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In most studies of Raman scattering in fluids, the electric field associated with the laser light cannot effect any significant degree 
of molecular orientation since the induced dipole moments are small. Under resonance conditions however, the induced moment 
can be increased a thousand-fold, and at laser irradiances of 10’2-10’5 W m-* (strong-field resonance Raman), the coupling with 
the electric field of the laser beam can lead to significant orientational effects. In addition, sizeable orientational effects should be 
observable in colloids and polymers at much lower laser irradiances of only 105-10’ W m-*. In these systems it is necessary to 
calculate the effect of the induced bulk anisotropy on the Raman spectra. In this paper, the appropriate Boltzmann-weighted 
ensemble average is calculated using a non-trigonometric procedure based on irreducible Cartesian tensor methods, and it is 
shown how for particular beam configurations the induced anisotropy relaxes certain symmetry restrictions normally imposed on 
a system of randomly oriented molecules. The results obtained are general in that no restriction is placed on molecular symmetry. 
In some cases the effect significantly modifies the depolarization ratios and contributes to the intensity enhancement. In addition, 
it is demonstrated how the same calculational procedure can be used to derive results for the changes in refractive index associated 
with the optical Kerr effect. 

1. Introduction 

When a beam of electromagnetic radiation is incident upon any free molecule, its oscillating electric field 
induces a dipole moment through its interaction with the molecular polarizability. The resultant moment in 
turn interacts with the electric field of the radiation and produces a potential energy of interaction. Although 
this too fluctuates, its quadratic dependence on the field strength results in a time-average which is finite. If the 
polarizability is anisotropic, as in all but the highest symmetry molecules, then the magnitude of the interaction 
energy depends upon the molecular orientation in the beam and can produce a torque tending to orient the 
molecule. Normally such torques are insignificant, but in the case of molecules illuminated by highly intense 
laser light, a significant degree of molecular alignment may occur. 

Laser molecular orientation can be manifest through various phenomena, the most familiar of which is the 
self-focusing resulting from a change in refractive index known as the optical Kerr effect [ 1,2]. The locally 
induced anisotropy is also evident in the generation of second harmonics [ 3,4], an effect which is normally 
forbidden in isotropic media, and in the observation of nonlinear Rayleigh light scattering and laser-induced 
birefringence in solutions of macromolecules [ 5,6 1. Recent studies have also shown that circularly polarised 
laser light can induce helical structure in the isotropic phase of a nematic liquid crystal [ 7 1. However, the 
possibility of observing laser orientation effects in Raman spectra appears to have received little consideration. 

Kielich et al. [ 81 were the first to suggest that the effects of laser orientation might be observed in Raman 
scattering by molecules and macromolecules at high laser irradiances. They calculated the effect of optical ori- 
entation in linear and symmetric-top molecules through the use of a generalised Langevin function. However, 
in studies of Raman scattering far from resonance, the degree of molecular orientation due to interaction with 
laser light is almost certainly negligible. Nevertheless, this need not be the case at resonance, where induced 
dipole moments can be several orders of magnitude larger [ 91. This point appears to have been overlooked in 
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most previous work. In this paper we show that the substantial degree of alignment which can ensue at resonance 
produces a nonlinear dependence on the laser intensity, and a change in line depolarization ratios which should 
be readily amenable to experimental verification. In contrast to previous work in this area, the calculations in 
this paper are general in that no restrictions are made upon molecular symmetry. Hence the results obtained are 
directly applicable not only to small symmetric-top or linear molecules, but also to asymmetric-top species such 
as macromolecules. 

2. Foundations of the theory 

The orientational distribution of a system of weakly interacting microsystems at thermal equilibrium at a 
temperature T, in the presence of an external electric field E, is governed by a Maxwell-Boltzmann distribution 
function of the form [ 4,10,11] 

(2.1) 

where /3= 1 /kT, and u (8, I, I,U, E) represents the potential energy of a microsystem whose orientation with ref- 
erence to a laboratory-fixed frame is described by the Euler angles 0, p, ry. Using the implied summation conven- 
tion for repeated tensor indices, the potential energy can be expressed in terms of the multipolar expansion 

u(~,v, v,EE)=-/J~(~,v, y/)Ei_oij(6, ~2 VV)E,Ej-.**, (2.2) 

where E represents the electric field vector, ,u is the dipole moment of the molecule, and a is the molecular 
polarizability. The coupling associated with the leading dipole term is temporally averaged to zero, since the 
timescale for molecular reorientation exceeds the duration of the optical cycle for any laser frequency employed 
in vibrational Raman studies. However, the coupling of the induced dipole moment ‘Ylj( 0, q,, v)E, with the field 
component Ej does not temporally average to zero, because of the overall quadratic dependence on E. Conse- 
quently, if the laser beam is sufficiently intense, a degree of saturated orientation can be achieved. 

The effect of orientational saturation on other optical phenomena has generally been calculated using trigo- 
nometric methods. Molecular parameters such as the components of the polarizability tensor Lyij are first re- 
ferred to a molecular frame, denoted by Greek indices in this paper, by use of the relation 

aij=1rl(jpQ,k~9 (2.3) 

in which lln is the direction cosine of the angle between the i axis of the laboratory-fixed frame and the 1 axis of 
the molecule-fixed frame, and can thus be identified with the (i, A) element of the Euler angle matrix [ 121. The 
rotational average is then calculated by first deriving the appropriate rate for a system with fixed orientation, 
and then averaging over the Euler angles. 

The detailed quantum electrodynamical treatment of the Raman process leads to the following equation, in 
which the result for an isotropic system [ 13 ] has been modified by inclusion of the Boltzmann-weighted Lan- 
gevin function A (4): 

> 
--I 

exp[l,,l,,ff,(w)(E,E,),t,lkTl sin0dBdpddyl = (NZok4/16x%;)A’4’, (2.4) 
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where E and E’ are the electric field vectors of the incident and scattered light respectively, and the hat denotes 
a dimensionless unit vector. In eq. (2.4)) Z(res-Raman) is the radiant intensity of resonance-Raman scattering, the 
laser circular frequency w = ck, a’ (CO) is the resonance-Raman tensor, a ( o ) is the dynamic polarizability tensor, 
I0 is the mean irradiance of the laser light and N is the number of molecules in the appropriate initial state within 
the interaction volume; the angular brackets ( )t denote temporal averaging. 

To evaluate this type of rotational average by trigonometric methods is tedious however, and has only been 
accomplished for certain simplified systems [ 3,4,14]. In this paper we adopt an alternative and more general 
calculational procedure based on irreducible Cartesian tensor methods. Such methods have already been found 
useful for high-rank isotropic rotational averaging, and Boltzmann-weighted dipolar rotational averaging [ 15- 19 1. 
Analysing the problem from within an irreducible Cartesian tensor framework also carries the advantage that 
the results are naturally cast in a form which facilitates a subsequent symmetry analysis. The method highlights 
how the induced anisotropy relaxes certain symmetry restrictions which would normally be imposed on the 
system by a random orientational distribution. 

Before we address the problem of evaluating the Langevin function A (4) in the next section, it is worthwhile 
to elaborate on some of the parameters which it involves. First, we rewrite the equation for A (4) as 

AC4)= (a>G!;,EilZ~I?~E> exp(cz,,,, (E,E,,),E~/~T)) (exp(cq,,,(E,E,),~,/kT)) -‘, (2.5) 

where the angular brackets without a subscript denote rotational averaging. The general scattering tensor a has 
the form 

(2.6) 

where the summation is over all virtual states 1 r) of the molecular system, E,,=E,-E,, c”” is the transition 
dipole for the transition 1 m) -+ 1 r) , and Z’,. is a damping factor, which is inserted to model the decay kinetics 
associated with state 1 r) . In the Herzberg-Teller approximation we can express the initial, virtual and final 
states which appear in eq. (2.6) as vibronic states, so that Im) = Ig(<, Q>i(Q)), Ir) = le(<, QMQ)), and 
I n) = ]g(r, Q)f( Q) ). Here g(<, Q) is the ground electronic state and e(& Q) the excited electronic state, < 
denoting the set of electronic and Q the nuclear coordinates. The wavefunctions i(Q), v(Q) andf( Q) represent 
the initial, virtual and final vibrational states. At resonance, vibronic coupling renders the electronic transition 
moment very sensitive to nuclear displacement, and it is customary to take a Taylor series expansion of the 
transition moments about the equilibrium configuration. To first order this can be expressed as [ 20-221 

(e(t, Q> Ipi Ig(4 Q> > = (e(5) IPi Id8 > + ,C, 
<e(t) I (afLl~~)o IS(t) > <S(t) IPi IS(t) > 

&-Es 
2 (2.7) 

where it is implicit that e( <) and g(c) are evaluated at the equilibrium configuration. Inserting eq. (2.7) into 
eq. (2.6), gives the following form for the scattering tensor at resonance 

a+.,,, = c <g(t) Ipi IdO > (e(T) IPj IdO > (gf(t, Q> IMT, Q> > <NC Q> I@(<, Q> > 
IJ ” fi(we&-w+re) 

+ c h (g(~)l~ile(~))(~(~)I~jlIg(~))(gf(~,Q>l~(T,Q)>(e~(~,Q)IQnIgi(~,Q)) es 
S,“# fi ( men,@ - w+ir,) fi(w,-0,) 

1 i-i gf-gi 1 
+ fi(oe-v,gi-w+ire) h(w*-we) > 

=A+B, (2.8) 

(2.9) 

where 

h,=(e(r)i (aH,iaQII),is(r)). 
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In the absence of vibronic coupling the A-term can be shown to be solely responsible for the Rayleigh line, 
whereas the B-term represents the inelastic scattering contributions to the spectrum. At resonance, however, 
vibronic coupling should be considered. Since the vibrational wavefunctions of the excited electronic state e( <) 
and those of the electronic ground state g( e) are in general eigenfunctions of Hamiltonian operators with differ- 
ent potential energy functions, (gi(5, Q) I MT, Q> > (NT, Q) Igf(T, Q) > need not vanish when i #f: This non- 
orthogonality occurs when there is a displacement of the potential energy minimum along the normal coordinate, 
AQc # 0. Under these conditions A-term Raman scattering is dominant and leads to the observation of overtones. 
The B-term is usually much smaller, due to the factor h,( v~- v,) -I, and only provides a significant contribution 
to Raman scattering when AQe is small. 

At resonance, the Rayleigh scattering tensor assumes a dyadic form, i.e. 

aij= Cd49 IPi I e(C) > (e(t) IPj IdO > C W(C Q> lM5;oQ) > <MT, Q> MT, Q>> =a,, IF&” (2.10) 
” ev,gi - 0 + ire 1 A+$, . 

The time averaged quadratic response to the electric field, as expressed through the term (ES,,), in eq. (2.4) 
can be obtained as the expectation value of the corresponding operator product in quantum electrodynamics 
and, for the case of linear polarizations considered here, is [ 221 

(E,E,),=(ZioltoV)(n+t)=(lolc~o)~~~~n, (2.11) 

where Vis the quantization volume and I0 is the mean h-radiance of the light source. If we insert eq. (2.11) into 
eq. (2.4) we obtain the temporal average 

Ac4)= (a$di;ZiEjEkE; exp[ (aZ/ckT)&,,EJ,] ) (exp [ (aZ/ckT)&P,EP#q] ) -I, (2.12) 

where the polarizability components such as c11,, have been separated into the product of a dimensionless term 
c& =P,“‘&rn and a scalar (Y. 

For conventional Raman scattering, with a/t 0x 10T30 m3, and a laser h-radiance of 1OL3 W m-*, a typical 
value for the exponent in eq. (2.12 ) is 1 OP4, and A (4) reduces to 

AC4’= (a;~?;&?$&), (2.13) 

which is the isotropic rotational average. This is not the case under resonance conditions, however, where the 
pohrizubility Cvij is given by eq. (2.10). In a typical Raman experiment fro will be = 50000 cm-‘, and the 
resonance linewidth approximately 50 cm-‘. When A is close to zero, the ratio of the resonance value of the 
polarizability to its value away from resonance is thus approximately of the order [ 2 1 ] 

areS,al”o”-‘esX IA+irl/IirlxIzioI/Iirl~lO~. 

Under these conditions, the exponent in eq. (2.12) is appreciable. Brewer et al. [ 141 have shown that orienta- 
tional saturation is pronounced for aZ/ckTa 2, and for colloids and polymers this criterion will be satisfied at 
laser irradiances of 105-10’ W me2. This range of irradiances is well within the limits of most Raman lasers, 
and for these systems the correctly weighted rotational average should thus be adopted. 

3. Calculational procedure 

The procedure for calculation of the observed scattering intensity using irreducible tensor methods involves 
consideration of the linear transformation properties of the tensors given expression in AC4). Ultimately the 
angular integrand contained in A c4) must form a basis for the totally symmetric irreducible representation of 
the rotation-inversion group SO (3). Consequently, we are only interested in that part ofAC4) which is rotation- 
ally invariant, and this must be expressible solely in terms of isotropic (weight 0) tensors referred to the labo- 
ratory and molecular frames [ 23 1. These isotropic tensors are necessarily contracted with the molecular and 
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laboratory tensors given in eq. (2.12) [ 15,241. To this end, it is necessary to cast eq. (2.12) in a form amenable 
to irreducible tensor analysis. 

Close to resonance, oij approximates the index-symmetric dyadic given in eq. (2.10) [ 221. Under these con- 
ditions it is possible to express the exponential in the numerator of eq. (2.12 ) in terms of a series of Legendre 
polynomials [ 25,261: 

(3.1) 

where the Pj (~2”“-&) are the Legendre polynomials, (Y is the magnitude of the polarizability at resonance, and 
the coefficient Uj( aZ/ckT) of the weightj term is defined by the equation 

aj(aZ/ckT)= y j exp[ (aZ/ckT) IJm’*81*]Pj(limr*I?) d@“‘*E). (3.2) 
-1 

Since exp [ ( aZ/ckT) Iji ,,-fi I* ] is an even function of the integration variable, the integral in eq. (3.2) is only 
non-zero when j is even; hence the summation in eq. ( 3.1) need only include even values of j. 

It is well known that the Legendre polynomials form a basis for the irreducible representations of the rota- 
tion-inversion group SO (3) [ 27 1, and consequently it is possible to re-cast eq. (3.1) in the required irreducible 
tensor form. Both Zemach [28] and Coope and Snider [29] have shown that P,@“‘-E) can be expressed in 
terms of natural tensors #I of the form 

(3.3) 

unit vecErs is followvS: 
where jic?‘y<!. and gj,h,,,,a are the natural forms of the decomposable tensors formed from the outer product of 

(3.5) 

Inserting eqs. (3.2) and (3.3) into eq. (2.12) then gives the following form for A (4): 

X (a~~;,~i~~~k~;~i*~~~~~~~~~~..,j~~ > (em [ (aZlckT)~p$p~~ I > - ‘. (3.6) 

In eq. (3.6) the substitution j= 2< ensures inclusion of only the even terms in the summation. The develop- 
ment of the denominator term follows along similar lines and is deferred until the end of the calculation. The 
next step is to express the tensors oij(YM, and EiE>EkS’ I in their natural forms. In order to do this it is necessary 
to reexpress aij(Ykl and EiEJEkE; as a sum of irreducible Cartesian tensors, i.e. 

(3.7) 

The rank-4, weight-s, tensor a$, can in turn be expressed as the sum of its NF) rank-4 representations, i.e. 

#’ A natural tensor is an irreducible tensor of the same rank and weight which necessarily has a non-degenerate representation. 
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aukI- 
(s’- 8: a$y’, 

where the multiplicity of the rank-s tensor is given by the relation [ 301 

(3.8) 

(3.9) 

andO<kg (n-j)/3. 
It is now possible to express the molecular response and polarization tensors in natural form, since the pth 

representation of each rank-4, weight-s tensor is related to the corresponding natural tensor of rank-s, by the 
mapping formula 

a,$:’ =G$$) ,,__., ,,@‘;,. (3.10) 

By substituting eqs. (3.7)-( 3.10) into (3.6) we obtain the relation 

xG%‘,,..., A,G%: ,,..., m, (exp[ (cdZ/ckT)a~,EpEq]) --I. (3.11) 

In the above equation the mappings G$$ ,,..., ,,G$$, ,,..., ,,,, are invariant tensors (weight 0)) which are conse- 
quently rotationally invariant and may thus be brought outside the angular brackets denoting rotational averaging. 

In appendix 1 it is proved that 

Use of this equation in conjunction with the idempotent relation, 

E(S) L I ,..., As;ml ,..., mr 
E(s;q) 

m ,,.__, mr =J%%, 

allows us to reduce eq. ( 3.11) to 

(3.14) 

The rotational average is now readily evaluated. Noting that the result is a product of scalars resulting from 
the contraction of ,??‘:S;fI.!,$~~!&, and i$‘,:f$j c~j,si!,>~, with isotropic tensors of rank 2<+s, and by making use of 
the result [ 16 ] 

(~,i~!j~,~j~fJjz, 1 (O) = %<s (4<+ 1) - ‘EJ?,?,~z~~~,..., jz$:~T!,/$~f,?.‘&, (3.15) 

we find that all contributions where 2Y> s must vanish, reducing the previously infinite series to a sum of three 
terms corresponding to the contraction of tensors of the same weight only. The result expressed in natural form 
is therefore 

(3.16) 
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Evaluating the denominator in the same way, and reexpressing the result in a reducible form we obtain the final 
result: 

A(4)=a;,lZa7;3r14&,~ B ,@ IC4) h k3 h A d*AsLcklk*kxk4 (aI/ckT, a, E) [ I(‘)( aZ/ckT, a, E) ] - ‘, 

where 

t%!tido;k,k*k3k4 (aIlckT, a, El 

2a 2n f 

1 =- - 
8n2 HI ~klll~k*1*~kdk.d4 exPIIm,~,,ff,(W)(E,E,),~olkTl sin0dedG’ddyl 

000 

(3.18) 

As eq. (3.18) shows, #j*A3r14;k,k*k,k4 (aI/ckT, a, E), represents the isotropic fourth-rank average of the direction 
cosines given in eq. (2.4). Similarly the zeroth-order rotational average I(O) (aI/ckT, a, E) can be expressed as 
the integral 

2a 2x x 

I(O)( aZ/ckT a E) = L 3 , 8x2 ISI 
exp[l,,l,a,(W)(E,E,),to/kT] sin8dedpdv. 

000 

For linearly polarized light experiments we have fii = I$ = e, and the explicit result is thus 

(3.19) 

(3.20) 

where the coefficients a; defined in table 1 are expressed in terms of an error function tabulated in standard 
tables of integrals such as ref. [ 3 11. 

4. Symmetry considerations 

Eq. (3.20) gives the rotationally averaged result in a reducible form; however, for symmetry studies it is often 
more convenient to express the molecular tensors in terms of their irreducible components. Because Raman 
scattering is described by a second-rank tensor, it can be represented as a sum of embedded weight-o, - 1, and -2 
tensors [21], i.e. 



176 D.L. Andrews, N.P. Blake /Laser orientation effects in vibrational resonance-Raman spectroscopy 

Table 1 
Definitions of the irradiance- and temperature-dependent coefficients in the resonance-Raman intensity equations 

aO=J~knu’0)“2 exp[ (c&/ckT)x*] d(cuI,,x2/ckT)“2 

a*= (3ckT/4&) exp[ (crI,JckT)] - (3ckT/4cyZO+ i)a,, 

a.,= %{ (ckT/2cuI,) exp(aI,/ckT) - (3ckT/2&,) [ (ckT/Zc&) exp(a&/ckT) - (ckT/cul,)a,,]} 
-~[(ckT/2cul,)exp(ZOa/ckT)-(ckT/2aIO)a,,]+~ao 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Raman scattering at transparent frequencies results in index symmetry in the tensor given by eq. (2.8)) and the 
weight-l antisymmetric contribution therefore vanishes. In resonance-Raman scattering the tensor displays no 
such index symmetry, and thus all three representations are non-null. In appendix 2 the result given in eq. (3.20) 
is reexpressed in terms of irreducible Cartesian tensors using the above relations. 

The total number of symmetry classes for resonance Raman scattering is six, corresponding to the possible 
permutations of the allowed weights for a given transition. Table 2 lists the possible symmetry classes, using a 
classification scheme developed in earlier work on static field-induced absorption [ 321. However, in consider- 
ing laser-induced orientation, we are only concerned with those molecules with an anisotropic polarizability, 
which rules out molecules of cubic symmetry, e.g. Oh and T,+ In doing so we find that class (f ) transitions are 
forbidden. Similarly we find that class (a) transitions can only occur in axial molecules, and that class (c) 
transitions only occur in dihedral molecules. Thus of the six possible classes of transition, at most four can be 
present for a laser-oriented molecule of any given symmetry (three from group B and one from group A). 

In order to determine the class of any resonance-Raman transition, it is common to measure the depolariza- 
tion ratio of the corresponding line in the spectrum. However, the normal treatment used in interpreting the 
value obtained for the ratio is only valid in the case where the molecules are randomly oriented [ 131. In the 
presence of molecular orientation effects the depolarization ratio is modified. The correct expression is then 
given by the ratio of the two intensity equations obtained from eq. (A.6) for Z90( I + II ) and Z90 ( I -+ I ). 

Table 2 
The classification scheme developed for resonance-Raman transitions 

Class Allowed weights 

A B 

(a) 
(b) 
(c) 
(d) 

0, 1, 2 axial groups only 
1,2 

0,2 dihedral groups 
2 
1 

0 cubic groups only 
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5. Discussion 

Having demonstrated that molecular orientation effects should lead to changes in resonance-Raman line in- 
tensities, we now consider the magnitude of the effect. If we make the further assumption that the resonance- 
Raman tensor is, like the polarizability, itself of dyadic structure, we find that the intensity result in reducible 
form, eq. (2.19), can be greatly simplified. By making use of the relations: 

(5.11 

A’4’=~(1+5a;/7+3a;/7)Ia’12. (5.21 

Since the intensity is proportional to A (4) the ratio of the intensity in the presence of laser orientation, I”‘, to 
the intensity in the absence of laser-orientation, Inlo, is given as 

Z’“/Zn’o= 1 + 5a;/7+ 3a;/7. (5.3) 

This ratio has been calculated for values of cxZo/ckT ranging from 0.01 to 16. The results are presented graphi- 
cally in fig. 1, which shows that laser molecular orientation leads to intensity increases of 2-3 at large values of 
aZ,lckT. 

Molecular orientation will also lead to a change in the refractive index of the medium. This phenomenon, 
often referred to as the optical Kerr effect, can easily be calculated using the Lorenz-Lorentz relation, which 
relates the refractive index, n, to the average molecular polarizability (cr ) : 

(n2-l)/(n’+2)=~~N(a). (5.4) 

Here N represents the number of molecules per unit volume and the average molecular polarizability is de- 
scribed by a Langevin function of the form 

*a 2n: x 

<ay>=a*Jigj j J” J 1pilAj exp ( CYZ~ &$&1&/ckT) sin 8 de d@ dv 
000 

(5.5) 

I 0 J IO * 15 0 5 IO . 
OrI,/CkT 

15 
aI,,/ckT 

Fig. 1. Intensity enhancement characteristic as a function of 
aI,/ckTfor the Zc9”’ ( I + )I ) scattering geometry. 

Fig. 2. Plot of the molecular orientation parameter 
az((Y, E, T)/aO(cx, E, T) as a function of cuI,/ckT 
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Here the shorthand notation for rotational averages introduced in section 2 has again been adopted. In the 
absence of laser orientation effects eq. (5.4) reduces to 

((Y)=iff. (5.6) 

This simply represents the isotropic result. Under these conditions the Lorenz-Lorentz equation becomes [ 331, 

(5.7) 

where no represents the refractive index when no laser orientation occurs. In the presence of laser orientation 
effects we have 

(n*-1)/(n2+2)=$tiVa[1+2a2(a,E, T)/ao(a,E, T)]. 

The change in the refractive index which occurs at resonance is thus simply 

(5.8) 

(n*-l)/(n’+2)-(ng -l)/(n3+2)=Q~~~u2(cr,E, r)/a,(a,E, T). (5.9) 

Fig. 2 illustrates how the molecular orientation function, a,( a, E, T) /uo( a, E, T), varies with aIo/ckT and 
provides a comparison with the results obtained in refs. [ 3,8 ] for axial molecules. The two characteristics are 
clearly in good agreement, as should be expected since the result obtained here is general and applies equally to 
axial and non-axial molecules. In the context of resonance-Raman scattering the refractive index is of interest 
since it can be used to relate the electric field associated with the incident laser light to the local electric field 
experienced by each molecule. 

To summarise, we have shown that in resonance-Raman spectroscopy the large induced dipole moments should 
lead to observable molecular orientation effects in the laser beam. We have developed a general method for 
calculation of the correct ensemble average for the resonance-Raman scattering intensity, under the steady-state 
conditions appropriate for continuous-wave laser excitation, and we have presented explicit formulae for the 
changes in the values of Raman depolarization ratios associated with molecular reorientation. In addition we 
have demonstrated that these effects lead to further increases in the scattering intensity when the overall mag- 
nitude of the polarizability is positive (as is the case with cigar-shaped molecules), and an abatement of scatter- 
ing intensity when the polarizability is negative [ 8 ] (disc-shaped molecules). Furthermore, we have shown that 
a modification of the scattering intensity will also occur as a result of a change in the refractive index for the 
fluid. 

In conclusion we note that the results derived here are general, in that there is no restriction to molecules of 
any particular symmetry. Moreover, the methods employed can readily be adapted to resonance two-photon 
absorption and resonance hyper-Raman scattering. These processes are generally observed using pulsed lasers 
of much higher power than the continous-wave lasers employed in typical resonance-Raman experiments. More- 
over, the case of hyper-Raman scattering offers a greater number of possibilities for the exploitation of resonance 
conditions [ 341. Hence the orientation effects discussed in this paper may be even more significant in connec- 
tion with these nonlinear phenomena. However, the detailed theoretical treatment of each of these processes 
will clearly require a careful consideration of the relationship between the timescale for molecular reorientation 
and both the laser pulse duration and repetition interval. 
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Appendix 1. Proof of a tensor mapping identity 

It is required to prove the identity 

G;!$? I,..., ,,Gi$$, ,,__., ,nr = 4stg;?‘E:? . . . . kr:m, ,..., ms- 

In order to verify this result it is necessary to make use of the following theorem: 

(A-1) 

Theorem 
The i-fold contraction of any two invariant mappings Gj~!l,,,;k,,..., kn and GJ~,~.,,~p;i I,.._, i,,, belonging to the same 

tensor space xi gives an invariant mapping between two irreducible tensor subspaces. The resultant mapping is 
only non-null if Glz,),,i,,,;k I,,,,, kn and G~~,~,,,~P;il,...rim map between subspaces of the same symmetry. 

Proof 
Consider the invariant mapping, Gl~~.,rm~~,,...,kn which maps the image of H” of an irreducible subspace Hiz, 

onto xm. Let {ek,,,..,k.} be a basis for H&. The invariant mapping can be written explicitly as 

Ui,,,.,,l, G G(O) II ,..., rm,kl ,..., ksk, ,..., kn. (A.21 

Contracting on the left with Gj~,!..~p;il,...,im gives 

G,!Y,!..,A,;i, ,..., imail ,.._, i, z G,!Y,!..,A,;i, ,..., z,G!lY.!.,im;kl,..., knek, ,..., kn* (A.3) 

The left-hand side of eq. (A.3) also represents a mapping, and its result is thus also a basis for the irreducible 
subspace H;a; therefore 

GX?,!..,n,;il,..., imail ,..., im E GKL,;k, ,..., k,e,, ,..., 1.. (A.4) 

According to a theorem by Coope and Snider [ 29 1, GJ~,!..,Ao;k,,...,k. is only non-null if it corresponds to a mapping 
between subspaces of the same symmetry, thus completing the proof of the theorem. 

According to the theorem proved above, the four-fold contraction of the two mappings on the left-hand side of 
eq. (A. 5 ) will give a non-null result only when s = t; however, the mappings pertain to natural irreducible sub- 
spaces, and hence the resultant is not only a mapping between tensorial subspaces of the same weight, but also 
of the same rank. Therefore the resultant mapping is the natural projection E (‘), and hence 

G%‘,r..., nsGz$$ I,..., m, = &gPE:S:..,~~;m ,,..., ms, (A.6) 

which completes the proof. 

Appendix 2. Expression of the weighted average in irreducible form 
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(A.7) 
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