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Abstract 

This work concerns theoretical determination of the degree of fluorescence polarization and absorption anisotropy in 
double-chromophore complexes with non-parallel absorption and emission transition dipole moments. Specifically, the 
theory addresses the case in which energy may incoherently transfer within each complex between chromophores with broad 
and overlapped spectra. Inside each complex the chromophores are rigidly positioned and oriented relative to each other, 
whilst the complexes themselves are randomly distributed and oriented in space. The cases of steady-state and of &pulse 
excitation are both considered. In general the results obtained apply not only to the specifically considered case of energy 
migration but more widely, for example to systems exhibiting fast trans-cis isomerization, electron or proton transfer, etc., 
either alone or in conjunction with conventional energy transfer. 

1. Introduction 

This work concerns a theoretical determination of  the degree of  fluorescence polarization and absorption 
anisotropy in double-chromophore complexes. Specifically, the theory addresses the case in which energy may 
incoherently transfer between chromophores within each individual complex. Such complexes are widely found 
in biochemical preparations; see for example Refs. [1-6]. Systems of  this kind have chromophores with broad 
and frequently overlapped spectra, both for absorption and fluorescence. These features complicate the analysis 
of  polarization spectra, and until recently there has been no theory appropriate for this particular case. 

The basic theory of polarization phenomena in molecular pairs with incoherently related absorption and 
emission transitions was first developed in the 1920s [7]. This theory considered the case where only donor 
molecules absorb light and only accept acceptor molecules fluoresce. Recent results from the femtosecond laser 
spectroscopy of  molecular pairs has stimulated new theoretical investigations of  the role of  coherence in such 
polarization phenomena [8-10]. However, the background for a theory applicable to incoherent energy transfer 
in complexes with the spectral characteristics cited in the previous paragraph has only recently been established 
[11-15]. In our work we continue the theoretical development by eliminating certain limitations that previously 
applied. Those limitations included the assumption that each chromophore has parallel absorption and emission 
transition dipole moments. We intend to remove such limitations by considering a more general case, i.e. where 
the absorption and emission transitions could be non-parallel. In practice such a case can be found when the 
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chromophores are excited to higher singlet states (S O -o Sn absorption transition, n >~ 2), with emission 
occurring from the first excited singlet (S 1 ~ S O emission transition). The internal conversion Sn --* S 1 is here 
assumed to be much faster than the rates of inter-chromophore energy exchange and intrinsic fluorescence 
decay. 

The schematic structure of a double-chromophore complex is presented in Fig. 1. In this figure the unit 
vectors I a and I f  represent the directions of the absorption and emission transition dipole moments of the first 
chromophore, while 2 a and 2 f  denote those of the second. Note that the two chromophores may be positioned at 
different locations; the figure shows their mutual orientations. The unit vector e represents the polarization of 
the incident light. In each individual complex both chromophores are positioned and oriented rigidly relative to 
each other. Both of them can absorb light and fluoresce, and there is incoherent exchange of energy between 
them, but there is no interaction between separate complexes. Our aim is to find formulae for the fluorescence 
polarization and absorption anisotropy of these complexes randomly positioned and oriented in space. The cases 
both of steady-state and of 6-pulse excitation will be considered. 

2. Steady-state excitation 

We begin by noting the Cartesian components of the vectors as presented in Fig. 1; e = {sin 0 e cos q~e, 
sin 0 e sin q~e, COS 0 e} and i = {sin 0 i cos q~i, sin 0i sin q~i, cos 0i}, i = la, l f ,  2 a and 2f .  The probability for 
the first chromophore to absorb excitation energy is governed by the rate A 1 = C t r l ( A a ) ( e  • la )2 and for the 
second chromophore A 2 = C o ' 2 ( A a ) ( e "  2a )2. H e r e  O'l.2(Aa) are the absorption cross sections of the first and 
second chromophores at wavelength Aa; C is a constant of proportionality that will disappear in the final results. 

In any given molecular complex the absorbed energy will redistribute between the chromophores in 
accordance with the following equations: 

n 1 = g i l A 1  + g 1 2 A 2 ,  n 2 = g21A1 + g 2 2 A 2 ,  (1) 

where n I and n 2 are the probabilities to find the first and second chromophores, respectively, in their excited 
states. The matrix gij has the form 

I lgll =D -1 ~ t  +K21 K21 
K,2 + K12ll' (2) 

Y 

/e:X 

Fig. 1. Relative orientations of the absorption and emission transition dipole moments of one chromophore, 1 a and If respectively, and 
another chromophore associated with 2 a and 2f. The unit vector e represents the polarization of the incident light; for simplicity the 
polarization vector of the emergent light is not shown. 
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where the determinant D, given by D = (~-21 +K21XT11 + K 1 2 ) - K I 2 K 2 1  , is a constant that divides each 
element of the matrix on the right. Here K12 and K21 are the total rates of energy transfer, by any mechanism, 
from the first to the second chromophores and vice versa, T1, 2 are the intrinsic fluorescence lifetimes of the first 
and second chromophores. 

The total intensity of emitted fluorescence in a system of double-chromophore complexes randomly 
distributed and oriented in space can be obtained by averaging Eqs. (1) over all possible mutual orientations of 
the incident light polarization vector e with respect to a Cartesian frame attached to the molecular complex, as 
shown in Fig. 1. We express the fluorescence intensity 1 at wavelength Ay as photon flux per unit wavelength 2 
((I)) = . r / l , r l l f l (Af)(nl)  + r/2~-21f2(Af)(n2) = 7 1 1 7 . 1 1 f l ( A f X g l l ( A l  ) d - g 1 2 ( A 2 ) ) q -  172T21f2(Af ) (g21(A1  ) d- 
g22 ( A2 )); and so finally 

(ci9) = ½ C { , l l ~ ' l l f l ( A f ) [ g l l t r l ( A a )  + gl20r2(Aa)] + 7/27"21fE(Af) [ gE10rl(Aa) + g220"2(Aa)]}. (3)  

Here rh, 2 are the fluorescence quantum yields of the ' free '  chromophores, and fl.2(Af) the fluorescence spectra 
normalised in the sense f f ( A )  d A = 1. 

The emitted fluorescence has a component parallel to the polarization of the incident light (4)11)= 
"qlO'llft(Af)(nl(e • l f )  2) q- ~27"21 fE(A f ) (nE(e  • 2f)2),  giving 

((/)ll) = -"~C{gll['~lTltfl( ~ f ) ]  Orl( ha)(1 + 2 cos201l)  + g12 [r/1T~-af,(/~f)] or2( ~ a ) ( 1  "~ 2 cos2021) 

+ g z l [ r l z r ~ 1 f 2 (  hf)]  o't( ha)(1 + 2 cos2012) + g22 [r/2~'2 lf2( hf)]  o'2( ha)(1 + 2 cos2022)}. (4)  

In this equation Oij is the angle between transition dipole moments, i denoting the chromophore responsible for 
absorption and j fluorescence; for example 012 is the angle between vectors 1 a and 2f (see Fig. 1). By 
definition the degree of fluorescence polarization P = (((/)11) - ( ~ 1 ))/(((/)11 ) + (4) j. )), where ( ~ . )  is the 
fluorescence component perpendicular to the polarization of the incident light. The total fluorescence (qb) is 
equal to (qb t) + 2(qb± ). Thus, the degree of fluorescence polarization P = ( 3 k - 1 ) / ( k  + 1), where k =  
((/)11)((qb))-II. Another frequently used parameter, the polarization anisotropy r = ((qbll) - (qb ± ) ) ( ( ( / ) ) ) -1 ,  
obviously follows as r = 2 P / ( 3  - P )  = 0.5(3k - 1). 

We thus obtain the following formulae for the degree of fluorescence polarization and anisotropy, 

3 c0s2011 - 1 + ql(3 c0s2021- 1) + q2(3 c0s2012- 1) + q3(3 c0s2022- 1) 

P = 3 "~ COS 2011 + q t (3 + cos2021 ) d- q2 (3 + cos2012 ) -{- q3 (3 + COS2022 ) ' ( 5 )  

3 COS2011- ] q- q 1(3 COS2021- 1) + q2(3 c0s2012- 1) + q3(3 c0s2022- 1) 

r = 5(1 + ql + q2 + q3) , (6)  

where 

g12 K21 g21 K12 g22 K12 -4- T1 l 
ql = a = ot - q2 = 2/ = 7 - q3 = a T  = ot'Y K21 _ (7)  gll  K21 q'- T2 1 ' gll K21 -}- T2 1 ' g11 d- T 2 1 " 

Here the parameters a and y are the relative efficiencies of light absorption 3, a = OrE(Aa)/Orl(Aa) , and 
fluorescence, y = r/2~- 1 f2(Af)/r / l ' r2f l (Af)  , by the two chromophores. 

Note that the rates K12 and Kzl featured in (7) will in general be strongly a n d  iden t ica l ly  dependent on the 
distance between the chromophores, as determined by whatever specific mechanism they portray. For example 

1 Specifically, the spectral radiant energy density. 
2 Angular brackets here denote orientationaily averaged values. 
3 In experiments the more commonly used parameters are molar extinction coefficients ~, measured in tool m -2 units. In terms of these 

parameters ot = ~2(Aa)/El(Aa). 
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the radiative mechanism carries an inverse square dependence, the shorter-range F6rster mechanism an inverse 
sixth power, and in general both are present together with an inverse fourth power term established by the 
unified theory of radiative and radiationless energy transfer [16,17]. Again, at still shorter distances, the 
exchange mechanism is characterized by an exponential range dependence. However in each case K12 and K21 
factorize into orientation- and distance-dependent parts. Hence the q parameters are distance-independent, 
provided T 1 and T 2 are sufficiently large. In contrast to our case, where the relative positions and orientations of 
the chromophores are fixed, there is of course a highly significant range-dependence of the polarization 
parameters in the case where the molecules are spatially independent and randomly oriented [17]. 

Formulae (5)-(7) have been derived for the case of fluorescence polarization, but the same formulae can be 
applied to the determination of absorption anisotropy in steady-state pump-probe measurements. Here we are 
considering experiments in which relative measurements are made of the probe signal absorption at a 
wavelength Ap both in the presence and absence of pumping at another wavelength A~; the difference, 
commonly known as the absorption recovery, is denoted by A A. Despite the current consideration of 
steady-state excitation, the theory to describe such differential absorption as well as fluorescence can for 
example be applied under quasi steady-state conditions, such as where the energy transfer and fluorescence 
dynamics operate over a timescale much shorter than the duration of the excitation pulses. In this case we have 
a = 0"2( h a)//0"1 (/~a ) and y = 0"2( Ap)//0"1(Ap). The anisotropy of absorption recovery, r = (A AII - A A .  ) / (A  All 
+ 2A A . ) ,  can be calculated from (6) using the latter values for a and y. In such pump-probe measurements 
the indices of the angles 0ij have to be interpreted such that i denotes the absorption transitions for the pump 
signal, and j the absorption transitions for the probe signal. For example 011 relates to pumping and probing 
transitions of the first type of chromophores while 012 refers to pumping of the first chromophore type and 
probing of the second. 

It is easily shown that in the degenerate case where 011 = 022 = 0 and 012 = 021 = 0 ,  i.e. where each 
chromophore has parallel absorption and emission transition dipole moments, the fluorescence polarization 
degree has the following form: 

3 cos20 - 1 + 2 B  ~'2 1 +K21 + Og'~(T11 +K,2 ) 
P =  3 + c o s 2 0 + 4 B  ' B =  a K 2 1 + y K 1 2  (8) 

This special case of the more general theory was previously treated in Ref. [12]. 
We can also consider another type of limiting behaviour, where excitation relaxation via intra-chromophore 

processes is much faster than inter-chromophore energy transfer: ~'-1,21 >> Kij. In this case the formulae (5) and 
(6) will take the form 

3 cos201, - 1 + ay(~-2/~-1)(3 c0s2022 - 1) 

P = 3 + c0s2011 + c~3,(z2/~-1)(3 + c0s2022) ' (9) 

3 cos2011 --  1 + aT(7"2/71)(3 COS2022 --  1) 
r = (10) 

5(1 + ay'r2/'rl) 

In general this limit represents quasi-independent behaviour of excitations located on the chromophores of the 
first and second type, so that no equilibration of energy between the chromophores takes place during the 
lifetime of the excitation. Evidently the above results reduce to the expected P = 0.5 and r = 0.4 when 
011 = 022 = 0. 

Before concluding this section, it is worth noting that Eq. (6) affords an opportunity to correct a common 
misconception concerning the general principle of polarization anisotropy additivity. Although it is correct to 
assume that the polarization anisotropy of a whole system, as reflected by the parameter r, is a simple sum of 
the anisotropies of its constituent subsystems if the latter are uncorrelated, this is a principle that is not 
applicable to cases where there is orientational correlation within each unit, (see Fig. 1), as discussed here. 
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3. Pulsed excitation 

In the case of 6-pulse excitation the balance of energy between the chromophores is described by the 
following system of equations: 

dn 1 dn 2 
d t  ( T l l  + K 1 2 ) n l  +KEln2 '  dt  =K12nl  - (7-21 + K 2 1 ) n 2 '  (11) 

with the initial conditions of excitation n l ( 0 ) = A  1 and nz (0 ) - -A 2 (for the determination of A 1 and A 2 see 
above). The system (11) can be solved for the nl, 2, 

nl(t ) =gH( t )a ,  +gaz(t)a2,  n2( t  ) ---gz,(t)al +gz2(t)a  2 (12) 

where the gq(t) contain the same parameters as the former gq as well as exponential functions of the times for 
the characteristic processes of energy equilibration t I and overall decay t2, 

t21 =0.5(7-]- '  + 7-2' + K,2 + K 2 , -  ~ 2  q_ 4KI2K21 ), 

f = 7-21 _ 7-]~a + K21 _ K12. (13) 

The system of Eq. (12) is analogous to the steady-state system (1) with elements gq substituted by gq(t). It 
follows that the final results will have the same form as Eqs. (5) and (6) with time dependence included in the q 
parameters. Specifically, dynamical features of the fluorescence depolarization kinetics are manifest through the 
following expressions: 

3 cos20H - 1 + ql( t ) (3  c0s202 , -  1) + q2 ( t ) (3  c0s2012- 1) + qa ( t ) ( 3  c0s2022- 1) 

P ( t )  = 3 + c0s2011 + e l ( t )  (3 + c0s2021 ) + q2( t )  (3 + c0s2012) + q3( t )  (3 + c0s2022 ) ' (14) 

3 cos20u - 1 + q l ( t ) ( 3  cos202x- 1) + q z ( t ) ( 3  c0s2012- 1) + q a ( t ) ( 3  c0s2022- 1) 

r(t)  = 511 + q l ( t )  + q2( t )  + qa( t ) ]  , (15) 

where 

g12(t)  K21 [1 - exp( - a t ) ]  
q , ( t )  = a - -  a 

gll(t) ( G 2 + 7 - ; 1 - q l ) e x p ( - n t ) - ( K 1 2 + 7 - ] - l - t ; 1 )  ' 

g21(t) K1211 - exp( - ~Qt)] 

qz(t) = Ygu(t----) " / ( K 12  -4- 7-11 - t2  1) e x p ( - ~ t )  - (K12 -4- 7-]-1 _ t l l )  , 

g22 ( t )  (K12 + 7-]-1 _ t 2 1 )  _ (K12 + 7-]-1 _ t l  I ) exp( - O t )  

q3( t )  = a y  g l l ( t )  = c~v (K12 + 7-]- 1 - t2 1 ) exp( - a t )  - (K,2 + 7-;1 _ t l  1 ) ,  

J2 = t~ -1 - t 2 ' .  (16) 

Here the parameters at and y are the same as described above in connection with steady-state excitation. 
Let us consider the particular case of 011 = 022 = 0, i.e. when the absorption and emission transitions of 

individual chromophores are parallel, and consequently 012 = 021 = 0, say. In this case Eq. (14), for example, 
can be simplified, 

3 COS20 - 1 + 2 B ( t )  g(1 - a T )  + ( t2  1 - t l ' ) ( 1  + aT) coth(½g2t) 

P(t )  = 3 + cos20+ 4 B ( t )  ' B(t)  = 2(aK21 + TK12 ) , (17) 

and the result again reduces to a formula given in Ref. [12]. 
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Finally we consider the limits of  Eq. (14) as (a) t ~ 0, (b) t ~ o. and (c) ~'1,2 >> Kij. 
(a) The initial value of the degree of polarization is given by 

lim [ P ( t ) ]  = 3 cosE01t - 1 + a3 ' (3  cos2022 - 1) , (18) 

t--,0 3 + cos2011 + a 'g (3  + c 0 s 2 0 2 2 )  

and in the particular case when 011 = 022 = 0, we thus have P(0)  = 0.5. 
(b) The formula for P(t  ~ ~) has the same form as Eq. (5) with the qi parameters given by 

K12 Kl2 
= and q3 , (19) 

ql oz, q2 = ')'K21 = a'YK21 

when 7" 1 = '7"2, or when Kij >> zl, 1. The above results may be compared with the corresponding Eq. (7) for the 
steady-state case, in which the rates of fluorescence decay are manifest. Thus, we obtain the result that as t -~ 
(or t > > / 2 - 1 )  the degree of polarization equates to the result for steady-state excitation with Kij >> ~-~-,2 ~. 

(c) In the case where ~'-1,2t >> Kij the rates of  intra-chromophore relaxation are much higher than the rates of 
excitation exchange between the chromophores. This limit yields quasi-independent behaviour of  the chro- 
mophoric excitations and formula (14), for example, is simplified to 

3 cos20tl - 1 + a 7 ( 3  c0s2022 - -  1) e x p ( - / 2 t )  

P ( t )  = 3 + cos2011 + ocy(3 + cos2022) e x p ( - O t )  ' (20) 

with ~ reducing to r 21 _ ~'11. The initial behaviour ( t  -~ 0) is obvious and directly follows from Eq. (20). It is 
interesting to note that the same constant value for the degree of polarization results, for any time t, if ~'1 = ~'2, 

3 cos2011 - -  1 + a ' y (3  c0s2022 - -  1) 

P ( t )  = 3 "[- cos2011 At- ol3'(3 + c0s2022 )  (21) 

The long-time limit (t  ~ oo) of  P is a very sensitive function of the relation between ~'1 and z 2. If z 1 > ~'2, then 
P(o0  = (3 cos2011 - 1 ) / (3  + cos2011), and if ~'l < r2, then P ( ~ )  = (3 cos2022 - 1 ) / (3  + cos2022). 

4. Discussion 

The theory of fluorescence polarization and absorption anisotropy introduced in our work focuses on a 
quantitative description of polarization phenomena in double-chromophore complexes having a rigid structure. 
We have considered the general case of  non-parallel orientations for the transition moments within both 
chromophores,  each of which can have broad and highly overlapped spectra. The major limitation involved in 
our calculations is consideration only of incoherent excitation, i.e. at any time the quantum of excitation is 
recognized as located on one or the other chromophore. The formulae derived allow calculation of the degree of 
fluorescence polarization (absorption anisotropy) on the basis of  a known spatial structure for any given 
molecular complex and the spectroscopic parameters of  its constituent chromophores. Equally, for example, 
measurement of  the spectroscopic parameters, including polarization data, together with dynamical parameters 
such as energy transfer rates and fluorescence lifetimes, enables one to derive orientational information. The 
bichromophoric molecular system considered, with non-parallel absorption and fluorescence chromophoric 
transitions, has other polarization features that will become manifest with circularly polarized radiation 4 [18]. 
Such features fall outside the scope of the present work, but represent a logical extension for the future. 

4 The chirality of a system with 012 , 021 ::/= 0 can be manifest in circular differential excitation experiments. The magnitude of the 
differential signals will, however, depend on inter-chromophore separation. 
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In the strategy of our calculation three major stages can be identified: (a) pumping of energy in the molecular 
complexes via light absorption by chromophores 1 a and 2 a of the first and second types, with the parameter a 
characterizing the relative efficiency of this process; (b) an intermediate stage associated with redistribution of 
the absorbed energy between the chromophores, to be discussed in more detail below; and (c) emission of 
fluorescence quanta by chromophoric transitions l f ,  2f ,  with a different relative efficiency of fluorescence y. 

The nature of the second stage in the above scheme can be several types. One such type has been considered 
in the main body of work, namely the case where the absorption and fluorescence are associated with different 
electronically excited states, for example where UV excitation initially populates S n states and the ensuing 
S 1 ~ S o fluorescence occurs in the visible or near-infrared range. Another possibility is where the initial 
excitation is directly to the S 1 state but, because of some fast conformational change, the orientations of the 
emission transitions l f ,  2f differ from the absorption transitions la, 2 a. Here the term 'fast '  specifically means 
that the conformational change must be faster than the rate of energy transfer and/or  intrinsic fluorescence 
(~--'). 

Such a strategy of analysis leads us to the unexpected result that the formulae derived are not limited in their 
application to the case of energy migration, but have wider applicability. When we have double-chromophore 
complexes with fixed chromophore positions in the (a) and (c) stages, i.e. during the stages of energy pumping 
(la, 2 a) and emission ( l f ,  2f ) ,  it is immaterial which mechanism causes transition between these two stages. If 
this transition can be described by any two-dimensional matrix II g II then our result will be valid by involving 
the appropriate elements: in such a case these elements will be determined by processes other than the energy 
migration. Processes like fast trans-cis isomerization, electron or proton transfer, etc., alone or in conjunction 
with conventional energy transfer, are thereby accommodated in our theory. 
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