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ABSTRACT 

Electromagnetic radiation propagating through any molecular system typically experiences a characteristic change in its 

polarization state as a result of light-matter interaction. Circularly polarized light is commonly absorbed or scattered to an 

extent that is sensitive to the incident circularity, when it traverses a medium whose constituents are chiral.  This research 

assesses specific modifications to the properties of circularly polarized light that arise on passage through a system of 

surface-functionalized spherical nanoparticles, through the influence of chiral molecules on their surfaces.  Non-

functionalized nanospheres of atomic constitution are usually inherently achiral, but can exhibit local chirality associated 

with such surface-bound chromophores.  The principal result of this investigation is the quantification of functionally 

conferred nanoparticle chirality, manifest through optical measurements such as circularly polarized emission.  The relative 

position of chiral chromophores fixed to a nanoparticle sphere are first determined by means of spherical coverage co-

ordinate analysis.  The total electromagnetic field received by a spatially fixed, remote detector is then determined.  It is 

shown that bound chromophores will accommodate both electric and magnetic dipole transition moments, whose scalar 

product represents the physical and mathematical origin of chiral properties identified in the detected signal.  The analysis 

concludes with discussion of the magnitude of circular differential optical effects, and their potential significance for the 

characterization of surface-functionalized nanoparticles.  
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1. INTRODUCTION 

 

Chirality is a property attributed to two otherwise identical entities that are non-superimposable upon their mirror image.  

It is a characteristic of physical materials and optical radiation featuring in a diverse range of prominent research fields 

including drug development, chemical catalysis and nanoscale metamaterials.  In many of the material applications, it is 

vitally important to distinguish, quantify and ultimately separate chiral matter into pure samples that exhibit identical 

chemical properties.  Fortunately, a number of powerful techniques have been developed that enable such analysis; for 

example in circular dichroism spectroscopy a chiral molecule’s capacity to exhibit a differential response based on the 

handedness of the input light is manifest in a quantifiable difference in the absorption rate of left- and right-handed 

photons.1–3  In the time-reverse process, it follows that chiral discrimination is also achievable through measurements of 

spontaneous emission by circular polarized luminescence spectroscopy.3–6  In fact, regarding the wealth of information 

that can be discerned from polarization resolved optical measurements, there exists a renewed interest in the inherent links 

between molecular chirality and the helicity of light emitted from optically active molecular chromophores.7,8 

 

To address, in detail, specific relationships between various practical measures of chirality, the simplest optical process through 
which material chirality is conferred into an optical field is spontaneous circularly polarized photon emission by a single chiral 
molecule.  This investigation represents a logical extension in which we consider a more complex, yet highly prevalent form of 
chromophore in the form of surface coated nanoparticles (SCN).  Essentially an SCN consists of a shaped nanoparticle core 
covered in a thin layer of organic or inorganic material, the most prominent examples being silica-coated gold or iron oxide.  
These nanoparticle materials are commonly developed for their diverse biomedical applications, yet they are equally 
recognised as important technology in analytical science where SCNs are employed as molecular sensors and biomarkers.9–13 
For the present investigation, surface coated spherical nanoparticles are considered due to their uniformity in size and shape 
in all directions from a local origin, thus their lack of chiral properties – essentially, nanoparticle spheres as a result of their 
inherent symmetry are characterized as macroscopically, or globally achiral.  It is proposed that incorporation of chiral 
molecular chromophores on a nanosphere surface will confer local chiral effects on such a SCN.  Further, such effects should 
prove detectable and quantifiable through polarization resolved measurements of the emitted optical field.    
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In the theoretical investigation to follow, the details of an emitter-detector system are first detailed, establishing the nature 

of an arbitrary surface coated nanosphere functionalized with chiral, molecular chromophores.  The relative positioning of 

chromophores on the sphere surface will be established by use of optimal spherical covering coordinates.  Radiative 

emission from the sphere, sourced from the chiral chromophores, will be subject to polarization-resolved measurements 

and the results will be utilized to characterize conferred chiral properties.  A theoretical formulation of all associated 

electromagnetic fields will be achieved within the fully quantized formalism of quantum electrodynamics (QED).  The 

effect on the recorded field as influenced by key variables including the number of surface bonded chromophores per 

sphere and the separation distance between the emitter and the detector will be determined.  The latter is of particular 

interest, allowing both long-range and local field effects to be considered in detail.  

2. THEORETICAL METHODS 

 

In order to assess chiral emission from a surface functionalized nanosphere it is important to first establish both the physical 

and optical properties of the emitter.  A single nanosphere of radius r is coated with a total number of chromophores n, 

such that at any point in time any of them might be found in an excited electronic state.  All chromophores are evenly 

distributed around the nanosphere surface with the exact position of each being based upon coordinates of the optimal 

covering of a sphere in 3-dimensions as reported by Sloane et al – see figure 1.14  Such coordinates formally determine the 

position vectors of each chromophore relative to the sphere centre, and they also define the orientation of electronic and 

magnetic transition dipole moments.  For each chromophore, the latter transition moments are assumed to be parallel to 

each other, pointing outwards from the center of the sphere.  It is further supposed that individual chromophores undergo 

no optical interactions with each other, and that the nanoparticle as a whole is entirely transparent to any optical emission 

sourced from the attached emitters.     

 

 
 

Figure 1 – Optimal covering coordinates and diagrammatic representation of a functionalized nanopshere with 12 evenly distributed 

chromophores.  The chromophores form a regular icosahedron on the surface of a sphere with dimensions presented in units of 

nanoparticle radius r. 

 

Regarding the optical field measurement, the polarization of a single quantized mode from any emitter is routinely 

quantified in terms of four Stokes parameters Sn, each of which directly relates to wave intensities measured in different 

orthogonal bases.15  In considering the differential emission of both left- and right-handed optical emission from a chiral 

emitter the most significant operator is S3, commonly presented in the following form;  
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In equation (1) IR and IL represent the field intensities of right- and left-handed, circularly polarized emission respectively, 

and each E is a complex vector associated with the electric field.  For an electronically excited transmitter whose chirality 

permits a radiative decay transition to be simultaneously allowed by both E1 and M1 selection rules, the total electric field 

is expressible as:  

 1

j i ij i ijE V c m U     , (2) 

where μ is the electric dipole moment of the source transmission and m represents a magnetic dipole equivalent.  These 

two terms suffice for the identification of conferred chirality.  Within a fully quantized theoretical formalism, derivation 

of the second-rank E1-E1 and E1-M1 coupling tensors Vij and Uij respectively, is achieved by summing the quantum 

amplitudes of emitted, circularly polarized photons of arbitrary propagation and polarization vector;16  
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Here, k represents the magnitude of the emission wavevector and R is the distance between a chromophore emitter and the 

detector.  Upon substitution of the tensors in equation (3) into equation (2), it is possible to determine the x and y 

components of the emerging field as required by equation (1), where the former for example is expressible as:   

  1 1

x x xx y yx z zx y yx z zxE V V V c m U c m U          . (4) 

It is worth noting that equation (4) will account for an arbitrary point detector, positioned at a distance R' from the center 

of the nanoparticle, see Fig 2.  The detector will measure propagating radiation along the z-axis of the emission, thus 
ˆ ˆ

k zR R , hence 0zxU   in equation (4).  Otherwise the magnitude of all unit displacement vectors that feature in both 

the E1-E1 and E1-M1 tensors depend on the position of each chromophore on the nanoparticle emitter relative to the 

detector as determined by use of the spherical covering coordinates.   

 

 
 

Figure 2 – Illustration of the proposed nanoparticle emitter and point detector system.  In this example a single chromophore (surface 

normal arrow) is attached to the surface of the nanosphere. The chromophore displacement relative to a point detector (double arrow) 

is determined based on optimum spherical covering coordinates.  

3. RESULTS 

 

The S3 parameter of an emerging electric field from a single molecular chromophore follows derivation of expressions for 

Ex and Ey and subsequent substitution into equation (1).  The overall result is expressible as the sum of both near-zone 

(NZ) and far-zone (FZ) terms that describe how the system responses in two distinct distance regimes.  The NZ result 



 

 
 

 

becomes most significant in any case where the distance between the emitter and the detector is substantially smaller than 

the wavelength of emitted radiation, i.e. 𝑅 ≪ 𝜆.  It transpires in the near-zone that S3 varies with a dependence on R-3, 

specifically:  
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Of interest, it is worth noting that all terms in equation (5) feature a product of two electric transition dipole moments.  In 

comparison, all terms that determine the system response in the far-zone regime where 𝑅 ≫ 𝜆 exhibit a dependence on R-

2 and feature a product of E1 and M1 transition moments:  
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The presented results are general.  Consequently, variation in the S3 signal based on any number of independent variables 

– including the number of chromophores attached to the nanosphere emitter, or the distance between the nanosphere emitter 

and the point detector – requires assignment of numerical values to experimental parameters that feature in equations (5) 

and (6).  For present purposes, all E1 transition moments are assumed to have a magnitude of 1 D – each M1 transition 

moment is smaller by a factor of the fine-structure constant.  The nanosphere radius, r is arbitrarily set at 1 nm and the 

number of chromophores attached to the spherical surface is investigated within the range n = 4 and n = 20 – the total field 

is the sum of contributions from each molecular emitter.  The overall dependence on the detected signal to emitter-detector 

separation is shown in Fig 3. 

 

 

 
 

Figure 3 – The S3 signal from a surface functionalized nanosphere. Each series represents an emitter functionalized with different 

numbers of evenly distributed molecular chromophores.  In these example results, the wavelength of the emitted radiation is arbitrarily 

set at 700 nm.  

 



 

 
 

 

The calculated S3 signal is clearly most significant at very short emitter-detector separations, particularly in systems that 

feature a large number of surface attached chromophores.  Physically, it can be understood that at a large separation, 

detection of radiation from molecular emitters fail to register the chiral nature of the source.  In contrast, at shorter 

distances, local chiral effects can indeed be observed.  Shown in Fig. 3, all nanoemitter systems exhibit a reduction in the 

recorded S3 radiant intensity of at least 70% beyond an emitter-detector separation of 10 nm.  Preliminary investigations 

suggest that such loses in the recorded signal are typical for any system where the detector is placed away from the source 

at a distances that exceed ten times the emitter radius.  An interesting, and not obviously apparent point of discussion 

concerns how the reported dependence on small emitter-detector separation is not attributable to the magnitude of the 

previously presented near-zone result at low values of R.  As the total S3 signal is calculated as the sum of equations (5) 

and (6), it would be expected that the NZ contribution dominates when the detector and emitter are close to each other and 

that the sum of all FZ terms becomes more prominent at larger values of R.  In fact, at all times, the NZ result is smaller 

than the FZ equivalent by multiple orders of magnitude.  This disparity indicates that the total calculated S3 parameter, 

determined at any emitter-detector separation, can to a good approximation be expressed simply as equation (6). 

4. DISCUSSION 

 

The results of this investigation show how it is possible to confer a degree of local chirality upon an inherently achiral 

nanoparticle sphere by functionalizing the sphere’s surface with evenly distributed, optically active molecular 

chromophores.  Theoretical calculations based upon the experimental technique of Stokes polarimetry have been utilized 

to verify molecular chirality by use of an optical method of measurement.  Specifically, quantification of the chiral nature 

of an emerging optical field is determined by use of the S3 parameter which considers the differential emission of both left- 

and right-handed circularly polarized light.  For the systems in this current study, the S3 signal is recorded by an arbitrary 

point detector and found to be significant only in the immediate vicinity surrounding the emitter, i.e. at emitter-detector 

separations similar in magnitude to the nanosphere radius.  Increased signals are noted when greater numbers of attached 

chromophores per nanosphere are considered, and for systems that incorporate chromophores with large electric and 

magnetic transition dipole moments – the S3 magnitude increases approximately as a square of any increase in the E1 and 

M1 moments.  A number of further investigations are expected to follow that further explore the assumptions considered 

in this initial research.  To begin, in order to more faithfully represent practical experimental systems, it is necessary to 

consider in these calculations the various mechanisms by which the nanoparticle spheres and their attached chromophores 

might mutually interact.  It is likely, for example, that multiple chromophores attached to a single nanoparticle will be in 

close enough proximity to exhibit optical scattering effects and/or non-radiative radiation-matter interactions such as 

Förster resonance energy transfer.  For now, optimum covering coordinates have been employed to model chromophores 

evenly distributed around the nanosphere surface; however, less symmetrical arrangements of such chromophores will also 

likely result in modified emission properties.  In such cases, the orientation of the nanospheres relative to the detector will 

need to be addressed – by extension, rotation of the spheres will also need to be considered.  Beyond localized effects 

concerning the properties of individual spheres, there exists further scope to explore how multiple surface functionalized 

emitters interact with each other.  Indeed, experimental devices based upon this research could further consider arrays of 

surface coated nanoparticles immobilized on metal surfaces where additional plasmonic effects may contribute to enhanced 

field emission.  
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