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Abstract 
 

Introduction 

The proportion of people over 65 years in Europe is predicted to increase from 25 to 40% by 

2030. Diet has an important modifiable influence on ageing and it is therefore, important to 

identify realistic dietary strategies that will contribute to healthy ageing. The NU-AGE project 

(EU FP7) aims to examine the impact of a year-long whole-diet intervention (including advice 

on intakes of the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA)) on chronic low grade inflammation (primary end-point) in 1250 older adults (aged 65-

79 years) in five EU centres. As part of this thesis, the impact of intervention on vascular 

‘health’ was established. In addition, a diet score for older adults was designed based on the 

NU-AGE diet.  

The intake and status of EPA and DHA is being increasingly recognised as an important 

modulator of the risk of chronic disease. Potential determinants of fatty acid status, including 

other dietary components and genotype were investigated and represent the second major 

component of the thesis. The genotyping focussed on the fatty acid desaturase (FADS) 

enzymes which are responsible for the desaturation steps in the synthesis of EPA and DHA 

from α-linolenic acid (αLNA).  

Methods 

Diet, vascular and inflammatory health in NU-AGE; the effects of the one year NU-AGE 

intervention on vascular function and inflammatory and fatty acid status was investigated in 

140 participants from the Norwich centre of NU-AGE. Vascular function was clinically 

measured using EndoPAT, Pulse Wave Velocity (PWV) and Cardio-Ankle Vascular Index 

(CAVI). The NU-AGE diet score was designed and validated using both the TWIN UK cohort 

and the NU-AGE baseline data.  

EPA and DHA status; retrospective analysis of plasma samples from two completed rodent 

studies and one human clinical trial, which all included polyphenol-rich interventions, were 

used to investigate the impact of a range of polyphenols on plasma and tissue fatty acid 

status. In the NU-AGE cohort, the impact of individual FADS gene variants on plasma fatty 

acid status was examined. 10 tagging single nucleotide polymorphisms (SNPs) were selected 

and haplotypes were statistically reconstructed. 
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Results 

There was no significant effect of the NU-AGE intervention on any measured outcomes. 

However, subgroup analysis showed that the NU-AGE diet ameliorated the significant 

increase in the stiffness of arteries (as assessed by CAVI) in the control group over the 1 year 

intervention period in females (p=0.024). A higher NU-AGE diet score was associated with 

significantly higher CRP in the TWIN UK cohort (p=0.028), but not in the NU-AGE cohort at 

baseline.  

In relation to the impact of various polyphenols on LC-PUFA status, we observed no 

significant differences in any of the three (two rodent and one human) studies. In the NU-

AGE cohort, it was observed that participants with the homozygous minor genotype for 

several of the FADS SNPs had significantly (p<0.05) higher plasma linoleic acid (LA) and 

significantly lower arachidonic acid (AA), EPA and DHA status, as well as significantly lower 

desaturase activity (measured by a product-to-precursor ratio of AA/LA) compared with 

participants with either the homozygous major genotype or the heterozygous genotype. 

Furthermore, the most common haplotype (containing mostly major alleles and occurring in 

26.6% of the cohort) was associated with significantly lower LA plasma levels (up to 9% 

increase) and significantly higher EPA (up to 38%) and DHA (up to 14%) status compared with 

haplotypes with a higher frequency of minor alleles. This work also showed that the NU-AGE 

dietary intervention may be successful in overcoming the negative effect of the minor allele 

on EPA and DHA status. 

Conclusion 

Although there was no significant effect of the NU-AGE intervention on any measured 

outcomes, the NU-AGE diet did appear to attenuate the expected progression of arterial 

stiffness in females. This work also suggests that the health benefits of polyphenols are 

unlikely to be the result of any impact on EPA and DHA status. Furthermore, common FADS 

genotypes emerged as significant determinants of habitual EPA and DHA status in older 

adults, the impact of which may be influenced by habitual EPA and DHA intake. 
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1 Literature Review 

1.1 Ageing 

1.1.1 The definition and process of ageing 
Ageing is an inevitable process which occurs at many levels (physiological, cellular and 

molecular), making it difficult to define [1]. Another reason for the difficulty in defining the 

process of ageing is because it is poorly understood. This has resulted in the formation of 

many different definitions of ageing, as well as theories on how and why ageing occurs [2]. 

Mitnitski et al. considered ageing as a process of accumulation of deficits, which were shown 

to increase with chronological age, which affects different people in different ways [3]. It is 

clear that ageing is a complex process and is influenced by genetic factors, along with chronic 

exposure to environmental factors, such as nutrition. However, in general, it can be said that 

the process of ageing involves an overall decline in function and health, along with an 

increase in likelihood of disease and disability.  

Inflammation is a component of the innate immune response. It is a ‘normal’ physiological 

process which helps restore homeostasis following infection or other forms of tissue 

damage. However, there is evidence that unresolved inflammation is one of the major 

processes contributing to ageing. A low-grade chronic inflammatory status can be seen in 

elderly populations and in ill-health [4]. Chronic inflammation can be defined as 

inflammation that may have a rapid or slow onset but that can be characterised primarily by 

its persistence and lack of clear resolution; it occurs when the tissues are unable to overcome 

the effects of the injuring agent. Chung et al. reviewed the evidence and suggested that a 

number of major age-related diseases may be related to chronic inflammation, including 

atherosclerosis, arthritis, dementia, osteoporosis, and cardiovascular disease (CVD) [4].  

A number of studies have shown that nutrition can influence inflammation, both positively 

and negatively. However, many of these studies have focused on specific dietary 

components which often have subtle effects [5-7]. Data from interventions on the effects of 

the whole-diet on inflammation and ageing are lacking. It is important that more research is 

carried out on healthy eating patterns in order to clarify whether an overall healthy diet can 

reduce the processes of inflammation and ageing, especially with some shift in policy 

towards food-based rather than nutrient-specific recommendations. 
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1.1.2 The demographics of ageing  
The proportion of older persons has been steadily increasing worldwide for many decades. 

According to figures from the United Nations (UN), the percentage of older persons (over 60 

years) has increased from 8% in 1950 to 12% in 2013, and is expected to reach 21% in 2050 

[8]. By 2050, 2 billion older persons are projected to be alive [8]. The current proportion of 

older persons is particularly high for Europe; persons aged 60 years and over make up 22.9% 

of the population, while persons over 80 make up 4.5% [8]. These currently high figures and 

predicted increases are often referred to as the “ageing” or “greying” of Europe which could 

give rise to a number of issues, such as increases in the costs of providing social and health 

care, as well as decreases in productivity due to a reduced workforce [9]. Therefore it is 

important that realistic strategies are identified which could contribute to healthy ageing 

and reduced age-related medical costs.     

 

1.1.3 Compression of morbidity 
The compression of morbidity is a hypothesis which was first conceptualised in 1980 by 

James Fries who envisioned a “reduction in cumulative lifetime morbidity through primary 

prevention by postponing the age of onset of morbidity to a greater amount than life 

expectancy is increased, largely by reducing the lifestyle health risks which cause morbidity 

and disability” [10]. Compression of morbidity therefore refers to the ability to increase the 

average age at which people become chronically ill or disabled so that older people are 

healthier for longer. Due to the increasing proportion of older persons in Europe, it is 

important that population-wide strategies to increase healthy life years are determined in 

order to reduce the health-care burden of chronically ill elderly people on society. A number 

of studies have shown that the time between the two points; morbidity onset and mortality, 

may be reduced by implementation of a number of lifestyle changes, such as a healthier diet, 

smoking status, or increased physical activity [11, 12].  

The majority of chronic illnesses that cause a loss in healthy life years are diseases that can 

be strongly influenced by nutrition, such as CVD, hypertension, diabetes, cancer, stroke, 

musculoskeletal diseases. Previous research has shown that diets high in salt and saturated 

fat and lacking fibre, fruit and vegetables, adequate vitamins, minerals and particular fatty 

acids are a major risk factor for many of these age-related chronic illnesses [13-15]. It is 

thought that changes in nutrition at all stages of life will result in significant health benefits; 
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the acceleration in the decline of health, as a result of external factors, has shown to be 

reversible at any age [15].  

 

1.2 Cardiovascular Disease (CVD) 

1.2.1 Definitions, risk factors and prevalence 
CVD is a class of diseases of the heart and circulatory system (Table 1.1) which includes 

cerebrovascular disease (stroke), coronary heart disease (CHD) and peripheral vascular 

disease. CVD was responsible for 17.3 million deaths worldwide in 2008, which was 48% of 

all non-communicable diseases [16]. Of these 17.3 million deaths, an estimated 7.3 million 

were due to CHD and 6.2 million were due to stroke [16]. Figure 1.1 describes the various 

risk factors which can contribute to the development of CVD and their modifiable and non-

modifiable determinants. This chapter will focus specifically on vascular function and 

inflammation, diet and genotype as these were the focus of my PhD programme. 

Table 1.1. Definitions of different types of CVD [17] 

Term Definition 

Atherosclerosis Artery walls become thicker and harder due to the build-

up of fat, cholesterol and other substances forming a 

plaque 

Coronary Heart/Artery 

Disease  

Atherosclerosis of the blood vessels supplying the heart 

muscle 

Cerebrovascular 

Disease/Stroke 

A blood vessel supplying the brain bursts or becomes 

blocked 

Peripheral Arterial Disease  Narrowing of peripheral arteries. Most common in 

arteries of pelvis and legs 

Rheumatic Heart Disease Damage to the heart muscle and heart valves from 

rheumatic fever, caused by streptococcal bacteria 

Congenital Heart Disease  Heart or blood vessels near the heart do not develop 

normally before birth 
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Deep Vein Thrombosis and 

Pulmonary Embolism  

Blood clots in the leg veins, which can dislodge and move 

to the heart and lungs 

Arrhythmias An arrhythmia is an abnormal heart rhythm, which can 

sometimes result in an increase or decrease in heart rate 

Heart failure  Occurs when the pumping action of the heart cannot 

provide enough blood to the rest of the body as it is 

needed, resulting in fatigue and breathlessness 

Ischemic heart disease A partial blockage of one or more of the coronary arteries 

can result in a lack of enough oxygenated blood 

(Symptoms; Angina, Dyspnea). A complete blockage of an 

artery causes necrosis or a myocardial infarction (MI) 

 

 

Figure 1.1. Traditional CVD risk factors, modifiable and non-modifiable [13, 16] 
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1.2.2 The pathology of atherosclerosis 
Atherosclerosis is a process that is characterised by the build-up of plaque in the arterial 

intima and is a key defining pathological feature of CVD. Atherogenesis is thought to occur 

throughout life, eventually leading to complications such as stroke and myocardial infarction 

(MI) [18]. Endothelial cells make up the majority of the inner layer of the artery called the 

tunica intima, and are in direct contact with the blood. The development of an 

atherosclerotic plaque begins when the endothelial cells are exposed to an unfavourable 

environment, for example oxidative or inflammatory stress. This can result in the expression 

of cell adhesion molecules (CAMs) on the surface of the endothelial cells which increases 

binding of leukocytes to the endothelium. Leukocytes then migrate into the intima, a process 

which is accelerated by chemoattractant molecules such as monocyte chemoattractant 

protein-1 (MCP-1). Macrophage Colony Stimulating Factor (M-CSF) is an inflammatory 

mediator which can be produced by endothelial and smooth muscle cells and can induce the 

differentiation of monocytes into macrophages. M-CSF may stimulate proliferation of 

macrophages and modified lipid uptake in the macrophages, leading to the development of 

foam cells [19]. The foam cell can also become a major source of cytokines, which when 

secreted can amplify the inflammatory cascade [20]. T lymphocytes are also present in the 

intima during atheroma formation and can secrete inflammatory cytokines and growth 

factors which can promote the proliferation and migration of smooth muscle cells (SMCs) 

from the tunica media to the intima. The SMCs can strengthen the extracellular matrix by 

producing molecules such as elastin and collagen, which results in advancing the lesion from 

a fatty streak into a more fibrous lesion [18]. The atherosclerotic plaque now consists of a 

core containing lipids and macrophages, many of which are dead, surrounded by a fibrous 

cap. Cardiac and stroke events are often triggered as a result of plaque rupture and 

subsequent thrombosis due to exposure of the necrotic core of the plaque to the blood. The 

formation of a thrombus can cause obstruction of the affected artery, resulting in an acute 

cardiac or cerebral event in addition to atherosclerosis. Inflammation also plays a role in the 

acute vascular complications by promoting plaque instability [21]. The stability of the plaque 

depends on the thickness of the fibrous cap which can be disrupted as a result of 

inflammatory processes, for example infiltration of the cap by macrophage foam cells [22]. 

This process can be viewed diagrammatically in figure 1.2 (section 1.5). The endothelium and 

inflammatory processes are therefore potential target areas in the prevention and treatment 

of CVD. 
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1.3 Endothelial dysfunction and CVD risk 

1.3.1 Endothelial dysfunction 
Vascular function is partly determined by the endothelium which is the major source of 

vasodilators and vasoconstrictors present in the vasculature [23]. Chronic exposure to 

cardiovascular risk factors, such as hyperlipidaemia and smoking, can overwhelm the 

vascular endothelium and compromise its integrity, resulting in the initiation of endothelial 

dysfunction [23]. Endothelial dysfunction is characterised by the loss of sufficient dilation of 

the arteries in response to an endothelial-derived stimulus [23]. Measuring endothelial 

function is important because it has been shown to predict cardiovascular events and is a 

useful prognostic tool which precedes the development of atherosclerosis [24-30]. 

        

1.3.2 Nitric Oxide 
Endothelial dysfunction can be characterised by reduced bioavailability of Nitric Oxide (NO) 

[23]. NO is one of the major vasodilators produced by the endothelium and is derived from 

L-Arginine by endothelial Nitric Oxide Synthase (eNOS). eNOS is activated to produce NO in 

response to a number of stimuli, an important one being shear stress in the vasculature. NO 

is an important substance in maintaining, not only vascular tone and elasticity but, overall 

vascular health. In addition to acting as a vasodilator it also reduces smooth muscle cell 

migration and growth, monocyte/macrophage adhesion, inflammation and platelet 

aggregation [31]. For example, a study in which eNOS deficient and non-deficient mice were 

fed a Western diet, accelerated development of atherosclerosis was seen in the eNOS 

deficient mice [32]. NO has also been shown to prevent transformation of low density 

lipoprotein cholesterol (LDL-C) into oxidised LDL-C which is more deleterious in the 

vasculature as it inactivates eNOS and can be taken up by the macrophages [33]. In addition 

to the production of NO by eNOS, inducible NOS (iNOS) can also contribute to NO production 

in the endothelium. 

 

1.3.3 Endothelins 
As well as the numerous vasodilators, vasoconstrictors are also important in maintaining 

vascular homeostasis. For example endothelins (ETs), particularly ET-1 in humans, are 

vasoconstricting proteins which act as the natural counterpart of the vasodilator NO [34]. 

There are 3 ET isoforms which are formed by ET-converting enzymes. These 3 isoforms bind 

to 2 types of receptors; ET receptor subtype A (ETAR) and subtype B (ETBR). ET receptors are 
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expressed abnormally in diseases associated with vasoconstriction [35]. ET-1 is the most 

potent vasoconstrictor agent currently identified and has been implicated as an important 

factor in the development of vascular dysfunction and CVD [34]. ET-1 also plays a role in 

endothelial dysfunction by modulating the inflammatory responses in macrophages; it 

activates adhesion molecule expression and regulates release of free radicals [35].  It has 

been shown that ET-1 is increased in rats on a high-salt diet [36]. Human studies have shown 

that ET-1 levels can be influenced by dietary change [37, 38]. 

 

1.3.4 Clinical measures 
Numerous techniques are available to measure various aspects of micro and macro function 

of the vasculature, including elasticity and stiffness. In relation to the assessment of 

endothelial dysfunction, Flow Mediated Dilation (FMD) is considered one of the gold 

standards. This involves the use of ultra-sound imaging and reactive hyperaemia (RH), usually 

performed on the brachial artery [39]. RH is a transient increase in organ blood flow that 

occurs following a brief period of ischemia and produces shear stress which stimulates the 

endothelium induction of NO release. However this method is technically demanding, 

expensive to set up and there is considerable variation in the methodology used across 

different studies [40].      

Another less onerous non-invasive way of measuring endothelial dysfunction is by using the 

EndoPAT. It is based on a measurement of Peripheral Arterial Tone (PAT) at the finger via a 

pneumatic finger bio sensor which measures pulsatile blood volume changes in peripheral 

arterial beds. PAT is a physiological signal that mirrors changes in autonomic nervous system 

activity and related vascular events. It examines Reactive Hyperaemia Index (RHI). A study 

on the assessment of endothelial function by PAT showed that EndoPAT could predict 

cardiovascular events beyond the Framingham Risk Score [26]. The results showed that the 

rate of a major adverse cardiac events in patients who tested positive for endothelial 

dysfunction was 39% vs. compared with 25% in those with normal endothelial function 

(p=0.024). There is evidence which shows that EndoPAT can detect vascular improvements 

in response to dietary change, both acutely and chronically. For example, an intervention 

involving supplementation with lycopene for 8 weeks showed a 23% increase in RH-PAT 

index from baseline (1.45±0.09 vs. 1.79±0.12; P = 0.032) in the 15 mg/day group [41]. Given 

that FMD was not available in Norwich at the initiation of my PhD, the EndoPAT was used to 
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examine endothelial dysfunction in the University of East Anglia (UEA) subset of Nu-Age 

participants. 

1.3.5 Dietary manipulation of endothelial dysfunction 
There is accumulating evidence which demonstrates that diet can modulate endothelial 

function, as reviewed by Brown et al. and Ceuvas et al. [42, 43]. For example, results of in 

vitro studies show a consistent beneficial effect of long chain n-3 fatty acids on endothelial 

function; this effect is thought to be induced by increasing the production and release of NO 

by an activation of NOS [42, 43]. Results from human intervention studies using n-3 fatty 

acids (4-5 g/d) have also shown beneficial effects, such as improved vasodilation as assessed 

by FMD [42, 43]. However, results from these studies have been less consistent, which is 

most likely due to differences in duration (varying from 3 weeks to 7 months) and subject 

characteristics (CHD patients, smokers etc.). Consumption of n-3 fatty acids may also benefit 

endothelial function by a transcriptional level reduction in cell surface expression of 

adhesion molecules [44].  

Various flavonoids and flavonoid-rich foods, such as cocoa, fruit and vegetables, have also 

been shown to improve endothelial function, possibly due to their effects on plasma 

concentrations of vascular cell adhesion molecule (VCAM), E-selectin and NO [45-47]. The 

FLAVURS Study Group showed that a high flavonoid diet improved endothelium-dependent 

microvascular reactivity (p = 0.017), E-selectin (p = 0.0005) and VCAM (p = 0.0468) in men 

and NO (p = 0.0243) in both men and women [45]. Anti-oxidant vitamin supplementation 

(vitamins A and E) may also have an beneficial impact on endothelial function, possibly as a 

result of preserving endothelium-dependent vasodilation during exposure to cardiovascular 

risk factors [42, 43]. Plantinga et al. showed that supplementation with vitamin C (1g) and 

vitamin E (400 IU) for 8 weeks has beneficial effects on endothelium-dependent vasodilation, 

as assessed by FMD (p < 0.001) [48]. A recent meta-analysis by Montero et al. concluded that 

prolonged vitamin E and/or C supplementation could be effective in improving endothelial 

function in non-obese type-2 diabetes mellitus subjects (standardised mean difference = 

1.02, p < 0.05) [49]. Folic acid, found in many green leafy vegetables, can have positive effects 

on the endothelium, possibly by reducing plasma homocysteine levels [42, 43, 50]. A recent 

meta-analysis indicated that 5 mg/d folic acid for over 4 weeks significantly (p < 0.005)  

improved FMD and lowered homocysteine concentrations in patients with coronary artery 

disease (CAD) [51]. Dietary nitrate, found in green leafy vegetables and beetroot, may also 

have beneficial vascular effects due to improving NO availability and preserving and/or 
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improving endothelial function [52]. As discussed, NO is involved in the inhibition of platelet 

aggregation, smooth muscle cell proliferation and adhesion of monocytes to endothelial 

cells. Furthermore, various dietary patterns have also been shown to have an effect on 

endothelial function, as will be discussed in section 1.8. 

 

1.4 Arterial Stiffness and CVD risk 

1.4.1 Arterial Stiffness 
Arterial stiffening is the result of complex interactions between stable and dynamic changes 

of the vessel wall and has been shown to be a strong predictor of CVD events and all-cause 

mortality [53]. Arterial stiffness occurs as the ratio of elastin to collagen decreases within 

the intimal medial layer of the endothelium due to hypertension or cholesterol 

deposition which results in less compliant arteries. This leads to a requirement for increased 

cardiac muscle contraction, which over time may promote left ventricular hypertrophy and 

cardiac failure [54]. Cellular changes (involving substances such as NO and ET) and extrinsic 

factors (such as hormones and salt) are also involved [54]. Ageing and hypertension 

contribute to increased arterial stiffness; however it can be reduced in response to lifestyle 

changes such as diet [54]. This project aimed to determine the impact of a one year whole-

diet intervention on arterial stiffness in older adults. 

1.4.2 Clinical measures 
Arterial stiffness can be measured in a number of ways; major methods include Cardio-Ankle 

Vascular Index (CAVI) and Pulse Wave Velocity (PWV), both of which were utilised as part of 

this PhD project. PWV measures the pulse transit time from one part of the body to another, 

with the gold standard being between the carotid to femoral artery. PWV is dependent on 

the radius of the vessel through which it is measured. Any increase in radius as a result of an 

increase in vascular tone is counterbalanced by an increase in medial thickness and an 

intrinsic alteration of the elasticity of the vessel. PWV has been shown to be a predictor of 

CVD risk and is strongly reproducible. Blacher et al. showed the presence of a PWV >13 m/s 

appeared as a strong predictor of cardiovascular mortality [55]. 

CAVI has been developed as a measure of arterial stiffness that is independent of pulse 

pressure. A number of studies have shown CAVI to be associated with carotid intima media 

thickness, homocysteine and the presence and severity of coronary atherosclerosis [56, 57]. 

CAVI is thought to be a particularly useful indicator of arterial stiffness in elderly cohorts 

because it is independent of blood pressure and is therefore thought to evaluate arterial 
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stiffness more accurately than PWV in those taking anti-hypertensive medications or those 

with masked hypertension [58, 59]. 

 

1.4.3 Dietary manipulation of arterial stiffness 
Evidence from animal studies has shown that a number of nutrients and non-nutrients can 

play a role in the progression of arterial stiffness. For example, high fat foods, obesity 

inducing diets (high fat, high sugar) and vitamin D have all been shown to influence arterial 

stiffness [60-62]. Human epidemiological studies using PWV and CAVI, have also shown that 

dietary intake influences arterial stiffness. For example, anthocyanins (ACNs), flavones and 

calcium intakes have been shown to be inversely associated with arterial stiffness, as 

measured by PWV [63, 64]. A systematic review, including 38 randomised control trials 

(RCTs), reported that n-3 fatty acids and soya isoflavones were effective in lowering PWV, 

while there was also limited but consistent evidence that salt restriction and bioactive 

peptides could also help improve arterial stiffness [65]. As it is a relatively new measure, 

there is a lack of data on the utilisation of CAVI in dietary interventions. One example shows 

that increasing levels of EPA (1.8 g administered daily for 3 months) resulted in a decrease in 

CAVI in those with metabolic syndrome [66]. Isoflavones and plant stanol esters have also 

been shown to modulate CAVI in certain subgroups of the population [67, 68]. The impact of 

dietary patterns on arterial stiffness will be discussed in section 1.8. 

1.5 Inflammation and CVD risk 

1.5.1 The role of inflammation in atherosclerosis 
Inflammation is a ‘normal’ physiological process; however low-grade chronic inflammation 

can play a major role in the development of atherosclerosis, as noted in section 1.2.2. 

Inflammation is regulated by a number of processes including T-cell and macrophage 

function, cytokine production, NO production, C-reactive protein (CRP), eicosanoid, resolvin 

and protectin production. The role of inflammation in all stages of atherosclerosis is 

summarised in figure 1.2. 
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Figure 1.2. Role of inflammation in all stages of atherosclerosis [69] 

A. An inflammatory environment in the endothelium causes expression of adhesion molecules that bind ligands 

on leukocytes. Selectins mediate a rolling interaction while integrins mediate firmer attachment. 

Chemoattraction of adherent leukocytes directs their migration into the intima. 

B. T lymphocytes join macrophages in the intima. Leukocytes and vascular wall cells secrete cytokines and growth 

factors which can promote migration and proliferation of smooth muscle cells. 

C. Alterations in extracellular matrix metabolism thin the fibrous cap, making it weak and susceptible to rupture. 

When the plaque ruptures the tissue factor triggers the thrombus that causes most acute complications of 

atherosclerosis. 

 

 

1.5.2 C-reactive protein as a biomarker for inflammation 
CRP is a key inflammatory mediator and an acute phase plasma protein that plays a role in 

immunity by activating the complement system. During inflammatory states, CRP synthesis 

is stimulated by IL-6 and other cytokines. As a result, the CRP concentration in plasma 

increases and is therefore often used as a biomarker for inflammation [70]. Research has 

focused on the use of the acute phase protein CRP as a biomarker for inflammation, with 

many studies showing CRP as a potential predictor of heart disease and associated 

symptoms, such as the metabolic syndrome [71-75]. Albert et al. showed that men in the 

highest quartile of CRP concentrations had a 2.78 fold higher risk of sudden cardiac death 

compared with those in the lowest quartile [71]. Sakkinen et al. showed that after 10-15 

years follow up, the percentage of men with a MI in the highest quartile for CRP 

concentrations was 2.5 fold higher than men in the lowest quartile [72].  Ridker et al. 
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presented data which suggested that CRP is a stronger predictor of cardiovascular events 

than LDL-C [76] and also made the link, through the use of CRP as a biomarker of 

inflammation, that the efficacy of statins may be a result of anti-inflammatory effects as well 

as lipid-lowering effects in the Cholesterol and Recurrent Events trial [77]. Cut-off points have 

been established with CRP concentrations < 1mg/l meaning low risk and > 3mg/l meaning 

high risk of future heart attack for individuals [78]. However despite all of this, CRP has not 

yet been recommended for routine use in clinical practice. The reasons for this were 

highlighted in a meta-analysis published in 2010 evaluating the quality of research evidence 

for the association of CRP with fatal and nonfatal events among patients with stable coronary 

disease, which concluded that due to several types of reporting and publication bias, the 

strength of any independent association between CRP and prognosis among patients with 

stable coronary disease remains sufficiently uncertain [79]. Traditionally, CRP has been 

thought of as a marker of inflammation rather than having a role in the development of CVD. 

However, research has shown that CRP itself has pro-inflammatory effects and may be a 

direct cause in the initiation and progression of CVD through a number of potential 

mechanisms; for example enhanced production of IL-6 is observed in response to the 

presence of CRP [80]. The exact function of CRP is not yet fully understood.  

Furthermore, it has been shown that CRP can be successfully modulated by dietary 

intervention, for example increased adherence to the Mediterranean diet has been shown 

to be associated with lower CRP concentrations in a number of studies [81-84]. Therefore, 

CRP was assessed as a major outcome measure in the NU-AGE intervention and as part of 

this PhD to determine the effect of a one year whole-diet intervention in older adults on 

inflammation. 

1.6 n-3 fatty acid status and cardiovascular health 

1.6.1 Sources, benefits, recommendations and consumption 
n-3 fatty acids are polyunsaturated fatty acids which contain the first double bond at the 

third carbon atom from the methyl end of the fatty acid. There are three major n-3 fatty 

acids that play essential roles in the human body namely αLNA, EPA and DHA.    

Dietary sources of αLNA are seeds and leaves of certain plants; flaxseed is one of the best 

sources containing 22.8g/100g raw edible portion [85]. Other sources include soybeans, 

walnuts, chai seeds and oats [85]. EPA and DHA are consumed as fish, and in particular oily 

fish, but can also be consumed as supplements derived from the flesh of oily fish or the liver 

of non-oily fish (such as cod and haddock). Oily fish include mackerel which contains 1.8–
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5.3% (by weight) n-3 fatty acids, herring (1.2–3.1% by weight), salmon (1.0–1.4% by weight), 

tuna (0.5–1.6% by weight), and trout (0.5–1.6% by weight) [85]. Although the best way to 

increase EPA and DHA in tissue is generally considered to be through increased consumption 

of fish, bioconversion from αLNA is important in people who do not consume fish. For 

example, vegetarians and vegans have much lower intakes of EPA and DHA, yet their EPA 

and DHA status is higher than expected which is thought to be due to increased 

bioconversion [86].   

The potential health benefits associated with consumption of EPA and DHA are numerous. 

The most studied and accepted health benefit is their association with a reduction in CVD 

risk. However consumption of EPA and DHA has also been linked to many other diseases, for 

example, autoimmune diseases such as arthritis, cancer, depression, diabetes, respiratory 

diseases, gastrointestinal diseases, Alzheimer’s disease, as well as psychotic disorders, for 

example schizophrenia [87]. EPA and DHA intakes have also been linked to normal growth 

and development, particularly in relation to the brain and visual function, as well as improved 

immune function, throughout life [88, 89].  

The current recommended intakes of EPA plus DHA in the UK is ≥450 mg/day [90]. This 

recommendation is based on the cardiovascular benefits and can be achieved by consuming 

two portions of fish per week one of which should be oily. However estimated EPA and DHA 

consumption in adults aged 19-64 years in the UK is approximately 244mg per day, which is 

about 50% of the recommended minimal intake [90].  

 

1.6.2 n-3 fatty acids and CVD risk 
The benefits of the LC n-3 fatty acids, EPA and DHA, in relation to CVD were first suggested 

when Bang et al. investigated the composition of the diet consumed by the Inuit population 

in Greenland over 40 years ago [91]. In comparison to the Danish diet, Inuits had a higher 

dietary intake of LC-PUFAs, particularly EPA, as a result of regular consumption of seal meat 

and whale blubber. It was thought that this could explain the difference in morbidity from 

coronary atherosclerotic disease between the Inuit population of Greenland and the Danish 

population [91]. The Japanese population have lower rates of heart disease compared with 

other countries and this has also been linked to the consumption of a diet rich in seafood 

[92]. As a result, numerous subsequent studies assessing the impact of more modest intakes 

of fish on CVD risk have been conducted. A meta-analysis of 13 cohort studies (up to 

September 2003) looking at fish consumption and CHD, included 222,364 individuals with an 

average follow-up of 11.8 yrs. The results showed that mortality from CHD may be reduced 
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by eating fish once per week or more and that each 20g/d increase in fish intake was related 

to a 7% lower risk of CHD mortality (P for trend=0.03) [93].    

The epidemiological evidence is also supported by numerous RCTs. Burr et al. performed a 

study in 1989 to investigate the effects of dietary intervention, including an increase in fatty 

fish intake, in the secondary prevention of MI in 2033 men (DART Study; diet and reinfarction 

trial). Men who were advised to eat approximately 300g of oily fish per week or were given 

fish oil (up to three capsules daily (170 mg EPA and 115 mg DHA per capsule)) had a 29% 

reduction in all-cause mortality over 2 years compared with those not receiving such advice 

[94]. Since then numerous RCTs have been conducted. The GISSI-Prevenzione study involved 

the consumption of a supplement containing 850-882 mg/day of EPA and DHA for up to 3.5 

years in 2836 men (control group; 2828) who had suffered from MI within the last 3 months. 

The results showed a 20% reduction in overall mortality and a 30% reduction in mortality as 

a result of CVD [95]. The results of the JELIS study were released in 2007, which focused on 

primary prevention, also showed a reduction in death associated with heart disease. This 

study was carried out in Japan on 18,645 patients with an average total cholesterol (TC) of 

6·5 mmol/l who received either 1800 mg EPA daily with statin or statin only with a follow up 

of 5 yrs. There was a 19% relative reduction in major coronary events (p=0·011) in the group 

receiving EPA [96]. Since then, a number of other RCTs have shown beneficial effects of n-3 

fatty acids in relation to CVD including the GISSI-Heart failure study (2008), the Alpha-Omega 

study (2010), Omega (2010), and SU.FOL.OM2 (2010) although the majority of these were 

underpowered to determine effects on CVD mortality due to low event rates [97-100].  

Several systematic reviews have pooled the results of a varying number of RCTs to further 

demonstrate that long chain n-3 fatty acids have the ability to reduce all-cause mortality and 

cardiovascular mortality [101-105]. However, it should be noted that there have also been a 

number of meta-analyses studies in which no beneficial effects of n-3 fatty acid consumption 

on cardiovascular health outcomes and mortality were reported [106-110]. Reasons for lack 

of beneficial effects in these studies may be attributed to lack of statistical power due to 

lower than expected death rates, the inclusion of the DART-2 study (considered 

methodologically flawed), relatively low EPA and DHA doses, as well as a masking of 

beneficial effects by current effective medications. However, despite these potential reasons 

for lack of a beneficial effect of n-3 fatty acids on CVD, the results from these meta-analyses 

suggest that the beneficial effects of n-3 fatty acid supplementation may not be as large as 
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was originally considered and, in addition, may be only useful for certain subgroups of the 

population.  

There are a wide range of potential mechanisms through which LC n-3 fatty acids may exert 

their potential beneficial effects on cardiovascular health as listed in table 1.2.  

 

Table 1.2. Potential mechanisms through which n-3 fatty acids may benefit cardiovascular 
health 

Mechanism Background  

Changes in Triglycerides 

(TGs) and High Density 

Lipoprotein cholesterol 

(HDL-C) 

Balk et al. conducted a systematic review which showed 

that fish oil consumption resulted in a change in TGs of 

−27 mg/dL, in HDL-C of +1.6 mg/dL [111] 

Incorporation into cell 

membranes 

Consumption of n-3 fatty acids results in their incorporation 

into cell membranes, replacing other fatty acids such as 

arachidonic acid (AA), which in turn can affect eicosanoid 

and other vasoactive mediator production, resulting in a 

less thrombotic situation [112] 

Anti-arrhythmic effects n-3 fatty acids have anti-arrhythmic effects due to their 

electrophysiological impact when present in 

cardiomyocytes; they directly affect membrane ion channel 

currents and decrease excitability [113]. This mechanism 

may also be responsible for the lowering effect of n-3 fatty 

acids on resting heart rate [114] 

Regulation of Transcription 

Factors 

n-3 fatty acids can regulate various transcription factors and 

therefore modulate expression of a number of genes, 

producing various effects [115-117]. For example, n-3 fatty 

acids are ligands for peroxisome proliferator-activated 

receptor α and δ which regulate lipid homeostasis and 

inflammation [115] 

Eicosanoid Production Eicosanoids produced during metabolism of n-3 fatty acids 

are usually less inflammatory compared with those 

produced during n-6 metabolism. Some are also known to 
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be anti-inflammatory, inflammation resolving and can also 

inhibit vasoconstriction  [118]  

Increased  Nitric Oxide n-3 fatty acids may increase endothelial bioavailability of 

vasoactive substances. This is seen in the case of NO which 

may be a result of gene regulation or a decrease in NO 

degradation due to reduced oxidation or increased 

antioxidant activity [119] 

Decreased Oxidative Stress A decrease in oxidative stress is associated with lowering of 

triglycerides, therefore the hypolipidemic effect of n-3 fatty 

acids may also result in a decrease in oxidative stress [120] 

Anti-Inflammatory Effects EPA and DHA metabolites, such as resolvins, have anti-

inflammatory and inflammation resolving properties 

Improved Endothelial 

Function (see section 

1.3.5) 

n-3 fatty acids have been shown to improve endothelial 

function, however the mechanism through which the n-3 

fatty acids exert the benefits on the endothelium remains 

unknown [121] 

  

1.6.3 Regulation of LC-PUFA status in vivo 
As mentioned above, in addition to increased intake, tissue EPA and DHA is also influenced 

(and in particular in non-fish or fish oil supplement consumers) by the rate of bioconversion 

from αLNA.  Desaturases and elongases are responsible for the conversion of essential fatty 

acids to long chain PUFAs in humans (Figure 1.3). The delta-5 (D5D) and delta-6 desaturase 

(D6D) enzymes are the key rate-limiting enzymes in this pathway [122]. The human 

desaturase complementary DNAs were first cloned in 1999 by Cho et al. [123, 124] and were 

later identified as FADS-1 and FADS-2 in the human genome [125]. The FADS genes are 

located in a cluster on chromosome 11 (11q12-13.1). D5D and D6D are both found in many 

human tissues but the liver is the site at which they are most highly expressed [123, 124].  

In the n-3 PUFA family, the parent fatty acid is αLNA with the metabolic products of αLNA 

being EPA, DHA and Docosapentaenoic acid (DPA) as seen in Fig. 1.3 below. This figure shows 

that LA and αLNA are metabolised by the same series of enzymes. EPA and DHA are produced 

at limited conversion rates of 0.2-6% for EPA and 0-0.5% for DHA in humans, with the higher 

rates being in pre-menopausal females rather than males [126]. The higher conversion rates 

observed in pre-menopausal women is thought to be an evolutionary adaptation so that 
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younger females have sufficient LC-PUFAs to meet the demands of pregnancy and the 

developing foetus. As will be discussed in chapter 2, conversion rates could also potentially 

be influenced by other dietary components, such as flavonoids [127]. Furthermore, the 

bioconversion rates are also thought to dependent on genetics, as discussed in section 1.7. 

The impact of the FADS genotype on plasma fatty acid status in older adults will be examined 

in this project (chapter 6). 

 

Figure 1.3. n-6 and n-3 PUFA pathways [128] 

 

Linoleic acid (LA) and α-linolenic acid (αLNA) are desaturated, elongated and β-oxidised by the same 

enzyme series, including fatty acid desaturase (FADS)-1 and FADS -2, to form longer chained fatty 

acids such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 

 

1.7 Impact of common gene variants on LC-PUFA status 

1.7.1 FADS polymorphisms and the utilisation of haplotypes 
As mentioned in section 1.6.3, the FADS enzymes are major rate limiting enzymes in the 

bioconversion of essential fatty acids into longer chained fatty acids. The whole FADS gene 

region appears to be important in terms of its effects on plasma fatty acid status; no 
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particular SNP has emerged has having a much higher impact on fatty acid status compared 

with other SNPs. A tag SNP is a SNP in a region of the genome that has high linkage 

disequilibrium (LD) and can represent multiple genetic variants on one chromosome, known 

as a haplotype. The selection of tag SNPs and reconstruction of haplotypes allows studies to 

gain insight into the gene region associated with a particular phenotype without the 

requirement to analyse every SNP in the gene region. Haplotypes refer to the inheritance of 

a cluster of SNPs. There are several advantages to the reconstruction of haplotypes, for 

example the haplotype can represent the biologically functional genetic unit and can 

therefore provide additional information in relation to association analyses with complex 

diseases that involve multiple susceptible alleles [129]. Furthermore, haplotype diversity is 

considered limited, resulting in only a few existing haplotypes and therefore a gain in power 

for the analyses [129].  

1.7.2 The relationship between the FADS genotype, fatty acid status and CVD 
Numerous studies have shown associations between variations in the FADS genotype and 

fatty acid status in humans [130-135]. In general, carriers of FADS minor alleles tend to have 

increased levels of essential fatty acids, LA and αLNA, as well as decreased levels of longer 

chained fatty acids, such as AA, EPA and DHA. Various calculations of desaturase activity have 

also been conducted in the majority of studies and generally tends to be lower for 

participants carrying the minor alleles. Female carriers of the minor allele have sometimes 

been considered to be at a disadvantage during pregnancy due to lower levels of EPA and 

DHA (both of which are particularly important to the foetus and infant) found in blood during 

pregnancy and in breast milk [135-140]. It has also previously been hypothesised that 

reduced desaturase activity, resulting in decreased formation of AA, EPA and DHA from LA 

and αLNA, could lead to an increased risk of atherosclerosis initiation and progression due 

to inadequate formation of prostaglandin E1, prostacyclin, lipoxins, resolvins, NO and 

nitrolipids which are thought to be anti-inflammatory relative to their AA derived 

metabolites [141].  

However, the majority of studies to date suggest that FADS minor alleles, associated with 

decreased desaturase activity, are in fact also significantly associated with reduced 

inflammation, TC, LDL-C, and CAD risk [131, 142-146]. Martinelli et al. also stated that a 

higher AA/LA ratio was an independent risk factor for CAD [131]. Mathias et al. recently 

summarised some of the potential reasons for such findings [147]; for example the ratios of 

fatty acids entering the fatty acid metabolic pathways through the diet are likely to influence 
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findings. LA and αLNA compete at the early stages of the biosynthetic pathway and in the 

last 50 years there has been a dramatic increase in LA levels in the Western diet [147] 

resulting in a shift in the ratio of LA to αLNA in these pathways and therefore reduced 

synthesis of n-3 LC-PUFAs. The corresponding increase in n-6 conversion leads to increased 

levels of AA which is a direct precursor of many pro-inflammatory eicosanoids [147, 148]. 

Hester et al. recently showed that subjects with the major allele for FADS SNP rs174537 had 

significantly higher levels of pro-inflammatory eicosanoids, LTB4 and 5-HETE, compared with 

minor allele carriers [148]. However, a few studies reported contradictory results [149-151] 

which could potentially be due to differences in the n-6 to n-3 PUFA dietary environment or 

racial differences. Furthermore, these studies each examined either only one or two FADS 

SNPs, whereas many of the larger studies selected numerous FADS SNPs. Therefore a 

comprehensive overview of the association between genetic variation across the entire FADS 

gene locus and fatty acid status is relatively lacking.  

1.7.3 The relationship between FADS genotype and diet 
There have been a number of studies that show that diet composition can influence the 

relationship between FADS genotype and fatty acid and lipid status. In 2012, Hellstrand et al. 

published an epidemiological study in which 4,635 individuals were genotyped and analysed 

for rs174547 and cholesterol [152]. The paper reports that the minor allele was associated 

with lower LDL-C only among individuals in the lowest tertile of n-3 LC-PUFA intakes (p < 

0.001). A significant interaction between rs174547 and the ratio of αLNA and LA intakes on 

HDL-C was also observed (p=0.03). However another paper published in 2012 by Standl et al. 

reported that, although carriers of the FADS minor alleles had lower cholesterol, LDL-C, HDL-

C and higher TG concentrations, the associations between genotype and PUFA intakes did 

not interact [145]. This study involved 2,006 children and examined the effects of 6 FADS 

SNPs. More recently, a study with a 14 year follow-up examined the impact of rs174546 and 

fatty acid intakes in 24,032 participants on CVD risk [153]. αLNA -to-LA intake ratio was found 

to be inversely associated with CVD risk only among participants homozygous for the minor 

allele. ALA was also inversely associated with ischemic stroke among participants 

homozygous for the minor allele.  

In terms of intervention studies, Gillingham et al. showed that subjects with minor allele 

variants had decreased desaturase activity but an increase in αLNA intakes resulted in 

increased plasma EPA beyond that of major allele homozygotes consuming a typical Western 

diet [154]. This was a randomized crossover trial carried out in 36 hyperlipidemic subjects in 
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which three diets (diets enriched with flaxseed oil or high-oleic acid canola oil compared with 

typical Western diet) were consumed for four weeks and 5 FADS SNPs were analysed. 

Cormier et al. conducted a study in 208 subjects involving fish oil supplementation (5g/d 

containing 1.9-2.2 g/d EPA and 1.1 g/d DHA) for 6 weeks. This study examined the impact of 

fish oil supplementation and 19 FADS SNPs on desaturase activity and reported that gene-

diet interactions were potentially responsible for modulating enzyme activities post-

supplementation.  

In terms of whole-diet interventions, one study to date has examined the interaction of fatty 

acid genotype and the Mediterranean diet on changes in serum and colonic fatty acids [155]. 

This was a 6 month intervention study involving 108 participants and the examination of 4 

FADS SNPs. Following intervention, there was a significant diet by genotype interaction for 

AA concentrations in the colon; subjects with FADS major alleles following the 

Mediterranean diet had 18% lower AA concentration in the colon than subjects on the 

control diet (Healthy Eating Diet) suggesting that the Mediterranean diet could be especially 

favourable for reducing the colon cancer risk, associated with high levels of AA, in the subset 

of people with the major alleles [155]. There was no significant diet by genotype interaction 

for serum fatty acids.       

Overall, results are inconsistent and it is clear that further research is required to determine 

the impact of the FADS genotype on health outcomes. Further research is also necessary to 

determine the potential of the diet to modify the relationship between the FADS genotype 

and fatty acid status.  

 

1.8 Dietary compounds which may potentially influence fatty acid status; 

polyphenols 

1.8.1 Background 
Previous research has suggested that other dietary components, such as polyphenols, may 

have an impact on the metabolism of fatty acids in humans, resulting in improved LC-PUFA 

concentrations in blood and cells. It has been shown that alcohol consumption is positively 

associated with n-3 fatty acids, EPA and DHA, in human blood cells and plasma [156]. 

Furthermore, it has also been shown that this association is stronger when alcoholic 

beverage consumed is wine relative to beer or spirits, and therefore it has been hypothesised 

that the beneficial effect could be a result of non-alcoholic compounds present in wine, such 

as polyphenols [156]. More recently, two animal studies have published results which further 
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suggest that specific dietary polyphenols, known as flavonoids, have the potential to improve 

plasma fatty acid composition [127, 157].  

1.8.2 Polyphenols 
Polyphenols are molecules that are secondary metabolites of plants, and are highly abundant 

in the diet; approximately 8,000 have been identified [158]. They provide colour to plants 

which aids the attraction of pollinators and also play a role in defence against insects and 

microbes [158]. Polyphenols are classified into different groups based on the number of 

phenol rings that they contain, as well as the structural elements that bind these rings to one 

another. The main polyphenolic groups are the phenolic acids, flavonoids, stilbenes, 

hydroxybenzoic acids, hydroxycinnamic acids and lignans [158].  

As mentioned previously, consumption of wine has been shown to be associated with n-3 

fatty acids, EPA and DHA, in human blood cells and plasma [156]. This effect is thought to be 

due to non-alcoholic components of wine, such as polyphenols. Although white wines tend 

to be lower in polyphenols, particularly flavonoids, compared with red wines, Champagne 

wine has been shown to contain relatively high amounts of phenolic compounds [159]. 

Champagne wine has approximately 19 phenolic compounds including hydroxybenzoic acids 

(gallic acid, protocatechuic acid), hydroxycinnamic acids (caffeic acid), flavonoids (catechin, 

epicatechin, quercitin), phenolic alcohols (tyrosol, trans-resveratrol) and phenolic aldehydes 

(vanillin) [160]. Studies have shown numerous benefits of moderate champagne intakes; 

neuroprotective effects against oxidative neuronal injury [161], improvements in spatial 

memory via modulation in hippocampal signalling and protein expression [162], and the 

promotion of endothelium-independent vascular reactivity [163]. Although we did not have 

access to blood or tissue samples of animals that had been fed red or white wine, we did 

have access to a number of previously collected blood and tissue samples of animals that 

had been fed a control diet, a diet supplemented with champagne wine, and a diet 

supplemented with alcohol. Therefore, we aimed to investigate the potential effects of 

champagne, as well as alcohol alone, on fatty acid status in animals. 

1.8.3 Flavonoids 
Research has particularly been focused on the potential health effects of the flavonoid 

subclass of polyphenols; flavonoids share a common structure of two aromatic rings 

connected by three carbon atoms that contain an oxygenated heterocycle ring [158]. 

Flavonoids make up over two thirds of the polyphenols and the main subclasses of flavonoids 

are flavonols, flavones, flavan-3-ols, ACNs, flavanones and isoflavones. In general, flavonoids 
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are found as monomers or polymers in fruits, vegetables and plant based food products such 

as tea and cocoa [158].   

ACNs are naturally occurring water soluble pigments that contain sugar and are responsible 

for the red and blue colours of many dark plant based foods, for example blackcurrants, 

blackberries, and blueberries which are major dietary sources of ACNs in the diet, along with 

red wine [158]. ACNs are glycosides of anthocyanidins. Anthocyanidins are also plant based 

compounds but differ from ACNs as they are made up of various polyhydroxy or polymethoxy 

derivates of 2-phenylbenzopyrylium or flavilium salts [164]. It is estimated that 400 different 

ACNs have been found in nature, such as cyanidins, hirsutidin and malvidin. It is the number 

of hydroxyl groups, the nature, number and position of sugars attached to the molecule, and 

the nature and number of aliphatic or aromatic acids attached to sugars in the molecule that 

makes each ACN different [165]. A number of studies have estimated dietary intake which 

has been reported to vary widely, from 1-215mg/d [166-168]. There is also a large amount 

of variation in the area of bioavailability of ACNs and although bioavailability of ACNs was 

originally thought to be low, recent research shows that levels have been underestimated 

due to the number of metabolites, some of which were not quantified in earlier 

bioavailability studies [169]. Many studies have been conducted in order to determine health 

benefits of flavonoids, including ACNs, in relation to CVD, and evidence suggests that 

moderate intake of ACNs may be protective against CVD [47, 164, 170, 171]. However, the 

mechanisms by which ACNs may produce cardioprotective effects are not fully understood. 

It has been hypothesised that ACNs and/or their metabolites may be beneficial to health as 

a result of their indirect antioxidant activity, regulating various signal pathways or gene 

expression, or perhaps by protecting against damage to DNA [172-174]. As previously 

mentioned, two animal studies suggested that ACNs have the potential to improve plasma 

fatty acid composition [127, 157], which may be a mechanism which partly explains their 

reported health benefits. However the impact on tissue fatty acid status has not been 

investigated. In my thesis, I investigated the effect of ACNs, as well as blueberry and 

elderberry supplementation (rich sources of ACNs) on plasma/serum and tissue fatty acid 

status. 

Flavan-3-ols, another subgroup of the flavonoids, are derived from flavans and exist in both 

monomer (catechins) and polymer (pro-anthocyanidin) forms [158]. Flavan-3-ols are 

abundant in teas, cocoa, fruits, vegetables and red wine [158]. Flavan-3-ols are thought to 

make up over 80% of total flavonoid intakes but due to low absorption and rapid elimination, 

plasma concentrations rarely exceed 1 µmol/l [158, 167]. Research suggests that flavan-3-
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ols may also play an important role in human health, particularly in relation to cardiovascular 

health which may, for example, be the result of effects on vascular function and 

inflammation [175]. The European Food Safety Authority (EFSA) have approved health claims 

that cocoa products (containing >200mg flavan-3-ols per daily serving) “help maintain 

elasticity of blood vessels, which contributes to normal blood flow” [176]. Although limited 

research has suggested that ACNs have the potential to alter plasma fatty acids, there is no 

research on the potential of flavan-3-ols to have such an effect [127, 157]. Therefore, we 

aimed to investigate the impact of both ACN and flavanol supplementation on fatty acid 

composition for the first time.  

 

1.9 Dietary patterns and the use of diet scores 

1.9.1 Whole-diet interactions and cardiovascular health 
Research from epidemiological studies, RCTs and meta-analysis has shown that dietary 

components such as fatty acids and flavonoids, can influence health outcomes. However, 

research has also shown that the alteration of dietary patterns may be much more effective 

than intervening with individual components at improving health outcomes [177-181]. 

Whole dietary interventions may be a more beneficial approach due to the multiple potential 

bioactives which can have additive and/or synergistic effects when consumed in combination 

[182-184].      

In the last two decades research has focused on the Mediterranean diet and has shown it be 

effective in improving many different health outcomes, particularly those related to 

cardiovascular health. Kesse-Guyot et al. conducted a 6 year prospective study on 3232 

participants which showed that adherence to the Mediterranean diet was inversely 

associated with systolic blood pressure (SBP), triglycerides (TGs) and positively associated 

with HDL-C [185]. Centritto et al. analysed 7646 healthy participants in an Italian cross-

sectional study and identified three dietary patterns [186]. The "Olive Oil and 

Vegetables" pattern, characterized by high intake of olive oil, vegetables, legumes, soups, 

fruits and fish, was associated with lower glucose, lipids, CRP, blood pressure and CVD risk 

score. Other epidemiological studies have shown that the Mediterranean diet is positively 

associated with n-3 fatty acids and inversely associated with saturated fatty acids [187, 188]. 

It is also associated with lower CRP concentrations across all age groups, including older 

adults [189-191], an improved lipid profile [186, 192, 193], and improved fatty acid profile in 

older adults. Furthermore, a number of intervention studies have also shown the 
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Mediterranean diet to be beneficial. The PREDIMED study was a primary prevention trial 

conducted in Spain that looked at the effects of a low fat diet, a Mediterranean diet 

supplemented with extra virgin olive oil, and a Mediterranean diet supplemented with nuts 

on a wide range of outcomes. 7,447 subjects, aged between 55 and 80 years, were recruited 

and followed up every year for 4 years. All 3 diet groups exerted beneficial effects on blood 

pressure overall, while participants allocated to either of the two Mediterranean diets had 

significantly lower diastolic blood pressure (DBP) than the participants in the control group 

[194]. The PREDIMED Mediterranean diet supplemented with extra-virgin olive oil or nuts 

also had reduced incidence of major cardiovascular events, reduced peripheral arterial 

disease (PAD) incidence, improved plasma NO and improved fatty acid status [178, 195-197]. 

Participants consuming the Mediterranean diet with olive oil were shown to have significant 

increases in palmitic acid (PA) and oleic acid (OA), with decreases in margaric, stearic and LA. 

Participants consuming the Mediterranean diet plus nuts had significantly higher PA, LA and 

αLNA, and significantly lower myristic, margaric, palmitoleic and dihommo-γ-linoleic acid 

[197]. This study also showed that these changes were beneficially associated with the 

incidence, reversion and prevalence of the metabolic syndrome.  

The DASH (dietary approaches to stop hypertension) diet promotes a diet rich in fruits, 

vegetables, wholegrains, fish and low-fat dairy foods and aims to reduce red meat intakes, 

salt, sugar, saturated and total fat. The DASH diet has been shown to lower blood pressure 

in both short and long term feeding studies that looked at the DASH diet alone, the DASH 

diet and varying intakes of dietary sodium, and the DASH diet in combination with other 

lifestyle modifications [198-201]. A four month dietary intervention in overweight or obese 

subjects (n=144, mean age of 52 years), with untreated hypertension, examined the effects 

of the DASH diet alone and the DASH diet with weight management against a control group 

(requested to continue with their usual diet) on PWV [200]. Both of the DASH diet 

interventions resulted in lower PWV compared with the control group (p= 0.001), and PWV 

was significantly lower in the DASH diet combined with weight loss management compared 

with the DASH diet alone group (p= 0.045). A recent systematic review and meta-analysis 

(including 1917 participants) has reported that the DASH diet significantly reduces blood 

pressure, TC and LDL-C, particularly in those with an increased cardio-metabolic risk [202]. 

The Nordic diet also appears to have beneficial effects on cardiovascular health outcomes. 

The Nordic diet consists of foods that are traditional in Nordic countries, for example fruits 

(berries, apples and pears), vegetables, legumes, low-fat dairy products and fatty fish, as well 
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as LDL-C-lowering foods (oats, barley, soy protein) [203]. The Nordic diet has been shown to 

significantly improve the blood lipid profile, inflammation, insulin sensitivity and blood 

pressure [203, 204]. The Nordic diet can also result in weight loss and blood pressure 

reduction in centrally obese adults [205]. An index based on traditional healthy Nordic foods 

was found to be related to lower mortality among middle-aged Danes, particularly among 

men [206]. An intervention involving consumption of the Nordic diet for 6 weeks in older 

adults resulted in decreases in a number of saturated fatty acids and an increase in serum 

DHA [207]. However, more research is still required to determine the health effects of the 

Nordic diet as intervention studies are limited and short compared with those investigating 

the Mediterranean diet. 

Overall, there is substantial evidence of the benefits of the whole-diet approach. However, 

there is no research on the impact of a whole-diet intervention on clinical measures of 

endothelial function and arterial stiffness in older adults. We aimed to determine the impact 

of a one year whole-diet intervention, tailored specifically for older adults, on clinical and 

biochemical measures of vascular function and inflammation in older adults. 

1.9.2 The use of diet scores 
The utilisation of diet scores/indices has become a popular approach for assessing whole-

diet quality and the impact of whole-diets on health outcomes. Diet scores are generally 

based on a set of dietary recommendations and can be used to evaluate adherence to a 

dietary pattern. There is currently a wide variety of diet scores which are commonly used to 

assess the overall quality of diets, some of which have been based on the dietary patterns 

previously discussed in section 1.8.1.    

A number of scores have been designed based on the Mediterranean diet, including the 

traditional Mediterranean Diet Score (MDS), an updated Mediterranean score (MED) and the 

Mediterranean style-dietary pattern score (MSDPS), with a high score on all indices 

associated with cardio-metabolic benefits [185]. The original MDS is a score which measures 

adherence to the Mediterranean diet by assigning a score of either “1” or “0” to different 

dietary components [181]. These 9 dietary components were considered either beneficial 

(fruit and nuts, vegetables, legumes, cereal and fish) or detrimental (meat, poultry and dairy 

products). For beneficial components, people with intakes that were below the median were 

assigned a value of 0, and people with intakes that were at or above the median were 

assigned a value of 1 and vice versa for detrimental components. For alcohol, a score of 1 

was assigned to men who consumed between 10 and 50g per day and to women who 
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consumed between 5 and 25g per day. Therefore the score ranged from 0 to 9, with a score 

of 9 reflecting maximum adherence to the Mediterranean diet. This diet score has been used 

in a number of studies. For example, a prospective study involving 22,043 adults, 44 months 

follow-up (median) and 275 deaths, reported that increased adherence to the 

Mediterranean diet (2-point increment), as assessed by the Mediterranean diet score, was 

significantly associated with a reduction in total mortality (hazard ratio (HR): 0.75), death 

due to CHD (HR: 0.67), and death due to cancer (HR: 0.76) [181].   

A diet score has also been created to assess effects of the DASH diet on health outcomes 

[208]. This score consists of 0-1 ratings. There are several versions of the DASH diet as it has 

evolved over time; the diet score food groups have included fruits, vegetables, nuts and 

legumes, low-fat dairy, whole grains, sodium, red and processed meats etc. For example, if 

4-5 servings of vegetables are recommended per day; 1= ≥4 servings/day, 0.5= 2-3 

servings/day, 0= <2servings/day. Scoring is reversed for food groups where lower intake is 

recommended. As for alcohol, no score is given and the percentage of people who drink in 

each group was accounted for. This diet score has been utilised in a study involving 36019 

women aged 48-83 years, and results showed that women in the top quartile of the DASH 

Diet Score had a 37% lower rate of heart failure [208].  

The Healthy Eating Index (HEI) is another major diet score and is based on the Food Based 

Dietary Guidelines (FBDGs) given by the United States Department of Agriculture (USDA). 

The HEI consists of 12 food groups, which are scored between 0-5, 0-10 or 0-20 points 

depending on food group. Calories coming from the food group titled “Solid Fat, Alcohol, and 

Added Sugar” are weighted at least twice as heavily as other food groups. The score for this 

group can be between 0 and 20. A zero score will be given if ≥50% of energy comes from this 

food group, while a score of 20 will be given if ≤20% of energy comes from the group. One 

study shows that men and women with the highest score, and therefore most compliant with 

the USDA guidelines, have a 23% lower risk of suffering from CHD, and a 16% lower risk of 

major chronic disease [209].    

A diet score for the elderly has previously been designed; the Elderly Diet Index (EDI) [210]. 

The EDI made up of 10 dietary components, based on a combination of both the modified 

MyPyramid for Older Adults and the Mediterranean Diet. The validation of the EDI was 

conducted using data from 668 elderly participants of the MEDIS study. The EDI was designed 

using food frequency questionnaire (FFQ) data and uses a scoring system ranging from 0 to 

4. This study has shown that an increased EDI is associated with lower odds of CVD risk 
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factors, such as obesity and hypertension, but as of yet this score has not been used in 

another study. 

The diet scores mentioned have proved useful in the examination of population-wide dietary 

patterns. A diet score specific to the NU-AGE diet recommendations for the elderly could be 

used in NU-AGE studies to assess adherence to the intervention, and could subsequently be 

used to assess habitual diet quality in future observational studies and RCTs in older adult 

populations, and in particular within the European population. Although a diet score 

designed specifically for the elderly has previously been published, the NU-AGE diet score 

will be based on substantially different diet goals and will also aim to overcome some of the 

limitations of the previous score [210]. For example, the NU-AGE diet score will be designed 

with more dietary components including wholegrains, nuts, eggs, fluid and cheese, many of 

which are of particular importance to older adults. The NU-AGE diet score will also be 

suitable for use with both FFQ and food diary data and is designed with a wider ranged 

scoring system (a range of 0-10) compared with the EDI (0-4) which may result in the NU-

AGE diet score being more sensitive.  

 

1.10 Summary, hypothesis and objectives 

1.10.1 Summary 
Persons aged over 60 now make up 22.9% of the European population, while persons over 

80 make up 4.5% [8]. To achieve a compression of morbidity, it is important that realistic 

dietary strategies are identified that will contribute to healthy ageing. As would be expected, 

research has shown that whole-diet interventions may be more effective than intervening 

with individual dietary components at improving health outcomes with foods, nutrients and 

non-nutrients having additive or perhaps even synergistic effects when consumed in 

combination [177-184]. For example, the Mediterranean diet, the DASH diet and the Nordic 

diet have all been shown to improve numerous cardiovascular related outcomes, including 

major cardiovascular events [194, 202, 203]. Diet scores/indices are a useful approach to 

analysing diet quality in whole-diet interactions studies.  

Low grade chronic inflammation, which can be influenced by diet, is thought to be one of the 

major influences on the ageing process and it plays a significant role in the pathology and 

progression of many age-related diseases, for example CVD which causes more than half of 

all deaths in Europe [211]. Vascular function, which can also be modulated by dietary 

compounds, is an early indicator of CVD and therefore an important factor to consider in the 
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ageing process. Vascular function can be analysed by a number of clinical and biochemical 

measures related to both endothelial function (EndoPAT) and arterial stiffness (PWV and 

CAVI). However, research on the impact of dietary patterns and whole-diet interventions on 

these measures is limited, particularly in older adults. No study has specifically examined the 

impact of a one year whole-diet intervention (tailored specifically for older adults) on clinical, 

as well as biochemical, measures of both endothelial function and arterial stiffness in 65-79 

year olds.    

An optimised EPA and DHA status is considered beneficial to ageing in general and in 

particular in relation to cardiovascular health outcomes. However at a population level, 

intakes are sub-optimal, with an average EPA plus DHA intake of 244mg per day in UK adults, 

which is about 50% of the recommended minimal intake [90]. Although increasing EPA and 

DHA intake is the most effective approach to increasing EPA and DHA plasma and tissue 

status, EPA and DHA status can potentially be increased by a positive impact of dietary 

components on the biosynthesis of EPA and DHA from its precursor αLNA. For example, there 

is an association between moderate wine consumption and n-3 fatty acids, EPA and DHA, in 

human blood cells and plasma [156]. Two studies in animals have reported results which 

further suggest that flavonoids have the potential to increase fatty acid bioconversion and 

improve plasma fatty acid composition [127, 157].  However neither of these studies 

examined the impact on tissue fatty acid status. Furthermore, no human intervention studies 

have examined the hypothesis that dietary compounds, such as ACNs, can influence EPA and 

DHA plasma status, and therefore further research is required.  

Fatty acid status can also be influenced by variability in key regulatory genes in the αLNA to 

EPA and DHA desaturation and elongation pathway. Polymorphisms in the FADS 1 and FADS 

2 gene region have been shown to influence fatty acid status. However, research findings are 

inconsistent, with little investigation in older adults and little knowledge available on the 

impact of FADS genotype on health outcomes. Further research is also necessary to 

determine the potential of the diet to modify the relationship between the FADS genotype 

and fatty acid status.   

 

 

 



48 

 

Hypotheses and objectives 

 

 Hypothesis; a year-long whole-diet intervention slows the progression of endothelial 

dysfunction and arterial stiffness, and improves inflammatory and fatty acid status 

in older adults.  

 Objective; to examine the impact of a dietary intervention (including advice EPA and 

DHA intakes) on chronic low grade inflammation and cardiovascular health. NU-AGE 

(EU FP7) is a five centre trial involving 1,250 older adults (study design described in 

chapter 3). The objective in the current thesis is to examine the effects of 

intervention on plasma fatty acid status and vascular function, a major determinant 

of CVD risk associated with inflammatory status, in Norwich participants. Clinical 

measures utilised to assess vascular function included EndoPAT, PWV and CAVI. 

Biochemical measures included the analysis of the lipid and fatty acid profile, CRP, 

ET-1 and nitrite. A diet score based on the NU-AGE diet (specific to the elderly) was 

created in order to assess diet quality and to determine if the NU-AGE diet score was 

associated with vascular function and inflammatory status (as described in chapter 

4).   

 

 Hypothesis; EPA and DHA status may potentially be altered by specific dietary 

compounds. 

 Objective; to investigate impact of ACNs, flavonols, blueberries, champagne and 

alcohol on fatty acid status. Samples from a number of already completed human 

and rodent studies were analysed (as described in chapter 2). The rodent studies also 

involved the examination of the various interventions on fatty acid status in tissues 

including the liver, cortex, muscle and heart.  

  

 Hypothesis; FADS gene variants can impact plasma fatty acid status and vascular 

function in older adults and the NU-AGE diet can influence the relationship between 

the FADS genotype and fatty acid status.   

 Objective; to investigate the impact of the FADS genotype on plasma fatty acid 

status, as well as the impact on vascular function, of older adults.  Fatty acid absolute 

intake and ratios may determine whether the impact of the FADS genotype has a 

positive or negative effect on health; a diet high with a lower n-6 to n-3 ratio may 
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help overcome the negative impact. Although the NU-AGE diet was not designed 

with a focus on n-6 to n-3 ratios, the NU-AGE diet has a strong Mediterranean diet 

influence (lower in n-6 fatty acids compared with the typical Western diet [155]). 

Recommendations for participants to consume oily fish (0-2.2: 1 n-6: n-3 ratio) and 

a spread (4: 1 n-6: n-3 ratio) should help optimise n-6: n-3 ratios which are thought 

to be as high as 17: 1 in the Western diet [212]. The impact of the NU-AGE 

intervention on the relationship between the FADS genotype and fatty acid plasma 

status was therefore investigated. (Chapter 6) 
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   Chapter 2 

The effect of select dietary compounds on blood and tissue  

levels of fatty acids in ageing humans and animals 
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2 The effect of select dietary compounds on blood and tissue 

levels of fatty acids in ageing humans and animals 

2.1 Introduction 
The essential fatty acid, αLNA can be converted in the body by FADS enzymes to longer 

chained fatty acids, such as EPA, DHA and DPA as discussed in Chapter 1. The most efficient 

means of increasing tissue EPA and DHA in the body is through oily fish consumption, but for 

vegetarians/vegans/non fish-eaters biosynthesis is the only source. Although bioconversion 

efficiency is poor (<5% for EPA and < 1% for DHA), these populations have low but stable 

levels of EPA and DHA [213] as a result of the endogenous production of these fatty acids. 

An exception to these typically low biosynthetic rates is pre-menopausal women who have 

higher conversion rates compared with men of the same age [128]. It has been suggested 

that this increased capacity for EPA and DHA synthesis is in order to have reserves of these 

fatty acids to meet increased requirements during potential pregnancies; DHA in particular 

is extremely important during foetal development as it forms part of the central nervous and 

visual system structures [214]. Specifically, DHA increases membrane fluidity which improves 

neurogenesis, synaptogenesis and the activity of retinal photoreceptors [214].   

Habitual EPA and DHA intakes (244mg/d for UK adults) are below the minimum 

recommended intakes of 500mg/d with low fish intake attributed to the accessibility, 

affordability and palatability of fish products [215]. Considering the many beneficial effects 

of EPA and DHA in human health (as discussed in Chapter 1), the current inadequate oily fish 

consumption, and ever depleting fish stocks, it is important that we seek new ways of 

improving the population’s EPA and DHA status. Stimulation of endogenous pathways of EPA 

and DHA synthesis from αLNA could provide an additional approach to ensure that EPA and 

DHA status in the general population is adequate.  

Polyphenols are molecules that are secondary metabolites of plants, and are highly abundant 

in the diet; approximately 8,000 have been identified with flavonoids making up two thirds 

of these [158]. Many types of studies have been conducted to determine health benefits of 

flavonoids, including ACN, in relation to CVD, and evidence suggests that moderate intake of 

ACNs may be protective against CVD [47, 164, 170, 171]. There is also evidence that 

supplementation of ACNs to the diet can increase EPA and DHA concentrations in plasma. In 

one particular rodent study, EPA and DHA plasma concentrations significantly increased from 

6.1 ± 0.2% to 7.2 ± 0.2% in the animals that were fed an ACN rich diet for 8 weeks compared 

with those that were not [127]. In another recent study, rats fed an ACN-rich grape-bilberry 
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juice for 10 weeks had an increased overall percentage PUFA, as well as a decrease in 

percentage saturated fatty acids (SFA) in plasma. However there were no significant changes 

in EPA and DHA specifically [216]. Apart from these two rodent interventions, where the 

study of fatty acid profiles was not a primary outcome, and EPA and DHA was measured in 

plasma only, no studies to date have investigated whether ACNs can improve EPA and DHA 

status in mammals.   

In the current work, we aimed to examine, for the first time, the hypothesis that flavonoids 

could improve LC-PUFA status by conducting plasma and tissue fatty acid analysis on samples 

from rodent and human studies. Potential mechanisms to explain this could involve 

increased intestinal absorption, or an effect on the expression/activity of the two desaturase 

enzymes that play a role in the conversion pathway; FADS1 and FADS2. These enzymes, and 

FADS2 in particular, are rate limiting steps in the conversion process [217] and it has been 

shown that they can be regulated by diet composition [218]. For example, Cho et al 

demonstrated that rats that were fed a diet consisting of 10% oil had only 25% of the level 

of hepatic mRNA for FADS1 and FADS2 compared with rats fed a fat free diet [218]. It is 

therefore possible that flavonoids could have a stimulating effect on the FADS enzymes.  

Many studies have shown that moderate consumption (1-2 drinks per day) of alcohol-

containing beverages is associated with reduced risk of CVD [219-221]. However the exact 

mechanism of how this occurs has not yet been fully elucidated. It has been shown that 

alcohol-containing beverage consumption increases EPA and DHA in the blood cells and 

plasma [156]. Furthermore, it has also been shown that this effect is stronger when the type 

of alcoholic beverage consumed is red wine, and therefore it has been hypothesised that the 

beneficial effect  could be a result of non-alcoholic compounds present in wine such as ACNs 

[222, 223]. ACNs and their potential beneficial effects on CVD were discussed in chapter 1. 

 

The samples were derived from completed feeding studies whose primary aim was to 

investigate the effects of flavonoid/ACN rich sources on cardiovascular and cognitive 

outcomes. The analyses carried out as part of this PhD (which includes two rodent and one 

human study) involved investigating the potential effects of ACNs, flavan-3-ols, blueberries, 

champagne and alcohol on plasma fatty acid status to determine their potential impact on 

the bioconversion of αLNA to EPA and DHA. The inclusion of the study investigating the 

effects of both champagne and alcohol could add further insight to the relationship between 

alcohol-containing beverage consumption and increased EPA and DHA concentrations by 

confirming whether or not alcohol alone has any effect, as well as determining whether a 
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relationship can be found for alcohol containing beverages other than wine. However as this 

study was not designed to test our hypothesis it did not include a group that were fed red or 

white wine. This could be investigated in future work.    

In addition to investigating the effects of these compounds on fatty acid status in the plasma, 

we also examined a range of metabolically active tissues including the liver, brain, muscle 

and heart to determine potential distribution changes in tissue.  The fatty acid profile in 

tissues reflects not only the dietary fat intakes, but also fatty acid metabolism in vivo [224]. 

The liver is particularly important as this is where most EPA and DHA synthesis occurs in 

humans. The brain can be particularly sensitive to changes in DHA levels, while heart and 

muscular tissue are also sensitive to changes in EPA and DHA concentrations [224]. Liver 

samples were unavailable for the study that involved feeding animals a blueberry, ACN, 

flavanol or a control diet. This limitation was overcome by conducting an additional animal 

trial at UEA, mentioned in section 2.5 (which was not part of my PhD workload). Another 

unique aspect of our analyses was the examination of the effects of an ACN intervention on 

plasma fatty acid status in humans for the first time. 

  

2.2 Methods and study designs  
In this section, the methods utilised to analyse the fatty acid profile of plasma and tissues 

are described. This process involved the extraction of lipids from plasma and tissue, the 

preparation of fatty acid methyl esters and the analysis of samples via gas chromatography. 

The study designs of both animal studies, as well as the human intervention study, are also 

described. 

2.2.1 Fatty acid analysis of blood and tissue samples 
This section describes the materials and methodology used to analyse blood and tissue fatty 

acid profiles.           

The capillary column used for the fatty acid analysis was a BPX70-0.25 (fused silica, 0.25µm 

film thickness, 30m x 0.22mm SGE) which was purchased from Fisher Scientific 

(Leicestershire, UK). Tripentadecanoin was used as the internal standard, PUFA No.2 (Animal 

Source) was used as the standard, and butylated hydroxytoluene (BHT) as an anti-oxidant, 

all purchased from Sigma-Aldrich (Dorset, UK). Gases were supplied by BOC, UK. Other 

glassware and reagents were purchased from Fisher and Sigma.  
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To extract total lipid from plasma samples, samples were vortexed to mix and subsequently 

centrifuged to remove denatured protein. 800μl of plasma was pipetted into a screw cap 

glass tube. Tripentadecanoin was used as an internal standard which was dissolved in 

chloroform: methanol (2:1, v/v) to 1mg/ml. 150µg of this solution was then added to each 

sample. 5ml of Chloroform: methanol (2:1) containing BHT anti-oxidant (50mg/l) was then 

added, followed by the addition of 1.0 ml 1M NaCl. The sample was thoroughly mixed by 

vortexing. The sample was centrifuged at 2,000 rpm for 10 minutes (low brake, room temp) 

and the lower phase was collected by aspiration into another screw cap glass tube. The 

sample was dried under Nitrogen at 40 ºC. In the case of total lipid extraction from tissues, 

approximately 100mg of tissue was cut with a scalpel, stored on ice and weighed. Thawing 

of sample was avoided. The tissue was then diluted (1 in 10) in 900µl of 0.9% NaCl solution, 

with the exception of the cortex samples; these were diluted (1 in 20) in 1.9 ml of 0.9% NaCl 

solution. This is due to the higher fatty acid content of the cortex in comparison to other 

tissues. This was then homogenised in a glass tube with an Ultraturrax and treated the same 

as plasma.   

Following the extraction of total lipid from either plasma or tissue, fatty acid methyl esters 

were prepared. 0.5ml of dry toluene was added to the screw cap glass tube and this was 

vortexed. 1.0 ml of acidified methanol containing 2% (v/v) H2SO4 was added to each sample. 

The samples were heated on a dry block at 50°C for 2 hours and then allowed to cool. 1.0 ml 

of neutralising solution containing 0.25M KHCO3 (25.03g/l) and 0.5M K2CO3 (69.10g/l) was 

added to each sample. 1.0 ml of dry hexane was added and the sample was mixed using the 

vortex. The sample was centrifuged at 1,000 rpm for 2 minutes at room temp (low brake, 

room temp). The upper phase was collected and placed in round bottom glass tube. The 

sample was dried under Nitrogen at 40 ºC. 150μl of dry hexane was added and the sample 

was transferred into an autosampler vial.    

Prepared samples were then analysed via gas chromatography flame ionisation detection 

(GC-FID). The column model used was the BPX70 30m x 0.22mm column with 0.25μm film 

thickness. Agilent GC-FID machines were used to analyse the samples. The initial carrier gas 

flow rate used was 1.0ml/min and initial temperature used was 115°C, with the maximum 

temperature set at 250°C. A number of standards were used to identify peaks by their 

retention time, such as Restek food fatty acid methyl esters (FAMEs), Restek marine FAME, 

Sigma animal PUFA 2, and Sigma Menhaden oil. The samples were automatically integrated 

using Chemstation (version B04-02) and each of the fatty acids was identified by retention 
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times. A chromatogram of the standard is shown in figure 2.1. The area under the curve 

(AUC) of each peak was used to calculate the percentage of fatty acid in each sample. 

Figure 2.1. Example of chromatogram reading from fatty acid analysis 

 

 

 

 

 

 

 

 

 

Example chromatogram reading from study 3. PA; Palmitic acid, SA; Stearic acid, OA; Oleic acid, LA; 

Linoleic acid, AA; Arachidonic acid, EPA; Eicosapentaenoic acid, DPA; Docosapentaenoic acid, DHA; 

Docosahexaenoic acid. 

 

2.2.2 Animal champagne and alcohol intervention (Study 1) 
Serum and liver samples were acquired from a male rat study conducted at Reading 

University in which 18 month old male rats were fed placebo (Rat and Mouse No.3 pelleted 

standard diet, provided by Special Diets Services, UK), alcohol (12% ethanol) or champagne 

(Chardonnay, Pinot Noir and Pinot Meunier, 12% alcohol) diets for 6 weeks [225]. The diets 

were supplemented in-house and were analytically well characterised and contained a 

defined amount of phytochemicals, and were, as far as possible, macro- and micro- nutrient 

matched. They were matched for sugars, glycerol and acids. The rats were given the 

equivalent of 1 glass of designated treatment per day (125ml/70Kg bw), mixed with the 

standard diet. Although champagne is low in flavonoids compared with red wine, it has a 

relatively high overall polyphenol content and may have cardio protective potential, for 

example by improving NO bioavailability [225]. The phytochemical composition of the 

champagne has been previously published and has been reported to contain 17 different 

polyphenolic constituents adding up to approximately 60 mg/l [163]. Fatty acid levels were 
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analysed from serum and liver tissue samples using GC-FID (as described in section 2.2.1) 

with the end of treatment samples compared.  

2.2.3 Animal flavonoid and blueberry intervention (Study 2) 
Serum and tissue samples were obtained from a male rat study carried out at Reading 

University [226, 227]. The 18 month old male rats were divided into 4 groups, each of which 

were fed a particular diet for 6 weeks. The 4 diets fed to the rats were as follows; placebo 

(standard rodent diet with 10% kcal from fat, product no. D12450B, supplied by Research 

Diets Inc., USA.), 2 % (w/w) blueberry, 320μg ACN extract/g feed or 80 μg flavan-3-ols /g feed 

(containing 16 μg epicatechin/g feed and 64 μg catechin/g feed). The human equivalent dose 

(HED) for a person weighing 70kg, using allometric scaling, is as follows; 24g blueberry, 

390mg ACN and 98mg flavan-3-ols [228].  

The blueberry diet was produced by adding blueberry powder at a level of 2% to the standard 

diet (AIN-76A purified diet for rodents, Research Diets, USA). The blueberry powder was 

prepared from whole fresh high bush blueberries (A.G. Axon and Sons) that were blended, 

freeze-dried and powdered. The blueberry supplemented feed contained approximately 253 

µg flavonoids/g feed (179 μg ACNs; 74 μg flavan-3-ols). All diets were iso-caloric and matched 

macro- and micro- nutrients, notably sugars and vitamin C. This study showed that blueberry 

supplementation can induce spatial memory improvements [226, 227]. Fatty acid levels were 

analysed from serum, cortex, heart and muscle tissue samples using GC-FID to determine 

whether ACN, flavanol or blueberry supplementation could affect levels of n-3 fatty acids. 

The end of treatment samples were compared.  

2.2.4 Human anthocyanin intervention (Study 3) 
This UEA based study was a parallel, randomised, placebo-controlled study which was 

designed to examine the effect of chronic consumption of ACNs on biomarkers of CVD risk 

and liver and kidney function in healthy postmenopausal women [229]. On average, 

volunteers were 8 years postmenopausal. The groups were matched for age and body mass 

index (BMI); with a mean age and BMI of 58.3y and 24.3 kg/m2 in the placebo group at 

baseline, and 58.1y and 25.1 kg/m2 in the intervention group. Twenty six plasma samples 

were acquired from healthy postmenopausal women who were given either 500 mg/d ACNs 

as cyanidin glycosides (from elderberry) or placebo for 12 weeks [229]. The elderberry 

extract was given as 4 capsules per day each containing 125mg of ACN. Placebo capsules 

were distributed to the control group. Fatty acid levels were analysed from these stored 

plasma samples (collected pre- and post- intervention following a 12 hour fast) using GC-FID 
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as described in section 2.2.1 in order to test the hypothesis that ACNs can increase LC-PUFA 

fatty status. 

2.2.5 Statistical Analysis   
For fatty acids, results were presented as means ± standard error of the mean (SEM) 

percentage of total fatty acids. Fatty acid levels in plasma, serum and tissues of humans and 

animals were assessed for normality and outliers by visual inspection of Normal Q-Q plots. 

Two-way analysis of variance (ANOVA) was utilsed to test the effects of ACN 

supplementation on fatty acid status in humans. One-way ANOVA, on end of treatment data, 

was used to test the effect of interventions on fatty acid status in both animal studies. The 

differences between means were tested using the Tukey’s multiple comparison tests. The 

statistical analysis and graphs were carried out using GraphPad Prism version 5.0 (Graphpad 

Software, San Diego, CA, USA). Superscripts not sharing a common letter were significantly 

different (P < 0.05). 

2.3 Results 
The following section reports the results of the fatty acid analysis for both animal studies, in 

addition to the results from the human intervention study. Overall, fatty acid levels in 

plasma, serum and tissues of humans and animals were approximately normally distributed 

in all studies. Furthermore, several outliers were detected but included in the analysis as 

they did not significantly affect outcomes, as determined using a sensitivity analysis. 

2.3.1 Animal champagne and alcohol intervention (Study 1) 
A range of fatty acids were measured in the serum and liver of 18 month old rats (serum 

n=21, liver n=20). Figure 2.2 shows the relative percentage detected in the serum of rats fed 

control, alcohol or champagne supplemented diets. As can be seen in the graph, there were 

no significant differences in levels of fatty acids between the treatment groups (P>0.05).  PA 

and LA were the main fatty acids detected in the serum, together making up 49.7 ± 1.7% of 

the total serum fatty acid content in the control group. Stearic (SA) and AA were also 

detected in high amounts, 12.5 ± 0.6% and 12.9 ± 0.5% in the control group respectively. The 

total n-3 fatty acid content was calculated to be 7.0 ± 0.1% in the control group. The 

champagne and alcohol interventions had no significant effects on these values.   

Figure 2.3 shows the effect of the treatments on the fatty acid profile of the liver of these 

rats. The percentage of PA significantly decreased in the livers of animals given alcohol and 

champagne, compared with the control group (P<0.01). The livers of the control, alcohol and 

champagne groups contained 30.3 ± 1.1, 26.9 ± 0.8 and 26.2 ± 1.9 % of PA respectively. There 
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was also a significant decrease from 17.5 ± 0.9 to 14.5 ± 0.9 in the % of LA in the group that 

were given alcohol compared with a control diet (P<0.05), with no such effect evident in the 

champagne group. There were no significant differences for any other fatty acids evident 

(P>0.05). 

 

Figure 2.2. Fatty acids in serum of rats given a placebo, alcohol or champagne intervention 
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Control group; n=8, Alcohol group; n=8, Champagne group; n=6. Data presented as mean ± SEM. 1-

way ANOVA was conducted to examine the impact of treatment on each fatty acid 
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Figure 2.3. Fatty acids in liver of rats given a placebo, alcohol or champagne  
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Control group; n=8, Alcohol group; n=8, Champagne group; n=6. Data presented as mean ± SEM. 1-

way ANOVA was conducted to examine the impact of treatment on each fatty acid. Superscripts not 

sharing a common letter were significantly different (P < 0.05). 

2.3.2 Animal flavonoid and blueberry intervention (Study 2) 
The fatty acid profiles were analysed in serum and tissue samples obtained from a study in 

which 18 month old rats were fed one of four diets. Diet groups were as follows; control, 

flavan-3-ols, ACNs, or blueberries. There were no significant differences between any of the 

treatment groups for any fatty acid in the serum (figure 2.4).The brains from these animals 

were homogenised to allow for extraction of fatty acids. The impact of treatment on the 

whole brain fatty acid profile is given in in figure 2.5, with no significant differences between 

any of the treatment groups for any of the fatty acids observed (P>0.05). Figure 2.6 shows 

the average levels of a range of fatty acids for each treatment group for muscle samples. The 

group of rats that were fed ACNs were shown to have a significant increase in % of OA 

compared with the control treatment group (P<0.001). There were no significant differences 

for any other fatty acid in the muscle of these rats (P>0.05). The distribution of fatty acids in 
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the heart of the rats can be seen in figure 2.7. The groups of animals fed flavan-3-ols, ACNs 

or blueberries were found to have significantly higher (p<0.001) % of AA in their hearts than 

those in the control group. The hearts of animals in the control group contained 13.0 ± 2.2 

% AA, while the hearts of animals in the flavanol, ACN and blueberry groups contained 16.3 

± 0.9, 17.4 ± 0.5 and 16.3 ± 0.7 respectively.  There were no other significant differences 

between treatment groups for any of the other fatty acids.   

The mean fatty acid % for each tissue across all diet groups is shown in figure 2.8 for 

comparison. Tissue distribution of AA varied from 5.1 ± 1.0 % in the muscle to 18.3 ± 0.7 % 

in the serum. The % of EPA were considerably lower; negligible levels were detected in the 

cortex. The heart contained the highest % of EPA at 1.0 ± 0.2 %, while the serum had a similar 

% at 1.0 ± 0.1 % of total fatty acids. DHA % in tissues varied widely; DHA made up 2.8 ± 0.1 

% of the total fatty acids in the serum and contributed 18.8 % of fatty acids in the cortex. 

Figure 2.4. Fatty acids in serum of rats given a placebo, flavan-3-ols, anthocyanins or 
blueberry 
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Control group; n=8, Flavanol group; n=8, Anthocyanin group; n=8, Blueberry group; n=9. Data 

presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of treatment on each 

fatty acid.  
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Figure 2.5. Fatty acids in cortex of rats given a placebo, flavan-3-ols, anthocyanins or 
blueberry 
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Control group; n=8, Flavanol group; n=8, Anthocyanin group; n=9, Blueberry group; n=9. Data 

presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of treatment on each 

fatty acid.  
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Figure 2.6. Fatty acids in muscle of rats given a placebo, flavan-3-ols, anthocyanins or 
blueberry 
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Control group; n=8, Flavanol group; n=8, Anthocyanin group; n=7, Blueberry group; n=8. Data 

presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of treatment on each 

fatty acid. Superscripts not sharing a common letter were significantly different (P < 0.05). 
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Figure 2.7. Fatty acids in heart of rats given a placebo, flavan-3-ols, anthocyanins or 
blueberry 
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Control group; n=8, Flavanol group; n=8, Anthocyanin group; n=8, Blueberry group; n=9. Data 

presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of treatment on each 

fatty acid. Superscripts not sharing a common letter were significantly different (P < 0.05). 
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Figure 2.8. Mean fatty acids levels in serum, cortex, muscle and heart of rats  
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Serum; n=31, Cortex; n=34, Muscle; n=31, Heart; n=33. Data presented as mean ± SEM. 

 

2.3.3 Human anthocyanin intervention (Study 3) 
Levels of fatty acids including LA, αLNA, EPA, DPA and DHA were successfully measured in 

plasma obtained from post-menopausal women. Figure 2.9 shows the control (n=13) and 

intervention (n=13) groups at baseline. Mean levels of αLNA, EPA and DHA in the control 

group were 0.5 ± 0.2 %, 1.2 ± 0.6 % and 2.5 ± 0.6 % respectively, and as expected there were 

no significant differences for any of the fatty acids between both groups. Figures 2.9a and 

2.9b shows the comparison between women that were given the treatment of 500mg/d of 

ACNs and those given a placebo after 12 weeks. 2-way repeated measures ANOVA indicated 

no significant treatment effect for any of the fatty acids measured (P>0.05). 
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Figure 2.9a. Plasma fatty acids in control and treatment groups at baseline 
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Control group; n=13, Treatment group; n=13. Data presented as mean ± SEM. 1-way ANOVA was conducted to 

examine the impact of treatment on each fatty acid. 

Figure 2.9b. Plasma fatty acids in control and treatment groups at follow-up (12 weeks)  
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Control group; n=13, Treatment group; n=13. Data presented as mean ± SEM. 1-way ANOVA was conducted to 

examine the impact of treatment on each fatty acid. 
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2.4  Discussion 
It has recently been suggested that the reduced risk of CVD associated with higher intakes of 

fruits and vegetables [230] may be in large part attributed to intakes of specific flavonoids 

[47]. In observational studies, red wine (rich in flavonoids, especially ACNs) consumption has 

been associated with higher plasma and tissue EPA and DHA levels [156, 231]. Previously, 

two rodent studies have aimed to examine fatty acid status following consumption of ACN-

rich diets but the findings were inconsistent [127, 216]. This project overcame the limitations 

of these previous studies by investigating the potential effects of not only ACNs but also 

other flavonoids, champagne polyphenols and alcohol on fatty acid status. We assessed the 

impact on tissue EPA and DHA status and also response in humans, for the first time. Our 

results, involving both animal and human studies, demonstrated no impact of ACNs and 

flavonoids on EPA and DHA profiles and suggest that the positive impact of ACNs and 

flavonoids on a range of health outcomes is unlikely to be the result of an impact on n-3 

PUFA status. 

2.4.1 Animal champagne and alcohol intervention (Study 1) 
The objective of this study in which aged rats were fed either a control diet or a diet 

supplemented with alcohol or champagne was to determine if polyphenols present in 

champagne could have an effect on fatty acid composition of serum and liver samples. A diet 

supplemented with alcohol was included in this study to account for any effects that the 

alcohol present in champagne might have. As shown in Figure 2.2, there was no effect of the 

dietary intervention on the serum fatty acid profile. The serum levels were expressed as the 

percentage of total fatty acid and the levels detected in this study were within ranges found 

in other studies [232-235]. There was a significant effect of both alcohol and champagne on 

levels of PA in the liver. The rats that were fed either alcohol or champagne had significantly 

lower levels of PA compared with rats on the control diet. The lowering effect of ethanol on 

levels of PA in the liver has previously been reported [236-239]. A reduction in PA, which may 

be indicative of reduced hepatic lipogenesis,  may be beneficial as increased levels of PA have 

been shown to increase reactive oxygen species (ROS) products in hepatic mitochondrial 

cells, reduce insulin sensitivity and increase inflammation and therefore promote injury 

[240].  

There was also a significant decrease in levels of LA in the livers of the animals on the diet 

supplemented with alcohol compared with those on the control diet. A decrease in LA as a 

result of alcohol consumption could point to the possibility of increased conversion of 
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essential fatty acids to longer chained fatty acids, however there was no corresponding 

increase in AA. There was no significant difference in the fatty acid profile detected between 

the animals fed the control diet and those fed the diet supplemented with champagne. 

Ethanol feeding has previously been shown to reduce LA levels in rodents and it has been 

speculated that this could be the result of enhanced conversion of di-homo linoleic acid, a 

LA metabolite, to PGE1 [241-243]. Another possible explanation for a reduction in LA levels 

in the presence of alcohol consumption could be the result of its requirement in the 

development of alcoholic liver disease  (induced in a rat model) [244]. Furthermore, it has 

also been shown that reduced LA as a result of alcohol consumption could be related to the 

formation of cytotoxic fatty acid epoxides as a result of alcohol linked depletion of 

mitochondrial glutathione [245]. The association of enhanced conversion to PGE1 and the 

formation of fatty acid epoxides with ethanol consumption could explain our findings of 

lower levels of LA without a corresponding increase in LA metabolites such as AA, however 

this would need to be examined with further research. The fact that there was a significant 

decrease in LA in ethanol fed rodents, but not in the champagne fed rodents suggests that 

some component present in champagne, possibly polyphenols, could somehow be 

ameliorating the effects of alcohol alone. 

 

2.4.2 Animal flavonoid and blueberry intervention (Study 2) 
Serum, cortex, heart and muscle samples were analysed to determine fatty acid levels in rats 

that were fed either a control diet, or a diet supplemented with flavan-3-ols, ACNs or 

blueberries. We hypothesised that the bioconversion of EFAs would be stimulated and 

therefore levels of LC-PUFAs would increase following consumption of these interventions. 

The serum fatty acid profiles from the four dietary groups are shown in figure 2.4, with 

comparable basal levels detected relative to other studies [234, 235, 240, 246]. No significant 

impact of intervention on fatty acid status was evident.    

DHA levels were higher in the cortex than other tissues analysed, reflecting its important in 

the brain. DHA is particularly important in the brain, playing a major role in the structure 

(enhanced membrane fluidity), function (improved plasticity) and perfusion (enhanced 

cerebral blood flow) of the brain [247]. Levels of fatty acids in the cortex were similar to 

levels published in other studies in male rats, although levels of DHA were higher than in 

studies involving aged animals [248-251]. For example, Roy et al. conducted a study on 19  

month old rats fed an ad libitum diet and the mean proportion of DHA was 9.7 ± 3.1 % of 



68 

 

total fatty acid [251]. The 20-22 month old rats on the control diet in the study conducted by 

Little et al. had a mean level of DHA of 7.4 ± 0.5 % of total fatty acids [252]. The mean level 

of DHA in the rats of our control group, aged 18 months, was 18.3 ± 0.9 % of total fatty acid 

which is comparable to levels (16.7 ± 1.7 % to 18.5 ± 0.5 %) reported for previous studies in 

younger rats (aged 2-3 months) [248, 250].  We observed no significant impact of treatment 

on the fatty acid profile of the brain tissue.      

Additionally, muscle samples were analysed to determine if levels of LC-PUFAs had increased 

as a result of flavonoid consumption. The potential benefits of increased levels of LC-PUFAs 

in muscle include the stimulation of muscle protein anabolism in healthy individuls, as well 

as those who experience muscle loss as a result of ageing [253]. However there were no 

significant differences in EPA, DHA or DPA in any of the dietary groups. The only fatty acid 

for which there were significant differences was OA. Compared with the control group, there 

was a significant increase in OA in the rodents that were fed a diet supplemented with ACN. 

To our knowledge, this finding has not previously been reported. An increase in OA may be 

beneficial as it has been shown to improve the adaptive response of muscle tissue in 

conditions of oxidative stress caused by physical activity [254]. Fatty acid levels in the rat 

muscle were within ranges described in previous studies [248, 255].  

Finally, heart samples were analysed to determine if ACN supplementation could have an 

effect on n-3 fatty acid levels in tissues. Levels of fatty acids found in the hearts of these 

animals were similar to levels published in other studies [256-258]. AA levels significantly 

increased in hearts of rats fed ACN, flavanol and blueberry diet groups compared with the 

control group. This could indicate an increase in bioconversion of LA to AA. However, levels 

of EPA and DHA did not change between control and other diet groups which suggests that 

the increase in AA was not a result of increased bioconversion but some other mechanism 

such as changes in tissue distribution  or metabolism of AA. AA is important in cardiac 

physiology as it is a precursor for eicosanoid signalling molecules and also acts directly to 

modulate voltage gated ion channel activity and cellular excitability [259]. Lee et al. have 

previously shown that concentrations of AA tend to be higher in cardiolipin of aged rats 

compared with younger rats and suggest this may be to help maintain a high unsaturation 

index [260]. Consumption of a variety of flavonoids has previously been shown to be 

associated with increased levels of AA and it has been suggested that this is a result of 

flavonoids inhibiting the conversion of AA into various pro-inflammatory agents, such as 

leukotriene, by inhibiting lipoxygenase [261-264].    
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The analysis of these samples to test our hypothesis had a number of limitations. The original 

study was not designed to test our hypothesis; therefore aspects such as power calculations, 

intervention treatments and durations were not designed with our hypothesis in mind. 

Another limitation was that the liver samples were not available for analysis. The liver is the 

organ where most of the fatty acid bioconversion occurs and therefore would be expected 

to be most sensitive to any impact of intervention on LC-PUFA synthesis and status. Our 

results were not consistent with results published in 2011 by Toufektsian et al. [127] in which 

EPA and DHA levels increased significantly following ACN supplementation. However there 

were a number of differences between our work and this previous study (see table 2.1), for 

example the age of the animals at baseline, as well as the amount and composition of ACNs 

given. These differences could explain the contrasting findings between the studies.  

Table 2.1. Comparison of two rodent studies investigating the effects of flavonoid 
supplementation on fatty acid status 

 Toufektsian et al.  Animal Flavonoid and 

Blueberry Intervention  

Animal Age at baseline 1 month 18 months 

ACN amount (µg/g feed) 240 320 

ACN composition Cyanidin-glucoside 

Cyanidin-malonylglucoside 

Pelargonidin-

malonylglucoside 

Cyanidin-dimalonylglucoside 

delphinidin-3-galactoside, 

delphinidin-3-glucoside, 

cyanidin-3-glycoside, 

delphinidin-3-arabinoside,  

petunidin-3-galactoside, 

petunidin-3-glucoside, 

petunidine-3-arabinoside, 

malvidin-3-galactoside, 

malvidin-3-glucoside, 

malvidin-3-arabinoside 

 

2.4.3 Human anthocyanin intervention (Study 3) 
This is the first time that the impact of ACN consumption on plasma fatty acid status has 

been examined in humans. Plasma levels of various fatty acids were within the range of levels 

reported previously [265-268]. For example, Rhee et al. report n-3 fatty acid levels in healthy 
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post-menopausal women at a level of 1.0 ± 1.8, 0.9 ± 1.1 and 2.2 ± 1.5 % of total fatty acid 

for EPA, DPA and DHA respectively [269]. These figures were similar to the mean baseline 

levels reported in this chapter; 1.1 ± 0.6, 0.6 ± 0.1 and 2.5 ± 0.6 % of total fatty acids for EPA, 

DPA and DHA respectively. However, in contrast to the previous single rodent study and in 

agreement with our studies 1 and 2, no significant effect of ACN supplementation on LC n-3 

PUFA status was observed [127].  Our human study had some limitations, the major one 

being that this study was not specifically designed to test our hypothesis. Power calculations, 

duration of the study and dosage of ACNs had not been decided with our hypothesis in mind, 

although we are relatively confident that a 12 week intervention period, with a 

physiologically relevant dose of ACNs (500 mg/d, equivalent to the ACN levels found in 25 g 

elderberries, 100 g blueberries or 140 g blackberries) would be sufficient to detect any 

impact of treatment on EPA and DHA status. Another important consideration in the 

examination of these results is that our participants were postmenopausal women, who are 

known to have substantially lower levels of EPA and DHA biosynthesis in comparison to 

women of reproductive age [270]. Therefore any modest impact of ACN on EPA and DHA 

formation may be more evident in individuals with a more up-regulated biosynthetic 

capacity, namely premenopausal women, a point which may be of interest in future studies.  

 

2.5 Additional Investigations at UEA and Conclusion  
Serum, plasma and various tissues from humans and animals that were fed defined levels of 

ACNs were analysed to determine whether consumption could stimulate increased 

bioconversion of α-LNA to EPA and DHA. Our results showed that ACN consumption had no 

significant effect on EPA and DHA levels. The major advantages of these investigations over 

previous studies were the inclusion of a human study, as well as the investigations into a 

broader range of compounds including not only ACNs but also flavan-3-ols, blueberry extract, 

alcohol and champagne in blood and a range of tissue samples.  A recognised limitation of 

our rodent study 2 was the lack of liver tissue. The liver is the major site of EPA and DHA 

synthesis and therefore would be most sensitive to any impact of 

polyphenols/flavonoids/ACNs on EPA and DHA status. Furthermore the two previously 

published rodent studies were limited by the lack of purity of the tested compounds; the 

ACN-rich foods contained other flavonoids subclasses and phenolic compounds in addition 

to ACNs [127, 157]. In addition, the diets consumed in the previous rodent studies had 

relatively low levels of αLNA. To overcome these limitations, a specifically designed animal 
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study was carried out at UEA throughout the summer of 2012 (not specifically a component 

of my PhD studies) [271]. 

40 male rats (aged 8 weeks at baseline) were divided into groups of 10 rats and were fed a 

specific diet for 8 weeks as follows; 

 Group 1; control group fed a diet supplemented with palm oil,  

 Group 2; fed a diet supplemented with palm oil and purified ACN (240mg/kg feed),  

 Group 3; fed a diet supplemented with rapeseed oil (contains ~10% ΑLNA), 

 Group 4; fed a diet supplemented with rapeseed oil and purified ACN (240mg/kg 

feed) in addition to rapeseed oil.  

 
Palm oil was chosen as the control oil as it contains only trace amounts of αLNA and has a 

high SFA content typical of a Westernized-type diet. Rapeseed oil is a commonly consumed 

oil that is a rich source of αLNA (approximately 10% of its total fatty acids). Serum, heart, 

lungs, kidney, liver, brain, urine, thymus, muscle, gut were all collected and stored in a -80°C 

freezer. Serum fatty acid levels were analysed and although there were significantly higher 

levels of serum αLNA, EPA, DPA and DHA following rapeseed oil consumption compared with 

palm oil consumption, there was no impact of ACN consumption in any of the groups.  In 

addition there was no impact of ACN consumption on liver fatty acid levels. Consistent with 

fatty acid status work in animals and humans, work in HepG2 cells which were co-cultured 

with αLNA and various flavonoids for 24h showed no impact of supplementation on FADS 2 

gene expression [271]. 

Overall results from this project found no evidence that consumption of ACNs (in addition to 

other flavonoids and champagne polyphenols) stimulate fatty acid pathways to produce 

increased plasma or tissue levels of EPA and DHA. It may be speculated that some other plant 

bioactive component, such as resveratrol, may be responsible for the improved EPA and DHA 

status in red wine consumers.        

The results presented in this chapter have contributed to the following publication; Vauzour 

D,, Tejera N, O'Neill C, Booz V, Jude B, Wolf IM, Rigby N, Silvanc JM, Curtis PJ, Cassidy A, de 

Pascual-Teresa S, Rimbach G, Minihane AM. Anthocyanins do not influence long-chain n-3 

fatty acid status: studies in cells, rodents and humans. Journal of Nutritional Biochemistry 

2015. 
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3 NU-AGE Study Design; Investigating the impact of a year-long 

whole-diet intervention on vascular function 

 

3.1  Introduction 
The study design for the NU-AGE study has previously been published [182]. NU-AGE (EU 

FP7) is a multi-centre trial involving 1,250 older adults, aged between 65 and 79 years, in five 

different centres across Europe, including the UK (UEA), the Netherlands, Italy, France and 

Poland. UEA was responsible for recruiting 250 volunteers, 125 in the control group and 125 

in the intervention group. The aim of NU-AGE was to investigate the impact of a whole-diet 

intervention for one year on a range of health outcomes, with inflammatory status 

representing the primary outcome. The whole-diet was based on recommendations 

specifically designed for older adults (described in table 3.2). The use of the whole-diet 

intervention allows us to investigate the impact of synergistic and additive effects of a range 

of foods and dietary components consumed in accordance with the dietary advice provided. 

This PhD includes data from the Norwich study centre only (with measurements taken at the 

Clinical Research and Trials Unit (CRTU), UEA) and focused on the impact of intervention on 

vascular function underlying mechanisms. A flow chart outlining the recruitment plan and 

completion of the study can be found in figure 3.1.   
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Figure 3.1. Flow chart of NU-AGE study design (Adapted from NU-AGE UEA protocol 
[272]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression of interest 
Volunteer information sent 

Response slip returned 
 

Information visit at UEA 

Pre-study eligibility 
screening 
- Health 
- Frailty 

Yes - invited to participate 

No – unable to participate 

Prior to first study day: 
- 24hr urine 
- Faecal collection (optional) 
- General questionnaire 
- Actigraph (7 days) 
- Food diary (7 days) 

Baseline measurements: arrive at CRTU in fasted state 
- Vascular health 
- Blood sample 
- Dual-energy X-ray Absorption (DXA) scan, cognitive 

& physical ability  
-  

RANDOMISATION to intervention or 
control, 250 participants 
 

Dietary intervention group (125 participants): 
- 12 months of altered diet (adhering to 

tailored advice) 
- Food products delivered or collected 
- Recipe ideas 
 

Control group (125 participants): 
- Maintenance of normal diet and 

behaviour 

Prior to final study day at one year: 
- 24hr urine 
- Faecal collection (optional) 
- General questionnaire 
- Actigraph (7 days) 
- Food diary (7 days) 

Final measurements: arrive at CRTU in fasted state 
- Vascular health 
- Blood sample 
- DXA scan, cognitive & physical ability 
 

Follow-up at months 4 and 8: 
- 3-day food diary & diet interview (intervention 

only) 
- Telephone questionnaire (all participants) 

Food diary interview at home (with initial 
dietary suggestions for intervention 
group) 

Food record interview at home/CRTU 
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3.2 Study Population 
Participants were largely recruited through local advertisements and publicity, targeted at 

relevant demographics, or through General Practitioner (GP) surgeries. Volunteers were 

apparently healthy for their age; they were free from current or recent (within last 2 years) 

chronic diseases. Participants were free-living and responsible for their own 

shopping/cooking/meal choice and preparation (i.e. not in a nursing or care home). Inclusion 

and exclusion criteria are listed below [182]; 

Inclusion criteria 

- Men or women aged 65 to 79 years  

- Free of chronic disease for the last 2 years (e.g., cancer, severe organ disease) 

- Free and independent living, responsible for own shopping/meal choices or preparation 

- Willing to participate in a dietary intervention (make changes to their habitual diet) for 

one year 

 Exclusion criteria 

- Current overt disease such as aggressive cancer or dementia  

- Unstable organ failure or organ failure necessitating a special diet  

- History of severe heart disease, chronic kidney disease, respiratory insufficiency, liver 

cirrhosis  

- Diabetes Mellitus type 1 

- Chronic corticosteroids use  

- Use of nonsteroidal anti-inflammatory drug  

- Recent (previous 2 months) use of antibiotics  

- Recent (previous 3 months) change in habitual medication use (e.g statins, thyroxin)  

- Parallel participation in another study involving dietary interventions, or 

sampling/donation of blood that may increase volume taken above 500mL in a 4 month 

period 

- Malnutrition, as diagnosed by a BMI lower than 18.5 kg/m2 

- Body weight loss of more than 10% within 6 months  
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- Presence of frailty according to the criteria of Fried et al. [273] 

- Individual unable to give informed consent. 

3.3 Clinical measures of vascular function 

3.3.1   Introduction 
A battery of vascular measures that lasted for approximately one hour was performed at 

baseline and again after one year. These measures were all chosen based on the selection 

criteria described below; 

 must have a sound physiological and mechanistic basis that links it to atherosclerotic 

risk. 

 must be reproducible and easily standardised. 

 an improvement in the test result should predict an improvement of subsequent 

cardiovascular risk, likewise, a worsening in the test result should correlate to 

increased cardiovascular risk. 

 must be non-invasive. 

 should be observer independent. 

 

The tests administered included the following measures, which are further described in the 

subsequent sections; 

 Blood pressure 

 Pulse Wave Velocity (PWV) 

 Cardio-Ankle Vascular Index (CAVI) 

 Ankle-Brachial Index (ABI) 

 Reactive Hyperaemic Index (RHI) via EndoPAT. 

3.3.2  Resting period and blood pressure measurements 
Participants were rested for 15 minutes in a dimly lit, quiet room with a room temperature 

between 21°C and 24°C. The need for control is due to the known impact of temperature on 

vascular tone and in particular on the peripheral blood vessels. Following 15 minutes of rest, 

heart rate, SBP and DBP were measured on the non-dominant arm with an automatic blood 

pressure measurement device (OMRON M2, Milton Keynes, UK). Measurements were taken 
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three times, with approximately 1 minute rest between each measurement. The average of 

the 2nd and 3rd recordings was calculated to give the final blood pressure reading. 

3.3.3   Pulse Wave Velocity (PWV) 
The Vicorder was used to measure PWV (Skidmore Medical, Bristol, UK). PWV is the velocity 

of the forward (from the heart to peripheries) propagated arterial pressure wave and is 

measured by recording the pulse wave at a proximal artery and a distal artery. The gold 

standard is to measure at the common carotid and the femoral artery, as the distance is 

comparable to the length of the aorta [274]. According to the manufacturers’ instructions, 

participants were instructed to lie in the semi-prone position (at approximately 30°) to 

prevent venous contamination of the arterial signal.  To ensure adequate recording of the 

pressure wave form at the carotid artery, the neckpad was carefully placed at the 

approximate position of the carotid. The femoral artery cuff was placed around the thigh (as 

close to the hip as possible). Using a measuring tape, the distance between the carotid to 

sternal notch was measured, as was the distance from the sternal notch to the femoral 

measurement site. The length (cm) was then calculated by subtracting the “carotid 

measurement site to sternal notch distance” from the “sternal notch to femoral 

measurement site distance” in order to approximate the difference in length by which the 

pulse wave would have to travel, which was then incorporated into the PWV calculation. The 

participant was instructed to breathe gently and avoid talking or making any major 

movements. Pulse waves were measured at both sites as the cuffs were inflated. 

Measurements were taken 3 times and an average of the 3 readings was used as the final 

result to ensure accuracy. The calculation of PWV is depicted below in Figure 3.3. 
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Figure 3.2. Diagram representing the carotid artery and femoral artery wave form and 
calculation of PWV  

PWV: Pulse Wave 

Velocity, T: Time, L: Length 

3.3.4    Cardio-Ankle Vascular Index (CAVI) and Ankle-Brachial Index (ABI) 
CAVI (Vasera™VS-1500, Fukuda Denshi Co, Japan) is another measure of arterial stiffness; it 

is similar to PWV but it is considered to be independent of pulse pressure. Four blood 

pressure cuffs were wrapped around the four extremities; the left and right brachial and the 

left and right ankle. An electrocardiogram was placed on each wrist to monitor pulse and a 

phonocardiogram microphone was placed on the chest to monitor heart rate. The upper arm 

and ankle pulse waves, as well as blood pressure, were then monitored as all four cuffs were 

inflated together. CAVI was determined using PWV from the aortic valve origin to the ankle 

region and blood pressure measured at the upper arm. The principle underlying CAVI has 

been previously described [275], but in summary the CAVI result is automatically calculated 

by the Vasera using the following formula;  

CAVI= 2ρ×ln(Ps/Pd)×PWV2/ΔP, 

where ρ is the blood density, Ps is the systolic pressure, Pd is the diastolic pressure, PWV is 

the measured pulse wave velocity from the aortic valve to the ankle, and ΔP is the difference 

between the systolic pressure and diastolic pressure. 

The calculations for CAVI are diagrammatically explained in figure 3.4. Measurements were 

taken three times in a supine position with the average of the 3 readings used as the final 
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result to ensure accuracy. The Vasera also measured ABI which is used to analyse stenosis 

and occlusion of the crural arteries and is useful for the early detection of PAD. It is calculated 

by measuring blood pressures at the brachials and ankles;  

ABI= (Systolic Pressure at ankle) / (Systolic pressure at upper arm). 

ABI results can be interpreted as follows [276]; 

 ≤ 0.40; severe occlusion or stenosis suspected 

 ≥ 0.41 and ≤ 0.90; slight or mild occlusion or stenosis suspected 

 ≥ 0.91 and ≤ 0.99; borderline normal 

 ≥ 1.00 and ≤ 1.29; normal 

 ≥ 1.30; ankle blood pressure is somewhat high. 

 

Figure 3.3. The measuring method of Cardio-Ankle Vascular Index [275] 

 

Ps; systolic blood pressure, Pd; diastolic blood pressure, PWV; pulse wave velocity, ΔP; Ps - Pd, p; blood density, 

ΔP; pulse pressure, L; length from the origin of the aorta to the ankle, T; time taken for the pulse wave to 

propagate from the aortic valve to the ankle, tba; time between the rise of brachial pulse wave and the rise of 

ankle pulse wave, tb; time between aortic valve closing sound and the notch of brachial pulse wave. 
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3.3.5    EndoPAT 
The EndoPAT2000 (Itamar Medical Ltd, Caesarea, Israel) was used to measure endothelial 

function. This is a non-invasive technique which measures digital finger pulse volume using 

PAT. The pulse wave amplitude (PWA) on both index fingers was recorded by pneumatic 

sensors for a baseline period of 5 minutes. One arm was then subjected to complete 

occlusion of the brachial artery for another 5 minutes which induced RH. Occlusion of the 

brachial artery was achieved by placing a blood pressure cuff around the upper arm and 

rapidly inflating the cuff to supersystolic pressure (60mmHg above the resting SBP or 

200mmHg; whichever is higher). Following this, the PWA was recorded for another 5 minutes 

(post-occlusion). The EndoPAT2000 calculated the RHI by measuring the increase in blood 

flow in response to the stimulus of shear stress caused by the 5 minute brachial occlusion, 

and subsequent releasing of the occlusion, causing a sudden increase in blood flow to the 

finger tips. This RHI measurement is indicative of the capacity of the endothelium to produce 

vasodilatory substances, in particular NO. The threshold for endothelial dysfunction is 

defined as an RHI of <1.67 [277]. 

Figure 3.4. Final result of the EndoPAT test 

 

The final concluded result of the EndoPAT test is a ratio of the post-to-pre occlusion peripheral arterial tonometry 

(PAT) amplitude of the tested arm, divided by the post –to-pre occlusion ratio of the control arm. A - Mean PAT 

amplitude between 90s-150s post occlusion of the occluded arm. B - Mean PAT amplitude from the baseline 

period of the occluded arm. C - Mean PAT amplitude between 90s-150s post occlusion of the control arm. D - 

Mean PAT amplitude from the baseline period of the control arm 

 

3.4 Sample Size – vascular function measurements 
Power calculations were carried out to determine the number of participants required to 

give sufficient power to address the research questions. Calculations estimated that a sample 

size of n=150 would have a power of 0.9 to detect clinically relevant changes in the primary 

outcome measures; EndoPAT and PWV. The calculations assumed no correlation between 

baseline and end of the intervention. Calculations were two-sided with 5% significance level. 

For EndoPAT, the calculations were based on RHI and an assumed standard deviation (within 

patient) of 0.260 [278], a clinically relevant difference of 0.2 RHI units would be detectable 

with a sample size of 74 subjects. For PWV, assuming a standard deviation of 2.0 m/sec [279], 

a clinically relevant difference of 1.2 m/sec would be detectable with a sample size of 120 
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participants. Assuming a dropout of approximately 20% of volunteers, 150 volunteers were 

analysed so that a total of 120 volunteers completed the study.  

3.5 Recruitment 
Advertisements and features in the local press or radio were used to raise awareness of the 

study. The advertisements and flyers encouraged members of the public to contact the study 

team by telephone or email for further information. Volunteers contacting the study team 

were sent an information pack that included a cover letter, the Volunteer Information Sheet 

and response slip. The response slip provided the study team with contact details for the 

volunteer, and also asked basic information relating to the inclusion/exclusion criteria. 

Volunteers were also recruited using GP surgeries, which were used both as a place to display 

posters and as well as an information source; patient databases were used to target potential 

volunteers. Once in receipt of a response slip, a member of the study team called the 

volunteer to arrange a face-to-face discussion about the study, or to discuss the eligibility 

criteria further if the information provided by the volunteer on the response slip indicated 

they may not be suitable for the study. Alternatively, volunteers contacted the study team 

directly by telephone to express their interest and discuss their eligibility, and where 

appropriate a face-to-face discussion appointment was subsequently arranged. 

During the face-to-face discussions, volunteers were given the opportunity to ask the study 

team questions and were given a full explanation of the study requirements. Following the 

discussion the volunteers were given at least 72 hours to decide on their participation, during 

which they were not contacted by the study team. If volunteers subsequently decided to 

participate in the study they were asked to contact a member of the study team to arrange 

a pre-study health screening appointment. Alternatively, if volunteers were particularly keen 

they arranged this appointment when visiting the study centre for their discussion 

appointment, providing it occurred at least 72 hours after their initial visit. 

3.6 Pre-Study Health Screening 
Prior to being accepted onto the study, all volunteers participated in a pre-study screening. 

A member of the study team went through the consent form and medical declaration form 

with the volunteer, who was encouraged to ask any outstanding questions. A copy of each 

of these two forms was given to the volunteer.  

The scientist went through two ‘admission questionnaires’ with the participant. The first 

questionnaire (Annex 1 and 2) was designed to record information on the volunteer’s health 

history and adherence to the inclusion and exclusion criteria. Participants were asked to 
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bring a record of all of their current medications (or the medications themselves) to the 

appointment. If the outcome of the first questionnaire was favourable then the second 

admission questionnaire, which assessed frailty, was administered. Only participants scored 

as non- or pre-frail (defined using a combination of  measures, including  height, weight, BMI, 

hand grip strength, gait speed, depression and physical activity) on this questionnaire were 

recruited to the study, as assessed using a frailty test described by Fried et al. [280]. GPs were 

informed about their patient’s participation in the study and were sent information from the 

screening session or other study assessments that was deemed of relevance by the study’s 

medical advisor (e.g. full blood count results, frailty assessment etc.). Volunteers agreed to 

this information being sent to their GP during the consenting process. A minimum of a week 

was allowed between the screening and starting the study to allow for any intervention by 

GPs.            

Participants received a 7-day food record (described below, section 3.8.3) and an ActiGraph 

device (as described below, section 3.10), as well as instructions for use. Both the food diary 

and Actigraph data were collected for the same seven days and completed prior to baseline 

measurements and randomisation.  

3.7 Randomisation 
The volunteers were randomised to the intervention or control group. Randomisation was 

carried out using computer software and stratified by gender, age (65-72 or 73-79 years), 

frailty status (pre-frail or non-frail) and BMI (<25 or ≥25 kg/m2) [182]. Couples or others 

cohabiting were randomised together. This was carried out to ensure that participants in the 

control group would not alter the dietary habits if in contact with someone in the 

intervention group and therefore affect the outcome of the study. Due to the nature of the 

dietary intervention it was impossible to blind the subjects to their allocation and they were 

explicitly told which group they were assigned to. Although it would be have been preferable 

to blind the scientists administering the tests and questionnaires to the volunteer groups, 

this was not possible as all study staff were required to help with follow-up of the two groups, 

and in particular to assist the intervention group with compliance (e.g. distributing foods, 

answering queries, providing recipes etc).  

3.8 Dietary Intervention 

3.8.1 NU-AGE nutrient guidelines 
The intervention group received individual, tailored dietary advice that was provided based 

on the 7-day food diaries (see section 3.8.3) completed at the start of the study. The 
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personalised dietary advice given aimed to meet the NU-AGE quantitative daily nutrient 

guidelines (Table 3.1) [182]. The NU-AGE nutrient guidelines were based on recommended 

daily allowances (RDAs) from each of the countries participating in the study; France [281], 

Italy [282], Netherlands [283], Poland [284], and United Kingdom [285] and other 

recommendations bodies including the modified MyPyramid for Older Adults [286, 287], 

European Commission [288], and Institute of Medicine [289].  

Table 3.1. NU-AGE quantitative daily nutrient guidelines [182] 

Nutrient Quantitative requirements* 

Energy (MJ) Individual requirement +/- 0.5 MJ 

Protein (EN%) 20-25 

Carbohydrates (EN%) 45-55 

Fat total (EN%) 25-30 

Saturated fat (EN%) <10 

Trans fatty acids (EN%) <1 

MUFA (monounsaturated 

fatty acids) (EN%) 
<26 

PUFA (EN%) <12 

Fibre (g) 30-40 

Alcohol (g) 
<10-20 (1 serving/day for women, 2 servings/day for men, or 

abstain) 

Water (ml) 1500 

Sodium (mg) 1300 

Calcium (mg) 1200-1300 

Iron (mg) 10 

Vitamin D (µg) 15 

Folate (µg) 400 

Vitamin B12 (µg) 5 

       * Average requirement per day, EN%; percentage of total energy 

 

3.8.2 NU-AGE food based dietary goals 
FBDGs are generally created to make advice on nutrient intake easier to follow for the 

general population. There were 14 dietary targets in the NU-AGE FBDGs (Table 3.2) that were 

created based on the nutrient guidelines discussed above (Table 3.1). Achieving the NU-AGE 

requirement for vitamin D through dietary sources alone would be extremely difficult and 

exposure to sunlight (and therefore vitamin D status) varies greatly with season and between 

individuals, particularly across the different European centres [182]. Therefore an additional 
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target for participants in the intervention group was to take a daily vitamin D supplement 

(10µg/day). The dietary intervention lasted for one year, thereby reducing seasonal effects 

by comparing initial (baseline) with final measurements at the same time of the year. A year-

long intervention has been shown to be a sufficient time period for alteration of dietary 

habits to impact on various health outcome measurements, such as blood pressure [290-

292]. For example, Vincent-Baudry et al. demonstrated that a time period of just 3 months 

was sufficient time to observe significant improvements in cardiovascular risk following a 

whole-diet intervention based on the Mediterranean diet [292].  

Participants in both the intervention and the control group were allowed to use nutritional 

supplements during the study period, which were recorded during the dietary interview at 

the start of the study. Any changes to supplement use were reported to the study team 

during the intervention. If participants were taking vitamin D supplements prior to the study 

they were asked to replace these with the study supplements. All volunteers were asked to 

continue their normal physical activity and smoking habits [182]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 

 

Table 3.2. NU-AGE food based dietary goals [182] 

Food group  Amount  Specification/Preference 

Whole grains  4-6 servings* per day  Slices of wholegrain bread, breakfast 
cereals, crackers, etc. 
 

Fruits  At least 2 servings* per day  Fresh, frozen, dried, juice  
 

Vegetables and legumes  At least 300 gram per day 
and 200 gram legumes per 
week  

Dark-green vegetables (broccoli, 
salad greens, cooked greens). 
Orange vegetables (carrots, sweet 
potatoes). Legumes like lentils, black 
eyed peas, peas  
 

Dairy and cheese  500 ml dairy per day, 
including 30 gram cheese  

Calcium enriched dairy. Lean, 
reduced salt cheese.  
 

Fish and other seafood  125 gram of fish twice per 
week  

Preferably fatty fish. Canned tuna, 
salmon, sardines, herring, frozen 
fish, smoked salmon, mackerel.  
 

Meat and poultry  125 gram of meat or 
poultry 4 times per week  

Lean meat or poultry. Not fried.  
 
 

Nuts  20 gram twice per week  Unsalted mixed nuts, almonds  
 

Potatoes and pasta/rice  150 gram per day  Whole grain rice or pasta  
 

Eggs                                                  2-4 eggs per week  
 

 

Oil/fat  20 gram of oil per day, 30 
gram of margarine per day; 
maximum 50 gram fat per 
day  

Olive oil rich in N-3/N-6 fatty acids. 
Low fat margarine rich in MUFA and 
PUFA  
 

Alcohol  Maximum 1-2 glasses per 
day for men and 1 glass 
per day for women  

If alcohol consumed, preferably red 
wine.  
 
 

Fluid  1.5 litre per day  Including milk  
 

Salt  Maximum 5 grams per day  Reduce adding salt, ready-made 
meals, soups, gravy, sauce  
 

Sugar  Limit the use of sweets and 
sweet drinks  

Replace sweets with fruits, 
vegetables or dairy, no sugar in tea 
or coffee  
 

*1 serving of whole grains equals 1 slice of bread (1.5 cm thick) or 25 g of bread, ½ cup of breakfast cereals (50g), 
½ cup of rice (better choose brown), cooked (30g raw), 2/3 cup of pasta, cooked (30g raw), 1/3 cup of muesli, ½ 
cup of porridge. Examples of fruit serving sizes; 1 apple, 1 banana, 1 orange, 1.2 grapefruit, 8 plums (small), 
approximately 1 glass of fruit juice 
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3.8.3 Dietary intake assessment and advice 
Dietary intakes of all participants were assessed by means of food diaries that were kept for 

7 consecutive days before baseline measurements and randomisation, as well as before 

follow-up measurements after one year. Relative to other dietary assessment methods, such 

as FFQs, the advantages of food diaries include their ability to assess portion sizes, take 

dietary patterns into account, and assess intakes of infrequently consumed foods that can 

be important sources of specific nutrients for some [182]. A pre-formatted diary was used 

(see annex 3) and included 8 meal occasions (before breakfast, breakfast, morning snacks, 

lunch, afternoon snacks, evening meal, evening snacks, night snacks) as well as space for 

meal recipes for each day. Participants were asked to make diary entries as detailed as 

possible, including the brand name and weight/portion of each food when possible. Once 

the food diary was complete and study day had been undertaken, a NU-AGE team member 

was responsible for reviewing the food diary and reviewing details with the participant. In 

the UK centre of NU-AGE, the food diaries were coded and translated into nutrients using 

the nutritional analysis software package WISP (Tinuviel Software, UK). 

Participants in the intervention group received individually-tailored dietary guidance and 

advice through regular visits, telephone contact and e-mails. Dietary advice and counselling, 

which was based on the NU-AGE FBDGs and baseline food diaries, was delivered by trained 

members of the study team (led by Rachel Gillings, Associate Nutritionist). The dietary goals 

were split into three blocks of five, and the three blocks were introduced gradually into the 

diet. The volunteer decided, in collaboration with the study team, which order the goals were 

introduced. The timeline for the introduction and evaluation of the food goals are shown in 

table 3.3 which was adapted from the published NU-AGE study design [182]. Subjects in the 

control group were given a standard healthy living advice leaflet and asked to maintain their 

normal dietary habits over the course of the year. In the UK, this leaflet was the British 

Dietetic Association information sheet (annex 4). 
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Table 3.3. Dietary Counselling Schedule (adapted from Berendsen et al [182]) 
 

Month Occasion Topic 

0 CRTU visit/ 
Home visit 

Dietary assessment intake (7 day diary completed and assessed) 
Determined the first 5 dietary goals (Vitamin D supplements should be included) 
Given information for the first set of 5 dietary goals 
Given vitamin D supplements (enough for 4 months) and food products related to first set of 5 dietary goals 

1 Telephone Evaluated the first 5 dietary goals 
Determined the second set of 5 dietary goals for the next month 

 E-mail/post Information provision on tips/ recipes for the second set of 5 dietary goals. 

2 E-mail/post Sent out additional information of the first two sets of five dietary goals and 
on fish consumption 

3 Telephone Evaluated the second set of five dietary goals and determined the third set of five dietary goals 
Instructions for completing the 3 day food diary before CRTU visit in month 4 
Made an appointment for the CRTU visit in month 4 

 E-mail/post Sent out information regarding the third set of dietary goals 
Sent out the dietary records for three days plus explanation 
Sent out confirmation of appointment 

4 CRTU visit Evaluated the dietary goals by going through the food records and ask participant for obtained goals, experience, 
difficulties. 
Determined which goals need extra attention. 
Given vitamin D supplements (enough for 4 months) and food products 

 E-mail/post Given appropriate info sheet for goals that needed extra attention/ were not obtained. 
Sent out additional information regarding food labelling, recipes, variation 

5 Telephone Evaluated the goals that needed more attention.  
Determined which goals need extra information/attention 

 E-mail/post Sent out appropriate info sheet belonging to goals that needed extra attention/ were not obtained. 

6 E-mail/post Sent out additional information regarding fruit and vegetable consumption 
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7 Telephone Evaluated the goals that needed more attention 
Asked about sent information; was it clear, any questions 
Determined which goals need extra information/attention 
Made an appointment for the CRTU visit in month 8 

 E-mail/post Sent out appropriate info sheet belonging to goals that needed extra attention/ were not obtained. 
Sent out the dietary records for three days plus explanation 
Sent out confirmation of appointment 

8 CRTU visit Evaluated the dietary goals by going through the food diaries and asked participant for obtained goals, experience, 
difficulties. (Dietary goals questionnaire also used to assess compliance) 
Determined which goals needed extra attention. 
Given vitamin D supplements (enough for 4 months) and food products 

 E-mail/post Sent out appropriate info sheet for goals that needed extra attention/ were not obtained. 

9 Telephone Evaluated the goals that needed additional attention based on the food records 
Determined which goals needed extra attention during the last months 

 E-mail/post Sent out appropriate info sheet for goals that needed extra attention/ were not obtained. 

10 E-mail/post Sent out additional information regarding protein intake/hydration 

11 Telephone Evaluated the goals that needed more attention 
Asked about sent information; was it clear, any questions 
Made an appointment for the CRTU visit in month 12 

 E-mail/post Sent out confirmation of appointment, delivered pre-appointment equipment 

12 Research Unit visit/ 7-day food record and interview 

 Home visit  
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3.8.4 Mechanisms used to maximise compliance to dietary intervention 
Compliance was aided by the distribution of food products, information sheets and recipes 

to the intervention group. Food products supplied to the intervention group to improve 

compliance included extra virgin olive oil (high monounsaturated fat content), margarine 

spread (45% vegetable fat spread with 26% sunflower oil, containing n-3 and n-6 fatty acids), 

whole-wheat pasta (high in fibre), and lean low-salt cheese (provided by NU-AGE industry 

partners).     

An information sheet for each of the NU-AGE FBDGs was given to the participant which gave 

details on the NU-AGE goal, the importance and reasons for consuming the food, the amount 

and preferable type of the food that the participant should consume, as well as ideas on how 

to reach the goal. For example in the case of wholegrain consumption, the information sheet 

contained the following information;  

 A statement detailing that the NU-AGE goal is 4-6 servings per day, 

 A detailed paragraph on the definition of a whole grain (for example; wholegrain 

refers to the entire grain—this includes the bran, germ and endosperm), 

 Information on why wholegrain consumption is important (for example; whole 

grains are high in fibre, a nutrient which is important for good bowel function and 

preventing obesity. There is also the combined effect of the variety of other nutrients 

that whole grains contain, such as B vitamins and folic acid), 

 What makes a portion of wholegrain (the weights and food types, for example 65-

70 g of cooked brown rice), and 

 Tips on how to ensure adequate wholegrain consumption (for example, looking out 

for wholegrain symbols on food packaging).    

 

Recipes designed to help participants in the intervention group achieve the NU-AGE FBDGs 

were given throughout the intervention period to assist with compliance. Recipe ideas 

included hand-outs that were focused on fish, legumes, soups and wholegrain consumption. 

Fish recipe ideas included cod curry, a healthy version of fish and chips, mackerel fish cakes, 

fish pie with sweet potato topping, citrus ginger tuna steak. As well as helping participants 

achieve the goals in relation to fish, these recipes also incorporated other foods, such as olive 

oil, vegetables, egg and wholemeal breadcrumbs, to help participants achieve other goals 

simultaneously. 

Participants did not receive any financial incentive to participate in the trial, but their travel 

expenses were reimbursed.  
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3.9 Assessment of compliance  
Following study completion, compliance to the study in both control and diet group was 

analysed using the 7-day food records at baseline and at follow-up after 1 year. For 

participants in the intervention group, follow-up 3-day food diaries at month 4 and 8 was 

used to determine both adherence to the NU-AGE diet, as well as the use of foods supplied. 

In addition, participants in the diet group were asked to return their remaining vitamin D 

tablets in order to use this number as measure of compliance to the vitamin D supplement. 

However, a limitation of this PhD was that at the time of thesis submission not all of these 

data were available for the assessment of compliance. Therefore for this PhD thesis, a 

questionnaire that was designed to both assess and assist compliance was used, in addition 

to counting leftover vitamin D supplements. This questionnaire (annex 5) was completed at 

the 8 month follow up visit and was based on the PREDIMED compliance questionnaire [293] 

but tailored specifically to the NU-AGE diet. The participant was asked how many portions of 

each of the food goals they consumed per week/day. The answers to these questions were 

then scored as shown in table 3.4. The majority of the food groups were scored as follows; 1 

given when NU-AGE goal was achieved, 0.5 given when NU-AGE goal was not achieved but 

had been attempted, 0 given for inadequate intake. In some cases, for example when 

excessive consumption may be detrimental rather than beneficial, a reverse scoring was 

used. For example, a recommendation of 2 servings of nuts per week was given to 

participants on the NU-AGE diet. However, nuts are calorie dense and therefore excessive 

consumption is not recommended. Therefore a score of 0 was given for both inadequate and 

excessive consumption. In the case of food goals that emphasise restriction rather than 

consumption the score of zero to one was divided by seven; for example one question 

examining salt consumption enquired as to how often the participants added salt to their 

food. This was scored so that if the participant adds salt to their food less than once per week 

they score a 1, twice per week they score 0.83 and so forth. If they add salt to their food 

every day they score a zero. The score for each goal was added to give a total percentage of 

compliance. This was then used as a covariate when investigating the effect of the NU-AGE 

dietary intervention on various outcomes. 
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Table 3.4. NU-AGE Compliance Scoring System 

            

Question Goal 0 0.5 1  0 0.17 0.33 0.50 0.67 0.83 1 
1. How many servings wholegrain per day? 4-6 servings ≤2 3 ≥4         
2. How many portions of fruit per day? >2 servings 0 1 ≥2         
3. How many portions of vegetables per day? >3 servings 0 1-2 ≥3 % 

by 
2 

       
4. How many portions of legumes per week? 2-3 servings 0 1-2 ≥3        

5. How much milk/yoghurt per day? 500ml 0-250 251-499 ≥500         
6. How many servings of cheese per day? 1 serving >1  ≤1         
7. How many servings of fish per week? 2 servings 0 Consuming ≥2 

white fish or 1 
portion of oily fish  

Consuming 
≥2 oily fish 

        

8. How many servings of meat/poultry per week?  4 servings 0-1 or ≥6 2-3 or 5 4         
9. How many servings of nuts per week? 2 servings 0 or ≥ 4 1 ≥2         
10. How many eggs per week? 2-4 0 or >6 1 or 5 2-4         
11. How many tbpns of olive oil per day 1.5 tbsp 0 or >3 0.5 or 3 1-2         
12. How many glasses of wine per week? 7 glasses (if alcohol 

consumer) 
    ≥13 12 11  10 9 8 ≤7 

13. How many glasses of fluid per day? (subtract no. of 
caffeinated drinks) 

7-8 glasses 0-3 3-6.99 ≥7         

14. How often per week do you add salt to food? Limit     ≥7 6 5 4 3 2 <1 

15. A) How often per week do you add sugar to food or drink? 
B) How many times per week do you consume cakes, biscuits 
or desserts? 

Limit    % 
by 
2 

≥7 6 5 4 3 2 <1 

≥7 6 5 4 3 2 <1 

16. How many vitamin D supplements remaining after one year 
intervention? 

<15% (85% 
compliant) 

≥15% 5-15 <5%         
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3.10 Study Day 
Prior to the study day at baseline and at the one year follow-up, volunteers were asked to 

refrain from intensive exercise and alcohol consumption for the 24 hours prior to their 

appointment. Volunteers were required to wear an ActiGraph device for 7 days between 

their screening and study day appointments to measure their physical activity. The ActiGraph 

is capable of measuring a number of parameters related to physical activity, including energy 

expenditure, the number of steps, intensity of activity and body position. The device is 

lightweight and fits around the waist on an elastic belt. Volunteers were asked to bring the 

Actigraph, as well as their urine samples, food diary and questionnaires in to the CRTU with 

them on the morning of the first study day. The volunteer’s weight and height were 

measured and BMI was calculated. Measurements of waist and hip circumference were also 

taken. Figure 3.2 provides an overview of the study day attended by participants at baseline 

and after one year. Participants attended each assessment visit in a fasted state (>8 hours), 

at either 8am or 9am having fasted for 8 hours overnight (volunteers were encouraged to 

drink water in the morning), with blood samples and measurements of endothelial and 

vascular function taken before consumption of breakfast.  A variety of other measures were 

taken following breakfast resulting in each study visit taking 3-4 hours. 
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Figure 3.5. NU-AGE study day (At baseline and end of 1 year intervention) 
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3.11 Biochemical measures of vascular function, inflammatory and fatty 

acid status 

3.11.1   Introduction 
A range of biochemical markers of vascular function, inflammatory and fatty acid status were 

measured from the blood samples of participants before and after the NU-AGE intervention. 

Whole blood was collected directly into heparin vacutainers (for DNA extraction). Blood 

collected in heparin (for NO, CRP and lipid profile analysis) and EDTA (for ET-1 and fatty acid 

analysis)  was centrifuged at 3300g for 10 minutes to isolate plasma which was stored at -

80°C. The methods used to quantify the major analytes included in this thesis are described 

below. An overview of the all biochemical outcomes to be measured in NU-AGE is given in 

annex 6.  

3.11.2  Plasma Nitrite analysis  
Plasma nitrite levels were measured using a chemiluminescence detector (CLD88), a device 

that is used to measure levels of NO in an inert carrier gas. At the time of analysis, plasma 

samples were stored on ice and were injected into a purge vessel that contained reductive 

solutions. The function of these reductive solutions was to reduce nitrite (NO2−), nitrate 

(NO3−) and other oxidative by-products of NO, back to NO for measurement. NO can be 

produced in vivo from both nitrite and nitrate, therefore the measurement of nitrite, nitrate 

and other oxidation products can be used as an index measure of in vivo NO production.  

A triiodide solution, made up of a 45mM solution of I- and 10mM solution of I2 was dissolved 

in a 93% glacial acetic acid [294], was used to detect NO. NO was carried through to a 

scrubbing bottle that contained 1M sodium hydroxide (0°C) by passing N gas through the 

reductive solution. The function of the scrubbing bottle was to trap any traces of acid and 

iodine before the NO was then carried into the detector via a sampling probe. 

A series of serial dilutions of Sodium Nitrite, ranging from 0 to 100nM, were made up and 

injected in duplicate to establish a standard curve. Samples were run in duplicate once the 

coefficient of variation for standards and plasma quality controls were confirmed to be 

within 10%. The triiodide solution was replaced every 40 injections in order to yield optimal 

reproducibility for peaks derived from both standards and samples. Plasma nitrite 

concentrations in samples were generated via peak integration and utilisation of standard 

curves. A representative standard curve can be seen in figure 3.6. The AUC is calculated from 
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a plot of the concentration of nitrite in blood plasma against time. Materials were obtained 

from Sigma (Dorset, UK) unless otherwise noted. 

 

Figure 3.6. Representative calibration curve for nitrite analysis 

 

 

3.11.3   Plasma Endothelin-1 analysis  
ET-1 was determined using a Quantikine ET-1 immunoassay (R&D Systems, Abingdon UK), a 

solid phase ELISA containing synthetic ET-1 and antibodies raised against synthetic ET-1. The 

immunoassay utilises the quantitative sandwich enzyme immunoassay technique. To 

summarise, the microplate was pre-coated with a monoclonal antibody specific for ET-1. The 

immobilised antibody bound to any ET-1 present in the standards and samples pipetted into 

the wells. Unbound substances were washed away and an enzyme-linked monoclonal 

antibody (specific for ET-1) was added to the wells. The plate was washed again to remove 

any unbound antibody-enzyme reagent. A substrate solution was pipetted into the wells and 

colour development occurred in proportion to the amount of ET-1 bound in the initial step. 

A stop solution was used to stop colour development and the intensity of the colour was 

measured. The optical density of each well was determined within 10 minutes using a 

microplate reader set to 450 nm and 570 nm. The standard curve was constructed for each 

set of samples assayed, using a four parameter logistic (4-PL) curve fit. A representative 

standard curve is shown in figure 3.7. Materials were obtained from Sigma (Dorset, UK) 

unless otherwise noted. 
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Figure 3.7. Representative standard curve for Endothelin-1 analysis. 

 

3.11.4   Plasma C-reactive protein analysis  
CRP was analysed using a Randox Full Range CRP (fs-CRP) assay (Randox, Antrim, UK). The 

samples were analysed via spectrophotometric analysis on the ILAB 600 analyser 

(Instrumentation Laboratory UK Ltd, Warrington, UK), using the latex-enhanced 

immunoturbidimetric assay. The ILAB 600 was calibrated using the CRP calibrator series, also 

provided by Randox. The calibrator contained human CRP in a stabilised protein matrix. 

Randox Specific Protein Controls (Levels 1 and 3) were utilised as daily quality controls to 

monitor the accuracy and precision of the analysis and to ensure that the concentrations of 

samples analysed were within the range of linearity for this analysis. Once calibration and 

quality controls were complete, and the coefficient of variation was observed to be <2.5%, 

the plasma samples were added to cuvettes for quantification of frCRP. The samples reacted 

with the buffer and anti-CRP coated latex. The formation of the antibody-antigen complex 

during the reaction resulted in an increase in turbidity, the extent of which was measured as 

the amount of light absorbed at 570 nm. The concentration of the CRP in each sample can 

be determined by correlating this against the standard curve previously established during 

calibration.  

3.11.5   Lipid profile analysis  
Plasma TG and cholesterol (total and HDL-C) were also measured via spectrophotometric 

analysis in the ILAB 600. The measurement of plasma TGs and cholesterol is based on the 

production of quinoneimine from Hydrogen Peroxide whose formation is coupled in these 
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700nm and the absorbance at these wavelengths was proportional to the amount of 

Hydrogen Peroxide produced, which in turn was dependent on the amount of TGs present 

in each sample.  

HDL-C was determined in plasma samples in a similar manner. HDL-C quantification was 

based on the principal of anti-human β-lipoprotein binding to all lipoproteins other than HDL. 

The antigen-antibody complexes that form can block enzyme reactions with these 

lipoproteins. Cholesterol esterase and cholesterol oxidase were added and there is a 

selective reaction with HDL-C which allows for HDL-C quantification. The ILAB 600 was 

calibrated for TGs and TC using a Referr IL G Calibrator (Instrumentation Laboratory UK Ltd). 

The Referr Il G Calibrator is a multicomponent calibrator for which TG values had been pre-

established by the supplier. Calibration for HDL-C measurement was undertaken by using a 

Referr IL HDL-C Calibrator (Instrumentation Laboratory UK Ltd). Serachem Control Level 1 

and Serachem Control Level 2 (Instrumentation Laboratory UK Ltd) were utilised as quality 

controls in order to monitor the accuracy and precision of the analysis. Serachem controls 

were constituted from lyophilized bovine serum with TG concentrations lower (Serachem 

Control Level 1) and higher (Serachem Control Level 2) than observed concentrations in 

plasma isolated at screening. Once calibration and quality controls were complete, and the 

coefficient of variation was observed to be <2.5%, the plasma samples were added to 

cuvettes for quantification of TG. TGs and TC were quantified by measuring absorption at 

510nm and 700nm and correlating this against the standard curve previously established 

during calibration. HDL-C levels were quantified by measuring absorption at 600nm and 

700nm. LDL-C was not analysed via the ILAB but was calculated based on the Friedewald 

formula [295]. In addition, the “TC: HDL-C ratio” was calculated. Materials were obtained 

from Sigma (Dorset, UK) unless otherwise noted. 

 

3.11.6   Fatty acid analysis  
Although a method for fatty acid analysis has previously been described in Chapter 2, our lab 

group subsequently made some improvements to the method. For the NU-AGE participant 

samples, total lipids were extracted from 500µl of plasma with chloroform/methanol (2:1 

v/v) containing 0.01% BHT as antioxidant [296]. The organic solvent was evaporated under a 

stream of nitrogen and the lipid content was determined gravimetrically. The total lipid 

fraction was subjected to acid-catalyzed transmethylation for 16 h at 50 ºC, using 1 ml of 

toluene and 2 ml of 1% sulphuric acid (v/v) in methanol. The resultant FAMEs were purified 

by thin layer chromatography and visualised under spraying with 1% iodine in 
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chloroform [297]. After elution, FAMEs were separated and quantified by gas-liquid 

chromatography using a Hewlett Packard 5890 GC and a SGE BPX70 capillary GC column (30 

m x 0.22 mm I.D.; SGE UK Ltd) with helium as carrier gas and using on-column injection. The 

temperature gradient started at 115 °C for 3 min, then went to 200 °C at 2 °C/min,  2 minutes 

at 200 °C, and then to 240 °C at 60 °C/min. After 5 minutes at 240°C, it cooled down to 115 

°C and equilibrated for 3 minutes before the next injection.  Individual methyl esters were 

identified by reference to authentic standards and to well-characterized fish oil (PUFA-3 from 

menhaden oil, SUPELCO, Supelco Park, Bellefonte, USA). Data were collected and processed 

(peak integration) using GC Chemstation (version B04-02). Materials were obtained from 

Sigma (Dorset, UK) unless otherwise noted. 
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4 NU-AGE Diet Score; design, validation and results 
 

4.1 Introduction 
The majority of nutrition research to date has focused on the effects of single nutrients on 

health. However we consume foods rather than nutrients, and the majority of the meals we 

consume consist of a number of different foods. Nutrients within foods may have synergistic 

and additive effects [183, 184, 298, 299]. While focusing on the effects of single nutrients 

has led to many important discoveries, it is important that more emphasis is placed on the 

effects of the whole-diet on health outcomes [177, 179, 180, 300]. As mentioned in section 

1.9, foods and nutrients can have additive, synergistic or antagonistic effects when 

consumed in combination. Identifying various dietary patterns is one method that could be, 

and has recently been used, for making associations with health outcomes. For example, the 

Mediterranean diet has been shown to be associated with reduced risk of CVD and certain 

types of cancer [301].  

Older age can be a period of poor nutrition due to a wide range of factors such as reduced 

income, poor dentition, sensory loss and therefore loss of appetite [302-304]. Older adults 

are also susceptible to reduced gastrointestinal function, which may be a result of disease 

and increased medication, and may result in impaired digestion and absorption of nutrients 

[304, 305]. Other physiological changes associated with senescence, which can affect 

nutritional requirements due to changes in body composition, include reduction in lean body 

tissue and potentiating sarcopenia [304, 306]. Therefore nutrient intake and utilisation in the 

elderly can often be inadequate [307-309], and general adult recommendations for nutrients 

that are particularly important in old age, such as vitamin D, vitamin B12, folate, iron and 

calcium, are often not met [310]. 

Following on from general adult populations, it is important that there are specific dietary 

guidelines for the elderly which are designed to consider the specific nutritional 

requirements of this large subpopulation.  Table 3.2 (chapter 3) outlines the NU-AGE dietary 

guidelines. These guidelines have been designed with the primary aim of reducing 

inflammation in older adults. Berendsen et al. give some insight into how these NU-AGE 

guidelines were created [182]. For example, oily fish and olive oil were included in the NU-

AGE recommendations as previous studies have shown that both oily fish, olive oil, 

monounsaturated fatty acids (MUFAs) and PUFAs have positive effects on a range of 

outcomes associated with ageing, including blood pressure [311], inflammation [118], 
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cognitive function and depression [312]. Guidelines that focus on protein rich foods, such as 

meat and legumes, are important as protein has been shown to reduce sarcopenia 

development in old age [313]. Dietary guidelines focusing on dairy products and the 

provision of vitamin D supplements are important as higher calcium and vitamin D intakes 

are associated with higher Bone Mass Density (BMD) and reduced morbidity associated with 

falls in the elderly [314]. In addition, hypovitaminosis D has been reported as being 

widespread and is said to be re-emerging as a global health issue and in particular in older 

adults [315, 316].  Wannamethee et al. have previously shown inverse associations between 

both vitamin C and fruit intake with CRP concentrations [317], while wholegrain foods have 

been shown to be important in several aspects of healthy ageing including CVD [318] and 

BMI [319]. A diet combining such foods and nutrients could be more effective than simply 

targeting single nutrients as foods may have synergistic effects when consumed together. 

A number of diet indices/scores have previously been created in order to examine dietary 

patterns and their potential association with health outcomes. The development of such a 

score, specific for the older population, based on the NU-AGE diet recommendations is a 

major aim of this PhD work programme. Such a diet score does not currently exist. Firstly, 

the developed diet score was used on an existing cohort (TWIN UK data) in order to validate 

and optimise it. This diet score could be used to assess whether overall shifts in dietary 

pattern and nutrient intake have an effect on inflammation (CRP) but also on various 

measures of cardiovascular health in the NU-AGE cohort. However, such analysis is not part 

of this thesis as follow-up data was not available at the time of submission.   

As discussed in section 1.9, there are currently a number of diet scores which are widely used 

to assess the overall quality of adult diets. For example, the Mediterranean Diet Score is a 

score which measures adherence to the Mediterranean diet by assigning a score of either 1 

or 0 to 9 different dietary components that were considered either beneficial (fruit and nuts, 

vegetables, legumes, cereal and fish) or detrimental (meat, poultry and dairy products) [181]. 

A diet score has also been created to assess effects of the DASH diet (a diet designed to 

reduce blood pressure) on health [208]. The HEI is another major diet score and is based on 

the FBDGs given by the USDA and consists of 12 food groups. Research has shown that men 

and women who get the highest HEI score have a 23% lower risk of suffering from CHD, and 

a 16% lower risk of major chronic disease [209]. Although a diet score designed specifically 

for the elderly (EDI) has already been published, the NU-AGE diet score is based on different 

diet goals and also aimed to overcome some of the limitations, as previously discussed. This 
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could subsequently be used to assess habitual diet quality and adherence to intervention in 

future observational studies and RCTs in older adult populations.  

 

4.2 Design and validation of the NU-AGE diet score 
Before the NU-AGE Diet Score was used on the NU-AGE cohort, it was validated in a different 

population in order to confirm its functionality and to determine its ability to discriminate 

individuals for health outcomes, such as blood pressure. This was conducted using data from 

the TWIN UK cohort, a study which has previously been described [320, 321]. To summarise, 

these data were collected from 3262 healthy female twin participants residing in the UK. The 

twins were aged between 18 and 79 years old and completed FFQs, lifestyle questionnaires 

and attended clinical assessments over the last 20 years. This dataset contains a variety of 

outcome measures including CRP; the primary outcome of the NU-AGE intervention. A range 

of other useful health outcomes related to cardiovascular health were also available 

including PWV, cholesterol (TC, LDL-C and HDL-C), TGs and blood pressure. Although the NU-

AGE diet is designed for older adults, all age groups were used in the validation process to 

increase sample size. 

4.2.1 Methods 
Food groups 

Using the NU-AGE diet information (Tables 3.1 and 3.2 (Chapter 3)), each food group and the 

recommended guideline intake for each group were examined. 13 food categories were 

created for use in this diet score (table 4.1). Although recommendations were given to the 

NU-AGE participants to limit the use of sugar and salt, these were not included as categories 

of the diet score due to the wide variety of foods in which they are found. The TWIN UK FFQ 

(annex 7) was used to assign each food to a food category as shown in table 4.1. There were 

several limitations to the use of this FFQ. For example, there were no data on the amount of 

oil consumed. It was also sometimes hard to distinguish between a healthy and unhealthy 

food product; for example in the case of vegetable soup one cannot determine if it is a 

homemade more healthful version or a high salt processed product. Such products were 

initially all included, with the exception of fish products. Two fish food categories were 

created; one included all fish products and the other included non-processed fish only. It was 

decided that the non-processed fish category would be used as it was thought to represent 

a healthier food group. 
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Table 4.1. NU-AGE diet score food groups with each food assigned from TWIN UK FFQ 

Food Group Individual Foods 

Fruit (servings/day) Apples, Bananas, Dried Fruit, Grapefruit, Grapes, Melon, 
Oranges, Peaches, Pears, Pure Fruit Juice, Strawberries, Tinned 
Fruit 

Wholegrain 

(servings/day) 

All Bran, Branflakes, Brown Bread, Brown Rice, Fruit n Fibre, 
Muesli, Oat Based Cereal, Wholemeal Bread, Wholemeal 
Pasta, Porridge 

Vegetables (grams/day) Avocado, Baked Beans, Beansprouts, Beetroot, Broccoli, 
Brussels Sprouts, Cabbage, Carrots, Cauliflower, Dried Lentils, 
Garlic, Green Beans, Green Salad, Leeks, Mushrooms, Onions, 
Parsnips, Peas, Spinach, Sweet Peppers, Sweetcorn, Tofu, 
Tomatoes, Veg Soup, Watercress, Marrow, Coleslaw 

Dairy (grams/day) Butter, Dairy Cottage Cheese, Dairy Full Fat Yog, Dairy Low Fat 
Yog, Dairy cheese, Dairy double, Dairy single, Dried Milk, 
Evaporated Milk, Full Milk, Goats Milk, Semi Skimmed Milk, 
Skimmed Milk 

Cheese (grams/day) Dairy Cottage Cheese , Dairy cheese 

Potatoes, Pasta and 

Rice (grams/day) 

Boiled potato, Brown Rice, Roast Potatoes, White Rice, White 
pasta, Wholemeal Pasta 

Oil and Fat* 

(grams/day) 

Block Marg, Butter, Low Fat Spread, PUFA Marg, Very Low Fat 
Spread 

Non-Processed Seafood 

(grams/week) 

Fish roe, Oily fish, Shellfish, White fish 

Meat (grams/week) Bacon, Beef, Corned Beef, Ham, Lamb, Liver, Pies, Pork, 
Poultry, Sausages, Burgers, Meat Soup 

Nuts (grams/week) Nuts 

Eggs (grams/week) Eggs 

Alcohol (glass/day) Beer, Liqueurs, Spirits, Wine 

Fluid (ml/day) Channel Island Milk, Coffee, Cocoa, Coffee Decaffeinated, Diet 
fizzy, Fizzy Soft Drinks, Fruit Squash, Full Milk, Goats Milk, 
Horlicks, Pure Fruit Juice, Rice Milk, Semi Skimmed Milk, 
Skimmed Milk, Soya Milk, Tea 

* In the TWIN UK FFQ there is no data on amount of oil consumed, therefore for validation this score 

only contains butter, margarine and spreads 
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Scoring system 

In order to facilitate a sensitive method to distinguish between groups, a scoring system of 

0-10 was used to indicate the score for each dietary component, where 0 described 

inadequate, or sometimes excessive, intake and 10 described the optimum intake. For each 

category, the sum of all foods was calculated and the total was divided by 7 as the data were 

given in either servings or grams per week. Grams were used for all categories except fruit 

and whole grain. Serving data were used for both of these as the grams changed depending 

on the food. For example, 1 serving of fruit equals 1 apple, 1 banana or 1 orange regardless 

of the weight. A reverse scoring system was applied to food groups that were recommended 

to NU-AGE participants but in limited amounts. For example, cheese was given a 0 score for 

both excess intake and no intake, as were oil/fat and meat/poultry categories (Table 4.2). 

The alcohol score was based on the NU-AGE recommendations for females of a maximum of 

1 glass/day. Table 4.2 lists each food group with the range of scores given from 0-10 and 

grams/servings to be consumed to attain that score. For example, the recommendation for 

vegetables is to consume 300g or more each day. If a person reaches this recommendation 

they were given a score of 10. They were given a score of 0 if they consumed less than 29.99g 

per day, a score of 1 if they consumed an amount between 30g and 59.99g per day etc. 

Therefore, intakes of each food within a particular food group determine the score for that 

food group.     

A vegetarian category was created so that vegetarians did not have a reduced score due to 

the lack of meat/fish consumption. Another category was created so that only those who 

actually consumed alcohol were scored for the alcohol category. The final score for each 

participant was the sum of each food group score divided by the total number of food groups 

(13). However if a person was vegetarian and didn’t consume alcohol, their score was 

averaged out of 11 rather than 13.    

To summarise, data from the TWIN UK FFQ were used, foods were divided into their relevant 

categories (Table 4.1) and servings or grams per day or week were calculated. The final score 

is the sum of each food score divided by the number of food groups.   
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Table 4.2. Food groups, recommendations and score assigned to each level of consumption 

SCORE 0 1 2 3 4 5 6 7 8 9 10 

Whole grains1; 4-6 servings/d 
recommended 

0-0.59  0.6-1.19 1.2-1.79 1.8-2.39 2.4-2.99 3.0-3.59 3.6-4.19 4.2-4.79 4.8-5.39 5.4-5.99 6+ 
servings/d 

Fruits2; 2+ servings/d 0-0.19  0.2-.39 0.4-.59 0.6-.79 0.8-.99 1-1.19 1.2-1.39 1.4-1.59 1.6-1.79 1.8-1.99 2+ 
servings/d 

Vegetables; 300+ g/d 0-29.99 30-59.99 60-89.99 90-119.99 120-
149.99 

150-
179.99 

180-
209.99 

210-
239.99 

240-
269.99 

270-
299.99 

300g+/d 

Dairy; 
500 ml/d (including cheese)  

0-49.99  50-99.99 100-
149.99 

150-
199.99 

200-
249.99 

250-
299.99 

300-
349.99 

350-
399.99 

400-
449.99 

450-
499.99 

500+g/d 

Cheese; 30 g/d 0-2.99/ 
>50 

3-5.99 6-8.99 9-11.99 12-14.99 15-17.99 
/40-49.99 

18-20.99 21-23.99 24-26.99 27-29.99 30-39.99g/d 

Potatoes and Pasta/Rice; 150 g/d  0-14.99 15-29.99 30-44.99 45-59.99 60-74.99 75-89.99 90-104.99 105-
119.99 

120-
134.99 

135-
149.99 

150+g/d 

Oil/Fat; 
Oil 20 g/d, margarine 30g/d; 
maximum 50 gram fat per day  

0-2.99/ 
>50 

3-5.99 6-8.99 9-11.99 12-14.99 15-17.99 
35-49.99 

18-20.99 21-23.99 24-26.99 27-29.99 30-34.99g/d  

Fluid;  1.5 l/d 0-149.99 150-
299.99 

300-
449.99 

450-
599.99 

600-
749.99 

750-
899.99 

900-
1049.99 

1050-
1199.99 

1200-
1349.99 

1350-
1499.99 

1500+ ml/d 

Fish and other seafood; 
250 g per week  (2 servings)  

0-24.99  25-49.99 50-74.99 75-99.99 100-
124.99 

125-
149.99  

150-
174.99 

175-
199.99 

200-
224.99 

225-
249.99 

250+ g/wk 

Meat and poultry; 
500 g per week (4 times per week 
125 gram meat or poultry) 

0-49.99 / 
>750 

50-99.99 100-
149.99 

150-
199.99 

200-
249.99 

250-
299.99/ 
625-
749.99 

300-
349.99 

350-
399.99 

400-
449.99 

450-
499.99 

500-
624.99+g/d 
 

Nuts;  40 g per week (2 times per 
week 20 g ) 

0-3.99 4-7.99 8-11.99 12-15.99 16-19.99 20-23.99 24-27.99 28-31.99 32-35.99 36-39.99 40g/wk 

Eggs; 150 g per week (3 times 50g 
serving per week) 

0-14.99g 
 

15-29.99 30-44.99 45-59.99 60-74.99 75-89.99 90-104.99 105-
119.99 

120-
134.99 

135-
149.99 

150g/wk 

Alcohol; Women; Max 1 glass per 
day  

>1  0.1-0.19 0.2-0.29 0.3-0.39 0.4-0.49 0.5-.059 0.6-.069 0.7-0.79 0.8-0.89 0.9-.99 1 glass/d 
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1; Whole grains 

- 4-6 servings/d recommended  

- 1 serving of whole grains equals 1 slice of bread (1.5 cm thick) or 25 g of bread, ½ cup of breakfast 

cereals (50g), ½ cup of cooked brown rice (30g raw), 2/3 cup of wholegrain pasta, cooked (30g raw), 

1/3 cup of muesli, ½ cup of porridge.  

 

2; Fruit 

- At least 2 servings/d recommended 

- 1 serving of fruit equals 1 apple, 1 banana, 1 orange, 1.2 grapefruit, 8 plums (small), approximately 

1 glass of fruit juice, ¼ cup of dried fruits.  

 

4.2.2 Statistical analysis 
Quartiles of the final diet score were calculated by creating a binned variable of the final diet 

score and making three cut points within this variable. A 2 way ANOVA was performed to 

calculate adjusted means and to determine the associations between the diet score quartiles 

and various CVD outcomes including TC, SBP, DBP, pulse pressure and CRP. If the number of 

participants was different for each outcome, quartiles of the diet score were made specific 

to each outcome to avoid skewed results. Results are displayed as means and SEM. 

Covariates included in the analysis were gender, age, BMI, physical activity, total energy 

intake and smoking status. 1 way ANOVA was used to determine the associations between 

the diet score quartiles and characteristics such as nutrient intakes. Chi-square tests were 

used to examine associations between the diet score quartiles and characteristics that were 

reported as frequencies or percentages of the total cohort rather than means. All statistical 

calculations were performed using SPSS statistics (PASW) 18.  

4.2.3 First round results and amendments made 
The analysis using this initial design of the NU-AGE diet score resulted in no significant 

associations between increasing diet score on any of CVD health outcomes investigated. The 

results for this analysis can be viewed in table 4.3.  
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Table 4.3. First attempt analysis showing associations between diet score quartiles and 
CVD related outcomes 

 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-value 

Cholesterol 

(mmol/l) 

     

N 624 645 696 626  

Mean (SEM) 5.6 (0.1) 5.6 (0.0) 5.6 (0.0) 5.6 (0.1) .701 

Systolic Blood 

Pressure (mmHg) 

     

N 792 789 843 727  

Mean (SEM) 123 (1) 121 (1) 121 (1) 121 (1) .117 

Diastolic Blood 

Pressure (mmHg)  

     

N 792 789 844 727  

Mean (SEM) 77 (0) 76 (0) 77 (0) 77 (0) .468 

Pulse Pressure 

(beats per minute 

(BPM)) 

     

N 485 495 521 460  

Mean (SEM) 44 (0) 44 (0) 43 (0) 43 (0) .261 

C-Reactive 

Protein (mg/l)  

     

N 549 592 612 541  

Mean (SEM) 2.7 (0.1) 2.6 (0.1) 2.5(0.1) 2.5 (0.1) .187 

Number of participants in each group is detailed in the “N” rows. Results are displayed as mean and 
SEM. P-values displayed in final column, significant when p>0.05.   

 

The frequency of scores for each food group was examined and this analysis showed that the 

data were skewed towards a higher score for most food groups and therefore the diet score 

did not appear to provide a sensitive measure of the dietary pattern we aimed to define. As 

a result, a number of changes were made to the diet score in order to try and create a more 

sensitive measure that resulted in a better distribution of the participants across the diet 

score. Firstly, several foods that were difficult to classify were removed from a number of 

the food groups as shown in table 4.4. Most of the foods removed were foods that could not 

be differentiated into healthy or unhealthy versions in an attempt to make each food group 

focus on ‘healthier’ options. In this way, participants potentially consuming unhealthy 
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alternatives would not be given as high a score. For example, fruit products with the potential 

to have added sugar were removed from the fruit category. The dairy food category was 

refined to contain less high fat products by removing products such as butter and cream. The 

oil and fat categories were refined to remove less healthy options such as butter. All 

processed meat products were removed. The alcohol category was amended to only include 

wine. It was also decided that BMI and PWV would be examined as additional outcomes. 

However the PWV data were collected more recently than other outcomes and therefore 

were not available for all participants and had its own FFQ data due to the administration of 

an updated questionnaire. The distribution of the diet score before and after these 

amendments are graphically depicted in figure 4.1. This figure shows that the amendments 

made to the diet score resulted in a slightly more evenly distributed diet score among the 

TWIN UK cohort. 

 

Table 4.4. NU-AGE diet score food groups and food removed from each in an attempt to 
improve healthfulness  

Food group Foods removed 

Fruit Fruit juice, tinned fruit 

Wholegrain None 

Vegetables Baked beans, tofu, veg soup, coleslaw 

Dairy Butter, dairy cottage cheese, dairy cheese, 

dairy double cream, dairy single cream, 

evaporated milk 

Cheese None 

Potatoes, pasta and rice None 

Oil and Fat Block margarine, butter 

Non-Processed Seafood None 

Meat Bacon, corned beef, ham, meat pies, burgers, 

meat soup 

Nuts None 

Eggs None 

Alcohol Beer, liquors, spirits 

Fluid Cocoa, fizzy soft drinks, Horlicks 
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Figure 4.1. Distribution of diet score results for the TWIN UK cohort before and after amendments 

 



110 

 

 

4.2.4 Final results; Analysis of the NU-AGE diet score on TWIN UK population 
The validation of the NU-AGE diet score was performed using cross-sectional data from the 

TWIN UK cohort (n=3262). All participants in this study were female and were aged between 

18 and 79 and the mean age (± SEM) was 48 ± 0.  

50.7% of the cohort never smoked, while 18.5% and 30.8% were current or former smokers 

respectively. 23.4% of the cohort were physically active, while 23.0% and 53.6% were 

inactive and moderately active respectively. In addition, it was shown that 83.1% of the 

participants drank alcohol. 28.8% of participants were hypercholesterolaemic (defined as TC 

>6.2mmol/l). 30.2% and 12.5% of the participants were overweight and obese respectively. 

20.0% of the cohort had hypertension (defined as having a SBP over 140mmHg or a DBP over 

90mmHg [322]). 

Table 4.5 shows the associations between nutrient intakes and diet score quartiles in the 

Twin UK cohort. Total energy intake (kcal) was significantly associated (p= <0.001) with 

increased NU-AGE diet score; average total energy intakes increased from 1626.2 ± 16.9 (Q1) 

to 2315.1 ± 16.7 (Q4). In addition to this, nutrient intakes for all other nutrients expressed as 

grams, with the exception of alcohol, correspondingly increased significantly (p= <0.001) 

with increased adherence to the NU-AGE diet score. Nutrient intake was therefore calculated 

as percentage of total kcal (table 4.6). Total fat, saturated fat and MUFA intakes were 

associated with a significantly lower diet score when expressed as percentage of total energy 

intakes, while intakes of polyunsaturated fat, carbohydrate, fibre, sugar, protein, sodium and 

water were associated with a significantly higher score. 

Table 4.6 shows the frequencies of covariates according to quartiles. Age was significantly 

associated with increased score (p= <0.001); from 45 to 51 years between Q1 and Q4 of the 

NU-AGE diet score. BMI was also associated with significantly increased diet score; (p= 

<0.001) from 24.7 to 25.3 kg/m2 between the 1st and 4th quartiles. Higher diet score quartiles 

were associated with increased physical activity and lower rates of current smokers when 

compared with the lower quartiles of the diet score.  
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Table 4.5. Nutrient intake according to NU-AGE diet score quartiles in 3262 participants 
from the TWIN UK cohort 

 

 1st Quartile 

(n=768) 

2nd Quartile 

(n=855) 

3rd Quartile 

(n=849) 

4th Quartile 

(n=790) 

Total 

(n=3262) 

p-value 

Energy (kcal/d)       
Mean (SEM) 1626.2 

(16.9)a 

1879.0 
(15.8)b 

2089.4 
(15.8)c 

2315.1 
(16.7)d 

1979.9 
(9.2) 

0.000* 

Fat (% of kcal/d)       
Mean (SEM) 32. 6 (0.2)a 31.5 (0.2)b 31.0 (0.2)bc 30.3 (0.2)c 31.3 (0.1) 0.000* 
Saturated Fat (% of 
kcal/d) 

      

Mean (SEM) 12.5 (0.1)a 11.9 (0.1)b 11.5 (0.1)b 10.8 (0.1)c 11.7 (0.1) 0.000* 
Mono-unsaturated Fat 
(% of kcal/d) 

      

Mean (SEM) 10.9 (0.1)a 10.4 (0.1)b 10.1 (0.1)bc 9.9 (0.1)c 10.3 (0.1) 0.000* 
Poly-unsaturated Fat 
(% of kcal/d) 

      

Mean (SEM) 6.8 (0.1)a 6.8 (0.1)ab 6.9 (0.1)abc 7.1 (0.1)c 6.9 (0.1) 0.000* 
Carbohydrates (% of 
kcal/d)  

      

Mean (SEM) 50.2 (0.3)a 51.5 (0.2)b 52.7 (0.2)c 52.9 (0.2)d 51.8 (0.1) 0.000* 
Sugars (% of kcal/d)       
Mean (SEM) 23.5 (0.2)a 25.3 (0.2)b 26.5 (0.2)c 26.7 (0.2)d 25.5 (0.1) 0.000* 
Protein (% of kcal/d)       
Mean (SEM) 16.1 (0.1)a 16.7 (0.1)b 16.8 (0.1)b 16.9 (0.1)b 16.6 (0.1) 0.000* 
Alcohol (g/d)       
Mean (SEM) 10.0 (0.6) 9.6 (0.5) 8.9 (0.4) 10.5 (0.4) 9.7 (0.2) 0.082 
Fibre (g/d)       
Mean (SEM) 13.8 (0.2)a 18.3 (0.2)b 22.4 (0.2)c 26.4 (0.3)d 20.3 (0.1) 0.000* 
Sodium (mg/d)       
Mean (SEM) 1797.4 (0.9)a 2092.5 (0.8)b 2370.5 (0.8)c 2764.6 (0.9)d 2258.1 

(0.4) 
0.000* 

Water (g/d)       
Mean (SEM) 2182.1 

(25.5)a 

2639.8 
(20.4)b 

2960.4 
(23.3)c 

3276.9 
(23.7)d 

2769.8 
(13.5) 

0.000* 

Results are displayed as mean and SEM. P-values displayed in final column, significant when p>0.05.  

Asterix marks significance. Superscripts not sharing a common letter were significantly different (P < 

0.05). 
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Table 4.6. Covariate frequencies according to diet score quartiles in the TWIN UK cohort 

 1st Quartile 

(n=768) 

2nd Quartile 

(n=855) 

3rd Quartile 

(n=849) 

4th Quartile 

(n=790) 

Total 

(n=3262) 

p-value 

Age (years)       

Mean (SEM) 45 (0)a 48 (0)b 49 (0)bc 51 (0)bc 48 (0) 0.000* 

BMI (kg/m2)       

Mean (SEM) 24.9 (0.2)a 25.3 (0.2)b 25.2 (0.2)abc 25.2 (0.2)bc 25.2 (0.1) 0.013* 

Physical Activity      0.000* 

Inactive (%) 29.9a 24.0b 20.5bc 18.0c 23.1  

Moderately 

Active (%) 

52.9a 54.7a 54.2a 52.4a 53.6  

Active (%) 17.2a 21.3ab 25.3bc 29.6c 23.4  

Smoking Status       0.000* 

Current smokers 

(%) 

27.5a 20.2b 14.8c 12.0c 18.6  

Former smokers 

(%) 

25.3a 31.6b 33.0b 32.9b 30.7  

Never smoked (%) 47.2a 48.2a 52.2ab 55.1b 50.7  

Results are displayed as percentage of group or mean and SEM. P-values displayed in final column, 

significant when p>0.05.  Asterix marks significance. Superscripts not sharing a common letter were 

significantly different (P < 0.05). 

 

The mean diet score among all participants was 4.04 ± 0.87. Linear regression revealed that 

the 4th quartile (i.e. participants with highest diet score) was associated with a significantly 

lower level of CRP compared with the first quartile; CRP decreased from 2.85 (CI; 2.64-3.06) 

to 2.44 (CI; 2.25-2.64) mg/l (p=0.028). No significant associations were observed between a 

high diet score and other cardiovascular related outcomes (see table 4.7), although there 

was a trend towards a decrease in blood pressures with increased diet score. 
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Table 4.7. Associations between diet score quartiles and CVD related outcomes 

 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-value 

Cholesterol 

(mmol/l) 

     

N 591 675 682 643  

Mean (SEM) 5.6 (0.0) 5.6 (0.0) 5.6 (0.0) 5.6 (0.0) .700 

Systolic Blood 

Pressure (mmHg) 

     

N 745 834 809 763  

Mean (SEM) 123 (1) 121 (1) 122 (1) 120 (1) .115 

Diastolic Blood 

Pressure (mmHg)  

     

N 745 834 809 764  

Mean (SEM) 77 (0) 77 (0) 77 (0) 76 (0) .354 

Pulse Pressure 

(BPM) 

     

N 453 532 509 467  

Mean (SEM) 44 (1) 44 (0) 43 (0) 43 (0) .334 

Pulse Wave 

Velocity (m/s) 

     

N 214 209 166 169  

Mean (SEM) 9.2 (0.1) 9.2 (0.1) 9.1 (0.1) 9.2 (0.1) .742 

C-Reactive 

Protein (mg/l)  

     

N 508 611 604 571  

Mean (SEM) 2.9 (0.1)a 2.6 (0.1)b 2.4 (0.1)b 2.4 (0.1)b .028* 

BMI       

N 767 855 848 789  

Mean (SEM) 24.9 (0.2) 25.3 (0.2) 25.2 (0.2) 25.2 (0.2) .417 

Number of participants in each group is detailed in the “N” rows. Results are displayed as mean and 
SEM. P-values displayed in final column, significant when p<0.05.  Asterix marks significance. BMI; 
Body Mass Index 
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4.2.5 Discussion; design and validation of the NU-AGE diet score on TWIN UK 

population 
To summarise, the design of the NU-AGE diet score involved forming specific food categories 

based on the NU-AGE dietary guidelines, assigning foods into one of these groups, and 

calculating servings or grams consumed per day or per week. A scoring system was devised 

in which each food category was scored from 0 to 10 based on intakes. The total score for 

each category was then calculated and divided by the number of food groups relevant to 

each participant to give the final score for each participant. The NU-AGE diet score was based 

on the NU-AGE diet goals which were guidelines that are similar to current dietary guidelines 

but tailored specifically towards an ageing population. The aim of the NU-AGE diet score was 

to assess quality across the whole-diet and to investigate how adherence to the NU-AGE diet 

affects various outcomes specifically related to CVD. The NU-AGE diet score was developed 

as a potential method to determine adherence to the NU-AGE intervention as well as a score 

that could be used to determine the dietary adequacy in older populations (if validated). To 

validate the NU-AGE diet score, the diet score was applied to the TWIN UK cohort.  

The TWIN UK cohort has previously been shown to be representative of the general 

population with respect to hypertension and dietary intake [323, 324]. Prevalence of 

overweight and obesity in this cohort is slightly less than the general UK population [325]. 

The mean cholesterol and CRP of participants is representative of the UK population [326]. 

Initial analysis examining the impact of the NU-AGE diet score did not result in any significant 

associations with CRP or any other measures of cardiovascular health (Table 4.3). The data 

were re-examined and it was determined that the data for each food group highly skewed 

with the majority of participants easily reaching the food goals. Therefore several 

amendments were made to the diet score (Table 4.5). The majority of these amendments 

involved attempting to exclude food products that were not necessarily healthful products 

but had previously been allowing participants to attain a high score. For example, in the initial 

analysis the dairy category had contained a large range of high fat products such as cream 

and butter. These food products were removed and the impact of increased adherence to 

the NU-AGE diet on CRP and other cardiovascular health outcomes was once again examined 

following the amendments.  

Following these amendments, a significant association was observed; a 0.4 mg/l decrease in 

CRP between Q1 and Q4. This is similar to the decrease of 0.5 mg/l reported for those 

consuming the Mediterranean diet with olive oil in the PREDIMED intervention [83]. 
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Considering that the NU-AGE diet was specifically designed to reduce inflammation and the 

primary outcome of the NU-AGE diet is CRP, the significant reduction of CRP associated with 

increased NU-AGE diet among TWIN UK participants (assessed by calculating the NU-AGE 

diet score designed as described) confirmed the functionality of the diet score. Therefore the 

NU-AGE diet score was considered validated and suitable for subsequent use on the NU-AGE 

cohort. Although not reaching significance, trends for a reduction in blood pressure related 

outcomes could be seen in Q4 when compared with the lower quartiles. It is possible that 

these figures could reach significance if tested on a larger cohort. 

We also examined nutrient intakes according to quartiles of the NU-AGE diet score. An 

increase in total energy intake (kcal) was significantly associated with an increasing NU-AGE 

diet score. The increases in total energy intakes associated with the NU-AGE diet score for 

older adults can be beneficial because the elderly can suffer from involuntary weight loss if 

energy intakes are inadequate [327]. Total fat, saturated fat and MUFA intakes were 

significantly associated with a lower diet score when expressed as percentage of total energy 

intakes, while intakes of polyunsaturated fat, carbohydrate, sugar, fibre, protein, sodium and 

water were associated with a significantly higher score. Reduced fat (excluding 

polyunsaturated fat) consumption could be contributing to the significant association in CRP 

levels across quartiles. The intakes of nutrients that were associated with a significant 

increase in participants in the 4th quartile were generally favourable nutrients (with the 

exception of sugar and sodium) and this could also have contributed to the reduction in CRP. 

The increased sugar could be a result of increased fruit consumption, however as sugar based 

food products were not included as a food group in the diet score it is difficult to decipher 

exactly why the 4th quartile was associated with a significantly higher consumption of sugar. 

The higher level of sodium consumption seen in Q4 could be associated with the food goal 

that recommends the consumption of 30g of cheese per day. Although the NU-AGE 

guidelines state that a reduced fat and salt cheese is preferable, in this analysis it was not 

possible to include only cheeses that were reduced in salt. This could also be a potential 

explanation for why a significant reduction in blood pressure related outcomes was not seen 

in this analysis. However, neither sugar nor salt intakes were included as food goals in the 

diet score, therefore the NU-AGE diet score does not account for them in this analysis.  

There were several limitations involved in the use of this cohort for validation purposes. This 

study contains female participants only and therefore it cannot yet be concluded that the 

diet score is functional for men. Despite the diet score being tailored for the elderly, all age 
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groups were included in order to have sufficient numbers for each dependent variable. As 

previously discussed, the use of a FFQ rather than a food diary tends to make it more difficult 

to distinguish between certain food groups, for example the difference between a 

homemade healthy soup and a processed version that could be less healthy due to a high 

salt content. Despite the limitations, overall the TWIN UK dataset was deemed suitable due 

to the wide variety of foods included in the FFQ as well as the number of cardiovascular 

related outcomes available.  

 

4.3 Using the NU-AGE diet score on the NU-AGE cohort 
Following validation of the NU-AGE diet score on the TWIN UK data, the diet score was tested 

on the NU-AGE cohort (baseline data) in order to assess if a higher diet score was associated 

with improved cardiovascular health in this older aged population. 7-day food diaries were 

used to assess dietary intakes in the NU-AGE cohort which allowed for a more accurate and 

detailed analysis in comparison to the use of FFQs [328]. However, this also resulted in the 

need for a more detailed investigation into the division of foods into corresponding food 

categories as there were over 2,000 food codes used in the analyses of the NU-AGE dietary 

data.  

4.3.1 Methods 
Individual foods were automatically assigned to a food group using the nutritional analysis 

software WISP.  However, in certain cases these food groups were not suitable for the 

current analysis and so further investigation and re-assignment of the food codes was 

required manually. For example, a group titled “fish products” needed to be investigated to 

determine which foods should be included in the fish diet score group. Using the WISP food 

groups, re-assignment was decided as follows;  

a) which groups could have all foods contained within that group assigned to a food 

category, 

b) which food groups would be fully excluded from any food category, and  

c) which food groups would have to be individually examined to determine which foods 

are included in which category.  

To summarise, these food groups are shown in table 4.8. For section c, the rules that 

determined what foods were included and excluded from each category are summarised in 

table 4.9. To decide which foods belonged in the wholegrain category, a number of food 
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groups had to be examined to select wholegrain only products. The NU-AGE advice for 

wholegrain foods was to consume brown rice, wholegrain pasta or other grain, wholegrain 

bread, Ryvita crispbread, and wholegrain cereal, such as oatmeal. These foods were 

automatically assigned by WISP to the following food groups; flours, grains and starches, 

breads, rolls, breakfast cereals, biscuits. To determine which foods in these groups should be 

defined as a wholegrain, we decided to use a method of identifying wholegrain foods that 

had recently been proposed in a 2013 study as the method to identify the most healthful 

wholegrain products [329]. Therefore, in order to be assigned from these food groups to the 

wholegrain category they needed to have a ≤10:1 ratio of total carbohydrate to fibre content. 

Brown varieties of pasta and rice were selected from the rice and pasta groups to also be 

included in the wholegrain category. Once the assignment of foods into the correct 

categories was complete, dietary intakes of each food category were determined for each 

participant and a diet score was calculated using the same method used on the TWIN UK 

data discussed above. 
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Table 4.8. Division of food groups into assigned food categories 

A. Food Groups with all 
foods included (Food 
Group) 

Rice (Pasta, Potatoes, Rice), Pasta (Pasta, Potatoes, Rice), 

Potatoes (Pasta, Potatoes, Rice), Early Potatoes (Pasta, 

Potatoes, Rice), Main Crop Potatoes (Pasta, Potatoes, Rice), 

Skimmed Milk (Dairy), Semi-skimmed milk (Dairy), Whole Milk 

(Dairy), Yoghurts (Dairy), Yoghurts (Dairy), Whole Milk 

Yoghurts (Dairy), Low Fat Yoghurts (Dairy), Cheeses (Cheese), 

Eggs (Eggs), Vegetables, general (Vegetables), Beans and 

Lentils (Vegetables), Peas (Vegetables), Fruit, general (Fruit), 

Beef (Meat), Lamb (Meat), Pork (Meat), Chicken (Meat), Duck 

(Meat), Pheasant (Meat), Turkey (Meat), Rabbit (Meat), 

Venison (Meat), Offal (Meat), Juices (Fluid), Squash and 

Cordials (Fluid),  

B. Food Groups with all 
foods excluded  

Pizza, Cakes, Pastry, Buns and Pastries, Puddings, Savouries, All 

creams, Ice Cream, Puddings and Chilled desserts, Savoury 

dishes and sauces, Herbs and spices, Sugars, Preserves and 

Snacks, Soups, sauces and miscellaneous foods, Beers, Cider, 

Liquers, Spirits  

C. Food Groups to be 
manually separated 
(Food Groups) 

 
 

Flours, grains and starches (wholegrain), Breads (Wholegrain),  

Rolls (Wholegrain),  Breakfast cereals (Wholegrain),  Biscuits 

(Wholegrain), Rice (Wholegrain), Pasta 

(Wholegrain),Processed Milks (Dairy), Milk Based Drinks 

(Dairy), Other Milks (Dairy), Margarines (Fat/Oil), Egg dishes 

(eggs), Chipped Potatoes (Pasta, Potatoes, Rice), Potato 

Products (Pasta, Potatoes, Rice), Vegetable Dishes 

(Vegetables), Fruit Juice (Fruit), Nuts and Seeds (Nuts), White 

Fish (Fish), Fatty Fish (Fish), Crustacea (Fish), Molluscs (Fish), 

Fish Products (Fish), Meat Products (Meat), Meat Dishes 

(Meat), Bacon (Meat), Fats and Oils, Powdered Drinks and 

essences (Fluid), Infusions (Fluid), Soft Drinks (Fluid), 

Carbonated Drinks (Fluid),  Wines (Alcohol) 

A) The groups in which all foods contained within that group are assigned to a food category 

(assigned food category in brackets), B) The food groups that are fully excluded from any food 

category, C) The food groups that have been individually examined to determine which foods are 

included in which category. 
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Table 4.9. Summary of rules to determine inclusion/exclusion of foods from each food 
group  

Food Group Rule 

Flours, grains and starches 

(wholegrain) 

Content of total carbohydrate to fibre of ≤10:1 ratio 

Rice (Wholegrain) Brown 

Pasta (Wholegrain) Brown 

Breads (Wholegrain) Content of total carbohydrate to fibre of ≤10:1 ratio 

Rolls (Wholegrain) content of total carbohydrate to fibre of ≤10:1 ratio 

Breakfast cereals (Wholegrain) Content of total carbohydrate to fibre of ≤10:1 ratio 

Biscuits (Wholegrain) Content of total carbohydrate to fibre of ≤10:1 ratio 

Vegetable Dishes (Vegetables) Excluded everything, except vegetable stir fry mixes, 

salads.  

Fruit Juice (Fruit) Excluded all, except freshly squeezed. 

Nuts and Seeds (Nuts) Include nuts. Seeds, nut butters and pastes excluded. 

White Fish (Fish) Exclude fish in batter. 

Fatty Fish (Fish) Excluded pate. 

Crustacea (Fish) Exclude fish in batter. 

Fish Products and Dishes (Fish) Included fish with sauces, breaded fish. Excluded pies, 

pate, battered, fish cakes, fish fingers.  

Meat Products (Meat) Included meat slices, meat in breadcrumbs. Excluded 

sausage, pies, pate, beef burgers.  

Meat Dishes (Meat) Included meat dishes with sauce only. Excluded meat in 

dishes with others foods such as potato.  

Fats and Oils,all (fats and oils) Included vegetable oils like olive, canola, sunflower and 

soybean oil. Excluded butter, lard, shortening and hard 

block margarine.  

Powdered Drinks and essences (Fluid) Included those made up with liquid. Excluded powders 

not yet made up. 

Infusions (Fluid) Included those made up with liquid. Excluded powders 

not made up 

Soft Drinks (Fluid) Included sugar free. 

Carbonated Drinks (Fluid) Included sugar free. 

Wines (Alcohol) Included red wines only. 
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4.3.2 Statistical Analysis 
The analysis performed on the NU-AGE cohort was the same as described in section 4.2.2 for 

the TWIN UK data. However, several additional outcomes were analysed including CAVI, ABI 

and RHI. As both males and females were included in this analysis, gender was also added as 

a covariate. All other covariates were the same as the TWIN analysis and included gender, 

age, BMI, physical activity, total energy intake and smoking status. Cardiovascular and 

hypertensive medication data was also available and therefore was also added as a covariate. 

Blood pressure measurements and clinical measurements of vascular function were available 

for 248 participants at baseline. However at the time of analysis, biochemical data was only 

available for the subgroup of participants (n=136) included in the dataset described in 

chapter 5.  

4.3.3 Results 
248 NU-AGE participants were included in this analysis and results shown are based on 

baseline data. The cohort used for this analysis was made up of both men and women; 37.1% 

men and 62.9% women. The age ranged from 65-79 years, the mean age (± SEM) was 70 ± 0 

years. 61.9% of the cohort never smoked, while 36.8% were ex-smokers and only 1.2% were 

current smokers. The average energy expenditure (kcal/d assessed by actigraph) for the 

cohort was 299.7 ± 11.6 kcal/d. 89.9% of the cohort consumed alcohol. 27.2% of the cohort 

were hypercholesterolaemic (defined as TC >6.2mmol/l). 47.6% and 18.1% of the cohort 

were overweight and obese respectively, while 44.8% were hypertensive (defined as having 

a SBP over 140mmHg or a DBP over 90mmHg [322]).      

Table 4.10 shows the nutrient intakes according to diet score quartiles in the NU-AGE cohort 

and statistical significance. There were no significant differences among the quartiles for 

total energy intake. Total fat, monounsaturated fat, polyunsaturated fat, protein and fibre 

intakes were all associated with a significantly (p<0.05) increased diet score result. Low 

carbohydrate intakes were significantly associated with an increased diet score, while there 

were no significant associations for saturated fat, sugar, alcohol, sodium, and water intakes 

among the quartiles. 

The means or frequencies of the covariates for each quartile are shown in table 4.11. There 

were no significant associations between the quartiles for age, BMI or physical activity. 

Participants in Q3 seemed to have a slightly higher percentage of former smokers and less 

people that never smoked when compared with the other quartiles. 
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Table 4.10. Nutrient intake according to diet score quartiles in the NU-AGE cohort 

 1st Quartile 

(n=62) 

2nd Quartile 

(n=65) 

3rd Quartile 

(n=59) 

4th Quartile 

(n=62) 

Total 

(n=248) 

p-value 

Energy (kcal/d)       

Mean (SEM) 1856.8 

(55.8) 

1840.3 

(49.1) 

1894.4 

(51.4) 

1923.6 

(41.3) 

1878.1 

(24.8) 

0.630 

Fat (% of kcal/d)       

Mean (SEM) 33.8 (0.7)a 35.3 (0.7)ab 34.2 (0.8)ab 36.6 (0.6)b 35.0 (0.4) 0.021* 

Saturated Fat (% of 

kcal/d) 

      

Mean (SEM) 13.1 (0.4) 13.2 (0.4) 12.6 (0.4) 13.2 (0.4) 13.0 (0.2) 0.655 

Mono-unsaturated 

Fat (% of kcal/d) 

      

Mean (SEM) 11.2 (0.3)a 11.8 (0.3)abc 11.4 (0.3)ab 12.8 (0.3)c 11.8 (0.2) 0.001* 

Poly-unsaturated Fat 

(% of kcal/d) 

      

Mean (SEM) 5.2 (0.2)a 5.7 (0.2)ab 5.5 (0.2)ab 6.1 (0.2)b 5.7 (0.1) 0.018* 

Carbohydrates (% of 

kcal/d)  

      

Mean (SEM) 48.2 (0.9)a 46.2 (0.7)ab 47.1 (0.8)ab 45.0 (0.7)b 46.6 (0.4) 0.025* 

Sugars (% of kcal/d)       

Mean (SEM) 23.7 (0.7) 23.0 (0.6) 23.9 (0.7) 22.7 (0.7) 23.3 (0.3) 0.539 

Protein (% of kcal/d)       

Mean (SEM) 15.7 (0.4)a 16.6 (0.3)ab 17.0 (0.3)b 16.2 (0.3)ab 16.4 (0.2) 0.034* 

Alcohol (g/d)       

Mean (SEM) 10.3 (1.7) 10.0 (1.2) 9.8 (1.2) 10.8 (1.2) 10.2 (0.7) 0.957 

Fibre (g/d)       

Mean (SEM) 21.4 (0.9)a 22.2 (0.8)ab 25.6 (1.2)bc 26.4 (1.1)c 23.9 (0.5) 0.000*  

Sodium (mg/d)       

Mean (SEM) 2400.9 

(114.3) 

2254.1 

(81.1) 

2402.7 

(94.6) 

2411.2 

(97.0) 

2365.4 

(48.5) 

0.601 

Water (g/d)       

Mean (SEM) 2482.2 

(95.3) 

2614.3 

(80.4) 

2665.2 

(90.2) 

2712.5 

(82.3) 

2617.9 

(43.6) 

0.276 

Results are displayed as mean and SEM. P-values displayed in final column, significant when p>0.05.  

Asterix marks significance. Superscripts not sharing a common letter were significantly different (P < 

0.05). 
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Table 4.11. Covariate frequencies according to diet score quartiles in the NU-AGE UK 
cohort 

 1st Quartile 
(n=62) 

2nd 
Quartile 
(n=65) 

3rd 
Quartile 
(n=59) 

4th Quartile 
(n=62) 

Total 
(n=248) 

p-
value 

Sex (male)       

N 26 23 18 25 92 0.556 

Age (years)       

Mean (SEM) 70 (1) 71 (1) 70 (1) 70 (1) 70 (1) 0.552 

BMI        

Mean (SEM) 26.5 (0.6) 27.7 (0.6) 27.7 (0.6) 26.0 (0.4) 26.9 (0.4) 0.061 

Physical Activity 
(kcal/d) 

      

Mean (SEM) 263.7 (19.0) 309.6 (23.5) 343.4 (24.7) 284.2 (25.0) 300.2 
(23.1) 

0.095 

Smoking Status       

Current Smokers 
(%) 

1.7 0.0 1.7 1.6 1.3 0.599 

Former Smokers 
(%) 

31.1 38.5 45.8 32.3 36.9 0.503 

Never Smoked (%) 67.2 61.5 52.5 66.1 61.8 0.775 

Cardiovascular 
Disease and 
Hypertensive 
Medication Users 

      

(%) 43.5 43.1 37.3 40.3 41.1 0.890 

Results are displayed as mean and SEM, number or percentage of total column. P-values displayed in final 

column, significant when p<0.05.  

 

The NU-AGE diet score ranged from 2.5 to 8.5 in the NU-AGE cohort, with a mean of 5.1 ± 

0.1. The results determining the effects of diet score quartiles on cardiovascular related 

outcomes are shown in table 4.12. There were no significant associations between an 

increased NU-AGE diet score with any of the health outcomes measured in this analysis. 

Plasma levels of CRP did decrease in Q4 compared with Q1; from 1.72 ± 0.20 to 1.16 ± 0.19 

mg/l, however this result was not significant (p=0.121). 
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Table 4.12. Associations between diet score quartiles and CVD related outcomes in the 
NU-AGE UK cohort 

 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile p-value 

Systolic Blood Pressure (mmHg)      

N 61 65 58 62  

Mean (SEM) 136 (2) 139 (2) 140 (2) 136 (2) .419 

Diastolic Blood Pressure (mmHg)       

N 61 65 58 62  

Mean (SEM) 76 (1) 78 (1) 78 (1) 75 (1) .257 

Pulse (BPM)      

N 61 65 58 62  

Mean (SEM) 61 (1) 61 (1) 61 (2) 62 (1) .897 

Pulse Wave Velocity (m/s)      

N 61 65 56 62  

Mean (SEM) 9.4 (0.2) 9.1 (0.2) 9.0 (0.2) 9.1 (0.2) .581 

Cardio-Ankle Vascular Index      

N 60 65 55 62  

Mean (SEM) 8.7 (0.1) 9.0 (0.1) 8.7 (0.2) 8.9 (0.2) .421 

Ankle-Brachial Index      

N 60 65 55 62  

Mean (SEM) 1.10 (0.02) 1.09 (0.01) 1.11 (0.02) 1.13 (0.01) .132 

Reactive Hyperemia Index      

N 56 61 56 56  

Mean (SEM) 2.48 (0.10) 2.44 (0.10) 2.57 (0.10) 2.38 (0.10) .625 

BMI       

N 61 65 58 62  

Mean (SEM) 26.4 (0.6) 27.6 (0.5) 27.8 (0.6) 26.0 (0.6) .058 

C-Reactive Protein (mg/l)       

N 31 37 27 35  

Mean (SEM) 1.72 (0.20) 1.69 (0.18) 1.68 (0.22) 1.16 (0.19) .121 

Cholesterol (mmol)      

N 32 39 28 37  

Mean (SEM) 5.36 (0.26) 5.44 (0.24) 5.79 (0.28) 5.47 (0.24) .708 

Triglycerides (mmol)      

N 32 39 28 37  

Mean (SEM) 1.07 (0.11) 1.16 (0.10) 1.23 (0.11) 1.11 (0.10) .769 
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HDL-Cholesterol (mmol)      

N 32 39 28 37  

Mean (SEM) 1.66 (0.09) 1.68 (0.08) 1.65 (0.09) 1.59 (0.08) .886 

LDL-Cholesterol (mmol)      

N 32 39 28 37  

Mean (SEM) 3.22 (0.20) 3.23 (0.17) 3.59 (0.20) 3.36 (0.18) .507 

Number of participants in each group is detailed in the “N” rows. Results are displayed as mean and SEM. P-
values displayed in final column, significant when p<0.05.   

 

4.3.4 Discussion 
The NU-AGE diet score was first tested on the TWIN UK data and an increased diet score was 

shown to be significantly associated with improved CRP concentrations in this cohort. The 

NU-AGE diet score was then tailored for analysis on the UK NU-AGE cohort to account for 

the difference in dietary assessment methods between the two studies. FFQs were used in 

the TWIN cohort, whereas 7 day food diaries were used for the NU-AGE trial participants. 

There were also a number of other differences, for example, the TWIN cohort was made up 

of 3262 females aged between 18 and 79 years old, whereas the NU-AGE cohort was made 

up of 249 male and female participants aged between 65 and 79 years old which is a 

limitation that should be considered in the interpretation of these results. A more detailed 

investigation into the division of foods into food groups was required in the case of the NU-

AGE cohort due to the use of food diaries as there were over 2,000 WISP food codes used in 

analyses of the NU-AGE dietary data. Once the assignment of foods into the correct food 

groups was complete, dietary intakes of each food category were determined for each 

participant and a diet score was calculated using the same method used on the TWIN UK 

data.  

Tables 4.5 and 4.10 show the nutrient intakes according to NU-AGE diet score quartiles for 

the TWIN UK and NU-AGE cohorts respectively. In both cohorts, it was found that 

polyunsaturated fat, protein and fibre were all significantly associated with an increased diet 

score result. However results for carbohydrate, total and monounsaturated fat were 

contrasting between the TWIN UK and NU-AGE cohorts. Carbohydrate intakes were 

significantly associated with an increased diet score in the TWIN UK population but 

associated with a significantly decreased diet score in the NU-AGE cohort. It has previously 

been reported that carbohydrate intakes may be over-reported and less accurate when 

assessed by an FFQ, which could explain the slightly higher intakes and differences across 

quartiles in the TWIN UK cohort compared with the NU-AGE cohort [330, 331]. Furthermore, 
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the slight decrease in carbohydrate intakes in the NU-AGE cohort from 48.2 to 45.0% of total 

energy intakes between Q1 and Q4 may be the result of increased intakes of fibre. Increased 

intakes of dietary fibre have previously been shown to be associated with reduced intakes of 

simple carbohydrates [332]. Total and monounsaturated fat levels also significantly 

decreased with increased diet score result in the TWIN UK population but significantly 

increased in the case of the NU-AGE cohort. As mentioned previously, in the case of the TWIN 

UK dietary data we did not have access to any information on consumption of oil. 

Consumption of olive oil is an important goal of the NU-AGE diet and the lack of data in the 

TWIN UK cohort is a distinct limitation and is most likely the main contributor to the 

differences observed in total and monounsaturated fat levels in the diet score quartiles 

between the TWIN UK and NU-AGE cohort. The NU-AGE cohort had a low level of current 

smokers (1.3%) when compared with national statistics data on similarly aged UK 

participants which is closer to 11% of the population [326].  Levels of hypertension and 

obesity in the NU-AGE cohort were also lower compared with the general UK population 

[325, 326]. However the percentage of participants that were overweight and consumed 

alcohol were similar to the UK population, as were serum cholesterol concentrations and 

physical activity levels [326, 333].  

When associations between the NU-AGE diet score and various cardiovascular health 

outcomes were assessed in the TWIN UK data it was observed that an increased NU-AGE diet 

was significantly associated with improved CRP concentrations. Associations between the 

NU-AGE diet score and various cardiovascular health outcomes were also assessed in the 

NU-AGE cohort. There were no significant associations between an increased NU-AGE diet 

score for any of the outcomes measures, although there was a trend for a decreasing 

concentration of CRP with an increased NU-AGE diet score (1.72 to 1.16 mg/l between Q1 

and Q4). A likely explanation for this significant association observed in the TWIN UK cohort 

but not in the NU-AGE cohort is the large difference in the sample size of the cohorts as 

mentioned above. The analysis using the TWIN UK cohort consisted of 3262 participants and 

the NU-AGE cohort used consisted of 249 trial participants at baseline. The complete NU-

AGE cohort will consist of over 1000 participants across Europe and therefore future work 

could involve using this NU-AGE diet score on the entire NU-AGE dataset, both to assess 

associations with health outcomes and to examine compliance. Another potential 

explanation for the discrepancies in our results could be the difference in methods for dietary 

assessment; as mentioned previously the TWIN UK data used FFQs as a dietary assessment 
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method whereas NU-AGE dietary data were collected via 7 day food diaries. Interestingly, 

the diet scores previously mentioned (the Mediterranean Diet Score, the DASH diet score 

and the HEI) have all involved the use of FFQs rather that food diaries [181, 208, 209]. Food 

diaries are thought to give more accurate and detailed results in comparison to the use of 

FFQs [328]. However in the case of using the  food diary data for the purpose of a diet score, 

the introduction of more detailed results could potentially have resulted in increased 

subjectivity and human error when categorising foods into specific food groups. Therefore, 

the amendments made to the NU-AGE diet score to cater for food diary data still need to be 

validated on a larger dataset before the NU-AGE diet score can be considered suitable for 

use in a study using food diaries rather than FFQs. 

Although a diet score designed specifically for the elderly has already been published, the 

NU-AGE diet score was based on different diet goals and also aimed to overcome some of 

the limitations. The EDI [210] is made up of 10 dietary components, based on a combination 

of both the modified MyPyramid for Older Adults and the Mediterranean Diet. A strength of 

the NU-AGE diet score was that it has more dietary components including nuts, eggs, fluid 

and cheese. The NU-AGE diet score also had a category for potatoes, pasta and rice which 

could account for a large contribution to energy intake. The NU-AGE diet score contained a 

wholegrain category rather than just a bread/cereal group which is advantageous 

considering the importance of fibre in the diet of older adults. To determine which foods 

should be defined as a wholegrain, we used a method of identifying wholegrain foods that 

had recently been proposed in a 2013 study as the method (≤10:1 ratio of total carbohydrate 

to fibre content) to identify the most healthful wholegrain products [329]. However, it should 

be noted that since then, a multidisciplinary expert discussion has led to the publication of a 

paper stating that the standard definition of whole-grain should be foods that provide at 

least 8 g of whole grains per 30-g serving (27g/100g) [334]. Future work regarding the 

definition of whole grain foods should take this definition into consideration. In addition, 

both the fish and meat groups have been refined to only include healthier alternatives (i.e. 

excluding highly processed fish and meat products) in the NU-AGE diet score. The validation 

of the EDI was conducted using data from 668 elderly participants of the MEDIS study. The 

EDI was designed using only FFQ data whereas the NU-AGE diet score has been designed for 

use with both FFQs and food diaries, although as mentioned previously the NU-AGE diet 

score needs to be tested on a bigger sample size to determine its functionality with the use 

of food diaries. The NU-AGE diet score has a wider ranged scoring system (a range of 0-10) 
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compared with the EDI (0-4) which may result in the NU-AGE diet score being more sensitive 

and potentially more accurate. Another advantage of the NU-AGE diet score is that the NU-

AGE diet has been used as an intervention diet in the NU-AGE study, therefore when data 

are available for the full NU-AGE cohort the NU-AGE diet score can be tested on both baseline 

and follow-up dietary data to determine both adherence to the diet and the effect of changes 

in the diet and associated score on various health outcomes. As the majority of diet scores 

have only been used cross-sectionally, this would also add novelty and validity to the NU-

AGE diet approach.  

As previously discussed, there were also several limitations associated with the NU-AGE diet 

score, such as the lack of data for oil consumption in the TWIN UK cohort.  The different 

trends observed between both cohorts in nutrient intakes according to diet score quartiles, 

in addition to the lack of a significant association between the NU-AGE diet score and CRP 

levels in the NU-AGE cohort could suggest that the diet score may need to be further 

validated. Furthermore, a considerable amount of work still needs to be carried out before 

this diet score can be considered for widespread use. The NU-AGE diet score needs to be 

tested on the entire NU-AGE cohort, both on baseline and follow-up dietary data. This 

workload was not possible to complete within the time constraints of this PhD work as the 

dietary intake data entry had not yet been completed. 

4.4 Conclusion 
This work aimed to design a diet score based on the NU-AGE diet that would be suitable for 

use in elderly populations. The diet score was created, and validated using TWIN UK data. 

This data included 3262 female participants aged between 18 and 79 years old whose diet 

was assessed using validated FFQs. There were various stages in the development and 

refinement of the diet score, including the initial design, various amendments, and analyses 

to detect for associations between the diet score and various cardiovascular health 

outcomes. As the primary outcome of the NU-AGE diet is inflammation, our primary outcome 

for validation of the diet score was CRP. Using the TWIN UK data, we saw a significant 

association between CRP levels and the NU-AGE diet score. However we did not observe 

significant associations for any of the other health outcomes analysed. The NU-AGE diet 

score was then used to determine associations between the diet score and various health 

outcomes in the NU-AGE cohort. The dietary data in the NU-AGE cohort was assessed via 7 

day food diaries and so various changes were made to the diet score in order for it to be used 

in association with both FFQs and food diaries. No significant associations were observed 
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between the NU-AGE diet score and CRP (although a strong trend was observed), or any of 

the other cardiovascular related health outcomes measured in the NU-AGE cohort, which 

consisted of 242 male and female participants aged 65-79 years. Future work is required to 

examine associations between the diet score and CRP (as well as other health outcomes 

mentioned previously) in the whole NU-AGE cohort at baseline and following intervention 

before the NU-AGE diet score can be used as a widespread tool for diet quality assessment 

in older adults. 
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   Chapter 5 

Impact of the NU-AGE intervention on vascular function and inflammation 
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5 Impact of the NU-AGE intervention on vascular function and 

inflammation 
 

5.1 Introduction 
The percentage of people aged over 65 years in Europe is expected to increase from 25 to 

40% by 2030 [335]. It is important to identify realistic dietary strategies that will contribute 

to healthy ageing, a compression of morbidity and reduced age-related medical costs. Low 

grade chronic inflammatory status is thought to be a key feature of the ageing process [4]. 

However the ageing process can be influenced by environmental factors, such as levels of 

physical activity and the composition of the habitual diet [4]. The aim of the NU-AGE project 

was to address the effects of the whole-diet on inflammation and other ageing related health 

outcomes such as cognition, bone density etc. The design of the NU-AGE dietary intervention 

has been previously published [182]. The aspects of particular relevance to this PhD project, 

including the study population, power calculations, dietary intervention, have all been 

described in detail in chapter 3. To summarise, NU-AGE (EU FP7) is a large multi-centre trial 

that involved 1,250 older adults, aged between 65 and 79 years. The study was carried out 

in five different centres across Europe, including the UK, the Netherlands, Italy, France and 

Poland. NU-AGE investigated the effects of a year-long whole-diet intervention on a wide 

range of health outcomes. The whole-diet was based on recommendations that have been 

specifically designed for the elderly (Table 3.2 and section 3.8). The control group were given 

an information sheet containing generic dietary advice from the British Dietetic Association 

(annex 4).    

The focus of this PhD project was to examine the impact of the NU-AGE intervention on 

measures of vascular function, as well as on inflammatory and fatty acid status. The primary 

aim was to investigate if adherence to the NU-AGE diet for one year could influence 

endothelial dysfunction and arterial stiffness in older adults. This was carried out through 

the utilisation of a range of clinical measures (including EndoPAT, PWV and CAVI). The 

importance of vascular and endothelial function as early indicators of CVD has been detailed 

in chapter 1. The loss of vascular reactivity throughout the ageing process is now recognised 

as a significant CVD risk factor [336, 337]. As discussed in chapter 1, previous dietary studies 

have shown vascular function can be modulated by single nutrients (particularly n-3 fats and 

flavonoids, both of which are found in foods recommended as part of the NU-AGE diet) [338], 

as well as by certain dietary patterns [339, 340]. There are a number of validated clinical 
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measures of endothelial dysfunction and vascular stiffness currently in use in research, 

including EndoPAT, PWV and CAVI (detailed in chapters 1 and 3), which were used in this 

study to test the hypothesis that following the NU-AGE diet for one year may slow the 

progression of vascular dysfunction in older adults.   

A range of biochemical analyses were also examined to assess the impact of the NU-AGE 

intervention on vascular function and inflammatory status. Their role in CVD risk has been 

described in chapter 1. NO is recognised as a potent vasoprotective molecule as a result of 

its various physiological functions, including its ability to act as a vasodilatory signalling and 

anti-inflammatory molecule [341]. NO production and/or bioavailability can be insufficient 

in the presence of endothelial dysfunction [342]. Nitrite in plasma is widely used as an index 

of NO status [341] and was measured in the NU-AGE participants before and after the one-

year intervention period to determine the ability of the NU-AGE diet to modulate endothelial 

function in older adults and to explain potential mechanisms for said modulation. ET-1, which 

also plays a role in endothelial dysfunction, was measured in the NU-AGE participants [343]. 

In contrast to NO, ET-1 is a vasoconstricting and pro-inflammatory protein [343].  CRP was 

analysed as a biomarker of overall inflammatory status. Elevated concentrations of CRP have 

previously been shown to be associated with increased risk of CVD [71-73]. As an established 

traditional cardiovascular risk factor, the lipid profile (TGs, TC and HDL-C etc.) of participants 

was also assessed.     

The plasma fatty acid status of the NU-AGE participants was also characterised with the aim 

to, firstly, investigate if the NU-AGE diet resulted in an altered the fatty acid profile of 

individuals and secondly, if these changes (and in particular in EPA and DHA status) were 

related to changes in vascular related outcomes. The impact of common variants in PUFA 

biosynthesising genes on fatty acid status at baseline and in response to intervention was 

also investigated, as discussed in chapter 6. The impact of n-3 fatty acids on CVD risk and risk 

factors, as well as potential mechanisms of action underlying these benefits were previously 

discussed in chapter 1 (section 1.6). The NU-AGE diet contains several goals related to fat 

consumption, for example, participants were advised to consume two portions of fish per 

week (preferably oily, which are rich in EPA and DHA) and were provided with olive oil and 

margarine spread. Therefore, adherence to the NU-AGE diet could potentially result in an 

improved plasma fatty acid profile, with lower levels of SFAs and higher levels of MUFAs and 

PUFAs.   
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In addition to examining the impact of the NU-AGE intervention on each of these measures 

individually, we also aimed to compile a vascular risk score that could be used to combine a 

number of measures related to cardiovascular health. As cardiovascular risk factors are 

generally interrelated and are considered to have additive effects on the risk of CVD, the use 

of a clustered score could determine an effect that was not elucidated by looking at 

individual outcomes [344]. A number of authors have previously designed similar scores to 

represent the clustering of components related to CVD, particularly in relation to metabolic 

syndrome risk factors [344-346]. We chose to incorporate blood pressure, BMI, clinical 

measures of arterial stiffness and endothelial function, as well as biochemical markers of 

cardiovascular health including TGs, CRP and TC: HDL-C ratio. We aimed to examine the 

impact of the NU-AGE diet for one year on this calculated vascular risk score in older adults. 

The anthropometric measurements and various other health related characteristics, such as 

smoking status, the mean daily nutrient intakes of both the control and intervention groups 

of the NU-AGE cohort at baseline were first examined (described in section 5.3.1) to ensure 

that there were no significant differences between the control and intervention groups at 

baseline and to establish that the NU-AGE cohort was a representative population of the 

elderly in the UK. 

 

5.2 Methods  

5.2.1 Clinical and biochemical measures 
The methods that were used to assess vascular function have been described in chapter 3 

(section 3.10). To summarise, the assessment of vascular function was carried out at baseline 

and after the one year dietary intervention period and involved a battery of vascular 

measures lasting approximately one hour. These assessments took place at either 8am or 

9am and participants were requested to fast for at least 8 hours prior to measurements. The 

participants were requested to rest in a dimly lit and quiet room for 15 minutes beforehand. 

SBP, DBP and pulse were then measured using an automatic blood pressure measurement 

device (OMRON M2, Milton Keynes, UK). PWV was measured using a Vicorder device 

(Skidmore Medical, Bristol, UK). Both CAVI and ABI were measured using Vasera™VS-1500 

(Fukuda Denshi Co, Japan). Lastly, the EndoPAT2000 (Itamar Medical Ltd, Caesarea, Israel) 

was used to measure endothelial function. The following dataset includes n=142 

participants. However, n=5 participants were missing values for EndoPAT results (n=3 due to 

errors in the EndoPAT software, n=2 due to discomfort), n=6 participants were missing values 
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for PWV results (n=3 due to errors in the Vicorder software/hardware, n=2 due to bad signal 

in data output, n=1 due to discomfort), n=3 participants were missing values for CAVI/ABI 

results (n=2 due to discomfort, n=1 due to having had a mastectomy and therefore could not 

have a blood pressure cuff inflated on both arms).     

The methods that were used to analyse biochemical markers of vascular function, 

inflammatory and fatty acid status have been described in section 3.11. To summarise, 

plasma concentrations of nitrite were analysed before and after the intervention via the 

utilisation of a chemiluminescence detector (CLD88). Plasma concentrations of ET-1 were 

measured using a Quantikine ET-1 immunoassay. CRP, TG and cholesterol concentrations 

were analysed in the plasma via spectrophotometric analysis in the ILAB 600. Plasma fatty 

acid status was measured using gas-liquid chromatography following extraction and 

methylation. Biochemical data were missing for n=2 participants. 

5.2.2 Statistical analysis 
The data were assessed for normality by visual inspection of normal Q-Q plots. Outliers were 

determined by inspection of a box-plot for values greater than 1.5 box-lengths from the edge 

of the box and by calculating studentised residuals (≥ 3 SDs). Homogeneity of variances was 

assessed by Levene’s test for equality of variances (p> 0.05). Homogeneity of covariances 

were assessed by Box’s test of equality of covariance matrices (p > 0.001). Independent t-

tests were used to determine differences in several measures between control and 

intervention, as well as between males and females at baseline. Repeated measures ANOVA 

was used in order to quantify the significance level for the time*treatment interactions for 

the individual vascular and biochemical data, in addition to the vascular risk score (section 

5.2.4). Gender, age (T0), BMI (T0), total energy intake (T0), total energy expenditure (T0), 

heart disease and blood pressure medications (T0) and smoking status (T0) were included in 

the repeated measures analysis as covariates. Fish oil supplement usage and non-processed 

seafood intakes were also included as covariates in the examination of the effects of the NU-

AGE diet on fatty acid status. A three-way interaction effect (Gender*Time*Treatment) was 

used to assess gender-specific responses to treatment. Within gender subgroup analysis was 

performed if a significant effect of gender was detected. All data are presented as mean ± 

SEM. 

5.2.3 Assessing compliance 
As described in section 3.8, a compliance questionnaire was administered to participants in 

the intervention group at month 8 of the intervention. A subgroup analysis was performed 
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in which the cohort was divided into groups based on compliance, as demonstrated by 

Marklund et al. [347]. The 75% of the participants with the highest apparent compliance 

were defined as ‘‘more compliant,’’ whereas the 50% of the participants with the highest 

apparent compliance were defined as ‘‘most compliant’’. Comparisons of effects were made 

within these subgroups with the remainder of the cohort. However, the results from this 

analysis (same outcomes as listed in table 5.3) did not significantly differ from the main 

analysis (data not shown). 

 

5.2.4 Calculating a vascular risk score       
Vascular risk was assessed on the basis of the following seven clinical and biochemical 

parameters; BMI, SBP, PWV, RHI, TGs, CRP, TC: HDL-C ratio. These variables were chosen 

from the outcomes measured as they have a known role in CVD progression, with most being 

independent determinants of CVD risk. In order to combine data from individual variables 

into a cluster, pre- and post- data were standardised by the calculation of standardised 

residuals (z-scores). Z= (value – mean)/SD; it is calculated based on the mean and SD of the 

whole study population. Z-scores rank individuals according to their place in a normal 

distribution of values. For example, a subject with a z-score of 0.5 has a total risk that is 0.5 

SDs higher than the mean of a normalised distribution. This z-score gives equal weight to all 

factors. Since RHI is inversely related to vascular dysfunction, the calculated z-score was 

multiplied by -1. The z-scores for the individual risk factors were then added together to 

create the vascular risk score. A higher score indicates a less favourable vascular profile.  

 

5.3 Results 
The data presented in this chapter are from 150 of the participants that underwent the 

dietary intervention in the UK centre (Norwich) of the NU-AGE study. n=8 out 150 of the 

participants did not complete the study for the following reasons; n=2 participants 

experienced discomfort during vascular measurements, n=1 participant experienced an 

illness in the family and n=5 participants did not wish to continue following the diet. 

Therefore the following dataset includes n=142 participants.  
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5.3.1 The health characteristics and daily nutrient intakes of the NU-AGE cohort 

at baseline 
The baseline characteristics of the NU-AGE cohort at baseline are shown in table 5.1. 

Comparisons between both the control and intervention groups, as well as between males 

and females are shown in this table. There was a higher proportion of females (n=81) than 

males (n=61) in the cohort. The age of the cohort ranged from 65 to 79 years, with both a 

mean  SEM and median age of 69 ± 1 years. BMI ranged from 18.9 to 43.3 kg/m2 with a 

mean of 26.9  0.4 kg/m2. 46% of the cohort were overweight and 19% were obese. 40% of 

the cohort were hypertensive (defined as having a SBP over 140mmHg or a DBP over 

90mmHg [322]). Mean levels of plasma TGs for the Norwich NU-AGE cohort at baseline were 

1.13 ± 0.05 mmol/l, while the calculated TC: HDL-C ratio was 4.12 ± 0.41. Data were normally 

distributed for control and intervention and there was homogeneity of variances (p>0.05). 

There were no significant differences between the control and intervention group for any of 

the health characteristics (including BMI and blood pressure) measured at baseline. 

However, there were significant differences between males and females for a number of 

characteristics at baseline (Table 5.1). In relation to smoking status, more men than females 

were former smokers, while more females than males had never smoked. In addition, 

women had significantly higher TC (18%), LDL-C (20%) and HDL-C (19%) compared with men. 
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Table 5.1. Baseline characteristics of the Nu-Age cohort (n=142) 

 Control 

(n=72) 

Intervention 

(n=70) 

p-value Male  

(n=61) 

Female 

(n=81) 

p-value Total   

(n=142) 

Sex (male)        

N 34 27 0.192 61 81 N/A 142 

Age (years)  70 (0)  69 (0) 0.070 70 (1) 69 (1) 0.230 69 (0) 

BMI (kg/m2)  27.3 (0.5)  26.6 (0.6) 0.382 27.4 (0.6) 26.6 (0.5) 0.323  26.9 (0.4) 

Smoking Status    0.753    0.002*  

Current smokers (%) 1.4 2.9  3.3 1.2  2.1 

Former smokers (%) 47.2 42.9  60.7 33.3  45.1 

Never smoked (%) 51.4 54.3  36.1 65.4  52.8 

Cardiovascular 
Disease Medication 
Users 

       

(%) 40.3 40.0 0.973 47.5 34.6 0.118 40.1 

Systolic Blood 
Pressure (mmHg) 

 140 (2)  134 (2) 0.061  136 (2) 138 (2) 0.404 137 (1) 

Diastolic Blood 
Pressure (mmHg) 

 78 (1)  76 (1) 0.080  77 (1) 76 (1) 0.526 77 (1) 

Pulse (BPM)  62 (1)  60 (1) 0.271 61 (10 61 (2) 0.964 61 (1) 

PWV (m/s) 9.3 (0.2) 8.7 (0.2) 0.058 9.0 (0.2) 9.0 (0.2) 0.927 9.0 (0.2) 

CAVI 8.8 (0.1) 8.7 (0.1) 0.703 8.8 (0.2) 8.7 (0.1) 0.530 8.7 (0.1) 

ABI 1.11 (0.01) 1.11 (0.2) 0.951 1.13 (0.02) 1.09 (0.02) 0.113 1.11 (0.01) 

RHI 2.47 (0.09) 2.43 (0.08) 0.774 2.34 (0.07) 2.53 (0.09) 0.122 2.45 (0.06) 

Triglycerides (mmol/l) 1.15 (0.61) 1.12 (0.55) 0.762 1.12 (0.08) 1.14 (0.06) 0.863 1.13 (0.05) 

Total cholesterol 
(mmol/l) 

5.64 (0.2) 5.38 (0.2) 0.333 4.89 (0.18) 5.97 (0.17) 0.000* 5.51 (0.13) 

HDL-Cholesterol 
(mmol/l) 

1.65 (0.06) 1.67 (0.06) 0.813 1.46 (0.06) 1.80 (0.06) 0.000* 1.66 (0.05) 

LDL-Cholesterol 
(mmol/l) 

3.47 (0.14) 3.21 (0.13) 0.176 2.91 (0.13) 3.65 (0.12) 0.000* 3.34 (0.10) 

Total Cholesterol: 
HDL-Cholesterol ratio 

4.38 (0.67) 3.86 (0.48) 0.529 4.25 (0.76) 4.02 (0.44) 0.778 4.12 (0.41) 

Results are displayed as mean and SEM. Independent samples t-tests were utilised to determine 

significant differences between the control and intervention groups, as well as between males and 

females, for outcomes at baseline. Asterix marks significance (p<0.05). BMI; Body Mass Index, PWV; 

Pulse Wave Velocity, ABI; Ankle Brachial Index, CAVI; Cardio-Ankle Vascular Index, RHI; Reactive 

Hyperaemic Index. 
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For the dietary data (Table 5.2), data were normally distributed for control and intervention 

and there was homogeneity of variances (except for total energy intake, sodium and protein 

for which homogeneity of variances was violated). There were no significant differences 

between the control and intervention group for any of the nutrients measured at baseline. 

Differences in dietary intakes at baseline between males and females were also examined. 

Males consumed greater than 20% more calories, 27% more alcohol, 22% more fibre, and 

22% more sodium compared with women (P<0.05). Although a detailed analysis of EPA and 

DHA dietary intakes was not available, it was calculated that 51% of the NU-AGE cohort were 

taking fish oil supplements and participants had a mean intake of 209.1 ± 17.1 g of non-

processed fish per week at baseline.         

It should be noted that follow-up dietary intake data was not complete at the time of thesis 

submission and therefore could not be included as part of this PhD work.  
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Table 5.2. Daily nutrient intakes for the NU-AGE cohort at baseline (n=142)  

 Control 

(n=72) 

Intervention 

(n=70) 

p-value Males (n=61) Females 

(n=81) 

p-value Total 

Energy 

(kcal/d) 

1986 (55) 1910 (40) 0.266 2229.8 (50.1) 1736.3 

(29.2) 

0.000* 1948 (34) 

Fat (% of 

kcal/d) 

34.4 (0.7) 35.0 (0.7) 0.541 34.0 (0.7) 35.1 (0.7) 0.265 34.7 (0.5) 

Saturated Fat 

(% of energy) 

12.9 (0.4) 13.1 (0.4) 0.781 12.9 (0.4) 13.1 (0.4) 0.220 13.0 (0.3) 

Monounsatur-

ated Fat (% of 

energy) 

11.6 (0.3) 11.7 (0.3) 0.884 11.5 (0.3) 11.8 (0.3) 0.518 11.6 (0.2) 

Polyunsaturat-

ed Fat (% of 

energy) 

5.4 (0.2) 5.4 (0.2) 0.986 5.5 (0.2) 5.4 (0.2) 0.720 5.4 (0.1) 

Carbohydrates 

(% of energy)  

47.1 (0.7) 48.0 (0.7) 0.323 48.4 (0.7) 46.9 (0.6) 0.110 47.5 (0.5) 

Sugars (% of 

energy) 

23.2 (0.6) 23.4 (0.6 0.732 23.2 (0.7) 23.4 (0.5) 0.085 23.3 (0.4) 

Protein (% of 

energy) 

16.2 (0.3) 16.2 (0.4) 0.945 15.8 (0.3) 16.5 (0.3) 0.970 16.2 (0.2) 

Alcohol (g/d) 11.3 (1.1) 8.5 (1.0) 0.065 11.7 (1.3) 8.6 (0.9) 0.045* 9.9 (0.8) 

Fibre (g/d) 26.0 (1.1) 24.6 (0.8) 0.341 29.0  (1.3) 22.6 (0.7) 0.000* 25.3 (0.7) 

Sodium 

(mg/d) 

2531 

(118) 

2472 (87) 0.691 2859 (122) 2232 (78) 0.000* 2502 (73) 

Water (g/d) 2650 (77) 2653 (79) 0.980 2724.5 (85.7) 2597.0 

(71.5) 

0.253 2652 (55) 

Results are displayed as mean and SEM. Independent samples t-tests were utilised to determine 

significant differences between the control and intervention groups, as well as between males and 

females, for outcomes at baseline. Asterix marks significance (p<0.05) 
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5.3.2 Clinical measures of vascular function; response to the NU-AGE 

intervention 
Compliance to intervention was assessed as detailed in section 5.2.3. Mean overall 

compliance to the NU-AGE dietary goals was calculated to be 74%.  

The effects of the NU-AGE intervention on BMI, blood pressure and clinical measures of 

vascular function are shown in table 5.3 (displayed as unadjusted means and SEM for both 

the control and intervention group at baseline and follow-up). There were no outliers in the 

BMI, SBP, DBP, pulse or CAVI data, with one outlier removed for PWV and two for RHI. The 

data for all these outcome measures were normally distributed for both the control and 

intervention groups and there was homogeneity of variances (p>0.05). There were no 

significant effects of treatment on BMI (p=0.576, F(1, 134) = 0.315, partial η2 = 0.002), SBP 

(p=0.552, F(1, 133) = 0.356, partial η2 = 0.003)  or DBP (p=0.952, F(1, 133) = 0.004, partial η2 

= 0.000). Analysis showed no significant treatment*time interaction (p=0.563, F(1, 133) = 

0.335, partial η2 = 0.003) or treatment effect (p=0.799, F(1, 133) =0.065, partial η2 = 0.000) 

for pulse. However, the main effect of time showed a statistically significant difference in 

pulse at the different time points (p=0.035, F(1, 132) =4.548, partial η2 = 0.033) effect for 

pulse.   

   

Table 5.3. Anthropometric measurements and clinical measures of vascular function in 
subjects that were on the Nu-Age whole-diet intervention or a control diet for one year 
(n=142) 

 Control (n=72) Intervention (n=70) P value 

 T0 T1 T0 T1  

BMI (kg/m2) 27.3 (0.9) 26.3 (0.9) 26.6 (1.0) 26.2 (0.9) 0.567 

Systolic Blood Pressure 

(mmHg) 

140 (3) 136 (3) 134 (3) 134 (3) 0.552 

Diastolic Blood Pressure 

(mmHg) 

78 (2) 77 (2) 75(2) 76 (2) 0.952 

Pulse (BPM) 62 (2) 60 (2) 60 (2) 59 (2) 0.563 

PWV (m/s) 9.2 (0.4) 9.2 (0.4) 8.7 (0.4) 8.8 (0.4) 0.157 

CAVI 8.8 (0.2) 9.1 (0.2) 8.7 (0.2) 8.9 (0.2) 0.250 

ABI 1.11 (0.03) 1.19 (0.08) 1.11 (0.03) 1.09 (0.08) 0.652 

RHI 2.47 (0.15) 2.51 (0.17) 2.42 (0.16) 2.40 (0.18) 0.469 

Values are unadjusted means ± SEM. BMI; Body Mass Index, PWV; Pulse Wave Velocity, ABI; Ankle 

Brachial Index, CAVI; Cardio-Ankle Vascular Index, RHI; Reactive Hyperaemic Index. P values 

determined using repeated measures ANOVA. 
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Analysis showed no significant treatment*time interaction (p=0.157, F(1, 126) = 2.025, 

partial η2= 0.17) for PWV,  RHI, as assessed using the EndoPAT (p=0.469, F(1, 126) = 0.529, 

partial η2= 0.004) or CAVI (p=0.250, F(1, 130) = 1.337, partial η2= 0.010). However, in the 

case of CAVI there was a significant effect when gender was included in the analysis (p=0.011, 

F(1, 130) = 6.681). Subgroup analysis showed that CAVI in the females in the control group 

increased, indicating a significant increase in the stiffness of arteries over the 1 year 

intervention period compared with those following the NU-AGE diet (p=0.024, F(1, 72) = 

5.328, partial η2= 0.070)(figure 5.1). Analysis showed no significant treatment*time 

interaction (p=0.652, F(1, 130) = 0.205, partial η2= 0.002) for ABI which is measured 

simultaneously with CAVI.  

 

Figure 5.1. The differential response of the NU-AGE intervention on Cardio-Ankle 
Vascular Index (CAVI) in females and males 

 

 

 

 

 

 

 

 

 

Female control group; n=36, female intervention group; n=43, male control group; n=33, male 

intervention group; n=27. Data presented as mean ± SEM. Repeated measures ANOVA was conducted 

to examine the impact of treatment on CAVI separately in men and women. Asterix indicates 

significance (P < 0.05). 
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5.3.3 Biochemical Measures of vascular function and inflammatory status; 

response to the NU-AGE intervention 
The effects of the NU-AGE intervention on biochemical measures of vascular function, 

inflammatory and lipid status are shown in table 5.4 (displayed as unadjusted means and 

SEM for both the control and intervention group at baseline and follow-up).  

Five outliers were detected in the nitrite analysis and 4 outliers were detected in the ET-1 

analysis but these were included in the analysis as they did not significantly affect outcomes, 

as determined using a sensitivity analysis. In relation to inflammation, a CRP reading of >10 

mg/l is indicative of acute rather than chronic infection [74, 348, 349] and therefore 

participants that had > 10mg/l at T0 or T1 were excluded from the analysis (n=6). There were 

no outliers for any other analysis. The data were normally distributed for control and 

intervention and there was homogeneity of variances for all analysis (p>0.05). There was no 

significant impact of the NU-AGE intervention on treatment*time interaction (p=0.565, F(1, 

130) = 0.332, partial η2 = 0.003) for nitrite, ET-1 (p=0.691, F(1, 130) = 0.158, partial η2 = 0.001), 

CRP (p=0.384, F(1, 124) = 0.765, partial η2 = 0.006), TGs (p=0.670, F(1, 130) = 0.183, partial 

η2 = 0.001), TC (p=0.642, F(1, 130) = 0.218, partial η2 = 0.002), HDL-C (p=0.827, F(1, 130) = 

0.048, partial η2 = 0.000), LDL-C (p=0.407, F(1, 130) = 0.692, partial η2 = 0.005), or the 

calculated TC: HDL-C ratio (p=0.264, F(1, 130) = 1.259, partial η2 = 0.010). 
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Table 5.4. Range of biochemical analytes measured in plasma in subjects that were on 
the Nu-Age whole-diet intervention or a control diet for one year 

 Control diet (n=70) Nu-Age diet (n=70) P-value  

 T0 T1 T0 T1   

Nitrite (nmol) 92.1 (13.4) 85.3 (12.9) 92.3 (13.4) 93.1 (12.9) 0.565  

Endothelin-1 (pg/ml) 2.46 (0.19) 2.50 (0.21) 2.32 (0.19) 2.40 (0.21) 0.691  

C-Reactive Protein 
(mg/l) 

1.92 (0.30) 1.50 (0.33) 1.48 (0.31) 1.65 (0.35) 0.384  

Triglycerides (mmol/l) 1.15 (0.12) 1.12 (0.08) 1.12 (0.12) 1.02 (0.08) 0.670 

Total cholesterol 
(mmol/l) 

5.64 (0.30) 5.69 (0.21) 5.38 (0.30) 5.17 (0.21) 0.642  

HDL-Cholesterol 
(mmol/l) 

1.65 (0.11) 1.77 (0.08) 1.67 (0.11) 1.73 (0.08) 0.827 

LDL-Cholesterol 
(mmol/l) 

3.47 (0.22) 3.41 (0.17) 3.21 (0.22) 2.98 (0.17) 0.407 

Total Cholesterol: HDL-
Cholesterol ratio 

3.63 (0.22) 3.41 (0.15) 3.41 (0.22) 3.07 (0.15) 0.264 

Values are unadjusted means ± SEM (n=140). P values determined using repeated measures ANOVA. 

HDL; High Density Lipoprotein, LDL; Low Density Lipoprotein. P values determined using repeated 

measures ANOVA.  

 

 

5.3.4 Plasma fatty acid status; response to the NU-AGE intervention 
The effects of the NU-AGE intervention on plasma fatty acid status is shown in table 5.5. 

There were no significant differences between the control and intervention group for any of 

the fatty acids, as assessed using repeated measures ANOVA analysis.  

There were no outliers in the data, the data were normally distributed for control and 

intervention and there was homogeneity of variances (p>0.05). To summarise the findings, 

there were no significant effects of time, treatment or time*treatment interactions evident 

for any of the individual fatty acids, total n-3 PUFA, total n-6 PUFA, n3-n6 ratio or desaturase 

activity.  
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Table 5.5. Plasma fatty acids from total lipids (% of total fatty acid) in subjects that were 
on the Nu-Age whole-diet intervention or a control diet for one year (n=140) 

 Control diet Nu-Age diet P-value  

Fatty acid T0 T1 T0 T1  

      

Palmitic acid 23.71 (0.41) 23.84 (0.42) 23.27 (0.42) 23.57 (0.42) 0.701 

Palmitoleic 
acid 

2.44 (0.15) 2.35 (0.14) 2.41 (0.15) 2.28 (0.14) 0.982 

Stearic acid 8.07 (0.23) 8.24 (0.29) 8.09 (0.23) 8.47 (0.29) 0.525 

18:1* 23.22 (0.42) 22.71 (0.44) 22.92 (0.44) 22.68 (0.46) 0.356 

Linoleic acid 26.98 (0.68) 26.98 (0.78) 26.86 (0.68) 26.77 (0.78) 0.750 

α-linolenic 
acid 

0.67 (0.04) 0.64 (0.04) 0.69 (0.04) 0.71 (0.04) 0.186 

Dihomo-γ-
linolenic acid 

1.45 (0.06) 1.42 (0.07) 1.45 (0.06) 1.46 (0.07) 0.241 

Arachidonic 
acid 

5.67 (0.36) 5.74 (0.37) 6.12 (0.37) 6.04 (0.37) 0.519 

EPA 1.45 (0.14) 1.46 (0.13) 1.52 (0.14) 1.70 (0.14) 0.156 

DPA 0.14 (0.08) 0.18 (0.17) 0.20 (0.09) 0.19 (0.12) 0.259 

DHA 2.34 (0.12) 2.37 (0.13) 2.42 (0.12) 2.56 (0.13) 0.210 

Total n-3 
PUFA 

5.60 (0.35) 5.53 (0.29) 5.72 (0.35) 5.95 (0.29) 0.373 

Total n-6 
PUFA 

34.77 (0.75) 34.87 (0.85) 35.03 (0.73) 34.87 (0.83) 0.531 

n-3/n-6 PUFA 
ratio 

0.17 (0.02) 0.16 (0.01) 0.17 (0.01) 0.17 (0.01) 0.284 

Desaturase 
Activity 

0.21 (0.02) 0.21 (0.02) 0.23 (0.02) 0.23 (0.02) 0.706 

Values are adjusted means ± SEM (n=142). P-values calculated using repeated measures ANOVA. 
Totals include some minor components not shown. PUFA: Polyunsaturated fatty acids. Total n-3 
PUFA consists of 18:3n3, 18:4n3, 20:3n3, 20:4n3, 20:5n3, 22:5n3 and 22:6n3. Total n-6 PUFA consists 
of 18:2n6, 20:2n6, 20:3n6, 20:4n6 and 22:2n6. Desaturase activity was calculated using a product to 
precursor ratio of AA to LA. *Contains n-9 and n-7 isomers.  
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5.3.5 The impact of the NU-AGE intervention on a calculated vascular risk score 
The z-score sum of all 7 risk factors as a measure of vascular risk burden ranged from -9.60 

to 8.93, with higher levels indicating increased burden of risk. Outliers were detected but 

included in the analysis as they did not significantly affect outcomes, determined using a 

sensitivity analysis. The data were normally distributed for control and intervention and 

there was homogeneity of variances (p>0.05).There was no significant difference between 

the z-scores for the control and intervention groups at baseline. The vascular risk score 

increased from -0.12 ± 2.70 to -0.03 ± 2.44 for the cohort as a whole over the one year period. 

Analysis showed no significant treatment*time interaction (p=0.865, F(1, 115) = 0.029, 

partial η2= 0.000) for the vascular risk score. Results are shown diagrammatically in figure 

5.2. The mean z-score for the control group changed from 0.10 ± 0.30 to 0.14 ± 0.27, while 

the mean z-score for the intervention group changed from -0.35 ± 0.31 to –0.22 ± 0.29. 

 

Figure 5.2. The impact of the NU-AGE intervention on change in vascular risk score over 
the period of one year 
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5.4 Discussion 

5.4.1 Baseline Characteristics of the NU-AGE cohort 
There were no significant differences between the control and intervention group for any of 

the characteristics measured at baseline. The mean BMI of the participants was 26.9 ± 0.4 

kg/m2, specifically 27.4 ± 0.6 kg/m2 for men and 26.6 ± 0.5 kg/m2 for women. Although a BMI 

of >25 kg/m2 is categorised as overweight, a meta-analysis examining the relationship 

between BMI and all-cause mortality in older adults found that for adults aged >65 years 

there was a 4-10% lower mortality risk for participants in the overweight range relative to 

those with a BMI <25kg/m2 [350]. Data from the NDNS shows similar, although slightly higher 

BMI figures for >65 year olds in the UK; the average BMI was 27.9 ± 0.3 kg/m2 for men and 

27.8 ± 0.4 kg/m2 for women [351].  

In relation to smoking status, the percentage of older adults that had never been regular 

smokers was identical between the NU-AGE participants (52.8%) and the UK population 

(53%), however the proportion of current smokers was higher in the UK population (9%) 

compared with the NU-AGE population (2.1%). Furthermore, significantly more male than 

female NU-AGE participants were former smokers, while more females than males had never 

smoked. 40.1% of the NU-AGE cohort were taking medication for the treatment of 

hypertension, hypercholesterolemia or for the treatment/prevention of CVD. In the UK, 14% 

of the population are prescribed lipid-lowering medications and 15% are prescribed anti-

hypertensive medications, with these figures generally increasing with age [352]. For 

example, 41% of the population aged 65 to 74 years are prescribed lipid-lowering 

medications and 39% are prescribed anti-hypertensive medications [352]. 

The mean SBP and DBP for the NU-AGE cohort were within a healthy range; 136 ± 2 mmHg 

and 77 ± 1 mmHg respectively for males and 138 ± 2 mmHg and 76 ± 1 mmHg respectively 

for females. The NDNS data show that for >65 year olds the mean SBP were 138 ± 1 mmHg 

and 137 ± 1 mmHg for men and women respectively [351]. The average DBP were 74 ± 1 

mmHg and 73 ± 1 mmHg for men and women respectively [351]. Therefore the NU-AGE 

cohort is representative of the general UK population in terms of blood pressure.  

The UK guidelines state that TGs should ideally be <1.7 mmol/l and the TC: HDL-C ratio should 

be <5:1 [353]. Mean concentrations of plasma TGs for the NU-AGE cohort at baseline were 

1.13 ± 0.05 mmol/l, while the calculated TC: HDL-C ratio was 4.12 ± 0.41. The UK older adult 

population has a slightly higher mean TG concentration of 1.27 mmol/l and a slightly lower 

TC: HDL-C ratio of 3.44 [351]. Similarly to patterns in the UK older adult population, females 

had significantly higher TC (18%), LDL-C (20%) and HDL-C (19%) compared with males [351]. 
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Normal values of PWV for older adults across Europe aged between 60-69 years has been 

established at 10.3 (5.5-15.0) m/s and for adults aged ≥70 years the mean is higher at 10.9 

(5.5-16) m/s [354]. The baseline results for the NU-AGE cohort as a whole were substantially 

lower at 8.9 ± 0.2 m/s. Mean CAVI scores for men and women were similar to established 

scores based on age and other CVD-risk related criteria [355]. The NU-AGE cohort was also, 

on average, within the normal range for ABI levels at baseline. The average RHI of the NU-

AGE cohort was 2.45 ± 0.06, which is above the threshold for endothelial dysfunction, 

defined as an RHI of <1.67 [277]. Therefore overall, the NU-AGE cohort were generally 

healthy and representative of the UK elderly population in terms of health outcomes, such 

as BMI, blood pressure and lipid profile.  

  

5.4.2 Daily nutrient intakes of the NU-AGE cohort at baseline 
In relation to dietary intakes, there were no significant differences between the control and 

intervention groups at baseline (Table 5.2). The NDNS data show that the mean energy intake 

for over 65 year olds in the UK is 1697 kcal per day; this is approximately 13% lower than the 

energy intake of the NU-AGE cohort [351]. The aim of the NU-AGE study in relation to fat 

was that total fat consumption should be 25-30% of energy intake. The data in table 5.2 

shows that the NU-AGE cohort had a total fat intake of 34.7 ± 0.5% of total energy at baseline. 

This figure is similar to the mean UK fat intakes, which the NDNS report to be 35.5% of total 

energy [351]. The figures for saturated fat were also similar between the NU-AGE cohort 

(13.0 ± 0.3% of energy intake) and UK population (13.8% of energy intake), but again higher 

than the NU-AGE recommendation (<10% of energy intake). The NU-AGE study recommends 

that PUFA provides <12% of energy intake and the total of MUFAs and PUFAs should be 

between 8-28%. The MUFA and PUFA intakes of the NU-AGE cohort fell within these 

requirements at 11.6 ± 0.2% and 5.4 ± 0.1% of energy intake at baseline respectively. In 

addition, these levels were closely matched to the mean MUFA and PUFA intakes in the UK 

of 12.1% and 5.9% of energy [351]. 

The carbohydrate intakes of the NU-AGE cohort at baseline (47.5 ± 0.5% of energy) were 

representative of the UK population (47.2%). The NU-AGE carbohydrate recommendation 

was to consume carbohydrates as 50-60% of total energy intakes. However, the aim of the 

NU-AGE study was to limit the intakes of sugars and place emphasis on the consumption of 

fibre (30-40g). The sugar intakes of the NU-AGE cohort at baseline and UK population were 

similar; 23.3 ± 0.4% and 21.6% of energy respectively [351]. The fibre intakes of the NU-AGE 
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cohort at baseline were below the NU-AGE recommendations at 25.3 ± 0.7g, but were 

substantially higher than the NSP intakes of the UK population, reported by the NDNS as 

13.9g [351]. The aim of the NU-AGE study in relation to alcohol consumption is for intakes to 

be <20 g per day; one unit for women and two for men. The UK NU-AGE cohort had intakes 

within this range (9.9 ± 0.8 g), as did the UK population of over 65 year olds (8.4 g) [351]. The 

sodium intakes of the NU-AGE cohort (2502 ± 73 mg) were higher than both the NU-AGE 

recommendation (2000 mg) and the UK older adult population (2058 g) [351].   

Although data on intakes of specific fatty acids were not available, 51% of the NU-AGE 

participants were taking fish oil supplements at baseline. This is a high percentage in 

comparison to the UK levels for older adults. The NDNS data show that only 24% of adults 

aged over 65 years are taking fish oil supplements [351]. Further to this, baseline dietary data 

show that the NU-AGE cohort had a mean intake of 209.1 ± 17.1 g of non-processed fish per 

week. Although there is not a specific category for non-processed seafood in the NDNS data, 

total fish intakes for over 65 year olds is reported to be 217 ± 14 g per week, 98 ± 7 g of which 

is oily fish [351].   

Comparisons between male and female participants showed, as expected, that males 

consumed significantly more calories (20%), alcohol (27%), fibre (22%), and sodium (22%) 

compared with women.  

 

5.4.3 Anthropometric measurements and clinical measures of vascular function; 

response to the NU-AGE intervention 
Clinical measures of vascular function, including blood pressure, arterial stiffness and 

endothelial function, were assessed to determine if adherence to the NU-AGE diet for a one 

year period could slow the progression of vascular dysfunction in older adults. 

  

BMI 
Dietary interventions have shown that both calorie intakes and diet quality can have an 

impact on BMI in older adults [356-361]. For example, Howarth et al. showed that higher 

total energy intakes and increased eating frequency was associated with a higher BMI in 

older adults [356]. Furthermore, Pala et al. identified a number of dietary patterns in an 

elderly cohort and found “pasta and meat” and “prudent” diets to be strongly positively 

associated with BMI in both men and women [357]. The NU-AGE intervention did not have 

a significant impact on BMI. This result was not overly surprising given that calorie restriction 
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was not involved and weight loss was not an aim of the NU-AGE study. Total body 

composition and body fat distribution are more indicative of cardiovascular risk compared 

with BMI in the elderly. Although DXA measures of body composition at baseline and follow-

up were conducted for the entire NU-AGE cohort these data were not part of my PhD project. 

Blood pressure  
There are over 970 million people worldwide with hypertension and the WHO rates 

hypertension as a major contributing cause of premature death and CVD [362]. It is known 

that diets high in salt, saturated fat and alcohol consumption increase the risk of 

hypertension in older adults [362]. The NU-AGE diet had a number of goals that could have 

potentially resulted in a lowering of blood pressure in older adults, for example restriction of 

salt intake (the provision of a reduced salt cheese) and alcohol consumption. However, no 

changes from baseline were detected in SBP, DBP or pulse in response to the NU-AGE 

intervention. Several observation studies have shown various dietary patterns to be 

associated with lowering blood pressure [185, 186, 363-366]. In terms of whole diet 

intervention studies, the DASH diet, the PREDIMED diets and a number of other diets have 

been shown to lower blood pressure (as described in section 1.9.1) [194, 198-201, 367, 368].  

It is difficult to determine exactly why there was no impact of the NU-AGE intervention on 

blood pressure but there are several potential factors. Many of the studies above examined 

populations that were at risk; many included populations with pre-existing hypertension or 

the metabolic syndrome. Our inclusion criteria did not require participants to be 

hypertensive or at higher risk of CVD but were representative of a healthy population of that 

age group. As such, it may have been more difficult to observe beneficial effects in a 

population that did not have high blood pressure to begin with. At baseline, 27% of the 

cohort were prescribed medications to treat hypertension. However subgroup analysis to 

determine differences in effects of the NU-AGE diet on blood pressure in medicated versus 

non-medicated participants showed no difference in response between groups (appendix 1). 

The sample size of 150 subjects was calculated based on PWV and EndoPAT figures and 

therefore a larger sample size may be required to determine any subtle effects of the NU-

AGE diet on blood pressure. This will be further examined when the Norwich data is 

combined with that from the other four NU-AGE centres (n=1,250 participants across 

Europe) which will dramatically increase statistical power of the study.  
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Pulse Wave Velocity  
PWV is a measure of arterial stiffness and has been shown to be a strong predictor of 

cardiovascular risk and mortality [55, 369]. It would be expected that follow-up results for 

the cohort as a whole would be slightly increased compared with baseline, due to the 

negative effect of ageing on vascular function. As expected, PWV modestly increased from 

8.9 ± 0.2 to 9.1 ± 0.2 m/s for the cohort as a whole after one year. 

Various dietary components [65] have been shown to modulate and slow the progression of 

arterial stiffness and therefore we hypothesised that participants following the NU-AGE diet 

would have improved arterial stiffness compared with the control group. A systematic review 

examining the effects of nutrient and non-nutrient dietary interventions on PWV showed 

potential for intakes of fish oils containing n-3 fatty acids (540 mg EPA combined with 360 

mg DHA, Cohen’s d = 0.21–0.81) and soy isoflavones (112 mg, Cohen’s d = 0.35–0.39) in the 

treatment of arterial stiffness [65]. There is also limited but consistent evidence to indicate 

that salt restriction and bioactive peptides from fermented milk products could improve 

arterial stiffness [65]. ACN and flavone intakes (present in fruit) have also been shown to be 

inversely associated with arterial stiffness, as measured by PWV [63]. The NU-AGE dietary 

recommendations support intakes of oily fish (source of n-3 fatty acids) and fruit (ACNs and 

flavones), as well as salt restriction. However, despite this there was no impact of the NU-

AGE intervention on PWV in older adults.  

Although many studies have examined the impact of various nutrients on PWV as 

summarised above, research focusing on the effects of dietary patterns on PWV is limited, 

particularly in older adults. A limited number of dietary studies have been successful in 

improving PWV [200, 370-373]. However, to the best of our knowledge this study is the first 

study in which the effects of a whole-diet intervention for one year in healthy older adults 

on PWV have been examined. Considering that the NU-AGE cohort had substantially lower 

PWV measurements at baseline in comparison to the age matched European population, it 

could be speculated that the NU-AGE population were “too healthy” to see improvements 

in arterial stiffness. Further to this, although differences between the control and 

intervention group at baseline were not significantly different, the intervention group did 

have slightly lower blood pressure and PWV compared with the control group which could 

have exacerbated such an effect. 

Another potential factor to explain the lack of improvement following intervention could be 

that modest changes in individual dietary components may not have been substantial 
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enough to result in improvements of PWV. The NU-AGE diet was designed with the primary 

outcome of improving inflammation rather than arterial stiffness [182]. Further research on 

the impact of a whole-diet specifically designed to improve arterial stiffness (perhaps with 

more emphasis on fruits particularly high in ACNs and flavones, n-3 fatty acid 

supplementation, and further restrictions on salt consumption) in healthy older adults is 

warranted. 

Cardio-Ankle Vascular Index 
In addition to PWV, CAVI was used to measure arterial stiffness. CAVI is thought to be a 

particularly useful indicator of arterial stiffness in elderly cohorts because it is independent 

of blood pressure and is therefore thought to evaluate arterial stiffness more accurately than 

PWV in those taking anti-hypertensive medications or those with masked hypertension [58, 

59]. We aimed to determine, for the first time, if intervening with a healthy diet for one year 

could slow the progression of arterial stiffness, as assessed by CAVI, in older adults. Overall 

results showed there was no impact of the NU-AGE intervention on CAVI results. However, 

there was a significant interaction between gender and treatment. Subgroup analysis 

showed that female participants in the control group had a significant increase in CAVI over 

the period of one year, whereas in females following the NU-AGE diet this increase was 

significantly ameliorated. This effect was not seen in male participants.   

As CAVI is a relatively novel tool, research on the impact of nutrition on CAVI is limited to a 

few cross sectional and intervention studies with small numbers. However, these 

interventions have shown the ability of various dietary compounds, including EPA, 

isoflavones and plant stanol esters, to affect arterial stiffness as assessed by CAVI through 

mechanisms independent of blood pressure [66, 67]. The only intervention study that has 

reported a gender specific investigation on the response to CAVI was a study looking at the 

effects of plant stanol ester consumption for 6 months on arterial stiffness in 92 subjects 

with a mean age of 51 years [68]. There was no impact of the intervention on CAVI in the 

whole study group, but in control men CAVI increased by 3.1% (p=0.06) and was unchanged 

in men following the intervention. In contrast to our results, they saw an effect on CAVI in 

response to diet in men only, however the authors did not speculate on a potential 

mechanism underlying the gender specific response. It is difficult to make comparisons 

between these results as this study only looked at the effect of plant stanol ester 

consumption, whereas our work involved investigating the effects of a whole-diet 

intervention. Although research has shown gender-related differences in baseline CAVI 
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levels [355], there is no other research on gender related differences in response to dietary 

interventions or the potential mechanisms involved. We speculated that perhaps women 

were more likely to be compliant to the NU-AGE diet then men. However, a one-way ANOVA 

examining potential differences in compliance across gender revealed compliance (as 

assessed via 8 month questionnaire previously discussed) to be almost identical among men 

and women. Age-related arterial stiffening has previously been shown to be more 

pronounced in women and the differences are thought to be the result of the differential 

effects of male and female hormones on vascular structure and function [374, 375]. It is also 

important to note that considering we did not see a beneficial effect of the NU-AGE diet on 

PWV or blood pressure values, the mechanism by which the NU-AGE diet beneficially 

impacted on CAVI in females is independent of blood pressure related mechanisms. Further 

research is needed to gain understanding of the greater CAVI responsiveness in females. 

Ankle-Brachial Index 
ABI is used to evaluate the degree of stenosis and the occlusion of the crural arteries. It is 

therefore valuable for the early detection of PAD and risk of cardiovascular events. Incidence 

of PAD increases with age and occurs in about 20% of the population aged over 60 years 

[376]. Based on the guidelines previously discussed, the NU-AGE cohort was, on average, 

within the normal range at baseline and at follow-up [276]. Smoking is the most important 

risk factor for PAD but diet is also known to play an important role [376]. Our result indicated 

no impact of the NU-AGE diet on ABI and therefore potentially PAD. Research on the impact 

of the whole-diet /dietary patterns on ABI in the elderly is limited. The PREDIMED assessed 

ABI and concluded that the Mediterranean diet was associated with reduced risk of PAD 

[195]. The most probable explanation for the lack of effect of the NU-AGE diet on ABI in this 

project is that PAD was within the normal range at baseline. In fact, 83.7% of the cohort fell 

within the normal range at baseline and only 6 participants had an average ABI ≤ 0.90, which 

could potentially make it difficult to observe improvements. Future work investigating the 

impact of diet on PAD in the elderly should be conducted in participants with increased risk 

or already existing PAD.  

Reactive Hyperaemic Index (EndoPAT)  
EndoPAT is used for the non-invasive quantification of endothelium-mediated changes in 

vascular tone and has previously been shown to have the ability to predict cardiovascular 

events beyond the Framingham risk score [26]. There was no significant effect of the NU-

AGE diet on RHI results, as assessed by EndoPAT. There have been a number of studies 
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examining the impact of dietary components on RHI; however this is the first study to look 

at the impact of a whole-diet intervention on RHI in older adults. Previous research has 

shown associations between nutrients, such as vitamin D and n-3 fatty acid intakes, with RHI 

[377, 378]. Dietary interventions have shown that supplementation with dietary 

components, such as lycopene and n-3 fatty acids, can have a beneficial impact on RHI [41, 

278]. It could be hypothesised that, through additive or even synergistic effects of these 

nutrients, the NU-AGE diet could have the potential to improve RHI in older adults. No such 

effect was seen. However, it is important to note that for many studies examining the impact 

of diet on RHI, no change in RHI has been detected [340, 379-381].   

Furthermore, a recent study (published following NU-AGE initiation) has suggested that 

EndoPAT is not useful to detect the effect of robust interventions on endothelial function 

compared with the conventional techniques including FMD [382]. FMD is considered one of 

the gold standards and involves the use of ultra-sound imaging and RH, usually performed 

on the brachial artery [39]. This study showed that EndoPAT cannot detect changes in 

endothelial function in renally impaired and type-II diabetic subjects, when compared with a 

healthy population. In addition, EndoPAT could not detect changes in endothelial function in 

response to various interventions, such as glucose load and smoking, in healthy populations. 

Another recently published study indicated that FMD, but not EndoPAT, was significantly 

related to the Framingham risk score in a healthy middle-aged cohort [383]. It could 

therefore be speculated that the RHI, as measured by the EndoPAT, may be suitable for 

qualitatively establishing the presence of endothelial dysfunction, but may not be optimal 

for use in quantitative measurement of endothelial function or in studies examining subtle 

changes in response to intervention. As such, although these data have shown that the NU-

AGE diet had no effect on endothelial function, this result should be interpreted with caution 

due to differences in various methods used to assess endothelial function and we 

recommend the use of FMD in future research in this field. 
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5.4.4 Biochemical measures of cardiovascular health; response to the NU-AGE 

intervention 
A secondary aim of this PhD work was to examine the impact of the NU-AGE intervention on 

a number of biochemical measures of cardiovascular health, including nitrite, ET-1 and CRP 

plasma status.           

Nitrite was measured in the plasma of NU-AGE participants before and after the intervention 

as a marker of NO synthase activity and potential cardiovascular related disease [341]. The 

mean plasma nitrite levels of the NU-AGE cohort fell within the normal range at baseline and 

after the intervention [341], and were not affected by the NU-AGE intervention. Various 

dietary compounds, including MUFA, EPA, L-arginine, folic acid and soy, have been shown to 

modulate levels of nitrite, nitrate and NOx [43, 384, 385]. Furthermore, an intervention sub-

study of 200 participants taking part in the PREDIMED trial showed that total polyphenol 

excretion in urine samples was positively correlated with plasma NO in Mediterranean diets 

supplemented with either extra-virgin olive oil or nuts [386]. This study also showed that the 

statistically significant increases in plasma NO were associated with a reduction in both SBP 

and DBP levels. However there have also been several dietary studies that showed no effect 

of intervention on NO levels [43, 387-389].      

The plasma ET-1 means for the NU-AGE cohort at baseline and follow-up were similar to 

other studies in older adults [390, 391]. However levels of plasma ET-1 did not differ between 

the control and intervention group over the one year intervention period. Animal studies 

have shown that dietary interventions, including caloric restriction and salt consumption, can 

affect ET-1 expression and response [36, 392]. Human intervention studies have shown that 

ET-1 can be influenced by dietary salt, genistein, a vitamin D fortified yoghurt and a low 

calorie diet in combination with exercise [37, 393-395]. Other dietary interventions that were 

unsuccessful in modulating ET-1 included supplementation with walnuts and flaxseed [396, 

397].  

This is the first study to examine the impact of a year-long whole-diet intervention (tailored 

specifically towards the elderly) on endothelial function in UK older adults, using both clinical 

and biochemical markers. Overall, these data show that there was no effect of the NU-AGE 

intervention on endothelial function, as assessed by EndoPAT, plasma nitrite and plasma ET-

1. 

Elevated concentrations of CRP (defined as > 3 mg/l) are associated with an increased risk of 

cardiovascular events [398]. The baseline average CRP for the NU-AGE cohort as a whole was 
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1.86 ± 0.16 ml/l (SEM) which was considerably lower than that of the UK older adult 

population; a high, but widely varied figure of 5.36 ± 9.73 mg/l (SD) as reported by the NDNS 

[351]. The NU-AGE intervention did not impact plasma CRP concentrations in this subsection 

of UK-based older adults. Epidemiological research has shown that overall diet quality and 

healthy dietary patterns are associated with lower levels of CRP in the general population 

[186, 399-401], as well as in older adults [402]. Furthermore, increased adherence to the 

Mediterranean diet has emerged as being particularly associated with lower CRP 

concentrations across all age groups, including older adults [189-191]. Therefore, studies 

investigating the impact of the whole-diet on CRP have focused particularly on the 

Mediterranean diet. Many of these interventions have been successful in lowering CRP [81-

84]. The DASH diet has been shown to be successful in lowering CRP concentrations in two 

small studies, but further research is required to establish  benefits [403, 404]. We did not 

see an impact of the NU-AGE intervention on CRP in this UK sub-sample but this result should 

be interpreted with caution due to lack of power. The NU-AGE power analyses resulted in a 

sample size requiring 1000 participants in order to detect a difference of 0.6 (± 0.4 SD) unit 

change in CRP [182]. Future analysis and publications will report on the impact of the NU-

AGE intervention on CRP in the entire cohort. 

Mean concentrations of TC, HDL-C, LDL-C and TGs in the NU-AGE cohort at baseline were 

similar to the average values for UK older adults [351]. Healthy dietary patterns, including 

the Mediterranean diet, have previously been shown to be associated with an improved lipid 

profile [186, 192, 193]. Whole-diet interventions have shown that the Mediterranean diet 

and the Nordic diet can both improve lipid profile [83, 405-408]. Adherence to the NU-AGE 

diet over a one year period did not significantly improve lipid profile in UK older adults. 

However, modest improvements in the lipid profile were evident in the intervention group, 

with for example the TC: HDL-C ratio decreasing from 3.41 ± 0.22 to 3.07 ± 0.15, with such 

changes in the lipid profile analysis on the entire NU-AGE cohort likely to reach significance 

with an increased sample size. These results will be presented in future NU-AGE publications. 

5.4.5 Plasma fatty acid status 
Analysis of plasma samples revealed that there was no effect of the NU-AGE intervention on 

fatty acid status in older adults. The mean levels of fatty acids in the plasma of the NU-AGE 

cohort were similar to levels in previously published papers examining levels in older adults 

in the UK [213, 409]. Epidemiological and intervention based studies have shown that whole 
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diet interventions, including the Mediterranean diet, the PREDIMED diets and the Nordic 

diet, can beneficially influence plasma fatty acid status [187, 188, 410, 411] [197] [207]. 

Considering that participants in the intervention group of the NU-AGE study were advised to 

consume 2 portions of oily fish and 20 g of nuts per week, and were supplied with olive oil 

and margarine spread, it was surprising that there were no significant changes in any of the 

fatty acids following the intervention. Examination of data from the compliance 

questionnaire completed at the 8 month follow-up visit shows that only 50.7% of the 

intervention group were eating 2 or more portion of oily fish per week, 37.7% were having 

1.5 or more tablespoons of olive oil per day, while 75.4% were consuming 2 or more servings 

of nuts per week. The low adherence to recommendations involving oily fish and olive oil 

consumption may explain the lack of change in fatty acid status in older adults following the 

one year intervention. The lack of dietary intake data at follow-up to assess compliance was 

a major limitation of this work. Future work involving the utilisation of follow-up dietary data 

will allow us to examine compliance and intakes in a more detailed manner. In line with the 

majority of the published prospective epidemiology and RCT data in humans we chose to 

present our fatty acid data as a percent of total fatty acids rather than as absolute 

concentrations [412]. There is currently a lack of direct comparison and consensus regarding 

the optimum method to present fatty acid data with respect to disease risk prediction or 

response to dietary fatty acid change. In the NU-AGE RCT, as no overall impact of 

intervention on plasma TG levels was evident, which is the predominant form of fatty acids 

in the circulation, the presentation as absolute concentration rather than % of total fatty 

acids, is unlikely to have had an effect on the key findings. 

 

5.4.6 The impact of the NU-AGE intervention on a calculated vascular risk score 
Initial analysis of individual outcomes showed no effect of the NU-AGE intervention on any 

of the individual outcomes measured. We created a cluster of vascular risk factors to 

determine if the NU-AGE intervention influences the overall risk score, however no effect on 

this integrative risk measure was evident. 

The calculation of z-scores allowed the combination of data of different units. We designed 

a vascular risk score combining BMI, blood pressure, PWV, RHI, CRP, TGs and TC: HDL-C ratio; 

all of which have been shown to be associated with cardiovascular health [26, 55, 362, 398, 

413]. As expected, there was an increase in vascular risk among the NU-AGE cohort over the 

one year period. The NU-AGE diet did not prove to be effective in ameliorating the risk. 
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Several scores have previously been proposed to identify adults at potential high risk for 

future disease, but as of yet there is no single cluster of risk factors that has been defined as 

the gold standard [344-346]. Although there were advantages to the utilisation of z-scores, 

there were also a number of limitations. Our risk score, like others, was not validated with 

actual cardiovascular outcomes to determine the degree of prediction. This should be 

addressed in future work and a defined set of outcomes should be determined that can be 

used across all studies. In addition, such scores are sample specific and the score derived in 

one study generally cannot be compared with other studies [345]. 

5.5 Conclusion 
The main focus of this PhD project was to examine the impact of the NU-AGE intervention 

on measures of vascular function, as well as on inflammatory and fatty acid status in older 

adults. Overall, there was no significant effect of the NU-AGE intervention on any of the 

clinical or biochemical outcomes measured or the combined risk score. However, a subgroup 

analysis showed that there was a modest beneficial impact of the NU-AGE diet on 

cardiovascular health in older females.  

This is the first study to assess the impact of a whole-diet intervention for one year on both 

arterial stiffness and endothelial function in older adults in the UK. Some of the strengths of 

this project have already been discussed, for example the use of validated clinical measures 

to assess vascular health, a diet designed specifically to target the nutritional needs of the 

elderly, the provision of certain food products and vitamin D supplements. Another strength 

is the long duration of the intervention. One year has previously been shown to be sufficient 

time to improve dietary intakes and observe changes in health outcomes [414, 415]. 

Seasonal-dependent changes in outcomes can also be avoided as outcomes were measured 

at the same time of year. However, there were also a number of limitations, which may 

explain the lack of beneficial effect of the NU-AGE diet on vascular health. As mentioned 

previously, the NU-AGE diet was designed with the primary goal to improve inflammatory 

status rather than vascular function. In addition, a major limitation was that the follow-up 

dietary data was not yet analysed at the time of thesis submission and so exact changes in 

diet composition cannot be determined. This could have helped to examine compliance in a 

more detailed manner. The sample size of 150 subjects was calculated based on PWV and 

EndoPAT figures and therefore a larger sample size may be require to determine an effect of 

the NU-AGE diet on other outcomes, such as blood pressure and CRP. A limitation that 

applies to many health related RCTs is the “healthy volunteer effect”; that volunteers are 
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more likely to be health aware compared with the general population [416-418]. However 

this can be particularly relevant to dietary interventions if the recruited cohort already has a 

healthy diet as they may already be achieving many of the dietary goals. Furthermore, 

volunteers may have signed up to this study with the intention of becoming more “healthy” 

and so those assigned to the control group may have been otherwise motivated to make 

dietary changes. Suggestions for future work examining the impact of a dietary intervention 

on vascular function in older adults include the use of an “at risk” population rather than a 

healthy cohort. Such a group is likely to be more responsive and gain more clinical benefit 

compared with a healthy older adult group. In addition, the use of gold standard 

methodologies to detect changes in vascular function is recommended, specifically the use 

of FMD rather than EndoPAT. 
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6 Impact of fatty acid desaturase genotype and haplotypes on 

fatty acid status and response to the NU-AGE intervention in 

older adults 
 

6.1 Introduction 
As previously discussed, plasma and tissue PUFA concentrations are associated with the risk 

of several diet related chronic diseases, including CVD [101, 104, 121, 419, 420]. Therefore it 

is important that the determinants of PUFA metabolism, and concentrations in the 

circulation and in target tissues are fully understood. LC-PUFAs are provided by the diet but 

can also be synthesised endogenously [421]. FADS and elongases are responsible for the 

conversion of PUFAs in humans and the synthesis of AA, EPA and DHA from their shorter 

chain essential fatty acid precursors namely LA and αLNA. These biosynthetic pathways have 

previously been described in Chapter 1. The D5D and D6D enzymes, which have been 

mentioned in a number of sections of this thesis, are the key rate-limiting enzymes in this 

pathway [122]. When examining the effects of the FADS enzymes on fatty acid status and 

cardiovascular related health outcomes, it is important to consider the impact of FADS 

polymorphisms. It has been reported that there are strong associations between gene 

variants in FADS1 and FADS2 and blood levels of LC-PUFAs, the most significant of which 

were found for AA [422]. Schaeffer et al. reported that the FADS genotype can account for 

up to 28% of AA variation, up to 7% of EPA variation, and up to 3% DHA variation in the blood 

[422]. Furthermore, there are also several studies which suggest that genetic variation in the 

FADS gene region, specifically SNPs associated with higher desaturase activity, are associated 

with higher levels of inflammation and CVD risk [131, 132, 142, 143, 423].    

FADS1 SNPs include rs8448, rs145902, rs174547, rs174546. FADS2 polymorphisms include 

rs174575, rs1535, rs174605. However, it appears there are no key SNPs with respect to 

phenotype, with the whole region seeming to be important. We therefore aimed to identify 

tag SNPs to cover the whole FADS gene region. A tag SNP is a SNP in a region of the genome 

that has high linkage disequilibrium (LD) and can represent multiple genetic variants on one 

chromosome, known as a haplotype. LD refers to correlations among neighbouring alleles, 

reflecting haplotypes descended from single, ancestral chromosomes [424]. The utilisation 

of tag SNPs and haplotyping makes it possible to identify genetic variation and phenotype 

association without the requirement to genotype all SNPs in that chromosomal region or 

conduct sequencing [425]. Although it is recognised that the tag SNP may not be the 
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functional SNP, once an association with a tag SNP has been identified, subsequent 

genotyping of the gene regions for all known SNPs or sequencing, can then be conducted in 

order to identify the functional SNP. The goal of the international HapMap Project is to 

develop a haplotype map of the human genome. The HapMap can be used to describe 

common patterns of human DNA sequence variation, which in turn allows for the 

identification of tag SNPs that can represent the haplotype block [426]. We aimed to 

statistically reconstruct haplotypes from our selected FADS SNPs to represent the biologically 

functional genetic unit [129].   

Although it is known that age influences the impact of FADS genotypes on fatty acid 

concentrations, research examining the impact of the FADS genotype on plasma fatty acid 

status in the elderly is limited [427]. The studies that have been conducted previously have 

involved a small number of SNPs that were selected based on previously published data [428-

430]. Studies in older adults have shown that, in general, carriers of minor alleles of these 

SNPS have significantly lower AA and EPA [428-430]. This is the first study to examine the 

impact of FADS tagging SNPs and haplotypes in a healthy elderly UK cohort on plasma fatty 

acid status.  

Research on whether dietary total fat and fatty acid intake influences the relationships 

between FADS gene variants and circulating fatty acid levels is also limited. Considering the 

future potential to provide personal nutritional advice to individuals based on their genetic 

make-up, along with other phenotypic characteristics such as health status, gender etc., it is 

important to examine how habitual fat intake and its manipulation can modify the 

relationship between FADS SNPs and fatty acid status. Although carriers of the major allele 

have been shown to benefit from increased EPA and DHA status, several studies have shown 

that the major allele is in fact associated with increased inflammation, cholesterol and CAD 

risk [131, 142-144]. This could potentially be the result of the high levels of n-6 fatty acids, 

such as LA, present in the typical Western diet [147]. High levels of LA, in conjunction with 

the presence of the major allele leads to increased conversion of LA to AA, which is a direct 

precursor of pro-inflammatory eicosanoids, such as prostaglandins and leukotrienes [147, 

148]. The NU-AGE study was designed to target chronic inflammation in older adults [182]. 

The NU-AGE recommendations for the consumption of oily fish, as well as the provision of 

an n-3 rich spread, could help improve the ratio of n-6: n-3 intakes of participants following 

the NU-AGE diet. This could result in a beneficial, rather than detrimental, effect of the major 

allele on fatty acid status and inflammation. As discussed in chapter 1, a handful of dietary 



161 

 

interventions have previously been shown to modify the relationship between the FADS 

genotype and fatty acid status [154, 155, 431], however none of these interventions 

examined the impact of a whole-diet (including significant fatty acid manipulation) 

intervention in the elderly. Therefore, we aimed to examine whether the NU-AGE diet could 

influence the relationship between the FADS genotype and plasma fatty acids status. 

Specifically, we investigated if the NU-AGE diet could overcome any identified negative 

impacts of FADS minor alleles on EPA and DHA status, as well as the negative effect that the 

major allele has on AA status.  

As discussed in detail in the previous chapter, the NU-AGE intervention significantly 

influenced arterial stiffness as measured by CAVI in the female group, which is likely to be in 

part due to an impact of fatty acid intake in the intervention group. Therefore, as an 

additional outcome, we aimed to examine whether arterial stiffness could also be influenced 

by FADS genotype and whether this influence was also gender specific. Although research 

has previously shown the FADS genotype to be associated with inflammation, CAD and 

cholesterol concentrations, no studies have been conducted to examine the impact of the 

FADS genotype on arterial stiffness [131, 142, 143]. Our hypothesis was that vascular 

function, and specifically arterial stiffness, could be influenced by the FADS genotype (most 

likely as a result of its impact on fatty acid status). If a significant effect was observed, we 

also aimed to determine if the NU-AGE intervention could modulate the relationship 

between genotype and arterial stiffness. 

To summarise, we aimed to address the following; 

1. The impact of the FADS genotype/haplotype on baseline fatty acid status in older 

adults 

2. The potential of a year-long whole-diet intervention in older adults to influence the 

relationship between  FADS gene variants and circulating fatty acid levels 

3. The impact of the FADS genotype on vascular function, specifically the impact on 

CAVI 
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6.2 Methods 
The full details of the study design have been described in Chapter 3, including the 

description of the blood sampling procedure. The method for the analysis of fatty acids in 

plasma has also been described in Chapter 3. All materials for genotyping were provided by 

LGC Genomics (Herts, United Kingdom) and Qiagen (Manchester, United Kingdom) unless 

otherwise noted. 

 

6.2.1 Selection of tag SNPs and characteristics 

In this project, tag SNPs were selected from the CEU (northern and western European) 

population of the HapMap (release 28) through the utilisation of the tagger functionality 

within haploview, configured to the pairwise tagging algorithm 

(http://www.broadinstitute.org/mpg/tagger) [425]. The FADS gene region of interest was 

entered as 61,323,679–61391401 on chromosome 11. This SNP genotype data was 

downloaded and subsequently analysed using haploview software. The minimum minor 

allele frequency was set to >10% and r2 was set to >0.8. Following the genotyping of 

participants for these selected tag SNPs, the allele frequencies were calculated using the 

Hardy-Weinberg principle. For example for a SNP A/G;  

p2 + 2pq + q2  = 1 

The genotypic frequencies are as follows; AA is p2, AG is 2pq and GG is q2. p is allele frequency 

for A and q is allele frequency for G. In order to measure pairwise LD between each pair of 

SNP loci, Lewontin’s disequilibrium coefficient D’ and the squared correlation coefficient r2 

were estimated and plotted with JLIN v1.0 software (http://www.genepi.com.au/jlin). 

 

6.2.2 DNA purification from blood sample 

Genomic DNA was isolated from whole blood samples taken from participants at baseline. 

DNA was isolated using the QIAamp DNA blood mini kit. In brief, 20 μL of a protease solution 

(QIAGEN Protease) was added to 1.5 ml eppendorf tubes. 200 μL of the whole blood sample 

was then added to the protease solution. 200 μL of lysis buffer (QIAGEN Buffer AL) was added 

and eppendorfs were briefly vortexed and then incubated at 56°C for ten minutes. 200 μL of 

ethanol was added after incubation and samples were once again vortexed. Subsequent to 

the addition of ethanol, samples were transferred to a QIAamp spin column and were 

centrifuged twice at 8000rpm for 1 minute with wash buffers added in between 
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centrifugation steps in order to remove impurities. Genomic DNA was then eluted from the 

column by incubating the column with 200 μL of elution buffer before centrifugation at 

8000rpm for 1 minute. Genomic DNA content was subsequently quantified using a nanodrop 

spectrophotometer and then stored at -20°C until use. 

6.2.3 Polymerase Chain Reaction for genotyping 

All DNA samples were genotyped via Kompetitive Allele Specific genotyping (KASP) by LGC 

Genomics (Herts, United Kingdom). The principle of KASP genotyping is based on the PCR 

process in which genomic DNA is denatured, primers are annealed, and complement allele 

specific tails with FAMTM or HEXTM fluorescent tags are elongated dependent on which allelic 

variants are present. 

 

6.2.4 Statistical analysis 

The data was assessed for normality by visual inspection of normal Q-Q plots. Outliers were 

determined by inspection of a box-plot for values greater than 1.5 box-lengths from the edge 

of the box and by calculating studentised residuals (≥ 3 SDs). Homogeneity of variances were 

assessed by Levene’s test for equality of variances (p> 0.05). Homogeneity of covariances 

were assessed by Box’s test of equality of covariance matrices (p > 0.001). A one-way ANOVA 

was used to determine the impact of each FADS SNP on LA, αLNA, AA, EPA and DHA 

concentrations (expressed as a % of total fatty acids). The impact of genotypes on desaturase 

activity, calculated using a product to precursor ratio of AA to LA, was also established. 

Covariates added in the ANOVA included gender, age (T0), BMI (T0), total energy intake (T0), 

total energy expenditure (T0), heart disease and blood pressure medications (T0), smoking 

status (T0), fish oil supplement use (T0) and non-processed fish intakes (T0). Subsequent 

post-hoc analysis was undertaken using Bonferroni adjustment. A one-way ANOVA was also 

used to determine the impact of each FADS SNP on a number of fatty acids at baseline in the 

group as a whole and also in the intervention group only. This analysis was repeated on 

follow-up data to determine if the impact of the FADS genotype was still significant post-

intervention. A one-way ANOVA was used to determine the impact of each FADS SNP on 

baseline CAVI values. Covariates included in the repeated measures analysis were gender, 

age (T0), BMI (T0), total energy intake (T0), total energy expenditure (T0), heart disease and 

blood pressure medications (T0), smoking status (T0). All data are presented as mean ± SEM. 

Relative percentage changes were calculated by dividing the absolute value of the change by 

the baseline value and multiplying by 100. 
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6.2.5 Reconstruction of FADS haplotypes 

The most likely predicted haplotype pairs per subject for all 10 selected SNPs were 

reconstructed using the haplo.em function (expectation-maximization algorithm) of the R 

package HaploStats in collaboration with Mr Jason Sinnwell (Mayo Clinic, Rochester, US) 

[432]. The region was inspected for recombination hotspots with both the D’ and r2 LD 

measures, and a small recombination region was found between markers 3-5.  Sub-

haplotypes were selected by inspection of the LD structure of the 10 selected marker SNPs. 

If recombination cut points (natural recombination hotspots) were observed across the 10 

loci, sub-haplotypes of split regions were constructed using haplo.em and ld.pairs functions. 

In order to limit the number of covariates (therefore maintaining power and avoiding 

collinearity), we examined correlations of the covariates. Covariates were narrowed down 

to four key variables; sex, BMI, fish oil supplement use and non-processed fish intakes and 

we validated that these were not highly correlated in the analysis. Key responses and 

covariates were determined by using specific haplo.score models and correlation heatmaps 

[433]. Haplo.score and haplo.score.slide were run on the complete 10 marker haplotype to 

assess global and max-stat significance of the entire region and sub-haplotypes. The sliding 

window approach involves a set of adjacent SNPS being analysed progressively across a 

region to identify the most significant region of association. For the regions with the 

strongest association between haplotypes and fatty acids, haplo.glm (haplotype-based 

generalised linear model) was used to  estimate frequencies, regression coefficients and p-

values for individual haplotype effects, assuming an additive effect of haplotypes on the 

response The haplo.glm analysis performs a re-weighted least square approach to jointly 

estimate  the regression coefficients and posterior probability of each haplotype pair using 

the expectation maximization algorithm. The reference haplotype was selected to be the 

most frequent haplotype as a baseline for linear regression by the software. Rare haplotypes 

were pooled and included in the model as a group called ‘haplo.rare’.  
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6.3 Results 

6.3.1 Selection of tag SNPs and their characteristics 
Using the HapMap, 10 tag SNPs were selected and genotyped to cover the FADS gene region.  

These SNPs and their characteristics, including their positions on chromosome 11, their 

possible functions and their allele frequency and that from the CEU HapMap population are 

shown in table 6.2. The minor allele frequency ranged from 13 to 51% in the NU-AGE cohort 

and from 15 to 47% in the CEU population. The distributions of genotypes for all analysed 

SNPs were consistent with Hardy–Weinberg equilibrium. Figure 6.1 shows the position of 

each of the selected SNPs on chromosome 11, as well the degree of LD between the analysed 

genetic polymorphisms.  Examination of the LD shows that although several of the tag SNPs 

were linked, none of them showed a particularly high correlation with another. 
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Table 6.1. Characteristics of 10 FADS2 SNPs analysed 

SNP ID Position (base 
pair) 

Most serious consequence Alleles 
(1/2)* 
 

Nu-Age Allele Frequency 
(%) 

European Allele 
Frequency (%) [434] 

Major  Minor Major  Minor 

rs968567 61595564 5 prime UTR variant C/T 78 22 84 16 
rs174570 61597212 Intron Variant C/T 86 14 84 16 
rs1535 61597972 Intron Variant A/G 61 39 64 36 
rs2524299 61604782 Intron Variant A/T 87 13 85 15 
rs174589 61615803 Intron Variant G/C 75 25 79 21 
rs174602 61624414 Non coding exon variant A/G 77 23 79 21 
rs498793 61624705 Intron Variant G/A 63 37 58 42 
rs526126 61624885 Intron Variant C/G 78 22 81 19 
rs174605 61626921 Intron Variant G/T 67 33 72 28 
rs174616 61629122 Intron Variant C/T 49 51 53 47 

*1/2; 1= Major allele, 2= Minor allele 
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Figure 6.1. Structure of the FADS2 gene cluster, its location on chromosome 11 and 
pairwise LD D’ and r2 plots of 10 SNPs across the FADS2 gene cluster.  

 

 

JLIN software was used to calculate the LD values of alleles at adjacent loci and to generate 
the plot graph. 
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6.3.2 Impact of FADS genotype on fatty acid status in older adults 
The impact of each of the 10 selected FADS tag SNPs on plasma LA in NU-AGE older adults is 

depicted in figure 6.2. This graph shows that the majority of FADS SNPs had similar patterns, 

with carriers of the minor allele exhibiting higher concentrations of LA. Both the rs1535 

(p=0.033) and the rs174589 (p=0.030) SNPs were significantly associated with plasma LA 

concentrations. Post-hoc analysis revealed that participants that were homozygous for the 

minor allele had significantly higher levels of LA compared with those that were homozygous 

for the major allele, 6.7% and 9.8% concentrations for rs1535 and rs174589 respectively. 

There were similar trends for rs526126 (p=0.050) and rs2524299 (p=0.078) that approached 

significance. 

Figure 6.2. The impact of 10 FADS SNPs on Linoleic Acid (% of total fatty acids) in older 
adults  

 

n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 6.3 displays the influence of the FADS genotype on plasma αLNA in older adults, with 

no significant effects of any of the 10 FADS SNPs on αLNA evident. The influence of the FADS 

SNPs on AA plasma levels is shown in figure 6.4. The majority of FADS SNPs had similar 
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patterns, with carriers of the minor allele having lower levels of AA, with the exception of 

rs498793 which had the opposite effect. rs174570 (p=0.010), rs1535 (p=0.003), rs174589 

(p=0.018) and rs498793 (p=0.021) SNPs were all associated with AA plasma levels. Post-hoc 

analysis shows that for rs174570 and rs174589 participants that were heterozygous had 

significantly lower, 15.7 and 12.1% respectively, levels of AA compared with participants that 

were homozygous for the major allele.  Furthermore, participants that carried the minor 

allele for rs1535 also had significantly lower (9.7%) plasma AA. Conversely, participants that 

were homozygous for the minor allele in the case of rs498793 had significantly higher levels 

of AA (16.8%) compared with heterozygous participants. 

 

Figure 6.3. The impact of 10 FADS SNPs on α-Linolenic Acid (% of total fatty acids) in older 
adults 
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 n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid.  
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Figure 6.4. The impact of 10 FADS SNPs on Arachidonic Acid (% of total fatty acids) in 
older adults 
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n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 6.5 shows the impact of the 10 FADS SNPs on plasma EPA levels in older adults. It can 

be observed that the majority of FADS SNPs have similar effects on EPA, with carriers of the 

minor allele of rs968567 (p=0.020), rs1535 (p=0.002), rs174589 (p=0.017), rs526126 

(p=0.016), rs174605 (p=0.000) and rs174616 (p=0.001) being associated with lower plasma 

levels, with rs498793 which, although not significant, having contrasting effects. Post-hoc 

analysis shows that participants that were homozygous for the minor allele had significantly 

lower levels of EPA compared with participants that were homozygous for the major allele 

for rs968567 (47.9%), rs174589 (43.3%) and rs526126 (31.9%), while both participants that 

were heterozygous or homozygous for the minor allele had significantly lower levels of EPA 

compared with participants that were homozygous for the major allele for rs174605, 18.9% 

and 39.4% respectively. Participants that were homozygous for the minor allele had 

significantly lower levels of EPA compared with participants that were heterozygous or 

*** ** * * 
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homozygous for the major allele for rs1535 (10.7% and 35.5% respectively) and rs174616 

(5.9% and 32.4% respectively).  

 

Figure 6.5. The impact of 10 FADS SNPs on EPA (% of total fatty acids) in older adults 
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n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 

 

In terms of the impact of the FADS SNPs on DHA, figure 6.6 shows that the majority of FADS 

tag SNPs have a similar impact on DHA, with carriers of the minor allele tending to have lower 

plasma levels, with the exception of rs498793 which, again, had contrasting effects. 

Statistical analysis revealed that participants that were homozygous for the minor allele had 

significantly lower levels of DHA than participants that were homozygous the major allele for 

rs174605 (p=0.017, 19.3% lower) while opposite effects were seen for rs498793 (p= 0.012, 

19.0% higher). 

 

* *
*

* * *** ** 
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Figure 6.6. The impact of 10 FADS SNPs on DHA (% of total fatty acids) in older adults 
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n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 

 

Lastly, the impact of each of the 10 FADS SNPs on a calculated measure of desaturase activity 

was analysed and can be observed in figure 6.7. There were significant associations of 

rs174570 (p=0.011, 26.4% size effect), rs1535 (p=0.003, 29.6%), rs174589 (p=0.007, 20.6%), 

rs5498793 (p=0.033, 16.0%) and rs174605 (p=0.003, 14.3%) with desaturase activity. Post-

hoc analysis showed that carriers of the minor allele had significantly lower desaturase 

activity compared with participants that were homozygous for the major allele for each of 

these SNPs, with the exception of rs498793.  

 

 

 

* * 
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Figure 6.7. The impact of 10 FADS SNPs on desaturase activity in older adults 
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n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 

 

6.3.3 Reconstruction of FADS haplotypes and associations with fatty acids 
Haplotypes were statistically reconstructed for three different windows, as shown in table 

6.3. The first window contained all 10 SNPs in the analysis, with 9 major haplotypes 

accounting for over 70% of all 10-locus haplotypes. The most common haplotype occurred 

in 26.6% of the cohort and contained all major alleles, with the exception of rs498793 which 

was shown to have generally opposite effects compared with other alleles (as described in 

section 6.3.2). 

 

 

 

 

* ** ** * ** 
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Table 6.2. Haplotype characteristics for 10-, 7- and 5- locus haplotypes 

Haplotype Alleles Frequencies (%) 

10-locus haplotypes (rs968567-rs174616)  
Haplo.common AAAAAAaAAA 26.6 
Haplo.1 AAAAAAAAAA 12.6 
Haplo.2 aAaAaAAaaa 6.0 
Haplo.3 AAAAAAAAAa 5.8 
Haplo.4 aAaAaaAaaa 5.4 
Haplo.5 AaaaAAAAaa 4.8 
Haplo.6 AAAAAAAAaa 3.7 
Haplo.7 aAaAaAAAaa 3.1 
Haplo.8 aAaAaaAAaa 2.4 
Haplo.9 AaaAaaAaaa 2.3 
Haplo.rare ********** 27.1 
   
7-locus haplotype (rs968567,rs174570, rs1535, rs2524299, 

rs174589, rs174602, rs498793) 
 

Haplo.common AAAAAAa 29.2 
Haplo.1 AAAAAAA 24.8 
Haplo.2 aAaAaAA 10.3 
Haplo.3 AaaaAAA 7.8 
Haplo.4 aAaAaaA 7.2 
Haplo.5 AaaAaaA 5.4 
Haplo.rare ******* 15.4 

 
5-locus haplotype (rs968567, rs174570, rs1535, rs2524299, 

rs174589) 
 

Haplo.common AAAAA 58.0 
Haplo.1 aAaAa 21.3 
Haplo.2 AaaaA 8.7 
Haplo.3 AaaAa 6.1 
Haplo.rare ***** 5.8 

A; major allele, a; minor allele. 10-locus haplotype in order of chromosome location as follows; 
rs968567, rs174570, rs1535, rs2524299, rs174589, rs174602, rs498793, rs526126, rs174605, 
rs174616 

 

There was one minor split observed in the 10-marker LD-block, which suggested a rationale 

to investigate sub-haplotype regions of interest across the whole region, rather than split 

into distinct LD-based blocks. To find highly-associated sub-haplotypes, we used the 

haplo.score.slide function of haplostats with sliding window sizes of 3 and 5 markers. The 

haplo.score.slide function is used to identify sub-haplotypes from a group of loci and 

calculates global and maximum score statistics. Sub-haplotypes of the first 7- and first 5- 

locus haplotypes were derived due to higher scores in the first 7- and first 5- markers. For 

example, in the case of AA (20:4n-6), scores above 2 were found in the first 7 at both slide 5 

and slide 3 settings with or without covariates. There were 6 major 7-locus haplotypes. The 

most common haplotype was present in 29.2% of the cohort and contained all major alleles, 
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again with the exception of rs498793. 4 major 5-locus haplotypes emerged, with the most 

common haplotype occurring in 58% of the cohort and containing all major alleles.  

Haplotype association analysis indicated significant associations and trends between a 

number of haplotypes and levels of plasma fatty acids, as shown in tables 6.4 and 6.5. For 

example, haplo.2 of 10-locus haplotypes contained 6 minor alleles, as well as the major allele 

for rs498793, was present in 6% of the cohort (table 6.3) and was found to be significantly 

associated with 29.1% lower EPA and 14.2% lower DHA levels (table 6.4). EPA levels were 

also significantly lower in those with haplo.4 (24.1%) and haplo.7 (38.0%), which contained 

7 and 5 minor alleles respectively. 

Sub-haplotypes showed similar patterns and haplotypes carrying minor alleles generally 

tended to be associated with increased levels of LA and decreased levels of AA, EPA and DHA, 

which was in line with the results of individual SNP analysis (as reported in section 6.3.2). For 

example, haplo.2 of the 7 locus haplotype was significantly associated with 32.4% lower EPA 

and 15.0% lower DHA compared with the common haplotype. In relation to the 5 locus 

haplotype, haplo.1 was significantly associated with 29.6% lower EPA compared with the 

common haplotype. 
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Table 6.3. Association of 10-locus FADS haplotypes with fatty acids; p-values and coefficients. 

Haplotype  Linoleic Acid  α-Linolenic Acid  Arachidonic Acid  EPA          DHA          

10-locus haplotypes (rs968567-rs174616), 10-locus haplo.common as reference 

Haplo.1 P-value 0.16 0.27 0.71 0.33 0.81 
 Coefficient -1.06 0.05 0.15 -0.21 -0.04 
Haplo.2 P-value 1.00 0.48 0.38 0.01* 0.03* 
 Coefficient 0.00 0.04 -0.40 -0.46 -0.37 
Haplo.3 P-value 0.18 0.65 0.91 0.26 0.31 
 Coefficient 1.84 0.05 -0.07 0.17 -0.24 
Haplo.4 P-value 0.14 0.46 0.29 0.05 0.08 
 Coefficient 2.04 -0.04 -0.52 -0.38 -0.32 
Haplo.5 P-value 0.81 0.61 0.06 0.14 0.11 
 Coefficient 0.25 -0.03 -1.08 -0.32 -0.34 
Haplo.6 P-value 0.96 0.40 0.05 0.70 0.62 
 Coefficient 0.05 -0.06 1.13 -0.09 -0.11 
Haplo.7 P-value 0.03* 0.61 0.38 0.01* 0.09 
 Coefficient 2.60 0.03 -0.50 -0.60 -0.36 
Haplo.8 P-value 0.64 0.22 0.75 0.34 0.68 
 Coefficient 0.66 0.11 -0.25 -0.27 -0.12 
Haplo.9 P-value 0.21 N/A 0.06 0.10 0.82 
 Coefficient 1.39 N/A -1.18 -0.40 0.05 
Haplo.rare P-value 0.14 0.33 0.06 0.03* 0.12 
 Coefficient 0.93 0.03 -0.58 -0.26 -0.18 

* P-values <0.05, p-values in bold <1.0 
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Table 6.4. Association of 7- and 5- locus FADS haplotypes with fatty acids; p-values and coefficients. 

Haplotype  Linoleic Acid  α-Linolenic Acid  Arachidonic Acid  EPA          DHA          

7-locus haplotypes (rs968567,rs174570, rs1535, rs2524299, rs174589, rs174602, rs498793), 7-locus haplo.common as reference 
Haplo.1 P-value 0.82 0.72 0.28 0.98 0.34 
 Coefficient -0.15 -0.01 0.35 0.00 -0.11 
Haplo.2 P-value 0.40 0.50 0.15 0.00* 0.00* 
 Coefficient 0.59 0.03 -0.51 -0.47 -0.38 
Haplo.3 P-value 0.54 1.00 0.05 0.51 0.53 
 Coefficient 0.53 0.00 -0.84 -0.11 -0.10 
Haplo.4 P-value 0.06 0.93 0.27 0.17 0.42 
 Coefficient 1.83 0.00 -0.56 -0.26 -0.14 
Haplo.5 P-value 0.30 0.39 0.00* 0.06 0.58 
 Coefficient 1.02 0.05 -1.37 -0.35 -0.09 
Haplo.rare P-value 0.64 0.30 0.75 0.19 0.51 
 Coefficient 

 
0.42 -0.05 -0.12 -0.22 -0.10 

5-locus haplotypes (rs968567, rs174570, rs1535, rs2524299, rs174589), 5-locus haplo.common as reference 
Haplo.1 P-value 0.10 0.53 0.02* 0.00* 0.06 
 Coefficient 0.89 -0.02 -0.63 -0.37 -0.19 
Haplo.2 P-value 0.26 0.88 0.02* 0.31 0.78 
 Coefficient 0.82 0.01 -0.84 -0.15 -0.04 
Haplo.3 P-value 0.12 0.41 0.00* 0.06 0.87 
 Coefficient 1.30 0.04 -1.42 -0.33 -0.03 
Haplo.rare P-value 0.22 0.53 0.03* 0.64 0.58 
 Coefficient -1.20 -0.04 -1.10 -0.10 -0.11 

* P-values <0.05, p-values in bold <1.
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6.3.4 The potential of the NU-AGE intervention to overcome the impact of FADS 

genotype on fatty acid status in older adults 
In order to test the ability of the NU-AGE intervention and increased n-3 fatty acid intake to 

overcome the negative impact of FADS genotype on EPA or DHA status, a subgroup analysis 

was conducted in the NU-AGE intervention group only (n=63). Due to minor allele 

frequencies of <5%, both rs174570 and rs2524299 were removed from this analysis. In this 

small subgroup there was no significant impact of any of the FADS SNPs on the essential fatty 

acids, LA and αLNA, at baseline and so the results discussed in the following section are those 

of the longer chained fatty acids (AA, EPA and DHA) only. The influence of the NU-AGE 

intervention on AA before (T0) and after (T1) intervention is graphically depicted in figure 

6.8. There were no significant associations for any of the eight FADS SNPs with AA at T0 or 

T1.  

The influence of the NU-AGE intervention on EPA before and after intervention is graphically 

depicted in figure 6.9. At T0, rs498793 (p= 0.002), rs968567 (p= 0.003), rs1535 (p= 0.002), 

rs174589 (p= 0.008), rs526126 (p= 0.009), rs174605 (p= 0.000) and rs174616 (p= 0.001) all 

had a significant association with EPA status. Post intervention, rs498793 (p= 0.022), 

rs174605 (p= 0.020) and rs174616 (p= 0.030) had a significant association with EPA plasma 

levels. For an example of a significant size effect reduction following intervention, the 

difference between EPA levels of participants that were homozygous for the major allele 

compared with those homozygous for the minor allele decreased from 43.8% to 34.3% for 

the rs174616 SNP.  

Figure 6.10 shows the influence of the NU-AGE diet on the relationship between the FADS 

genotype and plasma DHA status. At baseline, the DHA status of older adults was significantly 

associated with rs498793 (p= 0.000), rs174605 (p= 0.003) and rs174616 (p= 0.025). There 

were also trends towards significance for rs968567 (p= 0.063). Following intervention, only 

rs498793 was associated with the DHA status significantly (p= 0.003). The difference in DHA 

levels between participants homozygous for the major allele and those homozygous for the 

minor allele decreased from 31.0% to 26.9% for the rs498793 SNP following the NU-AGE 

intervention. 
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Figure 6.8. The impact of 8 FADS SNPs on Arachidonic Acid (% of total fatty acids) pre- (T0) and post- (T1) intervention in older adults in the NU-AGE 
intervention group 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=63, varying frequencies for homozygous major and homozygous minor for each SNP as shown in table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted 

to examine the impact of treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 6.9. The impact of 8 FADS SNPs on EPA (% of total fatty acids) pre- (T0) and post- (T1) intervention in older adults in the NU-AGE intervention group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=63, varying frequencies for homozygous major and homozygous minor for each SNP as shown in table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted 

to examine the impact of treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 
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Figure 6.10. The impact of 8 FADS SNPs on DHA (% of total fatty acids) pre- (T0) and post- (T1) intervention in older adults in the NU-AGE intervention 
group 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

n=63, varying frequencies for homozygous major and homozygous minor for each SNP as shown in table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted 

to examine the impact of treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001.
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6.3.5 The impact of FADS genotype on CAVI 
The impact of each of the 10 selected FADS tag SNPs on CAVI in older adults is graphically 

depicted in figure 6.11. There was no significant association for any of the FADS SNPs with 

arterial stiffness.  Furthermore, gender specific subgroup analysis showed that there were 

also no significant associations for any of the FADS SNPs with CAVI in either males or females 

when separately analysed (data not shown). As there was no significant association for the 

genotype with arterial stiffness, it was unnecessary to examine the impact of the NU-AGE 

diet on genotype-fatty acid relationships. 

Figure 6.11. The impact of 10 FADS SNPs on Cardio-Ankle Vascular Index in older adults 

rs
9
6
8
5
6
7

rs
1
7
4
5
7
0

rs
1
5
3
5

rs
2
5
2
4
2
9
9

rs
1
7
4
5
8
9

rs
1
7
4
6
0
2

rs
4
9
8
7
9
3

rs
5
2
6
1
2
6

rs
1
7
4
6
0
5

rs
1
7
4
6
1
6

0

5

1 0

C
A

V
I

H o m o z y g o u s  M a jo r

H e te ro z y g o u s

H o m o z y g o u s  M in o r

 n=140, varying frequencies for homozygous major and homozygous minor for each SNP as shown in 

table 6.2. Data presented as mean ± SEM. 1-way ANOVA was conducted to examine the impact of 

treatment on each fatty acid. *p<0.05, **p<0.01, ***p<0.001. 
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6.4 Discussion 

6.4.1 Selected tag SNPs and characteristics 
Published research to date indicates that genetic variation in the whole FADS gene region 

may be important in terms of its effects on plasma fatty acid status; no particular SNP has 

emerged as having a much higher association with fatty acid status compared with other 

SNPs. Therefore, we used tag SNPs methodology to capture the genetic variation in the 

entire FADS chromosomal region and its impact on habitual fatty acid status and response 

to intervention. Such an investigation has not previously been carried out in older adults. 10 

tag SNPs were identified through the use of the HapMap databases and the NU-AGE cohort 

was genotyped for these 10 SNPs. Table 6.2 shows that the majority of the selected SNPs are 

intron variants. Introns are the DNA sequences between exons that are removed by splicing 

and are frequently selected as tag SNPs [435]. Intronic SNPs in the FADS gene region may 

exert effects on plasma fatty acid status, potentially by influencing mRNA splicing and 

stability (and therefore gene expression). Alternatively, the tag SNP may simply be in LD with 

the functional SNP [435]. Comparison of the NU-AGE cohort with the European population 

described in HapMap show that the allele frequencies for all SNPs were generally similar 

(<10% difference between both populations for all major alleles), as shown in table 6.2 [434]. 

LD is defined as the non-random gametic association of alleles at different loci in a 

population, and is measured using D’ and r2 values. D is the difference between the actual 

gametic frequency and the expected gametic frequency when the loci are independent 

[436]. The D value is standardised by dividing D by its maximum value, given the allele 

frequencies. Therefore D’ = D/Dmax. r2 is determined by the product of the four allele 

frequencies. In terms of association studies, r2 is preferred to quantify and compare the 

amount of LD between pairs of loci because if its inverse relationship with the sample size 

[436]. Figure 6.1 shows that a small number of SNPs were in LD with each other as assessed 

by D’ but in low LD with each other as assessed by r2. This is because the D’ value estimates 

are more likely to be inflated in studies with lower sample size and small allele frequencies 

[436], and therefore r2 is a more suitable measure in our study. All SNPs were shown to be 

in low LD with each other, and therefore provided unique information regarding the genetic 

variability in the FADS locus and therefore none of the SNPs were removed from the analysis. 
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6.4.2 Impact of FADS genotype and haplotypes on fatty acid status in older adults 
The results of the SNP and haplotype association analysis with plasma fatty acid levels in the 

NU-AGE cohort showed that for the majority of the selected FADS SNPs, carriers of the minor 

alleles tend to exhibit higher levels of the essential fatty acid LA (≤ 9.8%), as well as lower 

levels of the longer chained fatty acids AA (≤ 16.8%), EPA (≤ 47.9%) and DHA (≤ 19.3%). This 

suggests that, in general, carriers of the minor allele may have a reduced ability to convert 

precursor fatty acids into the product fatty acids via the FADS mediated pathway. Desaturase 

activity was calculated and was also shown to be ≤ 29.6% lower for participants carrying the 

minor allele. However there was one exception to this trend; in the case of rs498793 we saw 

the opposite effect was seen. Subjects that were homozygous for the minor allele of the 

rs498793 SNP had significantly higher AA (16.8%), DHA (19.0%) and desaturase activity 

(16.0%). This finding has previously been reported (as discussed below). Similarly, the most 

common haplotypes were made up of major alleles with the exception of the rs498793 SNP. 

Five of the SNPs are discussed below; these five were chosen as a result of having either a 

higher effect size or having an effect on more than one fatty acid. 

rs174570 
In the NU-AGE group, both AA and desaturase activity were significantly lower (15.7% and 

26.4% respectively) in carriers of the rs174570 minor allele compared with subjects that were 

homozygous for the major allele. Similar results have been seen in younger age groups. For 

example, rs174570 was also analysed by  Schaeffer et al. [130]. The minor allele for this 

intronic SNP was found to be associated with enhanced LA and αLNA, with decreased AA and 

EPA. Bokor et al. carried out a study on 3865 European adolescents and also found that 

carriers of the rs174570 minor allele had increased levels of LA and reduced levels of AA 

(effect sizes not reported) [133]. This study also reported associations for significantly 

reduced desaturase activity for carriers of the rs174570 minor allele; 21.4% and 13.5% lower 

for D6D and D5D respectively. Furthermore, rs174570 has also been shown to be significantly 

associated with TC and LDL-C levels with regression coefficients of 0.088 and 0.110 

respectively [144]. Our lack of a significant association between rs174570 and other fatty 

acids, particularly EPA, is most likely due to the smaller sample size. 

rs1535       
Carriers of the minor allele of the rs1535 polymorphism, which tags for 17 FADS SNPs, had 

6.7% higher LA levels, as well as lower AA (9.7%), EPA (35.5%) and desaturase activity (29.6%) 

in the NU-AGE cohort. Similar findings have previously been published in cohorts of infants, 

as well as widely ranged age groups (21-102 years) [134, 139, 437]. Several studies have also 
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shown a link between the rs1535 and IQ/cognition [136, 438, 439]; specifically that formula 

milk-fed children that were homozygous for the rs1535 minor allele performed worse than 

other children that had been on formula milk, while breast fed children tend to perform 

similarly irrespective of genotype. However, further research is required as the majority of 

research on rs1535 has been conducted on pregnant women, infants and young children, 

research should be carried out to determine the impact of the rs1535 on other adult groups. 

This could be carried out as an additional analysis on the NU-AGE project, as in addition to 

the genetic data described here cognitive data has been collected.   

   

rs174589 
 In the case of the rs174589 polymorphism, it was shown that carriers of the minor allele 

exhibited significantly higher levels of LA (9.8%) and reduced levels of AA (12.1%), EPA 

(43.3%) and desaturase activity (20.6%) in this older adult cohort. Both Schaeffer et al. and 

Bokor et al. reported similar findings for this SNP but also found a significant increase in αLNA 

[130, 133]. Malerba et al. reported a 22.7% decrease in AA in a cohort of patients with CVD, 

while Aslibekyan et al. showed that although there were significant decreases in both AA 

(10.0%) and EPA (9.3%) in adipose tissue; these decreases did not translate into a change in 

inflammatory biomarkers, blood lipids or MI risk [132, 430]. 

rs498793 
 Interestingly, the rs498793 SNP was shown to have opposite effects on fatty acid 

metabolism compared with all of the other analysed SNPs, with the minor allele being 

significantly associated with increased AA (16.8%), DHA (19.0%) and desaturase activity 

(16.0%). This finding has previously been reported and investigations show this SNP to be 

atypical as it is not associated with other HapMap SNPs in the region [132, 133, 135, 440]. 

Brookes et al. have also shown this SNP to be significantly associated with ADHD (p=0.004) 

with an odds ratio of 1.6 in 180 ADHD cases compared with controls [440]. The mechanism 

of action for this SNP has not yet been identified. A number of studies have reported the 

rs498793 SNP to be an isolated SNP, in negative LD with other SNPs, however resequencing 

of the immediate gene region would be necessary to investigate the possibility of an 

alternative functional variant in the FADS gene region [133, 135, 440].  

rs174605 
Lower levels of EPA (39.4%), DHA (19.3%) and desaturase activity (14.3%) were evident in 

carriers of the minor allele of the rs174605 SNP in older adults. To date, the rs174605 has 
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only been included in one study in humans [441]. This was a recent Genome Wide 

Association Study on 8631 participants and examined n-6 PUFAs only. They reported that 

rs174605 minor allele carriers had higher LA (regression coefficient 0.92) and lower AA 

(regression coefficient -1.08). This is in line with the trends seen in our results, with a much 

smaller sample size explaining the lack of significance. Our study is the first to report that 

this SNP has a significant impact on both EPA and DHA levels.  

Haplotypes   
Although the impact of the individual FADS SNPs on fatty acid status is of interest, many of 

these SNPs have previously been examined. A more novel aspect of our analysis was the 

investigation of the impact of haplotypes, reconstructed from these individual SNPs, on fatty 

acid status in older adults, which provides a more holistic insight into genetic variation across 

the whole gene region on fatty acid status. The rs968567, rs174570, rs1535, rs2524299, 

rs174589 SNPs were all present in 10-, 7- and 5- locus haplotypes, where presence of the 

minor allele was associated with increased levels of LA and decreased levels of longer 

chained fatty acids, with the exception of rs174589. For example, the 10 marker haplo.2 was 

made up of 6 minor alleles and was associated with 29.1% lower EPA and 14.2% lower DHA. 

Haplo.2 was associated with a 20% lower plasma EPA and DHA combined (actual change 

from 4.2% to 3.4%). This is clinically significant as previous research has shown that an 

increase in plasma EPA+DHA from <3.5% to >4.2% is associated with a 72% reduction in risk 

of sudden death from cardiac causes [442]. Furthermore, combined EPA and DHA plasma 

levels >3.6% were significantly associated with reduced all-cause mortality over 5.9 years 

[442]. Research has also shown that a modest increase in oily fish, for example a total 180g 

of salmon per week can increase combined plasma EPA and DHA by 38% [443]. As different 

haplotypes are constructed based on selected tag SNPs in each study, it is difficult to make 

comparisons to other studies.  

If the reconstructed haplotype analysis had resulted in impacts on fatty acid status that were 

stronger than the  individual SNPs, this would suggest that tag SNPs, but not the functional 

SNPs, were analysed [130]. It could also suggest that more than one causal variant was 

present on a certain haplotype, resulting in an additive effect on fatty acid levels. However, 

the haplotypes showed equal, if not a lower, impact on fatty acids than the individual SNP 

associations, suggesting that a particular SNP may explain the associations of other tag SNPs.
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Summary      
To summarise, we aimed to investigate the impact of 10 selected tag SNPs, tagging the FADS 

gene region, on plasma fatty acid status in 65-79 year olds based in the UK. Research on the 

impact of the FADS gene on plasma fatty acid status in the elderly is limited and previous 

research has been conducted on studies examining the effects of a small number of SNPs. 

Results suggest for the majority of selected FADS SNPs (excluding rs498793) that carriers of 

the minor allele may have a reduced ability to convert precursor fatty acids, such as LA, into 

the longer chained product fatty acids, such as AA, EPA and DHA, of the FADS metabolic 

pathway within the body. This was supported by the results of the calculated desaturase 

activity, which was also shown to be up to 29.6% lower for participants carrying the minor 

allele. These effects have previously been reported in the studies containing cohorts of a 

range of ages mentioned above. However, it is difficult to make direct comparisons between 

studies as many do not report effect sizes and different studies examine different SNPs. 

Further research is required to explain the mechanism, which has not yet been elucidated, 

behind these results. As the majority of our selected FADS SNPs were intronic SNPs, it is not 

possible to determine whether any of the SNPs themselves are the functional polymorphisms 

responsible for exerting such effects on fatty acid status, or whether they are simply in LD 

with the functional SNPs. However, haplotype analysis did not result in stronger associations 

as a result of additive effects of SNPs. The intronic SNPs selected in this study could 

potentially be directly responsible for effects seen by affecting the folding function or 

expression of a micro RNA [444]. However further research is required in this area. The 

rs498793 polymorphism has previously been reported to display opposite effects to other 

analysed SNPs and this finding was replicated in our study [133, 135]. The cause of such an 

effect has not yet been determined, but as this SNP is considered to be an isolated SNP it is 

possible that the rs498793 itself is a functional SNP. The fact that this SNP has opposite 

effects compared with the majority of the FADS SNPs reinforces the importance of using a 

number of tagging SNPs rather than simply selecting one or two SNPs previously cited in the 

literature. 

6.4.3 The potential of the NU-AGE intervention to overcome the impact of FADS 

genotype on fatty acid status in older adults 
By comparing results before and after intervention for participants on the intervention group 

only, we aimed to determine if the NU-AGE intervention (and in particular altered fatty acid 

and increased EPA and DHA intakes) could modulate the effect of FADS genotype on fatty 

acid status. This is a novel approach in which a loss of a significant effect post-intervention 
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could suggest that the negative impact of genotype on EPA and DHA status could be 

ameliorated by increased EPA and DHA intake. One limitation of this analysis is that the use 

of the intervention group only results in a reduction of our original sample size and further 

research will be required in larger sample sizes.    

As previously discussed, excess levels of AA can have negative health impacts, such as 

increased inflammation [147, 148]. We aimed to determine if adherence to the NU-AGE diet 

(designed to reduce inflammation) for one year could help overcome the impact of the major 

allele which tends to be associated with increased AA [148]. However, the significant 

association for the FADS SNPs with AA reported in section 6.4 was no longer significant in 

this analysis due to a reduced sample size and therefore future research will be necessary to 

investigate this hypothesis. As discussed in section 6.4, the FADS minor alleles were generally 

associated with reduced EPA and we aimed to examine if the NU-AGE diet could ameliorate 

the difference between minor allele carriers and those homozygous for the major allele. The 

results show that the significant differences found for rs968567, rs1535, rs174599 and 

rs526126 before the intervention were no longer significant following this dietary 

intervention. For example, the highly significant (p= 0.002) difference of 41.7% in EPA levels 

between the rs1535 homozygous major and minor allele participants decreased to a non-

significant difference (p= 0.199) following intervention of 30.2%. Differences among 

rs498793, rs174605 and rs17616 were also reduced but remained significant. Therefore 

despite our small sample size, we saw that adherence to a healthy dietary intervention 

(including advice to improve EPA and DHA intakes) could help overcome the impact of 

genotype on EPA status.  

The FADS minor alleles also tend to be associated with lower DHA levels compared with those 

that were homozygotes for the major allele, although to a lesser extent than EPA as discussed 

in section 6.4. The results suggest that the NU-AGE diet could potentially influence the 

impact of the FADS genotype on DHA status. For example, we saw that the significant impact 

of rs174605 and rs174616 was no longer significant post-intervention and the significant 

impact of rs498793 was ameliorated (31.0% to 26.9%), although still significant. In the case 

of rs174605, the highly significant (p= 0.003) difference in DHA levels between the 

homozygous major and minor allele participants decreased from 0.77% to a non-significant 

difference (p= 0.134) of 0.58% following intervention.  

To date, limited research has been carried out to investigate the impact of dietary 

interventions on the relationship between FADS SNPs and fatty acid status and this area of 
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research is worthy of future investigations. Gillingham et al. conducted a randomised 

crossover trial in which 36 hyperlipidemic subjects were assigned 1 of 3 diets for a 4 week 

period to examine the impact of αLNA intakes on fatty acids according to FADS genotype. A 

typical Western diet (1.3g αLNA /d) was compared with diets enriched with either flaxseed 

(20.6g αLNA /d) or canola (2.4g αLNA /d) oils [154]. 5 FADS SNPs were chosen based on 

previous literature, including rs174545, rs174583, rs174561, rs174537 and rs953413, none 

of which are overlapping with the SNPs analysed in this NU-AGE based research. FADS SNPs 

were not found to be associated with plasma DHA in this study. In addition, Porenta et al. 

investigated the impact of a 6 month Mediterranean diet intervention on the associations 

between FADS genotype and changes in serum and colonic fatty acids in 108 participants 

[155]. Again, the FADS SNPs (rs174556, rs174561, rs174537 and rs3834458) analysed in this 

study did not correspond to any of the 10 SNPs analysed in the NU-AGE project. Porenta et 

al. reported that there was no diet by genotype effect of the intervention on serum fatty acid 

status. However, this study did show a significant diet by genotype interaction for AA 

concentrations in the colon; subjects who had all major alleles for FADS SNPs and were 

following the Mediterranean diet intervention had 16% lower AA concentration in the colon 

after 6 months of the intervention compared with subjects following the control diet. 

Overall, dietary advice on EPA and DHA intakes (included as part of the NU-AGE diet) could 

potentially overcome the deleterious impact of the FADS genotype on EPA and DHA status. 

Although Porenta et al. [155] previously reported results on the interactions of genotype and 

the Mediterranean diet on changes in fatty acids, this is the first study to show the impact of 

a one-year whole-diet healthy eating intervention (including advice on intakes of EPA and 

DHA)  on EPA and DHA in the elderly. Compared with the Porenta et al. study, our study 

contributed to the current scientific literature by using 10 tag SNPs, a 12 month intervention 

and healthy older adults [155].  

The major strengths of this study include the long duration, the use of tag SNPs, as well as 

the dietary intervention design of the study which is novel in genetic based research. 

However, there were also several limitations to this research. The likely heterogeneity of the 

intervention that would have resulted from personalised dietary advice, as well as likely 

differences in compliance, are major limitations in analysing the impact of the NU-AGE 

intervention on the relationship between the FADS genotype and fatty acid status. As 

mentioned previously, changes in fatty acid intakes following the NU-AGE intervention were 

also unavailable for use in this thesis but will be examined and included in future 
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publications. In addition, the small sample size also resulted in two SNPs being excluded from 

the analysis due to lack of sufficient numbers of participants that were homozygous for the 

minor allele. Future work is required to examine the ability of the diet to modulate the 

relationship between the FADS genotypes, fatty acids and related health outcomes and such 

an investigation could be considered as a potential investigation in the entire NU-AGE cohort. 

6.4.4 The impact of FADS genotype on CAVI 
As discussed in section 6.4, the FADS gene appears to have a significant impact on fatty acid 

status in older adults. We also saw that the NU-AGE intervention may have the potential to 

help overcome the impact of the FADS genotype on fatty acid status, as discussed in section 

6.5. Our aim was to determine if polymorphisms present in the FADS gene region could also 

potentially impact on arterial stiffness in older adults. To our knowledge, this hypothesis has 

not previously been tested. Our results show that there was no impact of any of our selected 

FADS SNPs on CAVI in older adults.     

Previous research, in relation to the FADS gene region and cardiovascular health, has focused 

on the impact of FADS polymorphisms on outcomes including CAD, inflammation and 

cholesterol levels [131, 142, 143, 423]. Although the results of these studies have not always 

been consistent, carriers of the minor allele appear to be at reduced risk of CAD [131, 142, 

143].  

Strengths of this research include the use of 10 tag SNPs and use of CAVI, a novel and 

validated measure of arterial stiffness. However, there were also limitations. As mentioned 

before, the power calculations for the sample size used in this thesis were calculated to 

determine the impact of the NU-AGE intervention on vascular function but did not account 

for genotype sub analysis. Therefore, we were likely to be underpowered to detect subtle 

impacts of genotype on vascular function and further research in a larger sample size is 

warranted to establish the effects of the FADS genotype on vascular function. 
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6.5 Conclusion 
Although the impact of many of the individual FADS SNPs on fatty acid status in older adults 

have previously been examined, this is the first study to examine the impact of FADS tagging 

SNPs and haplotypes in a healthy elderly cohort on plasma fatty acid status. Our results 

showed that for the majority of the selected FADS SNPs, carriers of the minor alleles tend to 

exhibit higher levels of essential fatty acid LA, as well as lower levels of the longer chained 

fatty acids AA, EPA and DHA. Haplotype associations were also in line with these findings. 

For examples, Haplo.2 was associated with a clinically significant 20% decrease in plasma EPA 

and DHA combined (from 4.2% to 3.4%). Previous research has shown that an increase in 

plasma EPA+DHA from <3.5% to >4.2% is associated with a 72% reduction in risk of sudden 

death from cardiac causes and that combined EPA and DHA plasma levels >3.6% were 

significantly associated with reduced all-cause mortality over 5.9 years [442]. Research has 

also shown that a modest increase in oily fish, for example a total 180g of salmon per week 

can increase combined plasma EPA and DHA by 38% [443].  Therefore, we examined whether 

the NU-AGE intervention (including advice to consume 250g of fish per week) could 

modulate the effect of FADS genotype on fatty acid status by comparing results before and 

after intervention for participants in the intervention group only. The results of this analysis 

suggested that the NU-AGE diet could potentially overcome the impact of the FADS genotype 

on EPA and DHA status. This is the first study to show the impact of a one-year whole-diet 

healthy eating intervention (including advice on intakes of EPA and DHA) on EPA and DHA in 

the elderly and the results suggest that offering personalised fatty acid advice could be a 

useful approach in relation to overcoming the impact of the FADS genotype on EPA and DHA 

status. Finally, we examined the impact of the FADS genotype on arterial stiffness for the 

first time, as measured by CAVI. However, no significant effects were observed.  

These findings significantly contribute to current scientific knowledge and are relevant in the 

context of public health as the results could contribute to future work in the area of 

personalised nutrition based on genotype. Endogenous synthesis may be a more viable 

source of EPA and DHA in individuals that are homozygous for the major allele, while dietary 

recommendations could inform carriers of the FADS minor allele of their increased 

requirement for dietary sources of EPA and DHA. Furthermore, the findings should be 

carefully considered in terms of future research; EPA and DHA blood levels are often used as 

biomarkers of dietary EPA and DHA exposure in RCT and epidemiological studies. The FADS 
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genotype should also be taken into account as the relationship between dietary EPA and 

DHA with plasma EPA and DHA are likely to be influenced by the FADS genotype. 

Strengths of this project include the use of tagging SNPs and the reconstruction of 

haplotypes, as well as the novelty of examining the impact of the whole-diet on the 

relationship between the FADS genotype and fatty acid status in older adults. Examining the 

impact of the FADS genotype on arterial stiffness was also a novel aspect of this work. 

However, there were also limitations, namely the sample size. Frequencies of some of the 

minor alleles and several haplotypes were quite low in the cohort, and so a larger sample 

size could potentially result in significant associations that were not observed in our relatively 

small sample size. Therefore, future work in this area should include a larger sample size. 

This data suggests that the NU-AGE diet may have the potential to overcome the impact of 

the FADS genotype and therefore further analysis could be carried out on the entire NU-AGE 

cohort. In addition, studies examining the effects of the FADS genotype on actual desaturase 

activity, rather than using various calculations for desaturase activity, are also warranted. 
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7 Conclusion 
 

7.1 Summary    
Currently, 22.9% of the European population is aged over 60 years, while 4.5% are aged over 

80 years [8]. Realistic dietary strategies, which focus on the whole-diet rather than individual 

dietary components, need to be identified to help contribute to increased healthy life years 

and to reduce the social impact and healthcare costs associated with ill health. Research on 

whole-diet interactions is vital because foods and nutrients have additive, synergistic or 

perhaps even antagonistic effects when consumed in combination [177-184], which 

collectively may have a large impact on risk of disease. Investigations of individual dietary 

components, in the form of extracts or supplements, may be misleading as the bioactive may 

have difference effects when consumed in a food matrix or as part of a mixed diet.   

CVD causes more than half of all deaths in Europe and  the maintenance of cardiovascular 

health is therefore an important target in the design of dietary interventions [211]. Both 

vascular function and low grade chronic inflammation are known to be major contributors 

to CVD pathology and can also be used as early indicators of disease risk. As discussed 

throughout this thesis, optimal fatty acid status, particularly EPA and DHA plasma and tissue 

levels, is considered to be beneficial in relation to cardiovascular health outcomes, but at a 

population level intakes are sub-optimal. In the UK, average EPA and DHA consumption in 

adults is 244mg per day, which is about 50% of the recommended minimal intake [90]. EPA 

and DHA status and biosynthesis can be influenced by dietary fatty acid intake and also 

potentially by other non-lipid components of the diet. For example, previous research 

suggests there may be an association between moderate wine consumption  and n-3 fatty 

acids, EPA and DHA, in human blood cells and plasma [156]. Furthermore, adequate fatty 

acid status has been observed in vegetarians and vegans despite negligible EPA and DHA 

intakes, and confirmed in two studies in animals, suggesting that specific plant derived 

components, such as flavonoids, may have the potential to improve plasma fatty acid 

composition [127, 157].  EPA and DHA status can also be influenced by genetics; 

polymorphisms in the FADS 1 and FADS 2 gene region have been shown to influence EPA and 

DHA status.    

As discussed in chapter 2, serum, plasma and various tissues from humans and animals that 

were fed a broad range of compounds (including ACNs, flavan-3-ols, blueberry extract, 

alcohol and champagne) were analysed to determine whether consumption of these 
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compounds could stimulate the bioconversion of ΑLNA to EPA and DHA. This was the first 

study in which the impact of ACN consumption on fatty acid status was investigated in 

humans and has significantly contributed to knowledge in the area. The results from this 

project found no evidence that consumption of ACNs (in addition to other flavonoids and 

champagne polyphenols) can stimulate fatty acid biosynthetic pathways to produce 

increased plasma or tissue EPA and DHA, suggesting that some other bioactive component 

may be responsible for the improved EPA and DHA status observed in red wine consumers 

and in those who consume a plant-based diet.    

The study design for NU-AGE has previously been published [182]. This PhD included data 

from the Norwich study centre only and the primary aim of this PhD project was to 

investigate if adherence to the NU-AGE diet for one year could slow the progression of both 

endothelial dysfunction and arterial stiffness in older adults.  Using baseline data, a diet score 

based on the NU-AGE diet was designed that would be suitable for use in elderly populations. 

The diet score was created, and validated using TWIN UK data, which included 3262 female 

participants aged between 18 and 79 years old whose diet was assessed using validated 

FFQs. Using the TWIN UK data, a significant association for an improvement in CRP 

concentrations with increasing NU-AGE diet score was observed. The NU-AGE diet score was 

then used to determine associations between the diet score and various health outcomes in 

the NU-AGE cohort. No significant associations were observed between the NU-AGE diet 

score and CRP (although a strong trend was observed), or any of the other cardiovascular 

related health outcomes measured in the NU-AGE cohort, which consisted of 242 male and 

female participants aged 65-79 years. A likely explanation for the significant association 

observed in the TWIN UK cohort but not in the NU-AGE cohort is the large difference in the 

sample size of the cohorts; analysis using the TWIN UK cohort consisted of 3262 participants 

and the NU-AGE cohort used consisted of 249 trial participants at baseline. There was also a 

significant age range difference between the TWIN UK and NU-AGE cohorts. Another 

potential explanation for the discrepancies in the results could be the difference in methods 

utilised for dietary assessment; as mentioned previously the TWIN UK data used FFQs as a 

dietary assessment method whereas NU-AGE dietary data were collected via 7 day food 

diaries.  

This was the first study to assess the impact of a whole-diet intervention for one year on 

both arterial stiffness and endothelial function in older adults in the UK. There was no 

significant effect of the NU-AGE intervention on any of the clinical outcomes measured. 



196 

 

Gender based subgroup analysis showed that there was a beneficial impact of the NU-AGE 

diet on CAVI in older females. We also investigated the impact of the NU-AGE intervention 

on a number of biochemical markers, including markers of vascular function, inflammation 

and fatty acid status. There were no significant differences between the control and 

intervention groups for any of these measures. Furthermore, there was no beneficial effect 

of the NU-AGE diet on a calculated vascular risk score. The PREDIMED study looked at the 

effects of a low fat diet, a Mediterranean diet supplemented with extra virgin olive oil, and 

a Mediterranean diet supplemented with nuts on a wide range of outcomes in 7,447 

subjects, aged between 55 and 80 years. All 3 diet groups exerted beneficial effects on blood 

pressure [194], while the Mediterranean diet supplemented with extra-virgin olive oil or nuts 

also had reduced incidence of major cardiovascular events, reduced PAD incidence, 

improved plasma NO and improved fatty acid status [178, 195-197]. Therefore in a public 

health context, it is important that our results are not interpreted to suggest that there is no 

effect of a whole diet intervention on cardiovascular health in older adults and the limitations 

of this study (discussed in section 7.2) should be carefully considered. 

A secondary aim of this PhD was to examine the impact of polymorphisms in the FADS gene 

region on fatty acid status in older adults, as well as to determine if a dietary intervention 

could modulate the effect of FADS genotype on fatty acid status. The NU-AGE cohort was 

genotyped for 10 selected tag SNPs and a number of haplotypes were statistically 

reconstructed. The results showed that for the majority of the selected FADS SNPs, carriers 

of the minor alleles tended to have higher levels of essential fatty acid LA, as well as lower 

levels of the longer chained fatty acids AA, EPA and DHA. For example, there were 

significantly lower levels of EPA (39.4%), DHA (19.3%) and desaturase activity (14.3%) in 

carriers of the minor allele of the rs174605 SNP compared with those homozygous for the 

major allele. Haplotype associations were also in line with these findings. For example, the 

10 marker haplo.2 was made up of 6 minor alleles and was associated with a clinically 

significant 20% lower plasma EPA and DHA combined (from 4.2% to 3.4%). Previous research 

has shown that an increase in plasma EPA+DHA from <3.5% to >4.2% is associated with a 

72% reduction in risk of sudden death from cardiac causes and that combined EPA and DHA 

plasma levels >3.6% were significantly associated with reduced all-cause mortality over 5.9 

years [442]. Research has also shown that a modest increase in oily fish, for example a total 

180g of salmon per week can increase combined plasma EPA and DHA by 38% [443].  

Therefore, we examined whether the NU-AGE intervention (which included advice to 
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consume 250g of fish per week) could influence the relationship between the FADS genotype 

and fatty acid status. Results suggested that the NU-AGE diet could potentially overcome the 

impact of the FADS genotype on EPA and DHA status.  For example, the highly significant (p= 

0.002) difference of 41.7% in EPA levels between the rs1535 homozygous major and minor 

allele participants decreased to a non-significant difference (p= 0.199) of 30.2% following 

intervention. These findings significantly contribute to current scientific knowledge and are 

relevant in terms of public health as the results may contribute to the future stratification of 

dietary recommendations based on genotype, carriers of the FADS minor allele potentially 

requiring increased intakes of EPA and DHA relative to the wildtype genotype groups. Finally, 

we examined the impact of the FADS genotype on arterial stiffness, as measured by CAVI. 

However, no significant effects were observed. 

7.2 Strengths and limitations 
In relation to the work detailed in chapter 2, the major advantages of our investigations on 

the potential effects of various dietary compounds on fatty acid status include the use of 

human plasma samples, as well as the examination of a broad range of dietary compounds 

including ACNs, flavan-3-ols, and different flavonoid-rich products including blueberry 

extract, alcohol and champagne. Furthermore, we investigated the effects of these 

compounds on fatty acid status in plasma, as well as in a range of tissues in rodents including 

the liver, cortex, muscle and heart. However, there were also a number of limitations 

involved. For example, in the case of the animal study in which the rodents were fed ACN, 

flavan-3-ols or blueberries, we did not have access to the liver tissue, which is the major site 

of EPA and DHA synthesis and therefore would be most sensitive to any impact of 

polyphenols/flavonoids/ACNs on EPA and DHA status. In addition, the diets consumed in the 

previous rodent studies had relatively low levels of αLNA. To overcome these limitations, our 

group designed an animal study to test the hypothesis that dietary compounds, specifically 

ACNs, could increase the bioconversion of αLNA to EPA and DHA. However, the results from 

this study also suggested that ACNs do not impact on EPA and DHA levels in either blood or 

tissue [271]. 

There were also a number of strengths and limitations in relation to the design and validation 

of the NU-AGE diet score (detailed in chapter 4). For example, a strength of the NU-AGE diet 

score compared with the EDI, another diet score targeted at older adults, is that it consists 

of more dietary components previously shown to be beneficial for older adults including 

nuts, eggs, fluid and cheese. The NU-AGE diet score also has a wholegrain category rather 
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than just a bread/cereal group which is advantageous considering the importance of fibre 

and wholegrains in the diet of older adults. In addition, the NU-AGE diet score has been 

designed for use with both FFQs and food diaries, whereas the majority of previous diet 

scores have usually been used in conjunction of FFQs. The NU-AGE diet score has a wide 

ranged scoring system (a range of 0-10) which could result in the NU-AGE diet score being 

more sensitive than scores involving more narrowly ranged scores. Another advantage of the 

NU-AGE diet score is that the NU-AGE diet has been used as an intervention diet in the NU-

AGE study, therefore when data is available for the full NU-AGE cohort the NU-AGE diet score 

can be tested on both baseline and follow-up dietary data to determine both adherence to 

the diet and the effect of changes in the diet and associated score on various health 

outcomes. As the majority of diet scores have only been used cross-sectionally, this would 

allow us to determine the sensitivity of the score in detecting dietary changes. This was 

originally an aim of this PhD, however follow-up dietary data was not ready at the time of 

thesis submission. There were also several limitations associated with the NU-AGE diet score; 

the NU-AGE diet score was not associated with any health outcomes when utilised with food 

diaries and therefore needs to be tested on a larger sample size to determine its functionality 

with the use of food diaries. In relation to limitations involved in the use of the FFQ, there 

was no data for oil consumption in the TWIN cohort. Furthermore, a considerable amount of 

work still needs to be carried out before this diet score can be considered fully validated and 

submitted for publication and widespread use. The NU-AGE diet score needs to be tested on 

the entire NU-AGE cohort, both at baseline and follow-up.  

In terms of the NU-AGE intervention, this was the first study to investigate the effects of a 

whole-diet intervention for one year on both arterial stiffness and endothelial function in 

older adults in the UK. The strengths of this project have previously been discussed and 

include the use of validated clinical measures to assess vascular health, a diet designed 

specifically to target the nutritional needs of the elderly, the provision of certain food 

products and vitamin D supplements. Of particular note in the utilisation of validated clinical 

measures is the CAVI, a novel measure which is thought to be a particularly useful indicator 

of arterial stiffness in elderly cohorts because it is independent of blood pressure and is 

therefore thought to evaluate arterial stiffness more accurately in those taking anti-

hypertensive medications or those with masked hypertension [58, 59]. Furthermore, the 

long duration of the intervention was an additional strength; one year has previously been 

shown to be sufficient time to improve dietary intakes and observe changes in health 
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outcomes and also allowed us to avoid seasonal dependent changes in outcomes [414, 415]. 

However there were several limitations to this project, which may also explain the lack of 

beneficial effect of the NU-AGE diet on vascular health. The majority of previous research 

has involved the examination of at-risk populations, for example those with pre-existing 

hypertension or the metabolic syndrome. Our inclusion criteria did not require participants 

to be hypertensive or at higher risk of CVD but were representative of a healthy population 

of that age group. As such, it may have been more difficult to observe beneficial effects in a 

population that did not have any signs of vascular dysfunction. For example, the NU-AGE 

cohort had substantially lower PWV figures at baseline in comparison to the age matched 

European population and so it could be speculated that the NU-AGE population were “too 

healthy” to see improvements in arterial stiffness. Similarly, 83.7% of the cohort fell within 

the normal range for PAD risk at baseline and only 6 participants had an average ABI ≤ 0.90, 

which would therefore make it considerably difficult to observe improvements. However, 

the use of an apparently healthy population could also be considered a strength of the study 

as the results can be generalised to older adults of the general population. Another limitation 

was that the sample size of 150 participants was calculated based on PWV and EndoPAT 

research and therefore a larger sample size would have been required to observe an effect 

of the NU-AGE diet on a number of other outcome measures, such as blood pressure and 

CRP. For example, the NU-AGE power analyses resulted in a sample size requiring 1000 

participants in order to detect a difference of 0.6 (± 0.4 SD) unit change in CRP [182].  This 

work will be carried out as part of the NU-AGE project and results from five study centres 

will be compiled and analysed. Furthermore, it has recently been speculated that the 

utilisation of the EndoPAT for the measurement of RHI may be suitable for qualitatively 

establishing the presence or absence of endothelial dysfunction, but may not be optimal for 

use in quantitative measurement of endothelial function or in studies examining subtle 

changes in response to intervention [382], [383]. In addition, neither detailed fatty acid 

intake data nor the follow-up dietary data had been analysed at the time of thesis submission 

and so exact changes in nutrient intakes cannot be determined which could have helped to 

examine compliance in a more detailed manner. These data will be presented in future 

relevant publications. Until such data are available, the reporting of a null effect of the NU-

AGE intervention on vascular function should be interpreted with caution. 

In chapter 6, the impact of polymorphisms in the FADS gene region on fatty acid status and 

arterial stiffness in older adults was discussed, as well as the impact of the NU-AGE diet on 
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the relationship between the FADS genotype and fatty acid status. The major strengths of 

this study include the use of tag SNPs, reconstruction of haplotypes, as well as the 

intervention design of the study. The utilisation of tag SNPs and haplotyping made it possible 

to identify genetic variation and phenotype association without the requirement to genotype 

all SNPs in that chromosomal region [425]. The novelty of examining the impact of the FADS 

genotype on arterial stiffness, as well as the investigations of the effects of a whole-diet 

intervention on the relationship between the FADS genotype and fatty acid status in older 

adults was an additional strength, as to our knowledge these hypotheses have not previously 

been tested. However, there were also a number of limitations. For example, the relatively 

low sample size resulted in low frequencies of a number of minor alleles and several 

haplotypes. In addition, the sample size was inadequate to detect the impact on AA and 

other fatty acids when examining the intervention group only. 

 

7.3 Future work 
Our results indicated that intakes of dietary compounds, such has ACNs and flavan-3-ols, are 

unlikely to determine fatty acid status in mammals. However, one consideration is that the 

volunteers for the human trial were postmenopausal women, who are known to have lower 

fatty acid bioconversion rates [270]. Therefore, future research may be warranted on the 

impact of polyphenol consumption on plasma fatty acid status in individuals with a more up-

regulated biosynthetic capacity, namely premenopausal women. Future research could also 

involve the investigation of alternative dietary compounds, such as resveratrol (an anti-

oxidant and anti-inflammatory compound also found in fruit and wine), which may increase 

LC-PUFA biosynthesis or bioavailability. This would be globally beneficial considering the 

inadequate oily fish intakes and ever depleting fish stocks worldwide; the current production 

of 1 million tons of fish oils per year is insufficient to meet even the minimum recommended 

intakes of > 500mg per day [90].  

Future work also needs to be carried out to examine associations between the NU-AGE diet 

score and CRP, as well as other clinical end points or established risk biomarkers, in the whole 

NU-AGE cohort (n=1,250, using 7 day food diaries) at baseline and following intervention 

before the NU-AGE diet score can be used as a widespread tool for diet quality assessment 

in older adults. The NU-AGE diet score could also be used as a potential method of assessing 

compliance to the NU-AGE diet within the study. Associations between the NU-AGE diet 

score and a broad inflammatory score could be examined; for example Cassidy et al. used an 
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inflammatory score that integrated 12 individual inflammatory biomarkers and observed 

associations between flavonoid intakes and the inflammatory score [445]. However, it is 

likely that further modifications would be required in order to utilise the NU-AGE diet score 

in the whole NU-AGE cohort due to the introduction of new foods that are commonly 

consumed in the other participating countries. Following such modifications, the NU-AGE 

diet score could potentially be used as a tool to detect CVD risk in older adults for health care 

professionals. More generally, future work in the area of diet scores should focus on adapting 

diet scores for use in individuals, potentially through the use of a publicly available online 

tool.  

Suggestions for future work related to examining the impact of a dietary intervention on 

vascular function in older adults include the use of an “at risk” population rather than a 

healthy cohort. The main benefit of using a healthy cohort is that results can be generalised 

to the older adult population. However this also makes the observation of a beneficial effect 

of the diet less likely. Furthermore, the NU-AGE diet was designed with the primary outcome 

of improving inflammation rather than endothelial function or arterial stiffness [182]. 

Further research on the impact of a whole-diet specifically designed to improve vascular 

function in healthy older adults is warranted. This diet could emphasise fruits particularly 

high in ACNs and flavones which have previously been shown to improve arterial stiffness, 

as well as further restrictions on salt consumption [65]. In addition, a systematic review on 

the impact of nutrient interventions on PWV states that the lowest daily dose of n-3 fatty 

acids that resulted in an effect on arterial stiffness was 540 mg EPA combined with 360 mg 

DHA [65]. This dose is higher than what would be consumed with intakes of two portions of 

oily fish per week and therefore perhaps n-3 fatty acid supplementation would have needed 

to be part of the NU-AGE recommendations in order to see an impact on arterial stiffness. 

Future work involving the analysis of follow-up dietary data may also help interpret results 

and provide more sensitive measures of compliance. In terms of clinical measures of vascular 

function, the use of gold standard methodologies to detect changes in endothelial 

dysfunction is recommended for future studies, specifically the use of FMD rather than 

EndoPAT. We observed a significant effect of the NU-AGE intervention on arterial stiffness, 

assessed by CAVI, in females only. However, further research is required in the field of gender 

specific plasticity of the aging vascular system to determine potential mechanisms that could 

account for a gender specific response to dietary change, such as differential absorption of 

nutrients. 
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Our data suggests that the NU-AGE diet may have the potential to overcome the impact of 

the FADS genotype. However, further analysis should be carried out on the entire NU-AGE 

cohort to examine the ability of the diet to modulate the relationship between fatty acid 

genotypes and related outcomes in a larger cohort. Future work involving dietary 

interventions involved at targeting vascular function in older adults could also investigate 

the impact of the FADS genotype on endothelial dysfunction and arterial stiffness as such 

analysis has not previously been carried out and our sample size may have been insufficient 

to detect an effect. Overall, future work in this area should include larger sample sizes. 

Research is also required to determine potential mechanisms of action for the FADS 

genotype and fatty acid interactions, with a focus on firstly determining the functional 

SNP(s). Sequencing of the whole FADS gene region would be required to determine 

functional SNPs and such research may be warranted. In addition, studies examining the 

effects of the FADS genotype on actual desaturase activity, rather than using various 

calculations for desaturase activity, are also warranted. 

The potential contribution of the NU-AGE study to future work for the food industry and EU 

legislation is extensive; it is planned that the final results of the NU-AGE dietary intervention 

will contribute to the development of innovative food prototypes/products with enhanced 

composition that are tailored specifically towards the elderly. The results from NU-AGE may 

also support EU strategies on nutritional recommendations, and therefore contribute to the 

implementation of legislation related to nutrition and health claims for elderly in Europe. As 

previously discussed, the focus of research on the effects of single nutrients has led to many 

important discoveries, but it is important that more emphasis is placed on the effects of the 

whole-diet on health outcomes [177, 179, 180, 300]. However, standard dietary 

recommendations tailored specifically for older European adults do not exist [446]. If 

beneficial health outcomes are observed as a result of the NU-AGE intervention, the NU-AGE 

dietary guidelines could be adopted for such use across Europe. 

Furthermore, it is important that validated, cost-effective and non-invasive measures of 

healthy ageing are identified. Previous research has involved the use of measures, such as 

mortality rates or specific biomarkers including telomere length, as positive outcomes of 

ageing [446]. The large amount of data that will be gathered from the entire NU-AGE project 

could help to identify the interactions between nutrition and biological processes involved 

in healthy ageing, with a focus on inflammation. This could potentially contribute to the 

construction of an integrated systems biology based model which could be a more efficient 
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approach to future research compared with the assessment of separate single tissue and 

organ responses [182].  

 

7.4 Overall Conclusion 
In conclusion, the NU-AGE diet did not slow the progression of vascular dysfunction in this 

UK sub-group of older adults. However, the NU-AGE diet did appear to be successful in 

slowing the progression of arterial stiffness in females. Further research is required to 

determine the mechanism of this effect. The impact of various dietary components and the 

FADS genotype on fatty acid status was also examined. Although we did not observe a 

significant effect of any dietary compounds on n-3 LC-PUFAs, it was clear that the FADS 

genotype may be a significant determinant of plasma EPA and DHA status in older adults. 

Furthermore, the NU-AGE diet was shown to have the potential to overcome this effect by 

influencing the relationship between the FADS genotype and plasma EPA and DHA status. 

This work emphasises the importance of considering the impact of the FADS genotype when 

examining the impact of intervention on EPA and DHA status. Future work involving the 

investigation of the effects of the NU-AGE diet on the cohort of 1,250 older adults on health 

outcomes, such as blood pressure and CRP, will help to further determine the health benefits 

of the NU-AGE diet. If successful, the NU-AGE study could help inform the refinement of 

dietary recommendations which could contribute to improved health and quality of life for 

older adults in Europe. 
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Appendix 1 
The differential response of the NU-AGE intervention on systolic blood pressure in 

medicated and non-medicated individuals 

 

 

Non-medicated control group: n=43, non-medicated intervention group: n=42, medicated control 

group: n=30, medicated intervention group: n=29. Data presented as mean ± SEM. Repeated 

measures ANOVA was conducted to examine the impact of treatment on systolic blood pressure 

separately in medicated and non-medicated participants.  
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The differential response of the NU-AGE intervention on diastolic blood pressure in 

medicated and non-medicated individuals 

 

Non-medicated control group: n=43, non-medicated intervention group: n=42, medicated control 

group: n=30, medicated intervention group: n=29. Data presented as mean ± SEM. Repeated 

measures ANOVA was conducted to examine the impact of treatment on systolic blood pressure 

separately in medicated and non-medicated participants.  
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Annex 1 
NU-AGE pre-study health screening questionnaires, part 1 

 

 

 

 

 

 

New dietary strategies addressing the specific needs of the 

elderly population for healthy ageing in Europe 

(FP7-KBBE-2010-4) 

 

 

 

(to be filled in by the interviewer) 

 

 

To be filled in by NU-AGE staff 

 

 

                                  Subject Code:           

 

Interviewer: ___________________________________ 

 

Date of interview (dd/mm/yy): _____________________ 

 

Intervention Time:  Code    

 
 
 
 
 
 

ADMISSION QUESTIONNAIRE PART I 

S C 
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1. Gender:         Male   1             Female   2 
 

2. What is your date of birth?   Day: _____ Month: ______ Year: ______                 

Age_____ 

 

3. What type of housing do you live in?  

 

     a. House (incl. town/farm house), apartment, bungalow   Yes    1          No    2 

      

     b. Nursing home or residential care                         Yes    1         No    2 

 

1. Do you live at home independently (without the help of a caregiver)?  

    Yes    1       No    2 

 

5. During the last five years, have you been treated or followed by your doctor for a cancer? 

        Yes    1    No    2     

 If “Yes” please give brief details   

__________________________________________________________________________

______________________________________ 

 

    a. If “Yes” have you ever been under treatment?   Yes    1        No    2 

 

    b. If “Yes” are you still under treatment?          Yes    1         No    2 
        

    c. If your treatment has stopped, how long ago did it end? (specify number of months)  

 

6. Have you ever had a heart attack (myocardial infarction - AMI)?  Yes   1       No    2 

 

If “Yes” please give brief details   

____________________________________________________ 
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    a. If “Yes” can you walk about a half to one kilometre or climb 2 flights of stairs without 

symptoms (chest pain, dyspnea, abnormal sweating)?   Yes    1        No    2 

    b. If “Yes” do you have swollen ankles?                Yes    1        No    2 
 

7. Have you ever had a heart insufficiency?       Yes   1         No     

a. If “No” can you walk about a half to one kilometre or climb 2 flights of stairs without 

symptoms (chest pain, dyspnea, abnormal sweating)?   Yes    1        No    2 

    b. If “No” do you have swollen ankles?       Yes    1        No    2 

 

If “Yes” please give brief details   

__________________________________________________________________________

____________________________________________________________ 

8. Do you have a chronic respiratory disease (chronic bronchitis, emphysema, asthma)?   

            Yes   1        No   2      

If “Yes” please give brief details 

__________________________________________________________________________

_______________________________________ 

a. If “Yes” do you need oxygen therapy?  Yes    1         No    2      

b. If “Yes” do you have difficulty in breathing, especially when walking about a half to one 

kilometre or climbing 2 flights of stairs?    Yes    1        No    2 

 

9.  Do you have a chronic liver disease or liver cirrhosis? Yes    1        No    2            

If “Yes” please give brief details   

__________________________________________________________________________

____________________________________________________________ 

 

10.  Have you ever had a Hepatitis B or C viral infection or other chronic infectious disease 

such as HIV infection?         Yes    1         No    2     

If “Yes” please give brief details   

__________________________________________________________________________

___________________________________________________________ 
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11. Do you usually drink alcoholic beverages (beer, wine, vodka, cognac, whisky etc.)?    

Yes    1         No    2 

a. If “Yes”, how many glasses of alcohol do you drink at the weekend?  

    Number of glasses: _______ 

b. If “Yes” how many glasses of alcohol do you normally drink during the week (Mon-Fri)? 

    Number of glasses: _______ 

c. Total number of glasses per week: _______ 

 

12. Do you have any chronic kidney disease?   Yes    1        No    2 

If “Yes” please give brief details   

__________________________________________________________________________

___________________________________________________________ 

      a. If “Yes”, are you on haemodialysis or peritoneal dialysis?   Yes    1        No   2  

 

13. Have you had a stroke or a TIA (Transient Ischemic Attack) in the last year? 

      Yes   1         No   2      

 If “Yes” please give brief details 

__________________________________________________________________________

_____________________________________ 

14. Do you have diabetes?  Yes   1          No   2 

 If “Yes” please give brief details 

__________________________________________________________________________

____________________________________________________________     

 a. If “Yes”, do you use insulin?   Yes   1          No    2 

 

15. Do you have a food allergy/intolerance?   Yes    1           No    2 

 

If “Yes” please give brief details   

__________________________________________________________________________

___________________________________________________________ 
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16. Do you have any disease or condition that requires a special diet?      

        Yes   1        No   2 

 

If “Yes” please give brief details   

__________________________________________________________________________

____________________________________________________________ 

 

17. Do you use cortisone-based medicine regularly (chronic use) e.g. immunosuppressive 

drugs?           Yes    1          No    2 

If “Yes” please give brief details   

__________________________________________________________________________

____________________________________________________________ 

 

18. Have you been prescribed and taken a course of antibiotics in the last 2 months?    

Yes    1          No    2 

Date course completed or due to be completed (if applicable)      _________________ 

 

19. Do you use a medicine for high cholesterol?   Yes  1         No    2 

      a. If “Yes” have you been taking it for more than 3 months?  Yes  1        No    2 

 

20. Do you take thyroid hormones?    Yes  1        No    2 

      a. If “Yes” have you been taking them for more than 3 months? Yes  1        No   2 

 

21. Do you take aspirin as cardiovascular prevention (not as a painkiller or as an anti-

inflammatory drug)?   Yes            No    

      a. If “Yes” have you been taking it for more than 3 months?    Yes  1        No    2 

 

22. Have you changed your habitual prescribed medication use (e.g statins for high 

cholesterol, thyroxine for hypothyroidism, or aspirin for cardiovascular prevention) in the 

last 3 months?  

      Yes  1         No   2          

If “Yes” please give brief details   

__________________________________________________________________________

______ 
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23.  Do you use any prescribed medicine on a regular basis?       Yes    1         No    2 

       If “Yes” fill in the following scheme on use of prescription medicine. 

 

 

Name of Medicine 

 

 

For which disease? 
N° of 

intake 

ATC codes 

(to be filled in by 

interviewers) 

Start of the 

treatment 

(date) 

     

     

     

     

     

     

     

     

     

     

     

 

24. Are you currently taking part in any other nutritional or medical research trials? 

 

Yes   1         No   2           If “Yes” please give brief details _____________________________ 

__________________________________________________________________________ 

 

 

25. Is the volunteer eligible to proceed in the study?  Yes    1          No    2           
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Annex 2 
NU-AGE pre-study health screening questionnaires, part 1 

 

 

 

 

 

 

 

New dietary strategies addressing the specific needs of the 

elderly population for healthy ageing in Europe 

(FP7-KBBE-2010-4) 

 

 

 

 

 

 
(to be filled in by the interviewer) 

 

 

To be filled in by NU-AGE staff 

 

                                  Subject Code          

 

Interviewer: ___________________________________ 

 

Date of interview (dd/mm/yy): _____________________ 

 

Intervention Time:  Code    

 

ADMISSION QUESTIONNAIRE PART II 

S C 
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1. ANTHROPOMETRIC MEASUREMENTS 

 

  

 

  

 
       a. Measured total height (10-1 cm):                          ________ cm 

 

      b. Measured knee height (10-1 cm):                                         ________ cm 

 

c. Measured weight (without shoes and heavy clothes) (10-1 kg):               ________ kg 

    (Body weight will be measured to the nearest 0.1 kg)  

 

      d. Has the subject been measured in his/her undergarment? 

          Yes   1  

           No   2 

           Irrelevant   3 

 

e. BMI (weight /height2 ):______ Kg/m2 

 

BMI < 18.5 kg/m2 in elderly is a symptom of severe undernutrition which requires specific 

investigations and nutritional management and should be considered an exclusion criterion. 

 

f. Weight 6 months ago _________ Kg         g. Weight change (6 months): ________ Kg 

 

h. Weight a year ago: _________ Kg           i. Weight change (1 year) : ________ Kg 

 

An unintentional body weight loss more than 10% in the last 6 month is a symptom of 

undernutrition and should be considered as an exclusion criterion 
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2. FRAILTY ASSESSMENT (Fried’s Criteria) 

 

 

 

 

2.1 SHRINKING 

 

In the past 12 months have you lost 4.5 Kg (10 lb) or more unintentionally (i.e. 

not due to dieting or exercise)?   Yes  1   No   2 
 

2.2 WEAKNESS 

Hand grip test (grip strength dominant hand): 

This exercise tests the strength in your forearms and your hands. I will now ask you to 

stand up and squeeze the handle of this instrument as hard as possible – three times with 

each hand. One practice trial before the three measurements is allowed. 

 

a. What is the subject’s dominant arm?        1. Left arm            2. Right arm  

      Record the distance between grip base and base of frame: 

Right hand: ________ cm 

Left hand: ________ cm 

 

b. Right hand: ________ kg ________ kg ________ kg 

                                                                                                              

    Left hand: ________ kg ________ kg ________ kg 

       c. Mean of 3 measurements (dominant hand): ________ 

 

d. Did the subject complete the test?       Yes  1    No   2 

BMI/Male (kg/m2) Cut-Off (kg)* BMI/Female (kg/m2) Cut-Off (kg)* 

≤ 24 ≤ 29 ≤ 23 ≤ 17 

24.1–26 ≤ 30 23.1–26 ≤ 17.3 

26.1–28 ≤ 30 26.1–29 ≤ 18 

> 28 ≤ 32 > 29 ≤ 21  

 

Grip Strength, stratified by gender and body mass index (BMI) quartiles 
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2.3 POOR ENDURANCE (SELF-REPORTED EXHAUSTION):  

Evaluation of 2 items of CED-Depression scale. Now I’ll read you two statements: 

a) I felt that everything I did was an effort.  

    How often in the last week did you feel this way? __________ 

b) I could not get going.  

    How many times in the last week did you feel this way? __________ 

Scores:      0= rarely or none of the time (< 1 day) 

                  1= some or a little of the time (1-2 days) 

                  2= a moderate amount of the time (3-4 day) 

                  3= most of the time 

2.4  SLOWNESS (GAIT SPEED TEST)  

Starting Position: Patient is set-up in a standing position at the beginning of the course. 

Volunteers are asked to walk across the course at their “usual, comfortable speed.” Time is 

started when the subject’s foot crosses the black tape line indicating the beginning of the 

course (15 feet (4.57 m.) distance). One practice trial is performed prior to testing to ensure 

the patient understands the task. The test should be performed twice. 

Adaptation: Use of the volunteer’s habitual assistive device (cane) is permitted. 

Scoring: The fastest of both trials should be considered for scoring using the cut-offs below. 

Gait speed (time in seconds over 15 feet (4.57 m.) distance): 

Trial 1__________seconds 

Trial 2__________seconds       

2.4a Fastest __________seconds 

 

Height/Men (cm) Cut-Off (s)* Height /Women (cm)  Cut-Off (s)* 

≤ 173 cm ≥ 7 seconds ≤ 159 cm ≥ 7 seconds 

> 173 cm ≥ 6 seconds > 159 cm ≥ 6 seconds 

 

Walk Time, stratified by gender and height (gender-specific cutoff a medium height). 
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2.5 LOW ACTIVITY 

Please indicate your average level of physical activity for the last year, from the following 

categories: 

1.  Virtually no activity (or nearly bedridden). 

2.  Sitting for most of the time (occasionally a short walk or other non-demanding 
activity). 

3.  Light intensity exercise (walking, dancing, fishing or hunting, shopping without a 
car) at least 2-4 hours per week. 

4.  Moderate intensity exercise (running, walking uphill, swimming, gymnastics, 
digging in the garden/yard, riding a bike uphill, etc.) for 1-2 hours/week, or light 
intensity (see point 3) for more than 4 hours/week. 

5.  Moderate intensity exercise for more than 3 hours per week 

6.  Intense exercise regularly (several times a week). 

 

Light intensity exercise: exercise that is not accompanied by sweating and can be carried out 

whilst talking with another person. 

Moderate intensity exercise: exercise that is accompanied by sweating and does not allow 

a conversation at the same time. 

Intense exercise: maximum tolerable exercise. 

 

 

 

 

 

 

 

 

 

2.6. Is the volunteer eligible to proceed in the study?     Yes    1     No    2          

 

 

 

PRESENCE OF FRAILTY 

 

Positive for frailty phenotype: ≥ 3 criteria present 

 

Intermediate or pre-frail: 1 or 2 criteria present 
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Annex 3 
 NU-AGE 7 day food diary (condensed to one day) 

 

 

 

 
 

 
 

New dietary strategies addressing the specific needs of the 
elderly population for healthy ageing in Europe 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NU-AGE 7 DAY FOOD DIARY 

 

To be filled in by NU-AGE staff 

 Subject Code                              

Diary start date (dd/mm/yy): _________________________ 

Diary end date (dd/mm/yy):  _________________________ 

The home visit is scheduled for :___________________________ 

Intervention time: Code   

 S  C 
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As part of your participation in our research, we would like to know more 

about your dietary habits. For this, we ask you to keep a food diary for seven 

consecutive days. 

INSTRUCTIONS       

Carry the diary with you and write down everything you eat or drink 

immediately after doing so to avoid forgetting any items. Do not forget to 

write down things that you eat or drink in between meals (e.g. apples, nuts, 

cups of tea etc.) and things you have during the night (e.g. a few sips of 

water). Meals outside the home should also be recorded.  

The diary should be recorded in the following way: 

 Please write down the date and day of the week in the space provided at the 

top of the page at the start of each day that you record your diary. 

 Start each day with the page titled ‘before breakfast’.  

There are 8 sections available for each day; before breakfast, breakfast, 

during the morning, lunch, during the afternoon, evening meal, evening 

snack, during the night. 

 If nothing is eaten or drunk during one of these sections, draw a line through 

that section. 

 Fill in the diary using the headings provided; time, place, description of foods 

and drinks and portion size.  

 

Time: In this box write the time you ate or drank the item/meal. 

Place: Write down the place where you ate the item or meal (e.g. home, 

restaurant, cafeteria at work, friend’s house etc.)  

Description of foods and drinks: Write down a clear description of the food 

or beverage that you have consumed. It is important to use exact names and 

descriptions and whenever the product has a brand name, please, write that 

down too (e.g. Tropicana smooth orange juice, Tesco light choices cottage 

cheese, Hovis wholemeal farmers loaf). Also write down any additions you 

add to the food or drink such as sugar or salt.  

When describing a dish, write down the method of preparation (e.g. boiled or 

fried or grilled). If fat was used in the preparation, write the type of fat used 

(e.g. meatballs fried in vegetable oil). Also write down whether the food is 

home-made or bought ready-made. 

If you make a meal that involves a recipe please make a precise note of the 

recipe including all the ingredients, their quantities and the main cooking 

methods involved. It is important to give full details of ingredients (e.g. 

chicken breast, no skin). Please also note the number of portions that the 

recipe served and indicate how much you ate from this. If someone else 

made the meal, ask them for the details. There is additional space for recipe 

notes at the end of each day. 
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Meals eaten outside the home should also be recorded. When possible ask 

the cook or a member of the restaurant/canteen staff for information about 

the dish including the main ingredients and approximate quantities.  

 

Amounts / portion sizes: Write down the portion sizes of the foods and 

beverages as you list them. Please weigh your food or use household 

measures such as coffee mugs, tablespoons, millilitres or grams to help you 

with this.  

Use the following to help you estimate portion sizes: 

Beverages: state the volume if known (e.g. 300ml) or describe using a 

description of the size of the glass, cup, mug etc. (e.g. large mug).  Milk or 

cream added to coffee or tea should be measured in teaspoons or 

tablespoons. If you had a drink from a bottle, carton or can make a note of 

the size stated on the packaging, and how much you drank (e.g. “250ml 

bottle. Drank all”). 

Bread: write the number of slices of bread eaten. Describe the loaf as small, 

medium or large, or give the total loaf weight. Describe the slice as thin, 

medium, thick or extra thick (most pre-sliced loaves state the loaf size and 

the slice thickness on the packaging). (e.g. “2 medium slices, 800g loaf”). 

Breakfast cereal: describe the portion using small, medium or large bowl 

sizes or use tablespoons. Describe the amount of milk had on cereal using 

pints or millilitres or say if it was a ‘large’, ‘medium’ or ‘small’ amount. (e.g. 4 

tablespoons of cornflakes with ¼ pint skimmed milk). 

Cheese: for hard cheeses write down the number and thickness of slices. 

Use tablespoons to measure grated cheese. For soft cheeses such as 

Philadelphia measure in teaspoons or tablespoons.  

Confectionary (sweets and chocolate): describe using the weight on the 

packet, bar weight, number of pieces or individual sweets. 

Fruit: record the number of whole fruits, segments or slices. For canned fruit 

give the can weight and the proportion of which you ate. 

Ice cream, cream and dairy desserts: use scoops or tablespoons. Where 

whole items are eaten give the pot or packet weight.   

Meat and fish dishes: record the number or weight of meat or fish portions 

(e.g. “one chicken breast”, “3 rashers of unsmoked back bacon” or “1/4 of 

515g pack, lean beef mince, raw weight”). Remember to state if you are 

recording the weight as the cooked or raw weight. Also note if the meat or 

fish includes skin or fat and if this was eaten.  

For roast meats and cold cuts of meat state the number and thickness of 

slices (e.g. 2 slices of Tesco wafer thin cooked ham). 



252 

 

Oils, butter and margarine: use teaspoons or tablespoons. When spreading 

on bread or toast state if the layer was thin, medium or thick. 

Pasta, spaghetti: Describe the weight using a proportion of the packet weight 

(e.g. 1/10 of 1kg packet of dried wholemeal fusilli) or measure in 

tablespoons.  Remember to state if you are giving the dried weight or cooked 

weight.  

Puddings and desserts: use tablespoons, or slices with a description of 

small, medium or large. For commercial items describe as a proportion of the 

packet weight (e.g. Sainsbury’s strawberry cheesecake 530g. Ate 1/5). 

Rice: Describe the weight using a proportion of the packet weight or use 

tablespoons. Remember to state if you are measuring cooked or raw rice.  

Sauces, gravy and dressings: use teaspoons or tablespoons. Note that even 

the amount of meat sauces such as Bolognaise sauce should be estimated 

this way (e.g. “one teaspoon of sweet chilli sauce”). 

Soups: use bowls to describe the size of the portion as a small, medium or 

large bowl. Or if you are using canned or carton soups note the size marked 

on the packaging and state how much you ate (e.g. “440g can, ate half”). 

Sugar: use teaspoons or tablespoons or if the sugar is cubed state the 

number of cubes. Remember to mention sugar sprinkled on top of cereal and 

sugar in tea etc. 

Vegetables and salad items: use whole vegetables or salad items, slices or 

tablespoons as measures (e.g. “4 cherry tomatoes, 5 thin slices of cucumber 

and 2 tablespoons lettuce”). 

Other foods: use the information given on the packaging whenever possible. 

The weight should be included on the packet information. If you don’t eat the 

whole packet note the total weight of the packet followed by the amount you 

think you ate (e.g. if you had a packet of walnuts, “100g packet, ate ¼ of the 

packet”).  

If in doubt about how to describe a portion, write as much detail as possible. 

The portion can then be further discussed with the research assistant once 

the diary is complete.  

Leftovers: We want to know the amount that was actually eaten, this means 

leftovers need to be taken into account. This can be done in two ways:                                                                                                            

1. If any leftovers remained on your plate from the originally stated portion in 

your food diary, please make a note of this (e.g. “1/4 of lasagne recipe, 3 

small boiled potatoes. Only ate 1 of the boiled potatoes”).                                   

 2. Alternatively, you can just record the actual amount eaten (e.g. “1/4 of 

lasagne recipe, 1 small boiled potato”). 
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Labels/wrappers: Labels are a very useful source of information for us. 

When possible please save any labels or packaging that shows the product 

information for an item you have consumed.  This is especially useful for 

foods or brands you record which are perhaps lesser known or uncommon. 

Comments: At the end of each day there is space to write any comments 

you might feel are relevant. For example this may be to inform us if the day 

was not a typical day or if there was any reason why you might have eaten 

more or less than usual.  

The dietary records will be discussed with the research assistant during your 

visit to the UEA to be sure that you haven’t forgotten anything and to verify 

whether you have given enough detail.  
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Example day 

EXAMPLE 

Date:  07/05/2012                      Day of the week: Monday 

BEFORE BREAKFAST 

Time Place Description of foods and drinks Portion size 

07:30 Home Cup of Nescafe instant coffee 

semi skimmed milk 

1 large mug 

1 tablespoon 

BREAKFAST 

Time Place Description of foods and drinks Portion size 

 

08.00 

 

 

 

Home 

 

 

 

 

 

Kellogg’s fruit n fibre with 

Semi skimmed milk 

Tesco orange juice from concentrate  

 

 

 

30g 

1/5 pint  

150ml 

 

DURING THE MORNING 

Time Place Description of foods and drinks Portion size 

 

09.30 

 

11.00 

 

Friend’s 

House 

Home 

 

Cup of Tetley decaffeinated tea   

with semi-skimmed milk 

Water  

 

Medium mug 

tablespoon 

Tall glass, 250ml 

LUNCH 

Time Place Description of foods and drinks Portion size 
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13.00 Home Chicken salad sandwich: 

Hovis wholemeal medium 

sliced,800g loaf. 

Flora light low fat vegetable 

spread 

Tesco sliced roast chicken (240g 

pack)  

Tesco salad tomatoes 

Tesco baby leaf and rocket salad 

(90g pack) 

Banana 

Robinson orange squash, no 

added sugar 

diluted with tap water 

 

2 slices 

 

1 teaspoon 

 

1 slice  

 

1 tomato 

1/6 of packet 

 

1 medium  

50ml 

 

200ml 

DURING THE AFTERNOON 

Time Place Description of foods and drinks Portion size 

15.00 Starbucks 

coffee shop 

Green tea 

Blueberry muffin 

 

Regular 

Ate half 

EVENING MEAL 

Time Place Description of foods and drinks Portion size 
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18.30 Home Wholemeal pasta 

 

Homemade bolognaise sauce (see 

recipe) 

Grated cheddar cheese 

Tap water 

 

Strawberries 

Tesco low fat natural yogurt (500g tub) 

 

150g (cooked 

weight) 

1/8 of recipe 

 

1 tablespoon 

Large glass, 

300ml 

6 medium  

2 heaped 

tablespoons 

EVENING SNACK 

Time Place Description of foods and drinks Portion size 

20.30 Home PG tea with 

Semi-skimmed milk 

Medium mug 

1 tablespoon 

DURING THE NIGHT 

Time Place Description of foods and drinks Portion size 
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Recipe notes 

Please write the recipe or list the ingredients of any dishes that may require 

more information to be given. This might include home-made dishes, take-

away meals etc that you have mentioned but not described previously. 

Where applicable please list amounts of ingredients and brand names. 

Please indicate the amount or proportion actually consumed by you.  

Name of dish:   Bolognaise sauce                                                                                                         
Number of portions the recipe serves (if applicable):  8 portions 
Ingredient Amount Ingredient Amount 
Tesco lean beef 
mince 
 
Garlic  
 
Red onion 
 
Red pepper 
 
Yellow pepper 
 
Courgette 

500g 
 
 
2 cloves 
 
1 medium 
 
1 medium 
 
1 medium 
 
1 medium 
 
 
 

Napoli chopped 
tomatoes 
 
Tesco tomato 
puree 
 
Tesco mild olive 
oil 
 
Dried mixed 
herbs 

400g can 
 
 
1 tablespoon 
 
 
1 tablespoon 
 
 
2 teaspoons 
 

Brief description of the cooking method: 
Fry onion & garlic in oil, add mince and fry until brown. 
Add peppers, courgette, tomatoes, puree & herbs.                                                       

Simmer for 30 minutes 

Any additional comments: 

I ate 1 portion from the above recipe. 

 

 

 

 

 

 

 

 

 

END OF EXAMPLE 
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Start of diary 

 

 

 

If you have any questions or problems, contact the researchers during 

regular office hours. 

Tel: 01603 591568 or email: nuage@uea.ac.uk 
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DAY 1 

Date:         /         /                  Day of the week: 

BEFORE BREAKFAST 

Time Place Description of foods and drinks Portion size 

    

BREAKFAST 

Time Place Description of foods and drinks Portion size 

  

 

 

 

 

 

 

 

 

DURING THE MORNING 

Time Place Description of foods and drinks Portion size 

  

 

 

 

 

 

LUNCH 

Time Place Description of foods and drinks Portion size 
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DURING THE AFTERNOON 

Time Place Description of foods and drinks Portion size 

  

 

 

 

 

 

 

 

 

EVENING MEAL 

Time Place Description of foods and drinks Portion size 
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EVENING SNACK 

Time Place Description of foods and drinks Portion size 

    

DURING THE NIGHT 

Time Place Description of foods and drinks Portion size 
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Recipe notes 

Please write the recipe or list the ingredients of any dishes that may require 

more information to be given. This might include home-made dishes, take-

away meals etc that you have mentioned but not described previously. 

Where applicable please list amounts of ingredients and brand names. 

Please indicate the amount or proportion actually consumed by yourself.  

Name of dish:                                                                                                                
Number of portions the recipe serves (if applicable): 

Ingredients Amount Ingredients Amount 
 
 
 
 
 
 
 
 
 
 

   

Brief description of the cooking method 

Any additional comments: 

__________________________________________________________________ 

 

 

 

Additional space for notes and comments that may be useful to the researchers: 

 

 

 

Thank you for completing your 7 day food diary 

Dietary strategies for healthy ageing in Europe (NU-AGE) 

 

Repeat x7 days 
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Annex 4 
 British Dietetic Association information sheet for control group  

 



264 

 

Annex 5 
 Questionnaire used to assess compliance in the NU-AGE intervention group 

Dietary Goals 

1 How many servings of whole grains do you consume per day?  
(1 serving = 1 slice bread, 28g (1oz) uncooked rice or pasta, 28g (1oz) breakfast cereal or 120g 
(4oz) porridge) 
 

 

2 How many servings of whole grain rice or pasta do you consume per week?  
(1 serving = 28g (1oz) uncooked rice or pasta or 150g (5oz) cooked rice or pasta) 
 

 

3 How many portions of fruit do you consume per day?  
(1 portion = 1 apple, 1 banana, 2 plums, 7 strawberries, 150ml fruit juice or 1 tablespoon of dried 
fruit) 
 

 

4 How many portions of vegetables do you consume per day? (1 portion = approximately 80g (3oz)) 
 

 

5 How many portions of legumes do you consume per week? (1 portion = approximately 80g (3oz)) 
 

 

6 How much milk or yoghurt do you consume per day?   
6a. What type of milk and yogurt do you usually consume?  

 
7 

How many servings of cheese do you consume per day? (1 serving = 30g (1oz)) 
 

7a. What type of cheese do you usually consume? 
 

 

8 How many servings of white fish or shellfish do you consume per week? (1 serving = 125g (4oz))  



265 

 

 

8a. How many serving of oily fish do you usually consume per week? (1 serving = 125g (4oz)) 
 

 

9 How many servings of red meat do you consume per week? (1 serving = 125g (4oz)) 
 

 

11 How many servings of nuts do you consume per week? (1 serving = 20g (1oz)) 
 

 

12 How many eggs do you consume per week? 
 

 

13 How many tablespoons of olive oil do you consume per day? 
 

 

14 How many glasses of alcohol do you consume per week? 
 

 

15 How many glasses of red wine do you consume per week? 
 

 

16 How many glasses or cups of water, milk, decaffeinated tea or coffee, fruit juice or fruit squash 
do you drink per day?  (1 glass/cup=200ml) 
 

 

17 How many cups of caffeinated tea or coffee drink per day?  (1 cup=200ml) 
 

 

18 How often per week do you add salt to your food when cooking or at the table? 
 

 

19 How often per week do you add sugar to drinks or foods? 
 

 

20 How many times per week do you consume cakes, biscuits or desserts?   
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Annex 6 
 Overview of parameters and measurements (adapted from NU-AGE protocol)  

Health 
Category 

Measures Additional details  

Inflammatory 
status   

C-reactive protein (hsCRP), and 
cytokines, including IL-1Beta, IL-12, 
INF gamma, IL-6, sIL-6R, IL-1RA, 
TNFalpha, IL-17, IL-8, IL-10, TGF-
beta1 

Measured in plasma 

Immune health positivity for HCMV 
Further characterisation of immune 
function conducted at IFR 

Measured in serum 
Cytokines, cell proliferation, CD8+ count, 
using techniques such as flow cytometry 

Insulin 
sensitivity 

glucose, insulin, and Hba1C Measured in serum or whole blood as 
appropriate, Hba1C measured by 
accredited laboratory 

Liver function 
status 

ALAT, GGT, alkaline phosphatase, 
creatinine 

Measured in serum 

Hormonal 
function status 

leptin and adiponectin Measured in plasma 

Bone health Bone mineral density  Dual-energy X-ray Absorptiometry (DXA) 

25-OH vitamin D, parathyroid hormone Measured in serum 

Cardiovascular 
health status 

Lipid profile ( triglycerides, total 
cholesterol, HDL-cholesterol, LDL-
cholesterol) 
Additional lipids, fatty acid status, nitric 
oxide & vascular health markers 
Vascular health & function 

Measured in plasma 
 
Measured in plasma & other blood 
fractions 
 
Multiple measures including pulse wave 
velocity, EndoPAT, CAVI 

Blood pressure Using an electronic blood pressure monitor 

Cognitive 
status 

CERAD (MMSE, Boston Naming, Word 
recall and recognition etc), plus 
additional domain specific tests 
(Babcock recall, patterns, numbers, 
trials) 

Global measure of cognitive function, 
Attention and Executive function, 
depression, information processing speed, 
executive function and memory, language, 
processing speed and executive 
functioning and attention and working 
memory respectively.  

Mental health 
and quality of 
life 

Depression and health related quality 
of life  

Geriatric Depression Scale (GDS), SF-
36v2  

Physical 
functioning 

Hand grip strength Measured to the nearest 0.1 kg using a 
Hand Dynamometer 

Physical performance 
 
 
Physical activity 

Activities of Daily Living (ADL) scale, 
Instrumental Activities of Daily Living scale 
(IADL) scale, PASE questionnaire , SPPB 
ActiGraph activity monitor 

Digestive 
health status 

Bowel function, gastrointestinal 
disturbances, evacuation frequency 

Short digestive health questionnaire (in 
general questionnaire) 

Anthropometry Height Person standing erect, wearing no shoes, 
to the nearest 0.1 cm. 

Weight Person wearing light garments, no shoes 
and empty pockets, to the nearest 0.5 kg 

Body Mass Index Calculated from height and weight 
measurements 

Waist- and hip circumference Waist: either at the narrowest 
circumference of the torso or at the 
midpoint between the lower ribs and the 
iliac crest. Hip: measured horizontally at 
the level of the largest lateral extension of 
the hips or over the buttocks. Standard 
protocol and repeat measurements 

Body composition Dual-energy X-ray Absorptiometry (DXA) 

Nutritional 
status 

Micronutrient status, including vitamin 
B12, folate, and 25-OH vitamin D 

Measured in serum or other blood fractions 
as appropriate 
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Iron status (Hb, ferritin, transferrin 
receptor) 

Full blood count by accredited laboratory 
and serum analysis of ferritin and sTfR 

Polymorphisms DNA  From whole blood, using SEQUENOM 
MassARRAY: Appropriate polymorphisms 
related to ageing and inflammation or 
disease pathways including APOE, e2, e3, 
e4, IL-6-174 G/C, TNFa-318 A/G; 
TLR4+896 A/G; IL-10-1082A/G; 
TGFb1G/C915, PPARg2 Pro12AIa, PON1 
Q192R, TP53 codon 72 C/G, SIRT3 72bp 
VNTR, HSP70-1-110 A/C, KLOTHO KL-
VF, IGF1R and PIK3CB will be analysed.  
Additional vascular function related 
polymorphisms such as FADS1 and 
FADS2 

Biomarkers of 
ageing 

Telomere Length Real Time PCR on DNA from whole blood 

Metabolics Metabolic profiles Oxido-lipidomics analysis in urine 

NMR and MS metabolomics In serum/plasma and urine samples 

Immune and 
inflammation 

Genes mRNA from PBMCs will be analysed by 
means of transcriptomics analysis.  

Proteasome and immunoproteasome 
composition and activity  

Western blot analysis and fluorimetric 
assay on protein from PBMC, beta5i, 
beta2i, beta1i.  

Intestinal 
health 

Microbiota rRNA gene amplicons, phylogenetic 
microarray profiling (HitChip), 
pyrosequencing, illumine sequencing in 
faeces. Cy3, Cy5 

Dietary 
information 

Habitual dietary intake Will be estimated using 7 day diaries 

Compliance to the diet Will be estimated by means of 3 day food 
diaries (2 weekdays, 1 weekend day) 

Food choices  

Other Smoking status General questionnaire  

Medical history and medicine use 

Education level 

Social economic status 
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Annex 7 
TWIN UK FFQ 
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