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ABSTRACT 

 
It is well known that the forces which light imparts on micro- and nanoparticles arise due to intensity gradients and 
dielectric mismatch.  For laser-irradiated atoms and molecules, optical forces primarily result from close resonance 
between the optical frequency and an electronic transition.  Recently it has emerged that optically induced pair forces 
also arise, through a modification of Casimir-Polder interactions; preliminary assessments of the mechanism have 
largely centered on nanoparticle systems.  In this paper, we show that a potentially very significant effect can be 
anticipated in the condensed phase, an optically induced modification of interatomic forces that is capable of generating 
anisotropic patterns of laser-induced compression and expansion.  This phenomenon, termed optical electrostriction, 
should be measurable and significant when high intensity laser light is transmitted through even an essentially non-
absorptive material.  However, the full conditions for observation of the effect are such that some competing 
interactions might also arise.  Key parameters that determine the size and character of optical electrostriction are 
delineated and possible applications are considered, including optical actuators for nanoscale electromechanical 
systems.   
 
Keywords: Optomechanical forces, electrostriction, laser optics, Casimir-Polder interaction, quantum electrodynamics, 
nanoscale electromechanical systems 
 

1. INTRODUCTION 
 
The use of laser light to manipulate and guide small particles is an increasingly prominent research tool, finding 
applications in diverse laboratories.  A variety of optomechanical mechanisms operate, across a spectrum of techniques 
that ranges from optical tweezers to laser cooling and trapping, though all are based on forces that operate directly on 
individual particles.  Recently a wave of excitement has been created by a discovery of an entirely different class of 
optically induced forces, which operate between particles, over nanoscale dimensions.1-10  Such forces offer a number of 
highly distinctive features which can be exploited for the controlled optical manipulation of matter.  Through such 
interactions, new opportunities for creating optically ordered matter have already been demonstrated both theoretically 
and experimentally, leading to the introduction of terms such as ‘optical binding’ and ‘optical matter’ in the recent 
literature.11-13  Though slightly misleading, these are terms that rightly draw attention to new, intriguing and distinctive 
phenomena. 
 

The first demonstration of optically induced inter-particle forces occurred in 198014, utilizing the theory of 
quantum electrodynamics (QED).  This was followed by sporadic investigations involving different methods.15-20  The 
advent of sufficient laser intensities to study these forces are now routinely available, encouraging new interest; indeed, 
there is now good reason to expect significant effects to be experimentally demonstrable at much lower intensity levels 
than originally expected.  In 2005 the UEA quantum electrodynamics group published the first fully comprehensive 
theory of optically induced inter-particle force, based on QED.21  Specific calculations were also performed for carbon 
nanotubes,22 and the practicality of measuring significant laser-induced forces and torques was proven.  It was also 
shown that the use of wavefront-structured light, such as Laguerre-Gaussian beams, offers further scope to tailor the 
pattern of such forces and torques; it can, for example, provide a means of achieving particle ring formations.23   
 

In recently published material,24 we have shown how the mechanism for optical binding owes its origin to a 
modification of Casimir-Polder forces.  One of the possible manifestations that we have recently begun to consider is 
the effect of intense throughput optical radiation on optically transparent solids, where it is conceivable that effects 
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extending to the microscale might arise from the combined influence of light on the nearest-neighbor interactions 
between constituent particles of matter (atoms or molecules).  It is the further exploration and quantification of this 
solid-state effect that we report below, as well as possible mechanisms for the detection of associated mechanical forces.   

 

2. PERTURBATIVE CALCULATIONS 
 
We begin by defining the components of a simple system comprising a pair of particles A and B, each with distinct 
electronic integrity and electrical neutrality, together with the radiation field.  As is appropriate for the subsequent 
applications detailed specifically, the term ‘molecules’ will be used in the following as a generic descriptor of these 
particles.  Representing the system in quantum electrodynamical terms in the Coulomb gauge ensures that the coupling 
fields are duly retarded and satisfy causality.25  In multipolar form the system Hamiltonian may be represented thus; 
 
  mol int rad

A,B A,B
H H H Hξ ξ

ξ ξ= =

= + +∑ ∑   , (2.1) 

 
Here molH ξ  is the field-free multipolar Hamiltonian for molecule ξ , operator intHξ  represents the interaction of ξ  with 
the radiation field, and Hrad is the radiation Hamiltonian.  The tripartite simplicity of equation (2.1) specifically results 
from adoption of the multipolar form of light-matter interaction, based on a well-known canonical transformation from 
the minimal-coupling interaction.26-28  This procedure results in a precise cancellation from the system Hamiltonian of 
all Coulombic terms, save those intrinsic to the internal structure of the Hamiltonian operators for the component 
molecules.  In the electric dipole approximation, intHξ  is given by;  
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with ( )ξµ  and ξR  respectively denoting the electric-dipole moment operator and the position vector of molecule ξ .  

The operator ( )ξ
⊥d R , representing the transverse electric displacement field at that location, is expressible in the 

following mode expansion involving summations over optical wave-vectors, p, and polarizations, ε; 
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Here ( ) ( )εe p  is the polarization unit vector ( ( ) ( )εe p  being its complex conjugate, the admission of complex 

polarizations allowing for circular or elliptical as well as plane polarization); V  is an arbitrary quantization volume and 
( ) ( )a ε p , †( ) ( )a ε p  are respectively the photon annihilation and creation operators for a radiation mode (p, ε).   

 
 To secure a general result for the optically induced energy-shift, E∆ , and hence the associated force between 
A and B, requires the implementation of fourth-order perturbation theory – since the interaction entails four molecule-
radiation field coupling events; 
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Here all states are those of the system, i.e. the two molecules plus the radiation field; i  is the unperturbed system state 

in which both molecules are in their electronic ground state, r , s  and t  are virtual states, and nE  is the energy of 

state n .  The latter signifies one of the basis states for the perturbative development, expressible in the form; 
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with moln  and radn  defining states of the molecular pair and the radiation, respectively.  In equation (2.4), each 

operation of H int  on the state to its right effects the annihilation or creation of a photon, as follows from (2.2) and 
(2.3).  The laser-induced interaction involves the annihilation of a throughput photon at one molecule and the stimulated 
emission of an equivalent ‘real’ photon into the radiation mode; this is mediated by inter-molecular energy transfer 
through a virtual photon created at one site and annihilated at the other.  The molecules and the throughput radiation 
suffer no overall change in state; the term ‘real’ applied to photons of the input mode denotes quanta of electromagnetic 
radiation with a propagation time that is long compared to the optical cycle, and correspondingly ‘real’ characteristics.29  
In performing energy shift calculations based on (2.4), detailed representations of all contributory terms are provided by 
a set of 48 time-ordered diagrams, one of which is exhibited in figure 1.   
 

 
Figure 1: Time-ordered diagram depicting the annihilation of a real photon at molecule A and the creation of a corresponding real 

photon at molecule B, coupled by the transfer of a virtual photon between the pair.  This diagram is one of 48 generated by eqn. 2.4 
 
When such a large number of time-orderings is involved, a recently devised alternative based on state-sequence 
diagrams30 proves advantageous.  All the time-orderings are in fact accommodated in just two state-sequence diagrams, 
(one for the case where the real photon absorption occurs at A and the stimulated emission at B, the other where the 
opposite applies), one of which is shown in figure 2.   
 

 
Figure 2: State-sequence diagram containing 24 of the time-ordered diagrams generated by eqn. 2.4.  Figure 1 is incorporated as the 

highlighted pathway.  Filled circles represent molecules in the ground state and empty circles virtual transition states.  The symbols ω 
and φ represent real and virtual photons, respectively.   

 



 

 

 
 
 The explicit result for ∆E  follows the substitution of equations (2.2) and (2.3) in (2.4), recognizing that ( )ξµ  
and ( )ξ

⊥d R  operate on moln  and radn , respectively – the latter through the following expressions: 

( )( ) ( ) ( , ) 1 ( , )a n n nε ε ε= −p p p  and ( )†( ) ( ) ( , ) 1 1 ( , )a n n nε ε ε= + +p p p .  Details of the complete 
calculation are given in a recent paper.21  The following result thereby emerges, concisely expressible using the implied 
summation convention for repeated Cartesian tensor indices; 
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Here k and ckh  denote the input wave-vector and photon energy, respectively, and R is the inter-particle displacement 
vector, B A≡R R - R .  Also jkV ±  signifies the fully retarded resonance electric dipole - electric dipole interaction tensor 
of the form;31 
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and ( )ij kξα  is the dynamic polarizability tensor given as; 
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where xy x y=µ µ  and xy x yE E E≡ −% % % , the tilde denoting the inclusion of damping factors as appropriate.   
 
 Before proceeding further, we note that the above result in principle holds for two particles in a vacuum, each 
with properties expressible in terms of wavefunctions that extend over the whole particle – as is essentially the case for 
the molecules of a gas.  In the condensed phase – the case of molecular solids, or for example particles optically trapped 
in a host liquid, dissipative and refractive corrections due to the electronic properties of the local environment should be 
applied to both the inter-particle coupling (which is thereby cast in terms of virtual polaritons rather than photons) and 
also the interactions with the optical beam.  The procedure for introducing such corrections is intricate but the outcome 
is known32, 33 and the necessary reformulation of the above result produces the following equation: 
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where χ′  denotes a linear susceptibility tensor scaled by the corresponding particle volume, vk is the group velocity for 
the medium at optical frequency ck, and nk is the corresponding complex refractive index.  Although we do not pursue it 
here, it could be a matter of considerable interest to further develop this equation for nanoparticles such as quantum dots 
with distinctive dispersion characteristics. 
 

3. APPLICATIONS 
 
In order to observe meaningful shifts in inter-particle forces, a basic requirement is pairs of highly polarizable particles 
in close proximity to each other, with suitably intense laser radiation present.  In previous publications we have focused 
on interactions between nanoparticles, in one case specifically addressing carbon nanotubes.22  The latter are particularly 



 

 

well suited as candidates for observing and exploiting laser-induced pair forces, because of their exceptional electronic 
properties.  At first, it may appear unlikely that similar effects will be observed in smaller molecules due to their 
reduced polarizability.  Two possible approaches can be taken to overcome this problem – either choose a system that is 
amenable to extremely high resolution mechanical or spectroscopic analysis, so that very small geometric adaptations to 
an optical pair force can be determined, or probe a system in which small mechanical effects are amplified by scale.  In 
the following we entertain detailed examples of these two distinct cases.   
 
3.1 Van der Waals molecules 
 
Van der Waals molecules are weakly bound, usually dimeric molecular structures.  Having significantly larger moments 
of inertia than their monomer parents – this difference enhanced by the unusually long ‘bond’ holding the component 
units together – such dimers are readily identifiable by high resolution microwave spectroscopy.  The model system to 
be examined in more detail below consists of two linear molecules lying end-to-end, with the intermolecular separation 
vector R identified with the Z-axis and the plane-polarized throughput radiation defined by φ i.e. the angle between the 
e and R vectors.  The polarization vector can thus be written in cylindrical form as e = sin φ î + cos φ k̂ .  From eqn 
(2.6), and acknowledging that ( ) 2I k n c k V= h  is the irradiance of the throughput radiation, the energy shift is; 
 

  
( ) ( )

} ( )

2

,0

2

Re sin . sin cos

cos . cos

A B A B A B
XJ JK KX XJ JK KZ ZJ JK KX

J K

A B
ZJ JK KZ

IE R V V V
c

V

φ α α φ φ α α α α
ε

φ α α

± ± ±

±

⎧
∆ = + +⎨

⎩

+ ⋅

∑

k R

 (3.1) 

 
where the k and R dependences are henceforth suppressed and the indices I, J and K are in the laboratory frame.  
Employing the explicit form of the JKV ±  tensor from (2.7), and writing ||,XX ZZα α α α⊥= =  for each molecule, equation 
(3.1) is expressible as;  
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In the short-range region ( )1kR <<  the leading term of equation (3.2), 0E∆ , is found by taking the leading terms in the 
Taylor series expansions of sin kR, cos kR and cos (k.R) to give; 
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On isotropically averaging the system with respect to the incoming light, the energy-shift of equation (3.3) is written as; 
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The result (3.4) vanishes if || ||

A B A Bα α α α⊥ ⊥ =  (i.e. if the molecules are spherically symmetric); otherwise it is non-zero and 
its sign signifies a force that is either attractive or repulsive, as determined by the relative magnitudes of the 
polarizability components.   
 



 

 

 The van der Waals dimer (HCN)2 is one widely-known example of such a molecular system.  The 
intermolecular bond is well modeled by the Stockmayer potential;34, 35 
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where R is the intermolecular separation, σ  is the usual Lennard-Jones parameter, ε is the well-depth and the µ terms 
are dipole moments.  The effect of intense throughput laser radiation is to introduce a laser-induced energy shift which 
can be included in an effective potential, writing; 
 
  ( ) ( ) ( )0 3U R E R U R K R+ ∆ = +    , (3.6) 
 
where, from eqn (3.4), ( ) 2

|| || 06A B A BK I cα α α α πε⊥ ⊥= − .  The modification to the potential energy surface changes the 
equilibrium position of the bond, relating to a contraction or expansion – depending on the attractive or repulsive nature, 
respectively, of the laser-induced energy shift.  Differentiating eqn (3.6) with respect to R gives the following at the new 
equilibrium position 0 0 0R R Rδ′ = + ; 
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Taking the leading term in Taylor series expansions of both terms in the above equation leads to an expression for δR0 
as follows; 
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Differentiating eqn (3.5) twice with respect to R gives the following expression for the change in equilibrium bond 
length; 
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recognizing that αA = αB = α and µA = µB = µ.  In the above, α′  refers to volume polarizabilities (α scaled by 1/4πε0).   
 
 The (HCN)2 dimer is a particularly suitable example of a van der Waals molecule.  Its centre of mass lies 0.605 
Å from the central H atom, along the intermolecular bond.  From the moment of inertia I about the centre of mass, the 
rotational constant B of the dimer can be calculated from; 
 
  28B h Icπ=    , (3.10) 
 
with a reported value36 of 0.0584 cm-1.  The change in equilibrium bond length induced by the laser field will modify 
the moment of inertia and hence the rotational constant of the dimer.  Substituting data from previous studies35-37 into 
eqn (3.9), it is readily determined that an irradiance of 1016 W m-2 will cause the dimer bond to extend by 1.72 pm.  It is 
important to note that, despite this bond length being measured between the centers of each molecule, the linear 
expansion will be almost entirely operative through extension of the N-H hydrogen bond.  [The principle of laser-
induced bond extension could be applied to individual bonds in either HCN molecule, but the polarizability of each 
HCN molecule is much larger than that of any individual atomic component; also the N-H intermolecular bond has a 



 

 

much lower force constant than the intramolecular bonds.]  The change in equilibrium bond length can be applied to eqn 
(3.10), giving a new rotational constant of 0.0579 cm-1 – a difference of about 1%.  This is experimentally very 
significant, well above the bounds of error in microwave spectroscopic measurements.  Taking account of the 
distribution of intensity across a typical laser beam, it is clear that the effect would be manifest in a broadening as well 
as a shift in spectral lines. 
 
3.2 Molecular Solids 
 
To apply the theory we consider a regular solid comprising close-packed, electrically neutral quasi-linear molecules.  
Focusing on one neighboring pair of molecules in detail, we consider specifically a pair of parallel, cylindrically 
symmetric molecules with a mutual separation vector R orthogonal to their ‘long’ molecular axes.  Identifying R with 
the Z-axis and the molecular axis with the X-direction, and assuming the system is irradiated with plane-polarized light, 
we define the polarization vector of throughput radiation in cylindrical coordinates as e = sin φ cos θ î  + sin φ sin θ ĵ  + 

cos φ k̂ , where φ and θ are the angles made by e with R and the molecular axis, respectively.  From (5), the laser-
induced energy shift experienced by this pair is; 
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On differentiating (3.11) with respect to distance, after taking the leading terms in the Taylor series expansions of cos 
kR, sin kR and cos k.R (effecting a correction to the result given in ref. 21) we obtain the following expression for the 
force induced between the particles, ind indE= −∂∆ ∂F R ; 
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where ||,YY ZZ XXα α α α α⊥ = = = .  This is effectively the only mechanically operative pair force, since other inter-
particle forces in the solid are balanced at equilibrium.  It is instructive to consider special geometric cases. 
 
Parallel pair 
 
The following results emerge for cases in which the polarization vector of the incident light is: (i) parallel to the 
molecular axis; (ii) parallel to the separation vector, (iii) orthogonal to both; 
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The positive sign for results (i) and (iii) signifies a repulsion tending to increase the pair separation, leading to 
expansion; in case (ii) the attractive force will generate a contraction.  The strengths of the forces depends on the 
magnitudes of ||

ξα  and ξα⊥ , and for electronically prolate molecules, ( ||
ξα > ξα⊥ ), the repulsion (i) is the largest force.   

 



 

 

End-to-end pair 
 
The above results account for only two dimensions of molecular packing in these anisotropic solids; it is also necessary 
to consider the forces on a pair of adjacent particles placed end-to-end.  Again the results differ according to whether the 
polarization vector of the incident radiation is: (v) parallel to, or (vi) orthogonal to the intermolecular separation vector.  
Explicitly, the ensuing forces are as follows; 
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Thus, irradiating such a solid with plane-polarized light effects a contraction in the direction of the solid parallel to the 
polarization of the laser beam, and an expansion in the other two orthogonal dimensions, both linearly dependent on the 
irradiance of the laser.   
 
 In summary, a compression parallel to e together with an expansion in directions perpendicular to e produces a 
solid deformation characterized by an overall increase in volume that scales linearly with the irradiance I.  This in turn 
signifies a change in the local density – and hence in the local refractive index – that can also be expected to scale 
linearly with I.  Optical electrostriction thus leads to an optomechanically induced intensity-dependence in the refractive 
index.   
 

4. DISCUSSION 
 
Detection of the process of optical electrostriction is fraught with experimental difficulty, and this is undoubtedly why it 
has not been characterized before.  Such difficulties should not prove insurmountable, but they need to be taken into 
account in planning practicable experiments.  Because the effect of interest leads to optical changes, there is an obvious 
temptation to seek an optical proof.  However it is clear that the optical electrostrictive effect, in solids, will usually be 
dominated by much more widely known electronic mechanisms such as the optical Kerr effect38 – and, in absorbing 
regions, other photothermal effects due to spatially inhomogeneous heating.  Intriguingly, electrostriction was indeed 
considered in connection with an intensity-dependent refractive index in the early days of laser physics,39 but it 
subsequently emerged that other mechanisms play a more direct and significant role.   
 
 With the problems envisaged with optical means of detecting this effect, consideration of mechanical methods 
may be met with more success.  As seen in the previous section, the relatively modest change in inter-particle separation 
is magnified when considering a molecular solid transparent to the applied radiation field.  Although the induced force 
and corresponding separation modification will be limited orthogonal to the propagation direction due to the width of 
the laser beam, if the radiation field propagates along the length of the solid, a much greater effect can be expected.  
This will result in an expansion of the material parallel to the propagation direction of the beam, since this is necessarily 
perpendicular to its polarization.  A system that seems particularly suited to measure small changes in size is one 
recently decribed40 – the pertinent part being two mirrors set up opposite each other, of known separation such that a 
light wave propagating between the two has a known interference pattern.  In their system the activation of a mechanical 
switch causes the position of one of the mirrors to shift slightly, altering the interference pattern.  If instead the mirror 
were attached to a thin rod of material transparent to a given laser frequency, an intense laser pulse along the length of 
this rod would cause it to expand, altering the position of the mirror resulting in the modification of the interference 
pattern, the detection and quantification of which would allow the optical electrostriction effect to be detailed.   
 

Although we have focused on the intrinsic interest of the subject, it is worth considering the applicability of this 
effect to optomechanical devices.  In the context of dramatically accelerating developments in the field of 
nanoelectromechanical systems, any mechanism that can reproducibly deliver a reversible and ultrafast mechanical 



 

 

response, actuated by light, appears to be of considerable merit.  It is hoped the mechanism described herein will 
provide many opportunities and challenges in this burgeoning field.   
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