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The 1ssue of how the application of a static electric field can influence energy transfer between molecules is addressed. Several
aspects are considered. First, in molecules of reasonably high symmetry where the donor decay or the acceptor excitation
transition is electric dipole forbidden, the application of a static field can, by an electro-optical interaction, allow energy to
transfer by a dipolar mechanism. In this way application of the field effectively switches on the transfer process. Secondly, it is
shown how the application of a static electric field can provide more spectroscopic information, as in the technique of electric
field-induced spectroscopy: it also offers a possible basis for new types of laser system. Finally, in a polar liquid an applied field
can produce a degree of molecular alignment. It is demonstrated how this can significantly modify energy transfer characteristics,
and the dependence of the effect on field strength and temperature are identified.

1. Introduction

One of the principal mechanisms by means of
which electronically excited molecules become
deactivated is through the transfer of their energy
to other molecules [1]. Molecular energy transfer
plays a highly significant role in a wide range of
materials, and in recent years particular attention
has been paid to its role in the solid state and in
biological systems. In the former, much interest
currently accrues to the study of energy transfer in
crystalline media such as those involved in lasers
and ancillary devices. Where living organisms are
concerned the main areas of current research relate
to intermolecular energy migration in photosyn-
thetic systems, and intramolecular transfer in pro-
tein structures, where measurement of the process
constitutes an important means of determining the
distances between subunits.
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The theory of molecular energy transfer distin-
guishes between several mechanisms; the most im-
portant are electron exchange coupling and the
Coulombic coupling of transition moments [2].
The first type is restricted to neighbouring mole-
cules with overlapping wave functions (see for
example ref. [3]). The latter type of transfer couples
molecules over a considerable range of distances
and is more frequently observed; here the transition
moments of the species (atoms or molecules) in-
volved are commonly both electric dipoles (as for
example in ref. [4]), but cases involving one electric
dipole and one quadrupole [5] or two electric
quadrupoles [6] are observed, too. The familiar
Forster theory deals with the most common case of
two electric dipole-allowed molecular transitions
for molecules at distances R < Ac/AE, (the so-called
near zone), where AE is the energy transferred; this
leads to an energy transfer rate that is inversely
proportional to the sixth power of R {1]. A more
recent theoretical approach includes the effect of
molecules at larger intermolecular  dis-
tances by employing molecular quantum elec-
trodynamics. Here the coupling between the
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transition dipole moments is formulated in terms of
virtual photons which travel between the particip-
ating molecules. Radiative energy transfer is there-
by automatically accounted for, too [7,8], and the
inclusion of higher electric and also magnetic multi-
pole moments is straightforward [9].

It is the purpose of this paper to address the issue
of how the application of a static electric field can
influence energy transfer between molecules, and to
develop a theory applicable to a wide range of
systems. There are several aspects to be considered.
First, it is possible with molecules of reasonably
high symmetry for the donor decay or the acceptor
excitation transition to be electric dipole forbidden.
Although higher multipole transition moments
might still mediate the transfer process, they are
generally associated with relatively weak coupling.
In such cases the application of a static field can, by
an electro-optical interaction, allow energy to
transfer by a dipolar mechanism. In this way
application of the field effectively switches on the
transfer process. Secondly, the application of
a static electric field can provide more spectro-
scopic information: the technique of electric-field-
induced spectroscopy invokes two-quantum selec-
tion rules for one-quantum absorption (an example
is given in ref. [10]) and the quantum elec-
trodynamical theory is well developed [11,12].
Thirdly, in a polar liquid an applied field can pro-
duce a degree of molecular alignment, significantly
modifying energy transfer characteristics. This tem-
perature-dependent effect has been discussed for
electric-field-induced photoabsorption [12] and it
1s important for energy transfer processes, too.
Moreover the characteristic dependence of the
effect on field strength and on temperature are
both readily identifiable.

2. Quantum electrodynamical formulation

The aim is to derive rate equations for the transfer
of energy between a donor species A and an accep-
tor B,

A* + B— A + B*. (1)

Here the initial state of A, to be labelled |a), is in
general an energy level belonging to the manifold of
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an electronic excited state. Molecule B initially
resides in one of the sub-levels of the ground elec-
tronic state, usually the S, state and therefore arbit-
rarily labelled |0)>. The process of energy transfer
entails a downward transition in A to a sub-level
usually belonging to the ground electronic state,
again labelled |0), accompanied by an upward
transition by molecule B to a state labelled |B): usc
of the designation |0) for the lower energy levels is
not meant to signify any kind of degeneracy, and
the theory to be developed below in no way de-
pends on these states necessarily being ground
states. The overall process is clearly governed by
the energy conservation requirement

E.o = Ego, (2)

where £, and Eg respectively denote the energy
differences between the excited states of A and
B and their lower states. To develop the theoretical
formulation in detail, it is first necessary to intro-
duce the quantum electrodynamics which will
properly accommodate the features of interest.

Molecular quantum electrodynamics is distinc-
tive 1n its application of quantum theory not only
to the molecules but also to radiation fields [13].
The modes of the radiation field are in the present
application occupied only by transverse virtuul
photons as in the Power—Zienau—-Woolley formula-
tion [14]: the photons are called virtual because
they are not observable, but mediate the electro-
magnetic coupling between participating molecu-
les. For completeness, and also in order to intro-
duce a number of parameters which are employed
subsequently, it is appropriate first to consider the
common case in which both the donor decay and
the acceptor excitation transitions are electric
dipole allowed, and for which the rate of energy
transfer in the absence of any static field remains
significant.

2.1. Dipole-allowed energy transfer

The overall Hamiltonian H for the donor -acceptor
system can be separated as:

H:Hmul+Hrad+Hinl~ (3)
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Fig. 1. The two time-ordered diagrams for energy transfer
A* + B— A + B* The wavy line denotes a virtual photon of
wave vector k and polarisation &.

The term H,,, is a sum of the molecular Hamil-
tonians for the two molecules and H,,4 pertains to
the radiation field. Coupling between the molecules
and the radiation field is described by the pertur-
bing Hamiltonian

Hio= — ¢ '"[ua-d-(Rs) + pp-d*(Ry)]. 4)

The symbols u, and g here denote the electric
dipole moment operators of A and B, and the
position vectors of the molecules are R, and Ry,
respectively. The transverse electric displacement
operator is given by

dt(r) = i) (eohck/2V)'?

x [eaexp(ix-r) —zatexp(~ix-r)], (5)

where V stands for the quantisation volume, x is
the virtual photon wave vector and ¢ its polarisa-
tion vector, and a, a* denote the corresponding
annihilation and creation operators, respectively.

In the absence of any applied field the energy
transfer process can be represented by two time-
ordered diagrams (see fig. 1). By summing the cor-
responding contributions by the usual methods
[7,13] it is found that the pertaining transition
matrix element can be written as

M" = p2°uf° V(K. R), (6)

using the FEinstein summation convention for
repeated tensor indices (as usual, and throughout
this paper, specific axial indices x, y and z are

exempt from the sum rule). The virtual photon
coupling tensor V), is defined by

Vii(K,R) = (4meoR) " 'exp (iKR)
x [6;; — R.R;)(1 — iKR)

— (3;; — RiR)K?R?], (7)
where
R=R,— R,, (8)
K = E.,o/hc = Egy/hc 9)

and the brackets around the indices (ij) serve as
a reminder of their inherent permutational sym-
metry. The rate of energy transfer, I', can now be
calculated from the Fermi Golden Rule:

I = Qnpe/m)| M"|? (10)

= (2npf/h)u?°u?°ﬂi°ﬁ pe Vin(K, R) V(kl)(K, R).
(11)

The parameter p; denotes the density of the final
molecular states and can be expressed in terms of
the individual %, and Bp;:

pr = | *pe(Eso — E) ®pe(E) dE. (12)

In the near zone where KR« 1, the rate given by
eq. (11) exhibits the familiar R~ ° dependence, as
predicted by the classical Forster theory and as
experimentally confirmed [1,2]. Of the additional
R~ ?and R * terms which arise, and which become
effective at longer intermolecular distances, the for-
mer can be identified with radiative energy transfer.
The latter is a distinctive retardation feature whose
presence only the quantum electrodynamical
theory reveals. Possible regimes for its experi-
mental detection have recently been suggested
[8,15]. It is also worth noting that the R™? radi-
ative term gives rise to a paradox which can only be
resolved if reabsorption by the sample is taken into
account [8].

2.2. Electric field-induced energy transfer

The effects of a static electric field are incorpor-
ated into the theory by inclusion of an additional
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Fig. 2. Two of the twelve time-ordered diagrams for clectric-field-induced energy transfer.

perturbational term in the Hamiltonian for the
system. This term is given by

Hiyw= —¢ 'uyn D — s pug D, (13)

where D denotes the electric displacement vector of
the static field whose magnitude is (D/gy). A static
electric field applied between two parallel elec-
trodes is spatially homogeneous and of constant
magnitude. Its gradient is thus zero, and the term
(13) i1s not the first part of a multipolar series. One
way forward would be to treat Hi, as a perturba-
tion on the molecular Hamiltonian H,, leading
to perturbed molecular states which would be
employed as basis states for a calculation following
the procedure of section 2.1. However, a different
approach is taken here, namely to treat H;, directly
as a further perturbation on H: the overall Hamil-
tonian is now

H = Hmol + Hrad + Hinl + H;nt' (14)

The advantage of this method, which naturally
leads to the same final results, lies in the preserva-
tion of the molecular entities described by H,,,.
Moreover, calculation of the transfer rate is very
simple: in quantum electrodynamics a static field
can be envisaged as the zero-frequency limit of
a (real) photon [11]. Because the field shows no
time dependence, the appropriate symbol in the
time-ordered diagrams is a horizontal line. Two
typical time-ordered diagrams for electric-field-
induced energy transfer are shown in fig. 2.
Altogether there are twelve such diagrams,
and they show the same mirror image property

discussed 1n refs. [9,16]: the electric field can act on
either A or B.

Calculation of the transition matrix element now
proceeds along similar lines to refs. [9,17] and gives

M= — ¢, lD,«S,-’jO,u}:” V(K. R)
— & lDiS?p#:O Vi K, R). (15)

]

where

ST = Y[ M E) '+ A AT (Eo) ' (16)
In passing it may be noted that the tensor S;7 is
identical to the molecular response tensor which
features in the theory of electric field-induced ab-
sorption [11]: the tensor S¥ is defined similarly.
The energy transfer rate is again calculated with the
aid of eq. (10). Using D to denote the unit vector of
the static electric field, and the symbol (A—B) to
signify an exchange of the molecular labelling, we
have:

I' = 2npe/A)(D/eo)*

X D SEufO VoK, R) DS 0 V(K R)

+(A—B)+2Re[D; ST 18 V0 (K, R)
x DySE0 10 Vnm (K, RY]}. (17)

The three different terms in eq. (17) result from the
squared modulus of M", and are called the first and
second diagonal and the interference term, respec-
tively. The first term is associated with the six
time-ordered diagrams in which D acts on A; the
second results from the six diagrams in which
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Fig. 3. Typical time-ordered diagram for doubly electric-field-
induced energy transfer.

D acts on molecule B. The third is a cross-term.
Note that all parameters in eq. (17) except V;;, are
real-valued. The rate depends on the square of the
electric field, as in electric-field-induced spectro-
scopy.

Using egs. (6) and (15), we can write down a gen-
eral expression for the matrix element which ac-
commodates both field-free and field-induced
terms:

M?Lu = #?OI‘PO Vi (K, R)
— &0 'Di(SE uf® + SPu®) VK, R)
+ & *DiD;SWSY Ve K. R — ... (18)

The last term corresponds to a doubly electric-
field-induced energy transfer which is depicted in
fig. 3. Its contribution would require a double-
quantum transition on both molecules and could
therefore only be associated with a very weak effect;
for this reason it is henceforth excluded from con-
sideration. It is worth noting that if both transitions
a— 0 and 0— P are dipole-allowed, then under
normal circumstances the first term of eq. (18) will
greatly exceed the second. Hence in order to
observe electric-field-induced energy transfer
(or avoid competition with normal energy transfer)
one transition should be dipole-forbidden and two-
quantum allowed. This leaves the second term in
eq. (18) as the principal contribution and leads to
the rate given by eq. (17). The rare case of a dipole
and two-quantum forbidden transition (e.g.
A;;oB;, in a D¢, molecule) would give rise to
further terms; however, we shall restrict considera-
tion to dipole-forbidden transitions that are two-
quantum allowed.

3. Rotationally averaged energy transfer rates

As they stand, egs. (11) and (17) can only directly
be applied to molecules with fixed mutual orienta-
tion. Moreover eq. (17) is only applicable when
the static field operates in a fixed direction with
respect to each pair, e.g. for a crystalline sample.
If the molecules are in a fluid phase, a rotational
average has to be performed between the laborat-
ory coordinates to which D is referred and the
molecular coordinates to which A, B and R are
referred [18]. The number of tensor indices in-
volved is called the rank of the average. This
procedure gives the rotating pair rate (denoted
by angular brackets) which applies for any two
molecules in a fixed mutual orientation in a fluid
(e.g. two chromophores within a large molecule in
solution). For free molecules two further averages
are required in order to decouple both molecular
coordinate frames from R [19]. For free molecules
these latter averages are also required in eq. (11)
for the field-free rate. Other scenarios are possible,
e.g. a single average is required if A denotes an
atom or a freely rotating molecule in a crystal,
or two averages if this condition applies to both
A and B. To develop the theory further, however,
we restrict the scope to rotating pairs and free
molecules and consider in more detail the various
possibilities which arise.

3.1. Non-polar molecules

Consider first the case where A and B have
permanent electric dipole moments #°° which
are both either zero or negligibly small, in the
sense that (u®®- D/eo)/kgT<« 1, where kg is the
Boltzmann constant and 7' the temperature of
the fluid. In such circumstances field-induced
orientation in any fluid sample can be ignored,
the molecular orientational distribution being
isotropic.

3.1.1. Dipole-allowed energy transfer

Clearly, in the case where the donor and acceptor
transitions are dipole-allowed, any applied field
does not play a measurable role and the transfer
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rate is effectively the field-free result. For the fixed
mutual orientation pair we have

rpair — r —

2rpe/h) ui® 170 1 uf®

x Vil K. R Vi (K, R). (19)

The rate for two free molecules is obtained after
two second-rank rotational averages:

rfrce — <<I">>
= (2rp/h)(1/9)| w*°|? | u*°|? A(K, R), (20)

where A(K, R) is the excitation transfer function
introduced previously elsewhere [77:

AK,R) = V(K. R)V;j(K, R) = (16m*:3R®)
x2(3 + K’R* + K*R*%). (21
These are well-known standard results [8].
3.1.2. Electric-field-induced energy transfer
The rotating pair rate of electric-field-induced
energy transfer, corresponding to the case where
either the donor or acceptor transition is electric-

dipole-forbidden, is evaluated with a second rank
rotational average and gives

e = (Y = 2rpe /)D/eo)?
X (1/3)4S720 820 ufOiEOV iy (K, RYV iy (K, R)
+ (AB) + 2Re[S7 130 S50 puf®
X Vo K. R) Vo K. RY]}. 22)

Two further averages (rank two for the diagonals,
three for the interference term) produce the free
molecule rate

r'ee = ) = (2npg/ (Do)
(1/54){2S 20 S| u* |2 A(K,R) + (A—B)
+ &S IR tmn S B 112
x(A(K,R) — A(K,R))}, (23)

where we introduce another energy transfer func-
tion that is only of considerable magnitude at large
intermolecular distances [16,207:

A(K.R) = VK, R) V(K. R)
= (16m263R®) ! x 4K*R*. (24)

Generally not all terms of eq. (23) will actually
contribute. If for example the donor transition
2 — 0 is dipole-forbidden, only the first diagonal
term of the rate equation remains

3.2. Polar moleculey

We now consider the general case where both
donor and acceptor species have finite permanent
dipole moments; the case when just one species is
polar is thereby also included.

3.2.1. Dipole-allowed energy transfer

Since in the rotating pair case both molecules are in
a fixed mutual orientation, the electric field can
only influence the entity A --- B; however, this will
not influence the energy transfer in any way, so the
rate is again

= 2rp/ M w1 On 0

x Vil K, RV (K. R). (25)

rpuir —

The situation changes for free molecules because
now each molecule with its static dipole moment
A (or Bu®®) experiences a torque of magnitude
to (#°° x D) exerted by the field. As a consequence
the orientational distribution is no longer isotropic.
The rotational averaging procedure is necessarily
different [21], and must accommodate Boltzmann
weighting factors corresponding to the orientating
influence of the electric field;

exp[AﬂOO “(D/eg)/tkg T )], exp[Bﬂoo (D/eg)kgT)].

(26)
First, the frame of molecule A has to be decoupled

from the frames of B, R and D; second, B has to be
decoupled from R and D. The averaged rates are:

Iy = (I xexp[®®(Dfeo) (ke T)1)/

<exp[*u®® - (D/eo)/(kn T)1), (27)
Iy = LI xexp[Pu® - (D/eo)(kgT)]>/
Cexp [ "% (D/eo)/(kg T)]). (28)

The calculation procedure is described in detail in
ref. [21] and outlined in ref. [12]; it gives rise to
spherical Bessel functions j,(—iya) and j,(—iyg)
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Fig. 4. Plot of the reduced spherical Bessel functions j.(—iy)

versus the parameter y = u°%(D/eo)/(ka T). Note that for even

n the values are real; for the purely imaginary odd n functions,

Im[j(—iy)] and Im[j}(—iy)] are plotted. The abscissa scale

extends from y=0 to 20; with u°°=5x10"3Cm and

T=300K this corresponds to field  strengths
0<(D/gy) < 1.6x10"°Vm~L

(n=1,2,3,4) whose imaginary arguments have
a modulus given by

7a = Au°%D/eo)/ (ks T), (29)

78 = Pu®%D/eo)/(ksT). (30)
By virtue of the calculation the unit vectors D, #i°°
and B4°° appear; the latter two may be defined as
the z-axes of the donor and acceptor. Following
evaluation of the first two averages by egs. (27) and
(28) the third average with respect to the field must
be carried out: this is a conventional non-weighted
average over the mutual orientations of D and R. In
passing it may be noted that although the ordering
of the first two rotational averages is arbitrary, the
field average must be performed last. The overall
result is then:

riree = (LK
= (2mp; /h)(1/180) {201 a*°|*| uP°|* A(K, R)
+ 47555032 — | P)3(uE0)?
~ |#PP)(A(K, R) + 34'(K, R))}, (1)

where the j’ are reduced spherical Bessel functions
defined in general by [12]:

Afn = Jn(=17a)jo(—1ya), (32)
Bﬂx = ju(—1yB)/jo(—1iys). (33)

Reduced spherical Bessel functions with n = 1,2,3
and 4 feature in the results of later calculations;
fig. 4 depicts how each depends on its argument.

The first point to make about the result (31) is
that its first part equals the (field-free) result for an
isotropic system, eq. (20). In the light of this remark,
the particular process under discussion may be
envisaged as electric field-modified energy transfer;
the magnitude of the anisotropy correction is dis-
cussed in section 5. It is perhaps worth drawing
attention to the fact that if either (donor or acceptor)
static moment is zero, all the reduced spherical
Bessel functions j, (n = 1) become zero, too, and the
rate equation completely reduces to the isotropic
result. Clearly the electric field modifies the rate
only if both molecules are polar.

3.2.2. Electric-field-induced energy transfer
Finally we address the most complex case in which
energy transfer is not only induced by application
of the static field, but is also influenced by a degree
of molecular alignment which the field confers
upon the system.

For the rotating pair an overall static dipole
moment #°° exists, defined by the vector sum

”00 = A”OO + BﬂOO (34)
and the Boltzmann weighting factor is
exp[ u°%(D/eo)/(kT)]. (35)

In analogy to egs. (29), (30), (32) and (33) we can
define

y = u°D/e) ks T), ju=ja(=iv)ijo(—iy),  (36)

Calculation of the appropriate second rank
weighted rotational average gives the pair result:

(I = 2npe/h)(Dfeo)?
x (13){[(1 + j)S 38
— 375830008 32 490
X BBV oy (K, RV un(K, R) + (AB)
+ 2Re([(1 +j2)S5’SEY
— 375,830 p20 SBY fip°

x uf B0 Vi (K, R) Vnny (K, R)) }. (37)
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If 4°° equals zero (e.g. if the individual moments of
the donor and acceptor have an antiparallel align-
ment), the parameter j; equals zero, and naturally
eq. (22) results.

In order to obtain the free molecule rate, one
has to consider the orientating effect of the field
on the individual static dipoles, and proceed via
the three averages as explained in section 3.2.1.
The resulting formula for I''™*¢, which involves
spherical Bessel functions of each order from jj
to ji, is very cumbersome and is therefore
reserved for an appendix. However, a special case
of the result arises if one of the static electric dipole
moments, say Bu®® is zero. Here the following
appreciably simpler expression can be shown to

apply:
I = (IY>) = (2npe/h)(D/eo)* x (1/2700)
x {100[(1 + 4j5)SFS%
— 3ABSHSRN 4P AK R)
+ 100] ™2 $ B2STY A(K, R)
+ o[ 2880510 4 3(SEOSHO 4 §BOTHO)]
x (| %1 — 3|u2°I)[A(K,R) + 34'(K.R)]
+ 50[(1 — 2%/5)e;n SEPR7°
+ 3456, (ST R0 — SEORGO)]
X £1mnS O (A(K, R) — A(K,R)}. (38)

As in eq. (31) the static dipoles of molecules
A and B define the individual z-axes. As men-
tioned earlier, either the acceptor or the donor
transition should be forbidden in order to exclude
the otherwise dominating dipole-allowed energy
transfer. If the acceptor in addition to being
non-polar has a dipole-forbidden transition
(®u®° =0, 4*° =0), then only the second term
contributes; if the donor transition o — 0 is forbid-
den (u*® = 0), only the first term survives. Note
that in eq. (38) the orienting effect of the field is
already manifest in terms linear in the reduced
spherical Bessel functions, whereas in the dipole-
allowed case (31) the effect depends on them quad-
ratically.

4. Selection rules

As established earlier, the selection rules for
dipole-allowed energy transfer entail the normal
selection rule for one-photon emission by the
donor and one-photon absorption by the acceptor.
Electric-field-induced energy transfer usually fea-
tures a two-quantum (Raman-like) selection rule
for one, and a one-quantum selection rule for the
other molecule.

These rules can be understood from the time-
ordered diagrams (figs. 1 and 2). In fig. | there
are just two electric interactions between the
molecules and the (radiation) field, corresponding
to the only permissible two-fold partition of
2 which is (1,1). In fig. 2 we have three interac-
tions, giving the partitions (2.1) and (1.2), ie.
interactions which invoke the two-quantum selec-
tion rule occur either at the donor A or the acceptor
B, cf. ref. [22].

For a detailed analysis one can employ irredu-
cible tensors to elucidate the selection rules asso-
ciated with the transition dipole moments z#*°, u"°
and the $™ and SP tensors. Any such molecular
transition tensor is characterised by two types of
parameter, the parity and the weights of which the
tensor is comprised [23]. The parity of a molecular
transition equals (—1)” for p dipolar interactions
between the molecule and an electric field (static or
radiation); e.g. for the partition (2,1) we obtain
positive parity for molecule A (5*°) and negative
parity for B (u"%). Naturally if |0) signifies a
totally symmetric ground state, these parity labels
may be identified with the symmetries of the excited
states o and P, respectively.

Tensor weights can be interpreted as relating to
the modulus of a change in electronic angular mo-
mentum, |AL]. Any tensor T can be decomposed
into a sum of irreducible tensors 7@ 4+ T +
7 4+ ..., the latter distinguished by these weights
w=0,1,2, .... The dimension or rank of 7T gives
the upper limit for w (1 for g*° and uP°, 2 for the
S tensors); the lower bound on w is 1 for rank one
and O for any other rank. A transition dipole has
weight 1 and parity —1 which we denote by the
representation DY 7). A two-quantum transition
possesses weights 0, 1 and 2 and parity + 1. giving
the representation D®*! + D' *) 4 D),
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For energy transfer to occur, the selection rules
for both the downward transition of the donor and
the upward transition of the acceptor must be satis-
fied. This in turn requires that for each molecular
transition at least one irreducible tensor must be
non-zero. Whether this is the case can be ascer-
tained with the point group representation of vari-
ous tensor weights; the required information is
tabulated in ref. [23] (see also ref. [12]). Any rep-
resentation spanned by components of D' ™) thus
denotes a dipole-allowed transition; when either
D, DU or D?*) appear, the transition is
two-quantum allowed. Dipole-allowed transitions
belong to class 1 which is represented by the
symbol 17(1) [class parity (weights)]. Two-photon
allowed trasitions form class 2 which has six mem-
bers, 2*(012), 2%(12), 2*(02), 2*(2), 2*(1) and 2*(0)
[23]. Here for example (012) means that weights
0 and 1 and 2 are all spanned by the representation
of the transition.

Whenever the representations of both transitions
a— 0 and 0> B belong to class 17(1), dipole-al-
lowed energy transfer occurs, subject of course to
energy conservation. If one of the transitions does
not belong to this class, it will very often belong to
class 2. In such circumstances, however, it must be
borne in mind that although all class 2 transitions
are allowed as electric-field-induced transitions,
some are also allowed through a single-quantum
electric quadrupole interaction, as the latter entails
the irreducible representation DZ*). (Weights
0 and 1 do not appear since the quadrupole is
a symmetric and traceless tensor quantity.) The
time-ordered diagrams for the associated
dipole—quadrupole mediated transfer are the same
as for dipole—dipole transfer (see fig. 1) where no
static field is involved. Thus whereas all six mem-
bers of class 2 allow electric field-induced energy
transfer, 2% (012), 2*(12), 2*(02) and 2*(2) addition-
ally allow dipole—quadrupole transfer. This type of
energy transfer depends in the near zone on R™8,
however, and features only in energy transfer be-
tween close neighbours (an experimental example is
provided in ref. [5]) whereas electric field-induced
transfer shows R ¢ dependence as in the conven-
tional dipole—dipole transfer. The class 2*(1) and
27(0) cases for which energy transfer is
dipole—quadrupole forbidden, but allowed by field

induction, are comprehensively tabulated in ref.
[23].

Finally we consider fig. 3 which corresponds to
the partition (2, 2) (clearly partitions (3,1) and (1,3)
are also possible). Here both transitions must be-
long to class 2, which allows for doubly electric-
field-induced energy transfer. If both representa-
tions of the transitions belong to one of the classes
2*(012),2%(12), 2*(02) or 2*(2), quadrupole-quad-
rupole energy transfer may occur (see for example
the experiment in ref. [6]).

5. Discussion

The first issue which needs to be addressed in the
light of the above theory is the likely magnitude of
the effects which we have described. Let us first
examine the more common case of dipole-allowed
energy transfer (the dipole-dipole mechanism) in
free molecules. As shown by eq. (31), the orientation
of static dipoles in a static electric field modifies the
energy transfer rate (20). The second term of eq. (31)
is multiplied by *f, B, which ranges from 0 (for
a vanishing dipole, or in the absence of any static
field, where y, or yg equal zero) to 1 (for the case of
large dipoles or a high field, where y, and yg ac-
quire high values). Ref. [12] gives the limiting ana-
lytical form of these functions, and fig. 4 illustrates
their exact dependence on the parameter y. The
onset of field-orientation effects is characterised by
a region in which each j, & —%%/15 which, from
€gs. (29) and (30), clearly results in a departure from
the field-free rate associated with a quartic depend-
ence on the field strength and an inverse fourth
power dependence on the absolute temperature 7.

As the remainder of the expression which multi-
plies the j’ functions in the second term of eq. (31) is
of comparable magnitude to the first term (except
for the rare case where 2u? ~ u2 + pu? for the
transition moments of either molecule), it becomes
apparent that a very high field of ca. 10'°V m™!
would substantially modify the rate of energy trans-
fer, whereas a low field would change the rate only
marginally. Taking into account the dielectric influ-
ence on the local fields experienced in real liquids,
values of D/egy in excess of 10° V. m ™! are certainly
attainable, and the associated change in energy
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transfer rate should be measurable. The change in
rate can be positive or negative, depending on the
magnitude and direction of the donor and acceptor
transition moments. The high field regime is asso-
ciated with a rate modification which increases
only in inverse proportion to the field strength
[12].

A special case arises where A and B are chemic-
ally equivalent and o = B, as is frequently the case.
Here the modification to the rate invariably carries
a positive sign. Consequently the effect of applying
the field is to enhance the energy transfer process.
This can be understood as a direct result of the
action of the field in creating a preferential align-
ment of the acceptor with respect to the donor
species. In the optimum case where the transition
dipole lies in the z-direction (i.e. it is parallel to the
permanent electric moment), and assuming that the
transfer process is dominated by donor—acceptor
pairs lying in relatively close proximity (i.e. the near
zone, where KR <« 1), then the rate is enhanced by
a factor of 0.2 (%j,)%, as follows from eq. (31). The
maximum degree of enhancement occurs at high
fields where the reduced spherical Bessel function
tends to unity, as shown in fig. 4, leading to a 20%
rate increase. This behaviour ought to be readily
amenable to experimental confirmation.

For the remainder of this discussion we turn our
attention to electric-field-induced energy transfer. It
is appropriate to recast the salient rate equation in
a form which accommodates the band structure of
the donor emission and the acceptor absorption
spectra, as in the standard Forster theory. The
procedure follows along similar lines to those
recently discussed in detail elsewhere [8,15]. The
simplest case arises when the static dipoles are zero
and when only the first term in the rate equation
(17), eq. (23) is present (ie. u** =0). Then the
following energy transfer rate applies for fluid
samples:

Iree = 9(8nt,)~ ‘J%Fj\(w)aB(w)Kzg(K, R)dw, (39)

0

where
g(K,R) =[6(KR)" ¢+ 2(KR) *
+ 2(KR) 27/9, (40)

op(w) = | p" 1 (3e0c) ' pe(Ego — hw), (41)
Filw) = 031,82 SEPD*/(27e3) (3eomc®) !
X pr(ELo — ho). (42)

Here og(w) denotes the absorption cross-section
of the acceptor molecule B and F/(w) designates
the electric-field-induced emission spectrum of the
donor A.

Cast in the above form (39), the essential sim-
ilarity of the rate equation to that which applies to
conventional dipole-allowed transfer can be seen
[8]; for that process, the rate is as given by eq. (39)
but with Fjy(w) replaced by F(w), where

Falw) = 0 14| p* P (Beonc®) ' pe(ELo — how),  (43)

which entails replacing the term S%° S7° D?/(27¢3) by
| #*°|?. The definition (16) of the S tensor shows that
S8 is of the same order of magnitude as
| u*°|*/AE?, where AE is a typical molecular energy
gap, e.g. 3x 107 2°J. Assuming that | #*°| is in the
range of 5 x 107 3% Cm, the rate of induced transfer
would equal that of dipole-allowed transfer for
a field of D/eg * 3x10'° Vm ™ !: nonetheless for
a routinely applied field of ca. 103 Vm ™' the elec-
tric-field-induced transfer rate should still be read-
ily measurable. In passing we note that fields of that
magnitude can arise on the microscopic scale
through localised ion field effects, not necessarily
through application of a macroscopic field. Similar
remarks can be made concerning the case of
a rotating pair or for molecules with a fixed ori-
entation in the static field.

The most interesting feature of the field-induced
process lies in the possibility of inducing a donor
decay process which is otherwise forbidden if there
is no applied field. Suppose that molecules of the
species A are excited to a metastable state, for
example by laser excitation to some higher vibronic
level and subsequent decay to the state |a). One
could then store energy in the sample over short
periods, up to times approaching the lifetimes of
internal decay mechanisms. In fact the successive
application of an electric field has already been
considered as a means of inducing spontaneous
emission o — 0 (e.g. in H, or N,), providing the
basis for construction of a molecular switch for
energy “dumping” [24]. However if the excited
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molecules A were surrounded by suitable acceptors
B, for example a laser dye, the process after switch-
ing on the field might be energy transfer rather than
emission, possibly forming the basis for a novel
kind of laser system.

Appendix

The general expression for the rate of electric
field-induced energy transfer between free molecu-
les is

e = (L)) = (2rpe/h)(D/eo)*(1/94500)
x{1750[(2—"3) B+ 3%5B1[(1+4/3) S S5
— %28 X JAK, R)
+ %j5(B — 3B){105[S5° S35 + S SY
x (A(K,R) + 34'(K,R))
+ 283°SI°(8A(K,R) — A'(K,R))]
+ 75%5[(—685°S3)
— 382080 — 6510820 + 2810830 + S0 830
+ 2520S30)(A(K, R) + 34K, R)) + (SES2P
— 359829 (11A(K, R) — 44'(K, R))]
+ 45%,[— 355820820 + 10830520
+ 552080 + 10870820 — 5539820 — S0830
— P850 — SIS 1A, R) — 34K, R)}
+ (AB) + 1750[e4 S 0u3(1 — Af)
SEn31

X [EimnS o 1501 — B) + 3By, (SBO 80

im

+ 3456, (SPu —

— SPub)1(AKK, R) — A(K,R)
+ 126[3(%) + A3)(SFu2°
+ SEu) + (=24,

— 15475822 LGB, + Bia)(Shoul®

+A75)S X u°

+ SP0uf) + BiySEufe

— 5580u8](A(K, R) — 34'(K, R))

— 2%, S5uf°(BA(K, R) — A(K, R))]

+ 6300[(A71 + A3)(S2°uz® + SEus®)

+ (=441 + A5)S2ur

— SAS Wt TE Sul 4K, R}, (A)

where use has been made of the fact that all tensors
are real-valued and the following definitions apply:

B =|u"?, (A2)

B =|pP-Pa® = | uf0)2. (A.3)

Again we have assumed that the individual static
dipoles are defined as the molecular z-axes. From
eq. (A.1) we can derive eq. (38) by setting u° = 0.
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