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The collision of liquids of different densities is studied theoretically for the case of liquids
having wedge-shaped configuration before the impact. Both liquids are assumed to be
ideal and incompressible, and the velocity potential theory is used for the flow of each
liquid. Surface tension and gravity effects are neglected. The problem is decomposed into
two self similar problems, one for each liquid. Across the interface between the liquids,
continuity of the pressure and the normal component of the velocity is enforced through
iteration. This determines the shape of the interface and other flow parameters. The
integral hodograph method is employed to derive the solution consisting of analytical
expressions for the complex-velocity potential, the complex-conjugate velocity, and the
mapping function. They are all defined in the first quadrant of a parameter plane, in
which the original boundary value problem is reduced to a system of integro-differential
equations in terms of the velocity magnitude and the velocity angle relative to the flow
boundary. They are solved numerically using the method of successive approximations.
The results are presented through streamlines, interface and free surface shapes, the
pressure and velocity distributions. Special attention is given to the structure of the
splash jet rising as a result of the impact.
KEY WORDS: impact of liquids; splash jet; complex velocity potential; free-surface

flow.

1. Introduction

The collisions between liquids, or between a liquid and a liquid-like solid such as gran-
ular materials, at high speeds is a commonly observed phenomenon in nature and various
engineering applications. Examples include plunging breaking water waves, liquid drops
impacting a free surface of the same or different liquid, snow avalanche and volcano lava
impacting a liquid surface. A specific feature of liquid-liquid impact is a splash jet rising
at initial stage of the impact, which leads to fluid fragmentation, air entrainment, genera-
tion of cavitation nuclei, bubbles, secondary drops and sprays (Lhuissier, Sun, Prosperetti
& Lohse (2013); Kiger & Duncan (2012); Thoroddsen, Etoh & Takehara (2008)). Pros-
peretti & Oguz presented a review on acoustic aspects of liquid-liquid impacts and noise
generation caused by rainfall. The formation of a splash wave and its transition to the
ejection of droplets after the impact of a disc on a liquid based on a combination of
boundary integral simulations, experiments and mathematical analysis has been inves-
tigated by Peters, Meer & Gordillo (2013). They studied a variety of effects on splash
jet formation associated with surface tension, gravity and air cushion. The possibility of
liquid jets to entrain air into a pool and intensively stir impacting immiscible fluids is the
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basis for functioning gas/liquid and liquid /liquid reactors. Reviews of these phenomena
over a range of diversified problems have been presented by Yarin (2006); Thoraval et al.
(2012); Thoraval, Takehara, Etoh & Thoroddsen (2013); Tran, Maleprade, Sun & Lohse
(2013) and many others.

Most of previous experimental and theoretical studies deal with impacts of liquids
of the same density. In the present study we consider the impact problem of liquids of
different densities through the head-on collision of two liquid wedges. The velocity poten-
tial theory is employed for solving the problem, assuming that both liquids are inviscid
and incompressible. Short durations of impacts, strong nonlinearities and unknown free
surfaces are most significant difficulties arising when solving the problem theoretically
or numerically. The case of impacts of liquids of same densities has been studied the-
oretically by Howison, Ockendon, Oliver, Purvis & Smith (2005) and Semenov, Wu &
Oliver (2013). It has been found that a splash jet is usually formed by the impact. The
speed of the splash jet depends on the shapes of the colliding liquids, and it may be
much larger than their initial relative speed of collision and cause secondary impact at
a higher speed. Impacts between liquids of different densities lead to further complica-
tions. The determination of the unknown interface which separates two liquids is a new
major challenge. In contrast to difficulties associated with finding unknown free surfaces
along which the ambient pressure is constant, the pressure along the interface is unknown
and is no longer constant. The determination of the shape of the interface is based on
continuity of the pressure together with the normal velocity on the interface, while the
tangential component of the velocity is allowed to be discontinuous. The jump in the
tangential component of the velocity affects the formation of the splash jet and causes
the formation of a vortex sheet along the interface. In addition to the given angles of the
wedges, the difference in densities affects the speed, shape and direction of the splash jet,
which may form closed cavities and produce secondary impacts of the splash jet with the
main flows.

The integral hodograph method of Semenov & Cummings (2006) is employed to derive
the solution consisting of analytical expressions for the complex-velocity potential, the
complex-conjugate velocity, and the mapping function. They are all defined in the first
quadrant of a parameter plane, in which the original boundary value problem is reduced
to two integro-differential equations in terms of the velocity magnitude and the velocity
angle relative to the liquid boundary. They are solved numerically using the method
of successive approximations. An external iteration procedure has been developed to
determine the shape of the interface. For the lower liquid, the pressure on the interface
is prescribed based on what has been found from the upper liquid. The problem is then
similar to a free surface with the prescribed pressure distribution. For the upper liquid,
the normal velocity on the interface is given based on the solution for the lower liquid. The
problem is then similar to an expanding solid surface with the prescribed normal velocity.
The solution within each liquid is obtained from an internal iteration procedure for the
integro-differential equations. The results are presented through streamlines, the pressure
and velocity distributions along the interface. Special attention is given to the structure
of the splash jet rising as a result of the impact. The numerical solution procedure has
been validated by comparing the present results with those obtained for the case of same
density of the liquids based on a different formulation and procedure for the boundary-
value problem.
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Figure 1. Sketch of the collision of two liquid wedges: (a) the physical plane; (b) the parameter
plane for the lower liquid; (c) the parameter plane for the upper liquid. (Points O′ and O′′, B′

and B′′ are symmetric respect to the Y -axis; O′′O will be the part of the free surface, but will
be incorporated into the mathematical formulation for the interface when O′′ is located within
OA).

2. Formulation and analysis

Two liquid wedges of half-angles α and α′, and densities ρ and ρ′ move in opposite
directions. The liquid wedges are assumed to be symmetric about the y− axis. Their tips
A and A′ meet each other at time t = 0, where the origin of the Cartesian coordinate
system Oxy is chosen. It is assumed that each liquid is inviscid and incompressible, and
gravity and surface tension effects can be neglected. A sketch of the problem shown in
figure 1a includes upper and lower liquid wedges, the interface separating them, and
the definitions of the geometric parameters. At time t = 0 points A(A′) and O(O′) are
the same point where the apexes of the impacting liquid wedges meet each other, and
subsequently after the impact, point O(O′) moves away with a constant speed forming
the line OA(O′A′), whose shape have to be determined as a part of the solution of the
problem. Without losing generality, point A(A′) after the impact can be assumed as the
stagnation point (Semenov, Wu & Oliver (2013)). This is because impact depends only
on the relative velocity between liquids and their individual velocities can be adjusted
to meet this condition. Based on the illustration in figure 1a, line O′A′ is the half of
the interface of the two liquids while line OA contains the interface and the part of the
surface OO′′ of the lower liquid. This can obviously be the other way round, or O is within
O′′A′, which depends on the velocities, angles and the densities of the liquid wedges. At
this stage we assume that the line OA is an expanding surface, whose shape is given
by the function Zin(S, t) = Xin(S, t) + iYin(S, t), where S is the arc length coordinate
along the interface and t is time. It gives the possibility to decompose the problem of
impact between two liquids into two similar problems of impact of lower/upper liquid
wedge with the corresponding side of the expanding surface. We may use the lower liquid
to demonstrate the solution procedure. For impact of liquid wedges both with constant
velocity, the problem is self similar since there is no length scale. As a result the time-
dependent problem in the physical plane Z = X + iY can be written in the stationary
plane z = x+ iy in terms of the self-similar variables x = X/(V t), y = Y/(V t) where V is
the magnitude of the incoming velocity of the lower liquid, or the velocity at infinity BC
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in the physical plane. The complex velocity potential W (Z, t) = Φ(X,Y, t) + iΨ(X,Y, t)
of the lower liquid can be written in the form

W (Z, t) = V 2tw(z) (2.1)

The problem becomes to determine the function w(z) which conformally maps the sta-
tionary plane z onto the complex-velocity potential region w. We choose the first quad-
rant of the ζ−plane as the parameter region to derive expressions for the nondimensional
complex velocity, dw/dz, and for the derivative of the complex potential, dw/dζ, both
as functions of the variable ζ. Once these functions are found, the velocity field and the
relationship between the parameter region and the stationary plane z can be determined
as follows:

vx − ivy =
dw

dz
(ζ), z(ζ) = zA +

∫ ζ

1

dw

dζ ′
/
dw

dz
dζ ′, (2.2)

where vx and vy are the x- and y-components of the velocity nondimensionalized by V ,
and zA = 0 is the origin.
Conformal mapping allows us to fix three arbitrary points in the parameter region,

which are chosen O, B and A as shown in figure 1b. In this plane, the positive part of
the imaginary axis (0 < η < ∞, ξ = 0) corresponds to the free surface OB. The interval
(0 < ξ < 1, η = 0) of the real axis corresponds to the surface OA, and the rest of the
positive real axis (1 < ξ < ∞, η = 0) corresponds to the symmetry line AC. We notice
that OA may include both the interface O′A and the free surface OO′. These two parts
may be both included in the mathematical formulation for the interface below and OA
may be refereed as the interface during the derivation. However, the pressure continuity
condition with the upper liquid will be imposed on AO′ (interface) and the constant
pressure equal to the ambient pressure will be imposed on OO′ (free surface).

2.1. Expressions for the complex velocity and for the derivative of the complex potential.

The boundary-value problem for the complex velocity function can be formulated in the
parameter plane as follows. At this stage we introduce function β(ξ) = − arg (dw/dz)ζ=ξ

along the interface, i.e. on the interval 0 < ξ < 1 of the real axis of the parameter plane,
and function v(η) which is the velocity modulus along the free surface, or along the
positive part of the imaginary axis of the ζ−plane. This means

χ(ξ) = arg(dw/dz) =

{
−β(ξ), 0 < ξ < 1, η = 0,
−π/2, 1 < ξ < ∞, η = 0.

(2.3)

v(η) =

∣∣∣∣dwdz
∣∣∣∣ , 0 < η < ∞, ξ = 0. (2.4)

In the vicinity of stagnation point A, or z = 0, the leading term in w(z)− wA will be
Dz2 as dw/dz = 0 at the stagnation point. Here, wA = w(z)z=0 and the constant D must

be a real number as vx = 0 on x = 0. Thus β(ξ) = arg
(
dw/dz

)
= y/x (ξ → 1−ε, ε → 0).

Since the problem is symmetric about x = 0, the interface forms right angle with the

y−axis. As a result, the slope of the interface, which is the lim
x→∞

arg
(
dw/dz

)
= lim

x→∞
y/x

at A, is zero. In other words β(ξ)ξ=1 = 0. Thus, at point A, the function χ(ξ) has a jump
∆χA = −π/2 when ξ increases from 1− ϵ to 1+ ϵ. The velocity magnitude at infinity at
point B, v∞ = lim

η→∞
v(η) = 1 since V is chosen as the reference velocity.

The problem is then to find the function, dw/dz, in the first quadrant of the parameter
plane, which satisfies the boundary conditions in Eqs.(2.3) and (2.4). It can be confirmed
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Figure 2. (a) Behaviour of the velocity angle ω = tan−1(vn/vs) to the flow boundary. The
solid lines correspond to the continuous changes in the function ω(ζ) while the step changes are
shown by the dashed lines. (b) the corresponding variation of the variable ζ in the parameter
region.

that these conditions are satisfied by the complex function F (ζ) = dw/dz given in the
following integral formula (Semenov & Iafrati (2006); Semenov & Cummings (2006))

F (ζ) = v∞ exp

 1

π

∞∫
0

dχ

dξ
ln

(
ζ + ξ

ζ − ξ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
ζ − iη

ζ + iη

)
dη + iχ∞

 , (2.5)

where χ(ξ) = arg[F (ζ)]ζ=ξ and v(η) = |F (ζ)|ζ=iη are the argument and magnitude of
the function F (ζ), respectively, with χ∞ = χ(ξ)ξ→∞ and v∞ = v(η)η→∞.
Evaluating the first integral over 1 < ξ < ∞ with the second line of Eq. (2.3) and taking

into account the step change in the function χ(ξ) at ξ = 1, we obtain the expression for
the complex velocity in the ζ−plane as

dw

dz
= v0

√
1− ζ

1 + ζ
exp

 1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ − i

π

∞∫
0

d ln v

dη
ln

(
iη − ζ

iη + ζ

)
dη − iβ0

 . (2.6)

where

β0 = β(1) +

0∫
1

dβ

dξ
dξ, v0 = v∞ exp

 0∫
∞

d ln v

dη
dη


are the velocity direction and magnitude at point O, respectively. In order to analyse
the behaviour of the velocity potential along the entire flow boundary, it is useful to
introduce the unit normal vector n⃗ pointing out of the liquid region and the unit vector
τ⃗ obtained by rotating n⃗ by π/2 anticlockwise. Let s be the arc length coordinate along
the boundary and when it increases the liquid region is on the left hand side (see figure
1a). With this notation, we can write

dw = (vs + ivn)ds = veiω, (2.7)

where vs and vn are the tangential and normal velocity components along the flow bound-
ary, respectively, and ω = tan−1(vn/vs) is angle between the velocity vector and vector τ⃗
on the flow boundary. In figure 2a is shown the variation of the angle along the boundary
corresponding to the path along the axes of the first quadrant of figure 2b in the clockwise
direction.
Now we introduce the functions θ(η) = ω(ζ)ζ=iη and γ(ξ) = ω(ζ)ζ=ξ along the positive
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parts of the imaginary and real axes of the ζ−plane, respectively. Between points C and
A, or 1 < ξ < ∞, function γ = −π, since vn = 0 and vs < 0 according to the direction of
the vector τ⃗ . When moving from point A to point O− along the interface, the function
γ(ξ) changes continuously from value γA = −π to some value γ0 = γ(ξ)ξ=0 at point
O−. When we move in counter clockwise direction along an infinitesimal quarter of circle
centred at the point ζ = 0 in the parameter plane the corresponding line in the physical
plane takes a place in the vicinity of the tip. The jump in the function γ(ξ) equals
∆O = θ0 − γ0, where θ0 = θ(η)η=0 and γ0 = γ(ξ)ξ=0. Hence, the contact angle between
the free surface BO and the interface O′O (also a free surface in the physical plane for
the reason in the paragraph above section 2.1) at point O is µ = θ0 − (γ0 + π), as it can
be seen from figure 2a. Based on the above considerations we can write the function ω(ζ)
as follows

ω(ζ) = arg

(
dw

ds

)
=

{
γ(ξ), 0 < ξ < 1, η = 0,
γ0 + θ(η)− θ0 +∆O, ξ = 0, 0 < η < ∞.

(2.8)

Equation (2.7) allows us to determine the argument of the derivative of the complex
potential

ϑ(ζ) = arg

(
dw

dζ

)
= arg

(
dw

ds

)
+ arg

(
ds

dζ

)
= ω(ζ) +

{
0, 0 < ξ < 1, η = 0,
π/2, ξ = 0, 0 < η < ∞

=

{
γ(ξ), 0 < ξ < 1, η = 0,
γ0 + θ(η)− θ0 +∆ϑ, ξ = 0, 0 < η < ∞.

(2.9)

where ∆ϑ = ∆O + π/2 = µ− π/2 is the jump in the function ϑ(ζ) when it passes point
O (ζ = 0) in the parameter region along an infinitesimal quarter circle centred at ζ = 0.
The corresponding change of the argument arg ζ equals π/2, and so we can expect that
function dw/dζ at point O has singularity of order dw/dζ ∼ ζ2∆ϑ/π.

The problem is then to find a complex function G(ζ) = dw/dζ in the first quadrant
of the parameter plane which satisfies the boundary conditions (2.9). This is a uniform
boundary value problem, or a problem that has the same type of boundary conditions
on the real and imaginary axes of the first quadrant of the parameter plane. Using the
integral formula (Semenov & Iafrati (2006); Semenov & Cummings (2006)), we have

G(ζ) = K exp

 1

π

0∫
∞

dϑ

dξ
ln
(
ζ2 − ξ2

)
dξ +

1

π

∞∫
0

dϑ

dη
ln
(
ζ2 + η2

)
dη + iϑ∞

 , (2.10)

where K is a real factor, ϑ(ζ) = arg[G(ϑ)], 0 < ξ < ∞, η = 0 and 0 < η < ∞,
ξ = 0, ϑ∞ = ϑ(ζ)|ζ|→∞. We evaluate the integrals over each step change of the function
ϑ(ζ), and finally obtain the expression for the derivative of the complex potential in the
ζ−plane as

dw

dζ
= Kζ2µ/π−1 exp

− 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ2 + η2

)
dη

 . (2.11)

Integration of Eq.(2.11) in the parameter region allows us to obtain the function w(ζ)
which conformally maps the parameter region onto the corresponding region in the com-
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plex potential plane:

w(ζ) = wA+K

ζ∫
1

ζ ′(2µ/π−1) exp

− 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ ′2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
ζ ′2 + η2

)
dη

 dζ ′,

(2.12)
where wA is the complex potential at point A. As an arbitrary constant can be included
when integration is applied to Eq.(2.11), without losing generality we can choose wA = 0.
Dividing Eq.(2.11) by (2.6), we can obtain the derivative of the mapping function

between fluid domains in the similarity plane, z, and the parameter plane ζ,

dz

dζ
=

K

v0
ζ2µ/π−1

√
1 + ζ

1− ζ
exp

− 1

π

1∫
0

dγ

dξ
ln
(
ξ2 − ζ2

)
dξ +

1

π

∞∫
0

dθ

dη
ln
(
η2 + ζ2

)
dη

− 1

π

1∫
0

dβ

dξ
ln

(
ξ − ζ

ξ + ζ

)
dξ +

i

π

∞∫
0

d ln v

dη
ln

(
η − ζ

η + ζ

)
dη + iβ0

 (2.13)

The integration of this equation can give the mapping function z = z(ζ). Equations
(2.6), (2.11) and (2.13) include the parameter K and the functions γ(ξ), β(ξ), θ(η) and
v(η), all to be determined from physical considerations, as well as the dynamic and
kinematic boundary conditions on the free surface and the interface.
The fluid particle at point O was at point A at the moment of the tips of the wedges

touch each other. In the physical plane, the position of point O can then be linked to
the particle velocity which is a constant Z0 = V0tz0 = V0te

iβ0 . Thus, the length of the
interface OA, sOA, in the similarity plane, and the parameter K can be determined,
respectively, from the following equations:

sOA∫
0

eiδ(s)ds = z0 = v0e
iβ0 , (2.14)

K

1∫
0

1

K

ds

dξ
dξ = sOA, (2.15)

when the functions γ(ξ), β(ξ), θ(η) and v(η) have been found. Here, the derivative

ds

dξ
=

∣∣∣∣dzdζ
∣∣∣∣
ζ=ξ

, (2.16)

is obtained from Eq.(2.13), and δ is the slope of the interface as a function of the spatial
coordinate s.
The integral formulae (2.5) and (2.10) have enabled us to find expressions for the com-

plex velocity and for the derivative of the complex potential defined in the parameter
plane, and to extract all the flow singularities in an explicit form. These expressions con-
tain unknown non-singular functions, namely the velocity magnitude, v(η), and direction,
β(ξ), as well as angle of the velocity to the flow boundary on the interface, γ(ξ), and free
surface, θ(η), which are determined from dynamic and kinematic boundary conditions.

2.2. Dynamic and kinematic boundary conditions.

The dynamic condition on the free surface requires P = Pa. Using the Bernoulli equation
and the property of self similar flow for the temporal derivate of the potential, Semenov
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& Iafrati (2006) obtained the dynamic boundary condition in the following form

dθ

ds
=

v + s cos θ

s sin θ

d ln v

ds
, (2.17)

Based on the momentum equation, the dynamic condition P = Pa is also equivalent to
that the acceleration of the fluid particle on the free surface is orthogonal to the free
surface. Combining this with the fact the fluid particle on the free surface remains on
the free surface, Semenov & Iafrati (2006) further obtained the following equation

1

tan θ

d ln v

ds
=

d

ds

[
arg

(
dw

dz

)]
(2.18)

for the self similar flow.
Multiplying both sides of Eqs. (2.17) and (2.18) by ds/dη = |dz/dζ|ζ=iη we obtain the

following integro-differential equation for the function θ:

dθ

dη
=

v + s cos θ

s sin θ

d ln v

dη
, (2.19)

where s = s(η) is obtained by integration of the expression ds/dη = |dz/dζ|ζ=iη along
the imaginary axis of the parameter plane

s(η) = −K

η∫
0

ζ2µ/π−1

v(η)
exp

− 1

π

1∫
0

dγ

dξ
ln
(
ξ2 + η2

)
dξ +

1

π

∞∫
0

dθ

dη′
ln
(
η′

2 − η
2
)
dη′

 ,

(2.20)
By writing Eq. (2.6) for ζ = iη, the argument of the complex velocity along the free
surface is obtained as

arg

(
dw

dz

)
ζ=iη

= ℑ

{
ln

(
dw

dz

)
ζ=iη

}
=

− tan−1 η − 2

π

1∫
0

dβ

dξ
tan

η

ξ
dξ − 1

π

∞∫
0

d ln v

dη′
ln

∣∣∣∣η′ − η

η′ + η

∣∣∣∣ dη′ − β0.

Differentiating the above equation respect to η and substituting the result into Eq. (2.18),
the following integral equation for the function d ln v/dη is obtained:

− 1

tan θ

d ln v

dη
+

1

π

∞∫
0

d ln v

dη′
2η′

η′2 − η2
dη′ =

1

1 + η2
+

1

π

∞∫
0

dβ

dξ

2ξ

ξ2 + η2
dξ. (2.21)

The system of equations (2.19) and (2.21) enables us to determine the functions θ(η)
and d ln v/dη along the imaginary axis of the parameter domain. Then, the velocity
magnitude on the free surface can be obtained from

v(η) = v∞ exp

−
∞∫
η

d ln v

dη′
dη′

 (2.22)

where v∞ is the given velocity at infinity. This gives the velocity at point O, v0 = v(η)η=0.
The normal component of the velocity on the interface can be determined exploiting

the fact that the interface Zin = Zin(S) = Xin(S) + iYin(S) is an expanding self-similar
surface. By using the self-similar variable z = Z/(V t) we can write Zin = V tzin, and
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the slope of the interface δin(S) = δin(s) = arg(dzin/ds). With notation in (7) and using
ds/dt|S = −s/t, we obtain

dW = V 2tdw = V 2t(vs+ivn)ds =
dZin

dt
dZ = V t

dZin

dt

dzin
ds

ds = V 2t(zin−e−iδins)eiδinds,

(2.23)
from which the normal component of the velocity on the interface is obtained as

vn = ℑ
(
zin(s)e

iδin(s)
)
, (2.24)

The tangential component of the velocity on the interface can be determined with the
notation in Eq. (2.7)

vs = ℜ
(
dw

dz

dz

ds

)
= ℜ

(
dw

dz

∣∣∣∣
ζ=ξ

eiδin[s(ξ)]

)
, (2.25)

where

s(ξ) =

ξ∫
1

ds

dξ′
dξ′

is the spatial coordinate along the interface with its origin at point A, and ds/dξ′ is given
in Eq.(2.16).
By using Eqs.(2.24), (2.25) and the definition of the function γ(ξ) we can obtain

γ(ξ) = tan−1

(
ℑ{zin[s(ξ)]eiδin[s(ξ)]}

ℜ{dw/dz|ζ=ξ e
iδin[s(ξ)]}

)
(2.26)

The angle δin between the unit vector τ⃗ on the interface and x−axis determined by
the given shape of the interface can be expressed through the angles β and γ. Taking the
argument of Eq.(2.13) as δin = β + γ, the function β(ξ) is obtained as

β(ξ) = δin[s(ξ)]− γ(ξ). (2.27)

The system of integral equations (2.19), (2.21) allows us to determine the functions
θ(η) and v(η) together with the functions γ(ξ) and β(ξ) using Eqs. (2.26) and (2.27).
Once these functions are found, the angle of the tip O, µ = θ(η)η=0 − γ(ξ)ξ=0 − π, (see
figure 2a) can be obtained.
By choosing the location of the reference point in Bernoulli equation at the stagnation

point A and taking advantage of the self-similarity of the flow, we can determine the
pressure coefficient at any point of the flow region by using

c∗p =
2(P − PA)

ρV 2
= ℜ

(
−2w + 2z

dw

dz

)
−
∣∣∣∣dwdz

∣∣∣∣2 (2.28)

in which wA = 0 discussed after Eq.(2.12) has been used. Then, the pressure coefficient
based on the ambient pressure, Pa, is determined as follows

cp(ξ) =
2(P − Pa)

ρV 2
= c∗p(ξ)− c∗p(0) (2.29)

2.3. Iteration procedure to determine the shape of the interface.

The problems shall be solved alternately for lower and upper liquids. Once the incoming
speed V of the lower liquid wedge is chosen as the reference velocity, the incoming velocity
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V ′ of the upper liquid wedge can be obtained by equating the pressures P and P ′ at
point A. From Eq. (2.29), we have

V ′ = V

√
ρcpA
ρ′c′pA

(2.30)

where cpA = cp(ξ)ξ=1 and c′pA = c′p(ξ
′)ξ′=1. Then, the equality of the pressure on the

both sides of the interface in the physical plane can be expressed as

ρV 2c∗p(s) = ρ′V ′2c′∗p (s
′) (2.31)

where s(ξ) = s′(ξ′) as it is the same spatial coordinate along the lower and upper sides
of the interface AO′, respectively. The line OO′ corresponds to the free surface. We note
that the kinematic conditions on the interface and the free surface have the same form.
Thus the procedure used on AO′ can be equally used on OO′. The dynamic condition
on OO′ requires the pressure to be equal to the ambient pressure. This is achieved by
imposing ρV 2c∗p(ξ) = ρ′V ′2c′∗p (ξ

′), within 0 < ξ < ξ0 or sO < s < s′O′ . Here, ξ0 can be
obtained from s(ξ0) = s′(ξ′)ξ0 .
To start the iteration, the initial shape of the interface can be chosen to be flat, i.e.

the slope of the interface, δin(s) ≡ π, 0 < s < sOA. New approximation for the function
δin(s) is obtained in two steps. At the first step we determine new velocity magnitude
on the lower side of the interface by using the Eq. (2.28) with the pressure coefficient c∗p
determined from Eq.(2.30) and (2.31),

v(ξ) =

∣∣∣∣dwdz
∣∣∣∣ =

√
ℜ
(
−2w(ζ) + 2z(ζ)

dw

dz
(ζ)

)
ζ=ξ

− c′∗p (ξ
′)
cpA
c′pA

(2.32)

where ξ′ = s′−1[s(ξ)] is found from the inversed function of s′(ξ′), which is linked with
s(ξ) in the physical plane. The over bar in the above equation indicates that the value is
an approximation during the iteration. We note that the pressure P ′ − Pa = 1

2ρ
′V ′2c′∗p

instead of P − Pa = 1
2ρV

2c∗p together with Eq.(2.30) has been used in Eq. (2.32) to
determine the velocity magnitude on the lower side of the interface based on the equal
pressure condition on both sides of the interface. At the second step we seek the new shape
of the interface which is determined by the function δin(s). By taking the magnitude of
Eq.(2.6) and equating it to v(ξ), we obtain the following integral equation for the new
approximation of the function dβ/dξ,

1∫
0

dβ

dξ′
ln

∣∣∣∣ξ′ − ξ

ξ′ + ξ

∣∣∣∣ dξ′ = ln

(
π
v(ξ)

v0

√
1 + ξ

1− ξ

)
−

∞∫
0

d ln v

dη
tan−1

(
ξ

η

)
dη. (2.33)

By solving numerically this equation we can find dβ/dξ, and then

β(ξ) = βA +

ξ∫
1

dβ

dξ
dξ

where βA = β(ξ)ξ=1 = 0, as discussed after Eq.(2.4). From Eq.(2.27) we obtain the
slope of the new interface δin(ξ) = βin(ξ) + γ(ξ). Because the right hand side of Eq.
(2.32) depends on function βin(ξ), iterations of these two steps are required to determine

δ
′
in = −2π−δin. The slopes of the lower and upper sides of the interface are the same and
are related mathematically as δin(ξ). Eq.(2.24) then provides the same normal velocity
components on both sides of the interface. When the new shape of the interface, together
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with the new normal velocity, is found, the solution procedure is repeated for the upper
liquid wedge. This is virtually an impact problem similar to an expanding solid surface
with prescribed normal velocity (Wu & Sun (2014)). Its solution provides the pressure
distribution on the upper side of the interface, which is used again in Eq.(2.32) and
(2.33). The problem in the lower liquid is once again virtually a free surface flow problem
with a prescribed pressure on OA. The iteration continues until the desired accuracies
of 10−3 for external iterations and 10−5 for the internal iterations have been achieved.

3. Numerical Procedure and Discussions of Results

3.1. Numerical approach.

The numerical approach employed in the present study for each liquid is based on the
method of successive approximations, which is similar to that developed by Semenov
& Iafrati (2006) for solving self-similar water entry problems of a solid wedge. Let us
distribute two sets of points, with 0 < ξj < 1, j = 1 . . .M along the real axis and
0 < ηj < ηN , j = 1 . . . N along the imaginary axis. The solution at the intersection
point O needs special attention due to the singularity ζ2µ/π−1 in both the derivative of
the complex potential in the parameter plan and the mapping function. This singularity
tends to be ζ−1 in the derivative of the complex potential as µ → 0. The first node
sξ1 = s(ξ1) on the interface as well as on the free surface s1η = s(η1) can be evaluated
analytically by integrating the derivative of the mapping function in Eq.(2.13) over the
intervals 0 < ξ < ξ1 and 0 < η < η1, respectively:

{sξ1,−sη1} =
πK

2µv0
exp

− 2

π

1∫
0

dγ

dξ
ln ξ dξ +

2

π

∞∫
0

dθ

dη
ln η dη

 {ξ1, η1}2µ/π. (3.1)

Point O (see figure 1a) becomes a tip of a jet when µ is very small. The length of the
first element along the interface is sξ1. Even when ξ1 is small, ξ1 = 10−6 for example,
sξ1 may not be small and may occupy a half of the interface length in the physic plane.
Such a large value of sξ1 may not present a major problem for liquid impact with a solid
body without curvature, such as a plate or wedge. This is because near the intersection
of the body surface and liquid surface the flow in the thin jet is almost uniform and its
variation is small. In the present case point O is the intersection of two free surfaces, and
the flow there is more complex. Thus, sξ1 corresponding to ξ1 = 10−6 may not be small
enough to account for the complexity of the local flow. This difficulty can be resolved by
introducing the following variable change

ln ζ = ln |ζ|+ i arg ζ =

{
rξ, ζ = ξ,
rη + iπ/2, ζ = iη.

(3.2)

We then rewrite the system of intego-differntial equations based on variables rξ and rη.
It can be seen that when

d

drξ
=

(
ζ
d

dζ

)
ζ=ξ

is used at point O (ζ = 0) the singularity in Eqs. (2.11) - (2.13) disappears. By integrating
Eq. (2.13) with respect to rξ or rη, we obtain the lengths of the first elements, respectively

{sξ1,−sη1} =
πK

2µv0
exp

− 2

π

1∫
0

dγ

drξ
rξ drξ +

2

π

∞∫
0

dθ

drη
rη drη +

2µ

π
{rξ, rη}

 . (3.3)
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In the discrete form, the solution is sought on two sets of points, rmin < rξj < rmax,
j = 1 . . .M , and rmin < rηj < rmax, j = 1 . . .M , similar to the distributions of points
ξj and ηj along the real and imaginary axes. Based on the numerical convergence test
for the range of the intervals, rmin = −100 and rmax = 30 are chosen to capture the flow
details near the tip O. The total number of points is chosen in the range N = M = 100
to 300 based on the study of convergence and accuracy of the solution procedure.
A major computational difficulty caused by the singularity at the intersection point in

this kind of problem was illustrated in the work of Dobrovol’skaya (1969) for water entry
of a rigid wedge. The difficulty meant that she was able to obtain accurate results at that
time only for deadrise angle larger than 30 degrees. For smaller deadrise angles Zhao &
Faltinsen (1993) later showed that to ensure desired accuracy it was necessary to use
10−25 as the smallest integration step when solving Dobrovol’skaya’s integral equation.
In the present calculations a step of 10−7 is found to be necessary for the non-singular
integral in Eq.(3.3) to ensure the flow details near the tip O to be captured accurately.
The details of this part of the solution procedure are similar to that in Semenov, Wu &
Oliver (2013) for impact of liquid wedges with the same density.

3.2. Comparison study through liquid wedges of the same density.

For verification purpose here, we consider the case of the liquid wedges of the same
angles α = α′ and the same densities ρ = ρ′. From physical consideration the resulting
flow should be symmetric with respect to x−axis, and so the interface should be on the
x−axis. The streamline pattern for the liquid wedges of angle α = α′ = 30◦ together with
the interface is shown in figure 3a. The symmetry pattern of the streamline corresponds
to the physics of the problem. The figure also shows that the interface, zero streamline
and the x−axis coincide, which again agrees with the physics in this case. The problem of
collision of liquid wedges of the same densities has been solved by Semenov, Wu & Oliver
(2013) following a different formulation. The two flow regions were combined into a single
one and the problem was solved within a single domain without the need to search for the
interface of the two liquids. Comparison of the pressure distribution along y = 0 in figure
3a shows that the present result is in good agreement with theirs. Further comparison of
the free surfaces for the case of α′ = 10◦ and α = 70◦ is given in figure 3b which again
shows that the overall shapes from the present calculation and from Semenov, Wu &
Oliver (2013) are in a good agreement.

3.3. Collision of liquids of different densities.

The following results are presented for the reference velocity which is V ′, and therefore
the y-coordinate of the tip of the undisturbed upper wedge (dotted line) is equal to −1
in all the figures. The coordinate y∗ of the undisturbed lower wedge tip, corresponding
to its velocity at infinity v∞ = V/V ′, is larger than 1. This is because larger velocity of
the lighter liquid at infinity is required to provide the same pressure at the stagnation
point which is chosen as the origin. The undisturbed wedge surfaces (dotted lines in the
figures below) in the self-similar coordinate system can be written as

y′ = −1 +
1

tanα′x, y = y∗ − 1

tanα
x.

The streamlines for the upper and lower liquid wedges of angles α = α′ = 10◦, together
with their free surfaces and the interface as well as pressure distributions, are shown in
figures 4(a)-(d) for density ratios ρ′/ρ = 2, 5, 10 and 20, respectively. For the liquid
wedges of the same density the free surface is symmetric about the x−axis and the splash
jet moves along the x−axis, as shown in figure 3a. For the case of different densities the
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Figure 3. Verification of the numerical approach through liquid wedges of same density,
ρ′/ρ = 1: (a) symmetric impact of the liquid wedges α = α′ = 30◦: streamlines, interface
(y = 0), and the free surface (solid lines), undisturbed liquid wedges (dotted lines), and the
pressure coefficient along the interface y = 0 (open circles correspond to the present calculations
and the solid line crossing the circles corresponds to the results of Semenov, Wu & Oliver (2013);
(b) comparison of the free surfaces: solid lines correspond to the present calculations , and the
solid line with closed circles corresponds to Semenov, Wu & Oliver (2013) for the liquid wedges
of the same densities for angles α′ = 10◦ and α = 70◦; the interface is shown by the thick solid
line.

splash jet deviates into the half-plane of the liquid wedge of larger density. The larger
velocity of the lower/lighter liquid at infinity pushes the developed splash jet towards
heavier liquid. The figures also show that the x−axis cuts through only the lighter liquid,
as the lighter wedge pushes its way into the space of the heavier liquid.
In figure 4 the open circle for the heavier liquid, on top, indicates the tip of the jet

formed by its free surface and the interface and it corresponds to point O′ in figure 1a.
For the lighter liquid the open circle indicates the tip of the splash jet of the combined
liquid domain, formed by its free surfaces. It corresponds to point O in figure 1a. In the
case of the liquids of the same densities and α = α′, points O and O′ merge into one,
in contrast to the liquids of different densities. In the self-similar plane, a vector linking
the origin A (A′) and the tip O (O′) of the liquid shows the magnitude and direction
of the velocity at the tip. From figure 4 it can be seen that the velocity magnitude at
the tip of the lighter liquid is larger than that of the heavier liquid. From this it follows
that the tip of the splash jet contains only the liquid of the smaller density. The different
locations of the tips O and O′, or the different velocities at O and O′ confirm that there is
a jump in the tangential component of the velocity across the interface, while the normal
component of the velocity is continuous.
Similar results to those in figure 4 with α = α′ = 30◦ are shown in figure 5. It can be
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Figure 4. Streamlines (thinner solid lines), liquid surface shapes (thicker solid lines) and the
pressure distributions along the y−axis (dashed line) and along the interface (dot-dashed lines)
(cp is defined based on Eq.(2.29) even for y > 0) for α = α′ = 10◦: (a) ρ′/ρ = 2; (b) ρ′/ρ = 5;
(c) ρ′/ρ = 10; (d) ρ′/ρ = 20. The dotted lines show the undisturbed liquid wedges.

seen that the distance between the tip of the splash jet and the origin, and consequently,
the magnitude of the velocity at the tip becomes larger than that shown in figure 4. For
ρ′/ρ = 10 the tip of the splash jet touches the free surface of the upper liquid wedge,
which creates a cavity. At the same time, the velocity direction of the liquid in the splash
jet, which can be seen from the streamline slope, is almost parallel to the undisturbed free
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surface of the upper wedge (see figure 5c). A closed cavity is formed in such a case. Its size
is fixed in the similarity plane but will grow continuously in the physical plane. In real
flows, with the presence of air, the pressure inside the closed growing cavity will no longer
remain to be Pa and will become lower than that on the other side of the free surface.
This feature has been observed and discussed by Thoroddsen (2002) and Thoroddsen et
al. (2008) in their experiments with liquid drop impacts at both standard and reduced
ambient air pressure. They underlined the importance of air in the experiments on the
formation of the splash jet, or ’ejecta sheet’ in their terminology, and the overall flow
pattern during the liquid drop impacts.
Closed cavity was also found in the work of Semenov, Wu & Oliver (2013) for collision

of liquid wedges of the same density but different angles, or ρ′ = ρ, α ̸= α′. They
discussed that the pressure difference between the two sides of the splash jet can push
the splash jet towards the cavity and distort the splash jet. This can lead to a secondary
impact between the splash jet and the liquid wedge in physical reality, which may lead
to new splash jets. Such multi-impact processes with the formation of multiple cavities
facilitate the generation of a liquid/liquid or air/liquid mixture, fluid aeration, and the
transformation of the splash jet into a spray. These are core processes of air/liquid or
liquid/liquid reactors in chemical industry. However, the present formulation does not
consider such complicated flows with multi connected domains. The mathematics used
here allows the jet move into the second sheet of the Riemann surface without interaction.
Further results for α = α′ = 60◦ and ρ′/ρ = 1, 1.25, 2 and 20 are shown in figure

6. These density ratios are chosen to demonstrate the more rapid variation when ρ′/ρ
increases form 1 at larger internal angles of the liquid wedges. It can be seen that the
velocity at the tip of the splash jet becomes much higher than those for liquid wedges
of angles 10◦ and 30◦ shown in figures 4 and 5, respectively. The angle of the splash
jet is found from calculated data to be smaller than those in figures 4 and 5 at the
same density ratio. This is because larger angles α and α′ mean blunter liquid wedges
which have larger moment and flux rate which is subsequently transferred into splashing
jet after the impact. The splash jet has already overlapped with the free surface of the
upper wedge in figure 6b at ρ′/ρ = 1.25, a much smaller density ratio than ρ′/ρ = 10 for
α = α′ = 30◦ in figure 5c.
It can be confirmed from the Bernoulli equation that dP/dy = 0 along the symme-

try line at point A for both liquids, which suggests a local extremum of pressure along
the y axis. It also means that the pressure curve along the y axis is not only con-
tinuous at y = 0 but also smooth. It can also be confirmed that along the interface
dP/ds=(dP/dx)(dx/ds) = 0 at point A, as dx/ds = 1 at z = 0, which suggests a local
extremum of the pressure along the interface. These extrema are in fact maxima for the
cases of α = α′ = 10◦ and 30◦ shown in figures 4 - 5, respectively. For α = α′ = 60◦,
the location of the pressure maximum on the interface moves away from the stagnation
point, as it can be seen for all the cases in figure 6. It occurs near the root of the splash
jet, where the free surface has the largest curvature. It can be seen that peak pressure
coefficient near the jet root is largest for the density ratio ρ′/ρ = 1, in which the flow
is symmetric respect to x−axis. When the density ratio increases, the peak pressure co-
efficient near the jet root decreases. This is interesting as the pressure coefficient in Eq.
(2.29) is defined based on the ρ which is the density of the lighter liquid in this case.
The streamlines, together with their free surfaces and the interface as well as pressure

distributions for wedges of different inner angles at α′ = 30◦ and α = 90◦, respectively,
are shown in figure 7 for ρ′/ρ = 1, 2 and 10. When the densities of the liquids are the
same, points O and O′ merge into a single point. The total splash jet mainly includes
the lower liquid, and the jet of the upper wedge between the free surface and interface
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Figure 5. Same as for figure 4 but with α = α′ = 30◦: (a) ρ′/ρ = 2; (b) ρ′/ρ = 5; (c)
ρ′/ρ = 10; (d) ρ′/ρ = 20.

is very thin. Although the figures are not in the same scale, inspection of the obtained
results shows that as the density ratio increases, this jet of the upper liquid becomes
shorter and thinner while the total splash jet of becomes longer and wider. The cavity
formed by the splash jet and the upper liquid surface increases slightly for larger ρ′/ρ,
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Figure 6. Same as for figure 4 but with α = α′ = 60◦: (a) ρ′/ρ = 1; (b) ρ′/ρ = 1.25; (c)
ρ′/ρ = 2; (d) ρ′/ρ = 20.

and the pressure at the stagnation point decreases similar to what is noticed in figure 6.
The local maximum pressure on the interface becomes smaller at ρ′/ρ = 2, and the peak
disappears at ρ′/ρ = 10 and the location of the peak pressure moves to the stagnation
point.
The results for collision of the lighter upper liquid wedge of α′ = 10◦ and the heaver

liquid, α = 90◦, are shown in figure 8. Point O′ is now the tip of the overall splash jet
while O is the tip of jet of the lower liquid confined by the free surface and the interface.
The cavity at ρ′/ρ = 0.5 is smaller than that at ρ′/ρ = 1. However when the ratio ρ′/ρ
decreases further to ρ′/ρ = 0.2 the direction of the splash jet deviates towards the x−axis
and it makes cavity larger, and only the lighter upper liquid in the splash jet overlaps
with the side of the upper liquid wedge. At ρ′/ρ = 0.1, the splash jet deviates further
towards x−axis and is no longer in contact with the upper liquid wedge, and therefore
there is no longer a cavity.
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Figure 7. Same as for figure 4 but with α′ = 30◦ and α = 90◦: (a) ρ′/ρ = 1; (b) ρ′/ρ = 2; (c)
ρ′/ρ = 10.

The results in figures 4 - 6 show that the lighter liquid deviates the splash jet towards
the heavier liquid when the wedges are of the same angles. For the wedges of different
angles and same densities, figures 7a and 8a show that the splash jet deviates from the
flat free surface into the liquid wedge. For the cases shown in figures 8b - 8d, the splash
jet deviates from the lighter liquid wedge and bends towards the flat free surfaces of
the heavier, which avoids the secondary impact. For this particular case the splash jet
becomes thinner and the pressure near its root becomes larger.
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Figure 8. Same as for figure 4 but with α′ = 10◦ and α = 90◦: (a) ρ′/ρ = 1; (b) ρ′/ρ = 0.5; (c)
ρ′/ρ = 0.2; (d) ρ′/ρ = 0.1.

For liquid wedge of the same density shown in figure 7a and 8a, similar splash jet has
been observed in experiments of Thoroddsen (2002) (see figure 2c of that paper) for drop
impact onto the flat surface of a liquid of large depth. In the photographs of that figure,
the secondary impacts results in a myriad of the much smaller droplets emerging from
the corner formed by the surface of the drop and the flat surface of the liquid.
The pressure coefficient behaviour is opposite to that shown in figure 7, while we notice
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ρ′/ρ v∞/v′∞ v0/v
′
∞ v′0/v

′
∞ σ σ′ µ/π µ′/π

α = α′ = 10◦

1 1.00 1.45 1.45 0.00 0.00 0.0266 0.0266
2 1.43 1.96 1.47 0.26 0.24 0.0300 0.0254
5 2.34 2.99 1.51 0.56 0.48 0.0351 0.0214
10 3.38 4.09 1.50 0.75 0.60 0.0388 0.0204
20 4.87 5.66 1.49 0.90 0.68 0.0419 0.0201

α = α′ = 30◦

1 1.00 2.46 2.46 0.00 0.00 0.0284 0.0284
2 1.43 3.09 2.50 0.39 0.34 0.0398 0.0217
5 2.42 4.07 2.34 0.80 0.57 0.0657 0.221
10 3.47 5.19 2.24 0.96 0.59 0.0823 0.0240
20 5.13 6.98 2.22 1.09 0.58 0.0971 0.0271

α = α′ = 60◦

1 1.00 5.60 5.60 0.00 0.00 0.0116 0.0116
2 1.06 3.85 3.21 0.86 0.68 0.0433 0.0081
5 2.08 4.23 2.61 1.17 0.66 0.1080 0.0101
10 3.10 5.40 2.63 1.25 0.50 0.1368 0.0228
20 4.92 7.27 2.73 1.35 0.42 0.1771 0.0261

Table 1. The main flow parameters for head-on collision of the liquid wedges of different
densities.

that used in Eq. (2.29) is the density of the heavier liquid. For the density ratio ρ′/ρ = 1
the maximum of the pressure coefficients both along y−axis and along the interface
occurs at the stagnation point. For density ρ′/ρ = 0.2 the local maximum appears on the
interface near the root of the splash jet, which becomes larger at ρ′/ρ = 0.1. Comparing
figures 7 and 8, we can see that the location and the value of the maximum pressure
coefficient depend on both the ratio of the densities and the inner angles of the liquid
wedges.
The main flow parameters for the results in figures 4 - 7 are shown in Table. Here,

σ = arg(zO), σ′ = arg(z′O), v∞ = V/V ′, v′∞ = 1 is the rescaled reference velocity,
v0/v

′
∞ = VO/V , v′0/v

′
∞ = V ′

O/V , where V ′ is the velocity of the liquid wedge in the
upper half-plane at infinity chosen as the reference velocity, V is the velocity of the lower
liquid wedge at infinity, VO and V ′

O are respectively the velocities at the tips O and O′,
µ and µ′ are respectively the contact angles between the free surface and the interface
for the lower and upper wedges.
One of the typical features in impacts between a liquid and the solid body is that

the velocity magnitude on the free surface increases continuously along the free surface
towards the body and reaches its maximum value at the intersection point between the
free surface and the body Dobrovol’skaya (1969). In the present case of impacts between
two liquids, the velocity at O and O′ are also larger than v∞ and v′∞, respectively.
However in some cases the maximum value of velocity magnitude may take place on the
side of the cavity when it is formed. The variation of the velocity magnitude along the
free surface of the upper wedge is shown in figure 9 for the cases shown in figure 8. Here,
s is measured from the lowest point of the free surface, and is positive towards O′ and
negative in the other direction. It is seen from figure 9, that the largest relative drop of
the velocity magnitude from s = 0 to point O′ is for the case in figure 8a. As the cavity
disappears in figure 8d, the velocity magnitude from s = 0 to point O′ is almost constant.
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Figure 9. The velocity magnitude along the free surface of the upper liquid wedge as function
of the arc length s measured from the lowest point of the free surface, for cases shown in figure
8a (solid line), (8b) dashed line, (8c) dotted line and (8d) dash-dotted line.

In the present work, the condition of the same pressure and the same normal velocity
on both sides of the interface is imposed. This does not guarantee the continuity of the
velocity tangential to the interface, which leads to formation on the interface a vortex
sheet of intensity equal to the difference the tangential velocities vs − v′s. Results are
presented in figure 10 for three cases shown in figures 8b, c and d. The case in figure 8a
is not included since the liquids have the same densities and there is no discontinuity
in the tangential velocity. For the density ratio ρ′/ρ = 0.5 the strength of the vortex
sheet, vs−v′s, is negative along the whole interface. For the density ratios ρ′/ρ = 0.2 and
ρ′/ρ = 0.1 there is a region near the stagnation point where strength of the vortex sheet
is positive. Along the part of the interface corresponding to the splash jet, the strength
of the vortex sheet is almost constant. For larger difference between the densities of
the liquids, the larger magnitude of vs − v′s can be seen from figure 10. The velocity
magnitudes of the lower and upper liquids along AO and A′O′, respectively, are also
provided in figure 10. It can seen that both of them increase monotonically from the
stagnation point to the beginning of the splash jet along which they are almost constant.

The case ρ′/ρ ≫ 1 and α = π/2 tends to the case of a rigid wedge entering the flat
free surface of the liquid. This is a classic problem and has been extensively considered
previously through various methods. In particular, the problem was solved by Semenov
& Iafrati (2006) using the integral hodograph method. However, the present formulation
of the problem includes the splash jet whose shape is determined from the dynamic and
kinematic boundary conditions. These boundary conditions are different from that on
the solid wedge, in which the flow is moving along the body surface. The difference in
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Figure 10. The velocity magnitudes along AO for the lower liquid (solid lines), along A′O′

upper liquid (dashed line) and the strength of the vortex sheet vs − v′s (dotted lines) on the
interface AO as functions of the arc length s measured from the stagnation point, for the cases
shown (a) in figure 8b (ρ′/ρ = 0.5 ), (b) 8c (ρ′/ρ = 0.2 ) and (c) 8d (ρ′/ρ = 0.1 ).

boundary conditions leads to the difference in the flow topology of these two problems.
In the present model the splash jet can intersect the boundary of the upper wedge, and
move into the second sheet of the Riemann surface without interaction. This shows the
limitation of the present formulation as the secondary impact is ignored. As a result, when
ρ′/ρ ≫ 1 the solution does not tend to that for a solid wedge entering a flat free surface.
However, a small correction in the boundary conditions in the present mathematical
formulation makes it possible to change the problem to the case corresponding to water
entry of a solid wedge. The interface can be prescribed by the shape of the solid wedge,
i.e. δin(s) ≡ −π/2− α′

A, where α′
A is the half-angle of the solid wedge. On the interface,

the normal component of the velocity is zero as it follows from Eq.(2.24), the function
γ(ξ) ≡ −π from Eq.(2.26), and the angle of the velocity direction along the solid wedge
surface β(ξ) = δ[s(ξ)] − γ(ξ) ≡ π/2 − αA from Eq.(2.27). The integrals containing the
derivatives of the functions γ(ξ) and β(ξ) in all the equations then disappear. Finally,
the order of singularity at point A in the expression for the complex velocity in Eq.(2.6)
should be changed from 1/2 to α′/π, following the boundary condition given by Eq.(2.3).

4. Conclusions

The collision of liquids of different densities has been investigated based on the com-
plete solution of the nonlinear self-similar problem of two liquid wedges. Within each
liquid the integral hodograph method has been employed to determine in an explicit
form all the flow singularities and to derive the solution in the form of integral equations
for the non-singular functions. The interface which separates the two liquids is treated ef-
fectively as a free surface for the lower liquid with known pressure distribution obtained
from the upper liquid, while it is treated as an expanding solid surface for the upper
liquid with the normal velocity obtained from the lower liquid. The convergence of this
iteration process determines the shape of the interface.
Numerical results obtained through the procedure of successive approximations are

presented for a range of angles and the density ratios of the liquid wedges. Particular
attention is given to the splash jet formed upon the collisions. The presented results
show that at the same inner angles of liquid wedges the incidence velocity of the lighter
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fluid has to be larger than that of the heaver fluid to ensure the initial contact point of
the two tips to be the stagnation point. This results in that a larger part of the splash
jet contains the lighter liquid. The secondary impacts may be expected for collisions
between liquid wedges under various conditions. Although the present formulation does
not include complex multi-impact and multi-cavity flows, it still captures some important
features of such flows. For liquid wedges of the same angles, the splash jet will deviate
towards the heavier liquid and may overlap with its free surface. When the liquid wedges
have different inner angles, the direction of deviation of the splash jet will depend on
both the density ratio and the inner angels. It then becomes possible for the generated
splash jet to overlap with the free surface of the lighter liquid under some combinations
of the parameters.

The present work has ignored the effect of viscosity, which can be justified when the
duration of impact of is short (Bachelor (1967)). For the same reason, the gravity effect
has also been ignored. To include these effects as well as surface tension and asymmetric
impact requires further research.
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involving University College London, Shanghai Jiaotong University and Harbin Engineer-
ing University, to which the authors are most grateful. LRF supports the advancement of
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