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Two-group Raman Optical Activity Revisited 

David L. Andrews 
School of Chemical Sciences, University of East Anglia, Norwich, U K  NR4 7TJ 

In the circular differential Raman scattering observed in biological and 
other large polyfunctional molecules, many spectral features may be attrib- 
uted to conferred chirality, in the following sense. Although a given vibra- 
tional transition may occur within a group in an intrinsically achiral local 
environment, it is coupling with another achiral but dissymmetrically placed 
group that generates the chiral response. Where two groups so coupled are 
chemically dissimilar, the effect originates in interference between one- and 
two-centre scattering mechanisms. The one-centre mechanism entails vibra- 
tional transition by a group as it undergoes conventional Raman scattering. 
The two-centre mechanism involves mediation of the chiral influence of a 
second group on this transition by Forster-type radiationless energy trans- 
fer. Where quantum-mechanical interference generates a differential Raman 
signal, the circular intensity differential depends on the inverse square of the 
distance between the groups so coupled. This distance dependence may be 
understood as originating from a combination of two factors. One is the 
linear distance dependence characterising Raman optical activity due to 
direct interference between transitions at distinct sites, which arises in the 
case of chemically identical groups. The other is the inverse cubic distance 
dependence associated with the probability amplitude for Forster energy 
migration. The Raman optical activity of any group with no chemical equiv- 
alents in its vicinity should thus be interpreted as resulting from a sum of 
inverse-square couplings with other chromophores. The two-group model 
for Raman optical activity is critically assessed, possible ways to improve 
upon the model are considered, and the result for the differential scattering 
intensity is recast in a new form that is more general and also more concise 
than has hitherto been presented. 

1. Introduction 

The coupling of two intrinsically achiral groups as a model of molecular chirality has 
origins that can be traced back over nearly 80 years.'-' At first sight it appears sur- 
prising that, in spite of all the advances in molecular quantum calculations, such a 
basically crude model should nowadays retain any significant utility. Yet it does so, at 
least in part, because modern software remains largely unamenable to the calculation of 
chiral parameters for large polyatomic species. Moreover, although originally developed 
for the description of optical rotatory phenomena with an essentially electronic origin, 
the concept now finds important applications in the description of Raman optical activ- 
ity (ROA)?'' 

The application of a two-group model to chiral phenomena entailing molecular 
vibrations does have a certain logical appeal. In the vibrational spectrum of a chiral 
polyfunctional molecule it is generally easy enough to ascribe particular features to the 
vibrations of groups which, in terms of their local symmetry, are intrinsically achiral. 
When such spectral features prove to display a differential response to left and right 
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376 Two-group Raman Optical Activity 

circularly polarised light, an interpretation in terms of conferred chirality may be enter- 
tained, and the two-group model offers a direct insight into the mechanism for the 
conferral. The broad, though not exact, agreement that has been found between the 
results of two-group and ab initio ROA calculations for small polyatomics is also en- 
couraging.' 

In this paper, the appropriation of a two-group model for ROA is critically re- 
assessed and the result for the differential scattering intensity is recast in a new form that 
is more general and also more concise than has hitherto been presented. Possible ways 
to improve upon the model are discussed, and a number of new directions for the theory 
and its applications are considered. 

2. Reformulation of Two-group ROA 

The origin of chiral discrimination in the two-group model of ROA can perhaps best be 
understood in terms of interference between quantum probability amplitudes for distinct 
scattering mechanisms with common initial and final states. Specifically, we can enter- 
tain four different types of mechanism for scattering processes involving two groups A 
and B. The four possibilities are associated with the annihilation of an incoming photon 
(wavevector k, frequency co = c I k I, circular polarisation vector eLIR) and the creation of 
a Raman-shifted photon (wavevector k', frequency co = c 1 k' 1, linear polarisation vector 
el) in each case at either A or B. Thus, without regard at this stage to the detailed 
structure and selection rules governing each term, we have an overall probability ampli- 
tude that can be expressed as: 

M = MA, exp i(k - RA - k' - RA) + MBB exp i(k - RB - k' RB) 

+ MA, exp i(k . RA - k' RB) 

+ MBA exp i(k R ,  - k' RA) (1) 

where RA and RB denote the position vectors for groups A and B, respectively, and M,, 
represents the net amplitude associated with photon incidence at X and emergence at Y. 
Within the confines of an electric dipole approximation for each centre, the circular 
differential response arises purely from the interference terms, i.e. 

6 I M l 2  = 2&?(MAA MBB exp( -i Ak R) + MA, MA, exp(ik' R) 

+ MA, MBA exp( - ik * R) 

+ MBB MAB exp(ik R) + M,, M B A  exp( - ik' R) 
+ MA, M B A  exp( - iCk - R) (2) 

where R = RB - RA, Ak = k - k', Zk = k + k' and an overbar denotes complex conju- 
gation. The similarity in structure of each term in eqn. (2) invites expression of the result 
as: 

6 I M l 2  = 2W 1 (I M 1 2 ) ( " )  exp(ik(") R) (3) 
n 

with k(') = -Ak, k(2) = k' etc. It is clear that the extent of chiral discrimination depends 
on the magnitude of the group separation R = IRI relative to the inverse magnitude of 
the vectors id"). This highlights the facility to model molecular chirality in terms of a 
local electric dipole (El) approximation for each group; the system is essentially 
responsive to higher orders of the multipolar expansion (Ml ,  E2 etc.) through the varia- 
tion in the radiative electric fields between the two centres. 

To calculate the detail of the chiral response we next need to introduce salient fea- 
tures of the radiation-matter coupling. Since each term in eqn. (1)  entails tensor coup- 
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D. L. Andrews 377 

ling with the radiation polarisation tensor e'eLIR, the six terms in eqn. (2) and (3) all 
carry the radiation tensor e'eLIRe'eLlR. The circular differential Raman scattering inten- 
sity can thus be written as: 

AI(") 9[& ef eye; 2; exp(ik(") R)  - x!?) IJkZ e! I eLe' J k eL 1 exp(ik(") R)1 (4) 
where vector and tensor indices are referred to an arbitrary frame of reference and there 
is implied summation over repeated indices ; detailed structures for each of the molecular 
response tensors &Al are given in the Appendix. Before proceeding further, it should be 
observed that eqn. (4) in its general form accommodates all orders of coupling (including 
where appropriate zero-order) between groups A and B, and is also written without 
necessary regard to either the normal exclusion of overlap between the group wavefunc- 
tions, or any assumption of index symmetry within the molecular response tensors of 
either group. Specifically, the latter relaxation allows the theory to accommodate reson- 
ance features. 

Further progress is now expedited by the identityI3 

eye: - eye: = iEjlrnLm (5 )  
where cjlm is the Levi-Civita antisymmetric tensor. In the current context, the sensitivity 
of the quantity represented by eqn. (5)  to molecular chirality is attested by the appear- 
ance on the right-hand side of the input wavevector direction. Naturally this cannot 
couple with either chromophore within the electric dipole approximation; it couples to 
the pair through their relative displacement vector. Referring the tensor components & 
to a molecular frame (denoted below by Greek indices) in which they are rotation- 
invariant, and bearing in mind the isotropic character of the Levi-Civita tensor, we now 
have 

AI(") GC - $xy'vo ei e; &,( Zi;, lkv I,, exp(ikF)R, Z,J) (6) 
Here the direction cosine Z i l ,  for example, represents the (i, 1) element of the Euler angle 
matrix that relates the laboratory and molecular frames, and the angular brackets 
denote the orientational averaging required for a fluid system. 

Evaluation of the latter phased average is technically difficult. One approach has 
been to expand the exponential as a Taylor series; the zero-order term proves to yield a 
vanishing contribution to the right-hand side of eqn. (6) and the leading non-zero contri- 
bution then comes from the term linear in the exponent. However, the phased average 
can now be directly and exactly evaluated, through use of calculational  technique^'^ not 
available at the time of most earlier investigations, giving a result that corresponds to 
inclusion of all orders of the Taylor series expansion. Thus we find: 

3 

( Zi, Z k v  l,, exp(ikt)R, l n p ) )  = 1 Ii:i!)fvn(l k(") 1, F"), I?) (7) 
j = O  

where each of the terms distinguished by j values in the interval (0, 3) has a different 
tensor structure and carries a spherical Bessel function of the first kind,' j y )  = jAk(")R) 
of order j .  The j = 0 and j = 2 terms in the summation are real quantities and therefore 
make no contribution to eqn. (6); the result thus hinges on the j = 1 and j = 3 terms, 
which are pure imaginary. Explicitly, we obtain the following result: 

AI cc 1 ([(2py(") - 4a'"))jY) + (2p"j'") + a(") - 5a(")y(")2)jt)]x(av cpvo ff, 
n 

+ [(a'") - 3py'"')jY) + (2py'") + d") - S c ~ ( " ) y ( " ) ~ ) j ~ ) ] ( ~ ~ ~ " : , ,  + X$av)E;,gv ffo 

expressed in a form which is substantially more compact, as well as more complete, than 
obtained previously.8 In the above expression, the parameters a'"), /3 and y(") embody the 
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378 Two-group Raman Optical Activity 

dependence on scattering geometry, being defined by : 

The above results offer a structure for the identification of ROA invariants by com- 
bining the results of experiments with different polarisation and beam geometries. It 
should be interesting to see whether this approach, despite its relative complexity, leads 
to results that are any more accurate than those based on more straightforward bond- 
polarisability arguments (see for example work by Barron et a1.16 and Che and Nafie17). 
Nevertheless, it is perhaps more significant that the result for the intensity difference as 
expressed by eqn. (8) simplifies considerably in three special configurations, each of 
which is of experimental relevance. The first relates to study of the polarised circular 
differential A x ,  the second to forward scattering and the third to a backscattering 
geometry. In each of these cases f l  and y(n) both vanish identically, and as a consequence 
we obtain the following which holds for arbitrary group separation R : 

3. Dependence on Group Separation 

To understand the detailed dependence of the above results, eqn. (8) and (12), on group 
separation, it is necessary to look at the behaviour, not only of the spherical Bessel 
functions, but also the coupling intrinsic in the molecular tensors &. As discussed in 
the Appendix, the form of the inter-group coupling is normally such that z{;il has a 
leading term of R P 6  dependence, while the other five molecular tensors have more sig- 
nificant R-3  terms. The tensor $2, alone has an additional leading term independent of 
R,  but this arises only in the case of coupling between a chemically equivalent pair. As 
far as the spherical Bessel functions are concerned, the short-range response is deter- 
mined by the asymptotic limits j y )  = $k(")R and j?) = &k(n)3R3, subject to satisfaction 
of the condition k(")R < 1 .  

By reference to eqn. (2) in which the wavevector parameters subsequently denoted by 
k(") appear explicitly in the six exponents, it is evident that for most scattering geome- 
tries the most stringent condition on short-range behaviour relates to the sixth and least 
significant term, for which k(@R < 1 if R < 1/1 Xk I. For the backscattering geometry the 
term with the most severe constraint is the first, where the linear approximation oper- 
ates only for distances R 6 1/1AkI. It is also worth noting that under no circumstances 
will any k(") become a null vector. For example in the case of ROA generated by coup- 
ling between two equivalent groups in the forward scattering geometry, k(') = -Ak has 
a modulus given by (w - d ) / c  so that the ~(i$,  term which usually drives the circular 
differential scattering persists though only weakly. Previous treatments have, through 
the assumption I k I z I k' I, led to the erroneous conclusion that such differential forward 
scattering, if driven by interference alone, would be forbidden. Within the short-range 
regime R 6 A/2x, it is thus apparent from eqn. (A7) of the Appendix that for coupling 
between two identical groups in any scattering geometry, the celebrated linear depen- 
dence on group separation emerges.6 Under these circumstances vibrational excitation 
associated with symmetric and antisymmetric combination wavefunctions necessarily 
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D. L. Andrews 379 

produces phase factors yielding a circular differential doublet with opposing signs, and 
consequently the term with linear dependence disappears if the doublet is not resolved. 
Differential scattering is then driven by interference between one-group and two-group 
scattering mechanisms in the same way as for coupling between two non-identical 
groups. For two inequivalent groups an inverse-square dependence operates in the short 
range. However in order to properly assess the extent of the short-range regime it is 
necessary to consider a factor that has in the past mostly been ignored, as is discussed in 
the following Section. 

4. Critique 

The present study has led to a reformulation of the theory of two-group Raman optical 
activity, with the distinction of accommodating the combined features of (a) electronic 
wavefunction overlap; (b) resonance response and (c)  arbitrary orders of dipole-dipole 
coupling, also without a number of approximations that have hitherto been employed. 
The several features that characterise resonance response, in particular, are significant in 
the utilisation of resonance Raman studies in the characterisation of local chirality. A 
critical evaluation of the model nevertheless exposes certain shortcomings. 

In general, a theoretical formulation in terms of coupling between just two groups is 
unnecessarily restrictive, though from the key eqn. (8) and (12) it is readily seen how 
coupling of a group, A, with any number of partners can be accommodated. Where 
coupling between dissimilar groups is involved, the result is quite simply a sum of the 
pairwise coupling terms, with each pair yielding six terms of precisely the form displayed 
in eqn. (8) and (12). For a set of equivalent groups, the same principle applies subject to 
employment of the appropriately symmetrised wavefunctions. These observations 
prompt the mention of one other distinct possibility, which is that the coupling con- 
sidered to engender chiral discrimination in the Raman signal of any given group, A, 
need not necessarily be dominated by the nearest dissymmetrically placed chromophore, 
particularly if another nearby has an electronic absorption band near-resonant with the 
laser frequency. Indeed, under such circumstances the most significant coupling might 
easily be with a group five times more remote than the nearest. 

One aspect of the coupling model that has certainly not received sufficient attention 
is the effect of the intervening electron distribution on the propagation of radiation 
between the two groups. This is a subject fraught with difficulty, and only a fully fledged 
calculation of molecular wavefunctions could properly address the problem. Of course if 
such an option were available one would not wish to resort to the crudeness of a two- 
group model. Nonetheless it is at least possible to identify within the confines of the 
model some of the features that will reflect essentially refractive modifications to the 
distance dependence. 

Clues to the nature of these refractive effects can be found through the observation 
that rate equations of a similar structure arise in the altogether different context of 
bimolecular photophysics. Here, processes of intermolecular energy transfer and 
bimolecular photoabsorption entail resonance-dipole coupling of exactly the same form 
as detailed in eqn. (A7). Not surprisingly, however, the closest parallel is with bimolecu- 
lar Raman scattering.18 Recent work on such processes in terms of a polariton formula- 
tion has shown how the refractive index of the medium influences the form of the 
transition dipole interaction tensor when coupling over a distance of several molecular 
diameters is involved. Specifically, we 
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380 Two-group Raman Optical Activity 

where the complex refractive index n, = n: + in: = K:/', and K ,  is the relative permit- 
tivity. The imaginary part of n, represents a damping effect that can become particularly 
significant under resonance conditions. One other effect of the inter-group charge dis- 
tribution can be found in the vectors k(") such as appear within the arguments of the 
spherical Bessel functions. As might be anticipated on a physical basis, the phase factors 
of the form exp(ik(") R) from which these originate in the six terms of eqn. (2) will be 
modified through k -, n, k, k' -+ nmf k' by the refractive effect of the intervening electron 
distribution on optical wavelength. For completeness it should be noted that each term 
in the matrix element additionally carries the same multiplicative factor $n; 1/2nt;'.2(ni 
+ 2)(n:. + 2), but this has no bearing on the dependence on group separation. 

It is instructive to consider the significance of these functions specifically in the 
present context of intramolecular coupling. Of course, no real meaning can be given to 
the concept of refractive index within a single molecule. Nevertheless it is clear that the 
intervening electron distribution will significantly modify the coupling tensor and the 
phase factors responsible for Raman optical activity. In other words the formulation of 
the model in terms of two groups separated by a vacuum is misleading, even when it is 
possible to argue a case for the distinct integrity of group wavefunctions. Assuming that 
the bulk refractive index, n, is at least a guide to the extent of radiative distortion 
between the two groups, we can surmise that the range of distances over which the 
linear or inverse-square distance dependence persists is rather less than might have been 
supposed, by a factor of the order of the refractive index. Whereas this might at first 
seem a rather insignificant matter, it is potentially very significant under the resonance 
conditions that are often favoured. Under such circumstances the retarded and radiative 
terms can no longer be ignored. What this means is that, whereas the principal features 
of a resonance study are associated with signal enhancement and a change in the selec- 
tion rules, there is also a significant change in the distance dependence. 

Two further points can be made. First, it is interesting to note that the distance 
dependence of the ROA associated with coupled but dissimilar groups involves medi- 
ation of the chiral influence of one group on a vibrational transition at the other by 
Forster-type radiationless energy transfer, a process that may itself be used to determine 
the distance between chromophore sites, based on its inverse-sixth-power distance 
dependence." Although the possible utilisation of ROA measurements as another kind 
of spectroscopic ruler is technically more demanding, it is a method that has the poten- 
tial of yielding a great deal more information, and its inverse-square fall-off with dis- 
tance makes it applicable over an appreciably larger range. 

Finally, it may be observed that, whilst the results for the molecular tensors ~ $ 1 ~  as 
given by eqn. (Al)-(A6) of the Appendix apply subject to the specific preclusion of 
orbital overlap, a broadly similar structure can exist if orbital overlap is entertained. The 
appropriate formulation then necessitates a coupling model that seamlessly extends to 
distances below those where dipole interactions dominate. The prospect of such a theory 
has recently been advanced by a new formulation for electronic interactions and inter- 
chromophore excitation transfer.23 Although this work does not yet accommodate a 
vibrational structure for the electronic levels, it is a development that appears to offer 
considerable scope for the further advancement of two-group ROA. 

Appendix 

A Structure for the xjJkl Tensors 

An explicit representation of the molecular response tensors & can be given by 
recourse to the assumption of a distinct integrity for the vibrational and electronic struc- 
tures of the two groups involved. With the group coupling properly cast in terms of a 
retarded resonance dipole interaction we then have a set of results which, including 
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D. L. Andrews 38 1 

(A61 
Note that the prime on any such tensor designates the vibrational transition, and that 
the formal selection rules governing the p’, a’ and tensors are those that normally 
apply to IR absorption, Raman scattering and hyper-Raman scattering, respectively. 
The involvement of non-Raman selection rules essentially reflects a lowering of local 
symmetry through the inter-group coupling. The retarded resonance dipole coupling 
tensor W featured in eqn. (Al)-(A6) is given by: 

io3 
Ln(w7 R) = [(S,, - 3Rm R,)h‘:’(oR/c) - 2Smn hg’(wR/c)] 
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382 Two-group Raman Optical Activity 

where the functions hh’) and hi’) are spherical Bessel functions of the third kind.” For 
Stokes Raman scattering, short-range asymptotic behaviour V cc R - 3  operates for all 
couplings over distances R 4 c / o  = )3/271, a condition that is normally satisfied. 

From eqn. (Al)-(A6) it is evident that f r )  has a leading term not involving the dipole 
coupling tensor V ;  f 2 - ’ )  have leading terms involving V linearly, whilst the leading term 
of x(6)  is quadratic in V and is therefore relatively insignificant. The imaginary part of the 
coupling tensor contributes to the ROA where resonance conditions allow the imagin- 
ary part of the scattering tensors to become significant, and it should therefore be 
omitted only in calculations dealing with off-resonance behaviour. In the single case of 
the f 6 )  term, the imaginary part of V can play a role even under non-resonant condi- 
tions. It may also be noted that near to resonance, damping modifications to the coup- 
ling tensor lead to the emergence of a real contribution from the part that for coupling 
in vacuo is entirely imaginary (see Section 4). 

The general formulation above accommodates cases where either molecule A or mol- 
ecule B is excited by the overall Raman process. If A and B are chemically dissimilar, 
only the terms with excitation referred to the species producing the Raman signal apply. 
Consequently the five terms involving f l )  - 2‘’) are on a similar footing, each being 
driven by terms linear in V. As such, the origin of the chiral discrimination may be 
understood as an interference between single-centre scattering and two-group scattering 
mediated by dipole-dipole coupling. In a different context, the latter is responsible for 
the R - dependence of Forster energy transfer; consequently the interference generates 
a short-range R - 3  dependence of the molecular tensors. The full set of terms has to be 
employed when A and B are structurally identical, and in such a case the vibrational 
wavefunctions of the two groups inevitably interfere to the extent that only their sym- 
metrised and antisymmetrised combinations are stationary states for the system. Conse- 
quently the above expressions for the & tensors have to be read with regard to a 
combination phase that may be regarded as incorporated in the transition tensors p’, a’ 
and p’. 

References 
1 M. Born, Phys. Zeit., 1915, 16, 251. 
2 C. W. Oseen, Ann. Phys., 1915,48, 1. 
3 W. Kuhn, Trans. Faraday SOC., 1930,26,293. 
4 S .  F. Boys, Proc. R .  SOC. London A,  1934,144,655. 
5 J. G. Kirkwood, J .  Chem. Phys., 1937,5479. 
6 L. D. Barron and A. D. Buckingham, J .  Am. Chem. SOC., 1974, %, 4769. 
7 A. J. Stone, Mol. Phys., 1977,33,293. 
8 D. L. Andrews and T. Thirunamachandran, Proc. R .  SOC. London A ,  1977,358,311. 
9 A. Gohin and M. Moscovits, J .  Am. Chem. SOC., 1981,103,1660. 

10 V. A. Morozov, J .  Raman Spectrosc., 1993,24,585. 
1 1  L. D. Barron and L. Hecht, in Circular Dichroism-Principles and Applications, ed. K. Nakanishi, N. 

12 P. L. Polavarapu, J .  Phys. Chem., 1990,94, 8106. 
13 D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics, Academic, London, 

14 D. L. Andrews and M. J. Harlow, Phys. Rev. A ,  1984,29,2796. 
15 Pocketbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun, Verlag Harri Deutsch, 

16 L. D. Barron, J. R. Escribano and J. F. Torrance, Mol. Phys., 1986,57,653. 
17 D. Che and L. A. Nafie, Chem. Phys. Lett., 1992,189,35. 
18 D. L. Andrews and N.  P. Blake, Phys. Reu. A,  1990,41,2547. 
19 D. L. Andrews and G. Juzeliiinas, J .  Lumin., 1994,60, 834. 
20 G. Juzeliiinas and D. L. Andrews, Phys. Rev. B, 1994,49,8751. 
21 D. L. Andrews and G. Juzeliiinas, work in progress. 
22 G. J. Liu, Macromolecules, 1993,26, 1144.  
23 G. D. Scholes and K. P. Ghiggino, J .  Phys. Chem., 1994,98,4580. 

Berova and R. W. Woody, VCH, New York, 1994, p. 179. 

1984, p. 188. 

Thun, 1984, p. 154. 

Paper 4104874A; Received 8th August, 1994 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
94

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

E
as

t A
ng

lia
 L

ib
ra

ry
 o

n 
18

/0
1/

20
16

 1
2:

46
:0

9.
 

View Article Online

http://dx.doi.org/10.1039/fd9949900375

