63 4.4 ppm 
13

C
17

O
17

O
16

O 63 4.54 ppb 
12

C
17

O
17

O
17

O 63 50 ppt 
12

C
18

O
18

O
16

O 64 12 ppm 
13

C
17

O
18

O
16

O 64 50 ppb 
12

C
17

O
17

O
18

O 64 828 ppt 
13

C
17

O
17

O
17

O 64 0.5 ppt 
13

C
18

O
18

O
16

O 65 138 ppb 
12

C
17

O
18

O
18

O 65 4.5 ppb 
13

C
17

O
17

O
18

O 65 9 ppt 
12

C
18

O
18

O
18

O 66 8 ppb 
13

C
17

O
18

O
18

O 66 51 ppt 
13

C
18

O
18

O
18

O 67 94 ppt 

CO2 Isotopologue Mass Abundance 
16

O
12

C
16

O 44 98.40% 
16

O
13

C
16

O 45 1.10% 
17

O
12

C
16

O 45 730 ppm 
18

O
12

C
16

O 46 0.40% 
17

O
13

C
16

O 46 8.19 ppm 
17

O
12

C
17

O 46 135 ppb 
18

O
13

C
16

O 47 45 ppm 
17

O
12

C
18

O 47 1.5 ppm 
17

O
13

C
17

O 47 1.5 ppb 
18

O
12

C
18

O
 

48 4.1 ppm 
17

O
13

C
18

O 48 16.7 ppb 
18

O
13

C
18

O 49 46 ppb 

 

The heavy isotopes have a preference of bonding with each other, i.e. 

‘clumping’ together, which becomes stronger at lower temperatures. Therefore, 

the abundance of the ‘heavy’ isotopologues in a growing carbonate has an 

inverse relationship with temperature, with the degree of clumping tending 

towards a random distribution as temperature increases (Thiagarajan et al., 

2011). This phenomenon exists due to a thermodynamically controlled 

homogeneous (within only minerals of the same phase: carbonate) isotope 

equilibrium reaction in the forming carbonate mineral. The reaction which 
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produces the most common (and therefore the one measured for thermometry) 

doubly substituted isotopologue, C O18 O2
2-1613 , progresses as such: 

C O3
2−1613 + C O18 O2

2− ↔ C O18 O2
2−16131612 + C O3

2−1612  

Equation 2.4.1 

And is such biased towards the right hand side to show this slight preference 

towards producing heavier clumped isotopologues. Even in the most extreme 

cases this preference is less than 0.8% different from a random distribution, 

however, with modern mass spectrometers, this is still measureable. 

The proportion of this most common rare heavy isotopologue in a carbonate 

sample can be measured through similar techniques to normal carbonate bulk 

δ13C, δ18O mass spectrometry (Huntington et al., 2009; Eiler, 2011). The 

abundance of the doubly substituted isotopologue 13C18O16O, with mass-47, in 

the CO2 has been shown to be proportional to the abundance of 13C–18O bonds 

in the digested carbonate (Ghosh et al., 2006). So by analysing the produced 

ion beams corresponding to masses 44 to 47 and measuring the ratio of mass-

47 to mass-44 (13C18O16O: 12C16O2) the deviation of the mass-47 over what 

would be expected from a random distribution can be calculated, this variable is 

known as Δ47 and is expressed in per mil (‰) (Ghosh et al., 2006; Eiler, 2011). 

Other masses, such as mass-48 and mass-49 can be reported as deviation 

from stochastic distribution (∆48,49) in the same way. 

The theoretical relationship between carbonate Δ47 and temperature, with Δ47 

tending towards a stochastic distribution as temperature increases, is described 

by the polynomial equation by Guo et al. (2009a): 
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∆47= −
3.33040 ∙ 109

𝑇4
+

2.32415 ∙ 107

𝑇3
−

2.91282 ∙ 103

𝑇2
−

5.54042

𝑇
+ 0.23252 

Equation 2.4.2 

Plotting Equation 2.4.2 (fitted to the absolute reference frame of Dennis et al., 

(2011) to allow for inter-laboratory data comparison) over the temperature range 

experienced by near surface carbonates of 0-100°C, Figure 2.4.1, shows that 

over this range the relationship of carbonate Δ47 and temperature can be 

approximated by a straight line; described by Equation 2.4.3. 

 

Figure 2.4.1 Plot of the Guo et al. (2009a) theoretical relationship between carbonate ∆47 
and temperature with the polynomial approximating a straight line between 0-100°C 
(fitted to the absolute reference frame of Dennis et al., (2011)). 

∆47= 0.0375 ∙
106

𝑇2
+ 0.210 

Equation 2.4.3 

Therefore, this enrichment can be used as a palaeothermometer. However, 

across the most commonly used 0-50°C range, Δ47 only ranges from around 

0.5-0.7‰ (Ghosh et al., 2006) with a temperature sensitivity of −0.00289‰/°C 

(Guo et al., 2009a), leaving little margin for error. 
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2.4.2. Advantages over the δ18O carbonate-water 

palaeothermometer 

The main advantage of this method (over the traditional δ18O carbonate 

palaeothermometer) is that the temperature of carbonate formation can be 

calculated without needing to know the δ18O of the water it precipitated from. 

This is possible as the controlling isotope exchange reaction (Equation 2.4.1) is 

homogeneous; equilibrium is obtained through exchange among components of 

a single phase – calcium carbonate. Whereas the traditional carbonate-water 

thermometer examines a heterogeneous isotope exchange reaction between 

components of separate phases – calcium carbonate and water (Equation 

2.3.6). By gaining temperatures of precipitation through clumped isotope 

thermometry and also measuring δ18Ocarbonate (and assuming equilibrium) it is 

actually possible to use a re-arranged carbonate-water palaeotemperature 

equation (such as Equation 2.3.7) to back calculate δ18Owater. In some situations 

this could prove a valuable proxy for estimating sea levels, ice volume, or better 

understanding the environment in which the carbonates were precipitated (e.g. 

Guo and Eiler, 2007). 

Early work suggested that the majority of biologically precipitated carbonates do 

not exhibit any vital effects in their Δ47 values. Figure 2.4.2 is a summary 

diagram from a review by Eiler (2011) bringing together calibrations for the 

carbonate clumped isotope thermometer from a wide range of studies. What 

can clearly be seen is that almost all of the data points lie on or near the same 

calibration line as the synthetic calcites of Ghosh et al. (2006).  
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Figure 2.4.2 Summary of published calibrations of the carbonate clumped isotope 
thermometer between 0 and 40°C compiled by Eiler (2011). Data sources: Ghosh et al. 
(2006) – synthetic calcite and corals; Came et al. (2007) – molluscs and brachiopods; 
Ghosh et al. (2007) – otoliths; Dennis and Schrag (2010) – ‘D&S synthetics’; Eagle et al. 
(2010) – bioapatite; Tripati et al. (2010) – foraminifera, coccoliths and bulk sediment 
(marine carbonates); Thiagarajan et al. (2011) – corals. 

 

The collection of data that makes up the clearly visible trend in Figure 2.4.2 

includes calcite, aragonite and carbonate-apatite, minerals that were grown 

both inorganically and biologically, and from a wide range of phyla from marine, 

freshwater and terrestrial environments. Therefore, this data set clearly 

suggests that (under very wide ranging circumstances) the calibration for this 

thermometer is independent of mineral, environmental condition and species. 

This was the view when this current study was begun and so it was originally 

hypothesised that clumped isotope analysis of C. caespitosa would provide 
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accurate temperatures without the complications of ‘vital effects’; a major 

advantage over both δ18O and trace element based carbonate thermometers. 

2.5. Trace elements  

2.5.1.  Incorporation into coralline aragonite 

As a growing coral (such as C. caespitosa) precipitates its aragonitic skeleton, 

various trace elements are incorporated so that the composition of the 

precipitated calcium carbonate is not pure CaCO3.  

Numerous studies (e.g. Kinsman and Holland, 1969; Weber, 1973; Lea et al., 

1989; Beck et al., 1992; Rong Min et al., 1995; Alibert and McCulloch, 1997; 

McCulloch et al., 2003; Silenzi et al., 2005; Lewis et al., 2007; Montagna et al., 

2007; LaVigne et al., 2010; Armid et al., 2011; Trotter et al., 2011) have shown 

experimentally and theoretically how the variation in the amount of a particular 

trace element incorporated into the precipitating aragonite will vary depending 

on various environmental and biological factors (such as temperature, 

precipitation rate, nutrient availability, rainfall, upwelling, pH), thus providing a 

record of changes in these parameters over the growth of the carbonate in a 

similar way to the fractionation of stable isotopes (discussed above).  

However, there has been much debate on how the trace elements are 

incorporated into the crystal lattice and what processes control their uptake. 

It is generally agreed that the partitioning of trace elements between seawater 

and the precipitating carbonate is not consistent with either equilibrium 

thermodynamics or kinetic fractionations (Gaetani and Cohen, 2006) and so is 

more complex than fractionation of the stable isotopes. 
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These trace elements may actually be incorporated into the molecular 

framework of the aragonite substituting for Ca2+ ions (Finch and Allison, 2007), 

with the models invoked for the relationships between trace element/Ca and 

temperature of precipitation assuming that trace elements substitute ideally for 

Ca (i.e. with no deformation of the aragonite molecular structure) as shown in 

Figure 2.5.1. 

 

Figure 2.5.1 Aragonite (CaCO3) molecular structure with calcium (Ca), carbon (C), oxygen 
(O) and a substituted element (strontium, Sr, in this example) in a site normally occupied 
by calcium (modified from Bevan et al., 2002) 

 

However, due to the varying atomic radii of different elements (e.g. Ca: 197pm, 

Mg: 160pm, Sr: 215pm), crystal structures must accommodate trace elements 

through dilation or contraction of the ion site which alters strain fields and may 

cause far-reaching deformation throughout the molecular lattice (Finch and 

Allison, 2007). Hence ion exchange may be far from ideal, involving complex 

interactions between molecules which are not thoroughly understood, partially 

explaining why the partitioning of trace elements is not consistent with either 

equilibrium thermodynamics or kinetic fractionations. 
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Also, not all trace elements may be lattice bound, instead forming organo-metal 

complexes, being adsorbed onto crystal faces (Amiel et al., 1973), co-

precipitating with the aragonite by occlusion, being trapped in crystal defects or 

in micro-domains (Sinclair, 2005).  

By studying the skeletal composition of the ‘brain’ coral Diplora labyrinthiformis 

and comparing it with results from precipitation experiments to determine 

partition coefficients of various trace elements (Mg2+, Ca2+, Sr2+, Ba2+) into 

aragonite, Gaetani and Cohen (2006) concluded that the systematic change in 

partitioning with temperature is most likely due to the process of surface 

entrapment of Watson and Liang (1995) and Watson (2004). In this model the 

concentration of a particular trace-element (or stable isotope) is determined by 

both the concentration of the particular element in the near-surface region of the 

crystal and the relative rates of crystal growth (which can trap surface 

enrichments of elements in the crystal lattice) and ion-migration in the near-

surface regions (which attempts to rid the lattice of impurities), i.e. ‘a growing 

crystal assumes the composition of its surface unless diffusion in the near-

surface region is effective during growth’ (Watson, 2004). This can cause the 

crystal’s trace element and stable isotope composition to deviate from 

thermodynamic equilibrium when growth occurs quickly or where mobility of 

ions in the near surface region is limited, by low temperature for example. 

Because of this, it is especially relevant for the rapid growth of coralline 

aragonite crystals in the relatively low temperatures of ambient seawater.  

Gaetani and Cohen (2006) also concluded that the calcifying fluid at the site of 

precipitation actually has a relatively constant Sr/Ca ratio comparable to that of 

seawater, but is depleted in Mg and Ba, and that variations in the trace 
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element/Ca ratio recorded in the aragonite are due to fluctuations in the 

precipitation efficiency of the aragonite, which governs growth rate. These 

authors go on to suggest that the seasonal fluctuations in the precipitation 

efficiency (growth rate) are caused by changes in the environmental conditions, 

most likely driven by variations in efficiency of the Ca-ATPase enzyme pump or 

ion channel transport in response to changes in light and/or temperature. 

Therefore, the combined effects of surface entrapment during aragonite growth 

and seasonal fluctuations in ‘precipitation efficiency’ likely forms the basis for 

the temperature information recorded in the aragonite skeletons of Scleractinian 

corals. 

Despite this lack of agreement on the exact processes at work, numerous 

studies have still managed to use the trace elemental compositions of corals 

(and other carbonate producing organisms) for thermometry. 

2.5.2. Trace element palaeothermometry 

Many studies have found a strong co-variance between the trace elemental 

composition of coralline aragonite and the temperature of precipitation (or SST) 

with annual-scale cycles in trace element to calcium ratios being a general 

feature in well preserved primary coralline aragonite (Rong Min et al., 1995). 

The main trace elements used for coral palaeothermometry are strontium 

(Weber, 1973; Beck et al., 1992; de Villiers et al., 1994; Alibert and McCulloch, 

1997; Marshall and McCulloch, 2002; Silenzi et al., 2005; Montagna et al., 

2007; Sayani et al., 2011) and magnesium (Mitsuguchi et al., 1996; Sinclair et 

al., 1998; Silenzi et al., 2005; Montagna et al., 2007), as these are some of the 

most abundant trace elements in both seawater and coralline aragonite (Silenzi 



Sam Royle  Background to current research 

28 
 

et al., 2005). However, similar temperature dependencies have been found with 

barium (Lea et al., 1989; Montaggioni et al., 2006), boron (Montagna et al., 

2007; Trotter et al., 2011), lithium (Marriott et al., 2004; Montagna et al., 2006a) 

and uranium (Rong Min et al., 1995; Sinclair et al., 1998; Montagna et al., 

2007). 

As noted above, corals do not calcify completely in equilibrium with seawater 

due to trace elemental uptake occurring by numerous processes and some 

biological controls or ‘vital effects’ as found with stable isotope uptake. The 

degree to which the trace element/Ca concentration - temperature relationship 

differs from equilibrium in shallow water corals appears to differ between 

different studies, different species and different localities (even between the 

same species in the same study (de Villiers et al., 1994)). This is demonstrated 

by the variability between a selection of the published Sr/Ca thermometer 

calibration equations shown in Table 2.5.1. 
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Table 2.5.1 Published Sr/Ca thermometer calibration equations for various shallow water 
scleractinian coral species 

Study Coral Technique Sr/Ca (mmol/mol) 

 
Silenzi et al. 
(2005)  

 
Cladocora 
caespitosa 

 
ICP-Atomic 
Emission 
Spectroscopy (on 
winter growth 
bands) 

 
11.25(±0.38) − 0.079(±0.026)

∙ 𝑆𝑆𝑇(℃) 
 

Montagna et al. 
(2007)  

Cladocora 
caespitosa 

Laser Ablation – 
ICP-MS  

10.50(±0.13) − 0.073(±0.006)
∙ 𝑆𝑆𝑇(℃) 

 
Alibert & 
McCulloch (1997)  

Porites sp. 
Thermal Ionisation 
MS 

10.48(±0.01)
− 0.0615(±0.004) ∙ 𝑆𝑆𝑇(℃) 

 
Marshall & 
McCulloch (2002)  

Porites sp. Isotope Dilution 
Thermal Ionisation 
MS 

10.40(±0.016)
− 0.0575(±0.0005) ∙ 𝑆𝑆𝑇(℃) 

 
Sinclair et al. 
(1998)  

Porites mayeri 

LA-ICP-MS 
10.80(±0.10) − 0.070(±0.004)

∙ 𝑆𝑆𝑇(℃) 
 

Rong Min et al. 
(1995)  
 

Porites sp. 
Thermal Ionisation 
MS 

16.81 − 0.1881 ∙ 𝑆𝑆𝑇(℃) 

Mitsuguchi et al. 
(1996)  

Porites sp. ICP-Atomic 
Emission 
Spectroscopy 

 

 10.50 − 0.0608 ∙ 𝑆𝑆𝑇(℃) 
 

Beck et al. (1992)* 
 

Porites lobata Thermal Ionisation 
MS 
 

16.013 − 0.167 ∙ 𝑆𝑆𝑇(℃) 
 

Armid et al. (2011)  Porites cylindrica ICP-Atomic 
Emission 
Spectroscopy 

10.214(±0.229)
− 0.0642(±0.00897) ∙ 𝑇(℃) 

 
Alibert et. al (2003)  Porites lutrea   

Thermal Ionisation 
MS 

10.29(±0.02)
− 0.0537(±0.0006) ∙ 𝑆𝑆𝑇(℃) 

 
Alibert et. al (2003)  Porites mayeri 

Thermal Ionisation 
MS 

10.46(±0.02)
− 0.060(±0.0001) ∙ 𝑆𝑆𝑇(℃) 

 

*corrected by the authors



Sam Royle  Methodology 

30 
 

3. Methodology 

3.1. Fieldwork localities and sample collection 

Both modern and fossil samples of C. caespitosa were collected from numerous 

sites around the Mediterranean. This section describes the sampling localities, 

the methods of sample selection and the material collected. 

3.1.1.  Modern corals 

The majority of the modern corals analysed were from the C. caespitosa bank in 

Lake Veliko Jezero, on the Island of Mljet, Croatia (42°46’08’’N; 17°22’ 26’’E) 

(Figure 3.1.1 and Figure 3.1.2). This is the largest known living bank of C. 

caespitosa, approximately 650 m2 in areal extent in water depths of 4-18 m 

(Kružić, 2002; Kružić and Požar-Domac, 2003; Kružić and Benković, 2008).  

Living corallites, along with water samples, were collected alive by Dr Petar 

Kružić of the University of Zagreb, Croatia on the 21/09/2012.  



Sam Royle  Methodology 

31 
 

 

Figure 3.1.1 Locality map of the C. caespitosa bank on the island of Mljet, Croatia 

 

Figure 3.1.2 Mljet C. caespitosa bank showing monitoring stations where samples were 
collected from. Depths of the lake bed are shown to show gradient of slope (modified 
from original map by P. Kružić) 

Modern samples were also sourced from Fiascherino (44°07’09’’N; 09°55’02’’E) 

and Capo di Montenero (44°05.4’N; 09°44.1’E) in the Gulf of La Spezia, Italy 

(Figure 3.1.3). These were provided by Dr Andrea Peirano and were leftover 
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from previous studies (Peirano et al., 1999; Peirano et al., 2001; Peirano et al., 

2009).  

The Fiascherino samples were collected (alive) on the 05/08/2003 with the 

Montenero samples collected (alive) on the 23/11/1994. 

 

Figure 3.1.3 The Gulf of La Spezia, Northern Italy, showing sampling localities 

 

3.1.2.  Fossil Greek samples 

Fossil and subfossil coral and shell samples were collected from various 

localities around the Perachora Peninsula, Gulf of Corinth, Greece (Figure 

3.1.4) in November 2011 on a field campaign with Dr Jenni Turner.  
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Figure 3.1.4 The Gulf of Corinth with fossil C. caespitosa sampling sites. (Clockwise from 
left) 1A – Greece: Box marks Gulf of Corinth area; 1B – Gulf of Corinth with major faults:  
ML = Mavra Litharia; X = Xylocastron; C = Corinth; Is = Isthmus of Corinth, P= Perachora; 
Box marks Perachora Peninsula; 1C – Gulf of Corinth: Stars mark studied localities, GP = 
Goat Point; LV = Lake Vouliagmeni; WM = West Makrugoaz Ridge; EM = East Makrugoaz 
Ridge; WF = West Flagnoro Bay; EF = East Flagnoro Bay. 

The Gulf of Corinth area is ideal for this kind of study due to its tectonic setting. 

The Gulf of Corinth is formed by an active rift system, a half graben (Figure 

3.1.4B). The Rift is extending around 13 mm yr−1 (Clarke et al., 1997) where 
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uplift on the footwall of active and dead normal faults has raised marine 

deposits, including fossil C. caespitosa, above sea level in a series of raised 

Quaternary marine terraces that step up to 600 m above sea level (a.s.l.). The 

oldest terraces are assigned ages back to at least 450 ka (Keraudren and Sorel, 

1987; Collier, 1990). These terraces can be correlated by regional mapping, 

several at the east end of the rift have been dated by U-series dating of corals 

(Leeder et al., 2003; Leeder et al., 2005); the older terraces have ages that are 

more weakly constrained by correlating terrace elevation to sea level 

highstands and assuming spatially average uplift rates over time (Keraudren 

and Sorel, 1987; Armijo et al., 1996). 

In the eastern parts of the Gulf, around the Perachora Peninsula, average Late 

Quaternary (post MIS 7) uplift rates of around 0.2-0.3 mm yr−1 have raised MIS 

5e shorelines to a modern elevation of 25-30 m over an area of >200 km2 

(Leeder et al., 2003; Leeder et al., 2005). It is these well-correlated, dated 

shallow marine terraces that the C. caespitosa samples were collected from. 

Where possible, samples were collected from the same colony, or proximal 

colonies to those from which stems were collected for the U-series dating. 

Localities were selected where material showed no obvious recrystallization or 

secondary cement growth visible by hand lens, minimal algal encrustation, 

endolithic boring or iron staining, and limited sediment infill in corallite cavities. 

Multiple samples in ‘life position’ were collected from colonies that had already 

been screened for mineralogical purity by combined X-ray diffraction (XRD), 

scanning electron microscopy (SEM) and trace element geochemistry (Leeder 

et al., 2005; Turner et al., 2010). 
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3.1.3.  Fossil Italian samples 

Fossil and subfossil samples were also collected from various localities around 

the South of Italy (Figure 3.1.5) in May 2012 on a field campaign with Dr Jenni 

Turner. 

 

Figure 3.1.5 Locality map of the South of Italy showing sites where fossil C. caespitosa 
are reported in the literature and were targeted on the field campaign. PN = Punta della 
Pietre Nere; MN = Masseria Natrella reef; Tr = Tarsia; CC = Capo Colonna; LC = Le 
Castille; VM = Vibo Valentia Marina; CV = Capo Vaticano 
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Like the Gulf of Corinth, southern Italy was also chosen as a potential study 

region as (while northern Italy is subsiding) its coastline is uplifting at rates of up 

to 1.4 mm yr−1
 with the highest rates towards the southwest (Ferranti et al., 

2006) exposing a succession of marine terraces (Cucci and Cinti, 1998; 

Belluomini et al., 2002; e.g. Santoro et al., 2009). 

Areas to target were selected from an extensive review of the literature. 

Unfortunately, during the field campaign, it was found that the many of the 

deposits no longer outcrop due to recent building work or were found to not 

have been described in enough in detail to find amongst the complex 

architecture of the various terraces’ coarser fluvial deposits. Where C. 

caespitosa bearing exposures were found the samples were too poorly 

preserved to be of any further use to this study. The C. caespitosa bearing 

exposures reported in the literature and visited during the field campaign, and 

the issues found with each locality are listed in Table 3.1.1. 
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Table 3.1.1 Details of problems with Italian C. caespitosa localities reported in literature 

Locality Reference Age Problem 

 
Vibo Valentia 
Marina 

 
Pirazzoli et 
al., 1997 

 
MIS 5e 

 
No signs of 50m marine terrace, probably buried 
under new housing development. Terrace found 
at 145m but deposits too coarse, possibly 
terrestrial, for fossil preservation 
 

Capo 
Vaticano 
N38°56’59’’ 
E015°50’14’’ 
 

Pirazzoli et 
al., 1997 

MIS 5e At grid reference where C. caespitosa reported 
only found coarse igneous basement topped by 
a non-fossiliferous breccia 

Le Castille, 
N38°54'26.5'' 
E017°01'21.5'' 
Elev. 1 m 
 

Zecchin et al., 
2004; 2010;  

MIS 5a/c Corals are very rare and only found at the base 
of the clinoform sequence in the splash zone, 
corals are shot with calcite alteration visible to 
the naked eye 

Capo Colonna  
N39°01'21.8'' 
E017°12'14.4’’ 
Elev. 19 m 
 

Zecchin and 
Caffau, 2011 

MIS 5a/c Algal cemented reef is very bioturbated, corals 
are shot with calcite alteration visible to the 
naked eye 

Ionian Coast 
and Crati 
Valley 

Santoto et al., 
2009; Cucci 
and Cinti, 
1998 

MIS 1 to 
15 
terraces 

3 or 4 terraces found across area but all seem to 
be made up of extensive coarse fluvial 
sediments on top of marl and metamorphic 
bedrock. Few traces of marine environments 
with in situ oyster beds, clams and scallops but 
no corals. 
 

‘Coral cave’ 
above Tarsia; 
N39°37'19.2'' 
E016°16'02.4" 
Elev. 224 m 
 

Bernasconi et 
al., 2002 

MIS 11 or 
older 

Corals are very abundant (see Figure 3.1.6) 
however heavy iron staining, weakness of stems 
and an age of at least MIS 11 (from the 224m 
a.s.l. elevation) of the terrace suggest too poor 
condition so not analysed.  

Taranto Peirano et al., 
2009; 
Belluomini et 
al., 2002; 
Ferranti et al., 
2006; 
Mastronuzzi 
et al., 2003 

Holocene, 
MIS 5a-c, 
5e 

Dated (107ka) C. caespitosa outcrops near 
Roman Bridge (N40°45’28.4’’ E017°41’50.2’’) 
not found, only limestone bedrock and extensive 
fluvial conglomerates. Santa Teresiola reef not 
found as on inaccessible private land. Masseria 
Natrella reef found (N40°30'29.1'' E017°14'28.7''; 
Elev.16m); major C. caespitosa reef with diverse 
bivalve assemblage however samples are short 
and poor quality. Holocene and 5a-c beach 
terraces only found to contain oysters and 
gastropods in lower parts and extensive cockle 
beds in upper parts, no corals. 
 

Punta della 
Pietre Nere; 
N41°54'57.1'' 
E015°20'32.1'' 
Elev. 0.5 m 
 

Mastronuzzi 
and Sanso, 
2002, Gravina 
et al., 2005 

Holocene Heavily algal cemented and stained black from 
the splash zone. Preliminary LA-ICP-MS trace 
element analysis showed to be heavily 
contaminated by metals, especially Al, Fe. 
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Figure 3.1.6 Abundant C. caespitosa exposed in walls and ceiling of man-made 'coral 
cave' above Tarsia. The cave roof is approximately 2.5 m high. 

Because of the issues in obtaining unaltered material, the analysis of the Italian 

samples did not go beyond preliminary investigations and these samples are 

not discussed further. 

3.2. Sample pre-screening, SEM analysis 

It was necessary to check that samples of C. caespitosa were well preserved to 

ensure that they retained their original geochemical signature. To do this they 

needed to be visually examined under SEM to check for alteration and 

contamination. 

A sample corallite from each colony was selected for pre-screening and cut 

parallel to growth direction with a wire saw to expose longitudinal sections.  
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Samples were pre-screened by petrographic analysis under the SEM in low 

vacuum back-scatter electron mode (BSEM); the samples could not be gold-

coated if they were to be used for geochemical analysis. The skeletal ultra-

structure of samples were examined for evidence of alteration of aragonite to 

the more stable calcite polymorph, secondary cements and detritus trapped 

within void spaces (Figure 3.2.1, Figure 3.2.2, Figure 3.2.3), all of which are 

known to alter or contaminate the geochemical signature from that of primary 

coralline aragonite (Cohen and Hart, 2004; Silenzi et al., 2005; Montaggioni et 

al., 2006; Montagna et al., 2007).  

 

Figure 3.2.1 Uncoated BSEM image of primary aragonite making up the corallite wall of a 
modern sample of C. caespitosa. The sample is from the Gulf of La Spezia, Italy and the 
aragonite shows well developed fibrous acicular crystal forms with a clear orientation 
due to the coral’s biological control on crystal growth. 
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Figure 3.2.2 Uncoated BSEM image of secondary aragonite infilling septal region of a 
modern sample of C. caespitosa. The sample is from the Gulf of La Spezia, Italy and the 
secondary aragonite shows radiating bundles of acicular crystals developing out from 
centres of precipitation due to abiological controls on crystal growth. As this sample was 
collected alive it shows that secondary cements in the septal regions can be an issue in 
even the best preserved samples. The smooth, darker grey feature to the bottom right of 
the image is likely some form of detritus. 

 

Figure 3.2.3 Uncoated BSEM image of heavily altered MIS 5a/c C. caespitosa with 
diagenetic calcite growth. The sample is from Italy and was not included in the study due 
to the high degree of alteration. Abiogenic calcite forms large blocky crystals growing in 
void spaces between septa. 

 

Alteration and detrital contamination of the septal regions was very common in 

all but the best preserved (modern and Holocene) samples. The septa also 

have the added problem that, due to their porous nature, the whole of any 
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horizon perpendicular to the growth direction may not have formed 

synchronously due to multiple stages of skeleton growth occurring in skeletal 

cavities (Figure 3.2.4). 

 

Figure 3.2.4 SEM image and simplified false colour cartoon showing multiple stages of 
skeletal growth in the septal region of modern C. caespitosa (sample PK 21/09/12-07) 

The presence of calcite in many samples meant that corallites could not be 

rejected due to its presence (as Henderson et al. (1993) suggest). This is 

justified as most samples have relatively pristine corallite walls; this solid region 

appears resistant to alteration (Montagna et al., 2007) and Sayani et al. (2011) 

suggest that, even in obviously altered corals, any remaining pristine aragonite 

skeletal elements may still be useful for palaeoclimate reconstruction. 

Therefore, only the corallite walls were chosen for analysis, samples that also 

showed significant contamination of their walls by secondary cements were 

rejected.  

The remaining ‘candidate’ samples were catalogued using this macro and 

microscopic petrographic analysis and classified on their likely ability to record 

original geochemical signatures. This was dependant on their quality of 

preservation and visible level of diagenesis, allowing the selection of the most 
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useful samples for analysis. A list of all samples used in this study and the 

techniques they were used for is given in Table 3.2.1. 

Table 3.2.1 Summary of C. caespitosa samples analysed, with collection localities, ages 
and techniques applied 

Sample 

number 

Locality & growth 

depth 

Age Analytical techniques applied 

 

PK 

21/09/12 -

01 

 

Mljet, Croatia 

(42°46’08’’N; 

17°22’26’’E), 8m depth 

 

Modern, collected 

alive 21
st
 September 

2012 

 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS, water sample 

IR-MS 

 

PK 

21/09/12 -

02 

Mljet, Croatia 

(42°46’08’’N; 

17°22’26’’E), 10m depth 

Modern, collected 

alive 21st September 

2012 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS, water sample 

IR-MS 

 

PK 

21/09/12 -

05 

Mljet, Croatia 

(42°46’08’’N; 

17°22’26’’E), 11m depth 

Modern, collected 

alive 21st September 

2012 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS, water sample 

IR-MS 

 

PK 

21/09/12 -

06 

Mljet, Croatia 

(42°46’08’’N; 

17°22’26’’E), 14m depth 

Modern, collected 

alive 21st September 

2012 

SEM, Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS, water sample 

IR-MS 

 

PK 

21/09/12 -

07 

Mljet, Croatia 

(42°46’08’’N; 

17°22’26’’E), 15m depth 

Modern, collected 

alive 21st September 

2012 

SEM, Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS, water sample 

IR-MS 

 

AP 

05/08/03 – 

F 

 

Fiascherino 

(44°05’04’’N; 

09°44’01’E), 10m depth 

Modern, collected 

alive 05
th

 August 2003 

SEM, Bulk isotopologues (Δ47) 

AP 

23/11/94 – 

MN1 

Capo di Montenero 

(44°05’04’’N; 

09°44’01’’E), 10m depth 

 

Modern, collected 

alive 23
rd

 November 

1994 

SEM, Bulk isotopologues (Δ47) 
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UEA 

010626-04 

Agrilou Bay, Greece  

(38°00’31.4’’N; 

22°55’32.5’’E) 

MIS 5a-c; Deposit U-

Th dated to 70-82ka 

(J. Turner; J. Andrews 

Pers. comm.s)  

 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS 

SHR 

02/11/11-

02 

Lake Vouliagmenis, 

Greece (38°01’55.2’’N;  

22°52’14.1’’E) 

MIS 7a-c; Deposit U-

Th dated to 186-

195ka (Leeder et al., 

2005) 

 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS 

SHR 

02/11/11-

08 

West Makrugoaz 

Ridge , Greece 

(38°01’21.8’’N; 

22°52’49.8’’E) 

MIS 5e; Deposit U-Th 

dated to 108-133ka 

(Leeder et al., 2003) 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS 

 

SHR 

03/11/11-

02 

Mavra Litharia, Greece 

(38°08’34.5’’N; 

22°22’49.0’’E) 

MIS 1; Reef growth 

dated to 6-10ka 

(Kershaw et al., 2005) 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS 

 

SHR 

04/11/11-

10 

West Flagnoro Bay, 

Greece (38°01’11.1’’N; 

22°53’33.5’’E) 

5e, correlated to 

dated terraces by 

mapping (Leeder et 

al., 2003; Leeder et 

al., 2005) 

 

SEM, High resolution IR-MS (C, O), 

Bulk isotopologues (Δ47), High 

resolution LA-ICP-MS 

 

 

3.3. Stable Isotope analysis – δ
18

O, δ
13

C 

This section describes the sampling and analysis techniques used in the carbon 

and oxygen stable isotopic analysis of both modern and fossil C. caespitosa 

samples. 

3.3.1.  Sampling method 

Modern samples were bleached in 30% H2O2 overnight to loosen and partially 

oxidise organic tissue, rinsed with deionised water, scraped clean of remaining 

tissue with a scalpel and further cleaned by sonication in deionised water to 

ensure all surface organic matter and detritus was removed. This was not 
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necessary with the fossil samples as their organic tissues had already oxidised 

over the thousands of years since the death of the coral. 

 A wire saw was used to cut the corallites in half parallel to their growth direction 

to expose their longitudinal cross sections. Half of the cut stem was selected for 

isotope analysis. A 3 mm drill bit attached to a rotary tool and a scalpel were 

used to remove the septa under a binocular microscope. Any surface 

contaminants (mostly encrusting calciferous algae and serpulid tubes) were 

removed and the samples were repeatedly sonicated in deionised water. 

 

Figure 3.3.1 Modern C. caespitosa stem cleaned and annotated to show locations of 
pronounced summer (SB) and recessed winter (WB) growth bands. Faint colour 
difference between summer and winter bands cannot be seen in this image. 

Isotope sampling was achieved using a diamond file to grind off material 

perpendicular to the growth direction; visible dissepiments and alternating 

darker pronounced and lighter recessed growth bands (Figure 3.3.1) served as 

guides to calculate the growth increment represented by each sample. It was 

assumed these bands were the summer low-density and winter high-density 

growth bands described by Peirano et al. (1999), rather than annual features. 

Therefore a density of ~12 samples per growth band achieved approximately 

fortnightly temporal resolution, although this was not always possible given the 
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varying widths and irregularities of the growth bands. Samples of 75±5 μg were 

weighed out into individual stainless steel capsules using a micro-balance. 

3.3.2.  Standards 

Along with each batch of coral samples 75±5 μg UEACMST (University of East 

Anglia Carrera Marble Standard) standards of known composition were 

analysed. Data were reported in per mil (‰) deviation relative to the Vienna Pee 

Dee Belemnite (UEACMST isotopic composition is: δ13C = +1.98‰ and δ18O = 

−2.04‰). Repeat analysis of the standard shows a measurement precision (1 

σ) for δ18O and δ13C of 0.09 and 0.08‰ respectively. 

3.3.3.  Autocarb – Automatic carbonate digestion, CO2 

preparation and introduction system 

Sample runs, in batches of 47 (including standards), were loaded into the 

carousel of the (in house built) Autocarb (automatic carbonate) digestion, CO2 

preparation and introduction system. This system is controlled by the in house 

AutoPrep 2008 software. Samples individually react with 105% (ρ = 1.92 gml−3) 

phosphoric acid (H3PO4) at 90°C in an on-line common acid bath. CO2 is then 

cryogenically purified by removing water vapour by passing the gas through a 

cold trap at −105°C before being introduced to the mass spectrometer. Purified 

CO2 was analysed for carbon and oxygen isotopic composition using the 

Europa SIRA II dual inlet isotope ratio mass spectrometer (IRMS).  
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3.3.4.  Analysis order 

Preliminary analysis found memory effects in the isotope composition of 

samples which followed the standards. Figure 3.3.2 shows how the composition 

of triplicates tends away from that of the preceding standards while replicates 

done before standards (not shown) showed no variation (outside expected 

error).  

 

Figure 3.3.2 Memory effects shown by trend of increasing δ
13

C depletion in one sample 
analysed in triplicate. UEACMST standards represented by diamonds, JS 11/11/05-03 (08) 
C. caespitosa replicate samples by squares. 

This was assumed to be due to the much coarser grain size of the standards 

(compared to the finely powdered samples) causing them to take longer than 

their allocated time to digest completely in the acid. This led to some of their 

CO2 still entering the mass spectrometer when the following samples were run.  

To combat this, various loading patterns were tried, this resulted in all analysis 

runs following the sequence: 4 standards, 2 blanks (to allow complete 

degassing of the standards from the acid bath to finish before the samples were 
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introduced to the acid), all the samples, 4 standards. Replicates of samples 

were carried out approximately every 15 samples to check reproducibility of the 

measurements. 

3.3.5.  Resolution/Sampling strategy 

It was initially decided that a resolution of 12 samples per growth band would be 

ideal as this would give approximately fortnightly resolution. This was tested by 

selecting two corallites of approximately the same age and locality (MIS 5e, 

Makrugoaz Ridge, Greece) and sampling one at ≈12 samples per growth band 

and the other at ≈24 samples per growth band. 

Figure 3.3.3 and Figure 3.3.4 show that little useful information is lost by halving 

the sampling resolution. The strong visible cyclic trend in the isotope 

composition is still apparent (it actually becomes clearer as noise is reduced) 

and retains approximately 90% of its amplitude (although this difference may 

not be significant as the corallites may have actually experienced different 

environmental conditions). Also, half as many runs on the mass spectrometer 

were needed to get this lower resolution result, thus twice as many corallites 

could be analysed for the same amount of time and cost. 
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Figure 3.3.3 Stable isotope analysis of C. caespitosa sample SHR 02/11/11-08 (II), 
unsmoothed but normalised to growth years. Average sample resolution 24 samples per 
growth band. 

 

Figure 3.3.4 Stable isotope analysis of C. caespitosa sample SHR 02/11/11-08 I, 
unsmoothed but normalised to growth years. Average sample resolution 12 samples per 
growth band. 

3.3.6. Data analysis techniques  

Data processing was carried out offline using Excel. This involved calculating 

the isotope composition of the sample carbonate (aragonite) with respect to 
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VPDB at 25°C, using the measured CO2 isotope compositions of samples with 

respect to VPDB at 90°C and the actual UEACMST (internal standard material) 

compositions, which had previously been calibrated using NBS 19. An empirical 

correction of 0.287‰ was applied to the δ18O of the corallite samples to take 

into account that they are precipitated as aragonite (rather than calcite), based 

on previous work on this mass spectrometer (A. Marca pers comms). 

3.4. Clumped isotope analysis – Δ47  

This section describes the sample preparation and analytical techniques 

involved in the analysis of the clumped isotopic composition of both modern and 

fossil C. caespitosa samples and other MIS 5e carbonates. 

3.4.1.  Sample preparation 

Although bigger samples (10 mg) of fine coralline aragonite powder, rather than 

70 µg powders, were needed for this technique, the corallites were prepared 

and cleaned to remove organic and detrital sediments in exactly the same way 

as for the previous stable isotopic technique. 

Where possible the same sample corallite stems used for high resolution stable 

isotope analysis were analysed to allow direct comparison between the results 

from the two techniques. Fine homogenised powders of the corallites were 

produced by combining the remnants of the sub-samples of corallite that had 

been produced for the high resolution isotope analysis. These were 

homogenised by thoroughly mixing the combined samples with a spatula and 

shaking the vial. Where this was not possible, when powders had not already 

been produced from the corallites or no powder remained, a corallite from the 
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same colony was selected and multiple (at least 4) years of growth were ground 

to a fine powder and homogenised using an agate pestle and mortar. Estimates 

of the weight percentage of organic matter embedded within a coral skeleton 

range from 0.01-0.1% (Wainwright, 1963), 1%  (Cohen and McConnaughey, 

2003) to 2.5-3% (Cuif et al., 2003) with a very heterogeneous distribution 

(concentrated in calcification centres) (Cuif et al., 2003) in an intermeshing 

framework of organic material and carbonate nanograins (Barnes, 1970; Cuif 

and Dauphin, 2005). Because of this nanometre scale intermeshing it is not 

possible to apply a surface oxidant (e.g. soaking in H2O2 as was used on the 

whole corallites) that can get deep enough into the sample to oxidise all the 

inter- and intra-crystalline organics. However, these small amounts of organic 

impurities do not appear to have affected the separate δ18O and δ13C 

measurements, and it has been reported elsewhere that the addition of organic 

substances have no effect on the isotopic analyses of untreated samples 

carried out by using the phosphoric acid digestion method (Wierzbowski, 2007). 

Also, due to its acidic pH and the fine grain size of the carbonate powders, it is 

unlikely that complete removal of the organic matter by H2O2 is possible without 

some significant dissolution of carbonate material during the bleaching. It is 

possible that this would preferentially remove carbonate material which is 

isotopically different from the bulk composition, thus altering the bulk 

composition of the remaining sample and resulting in an incorrect determination 

of isotopic composition (White, 1998). Due to this it was decided not to bleach 

the produced powders with H2O2
 or attempt any other methods of further 

organic matter pre-cleaning. 
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For each sample powder, 10 mg was weighed out into a stainless steel vial 

using a microbalance and transferred into a Durham tube using a funnel, both 

the vial and funnel were cleaned to remove any traces of the previous powder 

between samples. 

3.4.2. Sample digestion 

Durham tubes containing 10±0.1 mg of sample were placed into reaction 

vessels along with 1 ml of 105% (ρ = 1.92 gml−1) phosphoric acid (H3PO4). The 

vessels were pumped out to high vacuum (≥ 1∙106 mbar) while the acid was 

heated and degassed. 

Samples were digested under vacuum in the acid overnight at 25±0.1oC in a 

water bath so that (the temperature dependant) fractionation of isotopes 

between the produced CO2 and the acid remained constant. 

3.4.3.  CO2 purification, Prep line 

CO2 produced from this reaction was purified on a dedicated high vacuum 

manual extraction line to remove all water, non-condensable gases and any 

organic components. This was achieved by first passing the CO2 through 2 cold 

traps held at −115°C to cryogenically remove any water. The CO2 was then 

frozen into a cold finger at liquid nitrogen temperature and, after freezing, the 

non-condensable gases were pumped out. The CO2 was then passed through a 

gas chromatography (GC) column filled with PorapakTM porous polymer 

material, cooled to −25±5°C. This is required to guarantee no interference of 

hydrocarbons with the mass-47 measurement (Eiler and Schauble, 2004; 

Zaarur et al., 2011). Finally the CO2 was refrozen in a sample tube and any 
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remaining non-condensable gases were pumped out.  Between samples the 

line was pumped at high vacuum at room temperature and the GC column was 

baked to remove any remaining contaminates.  

3.4.4.  MIRA 

Samples were run on the MIRA (Multi-Isotopologue Ratio Analyser) isotope 

ratio mass spectrometer (IRMS). Clumped isotope measurements are reported 

as ∆ values (see section 2.4.1) Measured Δ47 values are reported standardised 

to the absolute reference frame (ARF) of Dennis et al. (2011) to account for 

inter and intra-laboratory differences in standard gases used and mass 

spectrometric artefacts. Standardisation is based on repeat analysis of heated 

gases (HG) and water equilibrated gases (WEG), these are CO2 with known 

compositions made from BDH marble chips, from a BOC CO2 cylinder or a 

combination of both, which are used to construct transfer functions. Standards 

of UEACMST (University of East Anglia Carrera Marble), UEABEL (University of 

East Anglia Belemnite) and UEATHC (UEA Turkish Carbonate) are prepared 

and analysed interspersed with the studied samples to check for consistency.  

Based on repeat analysis (n=44) of the UEACMST standard, the standard error 

on this instrument for ∆47URF is 0.005‰ (2σ = 0.064). 

3.5. Water stable isotope measurements 

Oxygen and hydrogen isotopic analysis was performed by Dr Sarah Wexler on 

water samples collected from Lake Veiko Jezero (Croatia) by Dr Petar Kružić 

(at the same times and localities as the C. caespitosa samples he collected) 

and from around the Perachora Peninsula on water samples collected by Dr 

Jenni Turner (between the 10th-13th February 2013). 
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These measurements were performed on filtered samples using a Picarro cavity 

ring-down spectroscopy (CDRS) laser instrument. Due to memory effects in this 

type of instrumentation, 2.2 µl of each sample was injected and measured six 

times. Repeat analyses of the standards Norwich Tap Water (NTW), Greenland 

Ice Sheet Precipitation (GISP), USGS67400 and USGS64444 were used to 

calibrate the data and show a measurement precision for δ18O and δD of 0.16 

and 1.05‰ respectively. Data are reported as delta values (‰) with respect to 

the VSMOW standard. 

3.6. Trace elemental analysis  

Modern and fossil C. caespitosa samples were analysed for trace element 

compositions with the aim of developing palaeotemperature proxies. This 

section introduces the technique, describes the process of developing this 

method to work best with the corallites and the final method and resolution used 

for analysis. 

3.6.1.  Laser ablation – inductively coupled plasma – mass 

spectrometry (LA-ICP-MS) 

In situ sampling was carried out by laser ablation-inductively coupled plasma-

mass-spectrometry (LA-ICP-MS). Sample corallites were cleaned and cut 

lengthways (as in the isotope analysis), this method allows the accurate 

targeting of the corallite wall without the need for removal of the septa. The 

sampling method was based on the technique of Montagna et al. (2007) who 

carried out a very similar trace element study on a modern Italian C. caespitosa.  
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 LA-ICP-MS has, over the last few decades, become a popular method for high 

resolution analysis of the trace elemental composition of a wide range of 

carbonate and other geological materials (Sinclair et al., 1998; Roberts et al., 

1999; Toland et al., 2000; Sinclair, 2005; Hoffmann et al., 2009; Schöne et al., 

2010; Sato et al., 2011; Schöne et al., 2011). This is a technique for the direct 

elemental analysis of solid samples and is described in detail by Arrowsmith 

(1987) and Gray (1985).  

In summary; a focussed pulsed laser beam is used to ablate a solid sample, this 

produces a plume of fine particulate material which is entrained into a flow of 

argon gas. Argon is used as it has a very high ionisation potential and so keeps 

the ablated sample ionised (Sheppard et al., 1990). The gas flow transports the 

ablated material into an inductively coupled plasma (ICP), ionising the sample, 

with the resulting ions detected by mass spectrometry.  

This is a potentially easy method for sampling as very little sample preparation 

is necessary, it has application to a wide range of geological (and other) 

materials, and has a high spatial resolution (≥10μm (Toland et al., 2000)) due to 

the potential for very fine focussing of the laser beam. 

It is this potential for extremely high resolution analysis and the fact that 

sampling can be carried out in situ that makes LA-ICP-MS ideal for 

sclerochronology. These features are advantageous as they (theoretically) allow 

for the study of small compositional changes over very short distances/time 

periods.  
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In this study, samples were analysed on a Thermo-Electron X Series ICP-MS 

using a New Wave Research UP-213 Laser Ablation System and argon carrier 

gas. 

3.6.2.  Method development 

There were many unknowns associated with analysing this type of coralline 

aragonite by LA-ICP-MS and so preliminary experiments were conducted to 

develop a reliable and reproducible method.  

3.6.2.1. Standards 

Standards (of known compositions) are necessary to calibrate the laser to allow 

semi-quantitative intensities of isotope mass detection to be turned into 

absolute concentrations. 

In a preliminary study, pre-ablated samples of pure calcite (CaCO3), NIST 610 

and NIST 612 (silicate reference glasses) were used as calibration standards. 

The pure calcite was used to calibrate calcium content of the samples as well 

as the reference glasses. This was an attempt to avoid matrix effects induced 

by the laser coupling differently with the carbonate sample and silicate glass 

standards  (cf Sinclair et al. (1998) and Montagna et al. (2007)). However, even 

with these differences in coupling, no difference was found in the sample’s 

concentration data calibrated with or without the calcite and so this standard 

was removed as an unnecessary step with the NIST glasses being deemed as 

sufficient.  
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3.6.2.2. Laser ablation spot size calibration experiment 

Preliminary work consistently reported trace element concentrations which were 

anomalously high compared to published work (Rong Min et al., 1995; Alibert 

and McCulloch, 1997; Sinclair et al., 1998; Marshall and McCulloch, 2002; 

Silenzi et al., 2005; Montagna et al., 2007). It was hypothesised that the 

accuracy of the data may be a function of laser spot size and power. Too large 

spots would create too much ablated material overloading the detectors in the 

mass spectrometer, too small a spot size and not enough ablated material 

would be present for the detectors to analyse. The intensity of the laser was 

also an important variable; too much power exerted onto too small an area 

caused the laser to burn holes, causing fragmentation of the sample; too little 

power over too wide an area and the laser would not couple well with the 

sample surface. Because of this, an experiment was necessary to determine 

the effects of spot size on the data produced. 

Method 

Standard addition analysis (solution-mode) 

To get a bulk analysis of the average composition of C. caespitosa without the 

effects of any laser variables, G. Chilvers used a homogenised sample of SHR 

04/11/11-11, an unaltered and clean Greek MIS 5e C. caespitosa, to create a 

calibration standard solution which was analysed with the ICP-MS in solution 

mode to gain accurate average Sr and Ca concentrations by standard addition. 

The other trace elements present in this standard could not be accurately 

measured due to the method of standard addition necessary to gain accurate 

figures for these 2 elements leading to interference in the other, less abundant, 
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trace element signals. This gave average concentrations of 8166ppm and 

38.11% for 86Sr and 43Ca respectively, both in the regions of what have been 

found by other studies (e.g. Rong Min et al., 1995; Alibert and McCulloch, 1997; 

Sinclair et al., 1998; Marshall and McCulloch, 2002; Silenzi et al., 2005; 

Montagna et al., 2007). 

Laser ablation analysis 

Various spot sizes were used to analyse pre-ablated regions of NIST 612 and 

610 and the corallite wall of C. caespitosa sample SHR 04/11/11-11 (Table 

3.6.1). Each size of spot was used to analyse the same 3 points on the coral, 

these points were all taken 500 μm apart in a transect normal to the growth 

direction of the coral. This ensured that they all related to the same temporal 

horizon and so changes in trace element content of the coralline aragonite over 

time should not have affected the results; averaging the results of the 3 points 

for each spot size was done to further minimise the effects of any heterogeneity 

between microstructural domains in the corallite. 

The NIST glass standards were used to calibrate the laser to allow intensities of 

trace element mass detection to be turned into concentrations so that the 

following results and discussion all relate to C. caespitosa sample SHR 

04/11/11-11. 

Laser settings 

Pre-ablation settings: 250 μm spot size, 90% laser output, 12 Hz repetition rate, 

10 μms−1 scan speed, 5 μm depth per pass. 
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Table 3.6.1 Analysis settings for laser calibration experiment 

Spot Size (μm)  Laser Output (%) Repetition Rate (Hz) Dwell Time (s) 
 

250 90 12 40 
75 55 4 40 
40 60 4 40 

 

Results and analysis 

As hypothesised, spot size did affect the concentration of elements picked up 

by the detectors. Figure 3.6.1, which shows the laser-analysed concentration 

data, shows how increasing spot size increased concentration for the majority of 

elements detected. This is especially obvious for 43Ca and 86Sr which at the 250 

µm spot size make up approximately 500% and 75,000ppm of the sample 

respectively. These concentrations are over an order of magnitude too large, 

both standard addition data and other, published, studies on various species of 

corals (Rong Min et al., 1995; Alibert and McCulloch, 1997; Sinclair et al., 1998; 

Marshall and McCulloch, 2002; Silenzi et al., 2005; Montagna et al., 2007) show 

that 43Ca makes up around 38% of aragonite and 86Sr should be present at 

5000-10,000 ppm. Although there are not really enough data points for a 

reliable conclusion; it does appear that there is a positive linear relationship 

between spot size and reported concentration. It can also be seen that the 

different elements have somewhat different gradients to their lines suggesting 

that not all are affected to the same degree. Concentrations from the 40 μm 

spot appear as though they may be anomalously low as, from the real-time 

signal readout on the mass spectrometer, there did not appear to be enough 

material being ablated for the detectors to pick up some of the lower 

concentration elements (like manganese); as the signal to noise ratio was very 

low. 
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Figure 3.6.1 
43

Ca, 
86

Sr laser ablation trace element concentration and laser 
ablation/standard addition concentration ratios at various spot sizes for C. caespitosa 
sample SHR 04/11/11-11. Varying units are used for the different elements to allow them 
all to be shown on one graph and these are noted in the key. Concentration levels from 
standard addition data (no spot size, solution analysed) are plotted as dashed lines for 
comparison. 

Figure 3.6.2 shows the same laser ablation data as Figure 3.6.1, however this 

has been normalised in an attempt to cancel out the effects of the varying spot 

size. To normalise the data to 100% aragonite, 43Ca = 38% has been used as 

an internal standard (following the data from standard addition). Plotted at 0 μm 

spot size are the 86Sr composition data gained by standard addition. As can be 

seen, the 86Sr standard addition value is slightly higher than the normalised 

values, which appear to tend towards it with decreasing spot size, although 

there are not enough data points for this to be a statistically significant trend. 
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Figure 3.6.2 Laser ablation trace element concentration for a selection of the most 
common trace elements for C. caespitosa sample SHR 04/11/11-11 at various spot sizes 
normalised to 100% CaCO3, so that 

43
Ca=38%. The standard addition composition data 

(no spot size, solution analysed) from sample SHR 04/11/11-10 for 
86

Sr is plotted as a 
dashed line for comparison. Varying units are noted in the key. 

Figure 3.6.3 and Figure 3.6.4 show the normalised data reported in the 

standard notation of trace element/calcium ratios to allow the comparison of the 

data with published work, which is shown in Figure 3.6.4. Even though the 

samples have been normalised and all concentrations are reported as a ratio of 

the concentration over a constant value of 38% of 43Ca, there are still significant 

differences between the concentration values gained from different spot sizes.  
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Figure 3.6.3 Normalised laser ablation trace element concentration for C. caespitosa 
sample SHR 04/11/11-11 at various spot sizes reported as ratios of trace element/

43
Ca. Sr 

standard addition composition data from sample SHR 04/11/11-10 is shown at 0 μm spot 
size. Varying units are noted in the key. 

 

Figure 3.6.4 A comparison of the trace element composition data from the various spot 
sizes of laser ablation of sample SHR 04/11/11-11, standard addition of sample SHR 
04/11/11-10 and from data reported from coral analysis in the literature. Data is only 
shown for those elements that have published data available for comparison. Only 
Montagna (2007) and Silenzi (2005) refer to C. caespitosa samples, the other studies 
looked at tropical or deep water species. 

Conclusions on spot size 

The hypothesis that the accuracy of the data may be a function of laser spot 

size and power was supported; smaller spot sizes produce more reliable data. 
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Normalising the data to represent 100% CaCO3, by using 43Ca=38% as an 

internal standard, brings all the various spot size data into a reasonable range 

but there are still differences in the concentrations and subsequent trace 

element/Ca ratios. Because of this, larger margins of error will be caused by 

larger spot sizes as the corrections applied will be larger.  

The detectors do, however, need a minimum volume of ablated material to be 

produced to work effectively and this can be seen in the 40 µm data for the 

elements present in minute amounts. Lithium and manganese values drop 

dramatically at this spot size. It was also noted that there was a very poor 

signal-to-noise ratio for this spot size compared to the larger spot sizes. 

As, for all elements other than Ba, the normalised laser ablation data seems to 

be within the range of values expected from previously published work, it seems 

that using a small spot size and normalising the data in this way is a reliable 

method of gaining trace elemental data. The 75 µm spot was the best size that 

avoided overloading the detectors while still producing enough ablated material. 

In conclusion, the settings for the 75 µm spot size were used in all subsequent 

analysis and the data is calibrated by using 43Ca = 38% as an internal standard.  

3.6.2.3. Sampling strategy 

The use of a smaller spot size does increase levels of variability, as a small spot 

is more likely to resolve the micro-structural heterogeneities within the coral. 

Preliminary work followed the technique of Montagna et al. (2007) in analysing 

a continuously ablated line. Even with pre-ablation the signal was too noisy to 

pick out any meaningful trends, also, the sheer volume of data produced by 
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analysing a continuous line makes manipulation and analysis unwieldy and 

overly time consuming without any clear advantage.  

Based on the sampling strategy employed for the stable isotopic analysis, it was 

decided to use spot analysis at an average of 12 samples per growth band to 

give approximately fortnightly resolution. Unfortunately it was not possible to 

see the growth bands under the laser’s targeting microscope, due to relatively 

poor quality optics, and so a constant sampling resolution of 200 μm was 

selected. This resolution was chosen as it would give the closest resolution to 

an average 12 samples per band as the growth bands generally range in size 

from 1.5 to 3.5 mm. 

3.6.3.  Analysis method 

The LA-ICP-MS was calibrated using the (pre-ablated) NIST 610 and 612 with 

known compositions so intensity values at the detectors could be automatically 

converted to concentration values. However, due to the laser coupling better 

with the carbonate of the samples than the silicate glass, these values would be 

overestimations only valid in relation to each other and so would need a second 

step of calibration, offline, post-analysis. 

Following the optimal techniques outlined by the preliminary work, the samples 

were pre-ablated in a continuous tract down one wall of the corallite to remove 

any surface contamination, especially any traces of metals left behind from 

cutting the samples.  

Pre-ablation settings: 250 μm spot size, 90% laser output, 12 Hz repetition rate, 

10 μms−1 scan speed, 5 μm depth per pass. 



Sam Royle  Methodology 

64 
 

Sample analysis was carried out using individual discrete laser spots rather 

than the continuous tract favoured by Montagna et al. (2007). A relatively small 

spot size and low laser power was used based on the best results gained in the 

calibration experiment.  

Analysis settings: 75 μm spot size, 55% laser output, 4 Hz repetition rate, 40 s 

dwell time 

Laser spots were placed every 200 μm along the corallite wall, parallel to the 

direction of growth and starting at the basal end of the corallite so that the data 

would also produce a clear time series. 

The detectors in the mass spectrometer were set up to record the 

concentrations of the stable isotopes: 7Li, 11B, 23Na, 24Mg, 25Mg, 27Al, 31P, 39K, 

43Ca, 44Ca, 54Fe, 55Mn, 56Fe, 65Cu, 66Zn, 86Sr, 88Sr, 135Ba, 137Ba, 238U. 

As noted above, the concentration data produced by the mass spectrometer 

software’s online calibrations were only semi-quantitative. Therefore, further 

calibrations were also necessary; these were carried out offline using Microsoft 

Excel. 43Ca = 38% was used as an internal standard to normalise all the other 

trace element concentrations to be representative of a sample made up of 

100 % CaCO3 (aragonite). 

The calibrated concentrations were converted into the standard trace 

element/43Ca notation to allow comparison to values from the literature.



Sam Royle  Stable isotopic analysis 

65 
 

4.  Stable isotope analysis – Results and 

discussion 

In this chapter data is presented and discussed from the stable isotopic analysis 

of all analysed samples. Modern Croatian C. caespitosa sample data, along 

with measured temperature and water isotope data are used to assess the 

reliability of applying published carbonate-water fractionation equations (i.e. 

δ18O palaeothermometers) to this species and a new species-specific 

palaeotemperature equation is proposed. This species-specific equation is 

compared to other published equations and both are applied to the fossil Greek 

C. caespitosa samples to assess their utility in producing reliable 

palaeotemperatures for the Pleistocene interglacials. The newly calibrated 

species-specific equation, when used alongside estimates for the palaeo-

δ18Oseawater of the Gulf of Corinth, produces palaeotemperatures for each 

interglacial in line with the climatic conditions found by other studies. 
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4.1. Modern Croatian samples – Isotope results 

4.1.1.  C. caespitosa samples 

Table 4.1.1 describes the C. caespitosa samples collected from the Mljet bank 

sampling stations (see Figure 3.1.2 and Table 3.1.1) that were analysed for 

stable isotope composition. The δ18O and δ13C stable isotopic data profiles for 

these corallites are shown in Figure 4.1.1. 

Table 4.1.1 Modern Croatian C. caespitosa samples analysed for stable isotope 
composition, sampling station numbers relate to those shown in Figure 3.1.2. 

Sample Sampling 
station 

Growth depth 
(m) 

Corallite length 
(mm) 

Growth 
bands 

PK 21/09/12-01 1 8 49 20 (19 
sampled) 

PK 21/09/12-02 2 10 33 19 (17 
sampled) 

PK 21/09/12-05 5 11 38 20 (20 
sampled) 
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Figure 4.1.1 Stable isotope data from Mljet C. caespitosa samples, vertical lines have 
been added to separate complete cycles based on minima in the δ

18
O trace. 
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4.1.1.1. Sample comparison  

The three modern Croatian C. caespitosa samples analysed all show very 

similar δ18O patterns and values. A clear δ18O sinusoidal cyclicity is observed in 

all samples with approximately the same number of cycles present as pairs of 

seasonal growth bands. This suggests that δ18O cyclicity is an annual-scale 

feature in these corals and is presumably linked to the same factors that cause 

growth band development. In all samples the δ13C data are complex, hints of 

cyclicity can be seen however the cycles are at varying scales patterns. Data 

from the modern Croatian samples are summarised in Table 4.1.2 and plots of 

the isotope profiles are shown in Figure 4.1.1. 

Table 4.1.2 Summary of isotopic data from modern Croatian C. caespitosa samples and 
water isotopic data collected from the same sample sites (average water data also 
includes measurements from Stations 6 (14m, δ

18
O = 1.2, δD = 8.9) and 7 (15m, δ18O = 

1.2, δD  = 9.3), water values are expressed in ‰ VSMOW while aragonite values are 
expressed in ‰ VPDB 

 PK 21/09/12-01 PK 21/09/12-02 PK 21/09/12-05 Average 

 

Growth depth 

(m) 

 

8 

 

10 

 

11 

 

N/A 

Water δ
18

O  +1.0 +1.2 +1.2 +1.2 (2σ = 0.2) 

Water δD  +7.6 +9.1 +9.0 +8.8 (2σ = 1.4) 

Average δ
18

O  −2.5 −2.6 −2.5 −2.5 (2σ = 0.1) 

δ
18

O cycles 9.5 8 9  

Av. δ
18

O max.  −1.4 (2σ = 0.4) −1.7 (2σ = 0.2) −1.7 (2σ = 0.4) −1.6 (2σ = 0.3) 

Av. δ
18

O min.  −3.3 (2σ = 0.3) −3.3 (2σ = 0.6) −3.3 (2σ = 0.6) −3.3 (2σ = 0.1) 

Av. δ
18

O range  −1.8 (2σ = 0.3) −1.6 (2σ = 0.7) −1.7 (2σ = 0.7) −1.7 (2σ = 0.1) 

Average δ
13

C −5.8 −6.4 −5.9 −6.0 (2σ = 0.6) 

 

As seen in Table 4.1.2 all the samples are very similar to each other in their 

overall δ18O average and average trough (low 2σ values: 4.4% and 1.6% of 

their respective means) and only slightly more variable in their average peak 

and average amplitude values (2σ values: 18.8 and 16.1% respectively). 
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Because of this it seems reasonable to assume that all of these samples have 

experienced similar controls on their aragonitic δ18O values. 

4.1.2.  Water samples 

Water samples collected at the same times and monitoring stations as the Mljet 

corals were analysed for oxygen and hydrogen isotopic composition; the results 

are reported in Table 4.1.2. These data are also plotted in Figure 4.1.2 and 

Figure 4.1.3; there is no significant difference between the stations. This 

indicates that the upper 15m of the water column is well mixed.   

 

Figure 4.1.2 Mljet water and analysed standards stable isotopic compositions, (error is 
0.16‰ for δ

18
O and 1.05‰ for δD). Global meteoric water line (Craig, 1961) (dotted line) 

and Eastern Mediterranean meteoric water line (Gat et al., 1996) (dashed line) shown for 
comparison. 
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Figure 4.1.3 Expanded view of the Mljet water stable isotopic compositions in Figure 
4.1.2, error bars show one standard deviation (0.16‰ for δ

18
O and 1.05‰ for δD). Global 

meteoric water line (Craig, 1961) (dotted line) and Eastern Mediterranean meteoric water 
line (Gat et al., 1996) (dashed line) shown for comparison. 

 

4.2. Modern Croatian samples – Analysis 

4.2.1.  Calibrating the data to a normalised time series  

The C. caespitosa aragonite data sets were smoothed with a 4-point running 

median (following Montagna et al. 2007) to emphasise the cyclic trend and the 

profiles were normalised to a time series. When seawater δ18O is constant, the 

primary control on coralline aragonite δ18O is water temperature (Beck et al., 

1992; Gagan et al., 1994; McCulloch et al., 1994; Correge, 2006); with 

carbonate δ18O showing a negative correlation with temperature (McCrea, 

1950; Epstein et al., 1953). The clear cyclicity in δ18O profiles is thus attributed 

to an annual temperature-driven signal.  
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Figure 4.2.1 2012 temperature record from 15m depth on Mljet coral bank (modified from 
Kružić, pers comms) 

Temporal adjustment was achieved assuming peak maxima corresponded to 

the time of the year with lowest seawater temperatures (February/March at this 

locality; Figure 4.2.1) and minima corresponding to the highest seawater 

temperatures (August/September at this locality). As these samples were 

collected alive in September 2012 the youngest winter growth band 

corresponded to winter 2011/2012; preceding peak maxima were then assigned 

years counting backwards from this point. Mid-points between peak 

maxima/mid-winters were equally spaced using a 1/n formulation where n is the 

number of sample points between maxima. Figure 4.2.2 shows the smoothed 

and adjusted profiles aligned for ease of comparison; it can be seen that, while 

the values are similar overall, the profiles themselves are not identical. 
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Figure 4.2.2 Modern Croatian C. caespitosa aragonite δ
18

O profiles smoothed and 
adjusted to time series, mean monthly in situ measured SST data included for reference 
(obtained from the Croatian Meteorological and Hydrological Institute). The δ

18
O x-axis is 

reversed for ease of comparison between the two series.  
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4.2.2.  Discussion of carbon stable isotopic data 

 

Figure 4.2.3 Modern Croatian coral δ
13

C profiles smoothed and adjusted to time series  

Figure 4.2.3 shows the smoothed and normalised δ13C profiles from the 

Croatian C. caespitosa aragonite. Informed by the δ18O cyclicity, it appears as 
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though there is some semblance of annual-scale cyclicity in the profiles. 

However, this is overprinted by a great degree of variability, even after 

smoothing, and there are no regions where any of the curves show any clear 

similarities to each other.  Some years in some profiles have multiple peaks 

while others have none. Moreover, comparison of the two isotope profiles 

(Figure 4.2.4) shows that sometimes the δ13C follows the δ18O, sometimes it 

appears to oppose it and sometimes there is no relationship. 

 

Figure 4.2.4 Comparison of δ
18

O and δ
13

C profiles overlain for C. caespitosa sample PK 
21/09/12-01 

This suggests that controls on coralline aragonite δ13C are more complex than 

those that control δ18O. Corals acquire skeletal carbon from two main pools: (1) 

from dissolved inorganic carbon (DIC) in seawater via respiration of carbon 

acquired by photosynthesis by their symbiotic zooxanthellae and (2) via 

respiration of heterotrophically acquired carbon from capture of zooplankton. 

These two sources of carbon have very different isotopic signatures, DIC δ13C ≈ 

0‰ and zooplankton δ13C ≈ −14 to −30‰ (Rau et al., 1989). Changes in the 

amount of importance of the two, caused by environmental factors, will alter the 
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coral’s metabolic fractionation and be recorded by changes in the coral’s 

skeletal δ13C. For example, decreasing light intensity or increasing the 

availability of zooplankton has been shown to significantly decrease skeletal 

δ13C levels due to an increased reliance on heterotrophy (Grottoli and 

Wellington, 1999).  

As the δ13C of the coralline aragonite mainly range between −5 and −7‰, this 

shows that these corals gain their carbon from both their diet of zooplankton 

and from DIC in the seawater as this range in somewhere between the two end 

member values. It could be inferred that the main source of carbon for skeletal 

precipitation comes from DIC as the aragonite values are closer to this than to 

organic carbon (from zooplankton). 

Although it is highly variable, the annual-scale cyclicity to the δ13C data 

suggests that the relative importance of these two sources of carbon vary 

throughout the year. It appears that, generally, the coral aragonite’s δ13C is 

higher in the summer, consistent with the study by Ferrier-Pages et al. (2011). 

In this study, the authors measured the δ13C and δ15N of the organic tissue and 

symbiotic zooxanthellae of a C. caespitosa colony as well as in plankton, the 

coral’s potential heterotrophic food source. In the summer the δ13C of the coral’s 

organic tissue was close to that of the zooxanthellae whereas in the winter it 

was close to that of the plankton. They concluded that in the summer the corals 

are mainly autotrophic in their carbon acquisition, relying on their photosynthetic 

zooxanthellae, whereas in winter most of the coral’s carbon comes from 

heterotrophic feeding with predation on planktonic organisms. This was further 

backed by winter enrichment of the δ15N suggesting greater feeding at this time 

of the year. 
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Changes in the δ13C of ambient seawater DIC have been found to overprint the 

heterotrophic/autotrophic driven signal (Swart et al., 1996). The DIC of riverine 

waters is usually lower in δ13C than seawater (Swart, et al., 1996) and so 

changes in the amount of riverine input to a coastal area will cause depletion of 

δ13C in the seawater DIC and be recorded in the coralline aragonite (e.g. Moyer 

and Grottoli, 2011). Therefore the annual cyclicity, with summer enrichment and 

winter depletion in δ13C, could be caused by increased winter time riverine 

input, driven by winter recharge. This region of Croatia has a typical maritime 

climate with the majority of the annual rainfall falling in the winter (Vreča et al., 

2006) . 

However, these speculations are not supported by statistically significant 

relationships with δ18O (the average R2 value for a correlation between δ18O 

and δ13C in the samples is 0.03 and P value for the relationship is 0.14). If both 

δ18O and δ13C are predominately controlled by the same seasonal changes 

then it would be expected that they would have a significant relationship with 

each other. Due to the negative correlation between temperature and δ18O 

values and the summer enrichment and winter depletion in δ13C in the coralline 

aragonite, a negative correlation would be expected between the two isotopes. 

As this is not seen it demonstrates that the δ18O and δ13C compositions of the 

coralline aragonite are not coupled with each other, a change in one does not 

effect on the other, with both controlled by separate, external factors. 

 As the processes which may affect both the δ13C of seawater DIC and the 

metabolic fractionation of coral skeletal δ13C are both primarily controlled by 

seasonal changes in climate (Moyer and Grottoli, 2011); it is beyond the scope 

of this study to attempt to unravel the relative influences of these two factors on 
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the carbon isotopic signature of the corals, this limits the potential use of δ13C 

as a palaeoclimate/palaeo-DIC tracer for the fossil samples as there is no way 

of knowing which is the main control on δ13C. Therefore, the δ13C data will not 

be discussed in any further detail. 

4.2.3.  Application of published δ18O carbonate-water 

palaeothermometers to data 

It is widely accepted that one of the main controls on the δ18O composition of a 

precipitating carbonate is the temperature of precipitation and the δ18O 

composition of the water from which it is precipitating from (McCrea, 1950; 

Epstein et al., 1953). As a clear annual trend is visible in the δ18O profiles of all 

the Croatian samples it seems reasonable to assume that this is an annual 

temperature-driven signal. Therefore these corals are likely recording a signal of 

water temperature as they grow. 

The average annual sea surface temperature at Mljet over the period 2003-

2010 (which covers the majority of the growth years analysed) was 20.3°C 

(Kružić et al., 2012), the average monthly mean temperature reached during the 

summer months is 27.5°C  (Kružić, 2002) and the average lowest monthly 

mean temperature reached during winter is 11°C (Kružić, 2002). The range is 

reduced somewhat by the lowest points of the coral bank (around 15m) with 

average monthly temperatures ranging from ≈ 26 to 14°C at this depth (Figure 

4.2.1).  

By inputting both the δ18O carbonate data from the profiles and the measured 

δ18O water values from the relevant sampling station into the Goodwin et al. 

(2001) modified Grossman and Ku (1986) palaeotemperature equation for 
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aragonite precipitated in equilibrium (Equation 2.3.8 repeated below) it should, 

in theory, be possible to calculate the water temperatures the coral grew at, if a 

constant δ18O water value over the growth period is assumed, with the results 

being within the range of values recorded at the site. 

𝑇 = 20.60 − 4.34(𝛿 𝑂𝐴 − (𝛿 𝑂𝑊
1818 − 0.20)) 

Equation 2.3.8 (repeated) 

The Goodwin et al. (2001) version of the Grossman and Ku (1986) equation 

was selected for use over other published aragonite-water fractionation 

equations as it has been used on other biogenic aragonites with some success 

(Goodwin et al., 2001; Goodwin et al., 2003; Schöne et al., 2005). The 

correction applied by Goodwin et al. accounts for the original work of Grossman 

and Ku reporting water values as SMOW minus 0.2‰. 

However, Figure 4.2.5 shows that palaeotemperatures calculated using this 

equation are much too high to be realistic. The results for the calculated 

temperatures are summarised in Table 4.2.1. 

These temperatures are unrealistically high to have been recorded at this 

locality. Also, C. caespitosa polyps can only survive for limited periods when the 

sea surface temperature reaches 28°C (Kružić, 2007; Rodolfo-Metalpa et al., 

2006, 2008). If the water temperature at the growth depth remains above this 

limit for up to a month extensive bleaching occurs (Kružić, Sršen, & Benković, 

2012; Rodolfo-Metalpa, Bianchi, Peirano, & Morri, 2005). Coral bleaching is a 

phenomenon where the coral loses its colour due to the expulsion of the 

symbiotic zooxanthellae algae, leading to decreased growth and increased 
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mortality (Douglas, 2003). Therefore, it is unrealistic for this species to record 

an average annual water temperature of around 35.5°C. 

Table 4.2.1 Temperatures calculated from modern corals using the Grossman and Ku 
(1986) palaeotemperature equation 

 Average 
temperature (°C) 

Average 
Maximum (°C) 

Average 
Minimum (°C) 

Average 
Amplitude (°C) 

 
PK 
21/09/12-01 

 
34.8 

 
37.6 

 
31.4 

 
6.2 

 
PK 
21/09/12-02 

 
36.1 

 
38.8 

 
33.2 

 
5.4 

 
PK 
21/09/12-05 

 
35.5 

 
38.0 

 
32.7 

 
5.4 

 
Average 

 
35.5 

 
38.1 

 
32.4 

 
5.7 

 
2σ 

 
1.4 

 
1.2 

 
1.8 

 
1.0 
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Figure 4.2.5 Calculated temperatures from modern Croatian corals using the Goodwin et 
al. (2001) modified Grossman and Ku (1986) palaeotemperature equation 
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4.2.4. Development of a calibrated C. caespitosa δ18O 

carbonate-water palaeothermometer 

A new C. caespitosa δ18O carbonate-water palaeothermometer was calibrated 

using the Mljet coral and water oxygen isotopic data. The average 2003-2010 

measured SST of 20.3°C (Kružić et al., 2012) was used as a basis for this as 

SSTs at this locality are a reasonable approximation of the temperature over the 

depths of the bank (Kružić & Pozar-Domac, 2002; Kružić et al., 2012). 

To recalibrate the Goodwin et al. (2001) modified Grossman and Ku (1986) 

equation to take into account the offset of the coralline δ18OA from equilibrium 

due to the coral’s vital effects; the following sequence of equations was carried 

out for each sample: 

𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 20.60 − 4.34[( 𝛿𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐴 − (𝛿 𝑂𝑊
1818 − 0.20)] 

Equation 4.2.2 Average Grossman and Ku (1986) calculated temperatures 

Equation 4.2.2 gave temperatures much too high to be realistic, therefore 

Equation 4.2.3 is as follows: 

𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≪ 20.60 − 4.34[( 𝛿𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐴 − (𝛿 𝑂𝑊
1818 − 0.20)] 

Equation 4.2.3 Average measured temperature is significantly lower than average 

calculated temperature 

It is known that corals precipitate their aragonite out of equilibrium, with vital 

effects causing a depletion in aragonite δ18O. Therefore the aragonite δ18O 

must be the term that needs correcting to calibrate the equation for the offset 

from equilibrium; Equation 4.2.4. 
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𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

= 20.60

− 4.34[( 𝛿𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐴 + 𝛿18𝑂𝐴depletion) − (𝛿 𝑂𝑊
1818 − 0.20)] 

Equation 4.2.4 Calibrating equation for taking into account the depletion of aragonite 

δ
18

O from ‘vital effects’  

By rearranging Equation 4.2.4 it is possible to calculate aragonite δ18O if the 

coral precipitated in equilibrium; Equation 4.2.5  

𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 20.60

−4.34
+ (𝛿 𝑂𝑊

18 − 0.20) = 𝛿18𝑂𝐴𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑞𝑢𝑖𝑙𝑙𝑖𝑏𝑟𝑖𝑢𝑚  

Equation 4.2.5 Rearranged (modified) Grossman and Ku (1986) equation to allow 

calculation of expected equilibrium δ
18

O from measured temperature 

The difference between the calculated average equilibrium aragonite δ18O and 

the average measured aragonite δ18O will indicate how much the coral’s ‘vital 

effects’ cause a depletion of the δ18O value in the coralline aragonite; Equation 

4.2.6 

𝛿18𝑂𝐴 − 𝛿18𝑂𝐴𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑞𝑢𝑖𝑙𝑙𝑖𝑏𝑟𝑖𝑢𝑚 = 𝛿18𝑂𝐴 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛  

Equation 4.2.6 Calculating depletion of δ
18

O due to ‘vital effects’ 

Further modifying the Goodwin et al. (2001) modified Grossman and Ku (1986) 

equation to take into account the depletion of the coralline aragonite from the 

equilibrium value, results in an equation that describes the calibrated δ18O 

carbonate-water palaeothermometer; Equation 4.2.7 

𝑇 = 20.60 − 4.34[( 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐴 + 𝛿 𝑂𝐴𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛18 ) − (𝛿 𝑂𝑊
1818 − 0.20)] 
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Equation 4.2.7 Calibrated δ
18

O carbonate-water palaeothermometer 

Table 4.2.2 reports the values calculated for each coral using this sequence of 

equations: 

Table 4.2.2 Average oxygen isotopic values from Croatian corals used in 
palaeothermometer calibration 

Coral 
sample 

Average 
measured 
δ

18
OA 

δ
18

OW Average 
equilibrium 
δ

18
OA 

δ
18

OA 

depletion 
Average 
measured 
temperature 

Calibrated 
average 
calculated 
temperature 

 
PK 
21/09/12 -
01 
 

 
−2.5 

 
1.0 

 
0.9 

 
3.3 

 
20.3 

 
20.4 

PK 
21/09/12-
02 
 

−2.5 1.2 1.1 3.6 20.3 20.6 

PK 
21/09/12-
02 
 

−2.4 1.2 1.1 3.5 20.3 20.6 

Average −2.5 
(2σ=0.1) 

1.1 
(2σ=0.3) 
 

1.0 
(2σ=0.3) 

3.5  
(2σ=0.3) 

20.3  
(2σ=0) 

20.5  
(2σ=0.2) 

 

Using the average isotopic data from each sample a calibrated 

palaeothermometer for each sample was derived; using the average depletion 

values from those individual palaeothermometers, a general palaeotemperature 

equation can be constructed from the Croatian C. caespitosa; Equation 4.2.8 

𝑇 = 20.60 − 4.34[(δ 𝑂𝐴 + 3.5(±0.15)) − (𝛿 𝑂𝑊
1818 − 0.20)] 

Equation 4.2.8 Croatian C. caespitosa calibrated δ
18

O carbonate-water 

palaeothermometer 

4.2.1. The need for a calibrated palaeothermometer  

It is unsurprising that the Goodwin et al. (2001) modified Grossman and Ku 

(1986) equation does not produce the actual range of temperatures the corals 
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grew in. This equation was calibrated for aragonite growing in isotopic 

equilibrium and it is well established that corals do not precipitate their 

aragonitic skeleton in isotopic equilibrium (Weber and Woodhead, 1972; 

Rollion-Bard et al., 2003b), instead demonstrating an isotopic depletion due to 

biologically controlled vital effects (see Section 2.3.3).  

However, if the amount of disequilibrium caused by the vital effect is constant 

the coral’s isotopic composition may still be a useful indicator of 

palaeotemperature (Weil et al., 1981). This vital effect appears to be species 

specific so that coral palaeotemperature equations must also be species 

specific. There are many reported δ18O carbonate-water palaeotemperature 

equations for tropical species reported in the literature, but only one for C. 

caespitosa: by Silenzi et al. (2005) (Equation 4.2.1). 

𝑆𝑆𝑇(°𝐶) = ( 𝛿 𝑂𝐴 − 0.91(±1.42)) ÷ −0.15(±0.09)18  

Equation 4.2.1 Silenzi et al. (2005) C. caespitosa δ
18

Oc-SST relationship 

This equation does not take into account changes in the oxygen isotopic value 

of the water and has error limits that are wider than the observed temperature 

range at the study locality. In the Silenzi et al. (2005) study this was found to be 

a non-statistically significant relationship as there were significant variations in 

the oxygen isotopic value of the seawater during the time period analysed due 

to varying levels of rainfall. 

Because of this, a new species-specific palaeothermometer is required to allow 

the analysis of C. caespitosa’s δ18O record for potential as a palaeoclimate 

archive. 
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4.2.2. Testing the new C. caespitosa δ18O carbonate-water 

palaeothermometer 

Using the high resolution δ18O data from the Croatian corals and Equation 4.2.8 

it is possible to re-construct semi-quantitative temperature ranges: Table 4.2.3 

and Figure 4.2.6. 

Table 4.2.3 Summary of modern Croatian corals calculated temperatures using the newly 
calibrated palaeotemperature equation 

 Average 
temperature (°C) 

Average 
Maximum (°C) 

Average 
Minimum (°C) 

Average 
Amplitude (°C) 

 
PK 
21/09/12-01 
 

 
19.6 

 
23.1 

 
15.1 

 
8.0 

PK 
21/09/12-02 
 

20.8 23.9 17.2 6.6 

PK 
21/09/12-05 
 

20.3 24.1 17.0 7.1 

Average 20.2 (2σ=1.2) 23.7 (2σ=1.1) 16.4 (2σ=2.3) 7.2 (2σ=1.4) 
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Figure 4.2.6 Modern Croatian corals calculated temperatures using the newly calibrated 
palaeotemperature equation, mean monthly in situ measured SST data included for 
reference (obtained from the Croatian Meteorological and Hydrological Institute). 
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The calculated temperatures reproduce the mean temperatures well, although 

the calculated ranges are lower than the actual annual water temperature 

ranges measured at the site, both at the sea surface (which can be seen very 

clearly in Figure 4.2.6) and at 15 m depth. There are two possible explanations 

for this: 

1. The calculated C. caespitosa δ18O aragonite-water palaeotemperature 

relationship is not correct, and as well as being isotopically depleted 

relative to equilibrium aragonite, coralline aragonite δ18O is less sensitive 

to changes in temperature of precipitation than aragonite precipitated in 

isotopic equilibrium. 

2. The calculated C. caespitosa δ18O aragonite-water palaeotemperature 

relationship is correct but the corals either do not calcify, or calcify very 

slowly, when water temperatures are >24°C or <15°C, such that only a 

restricted range of water temperatures is recorded. 

Explanation 2 is most likely because at temperatures between 14-16°C, C. 

caespitosa is unable to precipitate aragonite, such that the lowest winter 

temperatures are not recorded in skeletal aragonite (Montagna et al., 2007). 

Tank experiments and field observations also show that after 2 weeks of 

constant water temperatures of 28°C, high levels of tissue necrosis occur, and 

even after 5 weeks at 24°C the corals show signs of stress (Rodolfo-Metalpa et 

al., 2005; Kružić et al., 2014). We thus infer that growth temperatures outside 

the 15-24°C range are unlikely to be recorded due to heavily decreased, or 

cessation of, corallite growth, in agreement with Montagna et al. (2007). As well 

as this it is likely that the extreme values are somewhat moderated by a 
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‘smoothing’ effect due to some calcification occurring deeper within the tissue 

layer, rather than all at the upper surface (Gagan et al., 2012). It is unlikely that 

extreme values are significantly moderated by increased runoff from winter 

rainfall (isotopically negative) decreasing seawater δ18O during winter/spring, 

and/or increased summer aridity/evaporation increasing salinity and seawater 

δ18O. If there was a major seasonal change in the isotope composition of the 

water, caused by riverine/groundwater input, then changes in the coralline δ18O 

and δ13C would be coupled, as increased riverine input would decrease both 

δ18O and δ13C values, and there would also be a greater annual range in 

salinity.  

4.2.3.  Increasing the range of values produced by the 

palaeothermometer to match expected values 

Reconsideration of the equation calibrated using the average annual 

temperature (Equation 4.2.8) shows that it is possible to adjust the temperature 

sensitivity of the palaeothermometer by adjusting the second of the constant 

values (4.34). This allows the range of temperature values produced by the data 

set to be increased to the range of temperature values that are recorded at the 

locality. By replacing the original constant with an unknown ‘b’, the ‘stretch 

factor’ and rearranging the equation to solve for this with the relevant maximum, 

minimum, average monthly δ18O aragonite values, temperatures and an 

average δ18O water value Equation 4.2.9 can be solved: 

  



Sam Royle  Stable isotopic analysis 

89 
 

𝑏 = − [
𝑇(min  𝑎𝑣𝑒𝑟𝑎𝑔𝑒) − 20.60

(𝛿18𝑂𝐴(max 𝑎𝑣𝑒𝑟𝑎𝑔𝑒) + 3.5) − (𝛿18𝑂𝑊(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) − 0.2)
] 

Equation 4.2.9 palaeotemperature equation re-arranged for calculation of ‘b’ the stretch 

factor 

This is also solved for ‘b’ when T=max average, δ18O = min average and when 

T=average, δ18O = min average.  

An average value for the stretch factor ‘b’ of 6.457(±0.525) is calculated using 

the values in Table 4.2.4. 

Table 4.2.4 Average values from modern Croatian samples used for calculation of ‘b’ 
value 

δ
18

OA average  δ
18

OW 
average 

‘b’ value 

 
δ

18
O average 

 
−2.5 

 
T(°C) average 

 
20.3 

 
1.2 

 
0.3 
 

δ
18

O maximum −1.6 T(°C) 
maximum 

26.0 1.2 6.8 
 

δ
18

O minimum −3.3 T (°C) 
minimum 

15.0* 1.2 6.2 
 

 Average ‘b’ 6.5 
(2σ=1.05) 

*15°C is used as a minimum as it is unlikely that significant precipitation occurs below this temperature 

(Montagna et al. 2007) 

This produces the range calibrated palaeotemperature Equation 4.2.10: 

𝑇 = 20.60 − 6.5[( 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐴 + 3.5) − (𝛿 𝑂𝑊
1818 − 0.20)] 

Equation 4.2.10 Calibrated δ
18

O carbonate-water palaeothermometer stretched for 

observed temperature range 

Figure 4.2.7 shows this new equation applied to the modern corals with both the 

Grossman & Ku (1986) and average-calibrated equations for comparison. This 

new range-calibrated equation does stretch the produced range of values, 

however, due to the increased number of assumptions and increased use of 
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average values it is much less reliable than the average-calibrated equation. 

This is shown by the (relatively) large standard deviation of ‘b’ and the way it 

regularly calculates winter temperatures down to 10-12°C. 

This suggests that the first explanation, that only a restricted range of 

temperatures is recorded, is a more reliable conclusion. On this basis the 

average-calibrated palaeothermometer appears to be a more reliable technique 

for gaining realistic temperature data from modern and fossil C. caespitosa 

aragonite. This conclusion means that only Equation 4.2.8 will be used in the 

analysis of the fossil samples.  
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Figure 4.2.7 Modern Croatian corals calculated temperatures using the newly calibrated 
range based palaeotemperature equation (other palaeotemperature equations used 
shown for comparison) 
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4.3. Fossil Greek samples – Isotopic results 

Table 4.3.1 describes the C. caespitosa samples collected from the Greek 

localities (see Figure 3.1.4) that were analysed for stable isotope composition. 

The δ18O stable isotopic data profiles for these corallites are shown in Figures 

4.3.1 to 4.3.3 with data summarised in Table 4.3.2. 

Table 4.3.1 Greek C. caespitosa samples analysed for stable isotope composition, see 
Figure 3.1.4 for locality map. 

Sample Age Location Length 
(mm) 

Number of 
Growth 
bands 

Notes Fig. 

SHR 
03/11/11-
02 

Holocene Mavra Litharia 
(38°08’34.5’’N; 
22°22’49.0’’E) 

40 20 (18 
sampled) 

Basal 2 bands 
avoided due to 
calcareous algal 
overgrowth  

4.3.1 

JEA 
010626-
04 

MIS 5e Goat Point 
(38°02’45.2’’N; 
22°52’49.7’’E) 

36 14 (11.5 
sampled) 

Collected by 
Julian Andrews 

4.3.2 
(A) 

SHR 
04/11/11-
10 

MIS 5e West Flagnoro 
Bay 
(38°01’11.1’’N; 
22°53’33.5’’E) 

42 19 (12 
sampled) 

N/A 4.3.2 
(B) 

SHR 
02/11/11-
08 (I) 

MIS 5e 

 

Makrugoaz 
Ridge 
(38°01’21.8’’N; 
22°52’49.8’’E) 

31 13 (12 
sampled) 

Both collected 
from the same 
deposit and 
presumed to be 
approximately 
the same age. 

4.3.2 
(C) 

SHR 
02/11/11-
08 (II) 

45 17 (15 
sampled) 

4.3.2 
(D) 

SHR 
02/11/11-
02 (I) 

MIS 7a 

 

West of Lake 
Vouliagmeni 
(38°01’55.2’’N; 
22°52’14.1’’E) 

46 17 (16 
sampled) 

Both collected 
from the same 
deposit and 
presumed to be 
approximately 
the same age. 

4.3.3 
(A) 

SHR 
02/11/11-
02 (II) 

38 15 (13 
sampled) 

4.3.3 
(B) 
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Figure 4.3.1 Holocene C. caespitosa sample SHR 03/11/11-02 oxygen isotopic profile, 
smoothed (using 4-point running median) and adjusted to growth years, unsmoothed 
data shown as grey diamonds. 
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Figure 4.3.2 MIS 5e C. caespitosa oxygen isotopic profiles smoothed (using 4-point 
running median) and adjusted to growth years, unsmoothed data shown as grey 
diamonds. A: JEA 010626-04; B: SHR 04/11/11-10; C: SHR 02/11/11-08 (I); D: SHR 
02/11/11-08 (II), note that this sample has a different y-axis scale and has been smoothed 
using an 8-point running median due to being sampled at twice the resolution of the 
others (see Section 3.3.5).  



Sam Royle  Stable isotopic analysis 

95 
 

 

 

 

Figure 4.3.3 MIS 7a C. caespitosa oxygen isotopic profiles, smoothed (using 4-point 
running median) and adjusted to growth years, unsmoothed data shown as grey 
diamonds. A: SHR 02/11/11-02 (I); (B) SHR 02/11/11-02 (II). 
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Table 4.3.2 Summary of isotopic data from all Greek fossil C. caespitosa samples, values 
are expressed in ‰ VPDB. 

Sample Average 

δ
18

O (‰) 

No. of 

δ
18

O 

annual 

cycles 

Average δ
18

O 

peak (‰) 

Average δ
18

O 

trough (‰) 

Average δ
18

O 

amplitude 

(‰) 

Holocene 

SHR 03/11/11-02 −2.0 9.5 −1.4  

(2σ = 0.6) 

−2.7  

(2σ = 0.4) 

1.3 

(2σ = 0.5) 

MIS 5e 

JEA 010626-04 −2.2 5.0 −1.4  

(2σ = 0.4) 

−3.1  

(2σ = 0.4) 

1.7 

(2σ = 0.6) 

 

SHR 04/11/11-10 −2.7 5.5 −2.0  

(2σ = 0.3) 

−3.3  

(2σ = 0.7) 

1.3 

(2σ = 0.4) 

 

SHR 02/11/11-

08(I) 

−2.5 6.0 −1.7  

(2σ = 0.4) 

−3.2  

(2σ = 0.4) 

1.4 

(2σ = 0.8) 

 

SHR 02/11/11-

08(II) 

−2.4 7.5 −1.5  

(2σ = 0.5) 

−3.0  

(2σ = 0.5) 

1.5 

(2σ = 0.9) 

 

MIS 5e Average −2.5 

(2σ = 0.4) 

N/A −1.65 

(2σ = 0.5) 

−3.2 

(2σ = 0.3) 

1.5 

(2σ = 0.3) 

MIS 7a 

SHR 02/11/11-

02(I) 

−3.4 7.5 −2.7 

(2σ = 0.4) 

−4.1  

(2σ = 0.5) 

1.4 

(2σ = 0.5) 

 

SHR 02/11/11-

02(II) 

−3.3 6.5 −2.7  

(2σ = 0.4) 

−4.0  

(2σ = 0.3) 

1.4 

(2σ = 0.5) 

 

MIS 7a Average −3.4  

(2σ = 0.1) 

N/A −2.7  

(2σ = 0) 

−4.1  

(2σ = 0.1) 

1.4  

(2σ = 0) 
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4.4. Fossil Greek samples – Discussion 

4.4.1.  Application of developed C. caespitosa δ18O 

carbonate-water palaeothermometer to data 

As there is a clear cyclicity to the δ18O data for each profile and the average 

values for all samples are close to those of the modern samples (−2.5 

+0.5/−0.9‰) it can be inferred that an unaltered, or nearly unaltered, isotope 

signal has been preserved in each sample.  

It should thus be possible to calculate water palaeotemperature data for the 

period each corallite grew by applying the newly calibrated palaeotemperature 

equation (Equation 4.2.8) to the measured aragonite δ18O. To do this, an 

assumption about the seawater isotopic composition is required. 

4.4.1.1. Water δ18O value 

A water δ18O value of +1.15‰ VSMOW was used as a first estimation for 

palaeotemperature calculation. This was based on isotope analysis of a sea 

water sample (JT 11/02/12-01) collected from Agrillou Bay (38° 00’ 09.4”N; 022° 

55’ 51.0”E), which gave a value of +1.2‰ VSMOW, a measurement of +1.15‰ 

VSMOW from nearby Cape Heraion by Portman et al. (2005) and other isotopic 

data for the Gulf of Corinth from the literature (Stahl and Rinow, 1973; Gat et 

al., 1996; Pierre, 1999). This value was assumed to be an appropriate first 

approximation for all interglacial periods, although this is clearly a potential 

source of substantial error. 
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4.4.1.2. Modern temperatures 

Modern average monthly temperatures for the Gulf of Corinth on the coast of 

the Perachora Peninsula at 10-28 m depth, which covers most of the range of 

depths C. caespitosa inhabits in the present (Rodolfo-Metalpa et al., 2008), are 

shown in Figure 4.4.1. This data was collected and provided by Yiannis Ligkos 

of the Crostaceo Dive Centre and Watersports Club, Loutraki. 

Water temperature ranges from 16°C in March to 24°C in September with a 

19.5°C annual average. 

 

Figure 4.4.1 Modern Gulf of Corinth average monthly water temperature data at 10-28m 

 

4.4.1.3.  Fossil sample results and interglacial palaeoclimate  

Rather than discuss the samples and the palaeoclimatic interpretation of the 

data in chronological order, the discussion is started with the MIS 5e records 

because this interglacial highstand has an extensive literature on inferred 

climatic conditions. This context is used (1) to help constrain the necessary 
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assumptions about MIS 5e seawater δ18O and (2) to give context to the data 

collected from other interglacials where supporting evidence is less complete.  

4.4.1.4. Marine Isotope Stage 5e 

Marine isotope stage 5e lasted for approximately 13,000 years from 115-128ka 

(Thompson and Goldstein, 2005) and the range of dates found for the deposits 

at the Makrugoaz Ridge sampling site, 108.5-133.4ka (Leeder et al., 2003), are 

consistent with this. However, the short, 6-8 years, time period covered by each 

of the four samples means it is very unlikely that the growth periods recorded by 

individual MIS 5e samples overlap each other. Therefore, together, the samples 

should provide average values for a longer, approximately 23 year, period. The 

calculated water temperatures for each sample, using Equation 4.2.8 and 

assuming δ18Owater = +1.15‰, are shown in Figure 4.4.2 and summarised in 

Table 4.4.1. 

 

Figure 4.4.2 Overlaid MIS 5e C. caespitosa sample calculated water temperatures, using 
Equation 4.2.8 and assuming δ

18
Owater = 1.15‰ 
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Table 4.4.1 Summary of calculated temperature data from Greek MIS 5e C. caespitosa 
samples using Equation 4.2.8 and assuming δ

18
Owater = +1.15‰ VSMOW, values are 

expressed in °C. 

MIS 5e 
Sample 

Average 
temperature 

Average 
winter 
minimum  

Average 
summer 
maximum  

Average 
annual range  

 
JEA 010626-
04 

 
19.3 

 
15.6°C (2σ 
=1.9°C) 

 
22.9°C (2σ 
=1.8°C) 

 
7.3°C (2σ 
=2.7°C) 
 

SHR 04/11/11-
10 

21.2 18.1 
(2σ = 1.4) 

23.8 
(2σ = 2.9) 

5.6 
(2σ = 1.6) 
 

SHR 02/11/11-
08(I) 

20.2 17.0 
(2σ = 2.6) 

23.4 
(2σ = 1.6) 

6.1 
(2σ = 3.6) 
 

SHR 02/11/11-
08(II) 

19.7 16.2 
(2σ = 2.2) 

22.5 
(2σ = 2.0) 

6.3 
(2σ = 3.8) 
 

 

It can be seen that the temperature data from all samples are in good 

agreement. Averaging the data from the 4 samples: Average temperature is 

20.1°C (2σ = 1.6°C), average minimum 16.7°C (2σ =2.2°C), average maximum 

23.2°C (2σ =1.1°C), average annual range 6.3°C (2σ =1.4°C). 

These temperatures suggest that during MIS 5e water temperatures in the Gulf 

of Corinth were slightly warmer than they are today, albeit with slightly cooler 

summers; the average temperature is higher (close to that of the modern 

temperature at the reef in Mljet) while winters were much milder. This 

decreased seasonality, with warmer winters and cooler summers, potentially 

allowed the corals to grow all year round. This created more optimum growing 

conditions for C. caespitosa than are present in the Gulf of Corinth at the 

present day. This is supported by the extensive, hundreds of metres long and 

metres thick, C. caespitosa dominated biostromes that are a feature of MIS 5e 

terraces but are absent in the present. 

However, other studies have suggested that the climate of the Mediterranean 

during MIS 5e was significantly warmer than this. The Senegalese fauna 
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characteristic of MIS 5e deposits throughout the Mediterranean (including 

around the Gulf of Corinth) are an indicator of warmer than present marine 

surface waters (Zaso et al., 1993; Bardaji et al., 2009). This fauna is 

characterised by the presence of the gastropod Strombus bubonius which is 

restricted to equatorial Africa under current climatic conditions. From its present 

distribution this fauna is known to require a mean annual sea surface 

temperature (SST) of ≈23-24°C which rarely drops below 19°C in the winter 

(Bardaji et al., 2009). Other molluscan assemblages independently back this up, 

suggesting that around Greece winter temperatures were ≈5(±1)°C warmer then 

present and seasonality was much lower, exhibiting an annual temperature 

range of ≈6-7°C (Garilli, 2011).  

There is a large body of evidence for the first 3-4,000 years (Cheddadi et al., 

2005) of the last interglacial being significantly wetter than the Holocene across 

the Mediterranean region. Molluscan faunal assemblages indicative of reduced 

salinity, isotopic data from foraminifera and sediment cores suggest that the 

surface waters of the Mediterranean were significantly diluted with δ18O values 

reduced by up to 1.6‰ with respect to modern. This is believed to have been 

caused by increased precipitation and surface run off (Grazzini et al., 1986; 

Kallel et al., 2000; Pérez-Folgado et al., 2004; Garilli, 2011). Analysis of water 

samples collected in February 2013 (by J. Turner, and run alongside the Mljet 

water samples) showed that modern rainfall over Loutraki has a δ18O of −2.5‰ 

and after heavy rain the surface sea water near sources of discharge can be as 

low as −2.7‰, showing that rainfall can have a significant effect on the 

composition of the surface waters (at least in the short term). If our C. 

caespitosa had lived in this early part of MIS 5e we can infer that surface water 
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δ18O would have been lower than modern, which would have the overall effect 

of lowering our calculated temperatures. Evidence for increased runoff and 

pluvial conditions at the MIS 5e sample sites pre-date the coral bearing 

sediment (Portman et al., 2005; Andrews et al., 2007) and the coralline U/Th 

ages of 108.5-133.4 ka at the Makrugoaz Ridge MIS 5e sample site (Leeder et 

al., 2003), span the whole of MIS 5e (128 -115 ka; Thompson & Goldstein, 

2005).  It is thus likely the corals grew later in the interglacial when climatic 

conditions were more stable, warmer than today, and drier (Cheddadi et al., 

2005). 

The interpretation that these corals grew during a warmer and drier period 

(relative to today) is supported by the presence of marine phreatic aragonite 

cements found within the MIS 5e coral-bearing deposits of the Perachora 

Peninsula (J. Andrews pers. comm.). The best preserved of these aragonites 

gave U/Th dates between 113.8±1.6 to 118.0±1.6 ka (Andrews et al., 2007) 

supporting the younger coral dates. Widespread marine abiotic aragonite 

cementation does not occur in the Gulf today and with evidence for it restricted 

to MIS 5e in the study area it suggests conditions for its formation were 

specialised (J. Andrews pers. comm.). Aragonite marine cementation is 

promoted by warm SST’s and higher supersaturation with respect to CaCO3 

(Burton and Walter, 1987), a condition favoured by slight increase in salinity, 

which requires reduced surface water runoff and thus aridity. Aridity would be 

consistent with a more positive seawater δ18O compared to modern: although 

we cannot constrain the magnitude of enrichment, it would increase the 

calculated temperatures. The sea level in the Gulf of Corinth was approximately 

6m higher than modern during the highstand of MIS 5e (Leeder et al., 2005). 
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This would have enhanced the connection between the GOC and more open 

Mediterranean marine waters, this should have decreased the δ18O of the 

GOC’s seawater. However, the GOC would still be a significantly restricted 

basin due to the narrowness and shallowness of the Rion Straights, currently 

2km wide and 65m deep (Poulos et al., 1996), which link the GOC to the 

Patraikos Gulf and the more open Ionion Sea of the Mediterranean. However, 

modern δ18O of the open Mediterranean surface waters are already enriched 

due to evaporation and range from +0.76 to +1.66 ‰ (Pierre, 1999), so that the 

GOC is a restricted basin within a restricted basin. Increased aridity across the 

Mediterranean would therefore be likely have more effect on increasing the 

δ18O of the GOC’s seawater than an increase in sea level would on decreasing 

it. The modern seawater δ18O value of +1.15‰ VSMOW can thus be viewed as a 

minimum value. Moreover, C. caespitosa cannot survive in an environment 

where temperature regularly exceeds 28°C for extended periods (providing an 

absolute maximum for recorded summer temperatures), and taking into account 

the Senegalese fauna’s requirements of a mean annual SST of ≈23-24°C; it is 

possible to constrain a likely range of values for water δ18O and therefore also 

temperature (Table 4.4.2). 

Table 4.4.2 Possible range of MIS 5e Gulf of Corinth seawater δ
18

O values and calculated 
temperatures 

  Estimated δ
18

O water (‰VSMOW) 

Calculated 
temperatures (°C) 

Average δ
18

O 
aragonite (‰VPDB) 
 

+1.15 
(modern) 

+1.6 +1.8 +2.0 +2.2 

Average mean 
 

−2.45 20.2 22.1 22.9 23.9 24.7 

Average winter 
minima 
 

−1.65 16.7 18.6 19.5 20.4 21.3 

Average summer 
maxima 
 

−3.15 23.2 25.2 26.0 26.9 27.8 
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Figure 4.4.3 Range of temperatures calculated from C. caespitosa sample SHR 02/11/11-
08 (I) using Equation 4.2.8 and the full range of possible seawater δ

18
O values for MIS 5e 

Gulf of Corinth based on all available information. Likely temperature range for MIS 5e is 
bound by the 1.6‰ and 1.8‰ temperature profiles, the temperatures calculated using the 
modern 1.15‰  seawater value are included for ease of comparison. 

Figure 4.4.3 shows the temperatures calculated, using the δ18O aragonite data 

from sample SHR 02/11/10-08 (I), by applying this range of potential seawater 

δ18O values. This sample was selected for this as it is has the closest average 

values to the mean of the 4 analysed samples. 

This shows that, taking all the available evidence into account, the Gulf of 

Corinth seawater in MIS 5e, during the period of corallite growth studied, 

probably had a δ18O value between 1.6-2.2‰VSMOW, an average annual water 

temperature of 22.1-24.7°C, average winter minima of 18.6-21.3°C and an 

average summer maxima of 26.0-27.8°C. This still suggests a significantly 

reduced seasonality during MIS 5e and this, combined with the increased 

temperature, could explain the large banks of C. caespitosa present at this time, 

as the coral would be capable of growing all year round. 
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4.4.1.5. Marine Isotope Stage 1 

Sample SHR 03/11/11-02 came from red algal and coral reef deposits, U-Th 

dated to between 6-10 ka. The studied C. caespitosa was collected from the 

same height (±1m) as corals dated to 7.5-7.9 ka (Stiros and Pirazzoli, 1998). 

 

 

Figure 4.4.4 Holocene C. caespitosa sample SHR 03/11/11-02 calculated water 
temperatures using Equation 4.2.8, and assuming δ

18
Owater = +1.15‰. Average 

temperature for MIS 1 C. caespitosa sample SHR 03/11/11-02 is 18.3°C, average minimum 
15.7°C (2σ = 2.4°C), average maximum 21.4°C (2σ = 1.7°C), average annual range 5.5°C 
(2σ =2.2°C). 

 

The calculated temperatures in Figure 4.4.4, taken at face value, suggest that 

Gulf of Corinth seawater in the early-mid Holocene was somewhat cooler than 

today. The calculated average summer maxima temperatures are around 2.5°C 

cooler than the maximum average summer temperature that C. caespitosa can 

tolerate without being put under stress and therefore become less able to 

accurately record temperatures. This suggests that the maxima of the 

temperature record are not truncated and that summers were significantly 
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cooler than they are today.  However, the average minimum has to be taken as 

an upper limit to the average winter value as it is in the range of the minimum 

values that this species can calcify under. Therefore it cannot be stated with 

confidence that the range of annual temperatures was lower at this time, 

although this does appear likely, just that they were shifted lower with the 

minima record truncated. 

Using the modern water isotope value appears, as a first approximation, to be 

justifiable as this coral grew during the same interglacial as the present. 

However, there is a large body of evidence to suggest that the first half of the 

Holocene was significantly wetter than the latter part, with a general evolution 

from wetter to drier conditions throughout this period across the whole of the 

Mediterranean (Magny et al., 2002). The wettest and coolest period appears to 

have been between 9000-6500 cal yr BP, corresponding with widespread 

human settlement and increased lacustrine facies deposition in North Africa 

(Petit-Maire, 1991), high lake levels in Sicily (Sadori and Narcisi, 2001), wetter 

conditions in Albania, Israel and Italy (Denèfle et al., 2000; Frumkin et al., 1991; 

Zanchetta et al., 2007) and the deposition of sapropel 1 which is indicative of 

increased discharge of freshwater into the Mediterranean due to increased 

rainfall (Ariztegui et al., 2000; Zanchetta et al., 2007). This cool and wet period 

encompasses the period these corals are believed to have grown, an increased 

volume of rainfall and freshwater input into the Gulf of Corinth would reduce the 

seawater’s salinity and therefore lower its δ18O value, with respect to the 

modern composition. The sea level of the Gulf of Corinth was approximately 

9.5-7.74 m lower than modern during the period of coral growth (Kershaw et al., 

2005) so it would still, most likely, be a somewhat restricted basin with a more 
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enriched isotopic signature than the open ocean. This, along with the limited 

range of temperatures C. caespitosa can tolerate, allows some constraints to be 

placed on the δ18O seawater value and the calculated temperatures (Table 

4.4.3 and Figure 4.4.5). 

Table 4.4.3 Possible range of Early-Mid Holocene Gulf of Corinth seawater δ
18

O values 
and calculated temperatures 

    Estimated δ
18

O water (‰ VSMOW) 

Calculated 
temperatures (°C) 
 

Average δ
18

O 
aragonite (‰ VPDB) 

+1.15 
(modern) 

+1.0 +0.9 +0.8 +0.75 

Average mean 
 

−2.0 18.3 17.6 17.2 16.8 16.6 

Average winter 
minima 
 

−1.4 15.7 15.1 14.7 14.2 14.0 

Average summer 
maxima 
 

−2.7 21.4 20.7 20.3 19.9 19.7 

 

 

Figure 4.4.5 Range of temperatures calculated from C. caespitosa sample SHR 03/11/11-
02 using Equation 4.2.8 and the full range of possible seawater δ

18
O values for Mid-Early 

Holocene Gulf of Corinth based on all available information. Likely temperature range for 
this period is bound by the +0.75‰ and +1.15‰ (modern water value) temperature 
profiles. 
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This analysis shows that, taking all the available evidence into account, the Gulf 

of Corinth seawater between 7.9-7.5ka, during the period of corallite growth, 

probably had a δ18O value of +0.75 to +1.15‰ VSMOW, an average recorded 

water temperature of 16.6-18.3°C, an average recorded summer maxima of 

19.7-21.4°C and an average recorded winter temperature of 14.0-15.7°C. As 

this is in the minimum temperature range this species can record this is most 

likely a truncated winter record and the winter temperatures were lower than 

this. Because of this constraint we cannot be confident that this period had a 

reduced range of temperature; C. caespitosa can survive (but not calcify) at 

winter water temperatures down to at least 6°C (Kružić and Požar-Domac, 

2003). However, it does seem likely that both winter and summer temperatures 

were reduced lower than those today. Average summer temperatures were 2.6-

4.3°C cooler while average annual temperatures and winter temperatures were 

at least 1.2-4.3°C cooler. These findings are in line with the work of Cheddadi et 

al. (1996) which has  shown that the Mediterranean’s climate was 2-4°C cooler 

during around this period based on pollen assemblages. 
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4.4.1.6. Marine Isotope Stage 7a 

Samples SHR 02/11/11-02 (I) and SHR 02/11/11-02 (II) both come from a 

deposit which U-Th dating ages to 186-195ka, placing them (within error) of MIS 

7a (Leeder et al., 2005). Between them, the corals span and provide average 

data for a period of 14 years. It is, again, unlikely that these 2 samples overlap 

each other in time. The calculated water temperatures for each sample, using 

Equation 4.2.8 and assuming δ18Owater = +1.15‰, are shown in Figure 4.4.6 and 

summarised in Table 4.4.4. 

 

 

Figure 4.4.6 Overlain MIS 7a C. caespitosa calculated water temperatures, using Equation 
4.2.8 and assuming δ

18
Owater = 1.15‰ 
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Table 4.4.4 Summary of calculated temperature data from Greek MIS 7a-c C. caespitosa 
samples using Equation 4.2.8 and assuming δ

18
Owater = 1.15‰vsmow, values are expressed 

in °C. 

MIS 7a-c 
Sample 

Average 
temperature 

Average 
winter 
minimum  

Average 
summer 
maximum  

Average 
annual range  

 
SHR 02/11/11-
02(I) 

 
24.1 

 
21.8 
(2σ = 1.7) 

 
27.3 
(2σ = 2.3) 

 
6.2 
(2σ = 2.0) 
 

SHR 02/11/11-
02(II) 

23.9 21.4 
(2σ = 1.7) 

26.9 
(2σ = 1.5) 

6.1 
(2σ = 2.0) 
 

 

Temperature data from the two samples are in good agreement; averaging the 

data from the 2 samples: Average temperature is 24.0°C (2σ = 0.3°C), average 

minimum 21.2°C (2σ =1.7°C), average maximum 27.1°C (2σ =2.0°C), average 

annual range 6.2°C (2σ =1.9°C). This is similar to the tropical temperatures 

experienced by corals on the Great Barrier Reef (Alibert and McCulloch, 1997; 

Alibert et al., 2003) and it is unlikely that this is a true representation of the 

water conditions during this period. Even if C. caespitosa was better adapted for 

warmer conditions during previous interglacials and could survive these 

conditions, no other studies have suggested a tropical climate this far north at 

this time. Most studies suggest that during this period the Mediterranean was 

both cooler (Shackleton, 2000; Coope, 2001; Kawamura et al., 2003; Martrat et 

al., 2004; Cheddadi et al., 2005; Kawamura et al., 2007; Coope, 2010) and 

wetter (Cheddadi et al., 2005; Roucoux et al., 2008) than either MIS 5e or the 

present, with lower salinity surface waters due to extensive freshwater input 

(Thunell and Williams, 1983; Fontugne and Calvert, 1992; Bar-Matthews et al., 

2003). 

Because of the increased freshwater input, it is possible that the Gulf of Corinth 

seawater was significantly more depleted in δ18O than today. Sea level during 
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the highstands of MIS 7 is believed to have been similar to modern (Leeder et 

al., 2005), therefore it is also likely that the Gulf of Corinth would still have been 

a restricted basin and so still have had a δ18O value more enriched than the 

open ocean, or only slightly depleted. This allows loose constraints to be placed 

on the δ18O value and the temperature of the seawater at the time (Table 4.4.5 

and Figure 4.4.7).  

Table 4.4.5 Possible range of MIS 7a Gulf of Corinth seawater δ
18

O values and calculated 
temperatures 

    Estimated δ
18

O water (‰ VSMOW) 

Calculated 
temperatures (°C) 

Average δ
18

O 
aragonite (‰ VPDB) 

 
1.15 

 
0.3 

 
0.2 

 
0 

 
−0.2 

 
Average mean 

 
−3.4 

 
24.1 

 
20.4 

 
19.9 

 
19.1 

 
18.2 
 

Average winter 
minima 

−2.7 21.3 17.6 17.1 16.3 15.4 
 

Average summer 
maxima 
 

−4.1 27.1 23.4 23.0 22.1 21.3 

As can be seen in Table 4.4.5, with the recorded aragonite δ18O values, the 

Gulf of Corinth seawater would have to have been significantly depleted in δ18O 

for calculated temperatures to be lower than the modern; this must suggest that 

this was a very wet period relative to modern or any of the other periods 

studied. A depleted  δ18O value of +0.3 to −0.2‰VSMOW, gives an average water 

temperature of 18.2-20.4°C, average winter minima of 15.4-17.6°C and an 

average summer maxima of 21.3-23.4°C. This all suggests that it was actually 

the summer temperatures that were the most affected by cooling during this 

period, while the winters (and average temperatures) were milder than present, 

significantly reducing the annual temperature range. The only way to produce 

significantly cooler winter and average temperatures from this data would be to 

make δ18O water even more negative than the lowest estimate, which seems 

unlikely given the restricted nature of the Gulf of Corinth. 
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Figure 4.4.7 Range of temperatures calculated from C. caespitosa sample SHR 02/11/11-
02 (II) using Equation 4.2.8 and the full range of possible seawater δ

18
O values for MIS 7a 

Gulf of Corinth based on all available information. Likely temperature range for MIS 7c is 
bound by the −0.2‰ and 0.3‰ temperature profiles, the temperatures calculated using 
the modern 1.15‰  seawater value are included for ease of comparison. 

However, due to the age of the samples, it is possible that the depleted 

aragonite δ18O values have come about due to diagenetic alteration. 

Recrystalisation and the growth of secondary cements from meteoric waters 

would shift the aragonite δ18O to lower values, due to the more negative water 

δ18O value of the rainfall and resulting groundwaters percolating through the 

corals. However, while evidence of secondary cements and recrystalisation 

were observed (under SEM) in the highly porous septal regions of these MIS 7 

corals, the analysed (low porosity) corallite walls were seen to be alteration free. 

This coupled with the preservation of very clear annual scale cyclicity in the 

aragonite δ18O signals (and well preserved cyclicity in trace elemental signals, 

which seems to be more susceptible to alteration than δ18O, discussed later) 

suggests that diagenetic alteration is, however, not the cause of this isotopic 

shift and so this is an original palaeoclimate signal. 
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4.4.2.  Summary of inferred palaeotemperatures 

Aside from the MIS 7 temperatures, all of the palaeotemperatures calculated 

using Equation 4.2.8 and using the modern δ18Owater value of 1.15‰vsmow 

appeared, at face value, to be within a realistic range. However, once they are 

studied in depth, and other evidence is taken into account, it was found that this 

was unlikely to be the case. Both the temperatures calculated from modern 

seawater δ18O values and the estimated δ18O values are summarised in Table 

4.4.6, and Figure 4.4.8 for ease of comparison. 

Table 4.4.6 Summary of temperatures calculated from the Greek C. caespitosa samples 
using Equation 4.2.8 and the modern water δ

18
O value of +1.15‰, estimated δ

18
O water 

values based on the literature and recalculated potential temperatures using the 
estimated water δ

18
O values. *Modern measured temperature values included for ease of 

comparison 

 δ
18

O = modern  Full new calculated 
temperature range 

Period Age 
(ka) 

Min. Mean Max. Est. 
δ

18
O 

range 

Min. Mean Max. Annual 
range 

 
Modern* 
 

 
0 

 
16 

 
19.5 

 
24 

 
+1.15 

 
16 

 
19.5 

 
24 

 
8 
 

Early-Mid 
Holocene 
 

7.5-
7.9 

15.7 18.3 21.4 +0.75-
+1.15 

14 17.45 21.4 5.7 

MIS 5e 108.5-
133.4 
 

16.7 20.2 23.2 +1.6-
+2.2 

18.6 23.4 27.8 6.3 
 

MIS 7a 186-
196 

21.2 24 27.1 −+0.2-
+0.3 

15.4 19.3 23.4 5.9 
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Figure 4.4.8 A: Summarised ranges of temperatures calculated for each period using the 
modern measured Gulf of Corinth δ

18
O water value of +1.15‰. Modern measured range 

shown for ease of comparison; B: Summarised ranges of estimated Gulf of Corinth 
seawater δ

18
O for each studied period based on the available literature on climatic 

conditions during each interglacial. Modern measured value shown for ease of 
comparison; C: Summarised ranges of annual temperatures calculated for each studied 
period using the relevant range of estimated Gulf of Corinth seawater δ

18
O for each 

studied period based on the available literature on climatic conditions during each 
interglacial. Range indicates the maximum range of temperatures possible, not the 
annual range of seawater recorded, see Table 4.4.6. Modern measured range shown for 
ease of comparison. 

 

By comparing the data on the summary diagrams, it can be seen that if only the 

modern δ18O water value was used for all interglacials (Figure 4.4.8a), it would 
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appear as though there had been a general cooling throughout the last few 

interglacials: as discussed above, based on the supporting literature, this is not 

believed to be the case. Figure 4.4.8b and Figure 4.4.8c show that based on the 

available information, the current conditions in the Gulf of Corinth are 

approximately average for the interglacial periods of the last 225ka. The 

warmest studied period of an interglacial was during MIS 5e, this also had the 

lowest seasonality and was (based on seawater δ18O values) probably the most 

arid, The period of the Early-Mid Holocene analysed likely had the coolest 

conditions experienced by any of the analysed corals while (again based on 

seawater δ18O values) it appears as though the analysed period of MIS 7a was 

the wettest period analysed with the most freshwater input into the Gulf. 

However, for these temperatures to be completely reliable, so that real 

conclusions can be drawn from them, it is necessary to gain more reliable 

values for the water δ18O values from each time period to decrease the 

(currently rather wide) margins of error. This is very important as the equation 

calculates that there is a 4.4°C increase in temperature per 1‰ enrichment of 

δ18Owater putting a large potential for error in temperature calculation in any 

assumption about the δ18O value of past interglacial Gulf of Corinth seawater. 

It is necessary to use clumped isotopic analysis on inorganic carbonates and/or 

shell samples known to precipitate in equilibrium to find out the δ18Owater 

applicable to each time period and this will be explored in Chapter 5.
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5.  Clumped isotopic analysis – Results and 

discussion 

In this chapter I present and discuss data from the clumped isotopic analysis. 

Average growth temperatures and water δ18O compositions calculated from 

modern Croatian C. caespitosa sample data are compared to the measured 

values from the sampling locality and are found to be significantly different. It is 

concluded that this species of coral calcifies its skeletal aragonite in isotopic 

disequilibrium with ambient seawater. Well preserved abiotic aragonite seafloor 

cements and calcite Pecten shells from MIS 5e deposits, that are presumed to 

have grown in equilibrium with the seawater, are found to give reasonable 

seawater temperatures for the last interglacial. 

5.1. Modern C. caespitosa samples – clumped 

isotopic results 

Homogenised powders of the modern Croatian C. caespitosa samples PK 

21/09/12-01, PK 21/09/12-02, PK 21/09/12-02 (II), PK 21/09/12-05, PK 

21/09/12-06 were analysed for ∆47, ∆48, ∆49, δ
18O and δ13C (notations explained 

in Section 2.4.1, 2.3.2). ∆47 (URF) is reported due to its theoretical (and observed) 

(Ghosh et al., 2006; Dennis et al., 2011; Eiler, 2011) relationship with 

temperature of carbonate precipitation. ∆48 and ∆49 are also reported because 

anomalously high deviations of these values can be used to identify samples 

contaminated by organic matter. Therefore, samples with anomalous ∆48 and 

∆49 were rejected or viewed with suspicion. The results are shown in Table 

5.1.1: 
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Table 5.1.1 Modern Croatian C. caespitosa clumped isotopic bulk sample analysis 

results, carbonate standards also shown for reference. ‘Repeat’ identifies a replicate 

analysis of the same homogenised sample powder. One run of sample PK 21/09/12-02 

and is highlighted as positive ∆48 and >10 ∆49 values suggest contamination, these data 

are therefore left out when calculating average values for the samples. Full data set is 

reported in Appendix ii. 

Sample ∆47 (URF) ∆48 ∆49 δ
18

O δ
13

C 

 
PK-21/09/12-01 

 
0.72 

 
−0.26 

 
−45.23 

 
−2.65 

 
−5.84 
 

PK 21/09/12-01 (Repeat) 0.75 -0.28 -36.31 -2.47 -5.93 

Average 0.74  
(2σ = 0.04) 

-0.27 
(2σ = 0.03) 

-40.77 
(2σ = 12.60) 

-2.56 
(2σ = 0.26) 

-5.89 
(2σ = 0.13) 
 

PK 21/09/12-02 0.76 0.03 13.24 −2.35 −5.30 
 

PK 21/09/12-02 (Repeat) 0.74 -0.08 -17.76 −2.25 −5.39 
 

PK 21/09/12-02 (Repeat) 0.77 -0.23 -59.89 −2.27 −5.35 
 

Average 0.76 
(2σ = 0.44) 

-0.16 
(2σ = 0.21) 

-38.83 
(2σ = 59.57) 

-2.26 
(2σ = 0.03) 

-5.57 
(2σ = 0.06) 
 

PK 21/09/12-05 0.72 −0.02 −11.89 −2.54 −5.83 
 

PK 21/09/12-06 0.72 -0.16 -31.30 -2.47 -6.01 

PK 21/09/12-06 (Repeat) 0.69 −0.11 35.74 −2.58 −6.05 
 

PK 21/09/12-06 (Repeat) 0.71  -0.42 -27.83 -2.21 -5.98 

Average 0.70 
(2σ = 0.03) 

-0.23 
(2σ = 0.33) 
 

7.80 
(2σ = 75.49) 

-2.42 
(2σ = 0.38) 

-6.01 
(2σ = 0.07) 

UEATHC 0.63 -0.02 30.20 -13.97 2.70 

UEABEL 0.67 -0.03 39.26 0.06 2.52 

UEACMST 0.43 -0.47 -19.34 -1.83 1.94 

UEACMST (Repeat) 0.41 -0.06 -13.41 -1.80 1.95 

UEACMST (Repeat) 0.42 -0.49 58.48 -1.81 1.95 

Average 0.42 
(2σ = 0.48) 

-0.34 
(2σ = 0.48) 

8.58 
(2σ = 86.64) 

-1.81 
(2σ = 0.03) 

1.95 
(2σ = 0.01) 
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5.2. C. caespitosa samples - Analysis and discussion 

5.2.1.  Temperature 

Temperature of precipitation is believed to be the dominant control on the ∆47 

composition of all carbonates (Guo et al., 2009a). The majority of carbonates 

analysed conform to (laboratory specific) ∆47-temperature calibration lines 

T(∆47) whether they are biological, natural inorganic or synthetic precipitates 

(Ghosh et al., 2007; Eiler, 2011; Came et al., 2014). Because of this, it was 

hypothesised that the bulk analysis of homogenised modern C. caespitosa 

samples would have T(∆47) values that represent the average water 

temperature throughout the growth period studied.  

The ∆47 values appear very similar for all the uncontaminated modern samples 

(average = 0.73, 2σ = 0.05), although it must be remembered that the 

relationship between ∆47 and temperature is very sensitive; across the 

commonly used 0-50°C range, Δ47 only changes by ≈ 0.2 ‰ (Ghosh et al., 

2006) with a temperature sensitivity of −0.00289‰/°C (Guo et al., 2009a). As 

these samples were run on the University of East Anglia’s MIRA mass 

spectrometer, the in-house ∆47-temperature calibration equation (Equation 

5.2.1) was used to calculate temperatures. This calibration line is close to the 

theoretical one (of Guo et al. (2009a)), with a temperature sensitivity of 

−0.0034‰/°C. 

∆47= 0.0389 ∙
106

𝑇2
+ 0.2139 

Equation 5.2.1 UEA ∆47 – temperature calibration line 
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The calculated T(∆47) values  are shown in Table 5.2.1 and plotted on the UEA 

calibration line in Figure 5.2.1. 

Table 5.2.1 Modern Croatian C. caespitosa average growth temperatures and water δ
18

O 
compositions calculated using the UEA ∆47 – temperature calibration line compared to 
the actual average growth temperatures as recorded at the site (Kružić et al., 2012) and 
measured water compositions.  

Sample ∆47 Calculated 
T(∆47)   

Actual 
average 
temperature 
(°C) 

Calculated 
water δ

18
O 

(‰VSMOW) 

Measured 
water 
δ

18
O 

(‰VSMOW) 

 
PK 21/09/12-
01 
 

 
0.73 

  
1.12 

 
20.3 

  
−1.73 

 
1.0 

PK 21/09/12-
02 
 

0.76 −5.35 20.3 −3.52 1.2 

PK 21/09/12-
05 
 

0.72 4.71 20.3 −0.92 1.2 

PK 21/09/12-
06 
 

0.70 8.54 20.3 −0.16 1.2 

Average 0.73  
(2σ=0.05) 
 

2.26 
(2σ=11.72) 

20.3 −1.58 
(2σ=2.88) 

1.15 
(2σ=0.1) 

 

It is clear that the T(∆47) values are unrealistically low to have supported coral 

growth. The average water temperature at this locality over the period 2003-

2010 (which covers the majority of the corallite growth analysed) was 20.3°C 

(Kružić et al., 2012). It has also been demonstrated that at temperatures below  

14-16°C C. caespitosa is unable to precipitate aragonite (Montagna et al., 

2007); meaning that temperatures below this cannot be recorded by this 

species. These constraints mean the corals could not have grown at the derived 

T(∆47) values. This result was not totally unexpected given that this species of 

coral does not calcify in isotopic equilibrium with seawater (Chapter 4). 

According to Equation 5.2.1, carbonate precipitated in isotopic equilibrium at an 

average temperature of 20.3°C should have a ∆47 value of 0.67‰. The 
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measured values of 0.70-0.76‰ show that the corals are enriched in ∆47 by 

0.03-0.09‰.  

 

Figure 5.2.1 Modern Croatian C. caespitosa clumped isotopic data plotted on the UEA 
calibration line, x-axis temperatures are also shown in Celsius for ease of comparison.  

 

5.2.2.  Comparing the UEA calibration equation to 

equations derived in other laboratories 

The UEA calibration line (black line in Figure 5.2.2) used in this study is closest 

to the intercept and gradient of the theoretical line of Guo et al. (2009a). 

Theoretically, there should only be the one relationship between temperature 

and ∆47, that of Guo et al. (2009a), but in each laboratory there is an offset that 

probably depends on digestion temperature, preparation and measurement 

protocol. The equations for the lines of best fit for each laboratory data set at 

Earth surface temperatures, approximately 0-50°C, are shown in Table 5.2.2 

with the lines plotted in Figure 5.2.2.  The data discussed here was produced by 

measurements on MIRA, using the UEA laboratory protocol and calibrated 
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using the UEA ‘line’; however, it is instructive to compare the C. caespitosa data 

and the UEA calibration to those of other laboratories. 

Table 5.2.2 Published ∆47 - temperature calibration equations for earth surface 
temperatures. Equations published before 2011 have been retrospectively fitted to the 
absolute reference frame and, where necessary, have been corrected for the difference in 
fractionation factors between 25 and 90°C by Dennis and Schrag (2011) whereas 
equations from after 2011 were already fitted to the reference frame and corrected by 
their respective authors. Also included within the table are the laboratories where the 
mass spectrometry was carried out, the temperature of phosphoric acid digestion and 
the CaCO3 material studied for comparison. 

Study Lab Subject Reaction 
T (°C) 

∆47 =  

 
UEA cal. 
line 

 
UEA 

 
Modern 
brachiopods and 
inorganic calcite 
 

 
25 

 
0.0389·10

6
/T

2
+0.2139 

Ghosh et 
al., (2006) 
 

Caltech Synthetic 25 0.0636·10
6
/T

2
−0.0047 

Guo et al., 
(2009a)  
 

N/A Theoretical N/A 0.0375·10
6
/T

2
+0.210 

Dennis & 
Schrag 
(2010) 
 

Harvard Synthetic 90 0.0362·10
6
/T

2
+0.292 

Eagle et al. 
(2013) 
 

Caltech Molluscs 90 0.0362·10
6
/T

2
+0.314 

Henkes et 
al., (2013) 
 

John 
Hopkins 

Molluscs & 
brachiopods 

90 0.0327·10
6
/T

2
+0.3286 

Zaarur et 
al., (2013) 
 

Yale Synthetic 25 0.0555·10
6
/T

2
+0.0780 

Came et al., 
(2014) 
 

Yale & 
Caltech 

Brachiopods 25 0.0506·10
6
/T

2
+0.1453 

Tang et al., 
(2014) 
 

Tulane & 
UCLA 

Synthetic 25 & 90 0.0387·10
6
/T

2
+0.2532 

 

If the C. caespitosa ∆47 data is plotted against the known average growth 

temperature for these samples, Figure 5.2.2, it is clear the data plot well above 

both the UEA and the theoretical (Guo et al., 2009a) calibration line. The other 

published calibration lines, derived by various laboratories using slightly 

different preparation procedures and types of calcium carbonate are also 
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plotted up for comparison. The C. caespitosa data plot closest to the Ghosh et 

al (2006) calibration line, which is interesting as this line was derived using 

skeletal carbonates, and is, in itself, an outlier from the other calibration lines, 

being much steeper. The samples do still show an enrichment in ∆47 for their 

growth temperatures as is discussed further below.  

 

Figure 5.2.2 Published ∆47 - temperature calibration equations for CaCO3 precipitated at 
earth surface temperatures (see Table 5.2.2 for equations). C. caespitosa data is plotted 
against the known growth temperature of 20.3°C for comparison to all temperature 
calibration lines. The outlier C. caespitosa sample is the potentially contaminated PK 
21/09/12-02.  
 

5.2.3.  Potential sources of contamination – Reliability of 

data 

It could be argued that the anomalous results found in these modern corals 

were caused by some form of contamination or alteration that affected isotopic 

composition. It is, for example,  well known that coral skeletons have very finely 

intermeshed  organic material within the skeletal carbonate (Barnes, 1970; Cuif 

and Dauphin, 2005). As surface oxidants were used to clean whole samples, 
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with the produced powders themselves not being bleached to avoid partial 

dissolution (White, 1998), it is possible that the  ∆47 values were compromised  

by  organic contaminants. However, this seems unlikely because laboratory 

protocols check for the presence of organic contaminants (hydrocarbons, 

chlorocarbons or sulphur-bearing compounds (Huntington et al., 2011)) that can 

interfere with mass-47, and therefore compromise temperature calculations 

(Eiler and Schauble, 2004; Guo and Eiler, 2007; Huntington et al., 2009; 

Huntington et al., 2011).  Routine analysis of mass-48, 49 were carried out 

alongside mass-47. The presence of heavy species (C-O-H-Cl) recombining 

with produced H atoms or ions in the source creates highly anomalous mass-48 

and/or mass-49 intensities and (less obvious) associated unusual ∆47 values 

(Eiler and Schauble, 2004). Samples where ∆48,49 are more than a few per mil 

from stochastic distribution can therefore be rejected as contaminated 

(Huntington et al., 2011): in the UEA laboratory positive ∆48 and >10‰ ∆49 are 

indicative of contamination. Samples with these characteristics were thus 

rejected (reported in Appendix ii). One run of PK 21/09/12-02 shows some signs 

of organic contamination: its results are reported, however, as a clear outlier for 

∆47, yielding lower temperatures than the other samples, it was not included in 

calculating average values.  

SEM analysis (Chapter 3.2) showed these modern corallites to be well 

preserved, with no secondary marine cementation of septal regions and no 

recrystallisation of the corallite walls. There is no textural evidence to support 

diagenetic alteration. 
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5.3. MIS 5e Fossil Greek samples – clumped isotopic 

results 

Due to the inferred disequilibrium effects in modern C. caespitosa, it is not 

possible to make meaningful palaeotemperature interpretations using fossil 

corallites without further study of the modern; this is beyond the scope and time 

constraints of this study. Because of this, plans to analyse multiple samples of 

fossil Greek C. caespitosa from the various deposits were abandoned. Instead, 

the focus switched to fossil samples where data from a few corals could be 

compared with both biogenic and abiogenic carbonates that are thought to have 

formed in near isotopic equilibrium. Material from MIS 5e deposits were best 

suited to this, containing both appropriate targets and carbonates that had been 

screened for likely diagenetic alteration (Section 3.2). 

One corallite of C. caespitosa (SHR 02/11/11-08) from Makrugoaz Ridge, was 

prepared and ran as a homogenised powder to ascertain whether results from 

this well-preserved fossil sample were similar to those from modern samples. 

Along with this I procured: (1), sub-samples of abiogenic syndepositional marine 

aragonite cements, collected by Professor Julian Andrews from various MIS 5e 

deposits around the Perachora Peninsula, including the C. caespitosa-bearing 

deposits at Makrugoaz Ridge; and (2) complete radial ribs from two well 

preserved calcitic Pecten (scallop) shells (SHR 02/11/11-07 (I) & (II); Figure 

5.3.1), also from Makrugoaz Ridge.  

As the aragonite cement is an abiogenic precipitate it is likely to have formed in 

quasi-equilibrium with seawater, while Pecten also precipitate their calcitic 

shells  (Barbin et al., 1991) in near isotopic equilibrium with seawater (Hickson 
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et al., 1999; Owen et al., 2002; Chauvaud et al., 2005). Therefore, the ∆47 of 

both these carbonates should provide realistic representations of the water 

temperature and seawater δ18O composition they grew in.  

There are, however, a few issues with assuming these carbonates will be 

accurate representations of the same MIS 5e shallow marine environment 

inhabited by the corals. The aragonite cements have formed in sediment or 

bedrock void spaces, some within sediment or bedrock fractures and some 

within the C. caespitosa bearing biostromes: they are intergrown with serpulids 

that encrusted firm substrates and are assumed to have grown 

syndepositionally with the biostromes (rather than post-burial) (J. Andrews, 

pers. comm.). It is therefore expected that the geochemical signature of these 

cements will record bottom water conditions representative of those that the 

corals themselves experienced. However, the association between serpulid 

worms and the cements suggests that they may have formed within dark 

sheltered cavities with restricted water flow (Antonioli et al., 2001), which is not 

the environment zooanthellate corals, such as C. caespitosa thrive in, 

suggesting that the aragonite slightly post-dates the corals it grows between. 

Therefore the conditions the aragonite cement formed under may have been 

cooler and may have had slightly different seawater δ18O compositions than the 

average seawater the corals grew in.  

The Pecten specimens, whilst found in association with the C. caespitosa 

biostromes, must also be treated with some caution. Winter growth cessation is 

a common phenomenon in bivalves, and scallops are no exception to this 

(Hickson et al., 1999; Owen et al., 2002; Goodwin et al., 2003). Therefore the 

lowest temperatures of the year may not be recorded in the shell calcites, which 
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will potentially skew the average growth temperature to higher values. It may 

also be that during the higher temperatures of MIS 5e, growth actually ceased 

or slowed during the summer, skewing the temperatures to lower values, which 

has also been shown to occur (Schöne et al., 2003; Buick and Ivany, 2004). 

Also, most species of scallops are not wholly sessile organisms, being capable 

of active swimming (Joll, 1989), this means that they may not simply record the 

conditions experienced by the sessile corals. The results from the analysis of 

these samples and replicates of them are shown in Table 5.3.1. 

. 

 

Figure 5.3.1 MIS 5e Pecten samples showing well preserved original colouration 

 
  



Sam Royle  Clumped isotopic analysis 

127 
 

Table 5.3.1 Greek MIS 5e fossil sample clumped isotopic bulk sample analysis results. 
Two runs of pecten sample SHR 02/11/11-07 (i) are highlighted as they show signs that 
the CO2 fractionated during preparation and so are left out of further analysis. 

Sample Type ∆47 (URF) ∆48 ∆49 δ
18

O δ
13

C 

 
JEA 10901-01 

 
Abiogenic 
aragonite 
 

 
0.66 

 
-0.25 

 
-33.44 

 
-1.28 

 
3.17 

JEA 10901-01   0.65 -0.23 3.36 -1.02 3.18 

Average 
  

  
  

0.65 
(2σ=0.02) 

-0.24 
(2σ=0.03) 

-15.04 
(2σ= 52.03) 

-1.15 
(2σ=0.37) 

3.17 
(2σ=0.02) 

JEA 26602-02 Abiogenic 
aragonite 
 

0.68 -0.13 -38.00 1.31 3.78 

JEA 26602-02  0.69 -0.16 -7.20 1.76 3.83 

Average 
  

  
  

0.69 
(2σ=0.01) 
 

-0.14 
(2σ=0.04) 

-22.60 
(2σ=43.56) 

1.53 
(2σ=0.64) 

3.80 
(2σ=0.07) 

JEA 9508-01 Abiogenic 
aragonite 
 

0.66 -0.25 -65.91 1.92 2.77 

JEA 9508-01  0.67 -0.24 -38.83 2.01 2.78 

Average 
  

 0.67 
(2σ=0.02) 
 

-0.24 
(2σ=0.01) 

-52.37 
(2σ=38.30) 

1.97 
(2σ=0.13) 

2.78 
(2σ=0.01) 

SHR 02/11/11-
07 (i) 
 

Pecten 0.74 -0.01 20.55 0.68 0.23 

SHR 02/11/11-
07 (i) 
 

 0.75 -0.12 0.38 0.79 0.24 

SHR 02/11/11-
07 (i) 
 

 0.69 -0.11 -42.98 0.45 0.19 

SHR 02/11/11-
07 (i) 

 0.66 -0.40 -79.32 0.48 0.22 

Average   
  

0.68 
(2σ=0.04) 

-0.25 
(2σ=0.42) 

-61.15 
(2σ=51.40) 

0.46 
(2σ=0.04) 

0.20 
(2σ=0.04) 

SHR 02/11/11-
07 (ii) 
 

Pecten 0.69 -0.31 -26.01 1.22 0.51 

SHR 02/11/11-
07 (ii) 

 0.71 -0.17 -16.72 1.18 0.50 

Average 
  

 0.70 
(2σ=0.03) 
 

-0.24 
(2σ=0.20) 

-21.37 
(2σ=13.14) 

1.20 
(2σ=0.06) 

0.51 
(2σ=0.01) 

SHR 02/11/11-
08 
 

MIS 5e 
coral 

0.75 0.10 8.28 -2.42 -5.09 

SHR 02/11/11-
08  
 

 0.71 -0.13 -17.70 -2.50 -5.25 

SHR 02/11/11-
08  

 0.75 -0.08 30.39 -2.29 -5.24 

Average  0.74 
(2σ=0.05) 
 

-0.04 
(2σ=0.25) 

6.99 
(2σ=48.14) 

-2.41 
(2σ=0.21) 

-5.19 
(2σ=0.17) 
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5.4.  MIS 5e Greek (fossil) samples – Analysis and 

discussion 

Table 5.4.1 MIS 5e sample average growth temperatures and water δ
18

O compositions 
calculated using the UEA ∆47 – temperature calibration line. Aragonite sample’s water 
compositions calculated using a rearranged form of the Goodwin et al. (2001) modified 
version of the Grossman & Ku (1986) palaeotemperature equation for aragonites 
precipitated in equilibrium, calcite sample’s water compositions calculated using the Kim 
& O’Neil (1997) palaeotemperature equation for calcite precipitated in equilibrium 

Sample Type ∆47 
(‰)URF 

Calculated 
temperature 
(°C) 

δ
18

O 
(‰VPDB) 

Calculated 
water δ

18
O 

(‰VSMOW) 

 
JEA 26602-02 

 
Abiogenic 
aragonite 
 

 
0.69 
 
 

 
13.84 

 
1.53 
 

 
−2.89 

JEA 9508-01 Abiogenic 
aragonite 

0.67  
 
 

20.37  
 

1.97 
 

−1.82  
 

JEA 10901-01 Abiogenic 
aragonite 
 

0.65 24.06 −1.15 2.15 

SHR 02/11/11-
07 (i) 
 

Pecten calcite 0.68  
 

17.13 
 

0.46  
 

1.16 
 

SHR 02/11/11-
07 (ii) 
 

Pecten calcite 0.70  
 

9.94 
 

1.20  
 

0.23 
 

SHR 02/11/11-
08 

C. caespitosa 
aragonite 
 

0.74  -0.54 −2.41 -2.26 
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Figure 5.4.1 All clumped isotopic data plotted on the UEA calibration line, temperatures 
on x-axis also shown in Celsius for ease of reference 

5.4.1.  Temperature 

Using Equation 5.2.1, the UEA ∆47 – temperature calibration, water 

temperatures (T(∆47)) have been calculated for MIS 5e and these are 

reported in Table 5.4.1 and  Figure 5.4.1. Values of 14 to 24°C appear to be 

reasonable for marine cements formed within the bottom sediments or 

within sheltered cavities (J. Andrews pers. comm.). The higher end of these 

temperatures may be more representative of the temperature at the bottom 

of the (shallow) water column, with both JEA 9508-01 and JEA 10901-01 

being within error of the average annual temperature that the MIS 5e sea 

temperature is postulated to have been (22-25°C, Chapter 4). 

The Pecten shell samples are slightly more complex: SHR 02/11/11-07 (i) 

has an average T(∆47) value of 17.1°C, but the individual duplicates give 

values of  12.6 and 21.9°C, while SHR 02/11/11-07 (ii) gives T(∆47) values 

of 6.7 and 13.4°C. The coolest value (6.7°C) is not a likely temperature for 

last interglacial seawater conditions at this latitude based on all the other 
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available evidence (Section 4.4.2.1). The T(∆47) values of 12.5°C and 

13.4°C are cooler than anticipated but could reflect the mobility of a Pecten 

that spent much of its life in deeper, colder waters, or that this species 

actually doesn’t calcify in full equilibrium with the seawater. The value of 

21.9°C from sample SHR 02/11/11-07(i), however, is consistent with the 

other available data, being in error of the expected shallow water 

temperatures for MIS 5e.  

In summary the marine aragonite cement data are consistent with 

precipitation in equilibrium with the seawater, the T(∆47) values being 

approximately those expected from cements growing within void spaces in 

the cooler sediment. Only one of the Pecten analyses gave a T(∆47) value 

consistent with likely growth conditions for MIS 5e C. caespitosa, but this is 

probably an effect of the small number of samples it was possible to 

analyse in the time available as it may be that the Pecten powders 

produced were not as well homogenised as thought. 

There is substantial variability between T(∆47) values from replicate analyses; 

however this is probably an artefact of the highly sensitive ∆47 – temperature 

relationship, with only a small error in the measurement resulting in a large error 

in the temperature calculated (Guo et al., 2009a). It is clearly preferable to carry 

out multiple replicates, however, time constraints on the availability of the 

equipment meant this was not possible in this study.  

5.4.2.  Water composition 

As well as calculating temperature from ∆47 data, as the carbonate clumped 

isotope thermometer is independent of the isotopic composition of the water, 
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this should also allow the back-calculation of the δ18Oseawater that carbonates 

formed in. For the aragonite samples this is done by using the measured 

δ18Oaragonite values and re-arranging Equation 2.3.8, the Goodwin et al. (2001) 

modified Grossman and Ku (1986) palaeotemperature equation for aragonite 

precipitated in equilibrium to solve for δ18Ow: 

𝛿 𝑂𝑊
18 = −1 (

𝑇 − 20.60

−4.34
− 𝛿 𝑂𝐴

18 + 0.20) 

Equation 5.4.1 Goodwin et al. (2001) modified Grossman and Ku (1986) palaeotemperature equation 
for aragonite precipitated in equilibrium rearranged to solve for δ

18
Oseawater 

For the calcite samples (the Pecten) a rearranged version of the Kim and O’Neil 

(1997) temperature calibration equation for calcite precipitated in equilibrium 

was used to calculate seawater isotopic compositions (reported in Table 5.4.1). 

 1000 ln 𝛼(𝑐𝑎𝑙𝑐𝑖𝑡𝑒−𝑤𝑎𝑡𝑒𝑟) =
18030

𝑇
− 32.42 

Equation 5.4.2: Kim and O’Neil’s (1997) equation for the fractionation factor for calcite precipitated 

from water at equilibrium, temperature (T) in Kelvins gained from applying the UEA calibration 

equation (Equation 5.2.1) to the ∆47 data. 

𝛿 𝑂𝑊
18 =

(𝛿 𝑂𝐶
18 + 1000)

(𝛼 − 1000)
 

Equation 5.4.3: Equation 5.4.1 rearranged to calculate the δ
18

O value of water, both δ
18

Owater and 

δ
18

Ocalcite are in ‰ (VSMOW) 

Most of the calculated seawater compositions from the individual marine 

aragonite cement replicates (Table 5.4.1) have low values of −2.89 to −1.73‰ 

(VSMOW). If representative of open Gulf they suggest that MIS 5e Gulf of 

Corinth seawater was less saline than today (modern seawater in the area has 

a δ18O composition around 1.15‰ (VSMOW) (Chapter 4). This argues against 
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most of the other available evidence for a warmer and probably more arid 

climate during most of the sustained MIS 5e highstand (Chapter 4): instead it 

suggests higher run off and riverine input and lower evaporation during this 

period than today. Most of the individual Pecten data paints a similar, although 

less extreme picture, with values for seawater δ18O between -1.16 to 0.18‰ 

(VSMOW), again suggesting the water was fresher or the same as modern. 

However, the Pecten values that yield the lower than expected seawater δ18O 

values also produce the uncharacteristically low temperatures (4.6 to 13.4°C). 

In contrast the highest, and more plausible, Pecten growth T(∆47) (21.9°C) 

yields a calculated water composition of 2.17‰ (VSMOW), which indicates 

increased salinity (compared to today) in the Gulf. This is consistent with 

palaeoecological and coral δ18O data (Section 4.4.2.1).  Shallow marine and 

estuarine Pecten species, are adapted to tolerate of a wide range of salinities 

(Belding, 1931; Gutsell, 1931; Castagna and Chanley, 1973; Duggan, 1975) 

some species even being able to survive in freshwater for limited periods of 

time (Mercaldo and Rhodes, 1982); it is therefore possible that the shells 

recording lower compositional values could have spent some of their lives in 

more brackish environments elsewhere. 

Explaining the δ18O seawater values calculated from the aragonite T(∆47) 

requires a different approach. It is not yet fully understood in which conditions 

the aragonites precipitated, only that they typically formed in cavities, voids or 

fissures within the sediment/bedrock of the seabed (J. Andrews pers. comm.). 

We need to understand more about the geochemistry of the seawater in these 

restricted and dark or gloomy cavities, including the possible influence of 

ophiolite weathering in the catchments which can affect Mg concentration, and 
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by extension carbonate mineralogy (e.g. Morse et al., 1997), in coastal waters. 

We do know that one marine aragonite cement that is demonstrably inter-grown 

with C. caespitosa (sample JEA 9508-01; Table 5.4.1), and yields a plausible 

T(∆47); it also yields what appears to be a low seawater δ18O composition of 

−1.82 ‰ (VSMOW).  At present we cannot explain this anomaly. 

5.5. Disequilibrium calcification of corals 

It is clear from the difference between the known modern temperatures and the 

T(∆47) values that C. caespitosa does not calcify in equilibrium. Most work on 

clumped isotopes to date has suggested that the majority of natural calcium 

carbonates are precipitated in near isotopic equilibrium with respect to ∆47, with 

little sensitivity to the ‘vital effects’ that cause δ18O disequilibrium in many 

calcifying organisms (Weber and Woodhead, 1972). This implied that the same 

temperature calibration equation for inorganic carbonate could be universally 

applied to all biogenic carbonates (Ghosh et al., 2006; Thiagarajan et al., 2011; 

Eiler, 2011).  

The first hints that coral skeleton ∆47 might not be in equilibrium were presented 

in Ghosh et al. (2006), although the anomaly they identified in the winter growth 

band of a Red Sea Porites was attributed to particularly slow growth. 

Thiagarajan et al. (2011) also found no evidence of vital effects in deep sea 

corals. However, Saenger et al. (2012) carried out a systematic sub-annual 

study using multiple species of shallow water corals from various localities. 

They reported that Porites skeletal aragonite is consistently enriched in ∆47, with 

their samples underestimating growth temperature by ≈8°C, supporting the 

result found in the present work. Their Porites ‘offset’ when compared on the 
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UEA calibration line is, however, smaller than that found for here for C. 

caespitosa, suggesting that species specific effects may be important. 

It is worth noting that using the Ghosh et al., (2006) equation (corrected to the 

universal reference frame of Dennis et al. (2011)) the C. caespitosa samples of 

this study have a smaller offset as found for the Porites samples in Saenger et 

al. (2012) – which also used the Ghosh equation. Apparent temperatures of 

17.7 to 28.4°C are calculated from the modern C. caespitosa corals and 21.5°C 

from the MIS 5e coral using this calibration, this both covers the range of the 

actual measured seawater temperatures for the modern samples and the 

postulated temperature for MIS 5e. The calculated temperature values of the 

modern corals are generally higher than the annual average measured 

temperature (of 20.3°C). This could be because the corals cannot grow for the 

coldest months of the year (Montagna et al., 2007) and grow fastest in the 

summer (Peirano et al. 1999) and so should give average growth temperatures 

slightly higher than the actual average annual water temperatures. However, 

the Ghosh et al. (2006) calibration line is much steeper than all others (except 

the one by Zaarur et al. (2013)). It seems likely that the data in the present work 

lends considerable weight to the suggestion that the synthetic carbonates 

grown and analysed in the Ghosh study were themselves precipitated in 

disequilibrium (Affek, 2013). Therefore the small offset of the coral data from 

this calibration line is a product of a co-incidence that the level of disequilibrium 

found in some corals (by both this study and Saenger et al. (2012)) is 

approximately the same as the level of disequilibrium in the carbonates 

analysed by Ghosh, due to rapid calcification. Potential causes for the 

disequilibrium found here in C. caespitosa will be discussed in more detail in 
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Chapter 7 alongside the mechanisms for disequilibrium in the other 

geochemical parameters studied. 
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6.  High resolution trace element analysis - 

Results and discussion 

This chapter presents and discusses the high resolution LA-ICP-MS trace 

elemental data of C. caespitosa samples and its potential as a palaeoclimate 

proxy. Modern Croatian C. caespitosa trace element data are used to assess 

the reliability of this approach using accompanying water temperature data. The 

modern data is then transformed to temperature using published trace-

element/calcium palaeothermometers. The aim is verify the applicability of 

these equations to samples where growth temperatures are unknown (i.e. fossil 

material). It is found that there is too much intra-site variability between the 

modern samples for a single species-specific trace-element/calcium 

palaeothermometer to be valid, suggesting that this is not a viable approach for 

high resolution palaeoclimate reconstruction. It is, however, demonstrated that 

the original annual cyclic variations in numerous trace element concentrations 

are present in the best preserved fossil (Greek) samples and there is the 

potential for recording other environmental events. Thus high resolution LA-ICP-

MS is a (relatively) rapid, non-destructive, technique for reconstructing aspects 

of palaeooceanographic and palaeoclimatic variability and in evaluating the 

preservation quality of samples for other purposes, such as radiometric dating. 

6.1. Modern Croatian samples – trace element results 

Absolute trace element compositions and the variation in these values along the 

length of the corallites (i.e. over time) were successfully measured for all 

analysed modern Croatian C. caespitosa samples. SEM analysis of the 

samples showed well-focused evenly spread laser ablation pits (Figure 6.1.1) 
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Figure 6.1.1 PK 21/09/12-01, uncoated SEM image, evenly spaced (at 200 µm) laser 
ablation pits following the corallite wall showing well focussed, circular ablation 

By plotting the trace element/43Ca values against distance from the base of the 

corallites (i.e. the start of the analysed transect) changes in trace element 

composition over the length of a corallite can be examined; these are shown for 

each sample in turn. These trace element profiles have been smoothed using a 

4-point running median (black line in figures), to reduce noise and to highlight 

trends over seasonal scales. Figure 6.1.2 to Figure 6.1.8 show that, for the 

majority of trace elements found to be present in measureable concentrations, 

there are seemingly significant variations in their distribution along the length of 

the corallite. These data are also summarised in Table 6.1.1. 

In all samples, the most abundant trace elements are Na, Sr, Mg with these 

three elements generally present in concentrations at least an order of 

magnitude higher than other elements. 
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6.1.1.1. PK 21/09/12-01 

C. caespitosa collected at Mljet Bank sampling station 1 (see Figure 3.1.2 and 

Table 3.2.1), 8m growth depth. The last 9 years’ worth of growth, based on the 

positioning of the last 9 pairs of seasonal growth bands up to the tip of the 

corallite’s calyx wall, corresponding to approximately 45 mm of the corallite, was 

analysed.  

 

Figure 6.1.2 PK 21/09/12-01, trace element profiles dominated by a cyclic trend. 9.5 cycles 
are visible and these are most obvious in Ba and Sr. Vertical lines have been added to 
separate complete cycles. 
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Figure 6.1.3 PK 21/09/12-01, trace element profiles dominated by a large high magnitude, 
low amplitude spike. B shows a degree of cyclicity until this is partially overprinted by 
the spike (K/Ca and P/Ca shown separately in Figures 6.2.5 and 6.2.6). 
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6.1.1.2. PK 21/09/12-01(II) 

C. caespitosa collected at Mljet Bank sampling station 1 (see Figure 3.1.2 and 

Table 3.2.1), 8m growth depth. 23mm, equating to 7 years of growth, analysed. 

 

Figure 6.1.4 PK 21/09/12-01 (II), trace element profiles dominated by a cyclic trend, 6 
whole cycles are visible, clearest in Sr, B, Ba. Vertical lines have been added to separate 
complete cycles. 
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6.1.1.3. PK 21/09/12-02(II) 

C. caespitosa collected at Mljet Bank sampling station 2 (see Figure 3.1.2 and 

Table 3.2.1), 10m growth depth. 31mm, equating to 8 years of growth, 

analysed.   

 

Figure 6.1.5 PK 21/09/12-02 (II), trace element profiles dominated by a cyclic trend, 8 
cycles are apparent these are most obvious in Sr and B. Vertical lines have been added 
to separate complete cycles. 
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6.1.1.4. PK 21/09/12-05 

C. caespitosa collected at Mljet Bank sampling station 5 (see Figure 3.1.2 and 

Table 3.2.1), 11m growth depth. 21mm, equating to 6 years of growth, 

analysed. 

 

Figure 6.1.6 PK 21/09/12-05, trace element profiles dominated by a cyclic trend, 6 whole 
cycles are apparent. Vertical lines have been added to separate complete cycles. 
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6.1.1.5. PK 21/09/12-06 

C. caespitosa collected at Mljet Bank sampling station 6 (see Figure 3.1.2 and 

Table 3.2.1), 14m growth depth. 22mm. equating to 6 years of growth, 

analysed. 

 

Figure 6.1.7 PK 21/09/12-06, trace element profiles dominated by a cyclic trend with 7 
cycles apparent. Vertical lines have been added to separate complete cycles. 
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Figure 6.1.8 PK 21/09/12-06, trace element profiles dominated by a lower resolution cyclic 
trend with 4 possible cycles. 

As can be seen in in the figures and Table 6.1.1, patterns seen in the 

distribution of trace elements in all samples can generally be grouped into three 

categories:  

1. Those elements that show a clear cyclicity: Sr, Mg, Ba, B and U are the 

clearest of these in most samples. These elements exhibit a number of 

cycles approximately matching the number of years’ growth of the 

corallite (based on the location of pairs of bi-annual growth bands 

following Peirano et al. (2005). Thus these cycles are interpreted as 

annual features related to the development of the growth bands and 

suggesting that there is a temperature, or other annual-scale, signal 

preserved by trace element content. Within each sample these elements 
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generally show similar patterns suggesting a common control on their 

uptake.  

2. Elements with a signal dominated by a low frequency, high magnitude 

spike, this is only present in the sample PK 21/09/12-01(I) and overprints 

some of the signals that would (based on other samples) otherwise be 

cyclic. 

Elements that are present in measureable quantities but show no discernible 

trends, the signal of these traces is apparently high frequency ‘noise’. These are 

not shown in the figures but are listed in Table 6.1.1. 
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Table 6.1.1 Summary of the average trace element concentrations and main trends of 
trace element distribution in all LA-ICP-MS analysed modern Croatian C. caespitosa 
samples. Concentrations are shown as ratios of trace element/

43
Ca (varying units shown 

in table) after calibration to 100% aragonite (CaCO3) using internal standard 
43

Ca = 38%. 
Mg and Sr are highlighted as they are the trace elements this study is most interested in. 
Key to trend abbreviations: A.S.C. = Annual Scale Cyclicity, the following number shows 
number of cycles recorded, (N.) shows that the annual signal is noisy;  L.F.C = Low Frequency 
Cyclicity, the following number shows number of cycles recorded; Spike = the signal is 
dominated by a high magnitude, low frequency spike; H.F.N. = High Frequency Noise (i.e. no 
obvious trend). 

Element 
PK 21/09/12-
01(I) 

PK 21/09/12-
01(II) 

PK 21/09/12-
02(II) 

PK 21/09/12-
05 

PK 21/09/12-
06 

Conc. Trend Conc. Trend Conc. Trend Conc. Trend Conc. Trend 

 

7
Li 

(µmol/mol) 

- - 12.23 H.F.N. 11.86 H.F.N. 17.90 H.F.N. 15.26 
A.S.C. 

6/7 

11
B 

(mmol/mol) 
1.08 Spike 0.75 

A.S.C. 

7 
0.76 

A.S.C. 

8 
1.02 H.F.N. 1.08 

A.S.C. 

6/7 

23
Na 

(mmol/mol) 
25.16 Spike 22.48 H.F.N. 27.87 

A.S.C. 

8 
25.12 H.F.N. 24.92 

L.F.C. 
4 

24
Mg 

(mmol/mol) 4.89 

A.S.C. 

(N.) 

9.5 

5.04 
A.S.C. 

7 (N.) 
5.30 

A.S.C. 

8 (N.) 
6.00 

A.S.C. 

6/7 
5.99 

A.S.C. 

6/7 

27
Al 

(mmol/mol) 
0.16 Spike 0.01 H.F.N. 0.02 H.F.N. 0.02 H.F.N. 0.03 - 

31
P 

(mmol/mol) 
- - - H.F.N. 0.1 H.F.N. 0.02 H.F.N. 0.02 - 

39
K 

(mmol/mol) 
1.41 Spike 0.05 H.F.N. 0.58 H.F.N. 0.61 

A.S.C. 
6/7 

0.53 
L.F.C. 

4 

55
Mn 

(mmol/mol) 
- - - - - - - - 0.01 - 

56
Fe 

(mmol/mol) 
0.04 Spike - - - -. 0.01 - 0.01 H.F.N. 

65
Cu 

(mmol/mol) 
0.02 Spike - - - - - - - - 

66
Zn 

(mmol/mol) 
0.02 Spike - - - - - - - - 

86
Sr 

(mmol/mol) 
10.13 

A.S.C. 

9.5 
11.19 

A.S.C. 

7 
10.29 

A.S.C. 

8 
11.38 

A.S.C. 

6/7 
10.92 

A.S.C. 

6/7 

135
Ba 

(mmol/mol) 
0.01 

A.S.C. 

9.5 
0.01 

A.S.C. 

7 
0.01 

A.S.C. 

8 
0.01 

A.S.C. 

6/7 
0.01 

A.S.C. 

6/7 

238
U 

(µmol/mol) 
1.42 

A.S.C. 

9.5 
1.14 

A.S.C. 

7 (N.) 
0.83 

A.S.C. 

8 (N.) 
1.03 

A.S.C. 
6/7 

0.93 
A.S.C. 

6/7 
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6.2. Modern Croatian samples – Analysis 

6.2.1.  Calibrating the data to a normalised time series 

The C. caespitosa trace element profiles were normalised to a time series 

(Figure 6.2.1, 6.2.2). As all corallites were collected alive on the 21st September 

2012 and data was collected as close to the growth tip of the corallite wall as 

possible, it could be assumed that the last measured point of each profile 

corresponded to September 2012. In each set of corallite profiles, there were 

multiple elements showing assumed annual scale cyclicity. The strongest 

annual scale variable is likely to be seasonal variation in water temperature and 

it has been shown that this is the primary control on the uptake of numerous 

trace elements (Beck et al., 1992; Rong Min et al., 1995; Silenzi et al., 2005; 

Montagna et al., 2007). This means that the observed trace element cycles 

could be used to match up the growth period with various times of the year. 

Strontium and magnesium were used as, in most cases, these elements 

demonstrated the clearest cyclic signal with minimal smaller scale variation. 

Moreover, these are the two trace elements most commonly used as 

palaeothermometers in coralline aragonite (e.g. Beck et al., 1992; McCulloch et 

al., 1994; Mitsuguchi et al., 1996; Marshall and McCulloch, 2002).  

Strontium uptake in coralline aragonite has a negative correlation with seawater 

temperature (Weber, 1973; Beck et al., 1992; de Villiers et al., 1994; Alibert and 

McCulloch, 1997; Marshall and McCulloch, 2002; Silenzi et al., 2005; Montagna 

et al., 2007; Sayani et al., 2011) and magnesium uptake a positive correlation 

(Mitsuguchi et al., 1996; Sinclair et al., 1998; Silenzi et al., 2005; Montagna et 

al., 2007). Thus temporal normalisation of the data was carried out by assuming 
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that each Sr peak maxima/Mg peak minima corresponded to the time of the 

year with the lowest seawater temperatures at this locality (February/March) 

and each Sr trough minima/Mg peak maxima corresponded to the time of the 

year with the highest seawater temperatures (August/September). 

This technique was successfully applied to the δ18O data in Chapter 4.2, by 

assuming δ18O maxima corresponded to temperature minima and δ18O minima 

corresponded to temperature maxima. Therefore, by comparing the temporally 

normalised trace element and δ18O profiles for the one corallite it was possible 

to obtain both analysis from, it can be seen that it also works well for this 

technique, as the profiles appear very similar (Figure 6.2.1).  

 

Figure 6.2.1 Sr/Ca and δ
18

O profiles of modern Croatian C. caespitosa sample PK 
21/09/12-01 (I) profiles normalised to the same time series; both profiles show very 
similar annual sinusoidal cycles, interperted as mainly water temperature change.  

It can be seen in Figure 6.2.2 that this technique works well; with similar 

magnitude and shape patterns visible in separate samples. This is especially 

obvious with the high amplitude 2008-2009 ‘summer’ peak and the particularly 

low amplitude 2009-2010 ‘summer’ peak, both correlative between samples. 
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This suggests that the controls on relative concentrations of Sr and Mg are the 

same for each corallite, a promising observation for their use in 

palaeothermometry. 

 

Figure 6.2.2 Modern Croatian C. caespitosa  samples (PK 21/09/12) Sr/Ca and Mg/Ca 
profiles normalised to a time series. Intra-year trends can be matched up between 
corallite samples, e.g. the high amplitude 2008-2009 ‘summer’ peak and the particularly 
low amplitude 2009-2010 ‘summer’ peak can both be seen in the majority of samples. Sr 
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profiles are shown with an inverse Y-axis to highlight similarity with Mg profiles due to 
Sr’s negative correlation with SST. R

2
 values for Mg/Ca against Sr/Ca are as follows: PK 

21/09/12-01 (I): 0.35; PK 21/09/12-01 (II); 0.15; PK 21/09/12-02 (II): 0.16; PK 21/09/12-05: 
0.57; PK 21/09/12-06: 0.23. 

6.2.2. Application of published trace elemental 

palaeothermometers  

The modern samples come from a well-studied locality where temperatures, 

both at the sea surface and at the depth of coral growth, are available 

throughout the majority of the growth period (up to 2010). It should thus be 

possible to use these samples to test the validity of published C. caespitosa 

trace element/Ca palaeothermometers and their viability for use on ancient 

samples where growth conditions are unconstrained. 

The average annual sea surface temperature at Mljet over the period 2003-

2010 (which covers the majority of the growth years analysed) was 20.3°C 

(Kružić et al., 2012), the average monthly mean temperature reached during the 

summer months is 27.5°C  (Kružić, 2002) and the average lowest monthly 

mean temperature reached during winter is 11.0°C (Kružić, 2002). The range is 

reduced somewhat at the deepest parts of the coral bank (around 15 m) with 

average monthly temperatures ranging from approximately 26 to 14°C at this 

depth (Figure 4.2.1). It was therefore expected that the temperatures derived 

from previously published equations for the C. caespitosa trace element-SST 

relationship, using the measured Sr/Ca and Mg/Ca data, would be within this 

range for all samples. 

Sr/Ca 

The negatively correlated  temperature dependence of strontium incorporation 

into inorganically grown carbonates was first demonstrated by Kinsman and 
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Holland (1969) and Weber (1973) found a similar relationship in coralline 

aragonite (in direct contrast to previous studies which had found no relationship 

(e.g. Thompson and Chow, 1955; Thompson and Livingston, 1970)). Sr has 

since been the most commonly used trace element for carbonate thermometry 

(e.g. Beck et al., 1992; de Villiers et al., 1994; de Villiers et al., 1995; Allison et 

al., 2001). It has been widely observed that strontium is one of the most 

abundant trace elements in corals (Silenzi et al., 2005). Sr2+ substitutes directly 

and ideally for Ca2+ with only a small (2%) dilation of the site and no evidence 

has been found for clustering into strontianite (SrCO3) nanodomains within the 

aragonite crystal lattice (Finch and Allison, 2007), which could potentially affect 

the reliability of the Sr/Ca palaeothermometer at high resolutions. Incorporation 

of Sr into the coralline aragonite is believed to be controlled mainly by the Sr/Ca 

activity of seawater and the Sr/Ca distribution coefficient between aragonite and 

seawater (DA
SR) which are both controlled by temperature (Beck et al., 1992). 

While many studies have looked at the Sr/Ca – temperature relationship of 

tropical corals (Beck et al., 1992; McCulloch et al., 1994; de Villiers et al., 1994; 

de Villiers et al., 1995; e.g. Alibert and McCulloch, 1997) only two equations 

have been published for the relationship between Sr/Ca and SST for C. 

caespitosa: 

Equation 6.1: Sr/Ca(mmol/mol) = 11.25(±0.38) − 0.079(±0.026) ∙ SST(oC)  

(Silenzi et al., 2005) 

Equation 6.2: Sr/Ca(mmol/mol) = 10.50(±0.13) − 0.073(±0.006) ∙ SST(°C)  

(Montagna et al., 2007) 
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By applying these equations to the modern samples’ Sr/Ca compositions and 

comparing the calculated SSTs to those recorded at Mljet National Park (Kružić, 

2002; Kružić et al., 2012) their validity for calculating palaeotemperatures can 

be assessed. The produced temperature profiles are shown in Figure 6.2.3.

 

Figure 6.2.3 Sr/Ca calculated palaeotemperatures using equations published by Silenzi et 
al. (2005) and Montagna et al. (2007) 
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Figure 6.2.3 shows that the temperatures produced by Equations 6.1 and 6.2 

are significantly different from each other, in all samples the Montagna et al. 

(2007) equation consistently results in temperatures around 10°C lower. It is 

also clear that both equations produce temperatures, for these modern 

samples, that are too low to be realistic, with temperatures below freezing 

‘recorded’ in all samples. In an isolated sample this may not be a problem as it 

would be possible to re-calibrate the equation for the sample, as was done for 

the isotopic compositions in Chapter 4. This is not possible in practice, however, 

as the different samples show large degrees of intra-site variation in their Sr 

compositions, ranging from 10.13 to 11.38 mmol/mol (  
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Table 6.1.1), therefore producing very different temperatures when the same 

equation is applied to all. It is not just the calculated temperatures that are 

different; the annual ranges are different for each corallite; for example PK 

21/09/12-01 (I) shows annual variation of around 15-20°C whereas PK 

21/09/12-02 (II) shows a variation of just 8-15°C. As all the corals have grown 

within metres of each other on the same bank they should have experienced 

very similar growth conditions; clearly they are not recording actual 

temperatures in their Sr composition. 

Mg/Ca 

The distribution of Mg/Ca also showed a strong seasonal signal and again this 

relationship has been used extensively as a proxy for growth temperature of 

carbonate organisms (Mitsuguchi et al., 1996; Sinclair et al., 1998; Silenzi et al., 

2005; Montagna et al., 2007). SST and Mg/Ca have repeatedly been shown to 

have a significant positive correlation with each other, allowing for the 

calibration of Mg/Ca palaeothermometers (Mitsuguchi et al., 1996; Sinclair et 

al., 1998; Silenzi et al., 2005; Montagna et al., 2007; Armid et al., 2011; Schöne 

et al., 2011), in some cases more sensitive to changes (Mitsuguchi et al., 1996) 

and more reliable (Kamenos et al., 2008) than the Sr/Ca – SST relationship. 

For C. caespitosa two equations have been published for the relationship 

between Mg/Ca and SST: 

Equation 6.3: Mg/Ca (mmol/mol) = −4.41(±3.10) +0.55(±0.21) ∙ SST (oC)  

(Silenzi et al., 2005) 

Equation 6.4: Mg/Ca (mmol/mol) = 1.66(±0.28) + 0.121(±0.013) ∙ SST (°C)  
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(Montagna et al., 2007) 

Again, by applying these equations to the modern samples’ Mg/Ca 

compositions and comparing the calculated SSTs to those recorded at Mljet 

National Park (Kružić, 2002; Kružić et al., 2012) their utility for calculating 

palaeotemperatures can be assessed (Figure 6.2.4). 
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Figure 6.2.4 Mg/Ca calculated palaeotemperatures using equations published by Silenzi 
et al. (2005) and Montagna et al. (2007) 

The most obvious feature of the temperatures produced by these equations is 

that the Silenzi et al. (2005) equation, while providing a reasonable average 

temperature for each sample, calculates a very narrow seasonal range with less 

than 5°C variation over the whole of each profile. The Montagna et al. (2007) 

equation is somewhat closer to the expected degree of variation, with most 
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years in all samples showing a seasonal variation of between 15-20°C, but with 

temperatures which are too high, the majority of temperatures between 20 and 

45°C. The large difference in the seasonal temperature range calculated by the 

two equations may partly be explained by the way Silenzi et al. (2005) produced 

their calibration equation; using only the winter growth bands of a C. caespitosa 

corallite and looking at average seasonal temperatures. This means that they 

only applied a narrow range of temperatures and Mg/Ca values in their 

calculation of their calibration equations so that there is a lot of extrapolation 

involved in applying their equation(s) to a full year’s Mg/Ca (or Sr/Ca) data. A 

calculated 9°C variability in the average temperatures between all the samples 

shows a high degree of intra-site variability in Mg uptake which cannot be 

explained by differences in temperature experienced over the growth period.   

 

6.2.3.  Intra-site variability in trace elemental composition 

The Mg and Sr data from the modern Croatian samples is summarised in Table 

6.2.1. There is a high degree of intra-site variation between the average 

compositions of the samples and the temperatures calculated from those 

compositions for both Sr and Mg. 
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Table 6.2.1 Summary of modern Croatian (PK 21/09/12) Sr and Mg compositions and the 
temperatures calculated from them using the published Silenzi et al. (2005) and 
Montagna et al. (2007) equations to show the wide degree of intra-site variation. 

 Average 
compositions 
(mmol/mol) 

Average Sr/Ca 
calculated 
temperatures (°C) 

Average Mg/Ca 
calculated 
temperatures (°C) 

Actual 
measured 
temperature 
(°C) 

 Sr/Ca  Mg/Ca  Silenzi et 
al., 2005 

Montagna 
et al., 2007 

Silenzi et 
al., 2005 

Montagna 
et al., 2007 

Kružić et al., 
2012 
 

 
PK 
21/09/12-
01(I) 
 

 
10.12 

 
4.89 

 
14.22 

 
5.12 

 
16.92 

 
26.72 

 
20.3 

PK 
21/09/12-
01(II) 
 

11.19 5.04 0.70 −9.52 17.19 28.67 20.3 

PK 
21/09/12-
02(II) 
 

10.29 5.01 12.15 2.88 17.13 30.09 20.3 

PK 
21/09/12-
05 
 

11.38 6.00 −1.65 −12.06 18.92 35.85 20.3 

PK 
21/09/12-
06 
 

10.92 5.99 4.24 −5.69 18.90 35.76 20.3 

 

There is also wide intra-site variability in all the other trace elements analysed, 

as shown in Table 6.2.1. This variation suggests that each coral exhibits a 

strong metabolic control, a ‘vital effect’ (Weber and Woodhead, 1972), over the 

uptake and incorporation of trace elements from the seawater into its calcifying 

skeleton. This means that there is no constant, species-specific offset from 

equilibrium and any temperature-trace element relationships would need to be 

colony specific, which is unsuitable for palaeotemperature reconstruction. A 

reliable proxy for temperature requires the amount of disequilibrium to be 

constant at least at the genus or species level (Marshall and McCulloch, 2002). 
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These findings of intra-site variability in trace element uptake are in agreement 

with some studies on tropical corals, such as Porites, where analysis of multiple 

colonies has shown there are issues with reproducibility of a constant Sr/Ca 

calibration between studies and even within the same study. For example, de 

Villers et al. (1994) analysed the Sr/Ca ratio of 3 specimens of Porites lobata  

from the same reef in Hawaii. SST, Sr/Caseawater and growth rate were found to 

be the same at all localities; however, a different trend of Sr/Ca and therefore a 

different calibration to SST was found for each specimen. This meant that SST 

calculations varied by as much as 2-3oC. 

Intra-specific variation may be related to variations in the photosynthetic 

variability of the symbiotic zooxanthellae (Cohen et al., 2002). Increased water 

temperature and increased photosynthesis both have an inverse relationship 

with the Sr/Ca of skeletal aragonite. As well as causing variations between 

corals this may also exaggerate seasonality in individual corals where 

zooxanthellae are much more active in the summer than winter (Cohen et al., 

2002). This will clearly affect non-tropical corals such as C. caespitosa. It seems 

reasonable, then, to infer that the effect of photosynthesis on ion uptake may 

extend to, and explain the variance in, other trace elements. As C. caespitosa is 

particularly well adapted to living in turbid waters due to its combined reliance 

on autotrophy and heterotrophy (Peirano et al., 2004), the amount of each that 

a particular colony relies on during any period could be highly variable, 

depending on the flow of particulates (both edible and non-edible sediment) 

around the coral bank, and also how shady the growth locality is. 

It has also been shown that (tropical) corals under stress do not conform to the 

normal rules for trace element-SST relationships. At high or low temperatures 
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highly anomalous results with a breakdown in relationship have been recorded 

(Marshall and McCulloch, 2002). This is a factor which may be quite important 

for the study of C. caespitosa as, at this locality, much of the winter is spent at 

temperatures near or below the minimum temperature for calcification 

(Montagna et al., 2007) while, during the summer, temperatures often peak at 

around the maximum levels this species can tolerate (Rodolfo-Metalpa et al., 

2005; Kružić, 2007). 

These issues with intra-site/inter-corallite variability in trace element uptake 

were not encountered in the papers of Montagna et al. (2007) and Silenzi et al. 

(2005) as these studies focussed their efforts onto a single corallite. However, 

the fact that the same data set (from any one of the Croatian corallites) 

produces such different temperatures from their two sets of equations (Silenzi et 

al., 2005; Montagna et al., 2007) suggests that the corallites studied in these 

papers did also exhibit differing trace element-temperature relationships.  

It is also noteworthy that the published C. caespitosa trace element – seawater 

temperature thermometers incorporate a level of error in the equations that 

allows a range of temperatures to be calculated. For example, using the Silenzi 

et al., (2005) equation and an Mg/Ca value of 6.0 mmol/mol, temperatures 

ranging from 9.6 to 39.7°C may be calculated. This ≈20°C error range is larger 

than the ≈17°C actual annual temperature range recorded over the year at the 

locality (Kružić and Požar-Domac, 2002; Kružić et al., 2012). Similar errors are 

found for the other equations; this is shown in Figure 6.2.5 using the Silenzi et 

al. (2005) Sr/Ca – temperature relationship and PK 21/09/12-02(II) as an 

example. 
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Figure 6.2.5 Range of temperatures that can be calculated from the Silenzi et al. (2005) 
Sr/Ca – temperature relationship equation for C. caespitosa sample PK 21/09/12-02(II) 
when the full range of uncertainty in the equation is taken into account. The line ‘Silenzi 
min.’ plots the minimum values that can be attained, using the equation: SST = 
(Sr/Ca−10.87)/−0.105; ‘Silenzi max’ plots the maximum values that can be attained, using 
the equation: SST = (Sr/Ca−11.63)/−0.053. 

As both of these studies only examined a single individual corallite, this shows 

that there is a large degree of internal variation of the trace element – 

temperature relationship within each corallite.  This further demonstrates that 

this is not a reliable technique for palaeothermometry. 

6.2.4.  Other potential uses for trace element analysis of C. 

caespitosa samples 

6.2.4.1. Other palaeoenvironmental indicators 

While it appears that intra-site, and possibly even intra-colony/corallite, 

variability means that the trace elemental composition of C. caespitosa cannot 

provide a reliable quantitative palaeotemperature record, it is clear, from the 

repeated cyclicity and patterns that can be traced between corallites, that C. 

caespitosa does record some essence of the environmental conditions in its 
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trace element record as it grows. Therefore there may be the potential to 

procure other, non-quantitative, information.  

The non-cyclic profiles of PK 21/09/12-01 are dominated by a large 

asymmetrical spike (Figure 6.1.3). Figure 6.2.6 shows one of the strongest 

spike dominated signals, K/Ca, after time series calibration. The spike is much 

too low frequency to have any relationship with an annual phenomena such as 

temperature; however, the spike clearly starts in late 2007. 

As the spike is broadly asymmetric, being steeper on the basal (older) side and 

tailing off more gradually over time, it appears there was an influx of elements 

into the aragonite-seawater system towards the end of 2007 which 

subsequently decreased over time. This points to a sudden, singular event, 

injecting a high concentration of these elements into the water which then 

gradually dispersed, settling into the sediment or taken up by organisms. Indeed 

the shape could be a composite of at least three smaller spikes, suggesting 

multiple (linked) injection events. 
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Figure 6.2.6 K/Ca profile of PK 21/09/12-01 showing the high magnitude, low amplitude 
spike in the signal which is believed to be related to a large influx of sediment into the 
seawater. 

 

Figure 6.2.7 Unquantified P/Ca profile of PK 21/09/12-01 showing the high magnitude, low 
amplitude spike in the signal which is believed to be related to a large influx of sediment 
into the seawater. Note negative concentrations showing that the signal is not correctly 
calibrated. 

Of the elements recorded in this ‘event’, Al, Fe, Cu, Zn, Na are all common rock 

forming elements; it would thus be expected that the seawater content of these 

elements would be higher at times of increased sediment input.  An even larger 

similar shaped (unquantified) spike in the P signal was also observed, the 

shape of this profile is presented in Figure 6.2.7 but the data is not truly 
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quantitative as P content could not be calibrated accurately with the standards 

used in this study. Changes in the P/Ca content of corals have been shown to 

reflect the phosphorous content of seawater (Montagna et al., 2006b; LaVigne 

et al., 2010) which often reflects changes in biological productivity and cycling of 

the water column. In the Mediterranean, however, increases in phosphate 

activity are mainly related to river-runoff and sediment supply (Béthoux et al., 

1998). It is unusual that high Ba content is not recorded in this event, only a 

very short frequency, initial spike being recorded in the Ba/Ca profile. Alibert et 

al. (2003) and Montaggioni et al. (2006) both found that Ba/Ca ratios in modern 

near shore corals are related to the sediment load of rivers which discharge into 

the coastal zone, such that discrete peaks in Ba/Ca coincide with flood events, 

masking the normal temperature related signal. As all the elements that record 

this event are those common in both detrital sediments and organic matter 

(especially P and K), it suggests that during 2007 an event introduced larger 

than normal volumes of both inorganic and organic detritus into the shallow 

marine environment around Croatia. 

If this signal was found in an ancient sample without other supporting 

information, the cause of an increased sediment discharge event would be 

rather ambiguous. However, for this recent sample there are reliable supporting 

historical records. During the late summer of 2007, following a particularly long 

heat wave in Southern and Eastern Europe, widespread wildfires burned 

through coastal regions of Croatia affecting a total area of 1590km2  (BBC, 

2007; U.S. Agency for International Development, 2007; CRED, 2009)  It is well 

known that after fires have destroyed vegetation, terrestrial sediments are 

destabilised. This means that during the following rainy season(s) water runoff 



Sam Royle  Trace element analysis 

165 
 

and erosion of soils was enhanced. This effect will last until the hinterland 

vegetation is re-established, which can take years (e.g. Abram et al., 2003).  

Increased sediment supply due to increased soil erosion following the 2007 wild 

fires fits very well with the trace elemental data from this sample. Further 

evidence for this is the presence of organic, woody matter (possibly charcoal) 

preserved embedded in the inner edge of the corallite wall of PK 21/09/12-01, 

Figure 6.2.8. This is only present at one horizon in the corallite at approximately 

21.5mm from the base; within error this is the right place to be entrapped debris 

from the 2007 fires. 

 

Figure 6.2.8 PK 21/09/12-01, secondary electron images of organic detritus at various 
magnifications. (a) Twig fragments embedded in the corallite wall, (b-d) smaller woody 
tissues. Only d is gold-coated, the rest were imaged under low vacuum due to difficulties 
with applying an even covering of gold to the complex microstructure of the corallite. 

In both the Mg and (inverse) Sr traces in all samples, except PK 21/09/12-01(II), 

the peak believed to correspond to the summer of 2007 is a high, broad peak 
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with little variation compared to other years. This suggests that this was a 

(relatively) long, hot summer with water temperatures kept consistently high for 

the whole season, consistent with reports of the long heat wave which preceded 

the fires (BBC, 2007; Wikipedia, 2007). 

This demonstrates the potential for coastal corals to be used as palaeo-fire 

indicators, although other events could lead to a similar increase of soil erosion 

and sediment and organic detritus input into the sea, for example increased 

periods of rainfall and flooding. Without the presence of the charcoaled wood 

fragments, preserved within this sample, it could be difficult to tell what the 

causal event was. This event is not recorded in the other samples from the 

colony, which suggest corallite growth position was key; presumably corals that 

did not record the event grew in less turbid areas, sheltered from the increased 

sediment flux. As the ‘spike’ is not recorded in other corallites, there is the 

possibility that it is an analytical artefact, potentially produced by a fluctuation in 

the energy of the laser. However, due the observation of detritus embedded in 

the corallite wall (under SEM) at approximately the same position as the ‘spike’ 

is recorded, it is believed that this is a real phenomenon recording the wildfire 

event. 

6.2.4.2. Indicator of preservation quality 

These modern samples were all very well preserved, with SEM images (Figure 

6.2.9) showing no syndepositional marine cement growth (cf. Montagna et al., 

2007). This was observed in other modern samples from the Gulf of La Spezia, 

Italy (Figure 6.2.10) however these were not analysed further. 
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Such syndepositional marine aragonite cementation precipitated within skeletal 

cavities is important to quantify as it typically has significantly higher average 

Sr/Ca and U/Ca than coralline skeletal aragonite (e.g. Cohen and Hart, 2004; 

Montaggioni et al., 2006): growing corals appear to discriminate against 

uranium and strontium incorporation, while marine cements, which form either 

syndepositionally or subsequently while the coral is immersed in seawater 

(Montagna et al., 2007) are not biologically controlled and so are significantly 

enriched in uranium (Gvirtzman et al., 1973). The presence of marine aragonite 

cements may thus significantly change derived SST towards cooler 

temperatures (Montaggioni et al., 2006; Sayani et al., 2011) as Sr/Ca and U/Ca 

ratios are negatively correlated with temperature.   

 

 

Figure 6.2.9 Septal region of modern Croatian C. caespitosa, pore spaces free of 
syndepositional cement growth and no signs of alteration (uncoated secondary electron 
image) 



Sam Royle  Trace element analysis 

168 
 

 

Figure 6.2.10 Radial syndepositional marine aragonite cements in a modern Italian C. 
caespitosa; secondary electron image, uncoated. 

As no cements were found, however, the geochemical profiles in the modern 

Croatian samples are interpreted as original signals recorded at the time of 

growth. This need not be the case for fossil or sub fossil samples which may 

have typically had many thousands of years exposed to percolating meteoric 

waters or exposed in the marine supratidal splash zone where open system 

conditions allow elemental remobilisation, partial dissolution and cementation, 

collectively termed ‘stabilization’.  

Depending on the properties of the particular element, there are a number of 

ways in which trace elements become incorporated into coralline skeletal 

aragonite, some of these more stable than others. Trace elements are 

incorporated by substituting for Ca2+ ions in aragonite (Finch and Allison, 2007), 

however, they need not be lattice-bound, instead forming organo-metal 

complexes or being adsorbed onto crystal faces (Amiel et al., 1973). Trace 

elements may co-precipitate with the aragonite by occlusion, being trapped in 

crystal defects or micro-domains (Sinclair, 2005). Small trace-element enriched 

organic or inorganic particles may also become trapped between skeletal 
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spines when stresses cause coral tissue to retract (Brown et al., 1991). Those 

elements (such as Mg) which are only bound loosely in the aragonite crystal 

lattice will be more easily affected by diagenesis (Silenzi et al., 2005); original 

geochemical trends will thus potentially be lost by redistribution of the weakly-

bound trace elements during stabilization. Even elements held securely within 

the crystal lattice can be affected by alteration and stabilization.  

The (relatively) quick, inexpensive and non-destructive LA-ICP-MS analysis of 

fossil and sub-fossil coral samples is therefore be a robust way of testing 

corallites for significant levels of alteration, before using them for dating or other 

analytical purposes.  Because of this, the collected LA-ICP-MS data from fossil 

corals (below) is focussed on testing their preservation quality and the 

subsequent robustness of any palaeothermometry and wider environmental 

signals such as detrital input.  

6.3. Fossil Greek samples – trace elemental results 

and discussion 

Fossil C. caespitosa corallites were selected to provide a range of preservation 

qualities and ages to test how the cyclic signals seen in modern corals might 

degrade over time with alteration of the corallite. The Greek fossil corallites 

examined were: an obviously altered MIS 5e sample JEA 010626-04 from Goat 

Point; two (visibly) well preserved MIS 5e samples SHR 02/11/11-08(II) and 

SHR 04/11/11-10 from West Makrugoaz Ridge and West Flagnoro Bay 

respectively; two (visibly) well preserved MIS 7a samples, SHR 02/11/11-02 (I) 

and (II) from Lake Vouliagmenis (see Table 3.2.1 and Figure 3.1.4 for locality 

details). The average trace element concentrations measured and types of 

trends shown are summarised in Table 6.3.1; the majority of samples do 



Sam Royle  Trace element analysis 

170 
 

preserve annual scale cyclicity in Sr, Mg, B, Ba and U as seen in the modern 

corallites. 

The number of each corallite’s seasonal growth band pairs were compared 

against the number of cycles (if any) in the Sr and Mg profiles, and if these 

numbers were similar (±1) then it was assumed that annual cyclicity was 

preserved and the profile was set to a time series in the same way as the 

modern samples (see above). If there was no annual scale cyclicity present in 

Sr or Mg then it was necessary to attempt to set the trace element profile to a 

time series by attempting to match up the distances along the ablation transect 

with the spacings of the growth bands, assuming each growth band was 

representative of the same period of time (5 months for the winter, recessed, 

bands and 7 months of the summer, pronounced, bands (Peirano et al., 1999)). 

This is a much more time consuming and less accurate method; the individual 

bands are often not very distinct, they are hard to measure and the transect was 

not always completely parallel to growth direction (as holes and bends had to 

be compensated for), introducing error in the time series. 
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Table 6.3.1 Summary of the average trace element concentrations and main trends of trace 

element distribution in selected LA-ICP-MS analysed fossil Greek C. caespitosa samples. 

Concentrations are shown as ratios of trace element/
43

Ca (varying units shown in table) after calibration to 
100% aragonite (CaCO3) using internal standard 

43
Ca = 38%. Mg and Sr are highlighted as they are the 

trace elements this study is most interested in. Key to trend abbreviations: A.S.C. = Annual Scale Cyclicity, 
the following number shows number of cycles recorded, (N.) shows that the annual signal is noisy; S.C. = 
Some Cyclicity, a degree of an original cyclicity has been preserved; L.T.G. = Long Term Gradient, the 
signal is dominated by an overall increase or decrease in the signal; H.F.N. = High Frequency Noise (i.e. 
no obvious trend). 

Element 
SHR 02/11/11-
08(II) 

SHR 04/11/11-
10 

SHR 02/11/11-
02(I) 

SHR 02/11/11-
02(II) 

JEA 010626-
04 

Conc. Trend Conc. Trend Conc. Trend Conc. Trend Conc. Trend 

 

7
Li 

(µmol/mol) 

73.82 H.F.N. 104.8
7 

H.F.N. 7.00 H.F.N. 3.82 H.F.N. 29.81 H.F.N. 

11
B 

(mmol/mol) 
0.81 

A.S.C. 

8 
0.93 

A.S.C. 

8  
1.02 

A.S.C. 

7 
1.00 

A.S.C. 
8 

1.08 
S.C. 

6/7 

23
Na 

(mmol/mol) 
25.61 H.F.N 31.18 H.F.N. 16.70 

S.S. 

6/7 
13.67 H.F.N. 24.56 L.T.G. 

24
Mg 

(mmol/mol) 
4.37 

A.S.C. 

8 
5.14 

A.S.C. 

8 
5.82 

A.S.C. 

7 
5.97 

A.S.C. 

8 
4.98 H.F.N. 

27
Al 

(mmol/mol) 
- - - - - - - - 0.07 H.F.N. 

31
P 

(mmol/mol) 
0.25 H.F.N. 0.34 H.F.N. 0.20 H.F.N. 0.09 H.F.N. 0.22 H.F.N. 

39
K 

(mmol/mol) 
0.23 H.F.N. 0.32 H.F.N. 0.54 H.F.N. 0.45 H.F.N. 0.48 H.F.N. 

55
Mn 

(mmol/mol) 
0.01 H.F.N. 0.01 H.F.N. - - - - 0.04 H.F.N. 

56
Fe 

(mmol/mol) 
0.02 H.F.N. 0.21 H.F.N. 0.04 H.F.N. 0.03 H.F.N. 0.05 H.F.N. 

65
Cu 

(mmol/mol) 
- - 0.01 H.F.N. - - - - - - 

66
Zn 

(mmol/mol) 
- - - - - - - - - - 

86
Sr 

(mmol/mol) 
9.06 

A.S.C. 

8 
7.97 

A.S.C. 

8 
10.35 

A.S.C. 

7 
10.65 

A.S.C. 

8 
13.30 

S.C. 

6/7 

135
Ba 

(mmol/mol) 
0.04 

A.S.C. 

8 
0.02 H.F.N. 0.02 

A.S.C. 

7 
0.03 H.F.N. 0.06 

S.C. 

6/7 

238
U 

(µmol/mol) 
1.06 

A.S.C. 

8 
0.69 

A.S.C. 

8 
0.02 

A.S.C. 

7 
2.04 

A.S.C. 
8 

1.80 
L.T.G. 

6/7 
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6.3.1.  Well preserved samples – MIS 5e and MIS 7a 

Samples as old as 225 ka still preserve clear annual-scale signals in Sr and Mg, 

as shown in Figure 6.3.1 to Figure 6.3.4. 

 

Figure 6.3.1 SHR 02/11/11-08(II), Mg/Ca and Sr/Ca profiles through MIS 5e corallite showing clear, 

annual-scale cyclicity 

 

Figure 6.3.2 SHR 04/11/11-10, Mg/Ca and Sr/Ca profiles through MIS 5e corallite showing clear, 

annual-scale cyclicity 
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Figure 6.3.3 SHR 02/11/11-02(I), Mg/Ca and Sr/Ca profiles through MIS 7c corallite showing clear, 

annual-scale cyclicity 

 

 

Figure 6.3.4 SHR 02/11/11-02(II), Mg/Ca and Sr/Ca profiles through MIS 7c corallite 
showing clear, annual-scale cyclicity 

The clear annual-scale cyclicity and similar values and ranges in the data in 

these fossil samples to the modern samples show they are still preserving their 

original geochemical signature: this is supported by well-preserved aragonite 

skeletal crystals visible in SEM images (Figure 6.3.5). This should make them 
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candidates for providing reliable U-Th dates, as it is often difficult to identify 

reliable, unaltered, material by other methods. 

 

Figure 6.3.5 Well preserved acicular aragonite exposed in broken septa in MIS 5e C. caespitosa 

sample SHR 02/11/11-08(II) confirms lack of diagenetic alteration; gold coated secondary electron 
image. 

 

6.3.2.  Altered sample – MIS 5e  

 

Figure 6.3.6 JEA 010626-04 Mg/Ca and Sr/Ca profiles through MIS 5e corallite showing 
hints of annual-scale cyclicity, however this is mostly lost in apparently random, higher 
frequency ‘noise’. U/Ca is also shown for comparison with Sr/Ca. 
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The complexities of the trace element/Ca trace (Figure 6.3.6) for this sample 

are probably an example of complex partial alteration in a coral with an 

unusually complex post-depositional history. The sample was collected at about 

5 m modern elevation in the modern seawater splash zone. Based on regional 

uplift models (Leeder et al., 2005; 2003), Figure 6.3.7, Figure 6.3.8, the fossil 

was probably emergent for 20-30 ka after death (at about ~125 ka), before 

being re-immersed in seawater during the sea-level highstands of MIS 5c and 

5a, due to ~20m down-throw from local faulting (Figure 6.3.8; J. Andrews pers. 

comm.). Following 5a the coral became emergent again during the lowstands of 

MIS 2 and 3, but situated close to sea-level (and thus in the marine splash 

zone) during the 7 thousand years as Holocene sea-levels approached modern 

elevations. The local down-throw associated with faulting is key as this allows 

this sample to be re-emerged in seawater twice during its history and to be 

situated close to modern sea level throughout the Holocene. 
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Figure 6.3.7 Eustatic Sea level curve adapted from Leeder et al. (2003) showing changing 
rates of uplift experienced by the marine terraces of the Perachora Peninsula relative to 
modern sea level 
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Figure 6.3.8 Post depositional history diagram for the MIS 5e sample JEA 010626-04 from 
Goat Point. This deposit was downthrown ≈20m between 5e and 5c (based on field 
relationships) before uplift recommenced. Because of this the corals were re-submerged 
during the highstands of MIS 5c and 5a, exposed to the splash zone throughout the 
Holocene and to meteoric fluids during other times, a partially open system where 
stabilisation to calcite may have occurred during any of these situations. 

Annual scale cyclic trends in Mg/Ca and U/Ca for the first two growth years of 

this coral decrease in amplitude thereafter, with the overall Mg/Ca content 

increasing and the trend completely disappearing into ‘noise’ for the rest of the 

record. The cyclic trend of Sr is noisy in growth years 1 and 2 and then shows 

increased Sr content thereafter. Partial stabilization of aragonite to calcite 

explains the Mg data, the younger part of the coral having been partially 

stabilized from aragonite to calcite with concomitant accommodation of Mg in 

calcite. This is supported by the range of levels of diagenetic calcite in the SEM 

images, going from regions of (visibly) unaltered primary aragonite through to 

complete replacement by calcite (Figure 6.3.9 and Figure 6.3.10). The Sr and U 

data could reflect partial stabilization following episodes of marine diagenesis 
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(see diagenetic history above) when immersion allowed precipitation of marine 

aragonite cements with higher Sr/Ca and U/Ca than the skeletal aragonite (e.g. 

Cohen and Hart, 2004; Montaggioni et al., 2006) however, no aragonite 

cements were seen under SEM.  Instead, it is suggested that the Sr and U data 

may simply show that partial alteration was not fully open-system leaving calcite 

domains where Sr and U liberated from the dissolving aragonite, were forced to 

be accommodated. 

 

Figure 6.3.9 C. caespitosa sample JEA 010626-04 showing partially altered corallite wall, 
mostly made up of acicular aragonite crystals but blocky calcite crystals are also 
present, gold coated secondary electron image 



Sam Royle  Trace element analysis 

179 
 

 

Figure 6.3.10 Uncoated BSEM image of JEA 010626-04 showing patch of corallite wall 
completely altered to blocky calcite crystals 

 

6.4. Conclusions 

6.4.1.  Potential of this technique for palaeoclimate 

research  

As there is so much inter-site variability in the modern samples, it is concluded 

that there is little potential for the trace elemental composition of C. caespitosa 

to be used as a high resolution palaeothermometer. However, it is shown that 

original depositional geochemical signatures can be preserved in corallites up to 

at least MIS 7a age, with the conditions that the corallite is exposed to (e.g. time 

in the splash zone) being more important for preservation than age alone.  

Partial alteration of the corallite wall (apparently due to prolonged exposure in 

the marine splash zone) to calcite and the growth of secondary cements 

destroys original cyclic signals. Therefore analysis of samples by LA-ICP-MS to 

identify the presence of annual scale cyclicity could be a quick way of testing 
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preservation quality, allowing the selection of corallites for U-Th dating which 

requires unaltered material. 

A solitary modern sample (PK 21/09/12-01), shows that there is potential for 

these corals to record singular events of sediment discharge, in this case linked 

to fires but also including floods However, as this was only seen in one sample 

from the bank, and each corallite analysed only records a few years of growth, it 

would be lucky to find evidence for these rare events in the fossil record. 

6.4.2.  Comparisons with the findings of Montagna et al., 

2007 

Montagna et al. (2007) concluded that ‘C. caespitosa has the potential to 

provide an important new archive of high-resolution climate variability in the 

Mediterranean Sea’. The authors reach this conclusion after finding close 

relationships between the trace element concentrations of B, Ba, Sr, U and (to a 

lesser extent) Mg in 6 years’ worth of growth of a solitary corallite with weekly-

fortnightly in situ measured SST. This study finds the strongest correlation with 

SST to be with boron, claiming it not to be affected by changes in salinity or 

river run off, while U and Ba are more affected by river runoff.  

In contrast, the current study finds, from analysing multiple corallites, that there 

is too much intra-site variability in the geochemical composition of corallites for 

their use as archives of high-resolution climate variability in the Mediterranean 

Sea. Clearly SST controlled cycles in trace element composition, for the same 

elements as in the work of Montagna, were found in all samples. If each sample 

was taken separately then it would be concluded that there was promise for this 

species as a palaeoenvironmental archive. However, when looked at together, 
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there are large differences in both the absolute concentration and range of 

concentrations of trace elements between samples which grew on the same 

bank, under (presumably) identical climatic conditions. This shows the 

importance of analysing multiple samples before making an assumption that all 

will give the same results; the uptake of trace elements by the growing coral 

clearly has an unpredictable metabolic control or vital effect (discussed in more 

detail in Chapter 7.1). 
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7.  Discussion & Review 

In this chapter I discuss the findings of this study, focusing on complications 

arising from disequilibrium precipitation in coralline aragonite. 

7.1. Disequilibrium calcification in C. caespitosa 

The modern samples of C. caespitosa aragonite were calculated to be depleted 

(from equilibrium values) in δ18O by an average ≈3.5‰ and enriched in ∆47 by 

0.07‰ using the UEA calibration. This apparently negative relationship in 

disequilibrium between ∆47 and δ18O must be caused by a ‘vital effect’ (Weber 

and Woodhead, 1972).  

7.1.1.  Coral Calcification 

To be able to properly discuss the potential mechanisms that cause the 

observed disequilibrium calcification, it is first necessary to review how corals 

form their aragonite skeleton.  

 

Figure 7.1.1 Simplified schematic diagram of coral calcification (modified from Saenger et al., 

2012 and Adkins et al. 2003). See text for a detailed explanation. Not to scale. 

All coralline skeletal solids calcify from a closed, or semi-enclosed extracellular 

calcifying fluid (ECF) located between the existing skeleton and the coral’s 
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calcioblastic membrane (Cohen and McConnaughey, 2003; Adkins et al., 2003; 

Saenger et al., 2012) (Figure 7.1.1). Therefore all CaCO3 is deposited in 

association with the calcioblastic tissue and so is organically mediated (Ghosh 

et al., 2006). At seawater concentrations, calcium becomes supersaturated in 

the calcifying space via a Ca-ATPase enzyme pump that actively expels two 

hydrogen protons for each Ca2+ pumped in across the membrane; Figure 7.1.1. 

This removal of H+ also increases pH at the calcification site, to significantly 

alkaline values, ≈9.0 (Holcomb et al., 2009), causing a shift in dissolved organic 

carbon (DIC) speciation from HCO3
- to CO3

2-, further increasing the aragonite 

saturation state of the ECF (Cohen and McConnaughey, 2003). The removal of 

H+ from the calcification site reduces the partial pressure of CO2 within the ECF, 

initiating a net diffusion of respired CO2(aq) across the permeable calcioblastic 

membrane (McConnaughey, 1989) into the calcifying space. This metabolic 

CO2 reacts with H2O and OH- to produce more HCO3
- and CO3

2- via hydration 

and/or hydroxylation reactions (Cohen and McConnaughey, 2003; Saenger et 

al., 2012): 

Hydration: 𝐶𝑂2 +  𝐻2𝑂 ↔  𝐻2𝐶𝑂3  ↔  𝐻+ + 𝐻𝐶𝑂3
−  ↔  𝐻+ +  𝐶𝑂3

2− 

Equation 7.1.1. Hydration reaction forming carbonate ions in coralline ECF 

Hydroxylation: 𝐶𝑂2 + 𝑂𝐻− ↔  𝐻𝐶𝑂3
−  ↔  𝐻+ +  𝐶𝑂3

2− 

Equation 7.1.2. Hydroxylation reaction forming carbonate ions in coralline ECF 

Also, as the calcifying space is not a perfectly closed system, additional 

seawater DIC may leak into the calcifying space (see Figure 7.1.1); an 

additional carbon source to react (Saenger et al., 2012). This calcification 
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mechanism has the potential to produce very high aragonite supersaturations in 

the ECF (Cohen and McConnaughey, 2003). 

 

7.1.2.  Potential mechanisms for isotopic vital effects 

There are numerous steps in the model for the precipitation of coralline 

aragonite where vital effects could introduce disequilibrium and a number of 

explanations have been put forth for δ18O, δ13C, ∆47 and trace metal 

concentrations, based on this model. 

7.1.2.1. Kinetic isotope effects 

McConnaughey (1989a; 1989b) developed a kinetic explanation to explain the 

observed depletion from equilibrium values in both δ18O and δ13C in corals. This 

theory suggests that rapid precipitation of aragonite outpaces the rate that light 

metabolic CO2 entering the ECF reaches isotopic equilibrium. In this system, 

equilibrium is attained through the back-and-forth hydration/dehydration and 

hydroxylation/dehydroxylation reactions of Equations 7.1.1 and 7.1.2.  

Exchange of oxygen isotopes between dissolved CO3
2- and H2O is slow at the 

high pH of the ECF and so this process takes hours to reach equilibrium (Cohen 

and McConnaughey, 2003). This is slow when compared to rates of 

precipitation so that CO3
2-

 units in the aragonite crystal lattice are buried before 

they can isotopically equilibrate with H2O. Due to discrimination against the 

heavier isotopes during hydration and hydroxylation this leads to lower skeletal 

δ18O when coral growth is rapid (McConnaughey, 1989a; McConnaughey, 

1989b; Saenger et al., 2012). 
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7.1.2.2. Equilibrium isotope effects 

Through high resolution analysis of a deep sea coral, Adkins et al. (2003) found 

that δ13C vs. δ18O trends in coralline aragonite are linear until the lightest values 

where δ18O continues to decrease but δ13C does not change. This cannot be 

explained by the kinetic model as a change in slope of the δ13C vs. δ18O cannot 

be explained by a single kinetic fractionation process governing both isotopes. 

In addition, these authors argue that, the presence of the enzyme carbonic 

anhydrase (identified in corals by Ip et al., (1991)) ensures that the inorganic 

carbon system in the ECF is at equilibrium by catalysing the slow step in the 

precipitation reaction where bicarbonate is converted to CO2(aq).  

To explain these discrepancies, Adkins et al., (2003) proposed a new model for 

oxygen isotopic fractionation (separate to that of the carbon isotopic 

fractionation which is not discussed here) where the level of oxygen 

fractionation is the result of the pH in the ECF. The δ18O of precipitating 

carbonate solids shows a dependence on the pH of the solution it is 

precipitating from, solutions with a higher pH create more depleted δ18O values 

in the precipitating carbonate (assuming all other variables are constant) 

(McCrea, 1950). This is because oxygen atoms in each of the separate DIC 

species (carbonate ion, bicarbonate ion and carbonic acid) have separate 

isotopic offsets from water. CO3 is the lightest of these species, although all are 

more enriched than seawater, (Usdowski and Hoefs, 1993) and therefore 

solutions with higher CO3
2- are isotopically lighter than more acidic waters. As 

the δ18O of the carbonate solid formed is determined by the total number of 18O 

and 16O atoms attached to available DIC species and this number is dependent 

on the DIC speciation, then the δ18O of the solid must be directly dependent on 
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the pH of the solution, which is at equilibrium with itself (Zeebe, 1999; Adkins et 

al., 2003). Less δ18O depleted aragonite is deposited by the coral when the ECF 

DIC is dominated by normally fractionated seawater leaking in (Figure 7.1.1) 

and lowering the pH when calcification rates are low. At high calcification rates, 

the DIC of the ECF is dominated by isotopically light CO2 that passively diffuses 

across the calcification membrane because of the large pH and diffusion 

gradients induced by the highly active Ca-ATPase pump (Figure 7.1.1). This 

increases the proportion of isotopically light oxygen from CO3 and causes the 

aragonite δ18O to be lighter, thus increasing the offset from equilibrium (Adkins 

et al., 2003). 

7.1.2.3. Combined kinetic and equilibrium effects 

Rollion-Bard et al. (2003a; 2003b) proposed a combination of the kinetic and 

equilibrium models to explain large changes in δ18O that they observed at 

micrometre scale in coralline aragonite. Boron isotopic data was used as a 

proxy for pH and this, along with the pH levels corals can reach, does not allow 

for the very high pH levels the purely equilibrium model explanation (Adkins et 

al., 2003) calls for. 

As with the equilibrium model, the authors use the pH control of both the 

relative concentrations of DIC speciation and the respective roles of hydration 

and hydroxylation reactions in the formation of bicarbonate. Because the 

kinetics of hydration and hydroxylation reactions are different, with the slower 

hydroxylation being the dominant reaction at high pH (Johnson, 1982), the rate 

that the system attains equilibrium is lower when pH is high; this brings a pH 

controlled kinetic control to attaining equilibrium in the system. 
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In this model, oxygen isotopic equilibrium between CO3
2- – H2O is reached in ≈1 

hour at pH 7 but takes ≈12 hours at pH 9. Therefore, when the Ca-ATPase 

pump is highly active, creating a high pH and increasing the rate of calcification, 

the coralline aragonite preserves a δ18O value farther from equilibrium, with the 

offset decreasing as residence time of DIC in the ECF increases/calcification 

rate decreases. As the activity of the Ca-ATPase pump and calcification rates 

are higher at times of increased photosynthesis (Rollion-Bard et al., 2003b; Al-

Horani et al., 2003a; Rollion-Bard et al., 2011) then the activity of the 

photosynthetic zooxanthellae has a direct effect on the δ18O of the coral 

skeleton, with greater offset from equilibrium in aragonite precipitated during the 

day than the night. 

7.1.2.4. Application of a combined kinetic and equilibrium model 

to explain the observed disequilibrium in both ∆47 and 

δ18O 

A combined kinetic and equilibrium model can also be applied to the ∆47 data as 

differences in clumped isotopic composition between DIC species could lead to 

pH effects in ∆47 as with δ18O (Saenger et al., 2012). The carbonate ion is 

estimated to be lower in ∆47 than bicarbonate so that departures from apparent 

equilibrium due to increased pH should result in lower values in both δ18O and 

∆47.  pH increasing from 8 to 9, typical for coral calcifying fluid, should lower 

δ18O by 3.7‰ and slightly decrease ∆47 by 0.01‰ (Saenger et al., 2012). This 

does not explain the positive ∆47  offset  observed in the present study or 

others (Ghosh et al., 2006; Saenger et al., 2012) so a purely pH control is not 

the cause of the vital effect. 
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The CO2 – H2O oxygen isotope exchange rate for ∆47 is similar to that for δ18O 

(Affek and Ayalon, 2009; Affek, 2013) so that any δ18O kinetic effects 

associated with incomplete DIC-H2O equilibrium through hydration/dehydration 

and hydroxylation/dehydroxylation (Equations 7.1.1 and 7.1.2) should be 

accompanied by proportional ∆47 offsets with an increase of 0.01-0.05‰ for 

every 1‰ decrease in δ18O (Guo et al., 2009b; Saenger et al., 2012). These 

hypothetical offsets are consistent with the range observed in both the current 

study and by Saenger et al., (2012) suggesting that this may be the primary 

cause of ∆47 offsets in hermatypic corals. 

As hydration/hydroxylation kinetics only influence metabolic CO2, any influence 

of this effect on ∆47 would depend on the ratio of metabolic CO2 to seawater 

DIC in the calcification space  (Saenger et al., 2012). As fast growing 

hermatypic corals gain the majority of their skeletal carbonate from metabolic 

CO2 (Adkins et al., 2003), this will increase the positive ∆47 and negative δ18O 

offsets when the rate of calcification is faster than DIC equilibration. Therefore 

slower growing corals, with longer DIC residence times, will have smaller 

offsets.  

In the presence of the enzyme carbonic anhydrase, experiments have shown 

that, isotopic equilibrium between CO2 – H2O can be reached in approximately 

20 minutes at pH 8 compared to approximately 3 hours at pH 9 (Uchikawa and 

Zeebe, 2012), as the residence time of calcifying fluid can be anywhere 

between 30 minutes and 12 hours (McConnaughey, 1989b) kinetic effects could 

allow for the observed offset even in the presence of carbonic anhydrase 

(Saenger et al., 2012). Differences between the observed ∆47 offsets between 
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the C. caespitosa (of this study) and the Porites (of Saenger et al. (2012)) could 

therefore be caused by inter-species differences in CA activity and/or ECF DIC 

residence times caused by differences in Ca-ATPase activity and calcification 

rate. 

Therefore, a growth rate controlled combination of differing ECF pH (which 

leads to negative δ18O without impacting ∆47 significantly) and ratios of 

hydration/hydroxylation reactions (which underestimates δ18O depletion relative 

to the observed ∆47 offsets) may lead to species-specific (or potentially site-

specific if growth rate is significantly different) ∆47 offsets, this agrees with the 

conclusions of Saenger et al. (2012). 

7.1.3.  Differences in trace element concentration 

The large intra-site variation in the trace element concentration of the modern 

samples of C. caespitosa may also be explained by differences in growth rate 

and photosynthetic activity. Due to it being the most commonly studied and 

most promising trace element for palaeothermometry, this discussion will focus 

on the strontium data. The majority of points can be applied equally to any trace 

element, although the transport pathways of other elements through the 

calcioblastic membrane have been less well studied. 
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7.1.3.1. Strontium incorporation into coralline aragonite 

Experiments have shown that strontium incorporation into aragonite  is inversely 

related to temperature (Kinsman and Holland, 1969; Rimstidt et al., 1998); 

however, studies have shown that in corals the average slope of the Sr/Ca – 

SST relationship is twice that for inorganic aragonite precipitating at equilibrium 

(Weber, 1973; Cohen et al., 2002). 

Experiments with inhibitors and saturation levels have shown that strontium ions 

are transported to the calcifying space both actively, sharing the Ca-ATPase 

pathway with Ca2+ (Ferrier-Pagès et al., 2002; Cohen and McConnaughey, 

2003) and passively as seawater leaks into the calcifying space (Ip and 

Krishnaveni, 1991) so that the incorporation of Sr is partially biologically 

mediated Figure 7.1.2b.  

7.1.3.2. Kinetic controls on Sr/Ca; Ca-ATPase and 

photosynthesis 

Along with this study which has found wide variation in Sr/Ca, other work has 

shown that there is considerable inter-colony variation in slopes and intercept 

values of the Sr/Ca – SST calibration for different species, the same species at 

different localities (see Table 2.5.1) and the same species at the same locality 

(de Villiers et al., 1994). This inter and intra-species and even intra-site variation 

suggests that there is some control other than just temperature on the vital 

effect. 

Some sort of kinetic control linked to growth rate (Cohen et al., 2001) has been 

established as the most likely cause for the different degrees of vital effects 
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observed. This is because faster growing corals have been observed  to have 

lower skeletal Sr/Ca than slower growing corals at the same site (de Villiers et 

al., 1995; Goodkin et al., 2007) and within a single colony low density skeleton 

has a higher mean Sr/Ca than higher density skeleton from the same aged 

growth horizon (Alibert and McCulloch, 1997).  

As Ca-ATPase has a higher affinity for Ca than Sr (Yu and Inesi, 1995), when 

this pump is highly active, leading to higher calcification rates, the ECF will have 

a depleted Sr/Ca ratio compared to seawater (due to active discrimination of the 

Sr ion), Figure 7.1.2a. When the pump is switched off, or slow, then the ECF’s 

Sr content will approach that of seawater due to passive diffusion of seawater 

into the calcifying space (Ip and Krishnaveni, 1991; Cohen et al., 2001) ), Figure 

7.1.2b.  

The Ca-ATPase pump is activated by the exposure of the polyp to light, as ATP 

from photosynthesis is needed for this active ion transport, although it is light 

rather than just energy which triggers Ca2+ uptake (Al-Horani et al., 2003b; Al-

Horani et al., 2003a). Corals with higher rates of photosynthesis will therefore 

have lower Sr/Ca values.  
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Figure 7.1.2 Simplified schematic diagram showing differing pathways for strontium ion 
uptake during coral calcification (modified from Adkins et al, 2003; Cohen and 
McConnaughey, 2003; Saenger et al., 2012). In (a) the Ca-ATPase pump is activated 
during the day by light, this leads to a highly fractionated Sr/Ca concentration between 
the seawater and the depleted extracellular calcifying fluid (ECF). Calcification rates are 
rapid and the precipitating aragonite is depleted in Sr/Ca compared to inorganic values 
(the fractionation factor for Sr into aragonite (Kd) >1 (Kinsman & Holland, 1969)). In (b) 
the Ca-ATPase pump is slow or switched off during the night, this leads to the Sr/Ca 
concentration in the ECF approaching that of the seawater by passive diffusion into the 
calcifying space. Calcification rates are slow and the precipitating aragonite Sr/Ca is 
approximately the same as what would be expected from inorganic values (the 
fractionation factor for Sr into aragonite (Kd) >1 (Kinsman & Holland, 1969)) Not to scale. 

Increased photosynthesis may be caused by either being exposed to more light 

– in shallower, less turbid or less shaded patches of the colony - or because 

they have higher concentrations of/more active symbiotic zooxanthellae. It is 

conceivable that these variables could be different within one colony, for 

example if some corallites are shaded by the others, or change within a corallite 

over time if the coral grows out of shade,  is shaded by other corals or plants, or 

if sediment input changes (C. caespitosa is quite tolerant of high levels of 

turbulence (Tremblay et al., 2011)). 
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Zooplankton biomass has been shown to be significantly different between 

different parts and at various depths on reefs (Alldredge and King, 1977) and so 

the differences in availability of this food source will also impact Sr/Ca levels.  

Night time calcification rate (when Sr and Ca are delivered to the ECF at near 

equilibrium levels due to the dominate transport process being passive (Figure 

7.1.2)) are primarily controlled by the availability of zooplankton (Houlbrèque et 

al., 2003) as energy from the respiration of food is necessary to synthesise 

organic molecules (Al-Horani et al., 2003b) for the framework to calcify onto 

when photosynthesis is not an option.  

Therefore, as well as a temperature control on the Sr/Ca content of the 

precipitating aragonite, there is also a growth rate control. This is controlled by 

rate of photosynthesis, which can itself be altered by temperature (Jacques et 

al., 1983), light levels and symbiont activity, and so greatly complicates any 

attempts at creating a universal calibration equation due to intra-site variability. 

 

7.1.4.  A combined kinetic vital effect 

It appears that all of the observed issues with vital effects in the stable isotopes, 

clumped isotopes and trace elements can all be linked primarily to changes in 

the composition of the ECF due to complications brought about by varying 

degrees of photosynthetic activity altering the activity of the Ca-ATPase pump 

and in turn the growth rate of the corallite.  
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Figure 7.1.3 Flow diagram demonstrating how increasing light leads to increased ‘vital 
effect’ offsets from equilibrium values in oxygen isotopes, clumped isotopes and 
strontium concentration in the precipitating aragonite skeleton, full explanation in text. 
‘+’ and ‘-’ denote an increase or decrease in rate, availability or value. Coral cell structure 
is greatly simplified, for example mesogloea is not shown between endoderm and 
calcioblastic cells for simplicity and diagram is not to scale. 

A flow diagram summarising the steps leading to the varying vital effects 

observed in the offsets from equilibrium values for the isotopes and strontium 

concentrations is shown in Figure 7.1.3. As light is increased the rate of 

photosynthesis in the symbiotic zooxanthellae increases, this produces more 

energy (in the form of ATP) which fuels the Ca-ATPase ion transport pump. 

Active transport preferentially pumps Ca ions into the calcification space while 

discriminating against Sr ions and removing hydrogen ions. This increases the 

pH and saturation state of the ECF while decreasing its Sr/Ca ratio to lower 

than that of the seawater. The high pH fluid is dominated by the isotopically light 

carbonate ion (as opposed to heavier bicarbonate and carbonic acid ions). The 

higher pH slows the rate that the ECF can attain isotopic equilibrium by shifting 
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the dominant process of bicarbonate production to hydroxylation whilst also 

increasing calcification rate (along with the increased saturation state (Ω)) so 

that the fluid doesn’t have time to equilibrate with the seawater. This biologically 

altered disequilibrium ECF composition, and the rate of precipitation of 

aragonite from it, is what leads to all of the observed vital effects. This explains 

the depleted δ18O and enriched ∆47 (which are representative of the high pH 

ECF) and the depleted Sr/Ca which are representative of the values in the ECF. 

7.2. Potential of C. caespitosa as a high resolution 

palaeoclimate archive 

The high resolution analysis of the oxygen isotopes and some trace element 

(Sr, Mg, U, etc) compositions of the corallites returned clear, annual-scale cyclic 

variation which can be best explained as a seasonal temperature signal. These 

original depositional geochemical signatures are found to be preserved in 

corallites up to at least MIS 7a age, with the early diagenetic conditions that the 

corallite is exposed to (e.g. time in the splash zone) being more important for 

signal preservation than age. 

While there was too much intra-site variation in the modern coral’s trace 

element data to use this technique in any quantifiable way, it is apparently 

possible to identify major, discrete events that inject large quantities of 

sediment/organic matter into the seawater (such as fires or floods) where the 

corals are living, if those corals are exposed to the increased particulate matter. 

This could be used to look at the frequency of these types of events changing 

between different periods as increased fires would suggest greater aridity while 

increased flooding would indicate greater rainfall. Unfortunately with only finding 
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one sample with evidence of the 2007 Croatian wildfires it is not yet possible to 

distinguish between different types of event (aside from charcoal fragments 

embedded in the corallite wall as was found), further work on modern corallites 

from different localities may, however, allow this. 

The modern coralline aragonite oxygen isotopes, while not in equilibrium with 

the seawater, suffered from much less intra-site variation than the trace 

elements. This allowed a species-specific aragonite-water δ18O temperature 

calibration equation to be calculated, which appeared to be effective for 

estimating the ranges of temperature and isotopic compositions of the seawater 

when used in conjunction with constraints set out by the growth limits of C. 

caespitosa and previous work from the literature. 

This suggests that, as long as some limits on absolute water temperature 

and/or water δ18O can be set by other methods, this species can be used to 

look at high resolution palaeo-SST to infer changes in seasonality and climate 

between various interglacial periods. 

7.3. Limitations and problems with using this species 

7.3.1.  Clumped isotopes 

It was originally expected that the clumped data would provide definitive 

temperatures and water δ18O compositions agreeing with the measured data for 

the modern Croatian samples and provide sensible values for the previous 

interglacials from the fossil samples, however, this field progressed throughout 

the course of the study, with the most recent work finding that disequilibrium 

occurs equally in both δ18O and ∆47 (Affek, 2013) and corals generally show 
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disequilibrium in both (Saenger et al., 2012). The findings of this study agree 

with those of the most recent work. Both modern and fossil samples were 

depleted in ∆47, resulting in the underestimation of growth temperatures. The 

level of offset from equilibrium values in the modern samples did however have 

a relatively low degree of intra-site variability between corallites. This means 

that a species specific ∆47 – temperature calibration may be possible, although 

not within the time constraints of the present study.  

7.3.2.  Trace element analysis 

The wide degree of intra-site variability found in the trace element compositions 

of the modern samples means that there is little potential for the trace elemental 

composition of C. caespitosa to be used as a high resolution 

palaeothermometer. This is in contrast to the findings of Montagna et al. (2007) 

who concluded that ‘C. caespitosa has the potential to provide an important new 

archive of high-resolution climate variability in the Mediterranean Sea’. This 

shows the importance of analysing multiple samples before making an 

assumption that all will give the same results; the uptake of trace elements by 

the growing coral clearly has an unpredictable metabolic control or ‘vital effect’. 

7.4. Mediterranean palaeoclimate 

7.4.1.  Comparing the climate of previous interglacials with 

that of the modern 

From the oxygen isotope data, it appears as though the current conditions in the 

Gulf of Corinth are approximately average for the interglacial periods of the last 

225 ka. The warmest period studied was MIS 5e, which also had lower 
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seasonality than today and was (based on inferred seawater δ18O values) 

probably the most arid. The Early-Mid Holocene probably experienced the 

coolest temperatures while conditions in MIS 7a/c, whilst most similar to today 

in terms of temperature, were probably the wettest with most freshwater input 

into the Gulf. These findings are in line with work carried out in other studies. 

7.4.2.  MIS 5e: A multi-proxy approach, bringing the high 

resolution C. caespitosa oxygen record and (non-coral) 

clumped isotopic data together 

If the high resolution C. caespitosa δ18O and the bulk average ∆47 data are 

looked at together, it appears as though some of the clumped data supports the 

findings of the high resolution study. Pecten sample SHR 02/11/11-07 (i) and 

aragonite sample JEA 10901-01 provided T(∆47) values of 24.1°C and 21.9°C 

and water compositions of 2.2‰ and 2.2‰ VSMOW; these values are within 

error of those calculated using the δ18O data. Aragonite sample JEA 9508-01 

gave a temperature of 20.4°C, but an anomalously low water δ18O values. As all 

of the other Pecten and aragonite T(∆47) and δ18Owater values were unfeasibly 

low, this good agreement between these calculated temperatures and water 

compositions and the δ18O findings suggests that with time to get more 

replicates from well preserved MIS 5e Pecten shells similar values would be 

gained. With the observed spread in values being due to the small sample size 

(due to time constraints) and the relative newness of the clumped isotopic 

technique meaning that the method still needs refining to get consistent, fully 

reproducible data. It is, however, also possible that the mobile Pecten records 

slightly lower temperatures, not quite representative of SST, due to having 
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migrated to deeper, cooler waters during the hottest periods of the warm MIS 5e 

summer, while the conditions the aragonites precipitated in are not fully 

understood. 

7.5. Future work 

If there was time available to expand this study there are a few potential 

avenues of research that it would be interesting to explore. 

7.5.1.  Further clumped isotope work 

As there was little inter-corallite variation in the offset from ∆47 equilibrium, it 

would be interesting to measure more modern corallites, that are known to have 

grown under varying temperature conditions, to attempt to produce a species-

specific ∆47 – temperature calibration equation for C. caespitosa that could then 

be applied to the fossil samples.  

The most important future clumped work, however, is to test the reliability of the 

MIS 5e Pecten data through replication and analysis of modern samples with 

known growth temperatures. If found to be accurate palaeotemperature and 

palaeo-δ18Oseawater records as some of the data suggests, it would then be ideal 

to find and analyse Pecten samples from the other interglacials to further 

constrain conditions in those periods. 

7.5.2.  Further trace element work 

While the trace element content of C. caespitosa was not found to be useful for 

high resolution palaeotemperature analysis, evidence of palaeo-fires, and 

presumably palaeo-floods, was found to be potentially well recorded. As 
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evidence for the 2007 Croatian wildfires was only found in a single corallite, it 

would be useful to analyse more corallites from Mljet – maybe more rapidly at a 

lower resolution – to show that this event was more widely recorded. If possible 

it would then be interesting to analyse corallites from an area where recent 

flooding has taken place, to see if the injection of increased sediment load from 

this type of event is also recorded and to see if the two types of event (fires and 

floods) can be distinguished from each other. This could be by the types of 

trace elements that are increased in the coralline aragonite and the actual 

shape of the signal in the element’s profile – it could be expected that flood 

signals will show more discrete spikes than fires as the terrestrial sediment may 

be unstabilised for years after a fire until vegetation is fully re-established 

(Abram et al., 2003). 
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