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Abstract 

 

Purpose: Human Organotypic Retinal Cultures (HORCs) have been shown to be a 

useful experimental model to investigate retinal ganglion cell (RGC) fate in short term 

models of glaucomatous stress. The aim of the current work was to investigate the 

long-term fate of RGCs in HORCs and to develop culture conditions to promote the 

RGC survival. The potential neurotrophic effect of mesenchymal stem cell derived 

growth factors on the RGC survival was studied and the role of epigenetic regulation 

of retinal cell gene expression was examined.  

Methods: Quantitative real-time polymerase chain reaction (QRT-PCR) was used 

for assessment of retinal cell marker genes expression, immunohistochemistry and 

terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling 

(TUNEL) for quantitative assessment of apoptotic RGCs. LDH activity in culture 

media was used to assess total cell death in HORCs.  

Results: Serum-free (SF) DMEM/HamF12 with no added antibiotics was found to 

be the medium of choice for the human retina culture. A statistically significant loss of 

NeuN-labelled RGCs was documented after 2 weeks in culture using SF DMEM/Ham 

F12, whereas with Neurobasal medium, the loss was detected after week 1. The 

numbers of apoptotic RGCs were high under all culture conditions after 1 week. 

Vascular endothelial growth factor (VEGF) and platelet derived growth factors 

(PDGFs) conferred a protective effect on RGC survival in long-term HORCs, whereas 

leukaemia inhibitory factor (LIF) failed to exert this effect. The loss of RGC-derived 

gene markers expression was selectively altered by the histone deacetylase inhibitor 

(HDACI) trichostatin A (TSA). 

Conclusions: The timing for long-term HORCs use ex vivo is dependent on 

culture conditions. Long-term HORCs can be used for up to 2 weeks in order to 

prevent detectable RGC loss. Both VEGF and PDGF possess an ability to prolong 

RGC survival in long-term HORCs. HDAC inhibitor TSA selectively reverses the 

down-regulation of RGC-derived gene markers expression. 
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CHAPTER 1 

INTRODUCTION 

The eye 

Anatomy and physiology 

The eye is a highly specialised photosensory organ. The main function of the 

eye is to process visual signals. Light is focused on the retina, where it is 

converted into electrical signals and then sent to the brain by means of the 

retinal ganglion cell axons. The eye has an approximate shape of a sphere with 

an average axial length of approximately 24mm and a volume of about 6.5ml 

(Forrester et al. 2008). However, short sighted eyes have a longer axial length, 

whereas long-sighted eyes are shorter than average.  

 

 

 

Figure 1: The eye anatomy. Adapted from https://www.eyesite.co.uk. 
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The globe of the eye consists of three main layers. The outer layer comprises 

the cornea and sclera. The middle vascular layer consists of the choroid, ciliary 

body and the iris. The innermost neurosensory layer is the retina. The cornea is 

the transparent anterior part of the eye which allows light to enter the eye to be 

focused on the retina. The cornea consists of several layers: the corneal 

epithelium, the stroma, Descemet’s membrane and the endothelium. Together 

with the pre-corneal tear film, the cornea is responsible for most of the 

refractive power of the eye. The sclera is the non-transparent, white part of the 

outer coat of the eye. The main roles of the sclera are supportive to and 

protective of the ocular contents. The transparency of the outer layer of the eye 

depends on the thickness and the arrangement of the collagen fibres, together 

with the water content. In the cornea, the collagen fibres are highly organised 

and the water content is very low. In contrast, in the sclera collagen fibres are 

chaotically arranged, have different diameters and the water content is high. 

The thickness of the sclera varies considerably in different parts of the eye, 

being thickest (approximately 1mm) at the most posterior aspect of the eye 

(Forrester et al. 2008). The region of the sclera where the optic nerve exits the 

eye is known as the lamina cribrosa (LC). The LC is a round sheet of collagen 

fibres with multiple perforations through which axons of the retinal ganglion 

cells (RGCs) exit the eye to form the optic nerve (ON). The LC provides 

support for the RGC axons, but is weaker than the much thicker and denser 

surrounding sclera (Snell & Lemp 1989).    

Light entering the eye is focused on the retina by the lens. While the lens has 

less refractive power than the cornea, in the younger individual it is able to 
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change its shape and thus the direction of the refracted light and is responsible 

for the fine focusing of light. The lens is made up of long hexagonal cells and 

surrounded by an elastic capsule. The lens is transparent in young individuals, 

but with age this quality is gradually lost, ultimately leading to cataract 

development. The lens is suspended in position by delicate fibres, called 

zonules, which connect the lens to the ciliary body. 

The space in front of the lens is divided into anterior and posterior chambers by 

a pigmented, contractile structure called the iris. The iris acts as a diaphragm 

which controls the exposure of the retina to light through its opening, the pupil. 

The iris has a vascular structure supported by collagen stroma and pigmented 

cells, melanocytes. The size of the pupil is regulated by counteraction of the 

dilator and the sphincter pupillae muscles.  

The ciliary body is a part of the vascular, middle coat of the eye and is 

positioned circumferentially at the base of the iris. The shape of the lens is 

changed by the movement of the muscles within the ciliary body, increasing 

refractive power is being referred to as accommodation.  

The space behind the lens, known as the vitreous cavity, is filled with vitreous 

humour that acts like a cushion supporting the lens and protecting the retina. 

The vitreous has the consistency of a viscoelastic gel. The vitreous gel is 

transparent and is composed mainly of water (98%), fine collagen fibres and 

hyaluronic acid (Forrester et al. 2008).  

The choroid is a highly vascular and heavily pigmented layer, positioned 

between the retina and the sclera. The main function of the choroid is to supply 
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blood to the retina. Because of heavy pigmentation, the choroid also helps to 

minimise visual disturbances by absorbing light and preventing it reflecting 

back into the eye. 

Retinal structure and function 

Topographic organisation 

The retina is divided into central and peripheral regions. The central region of 

the retina, called the macula, is surrounded by the superior and inferior 

temporal branches of the central retinal artery and vein. The average diameter 

of the macula is about 5.5mm (Snell & Lemp 1989). 

 

 

Figure 2: Schematic diagram of the retinal topography.  

 

The most central point of the macula, called the foveola, has no retinal blood 

vessels or RGCs and is responsible for the highest resolution visual acuity. The 

area around the foveola, about 0.35mm in diameter, has the thickest layer of 

RGCs and is called the fovea. The presence of yellow carotenoid pigments, 

zeaxanthin and lutein, in the cone photoreceptors gives the region its name – 
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the macula lutea (Bernstein et al. 2001). Macular pigment absorbs short-

wavelength (blue) light (Snodderly et al. 1984), thereby affording protection 

from acute light damage (Barker et al. 2011). Moreover, macular pigment 

offers protection against oxidative stress to the retina (Khachik et al. 1997). 

In relation to the central retina, the head of the optic nerve is located slightly 

toward the nasal area, about 3mm from the centre of the macula. The average 

diameter of the optic nerve head is about 1.5mm (Snell & Lemp 1989). The 

central retinal vessels arise from the optic disc and divide into superior and 

inferior branches followed by further division into nasal and temporal branches 

according to the retinal anatomy. The peripheral retina comprises the 

remaining retina outside the temporal retinal vessels. The most peripheral area 

of the retina, called the ora serata, is a transition zone where the retina meets 

the ciliary body. 

The cellular structure and function 

The retina is the neurosensory, inner layer of the eye where light is converted 

into electrical signals. The retina has a complex structure with highly organised 

layers of cell bodies and inter-cellular connections. Retinal thickness varies 

throughout the tissue. Close to the optic nerve head, the retinal depth is 

approximately 0.56mm, whilst at the ora serrata it is only 0.1mm (Snell & 

Lemp 1989). All RGC axons project towards the LC to form the optic nerve 

head, such that the retinal nerve fibre layer (RNFL) thickness is most 

prominent in that area. Light travels though the retina before being absorbed by 

photosensitive cells, the cones and rods. The electrical response generated by 

photoreceptors is transmitted and modified by means of interneurons (bipolar, 
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amacrine and horizontal cells) to the RGC bodies and then to the brain via 

RGC axons. Glial cells support the retinal tissue structure and maintain the 

retinal microenvironment.  

 

 

Figure 3: The layers and cellular organization of the retina. (A) Low-power 

micrograph (H&E staining); (B) Schematic diagram. ILM=internal (inner) limiting 

membrane, NFL=nerve fibre layer, RGCL-retinal ganglion cell layer, IPL=inner 

plexiform layer, INL=inner nuclear layer, OPL=outer plexiform layer, ONL=outer 

nuclear layer, ELM=external (outer) limiting membrane, PR=photoreceptors outer 

segments, RPE=retinal pigment epithelium. Image B is adapted from 

http://webvision.med.utah.edu/imageswv/schem.jpeg & husect.jpeg. 

 

Retinal Ganglion Cells 

RGCs are neurons that transmit visual signals from the retina to the brain. RGC 

structure consists of a cell body, multiple short dendrites and one long axon. 

The RGC bodies are located in the innermost nucleated layer called the RGC 

layer of the retina. The RGC dendrites connect with the bipolar and amacrine 

cells from the inner nuclear layer (INL) forming the inner plexiform layer 

(IPL). There are about 1.2 million RGCs in the retina of each human eye 

(Forrester et al. 2008). The thickness and density of the RGC layer is not 
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uniform throughout the retina. There are up to seven rows of RGC nuclei in the 

perifoveal region, with an average thickness from 60 to 80µm (Forrester et al. 

2008). Outside the macula, the RGC layer decreases to a single row, with an 

average thickness from 10 to 20 µm (Forrester et al. 2008). RGCs are absent 

from the foveola. The macula contains around 60% of all RGCs in the retina, 

even though it only occupies less than 1.4% of retinal surface (Curcio & Allen 

1990).  

RGC axons travel toward the optic nerve head within the RNFL, passing 

through the LC to subsequently become myelinated by oligodendrocytes. On 

the way to the visual cortex of the brain, RGC axons form the optic nerve and 

synapse with cells in the lateral geniculate nuclei via the optic chiasm and the 

optic tract. The axons of the cells from the lateral geniculate nuclei form optic 

radiations within the parietal lobes of the brain. Finally, electrical signals from 

the retina are delivered to the primary visual cortex in the occipital lobes, 

where they are analysed and expressed as visual perception.  

Retinal ganglion cell classification 

RGCs are classified according to cell morphology and function. 

Conventionally, two classes of RGC have been identified in primates, the 

midget and parasol RGCs, classified according to size of the dendritic tree, 

receptive field diameter and speed of the signal conduction. RGCs of the 

midget system are quite small, whereas the parasol cells are much larger, with 

their dendritic tree and receptive field diameters being approximately three 

times greater than that of the midget RGCs. Axons of the parasol RGCs are 

larger and have faster conduction velocities compared with that of the midget 
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RGCs (Watanabe & Rodieck 1989). However, because of the development of 

new research techniques, it is believed now that there are at least 20 types of 

RGCs (Masland 2012). Based on spatial distribution of the mouse RGC 

dendritic trees, Sumbul and colleagues (2014) have classified RGCs into 15 

types by combining evidence from light and electron microscopy together with 

genetic labelling (Sumbul et al. 2014). A recently discovered RGC type is the 

intrinsically photosensitive retinal ganglion cell (ipRGC). IpRGs contain the 

photopigment melanopsin and are responsible, in part, for the pupil response to 

light and circadian cycles (Sand et al. 2012). IpRGCs comprise only 0.2% of 

total retinal ganglion cells in the eye (Dacey et al. 2005).  

Functionally, RGCs are classified based on the response to light as ON, OFF 

and ON/OFF RGCs. ON-ganglion cells fire in response to light, whereas OFF-

ganglion cells have an opposite response to light stimulation. ON/OFF RGCs 

respond to both the onset and the termination of light (Kuffler 1953). Each 

ganglion cell is sensitive to illumination of a certain size, the area being called 

the receptive field of the RGC. The receptive field of each RGC is composed 

of two concentrically arranged regions: an excitatory centre and an opposite 

surrounding region. The opponent centre/surround organisation of the RGCs 

receptive field improves vision quality, specifically colour contrast and focus 

enhancement (Forrester et al. 2008).  

Interneurons (bipolar, amacrine and horizontal) 

The fundamental functions of interneuron cells are to transmit and modify the 

electric signal sent from photoreceptors towards the RGCs, therefore enhancing 

contrast sensitivity and image quality. Horizontal cells modify synaptic 
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transmission between photoreceptors and bipolar cells whereas amacrine cells 

modify transmission between bipolar and RGCs (Masland 2001). For example, 

horizontal cells can slow down the transmission of signals by releasing 

inhibitory neurotransmitters, mainly γ-aminobutyric acid (GABA). Feedback 

from horizontal cells to photoreceptors enables adjacent regions of the retina to 

compare the intensity of light, therefore enhancing the perception of contrast 

(Masland 2001). Amacrine cells, on the other hand, can be GABAergic or can 

release excitatory neurotransmitters, for example dopamine orü acetylcholine. 

Bipolar cells directly connect photoreceptors to RGCs. In the macula, cone 

bipolar cells may make contact with as few as one cone in the central retina, 

whilst peripheral retinal rod bipolar cells may receive inputs from up to 70 rods. 

There are two types of bipolar cells, called ON and OFF, depending on their 

response to glutamate. In the dark, glutamate is released by photoreceptors and 

stimulates hyperpolarization of ON and depolarization of OFF bipolar cells. 

Light reduces glutamate availability, thereby controlling the polarized state of 

cells. The quality of the image is enhanced by the difference in response to 

light by both types of bipolar cells (Masland 2001). The interneuron cell bodies 

are grouped within the INL, and their dendrites form synaptic connections with 

RGCs and photoreceptors in the inner and outer plexiform layers.  

The retinal glia (Müller cells, astrocytes and microglia) 

Müller cells are the main supporting cells of the retina. The long cell bodies of 

Müller cells extend from the inner edge of the retina, where their foot processes 

lie adjacent to the inner limiting membrane, running through the entire depth of 

the retina to form the outer limiting membrane with the inner segments of the 
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photoreceptors. In addition to their mechanical function, Müller cells produce 

and secrete various trophic factors, including leukaemia inhibitory factor (LIF) 

(Joly et al. 2008, Von Toerne et al. 2014), osteopontin (Del Rio et al. 2011) 

and transferrin (Picard et al. 2008).  

Astrocytes are predominant in the RNFL, RGC layer and at the optic nerve 

head, forming an irregular scaffold between neurons, neuron synapses and 

vessels (Chu et al. 2001, Trivino et al. 1997). Besides maintaining structural 

integrity of the retina, astrocytes are also involved in various important 

functions including promotion of glutamate clearance, potassium buffering, 

antioxidant defence and homeostasis of purines (ATP and adenosine), GABA 

and D-serine (Allen & Barres 2009, Franke & Illes 2014, Larsson et al. 1980, 

Levi & Patrizio 1992). Astrocytes produce and release various molecular 

mediators, including prostaglandins (PGE), nitric oxide (NO) and arachidonic 

acid (AA), that are involved in the regulation of blood supply to the retina 

through the control of blood vessel diameter (Iadecola & Nedergaard 2007).  

Retinal microglial cells are similar to brain macrophage-like phagocytic 

microglial cells and their main roles relate to tissue homeostasis and immune 

responses (Forrester et al. 2008). 

Photoreceptors 

Photoreceptors are responsible for the absorption of light by means of visual 

pigment and initiation of neuro-electrical impulses. Photoreceptor cells are 

divided into two morphologically distinctive groups: rods and cones. Rods are 

responsible for contrast, brightness and motion, whereas cones specialize in 

fine and spatial resolution together with colour vision. In the human eye, there 
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are about 115 million rods and only 6.5 million cones (Forrester et al. 2008). 

With respect to photoreceptors, the macula is populated almost entirely by 

cones, whereas the peripheral retina is populated mainly with rods. Rods 

contain the visual pigment rhodopsin, which absorbs blue-green light (Brown 

& Wald 1964). Rod photoreceptors are highly sensitive and are active in dark-

dim light conditions. Cones contain opsins as their visual pigments. Depending 

on the structure of the opsin molecule, specific cones are sensitive to long (red), 

medium (green) or short (blue) wavelengths of light. The presence of cones of 

different wavelength sensitivity provides the retina with the basis for colour 

perception. In dim light, perceived images appear rather grey in colour since 

rods are “colour blind” photoreceptors.  

The retinal pigment epithelium 

The retinal pigment epithelium (RPE) is a pigmented monolayer of hexagonal 

shaped cells positioned between the photoreceptors and the underlying choroid. 

The RPE closely interacts with the photoreceptors for the maintenance of 

visual function. RPE cells are densely packed with granules of melanin that 

absorb lights and reduce light scatter within the eye. A major function of the 

RPE is the regeneration of 11-cis-retinal through a multistep enzymatic 

pathway known as the retinoid visual cycle (Driessen et al. 2000). The RPE is 

also involved in the disposal of the outer segment of photoreceptor cells 

(Finnemann 2003). The RPE takes up nutrients such as glucose, retinol, and 

fatty acids from the choroidal blood and delivers these to the photoreceptors, as 

well as removing ions, water, and metabolic end products from the subretinal 

space into the choroidal blood for their clearance (Strauss 2005). In addition, 
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the RPE secretes a variety of growth factors, including vascular endothelial 

growth factor (VEGF) (Adamis et al. 1993) and platelet-derived growth factors 

(PDGFs) (Campochiaro et al. 1994). The RPE also secretes intercellular matrix 

helping to maintain the structural integrity of the retina and the choroid 

(Forrester et al. 2008).   

The optic nerve head 

The optic nerve head (ONH) is an area of the retina where all RGC axons leave 

the globe to form the optic nerve (ON). The edge of the ONH is raised, because 

of a large number of the RGC axons that are grouped together, and is called the 

neuroretinal rim (NRR), while the central area is depressed. Within the central 

depression of the ONH, the central retinal vessels enter and leave the eye and 

the region of the depression is called the ONH cup. Axons of the macular 

RGCs form about 90% of the NRR (Forrester et al. 2008). The RGC axons exit 

the eye via perforations in a round sheet of collagen fibres known as the lamina 

cribrosa (Snell & Lemp 1989). Astrocytes are the major glial cell type in the 

nonmyelinated ONH in most mammalian species and are oriented 

perpendicular to the RGC axons (Hernandez 2000). In the ONH, astrocytes not 

only provide structural and functional support to the axons, but they also form 

the interface between connective tissue surfaces and surround blood vessels 

(Anderson 1969). Due to absence of both the retina and the choroid in the 

region of the ONH, the ON area is functionally represented as ‘the blind spot’ 

in the visual field of the eye. As ganglion cell axons pass through the LC, they 

become myelinated by oligodendrocytes, resulting in a doubling of the 

thickness of the ON (Forrester et al. 2008). 
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Blood supply to the retina and the optic nerve head 

The retina is one of the most metabolically active tissues in the human body 

and it has been estimated that it consumes more oxygen per gram of tissue than 

the brain (Ames 1992). Although the blood supply of the retina is provided by 

several sources, there are anatomical pitfalls that make the retina extremely 

vulnerable to circulatory disturbances. The supply of nutrients and clearance of 

end products is provided by two major sources: the central retinal and the 

choroid vessels, both originating from the ophthalmic artery. In the retina, 

branches of the central retinal vessels nourish the inner two-thirds, while the 

choroidal circulation supplies the outer one-third. There is no connection 

between retinal and choroidal circulations within the retina, except at the optic 

nerve head, where a connection exists as a network of capillaries, called the 

circle of Zinn-Haller (Forrester et al. 2008). The central retinal artery divides 

into four major branches that supply corresponding retinal sectors. There is no 

overlap in the blood supply of these sectors, such that the inner retina has no 

alternative in maintaining its viability and thereby is limited in its ability to 

recover if retinal artery occlusion occurs.  

Aqueous humour function and dynamics 

Aqueous humour is the fluid that maintains the intraocular pressure (IOP) and 

the shape of the anterior segment of the eye. The aqueous supplies nutrients to 

the avascular structures of the eye, such as the lens and the cornea. Aqueous 

humour is composed of water (98%) and electrolytes, and its chemical 

composition is similar to plasma, except for a relatively low protein 

concentration. Significant aqueous humour components include glucose, 
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lactate, ascorbate, albumin, transferrin, fibronectin, immunoglobulins and 

enzymes (eg. carbonic anhydrase, lysozyme, plasminogen activator), cytokines 

(eg. basic fibroblast growth factor and transforming growth factor-β), 

catecholamines (adrenalin, noradrenalin and dopamine), glutathione and 

hyaluronic acid (Forrester et al. 2008). Aqueous humour is produced 

continuously by the non-pigmented epithelium of ciliary body processes and 

passes through the pupil (from the posterior chamber into the anterior chamber) 

towards the circumferential irido-corneal drainage angle, from where it leaves 

the eye through two main outflow routes (Lewis et al. 1999). The conventional 

outflow route is via the trabecular meshwork (TM) into Schlemm’s canal. 

Aqueous humour reaches venous systems by means of collector channels and 

aqueous veins. The drainage angle is an anatomical structure positioned 

between the cornea and the iris. The non-conventional or uveoscleral outflow 

route is when drainage occurs through the iris root into the space between the 

sclera and the choroid. Elevated IOP can be caused by an increased resistance 

of aqueous outflow through the TM (Johnson 2006). 
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Figure 4: Aqueous humour outflow. Normal outflow through trabecular meshwork 

(large arrow) and uveoscleral routes (small arrow) and related anatomy. Most aqueous 

flow is through the trabecular meshwork. Each pathway is drained by the eye's venous 

circulation. The image is adapted from Lewis et al. 1999. 

 

Glaucoma 

Background, diagnosis and classification 

Glaucoma is the second leading cause of blindness worldwide with an 

estimated 60.5 million people affected (Quigley & Broman 2006). It is a 

neurodegenerative disease, where the gradual loss of RGCs causes progressive 

visual field (VF) loss, which can result in tunnel vision and eventual blindness. 

Clinically, the diagnosis of glaucoma is based on progressive thinning of the 

optic nerve head NRR and corresponding characteristic VF defects. According 

to the IOP level, glaucoma is classified into two major sub-types: high tension, 

primary open angle glaucoma (POAG) and normal tension glaucoma (NTG). 
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The normal population IOP is considered to be between 10 and 21mmHg. The 

normal range has been established statistically, and is based on two standard 

deviations above/below the mean IOP of 16 mmHg in normal population 

(Hollows & Graham 1966). There are other types of glaucoma based on the 

cause of high IOP. Glaucoma can be classified as primary or secondary, 

congenital or acquired. Angle closure glaucoma is caused by a physical 

obstruction of the drainage angle for aqueous outflow. Secondary glaucoma 

occurs as a consequence of a different primary condition such as uveitis, 

trauma or neovascularisation. Elevation of IOP with no associated structural 

change to the NRR of the optic nerve head, or functional deterioration on VF 

testing is called ocular hypertension (OH).   

                                                                                                                                          

 

Figure 5: An example of structural and functional changes in a patient with NTG. A) 

Healthy appearance of the optic nerve head neuroretinal rim with normal visual field. 

B) Glaucomatous neuroretinal rim loss and tunnel-like visual field defect. 
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Risk factors 

Glaucoma is a complex disease caused by a combination of risk factors, the 

main one of which is IOP. IOP is the main treatable risk factor and several 

population-based studies have shown an association of glaucoma prevalence 

and high initial IOP (Dielemans et al. 1994, Sommer et al. 1991). A significant 

reduction of IOP (>20%) halves the risk of glaucoma development in patients 

with OH (Kass et al. 2002). Although, in the majority of cases, glaucoma 

progression cannot be halted, it has been shown that a reduction of IOP slows 

down the progression of the disease in eyes with either POAG or NTG 

(Advanced Glaucoma Intervention Study (AGIS)2000, Collaborative Normal 

Tension Glaucoma Study 1998). However, some patients gradually deteriorate 

despite a significant drop in IOP on treatment (Heijl et al. 2002). Age is 

another major contributing factor in glaucoma development. Multiple 

population-based studies have shown a rapid rise in the prevalence of 

glaucoma in individuals over 50 years of age (Dielemans et al. 1994, Heijl et al. 

2013, Leske et al. 1994). Family history of glaucoma is another important 

factor, since both first- and second-degree relatives are at a significantly higher 

risk for glaucoma development, the relative risk being more than ten-times 

greater among first-degree relatives of affected patients with POAG (Wang et 

al. 2010b, Wolfs et al. 1998). Recent advances in understanding of the human 

genetic code have identified several genes, such as myocylin (MYOC), 

optineurin (OPTN), cytochrome P4501B1 (CYP1B1), apolipoprotein E gene 

(APEO), and latent transforming growth factor-β binding protein 2 (LTBP2) 

which provide foundation for future research in glaucoma genetics (Ali et al. 
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2009, Copin et al. 2002, Fingert et al. 1999, Hollander et al. 2006, Rezaie et al. 

2002, Stoilov et al. 1997). Race is also a significant risk factor, with people of 

Asian and African-descent being at a significantly greater risk of developing 

glaucoma compared with Caucasians (Stein et al. 2011, Tielsch et al. 1991). 

The incidence of primary angle closed glaucoma (PACG) is known to be 

higher in patients of Chinese and Eskimo origin compared to that in European 

and African populations (Congdon et al. 1992, Congdon et al. 1997, Foster & 

Johnson 2001). It has been shown that individuals with myopia are more likely 

to develop open angle glaucoma, with a direct correlation of the risk with an 

increase in the refractive error (Marcus et al. 2011). Hypermentropia, on the 

other hand, is a common finding in patients with PACG (Lowe 1970). A 

history of vasospasm, such as migraine or cold extremities (Raynaud’s 

phenomenon) and a nocturnal reduction in systemic blood pressure have been 

identified as contributing factors for glaucoma progression in patients with 

NTG and POAG (Broadway & Drance 1998, Drance et al. 2001, Graham & 

Drance 1999, Leske 2009). Identification of high risk patients is important with 

respect to screening. Close monitoring for detectable ON damage and/or 

progressive VF loss helps clinicians recommend treatment as early as possible 

in order to slow down the pathological changes.  

Pathophysiology 

There are big gaps in our understanding of the pathological processes involved 

in glaucoma development and progression. It is most likely that a combination 

of mechanical (Burgoyne et al. 2005) and metabolic factors (Drance et al. 2001) 

triggers an initial assault on RGCs and their surroundings. It is possible that 
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with time some processes initially intended to be protective, become 

detrimental to RGC survival causing further damage to partly diseased RGCs, 

their neighbouring cells in the retina (secondary neuro-degeneration) and the 

visual pathway within the brain (Levkovitch-Verbin et al. 2003). Some poorly 

understood factors, for example age-related changes in structure and function 

of vascular (Grunwald et al. 1993) and connective tissue or genetic 

abnormalities, may act as predisposing elements for the damage in glaucoma, 

making some patients uniquely susceptible to glaucoma development 

(Advanced Glaucoma Intervention Study (AGIS) 2000). 

Intraocular pressure  

It is well established that the level of IOP is the major risk factor in the 

aetiology of glaucoma. In man and other primates, the mechanical forces 

induced by elevation of pressure on the ONH, as the weakest point within the 

tough scleral layer of the globe, cause a displacement of the mesh-like 

connective tissue of the LC outwards (figure 6) (Burgoyne et al. 2005, Quigley 

1999, Quigley & Addicks 1981). The mechanical compression of the 

unmyelinated RGC axons passing through the narrow spaces within the 

collagen plates of the LC leads to disruption of the axoplasmic flow and 

subsequent RGC axon degeneration, both retrograde and anterograde 

(Anderson & Hendrickson 1974, Minckler et al. 1977). Evidence for disrupted 

axoplasmic flow in glaucoma has been shown in rats where the retrograde flow 

of radioactively labelled brain-derived neurotrophic factor (BDNF) from the 

synapse of the retinal ganglion cells to the cell body has been shown to be 

inhibited by an acute elevation of IOP (Quigley et al. 2000). Clinically, the 
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pathological processes in humans lead to a characteristic glaucomatous 

“cupping” of the ONH associated with a specific pattern of VF loss (figure 6).  

 

 

Figure 6: Scanning electron micrographs illustrate the normal position of the lamina 

cribrosa (blue lines) in a human eye (a) and the characteristic of glaucoma excavation 

of the ONH (b). Adapted from Quigley 1999. 

 

Similar changes to those observed in humans are seen in smaller mammalian 

species, such as rat and mouse, where the predominant cellular elements of the 

ONH are the astrocytes rather than collagen fibres (Dai et al. 2012). Dai and 

colleagues have proposed that the ONH astrocytes are the primary targets of 

the mechanical forces induced by the glaucomatous condition (Dai et al. 2012). 

Together with the loss of the RGC support, the authors have suggested that the 

effect on RGCs is metabolic. For example, the energy metabolism of the RGC 

is dependent on glycolytic products, in the form of lactate, released by 

astrocytes (Tsacopoulos & Magistretti 1996, Wender et al. 2000) because 

neurons use glucose to maintain their antioxidant status at the expense of its 

utilization for bioenergetic purposes (Herrero-Mendez et al. 2009). By 
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removing potassium and glutamate (Choi et al. 2012, Farinelli & Nicklas 1992, 

Magistretti et al. 1999, Waniewski & Martin 1986) from the extracellular space, 

astrocytes maintain the extracellular environment for neighbouring neurons 

(Rosenberg 1991). By providing various neurotrophic factors, such as nerve 

growth factor (NGF), insulin-like growth factor 1 (IGF-1), basic fibroblast 

growth factor (bFGF), transforming growth factor (TGF)-α and TGF-β, BDNF 

and glial cell line-derived neurotrophic factor (GDNF), astrocytes exert a 

neuroprotective function (Buchanan et al. 2000, Duenas et al. 1994, Flores et 

al. 1999, Fonseca et al. 2014, Lu et al. 2014, Wu et al. 1998). Loss of astrocyte 

function has the potential, therefore, to result in multiple adverse effects on 

RGC function. 

Glutamate cycle and excitotoxicity  

Glutamate is the most abundant free amino acid found in the brain (Schousboe 

1981) and is considered to be the major neurotransmitter in the mammalian 

central nervous system. Glutamate is involved in most aspects of normal brain 

function including cognition, memory and learning, as well as regulation of 

brain development and cell survival, differentiation and function of synapses 

(Danbolt 2001). Glutamate exerts its signalling function by binding to and 

thereby activating glutamate receptor proteins. Several subtypes of glutamate 

receptor have been identified: the ionotropic receptors, such as alpha-amino-3-

hydroxy-5-methyl-4-isoxazoleproponic acid (AMPA), kainate and N-methyl-

D-aspartate (NMDA) receptors and metabotropic receptors (mGluR). Activation 

via the ionotropic NMDA receptor is believed to be the most efficient at 

causing cell death (Arundine & Tymianski 2003). There are no specific 
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enzymes for glutamate break-down present in the extracellular space, so that 

control of glutamate receptor activation is related to the balance between 

release of glutamate into the extracellular fluid and the removal of glutamate 

from it. Extracellular glutamate overload leads to over-activation of the 

glutamate receptors which in turn result in prolonged and massive 

depolarization, excessive influx of Ca
2+

 into neurones (Sanchez-Armass & 

Blaustein 1987), as well as Ca
2+

 release from the endoplasmic reticulum (Pin & 

Duvoisin 1995). As a results of high intracellular Ca
2+

 concentration, calcium-

dependent processes are also inappropriately activated, including proteases, 

caspases, lipases, endonucleases, pro-apoptotic factors and the production of 

free radicals from the mitochondria, consequently causing cell death (Arundine 

& Tymianski 2003, Lipton & Nicotera 1998). In order to maintain 

physiological glutamate concentrations, rapid glutamate uptake is catalyzed by 

a family of Na
+
-dependent transporter proteins, such as glutamate–aspartate 

transporter (GLAST) (EAAT1 in humans), glutamate transporter (GLT-1) 

(EAAT2 in humans), excitatory amino acid carrier 1 (EAAC1) (EAAT3 in 

humans) and excitatory amino acid transporter 4 and 5 (EAAT4 and EAAT5 in 

humans), located at the cell surface of both astrocytes and neurons (Danbolt 

2001, Grewer & Rauen 2005, Marcaggi & Attwell 2004). In 1994, Pellerin and 

Magistretti proposed that the glutamate released from neurons as a result of 

increased synaptic activity is taken up by astrocytes where it is converted to 

glutamine by glutamine synthase (GS). Glutamine is then transported out of the 

astrocyte into the neuronal pre-synaptic terminal via the extracellular space, 

where it is converted by glutaminase to glutamate (Pellerin & Magistretti 1994). 
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In the retina of rats and mice, antibodies to GS were found to be localized to 

the Müller cells and astrocytes (Anlauf & Derouiche 2013, Chang et al. 2007, 

Derouiche & Rauen 1995, Riepe & Norenburg 1977). 

The first evidence of glutamate toxicity to retinal neurons came from the 

experiment on newborn mice, where the subcutaneous injection of 

monosodium glutamate destroyed the neurons in the inner layers of the retina 

(Lucas & Newhouse 1957). Since then, other studies have confirmed that high 

doses of, or prolonged exposure to, glutamate causes RGC death via 

stimulation of ionotropic glutamate receptors (Bai et al. 2013, Siliprandi et al. 

1992, Sisk & Kuwabara 1985, Vorwerk et al. 1996). An excessive level of 

glutamate in glaucoma pathogenesis has been proposed and reported as a 

feature of glaucoma in monkeys, humans (Dreyer et al. 1996), and dogs 

(Brooks et al. 1997). However, Dalton in 2001 published a paper exposing 

Dreyer and his co-authors in data misconduct and subsequent investigations of 

allegations of missing data by the Harvard university, the Office of Research 

Integrity (ORI) and the Food and Drug Administration (FDA) (Dalton 2001). 

In rats, elevated glutamate levels in the vitreous has been documented in an 

IOP-induced retinal ischaemia model (Lagreze et al. 1998), whereas in an optic 

nerve trans-section model, there was no evidence of such an effect 

(Levkovitch-Verbin et al. 2002a). The concept of a toxic neuro-excitatory 

element to glaucomatous optic neuropathy is an attractive one that might, in 

part, also explain the processes involved in secondary neuro-degeneration of 

RGCs that are neighbours to others already affected by glaucoma 

(excitotoxicity) (Levkovitch-Verbin et al. 2003).  
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Dysfunction of glutamate transporters is often a key component of the cascade 

leading to excitotoxic cell death with subsequent release of intracellular 

glutamate (Attwell et al. 1993) and the potential for secondary excitotoxic 

neuro-degeneration. In the retina, glutamate uptake is mainly operated by the 

glial glutamate transporter GLAST and the neuronal transporter GLT-1 (Rauen 

2000). The localisation of GLT-1 on neurons is only observed in retina after 

exposure to elevated IOP, where photoreceptors are consistent in their 

immunoreactive to GLT-1 antibodies (Sullivan et al. 2006). In the rat laser-

induced model of ocular hypertension, some authors have found a significant 

reduction in the levels of both GLAST and GLT-1 (Martin et al. 2002), 

whereas others showed a sustained increase in GLAST expression 

(Woldemussie et al. 2004). Moreover, Sullivan and colleagues (2006) found no 

change in the level of GLAST, however the expression of GLT-1 was vastly 

altered in glaucomatous retinas from rats and humans (Sullivan et al. 2006). In 

a rat retinal ischaemia model, a decrease of neuronal glutamate uptake has been 

associated with a significant modulation of GLT-1 expression with no 

significant change in the level of GLAST (Russo et al. 2013). The importance 

of GLAST transporter in glaucomatous RGC degeneration was highlighted 

when GLAST-knockout mice were shown to develop spontaneous RGC death 

and glaucomatous optic nerve degeneration without IOP elevation (Harada et 

al. 2007).  

Apoptosis  

Apoptosis is a regulated cellular death process that involves multiple enzymes 

and exerts itself as a distinct sequence of morphological changes to affected 
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cells. Apoptosis is critical for normal tissue homeostasis and is involved in 

diverse processes including development and immune clearance. During 

apoptosis, cell content undergoes an internal degradation by means of 

condensation and shrinkage of the nucleus and cytoplasm. There is a 

distinction between two interlinked signalling pathways involved in apoptosis: 

the extrinsic, or receptor activated, and the intrinsic, or mitochondrial mediated 

pathways (Green 2000). Both pathways lead to cell death through the 

activation of proteases known as caspases. Initiator caspases are the first to be 

activated in the apoptotic pathway which, in turn, activate effector caspases, 

which trigger a series of proteolytic events that eventually lead to cell death 

(Fuentes-Prior & Salvesen 2004). The extrinsic pathway is based on 

stimulation of the death receptors (DRs) containing a special intracellular death 

domain on the cell surface. DRs mainly comprise the tumour necrosis factor 

(TNF) receptor family including Fas, TNFR1 and TRAIL (TNF-related 

apoptosis-inducing ligand) receptors, which become activated by their 

respective death ligands, such as FAS ligand, TNF and TRAIL (Ashkenazi & 

Dixit 1998). Stimulation of DRs follows activation of caspase-8, with 

subsequent proteolytic cleavage of caspase-3 which results in proteolytic 

cleavage of cytoskeletal and cell-cell adhesion proteins, chromatin 

condensation, and DNA fragmentation (Krammer et al. 2007, Wang et al. 

2005), during which the cells form apoptotic bodies preventing leakage of 

cytoplasmic content. The apoptotic bodies attract phagocytic cells to clear the 

dead cell with minimal compromise to the surrounding tissue (Elmore 2007). 

The intrinsic pathway is more complex than the extrinsic pathway and is 
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known to be activated by an imbalance between levels of anti-apoptotic and 

pro-apoptotic B-cell lymphoma protein-2 (Bcl-2) family of proteins (Green & 

Kroemer 2004). The Bcl-2 protein family is divided into two classes of 

molecules that have opposing effects: antiapoptotic members such as Bcl-2 and 

Bcl-xL that protect the cell against apoptosis, and proapoptotic members such 

as Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer 

(Bak) that trigger apoptosis (Lo et al. 2011). Pro-apoptotic proteins, Bax and 

Bak,  together with a reactive oxygen species (ROS) (Chidlow et al. 2007) play 

a central role in changing mitochondrial membrane permeability, with 

subsequent release of cytochrome c (a component of the electron transport 

chain essential for cellular chemical energy). Cytochrome C binds to Apaf1 

(pro-caspase apoptotic protease activating factor-1), forming an apotosome 

(Danial & Korsmeyer 2004), which in turn activates caspase 9 (Li et al. 1997), 

followed by activation of caspase-3 leading to initiation of apoptosis, DNA 

fragmentation and eventual cell death. 

There is evidence that the loss of neurons in glaucoma occurs largely by 

apoptosis (Nickells 1999, Quigley 1999). It has been shown that both chronic 

elevated IOP and optic nerve axotomy can cause distinct morphological 

changes compatible with apoptosis in monkey and rabbit eyes when compared 

with controls (Quigley et al. 1995). Apoptosis of RGCs has been confirmed as 

a feature of glaucomatous neurodegeneration, for example, using in vivo rodent 

models of acute optic nerve injury (Berkelaar et al. 1994, Li et al. 1999), 

experimental ocular hypertension (Garcia-Valenzuela et al. 1995) and in vitro 

using the retina from patients with known glaucoma (Kerrigan et al. 1997, 
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Okisaka et al. 1997, Tatton et al. 2001), as wells as in non-glaucomatous 

conditions such as central retinal artery occlusion in rats (Zhang et al. 2005) 

and ischaemic optic neuropathy in humans (Levin & Louhab 1996). 

Ischaemia  

Ischaemia is a pathological condition caused by a shortage of blood supply, 

resulting in an inadequate delivery of oxygen and glucose. The eye as an organ 

is able to maintain a constant supply of blood in response to ocular perfusion 

pressure changes by controlling vascular resistance through changes in the 

diameter of the local vasculature, a process called autoregulation (Harris et al. 

1998). There is a possibility that autoregulation is impaired in conditions 

caused by ischaemia, including glaucoma (Anderson 1999). It has been shown 

that not only patients with glaucoma have diminished blood flow in the NRR 

of the ONH when compared with OH patients and normal subjects, but the 

reduction in the NRR blood flow correlated with the size of the ONH cupping 

(Hafez et al. 2003). In general, patients with NTG have been found to have 

impaired ocular blood flow that appears to be more pronounced than in 

glaucoma patients with elevated IOP (Drance et al. 2001). Moreover, there is a 

vast amount of published data illustrating an association between systemic 

vascular pathology, such as atherosclerosis, arterial hypertension and 

hypotension, stroke, diabetes and glaucoma (Bonomi et al. 2000, Leske et al. 

2002, Shoshani et al. 2012, Tielsch et al. 1995, Weinreb & Harris 2009). 

Specifically, studies have revealed a relationship between visual field defects 

and decreased blood flow velocities or increased resistance of the ophthalmic 

and short posterior ciliary arteries (Galassi et al. 2003, Martinez & Sanchez 
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2005). Reduction of the choroidal blood flow at the macula has been 

documented with increasing age (Grunwald et al. 1993), which in turn might 

eventually lead to age-related changes in the neuronal morphology (Balazsi et 

al. 1984) and could play a role in the aetiology of glaucoma. As a potential 

cause of reduced blood flow and relative ischaemia, high levels of the 

endothein-1 (ET-1), a powerful vasoconstrictor, have been found in the 

aqueous of glaucoma patients (Choritz et al. 2012, Tezel et al. 1997). 

Moreover, intravitreal injections of ET-1 have been shown to impair axonal 

transport in RGCs, as well as constricting the microvasculature of the optic 

nerve head and retina (Sasaoka et al. 2006, Stokely et al. 2002).  

Oxidative stress  

Oxidative stress can be defined as an increase above physiological values in the 

intracellular concentrations of reactive oxygen species (ROS) that include 

nitric oxide (NO), superoxide anion (O2
-
), hydrogen peroxide (H2O2), hydroxyl 

radical (•OH), peroxyl radical (ROO
•
), and singlet oxygen (O2). ROS factors 

are highly reactive due to the presence of one or more unpaired electrons in 

atomic or molecular orbitals. As a result of normal cellular respiration, the 

defence against oxidative stress is available to all cells via a series of 

enzymatic (e.g. catalase, superoxide dismutase (SOD)) and non-enzymatic (e.g. 

ascorbate, glutathione, alpha-tocopherol) antioxidants. When cell function is 

compromised by an insult or a depletion of energy levels, for example 

mechanical compression, ischaemia or glutamate excitotoxicity, the system 

becomes overloaded with damaging ROS that react with DNA, proteins and 

lipids.  
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Evidence that support the involvement of oxidative stress in glaucoma 

pathophysiology is strong. In glaucoma patients, analysis of blood and aqueous 

humour have demonstrated a markedly elevated levels of SOD and glutathione 

in aqueous (Ferreira et al. 2004), a significantly higher level of lipid 

peroxidation products (Birich et al. 1986), and low levels of glutathione in 

serum (Gherghel et al. 2005). 

O2
-
 is considered the “primary” ROS and can further interact with other 

molecules to generate “secondary” ROS (Valko et al. 2005). The production of 

O2
-
 occurs mostly within the mitochondria (Cadenas & Sies 1998), and is 

formed by reduction of oxygen and mediated by NADH oxidases and xanthine 

oxidase or non-enzymatically by the semi-ubiquinone compound of the 

mitochondrial electron transport chain (Valko et al. 2007). O2
-
 is dismutated by 

the superoxide dismutase (SOD) to hydrogen peroxide and oxygen. NO is 

generated in biological tissues from arginine by specific nitric oxide synthases 

(NOSs), such as neuronal (NOS1), endothelial (NOS3) and inducible (NOS3) 

that is not found in normal physiological conditions. NO, an abundant reactive 

radical, acts as a potent physiological vasodilator, molecular messenger in the 

CNS as well as playing a role in defence mechanisms, smooth muscle 

relaxation and immune regulation (Bergendi et al. 1999).  

In the eye, there are three sites that are potentially susceptible to oxidative 

stress and subsequent glaucoma development: the TM, the ONH and the retina. 

In the retina, the expression of both types of SOD, cytosolic SOD1 and 

mitochondrial SOD2, has been found to be located in in the GCL and IPL in 

rodent retina (Oguni et al. 1995). In the ONH, the expression of NOS2, and up 
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regulation of NOS1 and NOS3 has been detected in astrocytes and microglia of 

patients with POAG and in experimental glaucomatous rat models (Liu & 

Neufeld 2000, Liu & Neufeld 2001, Neufeld et al. 1997, Pang et al. 2005, 

Shareef et al. 1999). 

Glutamate excitotoxicity-induced oxidative stress has been linked to 

mitochondrial dysfunction in retinal ischemia and glaucomatous optic 

neuropathy. The mitochondrial electron transport chain is the main source of 

ATP in the mammalian cell and thus is essential for life. Growing evidence 

indicates that glutamate excitotoxicity and/or oxidative stress is associated with 

mitochondrial DNA damage-related mitochondrial dysfunction in retinal 

neurodegeneration (Chan et al. 2012, Jarrett et al. 2008). 

Neuroinflammation 

The term neuroinflammation defines an inflammatory response organized 

within the nervous system, which arises following exposure to a trigger. In the 

retina and the brain, such a response has been documented after ischaemia 

(Barone et al. 1997, Yoneda et al. 2001), trauma (Knoblach et al. 1999) or 

excitotoxic assault (De Bock et al. 1996). Evidence supporting the contribution 

of cytokines, such as tumour necrosis factor–α (TNF-α) or interleukin-β (IL-1β) 

to neurotoxicity is considerable. An increase in the level of IL-1β mRNA 

expression after ischaemia has been noticed in the brain and the retina of rats 

(Hangai et al. 1995, Minami et al. 1992). An increased expression of 

immunoreactive IL-1β protein in both high IOP-induced retinal 

ischaemia/reperfusion and retinal cell culture excitotoxic rat models compared 

with normal retina has been shown to be reduced by administering the anti-IL-
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1b antibody (Yoneda et al. 2001). Tezel and colleagues (2001) documented an 

increased expression of protein and mRNA of TNF-α and TNF-α receptor-1 in 

the retina of human glaucomatous eyes compared with control eyes of age-

matched normal donors (Tezel et al. 2001). Furthermore, Balaiya and 

colleagues (2011) have reported a higher level of TNF-α expression in human 

aqueous obtained from patients with manifest glaucoma compared with disease 

free individuals (Balaiya et al. 2011). 

Current glaucoma treatment principles 

All currently available, clinically accepted, treatment strategies, both medical 

and surgical, are aimed at lowering IOP. Topical medical treatment has become 

the most commonly used initial therapeutic option followed by laser 

trabeculoplasty as an alternative. Therapeutic options target either the ciliary 

body to reduce aqueous production or the aqueous outflow pathways to 

stimulate aqueous drainage from the eye. At present, commonly used oculo-

hypotensive medications fall into four categories: prostaglandin analogues, 

alpha2-adrenoceptor agonists, beta-adrenoceptor blockers, and carbonic 

anhydrase inhibitors. Prostaglandin analogues lower IOP by increasing 

uveoscleral outflow and have fewer systemic side effects than alpha2-agonists 

or beta-blockers. Alpha2-agonists and beta-blockers are effective at lowering 

IOP by reducing aqueous humour production via inhibition of adenylate-

cyclase. In addition, alpha2-agonists have also been shown to increase 

uveoscleral outflow (Toris et al. 1999). Carbonic anhydrase inhibitors cause a 

reduction of aqueous production by the ciliary epithelium through blockage of 

carbonic anhydrase isoenzyme. 
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Laser trabeculoplasty is a therapeutic method designed to increase the outflow 

of the aqueous through the TM, either by stretching the TM (argon laser 

trabeculoplasty) or by stimulating TM cell function (selective laser 

trabeculoplasty). 

Surgery is usually performed when topical or laser treatments have failed to 

control IOP sufficiently, there being a variety of options including penetrating 

(eg trabeculectomy) or non-penetrating filtration procedures or those involving 

the implantation of a drainage stent or tube. 

Cyclo-ablative procedure (eg cyclodiode) reduces IOP by destruction of ciliary 

epithelium and is usually performed in advanced stages of glaucoma because 

of the potential risk of complications.  

In the majority of cases, adequate reduction of IOP slows down the rate of 

glaucomatous changes. However, some patients still show evidence of 

significant glaucomatous progression despite a seemingly adequate reduction 

of IOP (Collaborative Normal Tension Glaucoma Study 1998, Heijl et al. 

2002). Since reduction of IOP fails to halt disease progression in a proportion 

of patients and due to the fact that all current therapeutic strategies have their 

downsides, there has been a desire for alternative therapeutic strategies, such as 

neuroprotection. 

There is a possibility that some currently available topical oculo-hypotensive 

agents may exert a direct neuroprotective effect that is different to the indirect 

protective effect of the reduced IOP. For example, the potential for direct 
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neuroprotective qualities of alpha2-agonists is supported by the presence of 

alpha2-adrenergic receptors not only in the non-pigmented ciliary epithelium, 

but also in RGC axons, dendrites, glia and photoreceptors (Woldemussie et al. 

2007). Potential mechanisms for a neuroprotective action of brimonidine, a 

selective alpha2-agonist, include inhibition of glutamate excitotoxicity-induced 

oxidative stress (Lee et al. 2012), upregulation of BDNF expression (Gao et al. 

2002), regulation of cytosolic Ca
2+

 signalling (Dong et al. 2007) and 

modulation of glutamate N-methyl-D-aspartate (NMDA) receptor function 

(Dong et al. 2008). In addition to the IOP-lowering effect of beta-blockers, it 

has been shown that betaxolol promotes rat retinal neurone survival after either 

ischaemic (Wood et al. 2003) or excitotoxic (Osborne et al. 1999) insults and 

levobetaxolol up-regulates BDNF expression in the retina (Wood et al. 2001). 

Prostaglandin analogues are powerful IOP-lowering agents that have also been 

shown to have direct neuroprotective properties. For example, it has been 

demonstrated that rat RGCs could be protected from apoptosis by latanoprost 

both in vitro and in vivo (Kanamori et al. 2009, Nakanishi et al. 2006, Zheng et 

al. 2011).  

Even though there is scattered evidence for neuroprotective properties of some 

currently available topical treatments, the lack of large randomised studies in 

patients with glaucoma highlights the need for further research to identify new 

agents that protect undamaged and rescue dying RGCs in glaucoma. In the 

future, early identification of patients at high risk of developing glaucoma and 

initiation of novel neuroprotective treatments may have the potential to delay 
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the onset of detectable optic nerve damage and reduce the burden of 

glaucomatous visual loss. 

Animal models used in glaucoma research 

Successful research into any disease of humans is heavily dependent on the 

availability of laboratory research models that closely resemble human disease 

pathophysiology. Over many decades of research into glaucoma 

pathophysiology and treatment, many in vivo animal models have been 

developed, including large animals such as non-human primates (Dreyer et al. 

1996, Quigley et al. 1995), cows and sheep (Gerometta et al. 2010, Tektas et al. 

2010), horses (Whigham et al. 1999), dogs and cats (Brooks 1990, Brooks et al. 

1997, Watanabe et al. 2003), pigs (Ruiz-Ederra et al. 2005), rabbits 

(Gherezghiher et al. 1986), and birds (De Kater et al. 1986, Kinnear et al. 

1974), as well as small animals, such as mice (Buckingham et al. 2008, Joly et 

al. 2008, Pelzel et al. 2010, Senatorov et al. 2006), rats (Johnson et al. 2010, 

Leibinger et al. 2009, Sawaguchi et al. 2005) and zebrafish (Nagashima et al. 

2011, Nishimura et al. 2014, Veth et al. 2011). Although a wide variety of 

animal species is being used in glaucoma research, only non-human primates 

closely resemble the anatomy and physiology of the human retina and the ON. 

In primate models of POAG, an increase in IOP has been achieved by 

mechanical obstruction of the aqueous outflow by means of argon laser 

photocoagulation of the TM (Burgoyne et al. 2004, Gaasterland & Kupfer 

1974, He et al. 2014, May et al. 1997), latex microspheres injection into the 

anterior chamber (Weber & Zelenak 2001), or injection of autologous red 
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blood cells (Quigley et al. 1995) in order to study functional and anatomical 

changes in the retina and the ON. However, there are several limitations to the 

wide use of non-human primates in research, mainly animal accessibility and 

cost, as well as ethical aspects of using primates in research (Weinreb & 

Lindsey 2005).  

Other non-primate small animal models, despite having differences in anatomy 

and physiology to humans, are extensively used because of the practicality and 

the reduced cost of purchase and maintenance compared to that of primates, the 

availability of large numbers for multiple repeats, and a possibility of genetic 

manipulations to study pathophysiology of the disease. A number of rat, mouse 

and rabbit in vivo models have been developed to study the effect of elevated 

IOP on the ON and RGC degeneration using cauterization or ligation of 

episcleral veins (Garcia-Valenzuela et al. 1995, Shareef et al. 1995, Yu et al. 

2006b), and laser photocoagulation of the ciliary body or the TM 

(Gherezghiher et al. 1986, Gross et al. 2003, Levkovitch-Verbin et al. 2002b) 

and microbead injection into the anterior chamber (Sappington et al. 2010). 

Gene manipulations in order to create transgenic models to study normal 

tension and pigmentary glaucoma have also been used in mice (Anderson et al. 

2002, Buckingham et al. 2008, Harada et al. 2007). For example, genetically 

modified mice deficient in the glutamate transporter gene GLAST have been 

created to study RGC and ON degeneration in a NTG model (Harada et al. 

2007). A congenital model of glaucomatous RGC degeneration is also 

available in DBA/2J mice that develop persistent elevation of IOP in 6 to 8 

months after birth. The mechanism of glaucoma development in DBA/2J mice 
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is different to POAG in humans and involves initial atrophy of the iris stroma 

with subsequent obstruction of the drainage angle due to inflammatory 

responses and subsequent pigment dispersion in the anterior chamber of the 

eye (Anderson et al. 2002, Chang et al. 1999). However, the progression of the 

RGC degeneration with age in DBA/2J mice is similar to glaucoma in humans 

(Anderson et al. 2002, John et al. 1998), making DBA/2J mice an attractive 

model to study glaucomatous RGC degeneration (Buckingham et al. 2008). A 

rat autoimmune model of glaucoma has also been developed and used to study 

the role of heat shock proteins (HSPs) in IOP-independent RGC degeneration 

and axonal loss by means of immunization of rats with HSP (Wax et al. 2008).  

Despite the clear advantage of cost when compared to non-primates, there are 

numerous disadvantages of using small animal models in glaucoma research. 

Firstly, there are differences in the anatomy of the retina, retinal vasculature 

and the ON between experimental animal models and humans. For example, 

the ON of rodents lacks the LC and the retina has no macula. In rabbits, the 

retina is a relatively avascular structure, receiving its nutrition from the 

underlying choroid. Secondly, there are species differences that are particularly 

important when attempts are made to extrapolate the findings from rodents to 

humans. The classical example would be the wide use of albino rabbits in 

toxicology studies on topical glaucoma treatments due to known high 

sensitivity of albino eyes to ocular irritation. However, because the eyes of this 

species are non-pigmented and the tear production is known to be significantly 

lower than in humans (Rubin & Weisse 1992), the response to medications can 

be significantly more or less severe than in pigmented eyes. Another example 
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is when the use of dogs as a model for glutamate excitotoxicity research in 

relation to glaucoma had failed to demonstrate high levels of glutamate in 

vitreous (Kallberg et al. 2007), even though mechanism of congenital 

glaucoma in dogs is known to be caused by iridocorneal angle abnormality 

similar to humans. Moreover, mechanisms of high IOP in rodents are also 

different to humans. The failure of aqueous drainage in rodents is a result of 

persistent pupillary membrane causing pupil-block glaucoma or from 

peripheral anterior synechiae in uveitis (Kern 1997). On a cellular level across 

species, there is a difference in sensitivity to different retinal cell markers. For 

example, it has been shown that a AII subtype of amacrine cells in the rat retina 

is immunoreactive for parvalbumin, but not in the primate retina (Wassle et al. 

1993). Conversely, another retinal cell marker calretinin labels amacrine cells 

in the primate retina (Wassle et al. 1995), but not in the rat retina. It can be 

followed from the above examples that the results obtained from small animal 

models cannot be transferred automatically to humans. Thirdly, mechanical 

interventions and genetic manipulations on rodents are unavoidably causing 

changes to other structures of the eye. Microophthalmia, for example, is a 

known problem in laboratory genetically modified animals (Lee 1989). Finally, 

there are ethical issues that have to be seriously considered when animals are 

being used in research, including repeated manipulations under general 

anaesthesia and animal handling if they are uncooperative. In fact, in some 

studies animals were kept alive for up to 2 weeks after optic nerve trans-

sections before harvesting their retinas for analysis (Pelzel et al. 2010, 

Watanabe et al. 2003). 
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Although in vivo animal models can give insight into the pathophysiological 

changes associated with glaucoma, the development of in vitro models, such as 

retinal tissue and cell cultures, has allowed a better understanding of changes 

on a cellular level. Because in vitro models are maintained under controlled 

conditions, the response to alterations in their environment can also be studied, 

for example a neurotrophic effect of individual growth factors (Foxton et al. 

2013) or an inhibition of a specific enzymatic pathway (Alonzi et al. 2001). 

Culture medium can also be used as a source of products released by cultured 

cells in order to investigate their secretory function (Johnson et al. 2014). 

Moreover, a benefit of direct visualization of the experiment allows a close 

monitoring of changes in cell morphology. Cell cultures can be used as a 

mixture of several cell types or a purified cell culture. Most of the ocular cell 

types have been cultured, including RGCs (Dun et al. 2007, Otori et al. 2003, 

Ozawa et al. 2013), trabecular TM cells (He et al. 2012), retinal astrocytes 

(Lukas & Wang 2012), the Müller cells (Von Toerne et al. 2014), and the RPE 

(Hettich et al. 2014, Stramm et al. 1983). Dissociated RGC cultures have, for 

example, been used to investigate the regeneration potential of retinal cells 

(Leibinger et al. 2009), to study oxidative stress as a mechanism of RGC death 

(Ozawa et al. 2013, Schlieve et al. 2006) and to test potential neuroprotective 

agents (Foxton et al. 2013, Otori et al. 2003). The main disadvantages of the 

retinal cell culture are the technical difficulties with obtaining sufficient 

numbers of cells for research and a potential loss of the cell line phenotype 

over the culture period. Recently, there have been several reports raising 

concerns related to the main cell line (RGC-5) used in the RGC research. The 
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RGC-5 cell line has originally been reported as a purified rat RGC culture via 

demonstration of characteristic RGC gene expression, including Thy1 and 

Brn3c, and was promoted as a model for glutamate excitotoxicity and growth 

factors withdrawal studies (Krishnamoorthy et al. 2001). Since then the RGC-5 

cell line was extensively used in glaucoma research, for example, as a model to 

study oxidative stress (Guo et al. 2013, Harper et al. 2009, Maher & Hanneken 

2005), glutamate excitotoxicity (Aoun et al. 2003, Dun et al. 2007, Schultheiss 

et al. 2014) and also neuroprotective effects of various factors (Harper et al. 

2009, Kanamoto et al. 2011, Schultheiss et al. 2013) However, recently the 

nature and phenotype of the RGC-5 cell line have been scrutinised 

(Krishnamoorthy et al. 2013, Van Bergen et al. 2009).  The recent data suggest 

that the RGC-5 cell line represents a lineage of mouse neuronal precursor cells 

(Krishnamoorthy et al. 2013), that express a number of markers that are not 

specific to RGCs (Van Bergen et al. 2009).  

Organotypic retinal culture  

Animal organotypic retinal culture 

To investigate the fundamental processes of RGC degeneration and test 

potential neuroprotective agents, several in vitro animal models have been 

developed. Rabbit, rat and mouse retinal explants or organotypic retinal 

cultures (ORCs) have been successfully used in research for several decades 

(Ames et al. 1992, Lucas & Trowell 1958). Preservation of the original tissue 

architecture and unique connections between neurons, and between neurons 

and glial cells, provides an opportunity to study cellular interactions in a 
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controlled environment. For example, ORCs have been used to study the 

response to light and retinal cell receptive fields (Koizumi et al. 2007), the 

spontaneous synaptic retinal cell activity (Perez-Leon et al. 2003), mechanisms 

involved in the apoptosis of RGCs (Beier et al. 2006, Manabe et al. 2002, 

McKernan et al. 2006, Zhang et al. 2008), and the effect of glutamate 

excitotoxicity (Haberecht et al. 1997, Xin et al. 2007), as well as the role of 

MSCs and MSC derived growth factors in neuroprotection (Bull et al. 2011, 

Johnson et al. 2014). It has also been shown that rodent ORCs can be cultured 

for an extended period (Caffe et al. 2001, Johnson & Martin 2008). Johnson 

and Martin (2008), for example, have demonstrated that rat organotypic retinal 

explants are viable for up to 17 days in culture and can be used as a model for 

studying the neuroprotective effect of mesenchymal stem cells (MSCs) on 

RGCs. 

Human organotypic retinal culture (HORC) 

The Norwich Glaucoma Research Group recently developed a method for the 

culture of human retinal explants. Niyadurupola and colleagues (2011) 

demonstrated that human organotypic retinal culture (HORC) was a useful 

model to investigate RGC death. It was demonstrated that gross morphology 

and retinal architecture of HORCs remained stable for at least 96 hours in 

culture, with a less than 10% reduction in RGC count. RGC markers have been 

used to assess RGC survival when known glaucomatous stresses have been 

applied, such as NMDA receptor activation and simulated ischaemia 

(oxygen/glucose deprivation (OGD)) (Niyadurupola et al. 2011). Using 

HORCs, Niyadurupola and colleagues (2011, 2013) have demonstrated that 
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human retinal tissue culture can be used as a useful model for investigation of 

complex mechanisms involving more than one retinal cell types. For example, 

the authors demonstrated the involvement of the P2X7 receptor (P2X7R) 

activation in RGC loss as a result of OGD (Niyadurupola et al. 2013) 

indicating a potential role of ATP-mediated excitotoxicity in glaucomatous 

neurodegeneration. 

Additional work has been carried out on human retinal explants by other 

groups (Carr et al. 2009, Carter & Dick 2003, Mayer et al. 2005), but none of 

these studies looked at outcomes other than overall retinal structure. Adult 

human retinal explants, for example, have been used to investigate processes 

involved in the activation of microglia (Balasubramaniam et al. 2009, Carter & 

Dick 2003), to demonstrate degenerative changes in photoreceptors and 

interneuron cells morphology with time (Fernandez-Bueno et al. 2012), to 

demonstrate the presence of neural progenitor cells in the retina (Mayer et al. 

2005), to investigate the potential of retinal cell out-growth from explants 

(Hopkins & Bunge 1991), and characterize retinal explants as a model for 

retinal angiogenesis (Knott et al. 1999). The longest period for the human 

retina tissue to be cultured has been reported by Kim and Takahashi in 1988, 

where the authors demonstrated by means of light and electron microscopy that 

retinal explants appeared to be alive for up to 4 months (Kim & Takahashi 

1988), however there was no other evidence demonstrated to support this 

conclusion.  

It can be followed from the above studies that Niyadurupola and colleagues 

(2011, 2013) were the first to characterize and use the HORC as an in vitro 
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model for investigating mechanisms involved in glutamate excitotoxicity and 

oxygen glucose deprivation in humans. However, it is still unclear whether or 

not HORCs can be used as a viable model for investigating effects of potential 

neuroprotective agents for longer than 3 days. The further development of an in 

vitro human retinal model could be of great benefit in research to understand 

the processes involved in glaucomatous neurodegeration over time, and in the 

development of new strategies for neuroprotection. 

Aims of the thesis 

The main aim of the work presented in this thesis was to investigate whether it 

is feasible to use HORCs as a long-term model of RGC degeneration. The 

second aim was to identify specific culture conditions that can potentially 

enhance the survival of RGCs in long-term HORCs. The potential neurotrophic 

effect of MSC derived growth factors on RGC survival was investigated, 

specifically leukaemia inhibitory factor (LIF), platelet derived growth factors 

(PDGFs) and vascular endothelial growth factor (VEGF). The effect of 

epigenetic regulation using the histone deacetylase inhibitor trichostatin A 

(TSA) on expression of RGC-specific markers in the HORC was also 

investigated.  
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CHAPTER 2 

MATERIALS AND METHODS  

Human donor tissue  

Human donor eyes were obtained from the East Anglian Eye Bank (Norfolk 

and Norwich University Hospital, UK) within 24 hours post mortem. 

Information regarding past medical and ophthalmic history, and the age of the 

donors was recorded. Eyes with known retinal pathology were excluded from 

further tissue processing. The age range of the donors was between 60 and 87 

years, with the average age being 73 years. The corneas were harvested for 

corneal transplantation at the East Anglian Eye Bank and the remaining parts of 

the eye were transported to the University of East Anglia in Eagle’s minimum 

essential medium (EMEM) (Sigma Aldrich, Poole, UK) supplemented with 

50μg/ml gentamycin (Sigma-Aldrich, Poole, UK) and 10μl/ml 

antibiotic/antimycotic solution, consisting of 10,000units/ml penicillin G and 

10,000μg/ml streptomycin sulphate and 25μg/ml amphotericin B (Gibco 

Invitrogen, Paisley, UK). 

The dissection technique 

All procedures were performed under sterile conditions. Since the cornea had 

already been removed from the eye (figure 7A), the iris, the ciliary body and 

the lens were removed with scissors. An upper ring of the scleral cup was 

dissected to visualise the peripheral area of the retina (figure 7B). The neural 

retina was then carefully detached from the retinal pigment epithelium (figure 
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8C). One cut at the optic nerve head allowed separation of the retina from the 

scleral cup and underlying pigment epithelium ensuring minimal damage to the 

tissue (figure 7D). Linear cuts were made at the retinal edges and, if necessary, 

the vitreous was carefully removed with scissors to obtain flat positioning of 

the retina (figure 7E). A 4mm diameter micro-dissecting trephine (Biomedical 

Research Instruments, USA) was used to take five sections from the 

paramacular region of the retina (figure 7F). The sections were immediately 

placed into warmed serum-free Dulbecco’s modified Eagle’s medium 

(DMEM)/HamF12 (Gibco Invitrogen, Paisley, UK), supplemented with 

50µg/ml gentamycin (Sigma-Aldrich, Poole, UK) or 100U/ml penicillin and 

100µg/ml streptomycin (Gibco Invitrogen, Paisley, UK) and 2mM L-glutamine 

(Gibco Invitrogen, Paisley, UK). Initially, all five explants were placed in one 

dish to allow randomization of samples for the subsequent experiment. The 

HORCs were incubated at 35°C in a humidified atmosphere of 95% air/5% 

CO2. 

The template for HORCs positioning 

The dissection of HORCs was performed as has been previously described 

(Niyadurupola et al. 2011) with further modifications. To ensure a consistent 

location of HORCs obtained from the paramacular region of the retina, a 

template was developed to aid the dissection (figure 7E). First of all, a 4mm 

circle from the area of the fovea was removed aiming for the transparent spot 

of the foveola (a yellow circle) to be as central as possible. All five 

paramacular circles were equally positioned from the central reference circle in 

relation to the optic nerve location. 
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Figure 7: Representative images of the retinal tissue dissection. A) an eye globe with 

removed cornea, B) upper scleral rim dissection, C) the retina is attached at the ON, D) 

the free floating retina with vitreous is still attached, E) the flattened retina with 

template positioned beneath the dish, F) a free floating HORC. A yellow circle= 4mm 

area around the foveola, white circle= positioning of the 4mm trephine according to 

the template, small black arrow=optic nerve area, white arrow=retinal vessels. 
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The long-term human organotypic retinal culture model 

HORCs were cultured for up to 4 weeks in Dulbecco’s modified Eagle’s 

medium (DMEM)/HamF12 (Gibco Invitrogen, Paisley, UK) or Neurobasal 

medium supplemented with 2% B27 and 1% N2 (Gibco Invitrogen, Paisley, 

UK). Explants were retrieved at weekly intervals for analysis. DMEM/HamF12 

was used with or without supplementation with 10% foetal calf serum (FCS) 

(Gibco Invitrogen, Paisley, UK). Antibiotics used in cultures were either 

gentamycin at a concentration of 50µg/ml or a combination of 100U/ml 

penicillin and 100µg/ml streptomycin (Gibco Invitrogen, Paisley, UK). Half of 

the medium was replaced with fresh medium twice weekly. 

Mesenchymal stem cell derived growth factors 

Mesenchymal stem cell derived growth factors, specifically leukaemia 

inhibitory factor (LIF) (Sigma-Aldrich, Poole, UK), platelet derived growth 

factors (PDGF-AA, PDGF-AB) (PeproTech, USA) and vascular endothelial 

growth factor (VEGF) (Gibco Invitrogen, Paisley, UK), were used to 

investigate the potential of these compounds to extend the survival of RGCs in 

long-term HORCs. Growth factors were added to serum-free (SF) 

DMEM/HamF12 to obtain the following working concentrations: LIF was used 

at concentrations of 10, 30 and 50ng/ml, whereas PDGF-AA, PDGF-AB and 

VEGF at 50ng/ml concentrations. Control samples were maintained in parallel 

with SF DMEM/HamF12 with added TWEEN®20 (Sigma-Aldrich, Poole, 

UK) as a vehicle control at concentrations equivalent to experiments. There 

was no medium changed over the time of experiment which lasted 1 week. 
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Histone deacetylase (HDAC) inhibitors 

Histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) (Sigma-Aldrich, 

Poole, UK) was used in experiments intended to extend the expression of 

retinal cell mRNA in HORCs. TSA was added to SF DMEM/HamF12 to make 

concentrations of 0.1, 1 and 10µM. Dimethyl sulphoxide (DMSO) (Sigma-

Aldrich, Poole, UK) was used as a solvent and it was, therefore, added to the 

medium of control HORCs as a vehicle control at concentrations equivalent to 

experiments. There was no medium change made during time of the 

experiment which lasted 1 week. 

Immunohistochemistry 

Tissue fixation and sectioning 

Upon completion of the experiment, HORCs were fixed in 4% 

paraformaldehyde for 24 hours at 4°C. The following day, explants were 

transferred into 30% sucrose solution in phosphate buffered saline (PBS) for 

cryopreservation (Oxoid, Basingstoke, UK) for 24 hours. To prepare for 

sectioning, the samples were frozen on dry ice in optimal cutting temperature 

(OCT) medium (Sakura Finetek, Zoeterwoude, NL), and stored at -80˚C. 

Retinal slices of 13µm were cut from frozen block moulds using a Hacker 

Bright OTF 5040 cryostat (Bright Instruments, Huntingdon, UK). At least three 

non-consecutive slices were collected on 3-aminopropyl-triethoxyl saline 

(TESPA) coated glass slides (Sigma Aldrich, Poole, UK) ensuring that each 

slice was taken over 50μm apart from the previous cut. Slides were stored at -

20°C if needed. 
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Immunolabelling 
Slides with retinal sections were washed 3 times for 10 minutes in 0.1M PBS 

with gentle agitation to remove the OCT medium. To penetrate the cell 

membrane and block non-specific binding sites, the retinal sections were 

incubated in blocking solution containing 0.2% Triton-X-100 (Sigma Aldrich, 

Poole, UK) and 5% normal goat serum (Sigma Aldrich, Poole, UK) in 0.1M 

PBS for 90 minutes at room temperature. After removal of the blocking 

solution, the retinal slices were incubated with primary antibodies (Table 1) 

made up in blocking solution for 24 hours at 4°C. The following day, the 

retinal slices were washed 3 times for 10 minutes in 0.1M PBS with gentle 

agitation, followed by incubation for 2 hours in the dark at room temperature 

with secondary antibody diluted in blocking solution to the required 

concentration (Table 1). Negative controls were processed in parallel by 

omission of the primary antibody. Following the incubation, the slides were 

washed three times in 0.1M PBS and then counterstained with 4’, 6-diamidino-

2-phenyindole dilactate (DAPI) (Invitrogen, Paisley, UK) at concentration of 

0.5μg/ml for 10 minutes at room temperature in the dark. The slides were again 

washed 3 times for 10 minutes in 0.1M PBS with gentle agitation. Each retinal 

slice was mounted with one drop of hydromount immunofluorescence medium 

(National Diagnostics Ltd, Hull, UK) and sealed with a coverslip (VWR 

International, Lutterworth, UK). The slides were placed in the dark at room 

temperature to dry and stored at 4°C in the dark. 
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Table 1: Details of primary and secondary antibodies used in immunohistochemistry. 

 

Retinal slices were imaged using a wide-field Zeiss Axiovert 200M fluorescent 

microscope (Zeiss, Welwyn Garden City, UK). Zeiss Axiovision 4.8 software 

was used to analyze images. 

Terminal deoxynucleotidyl transferase-mediated dUTP 

nick-end labelling (TUNEL) assay 

Apoptotic DNA damage in the HORCs was detected by using the terminal 

deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling 

(TUNEL) assay. The DeadEnd™ Fluorometric TUNEL System (Promega, 

Southampton, UK) labels the fragmented (nicked) DNA by catalytically 

Target Clone/ 

Conjugate 

Source Company Dilution 

 

Primary antibodies 

Neuronal Nuclei 

(NeuN) 

 

 

Secondary antibodies 

Mouse IgG (H+L) 

 

 

 

Monoclonal 

 

 

 

AlexaFluor 

488 

 

 

    Mouse 

 

 

 

    Goat 

 

 

Chemicon 

International, 

Millipore,  

Watford, UK 

 

Invitrogen, Paisley, 

UK 

 

 

1:200 

 

 

 

1:1000 

 

 

Rabbit IgG (H+L) AlexaFluor 

568 

    Goat Invitrogen, Paisley, 

UK 

1:1000 
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incorporating fluorescein-12-dUTP at 3´-OH DNA ends using recombinant 

Terminal Deoxynucleotidyl Transferase enzyme (rTdT). The kit was used 

according to the manufacturer’s instructions. 

 

 

 

Figure 8: Schematic representation of modified dUTP incorporation by the enzyme 

terminal deoxynucleotidyl transferase (TdT) at the 3’-OH ends of fragmented DNA. 

 

The slides were washed and incubated with the required primary antibody 

overnight, followed by 3 further washes as described in the previous section. 

To remove excess fluid, the slides were carefully tapped on a paper towel and 

then covered with “equilibrium buffer” at room temperature for 10 minutes. 

The “equilibrium buffer” was gently removed and each retinal slice was then 

covered with a mix of 45µl equilibrium buffer, 5µl nucleotide mix and 1µl 

rTdT enzyme for 60 minutes at 35˚C in a humidified chamber in the dark. The 

reaction was terminated by immersing the slides in standard saline citrate 
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(SSC) (3M NaCl, 340mM NaH2C6H5O7), diluted from X20 stock to X2. The 

slides were again washed 3 times for 10 minutes in 0.1M PBS with gentle 

agitation. Secondary antibody and all subsequent stages were performed as 

described in the previous section. Positive controls were treated with RNase-

free DNase 1 (Qiagen, Crawley, UK) for 10 minutes at room temperature prior 

to the equilibrium buffer stage (figure 9). The images were taken by using a 

wide-field Zeiss Axiovert 200M fluorescent microscope (Zeiss, Welwyn 

Garden City, UK) and analysed with Zeiss Axiovision 4.8 software. 

 

 

Figure 9: TUNEL positive control treated with RNase-free DNase 1. Cell nuclei were 

labelled with DAPI (blue); RGCs were labelled with NeuN (green); apoptotic cell 

nuclei were labelled with TUNEL (red). 

 

Assessment of retinal ganglion cell loss 

Quantification of RGCs in the HORC was performed by counting NeuN–

labelled cells in the RGCL in at least 27x200µm areas per explant in a masked 

fashion. Each image was randomly coded prior to counting by a different 

member of the research group. The mean of NeuN-positive RGCs was 

calculated for each HORC. The number of apoptotic RGCs in the HORC was 

detected by use of TUNEL as described above. The proportion of TUNEL-
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positive NeuN-labelled RGCs was calculated by counting the number of cells 

in the RGC layer that were stained positive with both NeuN and TUNEL. 

Quantitative Real-Time Polymerase Chain Reaction (QRT-

PCR) 

Quantitative real-time polymerase chain reaction was used to measure the level 

of expression of specific mRNAs in HORCs. Total RNA was extracted and 

then reverse transcribed to synthesise complementary DNA (cDNA). The 

amount of the target cDNA in a sample was quantified by using the TaqMan® 

QRT-PCR method. Details of the methods are given below. 

RNA extraction 

RNA extraction was carried out using a column-based method using the 

RNeasy Mini Kit according to the manufacturer’s instructions (Qiagen, 

Crawley, UK). After the experiment, HORCs were snap frozen in liquid 

nitrogen and stored at -80ºC. The tissue samples were placed into guanidine-

thiocyanate-containing lysis buffer and homogenised by repeatedly passing 

them through a 20-gauge needle fitted to an RNase-free syringe at least eight 

times. The lysate was centrifuged at 13,000 rpm for 3 minutes to separate the 

supernatant which was mixed with 70% ethanol and transferred to the RNeasy 

Mini spin column. The column was centrifuged for 15 seconds at 13,000 rpm 

allowing the total RNA to bind to the membrane of the RNeasy spin column. 

Any contaminants were washed away with buffer RW1. DNA removal was 

achieved by adding RNase-free DNase 1 (Qiagen, Crawley, UK) to the column 

for 15 minutes. The DNase 1 was washed away with buffer RW1. The column 
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was then washed twice with ethanol containing buffer RPE, followed by a two-

minute centrifugation at maximum speed to dry the spin column membrane, 

ensuring no carryover of ethanol during RNA elution. RNase-free water (50μl) 

was used to elute the total RNA. A volume of 30μl RNase-free water was used 

in the long-term experiments due to a low yield of total RNA at week 3 and 4. 

The quantity and the quality of total RNA were measured using a NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, USA). 

The RNA was stored at -80 ˚C. 

First strand complementary DNA (cDNA) synthesis 

RNase free water (Qiagen, Crawley, UK) was used to dilute total RNA to 

obtain an equal amount of RNA in each sample. A volume of 10μl diluted 

RNA was mixed with 1μl random primers (Promega, Southampton, UK) and 

1μl 10mM dNTP mix (containing dATP, dGTP, dTTP, dCTP) (Bioline, UK). 

Samples were then incubated at 65˚C for 5 minutes using a Peltier Thermal 

Cycler DNA engine (PTC-200, MJ Research, Minnesota, USA). The samples 

were briefly chilled on ice. A mixture of 4μl 5X First strand buffer (Invitrogen, 

CA, USA), 2μl 0.1M Dithiothreitol (DTT) (Invitrogen, CA, USA) and 1μl 

RNase inhibitor (Promega, Southampton, UK) was added to each sample. The 

samples were incubated at 25˚C for 2 minutes. 1μl of Superscript® II reverse 

transcriptase (Invitrogen, CA, USA) was then added to each sample. The 

samples were incubated at 25˚C for 10 minutes and then at 42 ˚C for 50 

minutes. The reaction was inactivated by incubation at 70˚C for 15 minutes. 

Samples were stored at -20˚C. 
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TaqMan® QRT-PCR 

TaqMan® QRT-PCR is based on the use of a dual-labelled oligonucleotide 

probes. The TaqMan® probe has a reporter dye located at the 5’end and a 

quencher dye at 3’end. The quencher absorbs fluorescence produced by the 

reporter dye and, therefore, no fluorescence is emitted in the intact probe. The 

signal is only produced after the reporter and quencher dyes are separated by 

enzymatic breakdown of the probe by the Taq polymerase. A polymerase chain 

reaction starts with the heating of the double stranded DNA to form a single 

strand. A specifically designed probe for the target nucleotide anneals to the 3’ 

end of the target gene. The sequence extends via Taq polymerase enzyme, 

which releases the reporter from the probe to produce fluorescence. The 

intensity of fluorescence directly correlates with the amount of the target gene. 

The process is summarised in figure 10. 

 



 

71 
 

 

Figure 10: Schematic representation of the principle for the real-time polymerase 

chain reaction using TaqMan®. In the initial stage, primers and probes anneal to 

template DNA strand, followed by extension of the complementary sequence via Taq 

polymerase and displacement of the probe. Finally, the probe is broken and the 

quencher is released. Fluorescence is measured to quantify the amount of the target 

gene.  Image adapted from http://www.appliedgene.com/realTimePCR_2.html. 

 

 

The cDNA was diluted with nuclease free water (Promega, Madison, USA) to 

give 5ng total cDNA in 10μl. TaqMan® PCR Master Mix (Applied 

Biosystems, Warrington, UK) and the primers and probes (Table 2) were 

mixed to make a total volume of 25μl. The reaction set up for the PCR 

amplification was 50˚C for 2 minutes, 95˚C for 10 minutes, followed by 40 

cycles consisting of 15 seconds at 95˚C and followed by 1 minute at 60˚C for 

each cycle. QRT-PCR was performed using the ABI 7500 Sequence Detection 

System (Applied Biosystems, Warrington, UK). 
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Genes         Code Company 

Thy1 Hs00174816_ml Applied Biosystems, 

Warrington, UK 

ChAT     Hs00758143_m1 Applied Biosystems, 

Warrington, UK 

POU4F1 Hs00366711_m1 Applied Biosystems, 

Warrington, UK 

CALB   Hs00191821_m1 Applied Biosystems, 

Warrington, UK 

RCVN Hs00610056_m1 Applied Biosystems, 

Warrington, UK 

Rbfox3 Hs00876928_m1 Applied Biosystems, 

Warrington, UK 

HSPA1B Hs01040501_sH Applied Biosystems, 

Warrington, UK 

Glul Hs00365928_q1 Applied Biosystems, 

Warrington, UK 

GLAST Hs00188193_m1 Applied Biosystems, 

Warrington, UK 

CYC1 Hs00357718_g1 Primer Design, 

Southampton, UK 

TOP1 Hs00243257_m1 Primer Design, 

Southampton, UK 

Table 2: TaqMan probes suppliers and code information. 
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For each sample the point at which the fluorescent signal becomes statistically 

above background, the threshold cycle (CT) value,  was determined with the 

7500 Fast System Software (Applied Biosystems, Warrington, UK). The 

standard curves were produced for each gene of interest and used for 

quantification of gene expression.  

To eliminate variations in the gene expression due to differences in the overall 

amount of mRNA, the expression level of the gene of interest was normalized 

to that of two “housekeeping” genes. These genes were selected for their 

relatively stable level of expression in experiments carried out using HORCs 

(Niyadurupola et al. 2011). The normalising genes were topoisomerase 1 

(TOP1) and cytochrome c 1 (CYC1). 

Lactate Dehydrogenase (LDH) cytotoxicity detection assay  

Cell death in the HORC was quantified by measuring lactate dehydrogenase 

(LDH) released into the culture medium (figure 11). LDH is an enzyme that is 

released when the integrity of a cell membrane is compromised. Extracellular 

LDH has been found to be both chemically and biologically stable and is 

present in all cells (Koh & Choi 1987).   

The LDH test is based on the enzymatic reaction where LDH acts as a catalyst 

for lactate conversion to pyruvate. At the same time, tetrazolium salt receives 

the H
+
 ion and becomes formazan which is a coloured product. The amount of 

colour formed by the appearance of formazan correlates directly with the 

amount of LDH released into the medium.  
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Figure 11: Enzymatic reaction catalysed by presence of LDH. Adapted from Roche 

manual. 

 

 

For LDH analysis medium was collected from cultures and centrifuged at 

13,000 rpm for 5 minutes to remove cell debris. Medium was then pipetted into 

a 96 well plate (100µl per well) in triplicate. Medium measured from long-term 

HORCs was diluted 1:1 with SF DMEM/HamF-12 medium in order to prevent 

signal saturation in case of a significant cell death level in the tissue rather than 

cell culture. SF DMEM/HamF-12 was used as a background control. An equal 

volume of LDH cytotoxicity detection solution was added to each well, which 

consisted of diaphorase/NAD+ mixture with iodotetrazolium chloride and 

sodium lactate, prepared according to the manufacturer’s instructions (Roche, 

Indianapolis, IN, USA). The plate was incubated for 5 minutes in the dark at 

room temperature. Dye production was measured at 490nm using a 96 well 
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plate reader (Victor EG & G Wallace Instruments, Cambridge UK). After 

subtraction of background readings, LDH values were normalized to the 

control.    

Statistical analysis 

Data were presented as the mean ± standard error of the mean (SEM). 

Significance was determined using Student's t-test or one-way ANOVA with 

Dunnett's and Tukey's post hoc tests (GraphPad Prism; Graph-Pad Software 

Inc., La Jolla, Ca, USA). Values of p ≤ 0.05 were considered to be statistically 

significant. 
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CHAPTER 3 

RGC SURVIVAL AND DEVELOPMENT OF CULTURE 

CONDITIONS FOR A LONG-TERM HUMAN ORGANOTYPIC 

RETINAL CULTURE 

Introduction 

Human organotypic retinal cultures (HORCs) have been established as a useful 

experimental system for investigation of the mechanisms involved in RGC 

death, as well as for testing of potential neuroprotective compounds by 

modelling glaucomatous stress in the short-term, for example by NMDA 

receptor activation or simulated ischaemia (Niyadurupola et al. 2013, 

Niyadurupola et al. 2011). It has been demonstrated that HORCs preserved 

their appearance and retinal cell layer architecture for at least 96 hours when 

cultured in serum-free (SF) Dulbecco’s modified Eagle’s medium 

(DMEM)/HamF12 (Niyadurupola et al. 2011). The authors also tested the 

effect of Neurobasal medium supplemented with B27/N2 on RGC survival in 

HORCs, which had previously been shown to be the optimum medium for rat 

organotypic retinal cultures (Johnson & Martin 2008). There was no difference 

between tested culture conditions in the gross appearance and the timeline of 

the RGC mRNA loss in HORCs after 96 hours in culture. These findings led to 

a conclusion that SF DMEM/HamF12 was the most appropriate medium for 

culture of human retinal explants since its composition was known, whereas an 

exact compositions of B27 supplement was still commercially protected 

(Cressey 2009, Niyadurupola et al. 2011).  



 

77 
 

Although Niyadurupola’s study was the most extensive in terms of 

characterising the human retina as an in vitro model for RGC 

neurodegeneration, there is a considerable body of research published by other 

study groups using human tissue to study mainly physiological changes within 

the retina. The earliest reported and the longest human retina culture to date is 

a study by Kim and Takahashi published in 1988. The authors have maintained 

the human retina in serum supplemented Eagle's minimum essential medium 

(EMEM) with added gentamycin and amphotericin B. The results of the study 

were documented by means of photomicrographs and electron microscopy 

indicating that retinal cultures can maintain their gross appearance and retain a 

considerable degree of retinal cell layer organization for a period as long as 4 

months. The quality of the donor retinal tissue was reported as good or 

excellent in only half of the cases with a considerable degree of variation in a 

number of surviving cells in the  retinal GCL (Kim & Takahashi 1988). Later 

on, another study looked at the potential of the human retina to be used as a 

model for retinal angiogenesis research (Knott et al. 1999). Adult human 

retinal explants were cultured in fibrin matrix in Glasgow's minimal essential 

medium (GMEM) with added growth factors, serum and without antibiotics for 

14 days. The authors found the presence of an extensive vascular network 

within the retinal explants, as well as new vessel outgrowth into the fibrin 

matrix by day 10 (Knott et al. 1999). The findings of those studies support the 

potential of the human retinal explants to maintain their viability in a long-term 

culture. Other groups have used human retinal explants in various culture 

conditions to investigate the potential for retinal cell growth from explants 
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(Hopkins & Bunge 1991, Thanos & Thiel 1990), to understand mechanisms 

involved in activation of the retinal glia (Carter & Dick 2003), to demonstrate 

the presence of retinal progenitor cells (Mayer et al. 2005), to analyse the 

expression of retinoblastoma protein and to study retinal progenitor cells 

(Donovan & Dyer 2006), and to describe degenerative changes within the 

retina (Fernandez-Bueno et al. 2012). However, different culture conditions 

were used by different groups and none of these studies assessed the effect of 

culture conditions on overall retinal tissue viability. For example, Carter and 

Dick (2003) used the human retina to investigate processes involved in the 

activation of microglia by culturing human retinal explants in Roswell Park 

Memorial Institute (RPMI) medium supplemented with serum, penicillin and 

streptomycin for 72 hours (Carter & Dick 2003). Mayer and colleagues (2005) 

used DMEM/HamF12 supplemented with serum and multiple growth factors 

and without antibiotics to culture human retinal explants for 5 days in order to 

demonstrate the presence of neural progenitor cells in the adult human retina 

(Mayer et al. 2005). The most recent study by Fernandez-Bueno and 

colleagues (2012) characterised the human retina as a model for studying 

degenerative processes mainly in the outer layers of the retina, specifically 

photoreceptors, horizontal and bipolar cells, by maintaining human retinal 

explants in Neurobasal medium supplemented with B27 and serum, as well as a 

combination of penicillin/streptomycin and amphotericin B. The results of the 

study were rather limited (n=2), and that the study was based only on 

immunostaining and electron microscopy  which demonstrated a gradual 

pyknosis of retinal cell nuclei and some vacuolization of retinal layers 
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associated with loss of the photoreceptor outer segments over a period of 9 

days (Fernandez-Bueno et al. 2012). It appears that HORCs, characterized by 

Niyadurupola and colleagues (2011) as the model for RGC degeneration, is the 

only human model available to date for in vitro glaucoma treatment studies 

using human retina. However, HORCs were characterized only for 96 hours, 

limiting the use of HORCs for testing neuroprotective compounds beyond this 

time point. 

There have been many more studies using organotypic retinal cultures from 

other species to study retinal physiology, for example in mouse (Caffe et al. 

2001, Ferrer-Martin et al. 2014, Perez-Leon et al. 2003), rat (Feigenspan et al. 

1993, Johnson & Martin 2008, Manabe et al. 2002), rabbit (Koizumi et al. 

2007, Lye et al. 2007) and pig (Carr et al. 2009, Fernandez-Bueno et al. 2008). 

However, the most comprehensive study characterizing rat organotypic retinal 

cultures as a model for investigation of the retinal stem cell therapy for 

treatment of neurodegenerative disease was published by Johnson and Martin 

(2008). The authors showed that serum-free Neurobasal medium supplemented 

with B27/N2 and added penicillin/streptomycin was the condition of choice to 

maintain rat organotypic retinal explants for up to 17 days. Viability of retinal 

explants was demonstrated by means of photography, propidium iodine uptake 

and immunohistochemistry for neural and glial retinal cell markers, as well as 

immunolabelling with caspase-3 antibodies as a marker for apoptosis. An 

increase in the retinal explant degradation, a significant down regulation of 

retinal and glial cell markers together with a significant increase in a level of 

apoptosis were associated with supplementation of the medium with horse 
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serum rather than B27/N2 after 10 days in culture (Johnson & Martin 2008). 

The longest mammalian retinal culture that has been reported, to our 

knowledge, was a mouse retinal culture in serum-free R16 nutrient medium for 

up to 4 weeks (Caffe et al. 2001). The authors were aiming to prove that both 

adult and neonatal retinal tissues could be maintained in serum-free conditions 

for a prolonged period of time, however the effect of serum supplementation on 

tissue viability was not tested. Although viability of retinal explants was 

documented by RT-PCR and immunohistochemistry, interestingly, there was 

no statistical quantification of the results (Caffe et al. 2001). Viability of the 

retinal tissue in vitro has also been demonstrated by recording 

electrophysiological responses to light, that were within the normal range, from 

RGCs in rabbit retinal explants cultured in Ames’ medium containing horse 

serum, N2 supplement, and penicillin/ streptomycin for up to 6 days (Koizumi 

et al. 2007). The presence of spontaneous synaptic activity in mouse retinal 

explants was also recorded after 14 days in culture using Hank's basal medium 

and Hank's BSS supplemented with horse serum (Perez-Leon et al. 2003). It is 

possible to suggest that serum might be beneficial, however recently another 

group demonstrated, in agreement with Johnson’s findings, that an addition of 

horse serum in culture of adult mouse retinal explants caused significant 

alterations in the retinal tissue architecture after 10 days in culture (Ferrer-

Martin et al. 2014), indicating a potential negative effect of serum on retinal 

cell viability in a long-term culture. Despite some inconsistencies, the findings 

of the above studies support the potential of retinal explants to be used as a 

long-term model for retinal neurodegeneration. The development of extended 
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human organotypic retinal cultures would be the most relevant model for 

neuroprotective studies of human neurodegenerative diseases.  

The aim of the work described in this chapter was to investigate the long-term 

RGC survival in HORCs maintained for extended period (up to 4 weeks) and 

to establish culture conditions to prolong RGC survival. Two medium types 

were tested, DMEM/HamF12 (Niyadurupola et al. 2011) and Neurobasal 

medium (Johnson & Martin 2008), and the effect of serum supplementation 

was also assessed. In addition, due to lack of agreement in the choice of 

antibiotics for the retinal tissue culture and a considerable body of evidence 

regarding the toxic effect of gentamycin on the retina (Campochiaro & 

Conway 1991, Hancock et al. 2005, Kanter & Brucker 1995, Penha et al. 2010), 

it was also important to look at choice of antibiotic for HORCs. 

Results 

Time dependant changes of human retina explants over 4 

weeks in culture 

Initial experiments were set up using culture conditions determined by 

Niyadurupola and colleagues (2011) for a short-term culture of human retinal 

explants to examine whether the culture time could be extended under those 

conditions. HORCs were, therefore, cultured in SF DMEM/HamF12 medium 

with added gentamycin for 4 weeks. Because of the length of experiments, 

there was a regular twice weekly change of half of the medium, as described by 

Johnson and Martin (2008), in order to supplement the retinal tissue explant 

with fresh feeding substrates and dilute waste products. Out of 5 explants 
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obtained from the retinal paramacular region, one sample was fixed 

immediately either in 4% paraformaldehyde for immunohistochemistry or 

frozen in liquid nitrogen for QRT-PCR. Each subsequent week, one of the 

remaining explants was harvested in the same fashion for further processing. In 

order to document the gross appearance and size of HORCs over the culture 

period, photographs were taken at weekly intervals (figure 12). The size of 

explants was measured by taking a photograph of each explant with graph 

paper being placed under the dish. Each sample had 6 radial measurements 

taken. Each measurement was normalised to the size of the small square on the 

graph paper. Over the 4 week period, it can be seen that HORCs preserved 

overall appearance, tissue integrity and colour. There was a gradual decrease in 

the diameter of retinal explants (figure 13) that could be mainly explained by 

curling of tissue margins. An approximately 20% decrease was documented by 

week 2, followed by a further gradual reduction in size over the next two 

weeks, reaching approximately 75% of its original size by week 4 (p<0.005, 

n=3). 

 

 



 

83 
 

 

Figure 12: Photographs of HORCs in SF DMEM/HamF12 over the 4 week culture 

period. Each image was taken at weekly interval to document gross appearance and 

size of explants was measured over time. 

 

 

Figure 13: Change in diameter of HORCs with SF DMEM/HamF12 over 4 weeks in 

culture. Sample diameter was calculated by taking the mean of 6 radial measurements. 

Each measurement was normalized to the size of the small squire on graph paper 

(mean±SEM, n=3). The results are presented as % of t=0. Student’s t-test was used, 

*p<0.005. 
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The next step was to examine the appearance of the retinal cell layer 

architecture at the cellular level by means of immunohistochemistry. As can be 

seen in figure 16, the laminar structure of all cell layers was well-preserved at 

each time point. The level of apoptosis within retinal explants was detected by 

immunolabelling of the sections with TUNEL. There were only a few apoptotic 

cells detected in t=0 sections. At week 1, the presence of apoptotic nuclei was 

mainly documented in the GCL and in the inner aspect of the INL indicating 

that RGCs, and possibly amacrine cells, are the first cell types to sustain DNA 

damage. Over time, there was a gradual increase in the number of TUNEL-

positive nuclei in all cell layers. The most intensive uptake of TUNEL 

immunolabelling in all cell layers was documented after 4 weeks in culture 

(figure 14). 
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Figure 14: Representative images of HORC immunohistochemistry and TUNEL-

labelling of HORCs in SF DMEM/HamF12 at each time point. NeuN (green) is a 

marker for RGCs; TUNEL (red) is a marker for apoptosis. Cell nuclei are stained with 

DAPI (blue). Scale bar, 100 µm. 
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In order to characterise long-term HORCs as a model of RGC degeneration, 

the loss of RGCs with time was estimated by counting NeuN-labelled cells in 

the GCL at each time point. The neuron specific protein, NeuN, is a sensitive 

and specific marker of neuronal somata (Wolf et al. 1996). NeuN antibodies 

have been used for RGC labelling in human, mouse and rat retinal explants 

(Buckingham et al. 2008, Diaz et al. 2005, Niyadurupola et al. 2011, Wolf et al. 

1996). In HORCs, NeuN-labelled RGCs were mainly detected in the GCL. The 

presence of a few NeuN-labelled amacrine cells in the inner aspect of the INL 

of the retina was also noticed. In the literature, it has been documented that a 

subset of amacrine cells can also be NeuN positive (Wolf et al. 1996). It has 

been estimated, however, in a mouse model of RGC degeneration that the 

proportion of  NeuN positive amacrine cells is age dependent and varies 

between 4 and 16%  (Buckingham et al. 2008). In the human retina, there were 

a few cells labelled with NeuN in the INL, indicating that even if they are 

amacrine cells the labelling of these cells is not excessive. In fact, the labelling 

could also be explained by the presence of displaced RGCs in the INL. As can 

be seen in figure 15, there was a gradual loss of NeuN-labelled RGCs in the 

RGCL, which reached a statistically significant level of approximately 20% by 

week 2 (p<0.005, n=6) and remained at a relatively stable level between weeks 

2 and 4 (p<0.005, n=6).  

 

 



 

87 
 

 

Figure 15: Timeline of NeuN-labelled RGC loss in HORCs with SF DMEM/HamF12 

(mean±SEM, n=6). Results are presented as % of t=0. Student’s t-test was used, 

*p<0.005. 

 

Since the number of the RGCs showed minimal loss even after weeks 3 and 4 

in culture, it was important to assess the viability of these remaining cells. The 

proportion of apoptotic RGCs was, therefore, estimated. There was a steep 

increase in the number of TUNEL-positive NeuN–labelled RGCs which 

reached a statistically significant level of approximately 75% at week 2 

(p<0.005, n=6) and followed by a further gradual increase to approximately 80% 

by week 4 (p<0.005, n=6) (figure 16). The finding that a relatively stable count 

of NeuN-labelled RGCs was associated with a dramatic increase in the 

proportion of TUNEL-positive nuclei indicates that although the presence of 

cells is detectable by immunolabelling of cell somatas, the cells themselves are 

either dead or in the process of dying through apoptosis. 
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Figure 16: Proportion of TUNEL-positive NeuN-labelled RGCs in HORCs with SF 

DMEM/HamF12 (mean±SEM, n=6). Results are presented as % of t=0. Student’s t-

test was used, *p<0.005. 

 

Previously, Niyadurupola and colleagues (2011) showed a decrease in the 

expression of Thy1 mRNA of approximately 50% at 24 hours and a further 25% 

decrease at 48 hours, reaching a basal level after 72 hours in culture. THY1 is a 

cell surface glycoprotein that primarily associated with the RGC bodies, 

dendrites and axons (Osborne & Larsen 1996, Sheppard et al. 1991) and, thus, 

has been used extensively as a marker for RGCs. Before an assessment of Thy1 

mRNA expression, total RNA was extracted. Although the yield of total RNA 

decreased significantly at each time point compared with t=0 (p<0.0005, n=4) 

(figure 17), the amount of it was still sufficient to proceed with QRT-PCR. In 

HORCs cultured for 4 weeks, there was a statistically significant loss of Thy1 

mRNA expression that reached a basal level at week 1 (p<0.0005, n=4) (figure 

18). The results were consistent with previously published findings from our 

group (Niyadurupola et al. 2011). 
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Figure 17: Total RNA loss in HORCs with SF DMEM/HamF12 (mean±SEM, n=4).  

Results are presented as % of t=0. Student’s t-test was used, * p<0.0005.  

 

 

 

Figure 18: Loss of Thy1 mRNA expression over time in HORCs with SF 

DMEM/HamF12 (mean±SEM, n=4). Results are presented as % of t=0. Student’s t-

test was used, * p<0.0005. 
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Optimisation of medium type in a long term HORC 

Having established time dependant changes in long-term HORCs with SF 

DMEM/HamF12, the next step was to look at the effect of serum 

supplementation on RGC survival. In addition, since previous research 

indicated that Neurobasal medium with B27/N2 is the optimum condition for 

rat organotypic retinal cultures, the effect of this medium was also tested. To 

assess the cell layer organization and extent of overall cell death in HORCs in 

tested culture conditions, immunohistochemistry and TUNEL immunolabelling 

were performed (figure 19). At week 1, the laminar cell layer organization was 

preserved in HORCs under all culture conditions. Moreover, there were a few 

TUNEL-positive NeuN-labelled RGCs present in all culture conditions. 

However, there appear to be noticeably more of TUNEL-positive nuclei in the 

inner nuclear and outer nuclear layers in Neurobasal and 10% FCS 

DMEM/HamF12 media compared to that in SF DMEM/HamF12, with HORCs 

with Neurobasal medium having the highest level of TUNEL in all three retinal 

cell layers. Over week 2, 3 and 4, there was a gradual increase in the level of 

apoptosis in all three retinal cell layers under all culture conditions. However, 

HORCs in Neurobasal medium had the most intensive TUNEL staining 

starting from week 2, with a significantly higher number of apoptotic cells in 

all cell layers compared to that in DMEM/HamF12 with and without serum.  
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Figure 19: Representative images of immunohistochemistry and TUNEL-labelling of 

HORCs with DMEM/HamF12 in the presence or absence of 10%FCS, or with 

Neurobasal medium over 4 weeks in culture. NeuN (green) is a marker for RGCs, 

TUNEL (red) is a marker for apoptosis. Nuclei are stained with DAPI (blue). Scale bar, 

100µm. 
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In order to establish the rate of the RGC loss in cultures with time, the number 

of NeuN-positive cells in the RGCL was counted at each time point (figure 20). 

Under all culture conditions, there was a significant decrease in the number of 

NeuN-labelled RGCs by weeks 2, 3 and 4 (p<0.05, n≥3). The greatest RGC 

loss was observed in HORCs with Neurobasal medium, where a linear decrease 

reached a level of over 60% loss by week 3 (p<0.0005, n=4). Culture with 

DMEM/HamF12 medium, either with or without 10%FCS, resulted in a 

maximum loss of approximately 20% by weeks 2, and remained at the same 

level at week 3 and 4 (p<0.05, n≥3). The difference between Neurobasal and 

DMEM/HamF12, with and without serum, reached statistical significance by 

weeks 3 and 4 (p<0.05, n≥3). 
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Figure 20: Loss of NeuN-labelled RGCs in HORCs with time. HORCs were cultured 

either in DMEM/HamF12, with or without serum, or Neurobasal medium 

supplemented with B27/N2 (mean±SEM, n≥3). All media contained gentamycin. 

Results expressed as % of t=0. In culture with Neurobasal medium, there was a linear 

loss of RGCs that reached a basal level at week 3, * p<0.05. In cultures with SF 

DMEM/HamF12, the loss of RGCs was gradual and reached statistical significance by 

week 2, * p<0.05. Cultures with 10%FCS DMEM/Ham F12 had the same pattern of 

RGC loss as cultures with DMEM/HamF12 without serum, ł p<0.05. The difference in 

a number of NeuN-labelled RGCs between cultures with DMEM/HamF12, either with 

or without serum, and Neurobasal media reached a statistically significant level at 

week 3 and 4, ǂ p<0.05. Analysis was made using one-way ANOVA with Dunnett’s 

and Tukey’s post-hoc tests. 

 

TUNEL staining was used to identify the proportion of apoptotic NeuN-

labelled RGCs. As can be seen in figure 21, under all conditions and at each 

time point, there was a significant increase in the number of TUNEL-positive 

NeuN–labelled RGCs (p<0.05, n≥3). At week 1, the proportion of the apoptotic 

RGCs was smaller in HORCs with DMEM/HamF12 medium of about 50%, 

either with or without FCS, compared with that in HORCs with Neurobasal 

B27/N2 medium, where nearly 80% of RGC nuclei were labelled with TUNEL, 
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and the difference was statistically significant (p<0.05, n≥3). However with 

time, the difference in levels of apoptosis of RGCs in HORCs under different 

culture conditions diminished. At week 4, the proportion of apoptotic RGCs 

reached around 90% in Neurobasal B27/N2 medium and FCS DMEM/HamF12, 

whereas the level of apoptosis of RGCs in SF DMEM/HamF12 has remained 

just under 80%. 

 

 

Figure 21:  Proportion of TUNEL-positive NeuN-labelled RGCs in HORCs with 

DMEM/HamF12, either with or without serum, or Neurobasal medium supplemented 

with B27/N2 over 4 weeks in culture (mean±SEM, n≥3). All media contained 

gentamycin. Results presented as % of t=0.  All culture conditions caused a 

statistically significant increase in a number of RGC apoptosis each week, * ł p<0.05 

vs t=0. Culturing with Neurobasal medium was associated with the steepest increase 

of nearly 80% at week 1, whereas HORCs with DMEM/HamF12 reached about 50% 

of RGC apoptosis at the same time point in culture, *p<0.05. The difference between 

Neurobasal and DMEM/HamF12, with and without serum, was statistically significant 

at week 1, ǂ p<0.05, and gradually diminished over weeks 2, 3 and 4. Analysis was 

performed using one-way ANOVA with Dunnett’s and Tukey’s post-hoc tests. 
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To assess the expression of RGC specific marker Thy1, the amount of total 

RNA was measured (figure 22). Under all culture conditions, the yield of total 

RNA reached a base line by week 2. Although the concentration of total RNA 

was low at week 2, 3 and 4, it was still sufficient to proceed with QRT-PCR in 

some samples allowing an estimation of Thy1 mRNA expression at each time 

point under all culture conditions (figure 23). There was a significant decline in 

the level of Thy1 mRNA expression at week 1 under all culture conditions 

(p<0.05, n=4). At week 2, 3 and 4, the level remained at approximately 20% of 

the post dissection level under all culture conditions. Despite a larger amount 

of total RNA at week 1 in HORCs cultured with Neurobasal B27/N2 medium, 

the expression of Thy1 mRNA was similar to cultures with DMEM/HamF12, 

with or without serum. There was no difference in expression of Thy1 mRNA 

in HORCs under all tested conditions. 
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Figure 22: Loss of total RNA in HORCs over time. Results are presented as 

percentage of t=0 (mean±SEM, n=4). HORCs were cultured either in 

DMEM/HamF12, with or without serum, or Neurobasal medium supplemented with 

B27/N2. All media contained gentamycin. Results presented as % of t=0. Under all 

conditions and each time point, the loss of total RNA was statistically significant, * 

p<0.05. There was no statistically significant difference in amount of total RNA 

between different culture conditions. Analysis was performed using one-way ANOVA 

with Dunnett’s and Tukey’s post-hoc tests. 
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Figure 23:  Loss of Thy1 mRNA expression over time. Expression of Thy1 mRNA 

was normalised to expression of CYC1 and TOP1 genes (mean±SEM, n=4). HORCs 

were cultured either in DMEM/HamF12, with or without serum, or Neurobasal 

medium supplemented with B27/N2. All media contained gentamycin. Results 

presented as % of t=0. Under all conditions, there was a statistically significant loss of 

Thy1 mRNA expression, * p<0.05 vs t=0. There was no difference in expression of 

Thy1 mRNA between different culture media. Analysis was performed using one-way 

ANOVA with Dunnett’s and Tukey’s post-hoc tests. 

 

Optimisation of antibacterial agents in a long-term HORC 

There is evidence that gentamycin possesses a toxic effect on the retina 

(Hancock et al. 2005), thus, it was important to compare the effect of different 

antibacterial agents on RGC survival in order to establish the optimum culture 

conditions for long-term HORCs. Two antibiotic supplements were tested: 

50µg/ml gentamycin and a combination of 100U/ml penicillin with 100µg/ml 

streptomycin. Cultures with no added antimicrobial agents were also included. 

Levels of LDH released in culture media were assessed as a measure of 

cytotoxicity. After 24 hours, the lowest level of LDH appeared to be in cultures 
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with no added antibiotics and cultures with gentamycin had the highest level of 

LDH, although there was no statistical significance (figure 24).  

 

 

Figure 249: The relative level of cytotoxicity measured at 24 hours in HORCs cultured 

with SF DMEM/HamF12 and added either gentamycin (gent) or 

penicillin/streptomycin (pen/strep) or no antibiotics (no Abx) (mean±SEM, n=4). 

Student’s t-test was used. 

 

The expression of Thy1 mRNA was also measured in HORCs under all tested 

conditions after 24 hours. As can be seen in figure 25, HORCs in SF 

DMEM/HamF12 with added gentamycin had the lowest amount of Thy1 

mRNA expression compared with cultures with added penicillin and 

streptomycin or no antibiotics and was statistically significant (p<0.005, n=4). 

HORCs with no added antimicrobial agent had the highest expression of Thy1 

mRNA. There was a statistically significant difference in Thy1 mRNA 

expression between cultures with added gentamycin and no antibiotics (p<0.05, 

n=4). 
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Figure 25: Normalised Thy1 mRNA expression measured at 24 hours in HORCs 

cultured with SF DMEM/HamF12 with added either gentamycin (gent) or 

penicillin/streptomycin (pen/strep) or no antibiotics (no Abx) (mean±SEM, n=4). The 

results are normalized to expressions of housekeeping genes, CYC1 and TOP1. There 

was a statistically significant Thy1 mRNA loss in HORCs with added gentamycin 

compared with t=0, **p<0.005. In HORCs with penicillin/ streptomycin the loss of 

Thy1 mRNA was less than in cultures with gentamycin, but still statistically 

significant compared with t=0, * p=0.001. The expression of Thy1 mRNA with 

gentamycin was significantly lower compared to that with no antibiotics, ǂ p<0.05. 

Analysis was performed using one-way ANOVA with Dunnett’s and Tukey’s post-

hoc tests. 

Discussion 

The present study aimed to determine whether HORCs could be maintained ex 

vivo in culture for longer than 96 hours, which was the longest culture period 

previously investigated by Niyadurupola and colleagues (2011). It also aimed 

to compare different culture conditions in order to prolong RGC survival in 

HORCs. In order to evaluate neurodegenerative changes in long-term HORCs, 

several RGC markers were used. In these experiments, the first indicator of the 

RGC fate was NeuN immunoreactivity. NeuN is a DNA-binding protein 

(Mullen et al. 1992) with isoforms present in neuronal cell nucleus and 
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cytoplasm (Lind et al. 2005, Wolf et al. 1996). Several studies have used NeuN 

to identify RGCs in human and animal retinal explants (Buckingham et al. 

2008, Diaz et al. 2005, Niyadurupola et al. 2013, Niyadurupola et al. 2011). 

Niyadurupola and colleagues (2011) examined the number of NeuN-

immunoreactive RGCs in short-term HORCs and documented no change in the 

count of these cells over the first 48 hours in culture, followed by a gradual 

decrease at the 72 and 96 hour time points. However, the authors demonstrated 

a reduction of approximately 40% in the NeuN-labelled RGC count after 60 

min of OGD followed by 23 hours of reperfusion compared to that in controls 

(Niyadurupola et al. 2011). In long-term HORCs, NeuN-immunolabelling of 

cells in the GCL demonstrated the presence of RGCs under all culture 

conditions throughout the 4 week culture period. There was no statistically 

significant change in the number of NeuN-labelled RGCs until the week 2 with 

DMEM/HamF12, either with or without serum, when it reached a basal level of 

about 20% loss. Interestingly, the loss of RGCs in HORCs with Neurobasal 

medium supplemented with B27/N2 was greater than in DMEM/HamF12, 

either with or without serum, at each time point in culture. The results of this 

chapter also showed that here was no correlation between the presence of 

NeuN-labelled RGCs on immunohistochemistry and the expression of Thy1 

mRNA. Thy1 is a cell surface glycoprotein that primarily associated with the 

RGC bodies, dendrites and axons (Osborne & Larsen 1996, Sheppard et al. 

1991) and, thus, has been used extensively as a maker for RGCs (Schlamp et al. 

2001). In long-term HORCs, a dramatic loss of Thy1 mRNA expression was 

documented at week 1, as was expected based on results by Niyadurupola and 
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colleagues (2011), indicating that the human retinal explants can be cultures for 

up to one week if the experiment is based on the measure of the retinal cell 

gene markers alone. In current study, the other markers for evaluation of the 

retinal cell fate were also used. Quantitative analysis of TUNEL-positive 

NeuN-labelled RGCs revealed a steep increase in the number of dying RGCs 

by apoptosis under all culture conditions of approximately 80% after 2 weeks 

in culture, with the steepest increase being found in HORCs with Neurobasal 

medium, suggesting this time period to be the most sensitive for evaluating the 

change in the NeuN-labelled TUNEL-positive RGC count. The data presented 

therefore also suggests that not only the use of several markers is important in 

order to identify the fate of RGCs, but also that the most sensitive marker of 

the RGC survival in a short-term HORC might be the expression of Thy1 

mRNA. In a long-term HORC, however, co-labelling of RGCs with TUNEL 

and NeuN would be the most reliable way of quantitative analysis of the RGC 

survival. Our findings are supported by the data from another group 

demonstrating a delay in NeuN-labelled RGC loss when compared to RGC-

specific gene marker expression and highlighting the importance of using 

several markers in assessment of the RGC fate. Buckingham and colleagues 

(2008) comprehensively demonstrated that NeuN is a reliable marker for RGCs 

by co-labelling mouse retinal tissue in vitro with NeuN and retro-loaded 

fluorogold, as RGC markers, together with ChAT and GAD-67, as markers for 

amacrine cells. The authors also showed that the neuronal somata continuously 

exerted NeuN-immunoreactivity throughout glaucomatous RGC degeneration 

despite progressive loss of RGC axons in the ONH and a significant down 
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regulation of the RGC-specific mRNA expression using a congenital mouse 

model of glaucoma (Buckingham et al. 2008), indicating a delay in the NeuN-

labelled RGC disappearance. The results, however, were limited by the lack of 

TUNEL data.  

Dulbecco’s modified Eagle’s medium (DMEM) is a modified Eagle’s 

minimum essential medium (EMEM) that has almost twice the concentration 

of amino acids and four times the amount of vitamins, as well as ferric nitrate, 

sodium pyruvate, and additional amino acids. DMEM is a basal medium and 

contains no proteins or growth promoting agents and, therefore, is used in a 1:1 

combination with defined Ham’s nutrients mixture (HamF-12) (Ham 1965, 

Jayme et al. 1997). Neurobasal medium has been developed as a modified 

DMEM/HamF12 medium specifically for cultures of isolated rat embryonic 

hippocampal neurons, in which the osmolality and the concentration of several 

amino acids were reduced and several compounds were eliminated, such as 

ferrous sulphate and glutamate (Brewer et al. 1993). The authors have also 

demonstrated that Neurobasal medium supplemented with B27 suppressed the 

growth of glial cells in the neuronal cell culture (Brewer et al. 1993), indicating 

the potential limitation of this medium for the use in tissue cultures. Since then, 

some researchers, when using Neurobasal medium, explored the ability of this 

medium to suppress glial cells in their experiments or reported unexplained 

results. Bonde and colleagues have noticed unexplained aggravation of 

neuronal cell death associated with pre- treatment of rat hippocampal slice 

cultures with glial cell derived growth factor (GDGF) prior to OGD 

experiments with Neurobasal medium (Bonde et al. 2003). Montero and 
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colleagues(2009) have discovered that switching to Neurobasal medium 

supplemented with B27 before experiments of OGD induced a significant cell 

death in mouse hippocampal slice cultures (Montero et al. 2009). The B27 and 

N2 supplements are chemically defined and commercially produced nutrient 

mixtures designed as modifications of older versions of nutrient mixtures to 

enhance specifically the survival of neuronal cells in culture (Brewer et al. 

1993, Wang et al. 2002). Neurobasal medium supplemented with B27/N2 is a 

common condition for culturing rat and mouse retinal explants (Johnson & 

Martin 2008, Manabe et al. 2002, Wang et al. 2002). However, there are 

concerns raised by some researchers questioning the content of B27 

supplement, since poor neuronal cell survival and maturation was noticed in 

cultures with this supplement (Cressey 2009). To support the survival and 

proliferation of cultured cells, supplementation of a basal medium with serum 

is widely used. However, in long-term HORCs, there was no difference in the 

number of viable RGCs at any of the measured time points between cultures 

with serum- free and serum supplemented DMEM/HamF12.  

FCS is complex mixture of different factors, like proteins, growth factors, 

vitamins and hormones, which are essential for the cells growth and 

maintenance in culture. However, the complex undefined nature of serum is a 

potential problem when assessing the effect of regulatory agents, such as 

hormones or neurotransmitters. The inclusion of serum may significantly affect 

experimental reproducibility due to differences in serum composition produced 

by batch-to-batch variations. Moreover, there are concerns regarding not only 

inhumane ways of serum collection from unborn calves (Van der Valk et al. 
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2004), but also regarding the risk of contaminations, for example with viruses, 

when animal products are used in culture (Wessman & Levings 1999). In fact, 

the use of animal substrates is strongly discouraged in biological medical 

productions (Schiff 2005, Van der Valk et al. 2004). Attempts have been made 

to develop standards for in vitro cell and tissue cultures by introducing 

guidelines for good cell culture practice (GCCP) recommending the use of 

serum-free media, however it is not legally binding (Van der Valk et al. 2010). 

It follows therefore from the above observations that SF DMEM/HamF12 

medium is the most appropriate choice for long-term HORCs, the medium used 

by Niyadurupola and colleagues (2011, 2013) for short-term HORCs. 

It is generally accepted that there is a need for the use of antibacterial agents in 

cultures in order to prevent bacterial contamination of the medium. 

Penicillin/streptomycin combination and gentamycin are commonly used 

antibiotics in culture. Gentamycin is an aminoglycoside that is effective against 

gram-negative bacteria by  inhibiting bacterial protein synthesis (Vakulenko & 

Mobashery 2003). Use of gentamycin in medicine has been limited due to drug 

ototoxicity (Jackson & Arcieri 1971) and nephrotoxicity  (Wilfert et al. 1971). 

From clinical studies, minimum inhibitory concentration of gentamycin is 

known to be at the level of 2µg/ml (Noone et al. 1974). The authors have also 

advised on a reduction of the dose if the serum concentration of gentamycin 

exceeded 15µg/ml in order to avoid toxic effects to ears and kidneys in patients 

with sepsis (Noone et al. 1974). In ophthalmology, gentamycin used to be one 

of the most commonly used antibiotics for intravitreal injections to treat 

endophthalmitis (Penha et al. 2010). However, there are several reports 
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regarding gentamycin toxicity in the eye. The toxic effect of gentamycin on 

viability of the corneal endothelium has been demonstrated in  an in vivo rabbit 

model, where intracameral injection of gentamycin at concentrations between 

20µg/ml and 20mg/ml has caused a dose dependant loss of endothelial cells 

between 22% and 67%, respectively (Kobayakawa et al. 2010). In rabbit and 

rat retinal cultures, gentamycin has been found to affect electrophysiological 

responses due to toxic effect on bipolar and horizontal cells, as well as 

diffusely disrupted the NFL and IPL (Hancock et al. 2005). In addition, there 

are several case reports of patients who lost their vision due to retinal 

ischaemia following topical and intravitreal administrations of gentamycin 

(Campochiaro & Conway 1991, Kanter & Brucker 1995). Because of potential 

gentamycin toxicity to the retinal tissue, the effect of different antibiotics, 

specifically penicillin/streptomycin in combination or gentamycin, on the RGC 

survival in HORCs was assessed and compared with HORCs without 

antibiotics. The concentration of gentamycin routinely used in HORCs was 

50µg/ml which is above the minimum inhibitory dose and within the range of 

the safe dosage to avoid a potential toxic effect to the retina. A combination of 

100U/ml penicillin and 100µg/ml streptomycin was the same as reported by 

other groups in routine cell and tissue cultures (Carter & Dick 2003, Johnson & 

Martin 2008, Van Bergen et al. 2009). In HORCs with gentamycin, not only 

was the loss of Thy1 mRNA expression statistically significant in comparison 

with cultures without antibiotics, but also the level of total cell death was 

higher, but not significantly, when LDH activity was measured in a 24 hour 

culture. Although cultures with penicillin/streptomycin had some reduction in 
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Thy1 mRNA expression, it was still not as significant as in HORCs with 

gentamycin when compared with antibiotic-free cultures. LDH activity was 

also lower, but not significantly, in medium of HORCs with 

penicillin/streptomycin compared with added gentamycin cultures. In literature, 

when both types of antibiotics were compared in bone marrow-derived 

mesenchymal stem cell (bmMSC) cultures in medium with added 100mg/ml of 

gentamycin or 1% mixture of penicillin and streptomycin or hyaluronic acid, it 

has been shown that there was a loss of more than 95% of cell viability in 

culture with gentamycin, whereas in culture with penicillin/streptomycin as 

well as hyaluronic acid, the viability of the cells was preserved in more than 80% 

of cells (Bohannon et al. 2013). The data presented therefore suggests that not 

only penicillin and streptomycin are the least toxic antibiotics in culture, but 

also that it is important to avoid the use of gentamycin in experiments 

involving bmMSCs, since there is an increasing interest in neuroprotective 

potential of bmMSC (Johnson et al. 2010). Interestingly, it was found that 

HORCs without antibiotics had the smallest loss of Thy1 mRNA expression 

after 24 hours in culture, as well as the lowest, but not significantly, level of 

total cell death. Although there are other studies that cultured human retinal 

explants for up to 14 days in medium with no added antibiotics (Knott et al. 

1999, Mayer et al. 2005), the use of antimicrobial agent with the least toxic 

effect on the retinal tissue would be feasible, especially in long-term HORCs 

when a complete isolation of each individual experiment is not practical and 

the risk of contamination would always be present and can be devastating due 

to a limited number of human retinal explants. 
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To summarize, the aims of the presented work were to characterise a long-term 

model of the RGC degeneration using HORCs and then to develop an optimum 

culture condition in order to establish this model for future used in 

neuroptotective studies, specifically in glaucoma. It was found that SF 

DMEM/HamF12 is the condition of choice for a long-term HORC and all 

subsequent experiments were carried out using this culture medium. Moreover, 

it was demonstrated that a combination of penicillin and streptomycin is a 

better choice of antibiotics for HORCs compared with gentamycin, however, 

an antibiotic free culture would be a feasible option as well.  
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CHAPTER 4 

A ROLE OF MESENCHYMAL STEM CELL DERIVED 

NEUROTROPHIC FACTORS IN PROLONGING RGC SURVIVAL 

IN HUMAN ORGANOTYPIC RETINAL CULTURES 

Introduction 

Previous experiments, presented in chapter 3, established that SF 

DMEM/HamF12 with added penicillin and streptomycin is the medium of 

choice for long-term culture of human retinal explants. The next aim was to 

identify specific neurotrophic factors that might be able to prolong the survival 

of RGCs in long-term culture. Currently, there is a great degree of interest in 

the trophic and protective qualities that bone marrow derived mesenchymal 

stem cells (bmMSCs) exert on cells and tissues throughout the body, including 

RGCs (Johnson et al. 2010, Yu et al. 2006a). In the retina, production of 

neurotropic factors after MSC transplantation has been implemented as a main 

mechanism by which these cells confer neuroprotection (Li et al. 2009, Yu et 

al. 2008, Zhao et al. 2011, Zwart et al. 2009).  

It has been long established that MSCs are a source of an array of growth 

factors of various concentrations with multiple mechanisms of action, 

including neuroprotection (Hsieh et al. 2013, Johnson et al. 2014), 

angiogenesis (Estrada et al. 2009, Hsieh et al. 2013), and immunomodulation 

(Parekkadan et al. 2007). However, characterisation of the MSC secretome is 

still ongoing (Kupcova-Skalnikova 2013) and new, previously unknown 

factors are continuously emerging (Estrada et al. 2009, Johnson et al. 2014). 
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Based on information available at the time of the conduction of experiments (K. 

Martin, personal communication; (Johnson et al. 2014)), the decision was 

made to investigate bmMSC-derived neurotrophic factors because of their 

potential to prolong RGC survival on the human model of the RGC 

degeneration, such as leukaemia inhibitory factor (LIF) (Nasef et al. 2008), 

platelet derived growth factor (PDGF) (Ball et al. 2012) and vascular 

endothelial growth factor (VEGF) (Beckermann et al. 2008, Kinnaird et al. 

2004).  

Leukaemia inhibitory factor (LIF) is a highly glycosylated 40–50 kDa 

glycoprotein from the interleukin 6 (IL-6) cytokine family (Heinrich et al. 2003) 

and is a marker of MSC differentiation potential (Whitney et al. 2009). LIF 

receptor consists of two subunits: gp130 is a common subunit for all IL-6 

family of cytokines, and another specific for LIF receptor (LIFR) subunit 

(Heinrich et al. 2003). It has been reported that LIF signal transduction is 

facilitated via the Janus kinase/signal transducer and activator of transcription 

(Jak/STAT) pathway (Heinrich et al. 2003), as well as mitogen-activated 

protein kinase (MAPK) (Heinrich et al. 2003, Park et al. 2003) and 

phosphatidylinositol 3-kinase (PI3K)/Akt signalling cascades (Alonzi et al. 

2001). LIF is known to be expressed and secreted by multiple tissues and cell 

types, and has a wide array of actions. For example, LIF acts as a stimulus for 

proliferation of hematopoietic cells (Leary et al. 1990), and plays a crucial role 

in embryogenesis (Ware et al. 1995) and fertility (Chen et al. 2000). In murine 

embryonic stem cell culture, it has been shown that LIF is a crucial factor in 

promoting cells proliferation (Bauer & Patterson 2006, Williams et al. 1988), 
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and deprivation of the factor causes cell apoptosis and differentiation of the 

surviving cells (Duval et al. 2000). It has also been shown that LIF promotes 

glial cell proliferation and astrocytic differentiation (Bauer & Patterson 2006, 

Mi et al. 2001, Nakanishi et al. 2007). Numerous reports using in vivo animal 

models (Blesch et al. 1999, Chollangi et al. 2009, Leibinger et al. 2009, Suzuki 

et al. 2005), as well as in vitro studies using cell cultures (Han et al. 2013, 

Leibinger et al. 2009, Majumder et al. 2012, Martinou et al. 1992, Yamamori 

et al. 1989) have demonstrated the potential neurotrophic and neuroprotective 

effects of LIF. However, an exact origin for the regenerative potential of LIF 

has not been elucidated. Suggested mechanisms involve the recruitment of 

neural stem cells (NSCs) (Bauer & Patterson 2006), stimulation of 

neurotrophic factors production (Blesch et al. 1999), and direct action on 

neurons (Leibinger et al. 2009). Neurotrophic and neuroprotective effects of 

LIF have been demonstrated in the brain (Suzuki et al. 2005), spinal cord 

(Blesch et al. 1999), and the retina (Chollangi et al. 2009). Neurotrophic 

property of LIF has been shown using an in vivo rat model following spinal 

cord injury, where grafting of genetically modified fibroblast designed to 

produce high amount of LIF enhanced the expression of neurotrophin-3 with a 

significant increase in axon outgrowth (Blesch et al. 1999). However, the effect 

on nerve function has not been investigated in this study. Another study, using 

an ischaemic brain injury model, has shown that both neurological deficit and 

ischaemic damage were much less severe after exogenous LIF injection in a 

dose dependant manner (Suzuki et al. 2005). It has also been demonstrated in 

vitro that LIF promotes survival of motoneurons (Martinou et al. 1992), 
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cutaneous sensory neurones (Horton et al. 1998), and autonomic neurons of the 

heart (Yamamori et al. 1989). The potential involvement of LIF in the retinal 

pathophysiological processes has also been investigated. Stimulation of 

inflammatory pathways by means of optic nerve crush and intraocular lens 

injury has been shown to induce a robust upregulation of LIF by mouse retinal 

astrocytes (Leibinger et al. 2009). The authors have also demonstrated that 

exogenous LIF can stimulate axon regeneration in the optic nerve in vivo and 

induce RGC outgrowth in vitro (Leibinger et al. 2009). A role of LIF in 

glaucoma has been investigated using an in vivo rat model, where an increase 

in LIF expression of 223% was observed in the optic nerve head compared 

with controls after 5 weeks of acute IOP elevation (Johnson et al. 2011). 

Another in vivo study has demonstrated that light preconditioning caused a 

strong upregulation of LIF expression in the mouse retina, which was 

protective to photoreceptors (Chollangi et al. 2009). It follows from the above 

observations that LIF possesses a neurotrophic effect, however, there is rather 

limited evidence for this effect to RGCs. 

Platelet derived growth factor (PDGF) is another important growth factor 

produced in abundance by MSCs, that plays a key role in MSC proliferation 

and differentiation (Ball et al. 2012). The PDGFs are a family of proteins 

consisting of PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC and PDGF-DD 

(Kazlauskas 2000, Li & Eriksson 2003) that are members of a PDGF/VEGF 

superfamily. The structure of PDGF protein is dimeric, and both PDGF-CC 

and PDGF-DD share the structure of their second subunit with vascular 

endothelial growth factor (VEGF) (Reigstad et al. 2005). PDGF-CC and DD 
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have to be proteolytically activated with tissue plasminogen activator (tPA) 

and/or plasmin to allow receptor binding, whereas other PDGFs do not require 

proteolytic activation (Fredriksson et al. 2005, Lei & Kazlauskas 2008). 

Secreted PDGFs signal through tyrosine kinase receptors, that are made of 

homo- and heterodimers of PDGF receptor α and β (Reigstad et al. 2005). 

PDGF-BB is the universal ligand, whereas PDGF-AB and PDGF-CC activate 

both PDGFR-αα and PDGFR-αβ, and PDGF-DD activates both PDGFR-β and 

PDGFR-αβ. PDGF-AA is the most selective member of the PDGF family and 

exclusively activates PDGFR-αα (Lei et al. 2010). Several genetically 

modified mouse models have been developed where PDGF-A and PDGF-B, as 

well as PDGF receptor -α and -β genes were knock-out to demonstrate a 

crucial role of these factors not only in embryonic development, but also their 

involvement in physiological and pathological processes in mesenchymal 

tissues (Fruttiger et al. 1999, Ishii et al. 2006, Leveen et al. 1994, Soriano 

1997). For example, in a study using PDGF-B knock-out mice, perinatal death 

was associated with severe kidney and vascular smooth muscle abnormalities 

(Leveen et al. 1994). Although some pups of PDGF-A mutant mice have 

survived after birth, a severe loss of myelin in spinal cord, optic nerve and 

cerebellum regions has indicated the importance of PDGF-A for 

oligodendrocyte development (Fruttiger et al. 1999). Perinatal death has also 

been observed in PDGF-α receptor gene knock-out mice and was associated 

with incomplete cephalic closure (Soriano 1997). The neuroprotective effect of 

PDGFs has been demonstrated by several in vivo studies suggesting that these 

factors regulate the susceptibility of CNS neurons to cell death after injury 
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(Egawa-Tsuzuki et al. 2004, Ishii et al. 2006). Silencing of PDGF-β receptor 

gene in mice has accelerated the loss of brain neurons after NMDA-excitotoxic 

and cryogenic injuries (Ishii et al. 2006). Pre-treatment with PDGF-BB has 

been demonstrated to confer neuroprotection against NMDA mediated 

excitotoxic insult in the brain of rats, whereas inhibition of PDGF-BB secretion 

has exacerbated neuronal cell death (Egawa-Tsuzuki et al. 2004). The ability of 

PDGF-AA to attenuate oxidative stress-induced cell death via PI3K/Akt 

pathway has also been demonstrated in the RGC-5 cell culture (Kanamoto et al. 

2011). The results of the above studies strongly indicate that PDGFs have a 

potential to extent RGC survival in the retina. 

Vascular endothelial growth factor (VEGF) is a major regulator of blood and 

lymphatic vessel development (Breier et al. 1992, Karkkainen et al. 2004). The 

main functions of VEGFs are in regulation of endothelial cells proliferation, 

migration, and vascular tube formation (Kinnaird et al. 2004). In mammals, the 

VEGF family consists of five dimeric glycoprotein growth factors: VEGF (or 

VEGF-A), VEGF-B, VEGF-C, VEGF-D, and placenta growth factor (PlGF) 

(Tammela et al. 2005). VEGF-A is the most abundant and most well studied 

VEGF. By differential mRNA splicing, the single VEGF-A gene is represented 

by three major isoforms throughout most tissues in humans: VEGF121, 

VEGF165 and VEGF189. whereas in the mouse, the isoforms are VEGF120, 

VEGF164 and VEGF188 (Ruhrberg 2003). The structure of these VEGF forms 

differ primarily in the number of amino acids and presence or absence of the 

heparin binding domains, giving rise to forms that differ in their heparin and 

heparan-sulfate binding ability. All VEGF-A isoforms bind with high affinity 
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to two transmembrane tyrosine kinase receptors VEGFR1 (fms-like tyrosine 

kinase 1; FLT1) and VEGFR2 (also known as foetal liver kinase 1 (FLK1)/ 

kinase domain region (KDR)). The receptors signal predominantly by 

activating the MAPK/ERK (extracellular signal-regulated kinase) pathway 

(Ferrara 2001, Ma et al. 2011). All VEGF isoforms bind to the Flt-1 and Flk-1 

receptor tyrosine kinases (Ruhrberg 2003). There are also two other non-

tyrosine kinase co-receptors from the neuropilin family, Nrp-1 and Nrp-2, that 

are selective for certain isoforms (Gluzman-Poltorak et al. 2000). For example, 

the heparin-binding domain of VEGF165 facilitates binding to Nrp-1, whereas 

VEGF121 cannot bind to either receptors due to the lack of any heparin-

binding domain (Gitay-Goren et al. 1996, Gluzman-Poltorak et al. 2000). 

There are multiple reports demonstrating neurotrophic effect of bmMSCs in 

vivo via significant upregulation of VEGF secretion in the ischaemic brain 

injury in rats that promoted endogenous neurogenesis, reduced apoptosis and 

improved functional recovery (Bao et al. 2011, He et al. 2011, Li et al. 2014, 

Wakabayashi et al. 2010, Wei et al. 2012). Several studies have also 

demonstrated the neurotrophic properties of VEGF in vitro. It has been found 

to rescue neurons after serum withdrawal in culture (Jin et al. 2000a), and 

promote neuronal survival in both the foetal organotypic cortical explants 

(Rosenstein et al. 2003) and cultured adult mouse peripheral nervous system 

ganglia neurons (Sondell et al. 1999). Moreover, the ability of exogenous 

VEGF to rescue neuronal cells has been demonstrated in hypoxia (Jin et al. 

2000b, Svensson et al. 2002), mechanical injury (Ma et al. 2011) and 

glutamate excitotoxicity (Bogaert et al. 2010, Svensson et al. 2002). Due to 
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lack of vessels in neuronal cell and tissue cultures of in vitro experiments, it is 

possible to conclude that the neuroprotective effect of VEGF can potentially be, 

at least in part, vessel independent.  

Considering that the results of several studies have extensively demonstrated 

the neurotrophic effect of the bmMSC derived growth factors LIF, PDGF and 

VEGF, the aim of the experiments presented in this chapter was to determine 

whether they could prolong RGC survival in the long-term culture of the 

human retina. 

Results 

LIF has no effect on RGC survival in a long- term HORC 

In order to analyse the possible beneficial effect of LIF supplementation on 

RGC survival, the effect of LIF at concentrations of 10, 30 and 50ng/ml was 

investigated in a long-term HORC. As can be seen in figure 26, there was a 

well-defined preservation of the retinal cell layer architecture under all culture 

conditions. The TUNEL-positive cells were present not only in the GCLs but 

also in the other nuclear layers in all cultures. However, in HORCs with 30 and 

50ng/ml, it appeared to have more apoptotic cells in the ONL. As expected 

from previous experiments (chapter 3), quantitative analysis of NeuN-

immunoreactive RGCs (figure 27) showed no difference in RGC counts, 

indicating that LIF did not cause a loss of RGCs. Therefore, the labelling with 

TUNEL was also carried out and the proportion of NeuN-labelled TUNEL-

positive RGCs was quantified. There was a noticeable increase in the level of 
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apoptosic RGCs in cultures with 30 and 50ng/ml LIF compared to that of 

controls, however the difference was not significant (figure 28).  

 

Figure 26: Representative images of HORCs after 1 week culture with LIF at 

concentrations of 10, 30 and 50ng/ml. RGCs are labelled with NeuN (green), 

apoptotic cells with TUNEL (red), nuclei with DAPI (blue). Scale bar, 100µm. 
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Figure 27: NeuN-labelled RGC count after 1 week in culture with LIF at 

concentrations of 10, 30 and 50ng/ml (mean±SEM, n=4). Student’s t-test was used. 

 

 

 

 

Figure 28: Proportions of NeuN-labelled TUNEL-positive RGCs after 1 week in 

culture with LIF at concentrations of 10, 30 and 50ng/ml (mean±SEM, n=4). Student’s 

t-test was used. 
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PDGF-AA and VEGF prolong RGC survival in a long-term HORC 

To determine a potential neurotrophic effect of PDGF-AA, PDGF-AB and 

VEGF on RGC survival in long-term HORCs, all growth factors were tested at 

concentration of 50ng/ml. At 1 week, as can be seen in figure 29, the structure 

of retinal explant cell layers was well preserved in controls and treated retinal 

explants. To assess the overall cell death level in HORCs at week 1, LDH 

activity was measured and appeared to be lower in all explants treated with 

growth factors compared to that in controls (figure 30). In fact, LDH activity in 

media of HORCs treated with VEGF was significantly lower compared to that 

in controls (p<0.05, n=6). Although the reduction in the level of overall cell 

death in cultures with PDGF-AA and PDGF-AB was also noticed, it was not 

statistically significant. Quantification of NeuN-immunoreactive RGCs was 

carried out and showed no difference in the number of RGCs in treated HORCs 

compared to that in controls (figure 31). TUNEL was also carried out and 

quantified. As can be seen in figure 32, the proportion of NeuN-labelled 

TUNEL positive RGCs was also lower in HORCs treated with PDGF-AA, -AB 

and VEGF compared to that in controls reaching statistical significance for 

PDGF-AA and VEGF( p<0.05, n=6). The reduction in the proportion of 

apoptotic RGCs was over 30% in HORCs cultures with VEGF and over 20% 

in cultures with added PDGF-AA. 
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Figure 2910: Representative images of HORCs after 1 week treatment with PDGF-AA, 

PDGF-AB and VEGF at concentration of 50ng/ml and vehicle control. RGCs were 

labelled with NeuN (green), cells nuclei were labelled with DAPI (blue), TUNEL-

positive nuclei are red. Scale bar, 100µm. 
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Figure 30: The relative level of LDH released in medium after 1 week of HORCs with 

PDGF-AA, PDGF-AB and VEGF at concentration of 50ng/ml (mean±SEM, n=6). 

Results expressed as % of control, * p<0.05 vs control. Student’s t-test was used. 

 

 

 

Figure 31: NeuN-labelled RGC count in HORCs after 1 week of HORCs with PDGF-

AA, PDGF-AB and VEGF at concentration of 50ng/ml (mean±SEM, n=6). Results 

expressed as % of control. Student’s t-test was used. 
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Figure 32:  A proportion of apoptotic RGCs after 1 week of HORCs with PDGF-AA, 

PDGF-AB and VEGF at concentration of 50ng/ml (mean±SEM, n=6). Results 

expressed as % of control, * p<0.05 vs control. Student’s t-test was used. 

 

 

Discussion 

The aim of the work presented in this chapter was to determine neurotrophic 

effect of specific MSC-derived growth factors that can potentially prolong 

survival of RGC in HORCs. Four growth factors were tested that are known to 

be secreted by bmMSCs: LIF, PDGF-AA, PDGF-AB and VEGF. Both PDGF-

AA and VEGF conferred significant neurotrophic effects on RGCs in the long-

term human retinal explant culture. In a recently published paper, Johnson and 

colleagues (2014) have characterised the human bmMSC secretome and 

established that LIF, PDGF-AA and PDGF-AB were secreted at significantly 

higher levels by human MSCs in comparison to human fibroblasts, whereas 

VEGF was found to be present in culture media of both cell types (Johnson et 
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al. 2014). The authors tested the effect of LIF, PDGF-AA and PDGF-AB on 

RGC survival in long-term rat retinal explants. There was a robust increase in 

the level of RGC survival after 1 week in rat retinal explant cultures treated 

with PDGF-AA and PDGF-AB, whereas LIF failed to attenuate RGC fate 

(Johnson et al. 2014). These findings are in agreement with the results using 

HORCs. It has also been demonstrated using in vivo rodent models that LIF 

can promote regeneration of nerves after mechanical injury (Cheema et al. 

1994, Dowsing et al. 2000), in motor neurone disease (Ikeda et al. 1995) and 

amyotrophic lateral sclerosis (Azari et al. 2001), but, in a clinical randomised 

trial on patients with cancer, LIF has failed to prevent chemotherapy induced 

neuropathy (Davis et al. 2005). Despite the data presented above, the lack of 

trophic effect on RGCs by LIF is still surprising since there is rather strong 

evidence using in vivo animal models (Blesch et al. 1999, Johnson et al. 2011, 

Suzuki et al. 2005) and in vitro studies using cell cultures (Han et al. 2013, 

Majumder et al. 2012) demonstrating that LIF promotes survival of neurons. 

Majumder and colleagues (2012) have shown a significant increase in survival 

of human embryonic stem cell derived neuronal cells in cultures with added 

10ng/ml of LIF (Majumder et al. 2012). Han and colleagues (2013) have 

identified LIF as neuroptotective factor against oxidative stress in neuronally 

differentiated PS12 cells in culture (Han et al. 2013). The concentrations tested 

by authors were at least 10 and 20 times smaller (0.5 and 1ng/ml) than 

concentrations tested in the experiments reported in this chapter. The effect of 

protection against apoptosis was dose-dependent and authors suggested that 

higher doses of LIF would most likely exert even more prominent level of 
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neuroprotection (Han et al. 2013). However, our results using HORCs do not 

support this suggestion demonstrating a biphasic effect to increase 

concentrations. In addition, localization of LIFR in the retina has also been 

investigated. Sarup and colleagues (2004) have demonstrated co-localization of 

LIFR and fluorogold pre-labelled RGCs, as well as Müller cells before and 

after optic nerve transaction in the rat retina (Sarup et al. 2004). There was no 

data regarding LIFR presence in the photoreceptor layer. It appears, however, 

that the neuroprotective effect of LIF in the retina is mainly conferred to 

photoreceptors (Burgi et al. 2009, Chollangi et al. 2009, Joly et al. 2008, Von 

Toerne et al. 2014). Neuroprotective effect of LIF on photoreceptors was 

demonstrated in vitro using retinal explants from both mice with congenital 

progressive photoreceptor degeneration and porcine retinas (Von Toerne et al. 

2014), as well as an in vivo mouse model of retinitis pigmentosa (Joly et al. 

2008) and  following light-induced oxidative stress (Burgi et al. 2009, 

Chollangi et al. 2009). Although HORCs were extensively characterized as a 

model for studying RGC degeneration and the levels of apoptosis in the other 

retinal nuclear layers were not routinely quantified, it would be useful to use 

the human retina explants to investigate the fate of other cell types in the retinal 

tissue. Because after 1 week in culture, there was not much apoptosis observed 

in the ONL of HORCs (figure 28), it is possible to conclude that HORCs might 

need to be cultured for a longer period to establish the effect of LIF on other 

cell types in the human retina.  

In contrast to LIF, the results presented in this chapter have demonstrated 

neurotrophic effects of both VEGF and PDGF-AA on RGC survival in HORCs. 
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A reduction in the number of apoptotic RGCs was also noticed in HORCs with 

added PDGF-AB, however the effect was not significant. The understanding of 

the role of VEGF as a critical survival factor for not only vascular endothelium 

(Gerber et al. 1998), as had been thought initially, but for other cell types, 

including neurons in both the central and peripheral nervous systems 

(Khaibullina et al. 2004, Ma et al. 2011, Oosthuyse et al. 2001, Rosenstein et 

al. 2003), has expanded dramatically over recent years. Localisation of VEGF 

and its receptors in the retina has been demonstrated in monkeys and rats, 

where VEGF mRNA has been localised to the INL and the RPE, and to a lesser 

extent to the ONL (Kim et al. 1999). It has also been shown using the same 

species that RGCs express both VEGFR1 and VEGFR2, with VEGFR2 being 

the most abundant receptor (Foxton et al. 2013, Kim et al. 1999). The 

expression of VEGF receptors was also demonstrated in the retinal glia and 

amacrine cells (Famiglietti et al. 2003) highlighting the complexity of the 

VEGF neurotrophic activity in the retinal tissue. The importance of VEGF for 

survival of not only RGCs, but also other cell types in the retina has been 

demonstrated by many studies. The neuroprotecive effect of VEGF to RGCs 

has  recently been demonstrated using an in vivo rat model of diabetic 

retinopathy, where inhibition of VEGF caused a significant loss of RGCs (Park 

et al. 2014). Foxton and colleagues (2013) have demonstrated a robust 

neuroprotective effect of VEGF on RGC survival using an in vitro isolated rat 

RGC model, as well as an in vivo rat model of ocular hypertension. The effect 

was found to be mediated via phosphorylation of PI3K/Akt anti-apoptotic 

pathway (Foxton et al. 2013). A dose-dependent effect of exogenous VEGF to 
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rescue RGCs has also been shown in vivo using a rat model of 

ischaemia/reperfusion, and in vitro on retinal explants as a rat model of retinal 

degeneration (Nishijima et al. 2007). In addition, the importance of 

endogenous VEGF to Müller, bipolar, amacrine cells and photoreceptor cells 

survival has been demonstrated in vitro (Saint-Geniez et al. 2008), as well as in 

vivo using rat models of ischaemia/reperfusion (Nishijima et al. 2007) and 

diabetic retinopathy (Park et al. 2014). There is, therefore, a large body of data 

to suggest that VEGF is an important survival factor for RGCs. The results 

presented in this chapter are the first that demonstrate the neurotrophic action 

of VEGF to RGCs in the human retina.  

Regarding PDGFs, Johnson and colleagues (2014) were the first to identify a 

key role of PDGF signalling in the mechanism of MSC-mediated 

neuroprotection. The authors demonstrated that both PDGF-AA and PDGF-AB 

exerted robust neuroprotective effects on RGCs in vitro using rat retinal 

explant cultures, and on RGC axons in vivo using the rat model of ocular 

hypertension. The mechanism of neuroprotection was shown to be PI3 kinase-

dependent (Johnson et al. 2014). The results are not surprising since the 

expression of PDGFs and their receptors in the retina and the ON has been 

extensively investigated using rodent (Biswas et al. 2008, Mekada et al. 1998, 

Mudhar et al. 1993) and human retinas (Bozanic et al. 2006). In the rodent 

retina, the expression of PDGF-AA was found to be localised to the GCL and 

amacrine cells, whereas the expression of PDGFR α was localised to retinal 

and optic nerve astrocytes (Mudhar et al. 1993). The expression of PDGFR-α 

and-β was also demonstrated in the GCL, Müller cells and retinal vasculature 
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of rats, activation of which led to downstream signalling through PI3K/Akt 

pathway (Biswas et al. 2008). Another study also showed immunoreactivity 

and mRNA expression of PDGF-B chain in the GCL and the NFL of the rat 

retina, with a decline in the number of PDGF-B positive cells after the ON 

transection indicating a potential neurotrophic role of this factor in the RGC 

survival (Mekada et al. 1998). A critical role of PDGFs in regulation of retinal 

cell proliferation, differentiation, and survival during eye development was 

demonstrated in study using human embryos, where the expression of PDGFR-

β was localized to both the pigmented and neural retina (Bozanic et al. 2006). 

In addition, the neuroprotective effects of another member of the PDGF family, 

PDGF-CC, was also reported in the comprehensive study by Tang and 

colleagues (2010)  using different models of neurodegeneration, including 

optic nerve crush, oxidative stress and NMDA–induced apoptosis. The authors 

demonstrated a critical role of PDGF-CC in neuronal survival in both the retina 

and the brain through glycogen synthase kinase 3 β signalling (GSK3β) (Tang 

et al. 2010). It follows from the results presented above that both VEGF and 

PDGFs play a crucial role in RGC survival.  

Importantly, both VEGF and PDGF are also known to exert a coordinated 

ability to regulate vessel development, where VEGF facilitates new vessel 

growth while PDGF stabilises vessel maturation by supporting pericyte–

endothelial interactions (Benjamin et al. 1998, Bergers et al. 2003, Erber et al. 

2004, Gendron 1999). These findings raise concerns about the use of anti-

VEGF agents in patients with glaucoma for treatment of ocular 

neovascularization (Chong 2012) that are extensively used in current clinic 
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practice (Gragoudas et al. 2004, Krizova et al. 2014, Rosenfeld et al. 2011, 

Stepien et al. 2009, Stewart 2011). It has been demonstrated using an in vivo 

rat model, that repeated intravitreal injections of anti-VEGF bevacizumab 

caused RGC loss via apoptosis (Romano et al. 2012). Because the efficacy of a 

VEGF-A blockade was shown to diminish over time (Jo et al. 2006) and some 

patients are failing to respond to anti-VEGF treatment (Brown et al. 2009, 

Cohen et al. 2012, Heier et al. 2006), there is increasing interest in a specific 

targeting of both VEGF and PDGF signalling pathways that appear to be more 

effective at preventing and regressing pathological ocular neovascularization 

than targeting VEGF-A signalling alone (Jo et al. 2006, Liegl et al. 2014, 

Mendel et al. 2003, Takahashi et al. 2009). The rapid development of anti-

angiogenic treatment in turn highlight the importance of further research in the 

effect of dual VEGF/PDGF inhibition on RGC survival, where long-term 

HORCs could become an invaluable resource for further investigations of such 

effects. 

In summary, the results presented in this chapter have identified specific 

bmMSC-related growth factors, VEGF and PDGF-AA, which can prolong 

RGC survival in a human model of RGC degeneration.  
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CHAPTER 5 

HISTONE DEACETYLASE REGULATION OF GENE 

EXPRESSION IN HUMAN ORGANOTYPIC RETINAL CULTURES 

Introduction 

Having established that specific MSC-derived growth factors possess the 

potential to prolong RGC survival in HORCs, the way to attenuate the 

expression of RGC gene markers in order to extend the period of the HORC 

use for neuroprotective studies on RGC gene level has also been explored.           

In general, an early event in cell apoptosis is silencing of normal gene 

expression, including anti-apoptotic genes (Soto et al. 2008, Yang et al. 2007), 

with subsequent activation of gene transcription required for apoptosis (Libby 

et al. 2005) and involved in activation of the caspase cascade (Hengartner 

2000). There is mounting evidence that apoptosis is the main mechanism of 

RGC death in glaucoma (Hanninen et al. 2002, Johnson et al. 2000, McKinnon 

et al. 2002, Quigley et al. 1995). It has also been found that the changes in the 

pattern of gene expression in experimental glaucoma occurred before 

detectable RGC loss (Ahmed et al. 2004, Buckingham et al. 2008, Huang et al. 

2006, Schlamp et al. 2001, Soto et al. 2008). One of the major mechanisms 

involved in the control of gene activity is epigenetic regulation of chromatin 

folding and organization through histone modifications (Jaenisch & Bird 2003, 

Ramakrishnan 1997). Other mechanisms of epigenetic regulation include DNA 

methylation (Issa 2000, Lillycrop et al. 2014), chromatin remodelling (Cairns 
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2009, Lorch et al. 1999), and noncoding regulatory RNAs, for example 

microRNA and long noncoding RNA (Ge & Lin 2014). The fundamental 

subunit of chromatin is the nucleosome, which is comprised of eight positively 

charged histone proteins, as a cylindrical core, with negatively charged 146bp 

of DNA wrapped in 1 ¾ turns around them (Arents et al. 1991, Luger et al. 

1997). Because nucleosomes control the accessibility of promoter DNA by 

preventing the binding of transcription factors to this region (Richmond & 

Davey 2003, Segal et al. 2006), both position and density of nucleosomes are 

strongly linked to the specific DNA sequence and mainly represented in a 

pattern of nucleosome-depleted regions and nucleosome-enriched areas located 

at the gene promoters close to the transcription start sites (Lee et al. 2007, 

Mavrich et al. 2008). The chain of nucleosomes is then wrapped into a spiral, 

called a solenoid, which further condenses and folds to form a chromosome. In 

this condensed form (heterochromatin) genes are silenced because they are 

inaccessible to DNA binding proteins for gene transcription. Each nucleosome 

core contains eight histone proteins, consisting of two copies of four histones: 

H2A, H2B, H3, and H4. There is an additional, unpaired H1 histone associated 

with each nucleosome that promote organization of nucleosomes into a higher-

order structure (Ramakrishnan 1997). Each of those histones has the N-

terminal tail positioned outside of the nucleosome core. A wide variety of post-

translational modifications of these histone tails influence the change in 

chromatin architecture and include, but are not limited to, lysine acetylation, 

lysine and arginine methylation, serine and threonine phosphorylation, and 

lysine ubiquitination (Jenuwein & Allis 2001, Ramakrishnan 1997, Vaquero et 
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al. 2003). For example, acetylation of ε-amino groups of lysine residues in the 

positively charged N-terminal of histone tails interferes with their binding to 

DNA, thus allowing an opening of the chromatin configuration and enabling 

access to DNA-binding proteins for gene transcription (Rosato & Grant 2005). 

Acetylation is believed to have the most direct effect on chromatin structure, 

and is dependent upon two families of proteins: histone acetyl transferases 

(HATs) and histone deacetylases (HDACs) (Shahbazian & Grunstein 2007) 

(figure 33). Deacetylation of histones causes a compaction of chromatin that in 

turn leads to gene silencing (Grant & Dai 2012, Rosato & Grant 2005). 

Inhibition of deacetylation promotes the active, de-condensed chromatin 

conformation (figure 33), and, therefore, provides the access of transcriptional 

factors to DNA for gene transcription. 
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Figure 33: Schematic representation of histone deacetylase inhibitors (HDACIs) 

induced chromatin transition and some associated downstream effects. Inhibition of 

HDACs by HDACIs allows hyperacetylation of histone and non-histone proteins, 

which leads to changes in several physiological and pathological processes, including 

apoptosis, cell cycle progression, inflammation and proliferation, inflammation. 

HAT=histone acetyl transferase, HDAC=histone deacetylase, TrKB=tropomyosin-

related kinase B, RARB= retinoic acid receptor β, BDNF=brain-derived neurotrophic 

factor, MAPK =mitogen-activated protein kinases, HSPs=heat shock proteins, 

cJNK=c-Jun N-terminal kinase, Apaf-1=apoptotic-protease-activating factor-1, Bcl-

2=B-cell lymphoma 2, STAT3 and 5= signal transducer and activator of transcription, 

PI3K/Akt=phosphatidylinositol-3-kinase/Akt pathway, TNF-α=tumour necrosis 

factor-α, IL-6=interleukin-6, NF-kB=nuclear factor kappa-light-chain-enhancer of 

activated B cells, iNOS=inducible nitric-oxide synthase. 

 

HDACs are the products of 18 genes and are divided into four classes. Class I 

(HDACs 1, 2, 3 and 8), class IIA (HDACs 4, 5, 7, and 9), class IIB (HDACs 6 

and 10) and IV (HDAC 11) are zinc-dependent enzymes, whereas the class III 

enzymes (sirtuins) are zinc-independent, but are dependent on nicotinamide 
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adenine dinucleotide (NAD
+
) (Rosato & Grant 2005). Class I, II, and IV are 

referred to as “classical” HDACs (Witt et al. 2009). Although histones were 

the first substrates described for these enzymes (Hebbes et al. 1988, Lee et al. 

1993), the activity of diverse non-histone proteins is also modified by HATs 

and HDACs, for example, proteins involved in the regulation of signal 

transducer and activator of transcription (STAT) 3 and 5 (Pang et al. 2009, 

Rascle et al. 2003), c-Jun N-terminal kinase (cJNK) activation (Dai et al. 2010, 

Vrana et al. 1999), and  angiogenesis regulation through alternation of vascular 

growth factors signalling (Deroanne et al. 2002, Qian et al. 2004).  It was 

found that HDAC6 mediated acetylation controls the function of heat shock 

protein 90 (Bali et al. 2005, Kovacs et al. 2005, Murphy et al. 2005) and 

αtubulin (Ryhanen et al. 2011, Zhang et al. 2003). It has been reported that 

HDAC enzymes are also involved in control of gene transcription (Walkinshaw 

et al. 2008, Wang et al. 2001), cell-cycle progression and cell differentiation 

(Jamaladdin et al. 2014, Kim et al. 2002, Wang et al. 2001), and apoptosis 

(Juan et al. 2000, Luo et al. 2000, Pelzel et al. 2010). Knockdown of HDAC1 

and 2 genes in embryonic stem cells caused cell death associated with 

abnormal cell mitosis and an increase in a number of chromosome segregation 

defects (Jamaladdin et al. 2014). Pelzel and colleagues (2010) have shown that 

apoptosis of neurons was associated with an increase in expression of HDAC3 

with corresponding suppression of histone H4 acetylation (Pelzel et al. 2010). 

Overexpression of class 1 HDACs has been extensively demonstrated in cancer 

cells, especially of the gastrointestinal system (Choi et al. 2001, Wilson et al. 

2006), and is associated with advanced disease staging and poor prognosis 
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(Weichert et al. 2008). It has also been demonstrated that HDAC1 can directly 

deacetylate and inhibit activity of the tumour suppressor factor p53 (Juan et al. 

2000, Luo et al. 2000).  

Various natural and synthetic chemical compounds possess the ability to inhibit 

HDACs and are classified based on their chemical structure, for example, 

short-chain fatty acids (valproic acid (VPA) and sodium phenyl butyrate(SB)), 

hydroxamic acids (trichostatin A (TSA), suberoylanilide hydroxamic acid 

(SAHA, Vorinostat), cyclic peptides (romidepsin, apicidin, cyclic hydroxamic 

acid-containing peptides (CHAPS), and trapoxin), benzamides (entinostat (MS-

275) and tacedinaline (CI-994)), ketones (trifluoromethyl ketone) and 

miscellaneous compounds (MGCD-0103 and nicotinamide) (Konsoula & 

Barile 2012, Tang et al. 2013). From those HDACIs, vorinostat (Zolinza™, 

Merck) and romidepsin (Istodax®, Celgene) have already been approved for 

the treatment of patients with peripheral and cutaneous T-cell lymphomas 

(Watanabe 2010). Because of a wide spectrum of HDAC activity, there is 

currently considerable interest in HDAC inhibitors (HDACIs) in relation to 

numerous pathological processes and diseases, including cancer (Bose et al. 

2014, Watanabe 2010), interstitial fibrosis (Davies et al. 2012, Nural-Guvener 

et al. 2014), inflammation (Leoni et al. 2002, Lin et al. 2007), septic shock 

(Zhang et al. 2010a) and diabetes (Christensen et al. 2011, Hara et al. 2014), as 

well as immunomodulation after organ transplantation (Edens et al. 2006). 

However, the understanding of the complexity of HDACIs pleiotropic 

mechanisms of action and associated with it effects is still evolving (Bose et al. 

2014, Ciarlo et al. 2013). 
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Importantly, the expression of HDACs has been investigated in the rat brain 

and found to be localized to neurones and glial cells (Broide et al. 2007). 

Moreover, inhibition of HDAC has also been shown to be protective in several 

models of neurodegenerative disease by ameliorating transcriptional 

dysfunctions in Alzheimer’s and Parkinson’s diseases, as well as glaucoma. 

Multiple studies have reported on a neuroprotective action of TSA (Pelzel et al. 

2010, Pelzel et al. 2012, Seo et al. 2013, Wu et al. 2008), a product of 

fermentation from Streptomyces, a gram-positive Actinobacteria. TSA is 

known to inhibit both class I and class II HDACs and, based on its chemical 

structure, belongs to hydroxamic acid group of HDACIs. Originally, TSA was 

used as an anti-fungal agent, but later it was discovered to have a potent anti-

proliferation property on cancer cells (Yoshida et al. 1990). For example, 

neurotrophic and neuroprotective properties of TSA, SB and VPA have been 

demonstrated using nigrostriatal dopaminergic neurons in rat neuronal–glial 

cultures through up-regulation of GDNF and BDNF mRNA expression in rat 

primary cortical astrocyte cultures caused, at least in part, by hyperacetylation 

of histones in the promoter region of genes (Wu et al. 2008). Moreover, an 

ability of VPA to down regulate the release of pro-inflammatory factors by 

microglia has also been investigated using lipopolysaccharide (LPS) and 1-

methyl-4-phenylpyridinium (MPP+) induced models of neurotoxicity in rat 

primary mesencephalic neuron-glia cultures (Chen et al. 2006). Recently, a 

role of TSA has also been investigated in calcium-induced neuronal cell death. 

The authors demonstrated an inhibition of calpain activity which was partly 

mediated by an increase in calpastatin (the endogenous inhibitor of calpain) 
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expression via histone hyperacetylation within the calpastatin gene promoter 

region (Seo et al. 2013). In relation to glaucoma, transcriptional down-

regulation of the RGC gene makers expression has been shown to be an early 

event in animal models of glaucomatous RGC degeneration (Ahmed et al. 

2004, Schlamp et al. 2001, Weishaupt et al. 2005). Pelzel and colleagues (2010) 

have demonstrated that a preservation of RGC-specific gene expression, as 

well as an alteration of RGC loss was associated with TSA treatment using an 

in vivo mice model of optic nerve crush (Pelzel et al. 2010). 

The aim of the work presented in this chapter was to determine effects of the 

HDAC inhibitor TSA on expression of retinal cell marker genes in the human 

retina and to investigate a possible neuroprotective effect of TSA on human 

RGCs in HORCs. 

Results 

TSA increased total RNA in HORCs 

As a first step in examining the effect of TSA on gene expression in the human 

retina, total RNA yield from HORCs treated with TSA was measured after 12, 

24 and 48 hours in culture. In control HORCs, there was a progressive loss of 

total RNA with time (figure 34). In cultures with TSA, a dose and time-

dependent effect on total RNA loss was observed (figure 35). The most 

pronounced effect of TSA on the amount of total RNA was noticed after 48 

hours in culture with 1µM and 10µM TSA. After 48 hours in culture, TSA at 

all tested concentrations (0.1, 1 and 10µM) inhibited the loss of total RNA.  
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Figure 34: Total RNA loss in HORCs cultured for 12, 24 and 48 hours. RNA 

concentration is expressed as ng/µl (mean±SEM, n=4-12), **p<0.005 vs t=0. 

Student’s t-test was used. 

 

 

Figure 35: Total RNA in HORCs with added TSA (0.1, 1 and 10µM) and controls 

cultured for 12, 24 and 48 hours (mean±SEM, n=4-12). RNA concentration is 

expressed as % controls at 12, 24 and 48 hours respectively,*p≤0.05 vs control. 

Student’s t-test was used. 
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TSA caused no change in expression of housekeeping genes 

Because the effect of TSA on total RNA was the most pronounced after 48 

hours, the effect on expression of retinal cell markers in HORCs was 

investigated at this time point. First of all, it was important to identify if there 

were any changes in the housekeeping gene expression. Housekeeping genes 

are examples of constitutive genes that are constantly switched on and control 

essential proteins important to cell survival (Tirosh & Barkai 2008). 

Expression of cytochrome c-1 (CYC1) and topoisomerase 1 (TOP1) mRNAs 

was shown to be the most stable in human retinal explants (Niyadurupola et al. 

2011), thereby allowing them to be utilized as housekeeping genes for 

normalization of QRT-PCR results. As can be seen in figure 36, expression for 

both mRNAs was relatively stable in HORCs treated with 0.1, 1 and 10µM 

TSA after 48 hours in culture.  
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B 

 

Figure 36: Expression of the housekeeping genes (A) CYC1 and (B) TOP1 in HORCs 

cultured with TSA (0.1, 1 and 10µM) for 48 hours (mean±SEM, n=4). Gene 

expression is presented as % control. Student’s t-test was used. 

 



 

139 
 

TSA up-regulated expression of retinal ganglion cell markers 

genes 

Expression of selected RGC-related marker genes was measured using 

quantitative PCR method. All selected genes were known to be highly specific 

for retinal ganglion cells (Barnstable & Drager 1984, Kim et al. 2009, Ma 2013, 

Nadal-Nicolas et al. 2009) and widely used in many studies (Buckingham et al. 

2008, Niyadurupola et al. 2011, Pacal & Bremner 2014, Schlamp et al. 2001, 

Weishaupt et al. 2005). Thy1 is a neuronal cell surface glycoprotein which 

label RGC somata and axons (Barnstable & Drager 1984). THY1 antibodies 

were found to be the most effective in obtaining purified RGC cultures via 

immunopanning (Barres et al. 1988, Winzeler & Wang 2013, Zhang et al. 

2010b). Expression of Thy1 as a marker for RGCs is extensively used in retinal 

degenerative disease research (Niyadurupola et al. 2013, Pelzel et al. 2010, 

Schlamp et al. 2001). As can be seen in figure 37, Thy1 showed a dose-

dependent increase in expression in HORCs with 10µM TSA, giving an 

approximate 60% increase compared to that in controls (p<0.05, n=4). 
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Figure 37: Expression of RGC marker gene Thy1 in HORCs with TSA at 

concentrations of 0.1, 1 and 10µM for 48 hours (mean±SEM, n=4).  Expression is 

normalised to CYC1 and TOP1 and presented as % control,*p≤0.05 vs control. 

Student’s t-test was used. 

 

 

Since there was an increase in expression of the RGC marker Thy1, the 

expression of other marker genes for RGCs was also measured (figure 38). 

Brn3a (aka POU class 4homebox 1, POU4F1) is a member of Brn3 gene 

family of POU domain transcription factors necessary for neuronal 

differentiation (Nadal-Nicolas et al. 2009, Weishaupt et al. 2005). A down-

regulation of Brn3a mRNA expression was demonstrated after an acute ON 

injury in rats (Weishaupt et al. 2005). It was also shown that activation of 

Brn3a stimulates transcription of anti-apoptotic genes (Hohenauer et al. 2013, 

Hudson et al. 2004). Neuronal nuclei (NeuN) protein (aka RNA binding 

protein fox-1 homolog 3, Rbfox3) is a DNA-binding protein and is used as a 

specific marker for post-mitotic (mature) neurons (McKee et al. 2005). NeuN 
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was initially identified as a specific antibody for immunolabelling of neuronal 

cells, including RGCs (Buckingham et al. 2008, Diaz et al. 2005, Niyadurupola 

et al. 2013). Kim and colleagues (2009) identified Rbfox3 as a gene for NeuN 

protein. Fox (feminizing on X) proteins are a highly conserved family of 

tissue-specific splicing regulators (Dredge & Jensen 2011, Kim et al. 2009). 

Both Brn3a (POU4F1) and NeuN (Rbfox3) mRNA expression increased with 

TSA treatment in a dose-dependent manner. A similar pattern of expression to 

Thy1 mRNA was seen in HORCs with 10µM TSA for both genes. There was a 

significant increase of around 80% in POU4F1 mRNA expression compared to 

that in controls (p<0.05, n=4). Up-regulation of Rbfox3 mRNA was less 

prominent, but still significant, showing about a 30% increase (p<0.05, n=4). 
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Figure 38: Expression of RGC marker genes (A) Brn3a (POU4F1) and (B) NeuN 

(Rbfox3) in HORCs cultured with TSA at concentrations of 0.1, 1 and 10µM for 48 

hours (mean±SEM, n=4).  Expression is normalised to CYC1 and TOP1 and presented 

as % control, *p≤0.05 vs control. Student’s t-test was used. 
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TSA is specific to retinal ganglion cells 

To investigate whether expression of other retinal cell makers would respond 

to TSA treatment in the same way as RGC-related mRNAs, gene markers for 

photoreceptors (RCVRN) (Dizhoor et al. 1991, Wiechmann et al. 1994), 

amacrine (ChAT) (Haverkamp & Wassle 2000), horizontal (CALB) (Nakhai et 

al. 2007), and the retinal glia (Glul) (Chang et al. 2007, Derouiche & Rauen 

1995, Spoerri et al. 1997) were measured in HORCs.  

Recoverin (RCVRN) gene encodes for a calcium-binding protein that was 

originally purified from bovine rod outer segments (Dizhoor et al. 1991, 

Lambrecht & Koch 1992). A key role of recoverin is in control of visual signal 

transduction by an inhibition of rhodopsin kinase, an enzyme that regulate the 

phosphorylation of rhodopsin (Senin et al. 1997). Imunolabelling with anti-

recoverin antibodies was localized to cone and rod photoreceptors (Dizhoor et 

al. 1991, Grunert et al. 1994, Johnson et al. 1999, Korf et al. 1992, Milam et al. 

1993, Wiechmann et al. 1994, Wiechmann & Hammarback 1993), as well as 

ON and OFF cone bipolar cells (Gunhan-Agar et al. 2000, Milam et al. 1993, 

Miller et al. 1999). In HORCs, the expression of RCVRN mRNA was very 

similar to controls at all tested concentrations (figure 39). 
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Figure 39: Expression of recoverin (RCVN) mRNA as a marker for photoreceptor cells 

in HORCs with 0.1, 1 and 10µM TSA for 48 hours (mean±SEM, n=4).  Expression is 

normalised to CYC1 and TOP1 and presented as % control. Student’s t-test was used. 

 

 

Calbindin (CALB) is one of the major calcium-binding proteins that buffer the 

Ca
2+

 level and involved in the Ca
2+

 transport (Baimbridge et al. 1992). CALB 

was demonstrated to be a useful marker for horizontal cells in the retinas of 

monkeys and rats (Chu et al. 1993, Rohrenbeck et al. 1987, Zheng et al. 2012). 

It was also shown that ganglion cells in the mouse retina are also 

immunoreactive for calbindin.(Haverkamp & Wassle 2000). It was also shown 

in vivo that CALB pays a crucial protective role against apoptosis of neurones 

and glial cells in the central nervous system using an CALB-deficient mouse 

model (Kook et al. 2014). In the HORC, the expression of CALB mRNA with 

TSA at any concentrations was no different compared to that in controls (figure 

40). 
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Figure 40: Expression of calbindin (CALB) mRNA as a marker for horizontal cells in 

HORCs with 0.1, 1 and 10µM TSA for 48 hours (mean±SEM, n=4).  Expression is 

normalised to CYC1 and TOP1 and presented as % control. Student’s t-test was used. 

 

 

In contrast to RCVRN and CALB that showed no significant changes in mRNA 

expression, there was a significant increase of about 40% in expression of 

choline acetyltransferase (ChAT), a marker for amacrine cells, in HORCs with 

1µM TSA, although the trend was not dose-dependent (figure 41). ChAT is a 

widely used marker for immunolabelling cholinergic amacrine cells in the 

retinas of mice (Haverkamp & Wassle 2000, Pang et al. 2013), rates (Araki & 

Hamassaki-Britto 2000, Voigt 1986), as well as monkeys and humans (Rodieck 

& Marshak 1992). 
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Figure 41:  Expression of choline acetyltransferase (ChAT) mRNA as a marker for 

amacrine cells in HORCs with 0.1, 1 and 10µM TSA for 48 hours (mean±SEM, n=4).  

Expression is normalised to CYC1 and TOP1 and presented as % control, * p<0.05 vs 

control. Student’s t-test was used. 

 

 

Glutamate-ammonia ligase (Glul) gene encodes protein that belongs to the 

glutamine synthase family (Wang et al. 1996). Glutamine synthase is an 

enzyme that plays a crucial role in glutamate homeostasis (Danbolt 2001). In 

the retina of rats and mice, glutamine synthase immunoreactivity was found to 

be localised to the Müller cells and astrocytes (Anlauf & Derouiche 2013, 

Chang et al. 2007, Derouiche & Rauen 1995, Haverkamp & Wassle 2000, 

Riepe & Norenburg 1977), where it catalyzes the synthesis of glutamine from 

glutamate and ammonia (Pellerin & Magistretti 1994). In HORCs, there was no 

difference in the level of mRNA expression of Glul compared to that in 

controls at all tested concentrations (figure 42). 
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Figure 42: Expression of glutamate-ammonia ligase (Glul) mRNA as a marker for 

retinal glial cells in HORCs with TSA at concentrations of 0.1, 1 and 10µM for 48 

hours (mean±SEM, n=4). Expression is normalised to CYC1 and TOP1 and is 

presented as % control. Student’s t-test was used. 

 

 

Expressions of glutamate–aspartate transporter (GLAST) and heat shock protein 

70 (HSP70 or HSPA1B) mRNAs were also measured in HORCs after 48 hours 

in culture with TSA at concentrations of 0.1, 1 and 10µM. Glutamate 

transporter GLAST is involved in homeostasis of extracellular glutamate. It has 

been demonstrated using rat and human retinas that GLAST is expressed by 

ganglion cells and the glia, (Otori et al. 1994), as well as horizontal, bipolar, 

amacrine and photoreceptor cells (Kugler & Beyer 2003). There was no 

difference in the level of mRNA expression of GLAST compared to that in 

controls in HORCs at all tested concentrations (figures 43). 
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Figure 43: Expression of glutamate-aspartate transporter (GLAST) mRNA in HORCs 

cultured with TSA at concentrations of 0.1, 1 and 10µM for 48 hours (mean±SEM, 

n=4). Expression was normalised to CYC1 and TOP1 and is presented as % control. 

Student’s t-test was used. 

 

HSP70 is a member of the large, highly conserved family of HSPs involved in 

regulation of cellular homeostasis and promotion of cell survival by facilitating 

protein folding and degradation of abnormally folded proteins (Hartl 1996, 

Takayama et al. 2003). It was reported that HSP70 is specifically expressed in 

RGCs of the normal human retina (Ma 2013) and was shown to play a crucial 

role in RGC survival in the zebra fish retina after acute optic nerve injury 

(Nagashima et al. 2011). There was no difference in the level of mRNA 

expression of HSPA1B compared to that in controls in HORCs at all tested 

concentrations (figures 46). Interestingly, a dramatic increase of almost 500% 

in expression of HSPA1B mRNA was noticed in controls and HORCs with 

TSA compared to that in t=0 (figure 44). 
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Figure 44: Expression of heat shock protein 70 (HSPA1B) mRNA in HORCs cultured 

with TSA at concentrations of 0.1, 1 and 10µM for 48 hours (mean±SEM, n=4). 

Expression was normalised to CYC1 and TOP1 and is presented as % t=0, *p≤0.05, 

**p<0.01 vs t=0. There was no statistically significant difference in HORCs with TSA 

and controls. Student’s t-test was used. 

 

TSA has no effect on RGC apoptosis in HORCs following 1 week 

in culture 

Increased expression of RGC marker genes may indicate that TSA is 

promoting the survival of RGCs in culture, therefore HORCs were cultured 

with 0.1µM, 1µM and 10 µM TSA for 1 week. As can be seen in figure 45, 

nuclear cell layers were preserved under all culture conditions. LDH activity in 

medium was significantly higher in HORCs with 1 µM compared to that in 

controls (figure 46). There was no significant change in the number of NeuN-

labelled RGCs (figure 47), as well as in the number of TUNEL-positive NeuN-
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labelled cells, indicating that TSA did not protect RGCs from apoptosis at any 

of the tested TSA concentrations (figure 48). 

 

Figure 45: Representative HORC images cultured with TSA at concentrations of 0.1, 1 

and 10µM for 1 week and controls. RGCs are labelled with NeuN (green), cell nuclei 

with DAPI (blue), apoptotic cells with TUNEL (red). Scale bar, 100µm. 
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Figure 46: The relative level of LDH released in medium after 1 week HORC with 

0.1µM, 1µM and 10 µM TSA and controls (mean±SEM, n=4), * p<0.05 vs control. 

Student’s t-test was used. 

 

 

 

Figure 47:  Number of NeuN-labelled cells in 1 week HORCs with 0.1µM, 1µM and 

10 µM TSA and controls (mean±SEM, n=4). Student’s t-test was used. 
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Figure 48: Percentage of TUNEL-positive NeuN-labelled RGCs in 1 week HORC 

with 0.1µM, 1µM and 10 µM TSA and controls (mean±SEM, n=4). Student’s t-test 

was used. 

 

 

Discussion 

Down-regulation of ganglion cell-related gene expression has been 

documented by several studies and appeared to represent a relatively early 

event in the apoptotic cell death (Pelzel et al. 2012, Schlamp et al. 2001, Wang 

et al. 2010a, Weishaupt et al. 2005, Yang et al. 2007). It has also been reported 

that the change in the pattern of gene expression in RGCs occurs before 

detectable cell loss (Huang et al. 2006, Schlamp et al. 2001). Epigenetic 

regulation of gene expression, in particular histone hypoacetylation due to 

increase in activity of HDAC enzymes, has been proposed as an underlying 

mechanism of this phenomenon using mouse models of optic nerve crush 
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(Pelzel et al. 2010) and congenital RGC degeneration (Pelzel et al. 2012). In 

the mouse retina, Pelzel and colleagues (2010) demonstrated the presence of 

HDAC1-3 and 5, but not HDAC4 using both mRNA and protein analysis. 

After acute optic nerve injury, there was a significant and persistent increase in 

expression of HDAC3, which was associated with a decrease in histone H4 

acetylation in promoter regions of ganglion cell marker genes, such as Thy1, 

Brn3b, Fem1C and Nrn1, as well as anti-apoptotic gene BclX, suggesting that a 

major role in apoptotic gene silencing is played by activation of HDAC3. 

Moreover, an increase in acetylation of histone H4 in promoter regions of pro-

apoptotic genes Bim and cJun was also noticed. After pretreatment with TSA, a 

significant reduction in the RGC loss of about 50% was observed at 2 weeks 

post ON injury, which was associated with overexpression of acetylated 

histone H4, as well as an up-regulation of the RGC maker Fem1cR3 gene 

(Pelzel et al. 2010). In addition, the effect of TSA on expression of a RGC 

marker Fem1cR3 was demonstrated in a study using a congenital mouse model 

of secondary glaucoma. Although continuous treatment of DBA/2J mice with 

TSA preserved the expression of Fem1cR3, there was no difference in the RGC 

axon loss detected between treatment and control groups (Pelzel et al. 2012).  

In the human retina, the results of the study presented in this chapter 

demonstrated that TSA possesses the ability to amend the loss of the RGC gene 

marker expression, such as Thy1 (Barnstable & Drager 1984), Brn3a(POU4F1) 

and NeuN(Rbfox3), associated with unchanged expression of retinal 

housekeeping genes, TOP1 and CYC1 (Niyadurupola et al. 2011). However, 

the reduction of TUNEL positive RGCs after 1 week in culture was not 
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significant, indicating that TSA did not protect RGCs.  It can be suggested that 

preservation of RGC gene expression may support neurons in stress (dying 

neurons), thereby creating a beneficial environment for survival mechanisms to 

play the part. For example, a preserved expression of pro-survival genes might 

be a potential mechanism of HDACI induced neuroprotection. It has been 

reported that VPA and TSA exerted an ability to up-regulate the expression of 

anti-apoptotic Bcl-2 gene family members (Cui et al. 2011, Sinn et al. 2007). 

Therefore further experiments with higher concentrations of TSA using gene 

markers for apoptosis, as well as TUNEL labelling, would be beneficial to 

clarify the neuroprotective role of TSA in experiments using HORCs. The 

difference in the neuroprotective effect of TSA that was found in the model of 

acute RGC axon injury (Pelzel et al. 2010) to our experiment might be 

explained by differences in the origin of models, in treatment timing and TSA 

concentrations, as well as the difference between the acute and chronic nature 

of the RGC degeneration. In addition, some would argue that pretreatment with 

TSA prior to an assault would reduce HDAC activity at the time of injury, 

thereby attenuating subsequent changes in gene transcription. However, Tezel 

and colleagues (2010) did not report on the mechanism of RGC protection, 

specifically on alterations in pro-apoptotic gene expression, after TSA 

pretreatment. 

Because glutamate excitotoxicity in the retina is implicated as one of the major 

mechanism of glaucoma pathophysiology (Siliprandi et al. 1992, Sisk & 

Kuwabara 1985, Vorwerk et al. 1996), the effect of TSA on expression of 

mRNA for glutamate–aspartate transporter (GLAST) was also investigated in 
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HORCs. Glutamate is a highly abundant excitatory neurotransmitter 

(Schousboe 1981), extracellular levels of which have to be very tightly 

regulated to prevent neurotoxicity. In the retina, physiological glutamate 

concentrations are maintained through Na
+
-dependent excitatory amino-acid 

transporters (EAATs), specifically glutamate–aspartate transporter (GLAST or 

EAAT1), glutamate transporter (GLT-1 or EAAT2), excitatory amino acid 

carrier 1 (EAAC1 or EAAT3) and excitatory amino acid transporter 4 and 5 

(Danbolt 2001, Grewer & Rauen 2005, Marcaggi & Attwell 2004). It has been 

demonstrated on rat and human retinas that GLAST is expressed by ganglion 

cells and the glia, (Otori et al. 1994), as well as horizontal, bipolar, amacrine 

and photoreceptor cells (Kugler & Beyer 2003). In the rat retina, co-

localization of glutamine synthase, an enzyme that convers glutamine to 

glutamate, and GLAST was also demonstrated on Müller cells, astrocytes, and 

the RPE (Derouiche & Rauen 1995). Whereas, the immunoreactivity of GLT-1 

in the retina of rats and monkeys was found to be localized to cone 

photoreceptors and bipolar cells (Rauen & Kanner 1994). Retinal cells take up 

glutamate from extracellular space and convert it to glutamine by glutamine 

synthase. Glutamine is then transported into the neuronal pre-synaptic terminal 

via the extracellular space, where it is converted by glutaminase to glutamate 

(Marcaggi & Attwell 2004, Pow & Crook 1996). The results presented in this 

chapter showed no change in expression of GLAST mRNA indicating that TSA 

had no effect on glutamate metabolism in HORCs. The protective role of 

HDACIs against glutamate excitotoxicity in the brain, optic nerve and cultured 

neurons has been investigated in other in vitro studies. It has been 
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demonstrated that selective inhibition of HDAC 2 and 3 via AH51, AH61 and 

AH62 HDACIs prevented neuronal death against DL-threo-β-

benzyloxyaspartate (DL-TBOA)-induced glutamate exitotoxic insult in 

cultured organotypic cerebral slices (Durham 2012). It has also been shown 

that non-selective HDAC inhibition using SAHA and MS-275 reduced 

accumulation of glutamate and up-regulated the expression of glutamate 

transporter GLT-1 on astrocytes in vitro using the optic nerve ischaemia model 

(Baltan et al. 2011). Moreover, the neuroprotective effect of non-selective 

HDACIs against glutamate excitotoxicity has also been shown using brain 

neuron cultures from rats, where both VPA and SB caused the up-regulation of 

pro-survival and anti-apoptotic genes, including heat shock protein-70 (HSP70) 

(Marinova et al. 2009)  and Bcl-2 (Leng et al. 2010). 

Besides our main aim to evaluate the effect of TSA on RGC associated gene 

expression, the expression of other retinal cell markers was also measured to 

establish whether or not HDACIs are selective towards neuronal cells. 

Surprisingly, there was no change found in expression of recoverin (RCVRN), 

as a marker for photoreceptors (Dizhoor et al. 1991), calbindin (CALB), as a 

marker for horizontal cells (Nakhai et al. 2007), and glutamine synthetase 

(Glul), as a marker for Müller cells and astrocytes (Anlauf & Derouiche 2013, 

Riepe & Norenburg 1977). Although there was an increase in expression of 

choline acetyltransferase (ChAT) mRNA, a marker for cholinergic amacrine 

cells (Haverkamp & Wassle 2000), in HORCs treated with 1µM of TSA, the 

effect was not dose dependent. These results suggest that HDAC inhibition is 

preferential to survival of retinal ganglion cell. This suggestion is supported by 
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the study where the treatment of adult hippocampal neural progenitors with 

VPA promoted neuronal and inhibited glial cell differentiations through the 

induction of  a neurogenic basic helix-loop-helix transcription factor, NeuroD  

(Hsieh et al. 2004). Moreover, it has also been shown that TSA treatment 

inhibited the proliferation of human RPE cells in vitro via down-regulation of 

TGF-β/Akt, MAPK, ERK1/2 and Notch signalling pathways (Xiao et al. 2014), 

and the development of mouse photoreceptors though inhibition of the 

expression of pro-rod transcription factors Otx2, Nrl, and Crx (Chen & Cepko 

2007). However, there are several reports demonstrating a protective effect of 

HDACIs on photoreceptors. In a mouse model of retinitis pigmentosa, TSA 

treatment enhanced the photoreceptor cell survival and prevented 

photoreceptor degeneration by suppressing poly(ADP-ribose) polymerase 

(PARP) activity (Paquet-Durand et al. 2007, Sancho-Pelluz et al. 2010, 

Sancho-Pelluz & Paquet-Durand 2012). 

The results of the current study also showed that there was a significant up-

regulation of HSP70 (HSPA1B) mRNA expression in HORCs under all culture 

conditions compared to that in t=0, indicating that activation of HSP expression 

is a potential mechanisms involved in regulation of cell survival in a long-term 

HORCs. It was also noticed that the treatment of HORCs with 10µM TSA 

exerted a tendency to up-regulate the expression of HSP70 mRNA greater than 

in control cultures when both treatment conditions were compared to that in 

t=0 retinal explants. However, there was no statistically significant difference 

in expression of HSP70 mRNAs between controls and HORCs with 10µM 

TSA. HSPs is a superfamily of highly conserved proteins that are also known 
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as molecular chaperones (Hartl 1996). HSPs are involved in regulation of 

cellular homeostasis and promotion of cell survival by facilitating protein 

folding and degradation of abnormally folded proteins (Hartl 1996, Takayama 

et al. 2003). It is known that an increase in expression of HSPs is observed 

during normal cellular growth, and as a response of cells and tissues to acute 

and chronic stress conditions (Knowlton et al. 1998, Lindquist & Craig 1988, 

Nagashima et al. 2011, Tezel et al. 2000). A role of HSPs in glaucoma was 

demonstrated via a significant greater up-regulation of these proteins in human 

retinal explants from patients with known glaucoma when compared to that in 

controls (Tezel et al. 2000). Interestingly, it has been also reported that the 

central nervous system and motorneurons in culture have a tendency to have a 

delayed and selective heat shock response when compared with glial cells, 

suggesting these findings might be a potential explanation for increase 

susceptibility of neurons to neurodegenerative insults (Batulan et al. 2003, 

Marcuccilli et al. 1996, Tagawa et al. 2007). HSP70 is a part of the large 

HSP70 family. It was reported that HSP70 is specifically expressed in RGCs of 

the normal human retina (Ma 2013) and was shown to play a crucial role in 

RGC survival in the zebra fish retina after acute optic nerve injury (Nagashima 

et al. 2011). A protective effect of HDAC inhibition on RGC survival via 

overexpression of HSP70 was demonstrated in vivo using a rat 

ischemia/reperfusion model (Zhang et al. 2012). The neuroprotective effect 

was also associated with hyperacetylation of histone H3, reduced caspase 3 

activity, upregulation of apoptotic-protease-activating factor-1 (apaf-1) and 

release of cytochrome C.  
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The present work demonstrates that HDAC inhibitor TSA can protect against 

loss of total RNA in cultured human retina, as well as possess a potential to 

attenuate specifically expression of RGC marker genes. There was no effect on 

RGC survival in 1 week HORCs. Therefore, it can be concluded that TSA can 

prevent RGC gene down-regulation in human retinal explants. However, TSA 

does not protect RGCs from apoptosis in a long-term HORC at concentrations 

tested.   
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CHAPTER 6 

GENERAL SUMMARY AND DISCUSSION 
 

Glaucoma is a complex disease where a combination of factors, including 

genetic predisposition (Ali et al. 2009, Copin et al. 2002, Hollander et al. 2006, 

Wolfs et al. 1998), vascular dysregulation (Broadway & Drance 1998, Drance 

et al. 2001, Leske 2009, Leske et al. 2002) and age (Dielemans et al. 1994, 

Heijl et al. 2013, Leske et al. 1994), stimulates a multitude of molecular 

pathways, which eventually result in an irreversible loss of RGCs and 

blindness. On the cellular level, glaucomatous RGC death involves retrograde 

RGC axon degeneration associated with the loss of the neighbouring cells.  

Human organotypic retinal cultures have been established as an in vitro model 

for investigation of mechanisms involved in RGC degeneration in glaucoma 

(Niyadurupola et al. 2013, Niyadurupola et al. 2011), and for development of 

new neuroprotective strategies. The preparation of the HORCs involve the 

transection of the optic nerve and retinal tissue dissection, followed by culture 

in controlled environment which resembles degenerative changes in the retinal 

tissue in vivo.  Up to now, the fate of RGC beyond 96 hours in culture, the 

longest culture period previously investigated by Niyadurupola and colleagues 

(2011), remained unknown. The present study aimed to determine whether 

HORCs could be maintained ex vivo in culture for up to 4 weeks. In order to 

evaluate neurodegenerative changes in HORCs, several RGC markers were 

used. The first indicators used for investigation of the RGC fate were NeuN 

and TUNEL immunolabelling. In general, it was shown that over the first two 
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weeks in culture, there was a decrease in the number of NeuN-immunolabelled 

RGCs associated with an increase in the proportion of TUNEL-positive RGC 

nuclei. Since both markers reached a base line level at weeks 3 and 4 in culture, 

it can be concluded that first two weeks in culture is the most appropriate 

period for long-term experiments using HORCs. The expression of RGC-

specific gene Thy1 was also measured. A significant down-regulation in 

expression of Thy1 mRNA in a first week of culture was observed, as was 

expected from previous work by Niyadurupola and colleagues (2011). A 

possible association in changes between RGC-specific markers expression, 

such as NeuN-immunolabelling and Thy1 mRNA, and TUNEL, as a marker for 

apoptosis, is presented in figure 49.  

 

Figure 49: Schematic representation of changes observed in expression of RGC 

markers and TUNEL-immunolabelling in HORCs over 2 weeks in culture. 

 

 The current study also aimed to compare different culture conditions in order 

to establish the optimum medium to prolong RGC survival in HORCs. In 

contrast to DMEM/HamF12, Neurobasal medium was the most detrimental to 
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RGC survival in long-term HORCs, with the steepest increase in a number of 

TUNEL-positive RGCs at week 1 in culture. The effect of serum 

supplementation on the RGC fate in a long-term HORC was also estimated. 

There was very little difference in survival of RGCs between cultures with 

DMEM/HamF12 either with or without serum. These findings suggest that SF 

DMEM/HamF12 is the condition of choice for long-term experiments using 

HORCs. However, in order to detect a neuroprotective effect that would 

prevent NeuN-labelled RGC loss, as well as anti-apoptotic action, an 

experimental period of 2 weeks would be the most appropriate for HORCs with 

SF DMEM/HamF12. Whereas HORCs with Neurobasal medium would require 

only a period of 1 week to detect a significant level of RGC death. 

In addition, in order to extend the survival of RGCs in HORCs as a long-term 

human model of RGC degeneration, several MSC-derived growth factors were 

tested. It was found that both VEGF and PDGF-AA significantly reduced the 

proportion of apoptotic RGCs after 1 week in culture, indicating a strong 

neurotrophic effect of these factors to RGCs in the human retina. There is a 

possibility that in combination VEGF and PDGF-AA would exert an even 

more prominent protective effect, but that suggestion was not investigated in 

the current study. However, it can be followed from the above results that 

supplementation with VEGF and PDGD-AA, on its own or in combination, 

would prolong RGC survival in a long-term HORC. It would also be useful to 

assess an effect of these neurotrophic factors on the RGC survival in other 

models of RGC degeneration in humans, for example, oxidative stress and 

exitotoxicity. In general, supplementation with growth factors has been 
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extensively used as a strategy to stimulate cell proliferation, differentiation or 

to express specific cell functions in vitro prior to an insult. Traditionally, 

growth factors were added to cell and tissue cultures via supplementation with 

serum. However, due to the need for chemically defined and consistent culture 

conditions, further investigations led to identification of specific growth factors 

that enhanced neuronal cell survival. Several studies both in vivo and in vitro 

have shown that numerous growth factors, including basic fibroblast growth 

factor (FGF2), ciliary neurotrophic factor (CNTF), brain-derived neurotrophic 

factor (BDNF), glial-derived neurotrophic factor (GDNF), pigment 

epithelium–derived factor (PEDF), and vascular endothelial growth factor 

(VEGF), were able to increased RGC survival and axon regeneration (Blanco 

et al. 2000, Klocker et al. 1997, Klocker et al. 2000, Mey & Thanos 1993, 

Nishijima et al. 2007, Pang et al. 2007, Webber et al. 2005). It has also been 

demonstrated that a combination of growth factors exerts an additive effect on 

the RGC survival in vivo (Watanabe et al. 2003). Moreover, it has been shown 

that supplementing growth factors with additional factors, for example 

forskolin or hormones, further improved RGC survival and stimulated their 

regeneration in vivo (Watanabe et al. 2003) and in vitro (Meyer-Franke et al. 

1995, Toops et al. 2012). Importantly, the present study was specifically 

interested in growth factors known to be secreted by bmMSC (Johnson et al. 

2014). The relevance of VEGF and PDGF neurotrophic effects to RGCs is not 

only in their potential to be used as culture medium supplements, but also in 

their role as serious candidates for development of future therapeutic strategies 

against glaucoma. Moreover, the findings of the current study also support 
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concerns about increasing interest in combining anti-VEGF/PDGF treatments 

for ocular neovascularization and proliferative eye diseases either via blockage 

of growth factors expression or binding to their receptors (Liegl et al. 2014, 

Mendel et al. 2003, Takahashi et al. 2009). 

Down-regulation of specific for RGCs gene expression is a well-documented 

early event in a process of RGC degeneration representing the commitment of 

these cells to death via initiation of apoptotic cell death pathways (Pelzel et al. 

2012, Schlamp et al. 2001, Wang et al. 2010a, Weishaupt et al. 2005, Yang et 

al. 2007). It is also know that one of the major mechanisms involved in the 

control of gene expression is a reversible regulation of chromatin organization 

facilitated via action of two enzymes with apposite functions, HAT and HDAC. 

Activation of HDACs is implicated in deacetylation of histones and non-

histone proteins leading to chromatin condensation and subsequent alterations 

in gene expression required for healthy cells to function. It was shown in vivo, 

using a mouse model of acute ON crush, that a significant reduction in the 

RGC loss was associated with overexpression of acetylated histone H4, as well 

as an up-regulation of the RGC maker Fem1cR3 gene after pretreatment with 

histone deacetylase inhibitor TSA. In current work, the effect of inhibition of 

retinal HDAC activity using TSA was investigated in HORCs. It was found 

that TSA exerted a selective protective effect against RGC-related mRNA loss, 

however there was no protection observed against apoptotic RGC death after 1 

week in culture. It possible to suggest that for RGC survival over time, the 

support of other cells is require, evidence of that support was not found in the 

presented work. 
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 Some would argue that the speed of the changes observed in HORCs might be 

more relevant to pathophysiological changes found in acute glaucoma 

following, for example, an acute elevation in IOP rather than chronic glaucoma. 

Clinically, acute glaucoma is characterised by an acute insult to the optic nerve 

with a rapid onset of the optic nerve cupping, whereas in chronic glaucoma the 

loss of the RGCs is slow and can take months to years to develop. Others, 

however, might point out that human tissue culture is more likely to represent 

the advanced stages of chronic glaucoma, because of the complete transection 

of the optic nerve with no possibility of the reversal of the RGC fate. HORC is 

a universal model allowing analysis of both the acute changes in gene 

expression before the loss of RGCs becomes detectable, most likely to be 

observed in patients with acute glaucoma, as well as quantifiable loss of the 

neurons over time relevant to chronic glaucoma. Knowing that the retinal 

explant is a viable tissue over the extended period of time facilitates a flexible 

approach to the timing of the tested interventions because morphological 

changes that are seen after days to weeks in culture can potentially relate to 

months and years of the glaucomatous neurodegeneration.  

HORC is a valuable model for investigation of mechanisms involved in human 

RGC degeneration and can be utilised as an important system for 

neuroprotective studies in the future. 
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a b s t r a c t

There is a growing need for models of human diseases that utilise native, donated human tissue in order
to model disease processes and develop novel therapeutic strategies. In this paper we assessed the
suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC)
degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, bIII
Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential
expression patterns across, as well as throughout, the macular and para-macular regions of the retina.
Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly
affected the initial expression levels of RGC markers. In addition, the feasibility of using human post
mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being
detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive,
apoptotic labelling of NeuNþ cells. Differences in RGC apoptosis might have been influenced by medium
compositions indicating that media constituents could play a role in supporting axotomised RGCs. We
propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of
neuroprotective strategies.

© 2015 Published by Elsevier Ltd.

1. Introduction

Organotypic retinal cultures provide an important link between
dissociated cell cultures and in vivo models (Johnson et al., 2011),
benefiting from maintenance of heterogeneous cell populations
that can be observed in situ (Caff�e et al., 2001). Although cultures of
dissociated cells are helpful in elucidating the direct effect of drugs
on individual cell types, the loss of intercellular relationships limits
their usefulness when modelling complex diseases (Buyens et al.,
2014). At the other end of the spectrum, animal models that
more closely resemble actual pathologies are costly, time
consuming and the outcomes can be difficult to correlate with

human conditions. Furthermore, there is a recognized demand for
in vitro models that can replace or reduce the need for animal
experiments.

Although research using retinal explants has increased over
recent years, the use of human retinal explants is still underutilised.
Research using rodent retinal organotypic cultures is now common
but it is recognised that differences exist between rodent and hu-
man retina (Albrecht May, 2008; Bobu et al., 2008; Levkovitch-
Verbin, 2004). The most significant difference between mouse
and human retina is that the human retina has a central macula and
fovea for high-resolution colour vision, in addition to different ra-
tios of cone and rod photoreceptors with specific topography and
subtypes of retinal ganglion cells (RGCs). Using human retina
therefore, provides the most appropriate tissue to model a variety
of human eye diseases.

Some of the factors limiting the advancement of human retinal
models are that questions remain to be answered regarding donor
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variability, the effects of post mortem time and the potential time
scale that the human retina can survive in culture. There are also
practical issues to consider, such as whether markers used in ani-
mal experiments are appropriate for use in human research. The
present paper aimed to investigate these questions.

Firstly, the expression and labelling of numerous RGC markers
was investigated across the human retina within the macular and
para-macular regions. In addition, the variation of RGC mRNA
expression was evaluated from numerous post mortem donor eyes
to address concerns relating to donor variability. Further work to
address possible effects of post mortem time on tissue viability
were assessed through the comparison of retina derived imme-
diately after orbital exenteration from living donors and those
from eyes obtained at varying times after donor patient death.
Secondly, we aimed to assess the feasibility of using adult human
retina in a long-term culture system for studying RGC degenera-
tion. We have previously shown that adult human organotypic
retinal cultures (HORCs) can be used to investigate RGC death
following brief ischaemic injury (Niyadurupola et al., 2013;
Osborne et al., 2015) and glutamate excitotoxicity (Niyadurupola
et al., 2011), but degeneration over time points longer than 48 h
had not been investigated. Human embryonic (Engelsberg et al.,
2008) and foetal (Donovan and Dyer, 2006; Rojas et al., 2003;
Zhang et al., 2010) retinal explants have been cultured for up to
42 days with preservation of tissue cytoarchitecture and most
intraretinal connections. Furthermore, various retinal cell markers
are still observable in adult human explants after 9 days in culture
(Fernandez-Bueno et al., 2012). However, RGC degeneration over
prolonged periods has not been investigated in an adult human
system.

Understanding ways to model and possibly delay the onset of
RGC apoptosis will play an important role in limiting the effects of
optic nerve atrophy and aid in the advancement of future regen-
erative strategies to promote axon regrowth that require the
preservation of RGCs after injury.

2. Materials and methods

2.1. Human explant dissection and culture

Donor human eyes were obtained within 24 h post mortem from
the East Anglian Eye Bank or within 2 h from patients undergoing
orbital exenteration under the auspices of the Human Tissue Bank
(both facilities within the Norfolk and Norwich University Hospi-
tal). All donated material was free of any known retinal pathology
and contained no obvious ocular trauma or undiagnosed retinal
injury at dissection. Fifty-two post mortem donor eyes were used in
this study between the age of 30 and 91 years. Unpublished data
from a larger cohort of untreated eyes (n ¼ 100 donor eyes) was
also included for comparative purposes. The four living donor eyes
were kindly donated from patients between 59 and 84 years of age.
The research was approved by the UK National Research Ethics
Committee (REC 04/Q0102/57) andwas conducted under the tenets
of the Declaration of Helsinki.

Retinal dissection was performed as described previously
(Niyadurupola et al., 2011). Briefly, the anterior portion (including
the lens and iris) of each donor eye was removed carefully by a
circumferential incision at the pars plana (Fig. 1A). A flat retinal
preparation was established by removal of the vitreous and cutting
small incisions in the peripheral retina (Fig. 1D). The macula
removed using a 4 mm diameter dissecting trephine (Biomedical
Research Instruments, MD, USA) (Fig. 1E) and five para-macular
explants, termed human organotypic retinal cultures (HORCs),
were dissected from each donor retina using the same trephine.
The location of each retinal HORC explant was equidistant from the

macula for each donor retina using a template to reduce variability
between dissections (Fig. 1G).

4 mm circular explants were randomised prior to culture for up
to 4 weeks in 35 mm culture dishes (Corning, NY, USA) containing
1.5 ml of freshly prepared medium. Culture medium included 1)
serum free (SF) Dulbecco's Modified Eagle Medium (DMEM)/
HamF12, 2) 10% foetal bovine serum (10% FBS) supplemented
DMEM/HamF12 or 3) Neurobasal®-A media (NB) with 2% B27
supplement, 1% N2 supplement and 0.8 mM L-glutamine (All from
Invitrogen, Paisley, UK). All media were supplemented with
gentamicin (50 mg/ml; SigmaeAldrich, Poole, UK) and explants
were cultured at 35 �C in a humidified atmosphere of 95% air/5%
CO2. Explants were cultured as free-floating preparations,
immersed in medium, the RGC side facing upwards. Media was
replaced immediately after dissection and half the medium was
exchanged twice weekly thereafter.

2.2. Planar retinal sectioning

4 mm retinal explants were taken from the macular and para-
macular retina of 4 donor eyes, placed RGC side up on filter paper
and mounted on a prepared surface of frozen optimal cutting
temperature compound (OCT) (Sakura Finetek, Zoeterwoude,
Netherlands) as described previously (Niyadurupola et al., 2013).
Further OCT was used to cover the sample prior to freezing. 20 mm
sections in the plane of the retinal nuclear layers were taken using a
Bright OTF 5000 cryostat (Bright Instruments, Huntingdon, UK) and
individually collected in 1.5 ml eppendorfs before being frozen on
dry ice.

2.3. Quantitative real time PCR (qRT-PCR)

Total RNAwas extracted from 221 HORCs using the RNeasy Mini
Kit (Qiagen, Crawley, UK) or from 107 planar retinal sections using
the RNeasy Micro kit (Qiagen, Crawley, UK) according to the man-
ufacturer's instructions. The concentration of RNA was measured
using a NanoDrop ND-1000 spectrophotometer (NanoDrop Tech-
nologies, Wilmington, USA) and reverse transcribed to comple-
mentary DNA (cDNA) in a reaction catalysed by Superscript™ II
reverse transcriptase with dNTP mix and random primers (all
Invitrogen, Paisley, UK).

TaqMan PCR was performed using an ABI Prism 7700 Sequence
Detection System (Applied Biosystems, Warrington, UK) using 5 ng
of input cDNA, Mastermix (Applied Biosystems, Warrington, UK)
and probes/primers listed in Table 1. Whole explant mRNA
expression was normalised to the geometric mean of CT values for
cytochrome c-1 (CYC1) and topoisomerase DNA I (TOP1) as
described previously (Niyadurupola et al., 2011), whilst planar
sections were normalised to the section containing the greatest
level of expression. Expression profiles from individual retinaswere
aligned by matching expression of the photoreceptor marker
recoverin (RCVRN).

2.4. Immunohistochemistry and TUNEL analysis

Immunohistochemistry was used to localise and quantify RGC
number. 65 explants were fixed in 4% formaldehyde for 24 h and
then cryopreserved in a 30% sucrose solution in PBS at 4 �C for a
further 24 h. Explants were embedded in OCT and frozen at�80 �C.
Transverse 13 mm sections were cut via cryostat and mounted on
3'aminopropyl-triethoxyl silane (TESPA, SigmaeAldrich, Poole, UK)
coated glass slides.

Sections were immunostained overnight with RGC markers
neuronal nuclei (NeuN) (mouse; 1:250, Millipore, Watford, UK), bIII
tubulin (mouse; 1:1000, G7121 Promega, Southampton, UK or
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rabbit; 1:1000 MRB-435 Covance, Maidenhead, UK) or Thy-1.1
(mouse; 1:100, Millipore, Watford, UK) diluted in blocking solu-
tion (5% goat serum (Invitrogen, Paisley, UK), 0.3% Triton X-100
(SigmaeAldrich, Poole, UK) in PBS). The DeadEnd™ Fluorometric
TUNEL system (TUNEL) (G3250 Promega, Southampton, UK) was
performed alongside NeuN immunohistochemistry to visualise
apoptotic RGCs as performed previously (Niyadurupola et al., 2011;
Osborne et al., 2015). TUNEL staining was carried out the following
morning after overnight primary antibody incubation according to
manufacturer's instructions. Secondary antibodies of Alexa Fluor
488- and 568econjugated (Invitrogen, Paisley, UK) (1:1000) were
used diluted in blocking solution for 2 h and nuclei were counter-
stained with DAPI (1:100; Invitrogen, Paisley, UK).

10 whole-mount explants were fixed in 4% paraformaldehyde
for 24 h followed by 5x PBS washes and blocking (5% goat serum,
0.2% bovine serum albumin (SigmaeAldrich, Poole, UK), 0.3% Triton
X-100 in PBS) for 1 h. Co-localisation between (NeuN) (1:200 Mil-
lipore) and bIII tubulin (1:1000 Covance) was performed via over-
night sequential staining using antibodies raised in different
species. Following washing and secondary antibody staining,

whole-mounts were placed on slides, RGC side up, between two
thin plastic parafilm strips (SigmaeAldrich, Poole, UK) running
along either edge of the slide to act as spacers. Samples were then
mounted with fluorSave™ reagent (Calbiochem/EMD Chemicals
Inc., Gibbstown, NJ, USA) and a coverslip placed on top.

Images were taken using a wide-field Axiovert 200M fluores-
cence microscope (Zeiss, Welwyn Garden City, UK) or SP5 confocal
microscope (Leica Microsystems, Wetzlar, Germany) at 20 or 40X
magnification. Confocal images were obtained via sequential
scanning using 0.5 mm z-step intervals.

The number of DAPI-labelled nuclei in the RGC layer was
quantified using the ImageJ plugin ‘Image-based Tool for Counting
Nuclei (ITCN)’ (http://www.bioimage.ucsb.edu/downloads/
automatic-nuclei-counter-plug-in-for-imagej). Software accuracy
was >95% comparable to manual counts and any missed nuclei
were added using the ‘Cell Counter’ Plugin. RGC counting and the
number of TUNELþNeuN labelled cells were assessedmanually by a
masked investigator from 20 non-overlapping regions per explant.
Co-localisation was assessed using Velocity software with an
acceptance reading of >0.9 between the two fluorescent dyes. The
images shown were from a stack depth of 3 mm where clear
distinction between individual RGCs could be observed.

2.5. Statistical analysis

Data shown is the mean ± standard error of the mean (s.e.m).
Significance was determined using Student's t-tests or one-way
ANOVA with Dunnett's or Tukey's post hoc test (GraphPad Prism;
Graph-Pad Software Inc., La Jolla, Ca, USA). Differences were
considered significant at the p � 0.05 level.

Fig. 1. Dissection of the human eye globe to create retinal explants. (A) A circular ring of tissue was removed approximately 10 mm below the ciliary body. (B) The eye globe was
rotated to dissociate the retina from the underlying retinal pigmented epithelium using the weight of the vitreous to separate the layers. (C) A single cut was performed at the optic
nerve head to detach the retina. (D) The vitreous was then removed and the retina spread flat, retinal ganglion cell side up. (E) The macula was removed using a 4 mm diameter
dissecting trephine. The fovea (white arrow) at the centre of the macula could be identified as a shallow depression containing yellow carotenoid pigments lutein and zeaxanthin
that indicated accurate macula explant preparation (F). (G) Five 4 mm para-macular samples were taken at equidistant locations from the macula using a template to reduce
variability between dissections. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of TaqMan probe/primer sets used in the experiments.

Gene Number/sequence Supplier

RBFOX3 Hs01370653_m1 Applied Biosystems, Warrington, UK
TUB3 Hs00801390_s1 Applied Biosystems, Warrington, UK
THY1 Hs00174816_m1 Applied Biosystems, Warrington, UK
TOP1 HK-DD-hu-300 Primer Design, Southampton, UK
CYC1 HK-DD-hu-300 Primer Design, Southampton, UK
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3. Results

3.1. RGC marker gene expression in retinal explants

As an indicator of RGC number, the mRNA expression pattern of
three commonly used RGC markers (RBFOX3, TUB3 and THY1) in
human retinal explants (Fig. 2) was investigated. Comparable levels
of RGC gene expression were seen in each of the five para-macular
explants (no significant differences between explants were
observed based on their sampling distribution, RBFOX3 p ¼ 0.8480,
TUB3 p ¼ 0.9761, THY1 p ¼ 0.9196, Fig. 2B, C, D). The macula (M), as
expected, showed the greatest expression of each marker.

To address concerns relating to donor variability with respect to
post mortem time, we compared RGC gene expression from post
mortem samples to that of explants from living donors, when
retinal tissue had been obtained as quickly as possible (<2 h)
following orbital exenteration. Results indicated no significant
differences in retinal RBFOX3, TUB3 and THY1 expression between
the living donor samples and those excised from post mortem tissue
(Fig. 2 e red dots).

Further comparisons to assess RGC variations with age were
carried out by plotting individual explant gene expression data
points against age, which yielded no significant correlation (Fig. 3A,
C, E). A similar lack of correlation was observed when comparing
RBFOX3, TUB3 and THY1 to post mortem time (Fig. 3B, D, F).
Addressing these issues further by comparing THY1 expression
from explants collected from 100 post mortem donor eyes revealed
the same outcome that neither age (p ¼ 0.0911, Fig. 3G) nor post

mortem time (p ¼ 0.8251, Fig. 3H) had any significant influence on
RGC expression within the human retina.

3.2. RGC mRNA expression profiling in para-macular and macula
explants

To confirm that the investigated RGC markers were expressed
in the correct region of the retina, planar sectioning was used.
RBFOX3, TUB3 and THY1 each showed highest expression in the
inner retina for both macular and para-macular explants (Fig. 4).
As expected, the macula explant yielded a larger number of sec-
tions (approximately 20 compared to 10 at the para-macular lo-
cations) due to greater retinal thickness (Fig. 4A). Of the macular
sections, a larger number contained RGC mRNA (approximately 8
compared to 4 at the para-macular locations) resulting in a
broader peak compared to para-macular regions (Fig. 4B). A
similar expression pattern was seen between each of the three
RGC markers, which indicated that the markers were likely to be
recognising the same cell type.

3.3. Comparison of RGC protein markers in retinal explants

Having shown that RBFOX3, TUB3 and THY1 represented useful
markers for human RGCs, being differentially expressed across and
throughout the retina in their expected locations, we wished to
support this data via observation of their protein expression.

NeuN, bIII tubulin and Thy-1 immunohistochemistry in both
macular and para-macular human retinal explants supported gene

Fig. 2. RGC gene expression was comparable between explants taken in the para-macular region and the greatest expression of each marker was within macular explants. (A) The
dissection template used to collect all explants. (B) RBFOX3 (NeuN) mRNA expression in retinal explants (n ¼ 11 donor eyes). (C) TUB3 (bIII tubulin) mRNA expression in explants
(n ¼ 11 donor eyes). (D) THY1mRNA expression in explants (n ¼ 15 donor eyes). All mRNAwas normalised to the expression of the housekeeping genes TOP1 and CYC1. Graphs show
individual values for each explant including the mean ± s.e.m. Note the discontinuous y axis. Explants A-E are taken within the para-macular region of the retina, M are samples
dissected at the macular. Red data points highlight explants taken from 2 living donor eyes. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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expression data with almost exclusive labelling within the RGC
layer (RGCL) (Fig. 5AeC). Using single antibody staining, all DAPIþ

cells in the RGC layer were counted and the proportions of these
cells that were positive for each RGC marker was quantified. In

macular samples, 82.7 ± 1.9% of DAPI stained cells were NeuNþ,
80.9 ± 2.6% bIII Tubulinþ and 81.8 ± 1.5% Thy-1þ (Fig. 5Ai, Bi, Ci and
Table 2). In para-macular regions, respective RGC markers were
53.7 ± 2.3%, 51.2 ± 0.6% and 52.8 ± 3.3% of all RGCL nuclei (Fig. 5Aii,

Fig. 3. RGC gene expression was not significantly influenced by the age of the donor or the time between donor death and retinal explant culture (post mortem time). (AeF) Each
data point represents a single para-macular explant. There was no significant correlation between the expression of RBFOX3 (n ¼ 49 explants), TUB3 (n ¼ 49 explants) or THY1
(n ¼ 68 explants) with age or post mortem time. (G, H) THY1 expression from a larger cohort of untreated eyes (n ¼ 100 donor eyes) taken immediately after dissection similarly
revealed no correlation between donor age, post mortem time and gene expression. All mRNA was normalised to the expression of the housekeeping genes TOP1 and CYC1.
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Bii, Cii and Table 2). A small number of cells in the INL also stained
positive for each antibody indicating likely displaced RGCs or
amacrine cells (Fig. 5AeC).

Co-localisation between NeuN and bIII tubulin was then inves-
tigated to ensure that the RGC markers were binding to the same
cell type within the RGCL. NeuN and bIII tubulin were selected over
Thy-1 due to more complete and intense staining of the cell nuclei
and soma, which improved evaluation. Both transverse section and
whole-mount staining confirmed a strong level of co-localisation
between the two markers with approximately 95% of NeuNþ cells
staining for bIII tubulinþ (Fig. 6AeD and Table 3).

3.4. RGC survival with long-term culture

Having shown that NeuN could be used to accurately label RGCs
in the human retina, the longevity of RGCs in para-macular retinal
explants (HORCs) was assessed over a four-week period. NeuN
immunohistochemistry was chosen as the preferred RGC marker to

combine with apoptotic labelling due to its discrete staining of the
cell body which enabled accurate quantification with the nuclear
TUNEL staining. Changes in RGC gene expressionwere also assessed
throughout the four-week period since these may be a more sen-
sitive measure of RGC survival within explants (Niyadurupola et al.,
2013). Of the three comparable RGC gene expression markers, we
chose to investigate THY1 to coincide with our previous research
modelling short-term RGC degeneration (Niyadurupola et al., 2013,
2011; Osborne et al., 2015).

Over four weeks in culture, the overall appearance of HORCs
showed no obvious structural changes, with explants retaining a
considerable degree of histotypic organisation throughout long-
term culture (Fig. 7AeE). Outer nuclear, inner nuclear and RGC
nuclei were detectable in specific layers throughout the four-week
time frame and NeuNþ cells could be detected at all experimental
time points.

Quantification of NeuNþ cells at 1 week revealed no significant
loss in SF and 10% FBS groups (Fig. 7F) although there was a

Fig. 4. Gene profiling revealed the location of RGC markers RBFOX3, TUB3 and THY1 throughout the retina in macular (A) and para-macular (B) explants. Up to 21 � 20 mm sections
were collected throughout the entire retinal thickness in the plane of the retinal nuclear layers from the photoreceptor layer (left) to the retinal ganglion cell (RGC) layer (right). A
greater number of sections were collected from macular explants due to the highest thickness in this region, with a broader RGC peak due to a thicker RGC layer. Similar expression
patterns were seen between RBFOX3, TUB3 and THY1 in both macular and para-macular regions. (RBFOX3 n ¼ 3 donor eyes (for both macular and para-macular explants), TUB3 n ¼ 4
donor eyes, THY1 n ¼ 3 donor eyes; mean ± s.e.m).
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significant decrease in labelled cells at subsequent time points
(23.0 ± 8.3% SF (n¼ 6 donor eyes), 20.8 ± 5.3% 10% FBS (n¼ 3 donor
eyes) at week 4, p� 0.05, Fig. 7F). Greater RGC loss wasmeasured in
HORCs cultured in Neurobasal medium (NB) where there was a
linear decrease in the number of NeuNþ cells, decreasing approxi-
mately 25% (25.2 ± 4.2) at week 1 and by 60% (59.2 ± 7.5) at week 3
(p � 0.05, n ¼ 3 donor eyes, Fig. 7F). Comparisons at 3 and 4 weeks
revealed significantly fewer RGCs in explants cultured in NB me-
dium compared to either SF or 10% FBS medium (p � 0.05, n ¼ 3
donor eyes, Fig. 7F).

Assessing the viability of these cells using TUNEL labelling
revealed that, although RGCs were detectable, the cells were un-
dergoing time-dependent apoptosis. TUNEL-labelling showed a
progressive increase in apoptotic labelling within the RGCL with
time for all three treatment groups (Fig. 7G). Under all conditions,
there was a significant increase in the number of TUNELþ Neu-
Nelabelled nuclei at week 1 compared toweek 0 (n� 3 donor eyes/
treatment, p � 0.05, Fig. 7G). TUNELþ NeuNelabelling continued to
increase at weekly intervals with almost all (82.2 ± 7.1 SF, 90.4 ± 0.8
10% FBS, 94.4 ± 2.8 NB) NeuNþ cells staining as apoptotic by week 4
(p � 0.05, n � 3 donor eyes/treatment). HORCs taken from a living
donor followed a similar trend (Fig. 7G). HORCs cultured in NB
medium had the most rapid increase in TUNEL labelling
(76.1 ± 11.2) with a significantly higher number of apoptotic RGCs
compared to SF (45.0 ± 14.8) and 10% FBS (50.5 ± 12.1) groups at
week 1 (p � 0.05, n ¼ 3 donor eyes/treatment).

THY1 gene expression changes supported a decline in RGC
viability with time in culture, shown by a rapid decrease in THY1
immediately after dissection (week 0) to approximately 20% of the
post-dissection level after 1 week (SF n¼ 5, 10% FBS n¼ 5, NB n¼ 2
donor eyes, Fig. 7H); expression levels remained at this 20% level
for the duration of the experiments. An equivalent relative decline
in THY1 after 1 week was seen in both the retina of the living donor
and post mortem material. Culturing explants in 10% FBS or NB did
not prevent, or accelerate, THY1 mRNA loss with time compared to
SF culture (Fig. 7H).

4. Discussion

Organotypic culture models have become an increasingly pop-
ular experimental tool in retinal research, bridging the gap between
in vitro and in vivo experimentation. We were the first to use the
human retina to create a quantifiable explant model that can be
used to study RGC degeneration (Niyadurupola et al., 2011). In the
present study we further characterised markers for human RGCs
and showed that post mortem human organotypic retinal cultures
can be used as a long-term model to study RGC degeneration after
axotomy.

4.1. RGC markers in the human retina

Firstly we revealed that neuronal markers for monitoring the
RGC population in the rodent eye could be applied to the human
retina, with precise and accurate labelling of cell populations
within the RGCL. NeuN is widely regarded as being a useful RGC
marker (Bull et al., 2011; Canola et al., 2007; Dijk et al., 2007; Zhong
et al., 2007) and strong co-labelling has been detected between the
antibody and fluorogold retrograde labelled mouse RGCs
(Buckingham et al., 2008). Similarly, bIII tubulin has been shown to
provide a reliable indicator of the number of surviving RGCs in

Fig. 5. Retinal ganglion cell (RGC) markers NeuN, bIII tubulin and Thy-1 labelled nuclei almost exclusively in the RGC layer of macular and para-macular explants (AeC). Para-
macular explants contained a single row of RGCs that stained positive for each marker whilst macular samples had a denser RGC layer with multiple rows of NeuN, bIII tubulin
and Thy-1 labelled cells. NeuN staining was located in the cell body (nucleus and surrounding cytoplasm), bIII tubulin labelled RGC soma and their processes and Thy-1 resulted in
diffuse cell body staining. Scale ¼ 50 mm (n ¼ 4 donor eyes).

Table 2
The percentage of DAPI positive cells that stained positive for individual RGC
markers in the RGCL (n ¼ 4 donor eyes).

NeuN bIII tubulin Thy-1

Macular 82.7 ± 1.9% 80.9 ± 2.6% 81.8 ± 1.5%
Para-macular 53.7 ± 2.3% 51.2 ± 0.6% 52.8 ± 3.3%
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comparisons with fluorogold-labelled rat RGCs (Cui et al., 2003).
Furthermore, Thy-1 transgenic animals have been used frequently
in glaucoma research (Raymond et al., 2009) and THY1mRNA levels
have been found by us (Niyadurupola et al., 2011) and others (Nash
and Osborne, 1999) to provide a good index of RGC damage.

We initially showed that RGC mRNA expression across the
macular and para-macular regions of the retina followed the typical
RGC profile for the human retina, with greatest expression in the
macula, the central region of the human retinawhich is responsible
for the highest visual acuity. The mRNA expression results were in
keeping with our previous data, which showed that RBFOX3 (NeuN)
mRNA decreased from the central macula to the periphery
(Niyadurupola et al., 2011). We further demonstrated that, for each
of the three RGC markers investigated, the same expression profile
was identified and exhibited a consistent organisation throughout
the retina, with minimal expression in the outer retina increasing

towards maximal expression in the innermost retina where the
RGC cell bodies are located.

The mRNA expression data was supported by immunohisto-
chemistry for NeuN, bIII tubulin and Thy-1 that only labelled cells in
the inner retina. NeuN staining was located in the cell body (nu-
cleus and surrounding cytoplasm) as has been shown previously
(Bull et al., 2011; Raymond et al., 2008) whilst bIII tubulin labelled
RGC soma and their processes, similar to the distribution observed
in rodent retinas (Johnson andMartin, 2008; Li et al., 2010). Thy-1 is
a cell surface glycoprotein that associates with the RGC bodies,
dendrites and axons (Nash and Osborne, 1999; Osborne and Larson,
1996; Sheppard et al., 1991) and in our studies labelling was
observed primarily on the cell bodies. However labelling was
diffuse, probably because Thy-1 is a cell surface marker and resul-
ted, therefore, in Thy-1 being the most challenging to quantify.

Co-localisation of NeuN and bIII tubulin confirmed that either
antibody could be used as a reliable marker to quantify RGCs.
Others have shown that a co-localisation pattern also exists for Thy-
1 and NeuN whereby 95.4% of thy-1-CFP cells in the RGCL also
labelled with NeuN (Raymond et al., 2008). In addition, we
observed a greater proportion of NeuN, bIII tubulin and Thy-1
positive cells within the RGCL of macular samples compared to
para-macular samples; this would be in keeping with the func-
tional superiority of the central region of the retina with previous
estimates suggesting that almost all cells in the RGCL at the human

Fig. 6. Co-localisation of NeuN and bIII tubulin in transverse (A, C) and whole-mount (B, D) sections revealed both markers were specifically labelling the same cell type in the RGC
layer. Similar levels of co-localisation could be seen in macular and para-macular regions of the retina. Scale ¼ 50 mm (n ¼ 5 donor eyes).

Table 3
The percentage of NeuN labelled cells that were also bIII tubulin positive in macular
and para-macular explants (n ¼ 5 donor eyes).

Co-localisation between NeuN and bIII tubulin

Macular 95.0 ± 2.3%
Para-macular 93.4 ± 3.0%
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fovea are RGCs (only 3% representing displaced amacrine cells). In
para-macular samples the proportion of RGCs in the RGCL
decreased to approximately 60%, a similar percentage to that seen
in mouse and rat retina; whereby approximately 50e60% of cells
were RGCs with the remainder being of amacrine origin (Jeon et al.,
1998; Perry, 1981). Although we did not measure changes at the
periphery, others have shown that the proportion of RGCs can
decrease to as few as 20%, with the remainder being of amacrine
lineage (Curcio and Allen, 1990). Sampling at the periphery there-
fore may contain too few RGCs for quantitative neurodegeneration
studies.

It should be noted that in rodents bIII tubulin antibodies can
cross react with ligands expressed on amacrine cells (Sharma and
Netland, 2007). Similarly, probing for NeuN in rats revealed sig-
nificant INL staining, likely to be that of amacrine cells (Bull et al.,
2011; Johnson et al., 2014). However, these latter observations
were less apparent in the human retina with very few NeuN or bIII
tubulin-labelled cells being identified outside the RGCL. Our results

also showed that the proportions of NeuNþ and bIII tubulinþ cells
closely matched those that were Thy-1þ which has been reported
by others to exclusively label RGCL cells (Kwong et al., 2010; Liu
et al., 2013) or with expression levels several fold higher on RGCs
than amacrine cells (Raymond et al., 2009). Furthermore, we
believe the appropriateness of these markers can be shown by the
differential expression betweenmacular and para-macular regions;
it is likely that regional differences would not be seen if labelling
was inclusive of amacrine cells. The retinal profiles of THY1 and the
cholinergic amacrine marker ChAT also differed in peak expression
indicating a likely difference in cell type detection and that wewere
accurately measuring just RGC cells (Supplementary Fig. 1).

4.2. The suitability of using post mortem human retinal tissue

There has been an assumption that it is not feasible to utilise
post mortem retina as a model of degeneration due to the extended
time from death to retinal isolation. Furthermore, whole-mount

Fig. 7. The survival of human retinal ganglion cells (RGCs) in ex vivo para-macular explants (HORCs) over 4 weeks. Representative immunofluorescence photomicrographs of HORCs
cultured in SF medium at (A) 0 weeks post dissection, (B) 1 week, (C) 2 week, (D) 3 week, (E) 4 week. (F) The percentage of NeuNþ cells in the RGC layer (mean ± s.e.m; n ¼ 3e6
donor eyes) relative to same donor counts immediately post dissection. (G) The proportion of TUNELþ NeuNþ cells in the RGC layer (mean ± s.e.m; n ¼ 3e6 donor eyes) with time in
culture. (H) The change in THY1 mRNA expression (mean ± s.e.m; n ¼ 2e6 donor eyes) with time in culture relative to same donor expression immediately after explant creation.
DAPI ¼ blue, NeuN ¼ green, TUNEL ¼ red. White arrows highlight TUNELþ NeuNþ cells in the RGC layer. GCL ¼ ganglion cell layer, INL ¼ inner nuclear layer, ONL ¼ outer nuclear
layer. Red data points ¼ Living donor explants cultured in SF medium. Scale ¼ 50 mm *, y, z indicates a statistically significant differences compared to samples processed
immediately after dissection in SF, 10% FBS and Neurobasal (NB) medium respectively. x indicates a significant difference between SF and NB results at the same time point. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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retinal analysis has demonstrated previously that RGC number in
the human retina can vary considerably between individuals,
particular with age (Harman et al., 2000). However, the present
results have indicated that RGC mRNA expression (the most sen-
sitive indicator of RGC loss) in the area surrounding the macula
does not show a large degree of variability with age or post mortem
time. Even when eyes were taken with a very short transit time
(<2 h) from living donors, we did not see a substantial difference in
RGC mRNA expression compared to aged, long (up to 24 h) post-
mortem time eyes. The rates of THY1 mRNA loss and apoptotic
labelling also revealed little difference between donors. Thus it can
be concluded that a rapid degradation of RGCmarkermRNA did not
occur between death/removal of eyes and dissection. Additionally
the degeneration of RGCs from living donors occurred at the same
speed.

4.3. Human retinal explants as a model of chronic
neurodegeneration

Our final experiments assessed the feasibility of using adult
human retina as a long-term culture system for studying RGC
degeneration. Of the three RGC markers investigated, NeuN proved
quickest, easiest and most reliable to count. Using antibodies to bIII
tubulin and Thy-1 led to additional labelling of RGC dendrites and
axonsmaking quantificationmore time consuming. bIII tubulin and
Thy-1 have also proven difficult to assess in rat explants (Bull et al.,
2011) and therefore might not be appropriate for large scale ana-
lyses. Interestingly, it has been shown that Thy-1 (Huang et al.,
2006) and bIII tubulin expression are down regulated following
injury, prior to cell loss, which could make NeuN an appropriate
RGC marker for immunohistochemical identification and quantifi-
cation, although the others may be useful therefore in assessing
earlier neurodegenerative changes.

As a model of degeneration, retinal explants require complete
RGC axotomy, an insult that ultimately leads to RGC death in in vivo
models (Levkovitch-Verbin et al., 2013; Wang et al., 2015). The
progressive nature of RGC loss, therefore, can provide a useful
model in which to investigate the neurodegenerative features of
optic nerve degeneration associated with injury or glaucoma.

In our experiments, human explants showed progressive RGC
apoptotic labelling with time, with minimal damage immediately
post dissection, as observed previously (Niyadurupola et al., 2011),
to extensive RGC apoptotic labelling at 4 weeks. The rate of
apoptosis closely matched that seen in animal optic nerve crush
models (70% of RGCs are apoptotic within the first 14 days after
injury (Magharious et al., 2011)), although HORC RGC death
appeared to be faster than in rodent explant models (Johnson and
Martin, 2008; McKernan et al., 2007). It is unlikely that the spe-
cies differential effect is due to the extended post mortem times
seenwhen using human organotypic cultures because: 1) apoptosis
at the beginning of experiments was absent and 2) freshly prepared
living donor explants followed a similar rate of cell death to post
mortem explants. One possibility is that the mediums used did not
contain the necessary growth factors to maintain human RGC sur-
vival for such extended times and this warrants further investiga-
tion. Support for the assumption that medium composition is
important for survival was shown in the experiments where ex-
plants displayed variations in the rate of neurodegeneration
depending on medium composition. After we had identified that
serum did not improve survival in human explants, we decided to
test an alternative SF medium in the hope that this might enhance
survival. We opted for the most commonly used medium compo-
sition for the survival of RGCs (Bull et al., 2011; Johnson and Martin,
2008) which is also a medium shown to enhance hippocampal
neuron survival over 4 weeks in culture (Brewer, 1997); this was

Neurobasal®-A with the stated supplements. However to our sur-
prise, we observed a rapid loss of RGCs and increased early
apoptosis in the HORCs cultured in Neurobasal medium compared
to those in SF DMEM/F12 medium. The reason for the survival
differences with the two media was unclear and beyond the scope
of this paper, however we can speculate that differences in amino
acids, vitamins, ferric nitrate and sodium pyruvate compositions
might have played a role, particularly a lack of glutamate and
aspartate in NB medium. Additionally, the B27 supplement in NB
medium can suppress the growth of glial cells (Brewer et al., 1993),
which may dampen the supportive role of these cells in human
explants. Identification as to why NB was detrimental to human
RGCs would be useful for future investigation although the result
does itself highlight that cell soma delivered trophic factors are
important in affecting RGC degeneration.

4.4. Further uses of human explants

Although TUNEL labelling was only quantified in the RGC layer,
an overall increase in TUNEL labelling could be seen throughout the
retina. With apoptosis evident in the INL and ONL, and appearing to
increase with time in culture, use of human organotypic cultures
may prove useful in the study of other retinal diseases. Rat orga-
notypic cultures, for example, are currently being used to measure
growth factor neuroprotection of photoreceptors (Lipinski et al.,
2011). Assessing novel neuroprotective strategies relating to
retinal neurodegeneration of either photoreceptors (e.g. in age-
related macula degeneration or retinitis pigmentosa) or RGCs (e.g.
in glaucoma) could be a useful application for this model.

5. Conclusions

Strong similarity between human post mortem tissue and living
donor retina suggest that human retinal explants could be a valu-
able resource as a chronic experimental model of RGC degenera-
tion. Various markers can be used to accurately quantify RGC
number throughout the retina and alterations to the medium can
have an impact on the rate of apoptosis and cell loss. The human
explant model therefore provides a platform to investigate future
neuroprotective and regenerative therapies, which rely on delaying
RGC apoptosis.
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