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Fundamental theory is developed for three-body resonance energy transfer in the condensed phase, involving
two donors and a single acceptor. Thisenergy poolingmechanism is responsible for recent experimental
observations on trichromophore molecules and other moieties, manifest for example in the photochemistry of
organo dyes and rare-earth ion doped crystals. A full quantum electrodynamical (QED) treatment of this
pooling is developed and formulated with the aid of a novel diagrammatic method, which proves to have
several advantages over Feynman diagram methods. Following derivation of the rate of energy pooling for
an isolated group of chromophores, the electronic influences of the medium across which the energy migrates
are embedded in the theory and duly discussed. Energetic constraints on the acceptor molecule are elucidated
and shown to account for a variety of postulated mechanisms: the geometry of the three-center system is
itself shown to exercise considerable control over the dominant mechanism. By extension, the theory is
amenable to the study of more complex energy transfer arrangements, such as those observed in dendrimer
chemistry and the light-harvesting photochemistry of the photosynthetic unit.

1. Introduction

When the absorption of light leads to electronic excitation,
the associated energy is, in many cases, rapidly conveyed from
the site of its initial deposition to another. This process is
familiar in many areas of condensed phase photophysics, and
its distance dependence is increasingly proving of value for the
detailed structural analysis of proteins.1,2 When the energy
transfer from donor to acceptor takes place between two
chemically distinct species separated beyond wave function
overlap, it has generally been considered as potentially involving
two distinct mechanisms: at short distances, radiationless
transfer3 with an inverse sixth power dependence on the donor-
acceptor separation, and at longer distances, radiative transfer
identifiable with the well-known inverse square law. The
comparatively recent development of a unified theory4 of
resonance energy transfer, based on quantum electrodynamics
(QED), has identified these two mechanisms as the long- and
short-range limits of a more general, all-encompassing mech-
anism. With due regard to the effects of the intervening
medium,5,6 the unified theory accommodates both intermolecular
and interchromophore excitation transfer.

Recent studies in quite separate disciplines (vide infra) have
revealed examples in the condensed phase of a fundamentally
new three-center process involving the transfer of energy from
two electronically preexcited donors to a single acceptor, the
initial excitation of each donor having occurred through the
normal absorption of a single photon. In the case of molecular
species the exact vibronic level of the electronically excited
donor from which energy transfers is normally a state populated
by intramolecular vibrational relaxation, within the excited state
manifold, prior to the interaction we here consider. In simple
chemical terms the transfer itself is an ultrafast process which

can be expressed through the equation

The above equation is to be understood as a three-center
exchange of energy between essentially static moieties, not a
three-body collision process. A schematic representation of the
essential energetics is given in terms of a modified Jablonski
diagram in Figure 1. The total energy transferred to the acceptor
B is less than or equal to the sum of initial donor excitations,
the transfer of lower energies generally associated with internal
vibronic relaxation within the donor excited states.

There are several reasons for the interest in a process such
as that represented above. One is that it signifies the prototypical
example of potentially multicenter energy pooling processes,
conceivably with several tributaries (preexcited donors) feeding
a single reservoir (acceptor). Any such process affords a means
of promoting the acceptor site to a state higher in energy than
any individual initially excited donor. Moreover, the concerted
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Figure 1. Modified Jablonski diagram showing the essential energetics
of the three-center energy pooling process. HereS0 represents the ground
electronic state and its associated manifold;Sâ denotes a higher
electronic excited state and its associated manifold. Vertical arrows
represent transitions; horizontal arrows denote channels of excitation.
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transfer of excitation energy from two or more donors can
circumvent the need, which would otherwise arise in a multistep
process, for suitably placed intermediate energy levels of the
acceptor.

The pooling process in particular offers all the advantages
commonly associated with unimolecular two-photon absorption
at B, with the additional possibility of exploiting the intrinsic
dependence on the mutual orientation of the donors and the
acceptor, associated with the three-body mechanism. Also, it is
only the absorber, not the site of preexcitation, that needs a
two-photon absorption cross section. In other words, the initial
excitation can be achieved through laser irradiation with a
frequency associated with conventional single-photon absorp-
tion, giving a high population of excited state donors. Compared
to the probability of two excitation photons being absorbed
directly by an acceptor, there is generally a greater probability
of two photons being captured by any two separate donors in
its vicinity, even though both processes have an overall quadratic
dependence on the pump laser intensity.7 In this sense the three-
body process carries an obvious advantage over two-photon
fluorescence resonant energy transfer,8,9 in which two-photon
absorption at asinglesite is followed by energy transfer to a
nearby fluorophore (see Figure 2).

Until recently, most interest in three-body donor-acceptor-
donor interactions has arisen in the field of rare-earth ion doped
Yb3+-sensitized crystals.10,11In such systems, atoms of the host
Yb3+ lattice are excited in an absorption band away from the
absorbing region of a variety of dopants, such as Tm3+, Er3+,
and Ho3+. Here we envisage a process of energy pooling
mediating the transfer of excitation energy to dopant acceptors
which, in turn, emit photons at approximately twice the initial
excitation energy of the lattice atoms.12 In this context, the
process under consideration embraces a closed system of two
initially excited lattice atoms interacting with a single atom of
a dopant species. The multiatom excitation that occurs in the
host lattice is considered as a pool from which any two atoms
can contribute their energy. Such three-body interactions are
also observed in the study of rare-earth ion doped fibers
exhibiting blue emission following long-wavelength excitation.13

Three-body energy pooling has been discussed in the
literature11 as comprising both radiationless and radiative
mechanisms. The former nonradiative route14 is usually thought
of as proceeding not only through a cooperative process, by
which the acceptor captures its energy on progression through
a virtual intermediate state, but also (where the acceptor
energetics allow) a stepwise excitation through two separate
donor-acceptor energy transfer processes. Radiative pooling
has been characterized in studies of systems sufficiently dilute
in the dopant that nonradiative energy transfer is essentially

negligible.11 We show here that both these mechanisms are
embraced by a unified theory based on QED considerations.

The occurrence of systems that show energy migration from
two identical donors to a single acceptor species is not restricted
to the realm of rare-earth ion chemistry. A similar system
undergoing three-body energy pooling has recently been ob-
served in studies of simultaneous (two-photon) excitation energy
transfer (SEET).15,16 SEET systems characterized thus far
comprise discrete molecules of fluorescein or erythrosin as donor
units, orantennae, transferring energy to anE-stilbene acceptor,
or target.17 Acceptor and donor units are linked by thiourea
units which, in themselves, inhibit both through-bond relaxation
and also conjugated charge delocalization. These thiourea
bridging units set the energy migration distance at∼1 Å. As
the two donor units are preexcited using laser light at a frequency
off-resonant with respect to target excitation, and at intensities
too low to realize direct two-photon absorption by the target,
the observed intramolecular energy transfer is due to a three-
body pooling interaction and is characterized via the photo-
chemical E/Z-isomerization of the stilbene molecule. This
isomerization is known to occur at energies favorable for
absorption of the two donor exciting quanta. Furthermore, the
sum of the exciting energies is necessarily greater than that
required to initiate the isomerization, thus allowing for internal
vibronic relaxation of the excited antennae, a fact experimentally
recognized in SEET.17,18SEET has the potential to open up the
area of deep UV photochemistry to high-intensity long-
wavelength excitation.

The intramolecular pooling properties of the stilbene system
cited above afford a potential springboard for other, geo-
metrically more complex, systems where multicenter energy
transfer is endowed upon a single target molecule or trap with
a suitable absorbance cross section. The prototypes for these
systems may be found in the area of dendrimer chemistry19

where energy hopping is observed with localized excitons in
both linear chains20 and dendrimeric supermolecules.21,22 Here
our theory addresses the possibility that under high levels of
illumination the coexistence of more than one exciton could
lead to high-energy excitation of a single trap via multibody
energy pooling. Dendrimeric superstructures could yield a
variety of novel many-bodied interactions, for example through
their exhibition of properties analogous to light-harvesting
antennae.23 This is an aspect which will be considered further
in our conclusion.

2. QED Formalism

Three-body energy transfer involving procession of a single
excitation is not unknown in the realm of QED, and the case
where energy propagates along a trio of molecules has been
formulated before.24 This approach can in principle be incre-
mentally extended by molecular additions to give higher order
results for energy transfer along chains of molecules, leading
to a means of addressing the dynamics of energy hopping in
complex systems. QED methods have also recently been applied
in addressing the nonadditive three-body long-range van der
Waals interaction25 by extension of methods developed in the
study of the two-body potential.26,27 This method, which
essentially considers each pairwise dipolar interaction among
three atoms in terms of induced and spatially correlated zero-
point vacuum fluctuations “dressed” by the third, was further
extended to encompass any interatomic distance beyond wave
function overlap, and also to accommodate arbitrary geometrical
configurations.28

For three-body energy pooling we consider not one, as in
normal energy transfer, but two initial preexcitations to be

Figure 2. Modified Jablonski diagram showing the essential energetics
of two-photon fluorescence resonance energy transfer.
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present in the vicinity of the acceptor. Let the chemically
identical donor molecules (A and A′) begin in an already excited
state|AR〉 and progress to the electronic ground state|A0〉: let
the acceptor molecule (B) begin in the ground state|B0〉 and
finish in an excited state|Bâ〉 via transferral of the excitation
energies of the tributaries A and A′. A and A′ are considered
as chemically identical molecules but necessarily distinguished
for calculational purposes by features such as their distances
from the acceptor B. This is important to accommodate the case
of rare-earth lattice excitation where the donors need not
necessarily be nearest neighbours to the acceptor. In SEET,
however, the interacting donors are normally in the same
molecule as the acceptor and inter-unit separation is fixed. The
energetics thus satisfy the basic relation 2ER0

A ) Eâ0
B , whereER0

A

is the energy lost by a donor andEâ0
B that gained by the

acceptor. In quantum electrodynamical terms the energy mi-
grates due to the creation and annihilation of virtual photons
associated with radiation modes (p, λ) and (p′, λ′), the primes
serving to differentiate transferral from A and A′. The photons
are virtualsthey cannot be observed, and their short propagation
time which guarantees the ultrafast nature of the process implies
an intrinsically high uncertainty in energy due to the time-
energy uncertainty principle. The virtual photon exchange means
that molecule B must pass through a real or virtual state|Bb〉 to
get from its initial to its final state. Here we impose no
restrictions on the intermediate state of Bb but its nature will
be shown to play an important role in mechanistic consider-
ations.

The full Hamiltonian for such a system,H, can be written as

with Hmol
ê being the molecular Hamiltonian for the moleculeê,

Hrad the second-quantized radiation field Hamiltonian andHint
ê

the molecule-field coupling Hamiltonian. In the electric dipole
approximation the latter operator is given by

with µ(ê) being the electric dipole moment operator andRê the
position vector of moleculeê. The transverse electric displace-
ment field operator,d⊥( Rê), can be expressed in terms of a
mode expansion either in the familiar vacuum formulation or
with the incorporation of media influences, as in a host or
solvent “bath”.5,29,30For simplicity, eq 2.3 addresses the vacuum
case (local field effects generated by bath states to be revisited
at the end of this section);

In expression 2.3, summation is taken over modes characterized
by a wave vectorp and polarizationλ, e represents the electric
field unit vector withej being its complex conjugate,a anda†

are the annihilation and creation operators, respectively, andV
is the quantization volume.

We can now introduce the quantum probability amplitude or
matrix element, Mfi, connecting the initial,|i〉, to the final,|f〉,
system states via the virtual states,|r〉, |s〉, and|t〉, as given by

the lowest order nonzero term in the time-dependent perturbation
expansion, which is of fourth order since the process entails
four virtual photon creation and annihilation events

whereEn is the energy of state|n〉 and the system basis states
are of the form|n〉 ) |An; A′n; Bn〉|radn〉. The detailed form of
the matrix element can be established using QED techniques31

and described in terms of a set of 24 time-ordered diagrams,
six of which are shown in Figure 3. The other 18 diagrams are
time-order permutations. An alternative diagrammatic technique
which proves not only more compact but also calculationally
more expedient in the present connection is shown in Figure 4.
Here boxes represent specific combinations of the basis mo-
lecular and radiation states (and, as with time-ordered diagrams,
the molecular configuration is schematic rather than geo-
metrical). It is then possible to identify each of the 24 time
orderings with routes from the initial system state on the left to
the final system state on the right (see Appendix). Each
intervening column of boxes represents the set of all possible
virtual intermediate states, which for reference can be enumer-
ated vertically. For example, the first set after the initial box
represent thern states numberedr1 to r4 from top to bottom.

Each individual path through the diagram begins and termi-
nates with the same boxes, the individual states and energies
of which are given below (making use of the fact that A and A′

Figure 3. Six of the 24 time orderings for three-body energy pooling,
the subset initialized by virtual photon creation at A. Time progresses
upward. In (a), for example, the sequence is (i) creation of a virtual
photon (p, λ) through decayR f 0 at A, (ii) creation of virtual photon
(p′, λ′) through decayR f 0 at A′, (iii) (p, λ) virtual photon annihilation
at B accompanied by the molecular transition 0f b, and (iv) (p′, λ′)
annihilation at B accompanied by the transitionb f â. Eighteen further
diagrams can be generated by simple temporal permutation.

Mfi ) ∑
r,s,t

〈f|Hint|t〉〈t|Hint|s〉〈s|Hint|r〉〈r|Hint|i〉
(Ei - Er)(Ei - Es)(Ei - Et)

(2.4)

H ) Hmol
A + Hmol

B + Hmol
A′ + Hint

A + Hint
B + Hint

A′ + Hrad (2.1)

Hint
ê ) -ε0

-1µ(ê)‚d⊥(Rê) (2.2)

d⊥(Rê) ) ∑
p,λ

(pcpε0

2V )1/2

i[e(λ)(p)a(λ)(p)eip‚Rê -

ej(λ)(p)a†(λ)(p)e-ip‚Rê] (2.3)
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have an identical set of energy levels):

the radiation ket|0〉 being included, for completeness, to signify
the vacuum state where no photons are present. Comparing,
for example, Figure 3b to its equivalent state sequence identified
explicitly by Figure 5, we can define the path in terms of the
boxes traversed:

with the primed and unprimed numbers relating to virtual
photons associated with A and A′ respectively, and where|Bb〉
is a virtual state of the acceptor, the detailed nature of which is
to be discussed later. After application of (2.4), the correspond-
ing contribution to the overall matrix element for the path,
Mfi

(5), is given by (2.5):

introducing

intermolecular separation vectors andR ) RB - RA, R′ )
RB - RA,

and where summation over repeated Cartesian indices is implied.
Each of the separate paths has a different energy denominator

associated with it. As the system is energy-conserving we can
introduce the identity

defining the initial energy of each donor aspck. The energy
pck is considered fixed only in the sense that it is determined
by the specific vibronic level from which donor excitation is
released. Using this, and also defining the energy of any virtual
stateb for molecule B asEb0

B ) pckb (not necessarily, or even
usually, resonant withpck), the individual matrix elements can
be grouped by noting that within the full set of state sequences
there are four subsets that are identical in polarization features.
Ignoring common factors and simplifying the notation by using
en for polarization components of the photon (p, λ) anden′ for
the photon (p′, λ′), we first illustrate the procedure for the
combination

This grouping directly links all the contributions from the
pathways where one virtual photon is created at A and another
at B. As represented in Figure 6, each line segment connecting
successive boxes can be identified with one of the index labels
i, j, k, or l. The complete set of pathways associated with this
particular configuration can be simplified by adding the fol-
lowing set of energy denominators and dipole moment numera-
tors:

Implementing this method for the other three subsets and
summing the results leads to a result in which it is possible to
recognize a common factor identifiable as the two-photon
absorption tensorRâ0(B) associated with molecule B, explicitly

Figure 4. Box diagram for three-body energy pooling showing all 24
time orderings with the network of paths from left to right. Each box
represents a combination of molecular states for the participant
molecules. The labelsφ1 andφ2 at the center of a box record any virtual
photons present, (p, λ) and (p′, λ′), respectively. The six time orderings
of Figure 3 correspond to paths involving boxr4.

Figure 5. One of the paths through Figure 4, indicative of the specific
time ordering given in Figure 3(b).

|i〉 ) |AR; A′R; B0〉|0〉; Ei ) 2ER
A + E0

B

|f〉 ) |A0; A′0; Bâ〉|0〉; Ef ) 2E0
A + Eâ

B

|r4〉 ) A0; A′R; B0〉|1〉; Er4
) ER

A + E0
A + E0

B + pcp

|s5〉 ) |A0; A′R; Bb〉|1;1′〉;

Es5
) ER

A + E0
A + Eb

B + pc(p + p′)

|t4〉 ) |A0; A′R; Bâ〉|1′〉; Et4
) ER

A + E0
A + Eâ

B + pcp′

Mfi
(5) ) ∑

b,p,λ,p′,λ′ ( pc

2ε0V)1/2

{µi
0R(A) µl

0R(A′) µj
âb(B) µk

b0(B)p ×

eji
(λ)(p)ej

(λ)(p)eip‚Rp′ejk
(λ′)(p′)el

(λ′)(p′)e-ip′‚R′}/{(ER0
A - pcp) ×

(ER0
A - Eb0

B - pc(p + p′))(ER0
A - E0â

B - pcp′)} (2.5)

Exy
ê ) Ex

ê - Ey
ê

µxy(ê) ) 〈x|µ(ê)|y〉

2ER0
A ) Eâ0

B ) 2pck

ejieje
ip‚Rejk′el′e

-ip′‚R′

ejieje
ip‚Rejk′el′e

-ip′‚R′{ µk
âb(B) µj

b0(B)

(k - p)(k - kb)(-k - p′)
+

µj
âb(B) µk

b0(B)

(k - p)(k - kb - p - p′)(2k- kb - p)
+

µj
âb(B) µk

b0(B)

(k - p)(k - kb- p - p′)(-k - p′)
+

µj
âb(B) µk

b0(B)

(-k - p′)(k - kb- p - p′)(-kb - p′)
+

µj
âb(B) µk

b0(B)

(-kb - p′)(2k - kb - p)(k - kb)
+

µj
âb(B) µk

b0(B)

(-kb - p′)(k - kb- p - p′)(2k - kb - p)} )

µj
âb(B) µk

b0(B) + µj
âb(B) µk

b0(B)

(k - kb) {ejieje
ip‚Rejk′el′e

-ip′‚R′

(k - p)(-k - p′) } (2.6)

Three-Center Systems for Energy Pooling J. Phys. Chem. A, Vol. 102, No. 52, 199810837



given as

Expression 2.7 resembles the index-symmetric form of theS
tensor encountered in studies of two-photon absorption and
single-center two-photon fluorescence where there is an equiva-
lence in the exciting photons.31 Using result (2.7) the total matrix
element for all routes in Figure 4,Mfi, can thus be written as

Using the identity∑λei
(λ) (p)ejj

(λ) (p) ) (δij - p̂ip̂j) to carry
out the polarization sums and also

to convert thep sums to integrals, we may then write

With use of the identity

with

and also;

and furthermore making use of the fact that the total integrand

is odd in bothp andp′, we can express (2.9) as follows:

Finally, using

we can write for the complete matrix element;

We notice embedded in eq 2.11 two second-rank, index-
symmetric, Cartesian tensors representing the retarded resonance
electric dipole-electric dipole coupling,Vij(k,R) andVkl(k,R′),
of the form32

In the short range, this coupling displays anR-3 distance
dependence, though the terms linear and quadratic inkR
increasingly modify the behavior asR increases. The term “short
range” in practice indicates intermolecular belowR ≈ 100 Å
(i.e., small compared to the characteristic optical distancek-1)
where the radiationless limit of energy transfer dominates. As
R increases, retardation effects4,33 become more prominent,
bringing the radiative mechanism to the fore. We are primarily
interested in the short range where the coupling exerts its greatest
influence, but our theory does properly accommodate retardation
effects. Identification of (2.12) enables the result (2.11) to be
most concisely expressed as

The rate of three-body energy pooling,Γ, can now be
ascertained by substitution of the matrix element given by (2.13)
into the Fermi golden rule

whereFâ is the appropriate density of final molecular states for
the acceptor. The rate thereby acquires, in the short-range limit,
an inverse sixth power dependence on both donor-acceptor
distances. Usage of the Fermi rule enables us, incidentally, to
compare typical rates of energy pooling with the rates of
resonance energy transfer (RET) more familiar in other systems.
In conventional two-body (single donor) RET, the matrix
element exhibits a well-known dependence on the square of
the transition dipole moments for donor and acceptor, and an
R-3 dependence on intermolecular separation.4 The matrix
element for three-body energy pooling, given by (2.13), yields
a dependence on the square of the two-donor transition dipole
moments and a linear relation to the two-photon absorption

Figure 6. Full subset of Figure 4 pathways with the common radiation
factorejiejeip‚Rejk′el′e-ip′‚R′. The interstate links carry index labels which
signify the photons; for example, the lower left line segment labeledi
is associated with the creation of a virtual photon at A, hence generating
the factor.

Rjk
â0(B) ) ∑

b

µj
âb(B) µk

b0(B) + µk
âb(B) µj

b0(B)

pc(k - kb)
(2.7)

Mfi )
µi

0R(A) µl
0R(A) Rjk

â0(B)

4ε0
2V2

∑
p,λ,p′,λ′

pp′{ejieje
ip‚Rejk′el′e

-ip′‚R′

(k - p)(-k - p′)
+

ejieje
ip‚Rejk′ejl′e

-ip′‚R′

(k - p)( k - p′)
+

ejieje
ip‚Rejk′el′e

-ip′‚R′

(k + p)( k + p′)
+

eiejje
ip‚Rek′ejl′e

-ip′‚R′

(-k - p)(k - p′) } (2.8)

(1/V) ∑
p

w ∫ d3p/(2π)3

Mfi )
µi

0R(A)µl
0R(A′)Rjk

â0(B)

256ε0
2π6 ∫ d3p∫ d3p′ p(δij - p̂ip̂j)p′(δkl -

p̂k′p̂l′){ eip‚Re-ip′‚R′

(k - p)(-k - p′)
+ eip‚Re-ip′‚R′

(k - p)(k - p′)
+

eip‚Re-ip′‚R′

(k + p)(k + p′)
+ eip‚Re-ip′‚R′

(-k - p)(k - p′)} (2.9)

∫p(δij - p̂ip̂j)
d3p

(2π)3
) (-∇2δij +∇i∇j)∫1

p
d3p

(2π)3

d3p ) p2dp d(cosθ) dφ

∫0

2π∫-1

1
e(ipRcosθ d(cosθ) dφ ) 4π sin(pR)/pR

Mfi )
µi

0R(A) µl
0R(A′) Rjk

â0(B)

(4ε0π)2
(-∇2δij +∇i∇j)

eikR

R
(-∇′2δkl +

∇′k∇′l)
eikR′

R′ (2.10)

∇i∇j
eikR

R
) eikR

R3
{(ikR- 1)(δij - 3R̂iR̂j) - k2R2R̂iR̂j}

Mfi ) 1

(4πε0)
2
µi

0R(A) µl
0R(A′)Rjk

â0(B) 1

R3R′3
[(ikR- 1) ×

(δij - 3R̂iR̂j) - k2R2(δij - R̂iR̂j)][(i kR′ - 1)(δkl - 3R̂′kR̂′l) -

k2R′2(δkl - R̂′kR̂′l)]e
ik(R+R′) (2.11)

Vij(k‚R) ) eikR

4πε0R
3
[(ikR- 1)(δij - 3R̂iR̂j) -

k2R2(δij - R̂iR̂j)] (2.12)

Mfi ) µi
0R(A)Vij(k,R)Rjk

â0(B)Vkl(k,R′) µl
0R(A′) (2.13)

Γ ) (2π/p)|Mfi|2Fâ (2.14)
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tensor of the acceptor, with anR-6 distance dependence (if
R≈ R′). Considering that a typical two-photon tensor component
can realistically take a value of approximately 10-30 m3, then
for any transfer distance of∼1 Å it is clear that the two types
of process should offer comparable rates.

We conclude this section with a consideration of the
modifications which are necessary to properly accommodate
the dielectric effects of the medium across which the energy
transfer occurs. In real systems the two donors and the acceptor
are not isolated in a vacuum but separated by regions of space
which contain other chemical speciessin the case of lanthanide-
doped crystals10,11 these are the ions of the host lattice, and in
cases such as SEET16,17 the intervening space is occupied by
the chemically bonded structure which forms the donor-
acceptor linkage. To account for the electronic influence of such
secondary species on the character of the energy transfer process
formally requires that the theory is reformulated in terms of
polaritonssvirtual photons “dressed” by the secondary electric
fields. The manner in which this is accomplished, detailed in
several recent papers,5,29,30is to recast the Hamiltonian of (2.1)
to include contributions from all molecules beyond the interact-
ing trio by the replacementHrad f Hbath in (2.1). This
transformation is sufficient to describe the difference between
the system in vacuo and under the influence of the surrounding
medium. Specifically,Hbath is given by

with number eigenstates whose physical character is interpreted
in terms of polaritons. Recasting the Hamiltonian for the
interaction of A, A′, and B with the bath then leads to a
transformed retarded dipole-dipole coupling tensor,

concisely expressible as

wheren is the mean complex refractive index of the intervening
medium at the frequenciesck corresponding to the transfer
energy. As a result the media-influenced matrix element is given
by

If the medium immediately surrounding the twin donor-
acceptor system contains other excited donors, the need arises
to determine the probability of finding initial excitation of the
given donor pair. Outside the scope of our present work, it is a
matter we shall return to elsewhere.34 The most obvious effect
of the Lorentz factors combined with the other refractive features
in (2.17) is to introduce a multiplicative change in the transfer
rate (2.14), proving particularly significant when the energy
transfer occurs in regions of high dispersion, i.e., at any optical
frequency close to an absorption band. The other feature worth
noting under such circumstances is the modification to the
argument of the coupling tensor which, because of the imaginary
component of the refractive index, leads to decay factors
associated with the exponentials in (2.12). Hence both dispersive

and attenuative influences correctly feature in (2.17) and are
reflected in the rate.

3. Energetics and Charge Transfer Considerations

The structure of the acceptor energy levels has a strong
bearing on the detailed form of the results obtained in the last
section, through their influence on the two-photon tensorRâ0(B).
As given, the results directly relate to the “cooperative mech-
anism” illustrated in Figure 7a, in which a virtual levelb plays
a quasi-intermediary role in the excitation of the acceptor. This
case relates, for example, to the experimental results on SEET,17

for which the intermediate energy level accessed by B is deemed
virtual. From eq 2.7 it is clear that, selection rules permitting,
the rate increases wheneverpck is similar to the energy of any
such state i.e.,pckb ≈ pck. In the limiting case where there
exists a real excited state manifold encompassing energy levels
pckabove the ground state, as in Figure 7b, a stepwise excitation
process becomes possible and accordingly the rate is signifi-
cantly increased. Under such circumstances the finite extent of
the resonance enhancement is only correctly calculable when
damping factors are built into the equations, as fully described
elsewhere.35-37 However, the conditions for stepwise three-body
excitation will also often expedite direct two-step excitation of
the acceptor, and the situation is of little theoretical interest.

Here we shall focus on another case, in which the optical
response of the acceptor is dominated by transitions between
just two electronic levels, the ground state and the excited state
â. This quasi two-level situation will often arise when the latter
is the lowest electronic excited state, as shown in Figure 7c, or
where other excited states are sufficiently removed in energy
to play only a minor role. Here, it transpires that a charge-
transfer character to the excitation of the acceptor exercises
considerable control over the rate of energy pooling, as it is
also a prominent feature for two-photon absorption at a single
site.38 To implement the necessary conditions we first partition
the two-photon absorption tensor (2.7) into two parts, a driving
term associated with charge transfer,RCT(B) (subject to the
restrictionb ) 0, â alone) and a second, essentially negligible,
background termRBG(B);

where

Figure 7. : Energy-level representations illustrating: (a) cooperative
transfer whereb is considered virtual; (b) stepwise transfer whereb is
considered as real; (c) two-level case pertaining to charge transfer where
only statesâ or 0 play the role of the “intermediate” stateb. In each
case the uppermost state isâ.

Hbath) Hrad + ∑
ê*A,A ′,B

[Hmol(ê) + Hint(ê)] (2.15)
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and explicitly

Recognizing thatE00
B ) 0 and denoting the static dipole

moment vector difference between the ground and excited states,
d(B), as

the two-photon absorption tensor approximates to

Again in passing we note that a result directly cast in terms of
(3.3) can be achieved through application of a new algorithm
for two-level systems.39,40This entails effecting a transformation
on the matrix element according to the prescription: leading in

a single step to the result given above.
The result (3.3) demonstrates that for an acceptor whose

optical response is largely associated with transitions between
the electronic ground state and one other electronically excited
state, the rate of three-body energy pooling is linearly dependent
on the magnitude ofd(B). This particular mechanistic channel
should therefore dominate for acceptor molecules exhibiting a
substantial degree of charge displacement on optical excitation.

4. Discussion: Structure and Mechanisms

The process of three-body energy pooling has been shown
to yield potentially widespread applications across a variety of
disciplines. Among these we can identify two principal classes
of pooling. First, we have energy pooling systems comprising
“free” species with no fixed distance between donors and
acceptors. Specifically, we can identify rare-earth ion doped
crystals, in which acceptor excitation can result from interactions
with an undetermined number of randomly distributed excited
atoms in the lattice. Second, we have a family of molecules
with internal structure conducive to three-body energy pooling
processes, as in SEET. Here we assume that pooling takes place
within a single molecular entity, though we need not discount
pooling process between these triads, such intertriad effects
being governed by the first type of process. Assuming a
predominance of intramolecular pooling, we may profitably
investigate the effects that the fixed molecular architecture may
imply.

To properly gauge the effect of molecular geometry in fixed
systems, let us now assume that the two donors of interest are
identical and are equidistant from the acceptor, as is commonly
the case in SEET (the three entities together termed “chro-
mophores” in the following). For further simplicity, we shall
assume that effects of chromophore orientation are negligible
compared to those of distance dependence, in the light of the
high inverse powers with which the latter are associated.
Orientational features will in any case play only a minor role
in systems where the donor emission dipoles are close to parallel,
a situation one can expect when the initial excitation takes place

through the absorption of linearly polarized laser light. We shall
also assume that the short-range form of coupling applies.

Consider the molecular geometry shown in Figure 8. In the
particular case where the angleθ subtended by the donor pair
at the acceptor is 60°, i.e., in the situation where all three
interchromophore distances are equal, the two alternative
mechanisms invite consideration. The energy pooling mecha-
nism is important under such circumstances but we cannot now
dismiss a furtheraccretiVe mechanism. In this accretive mech-
anism we again consider that A and A′ are preexcited, but
instead of energy transferring directly to B (as in normal three-
body energy pooling) the excitation first migrates from one
donor to the other where it “picks up” the second excitation
and then moves on to B (as represented by the “box diagram”
of Figure 9 in the Appendix). Again, this is a purely quantum
phenomenon and the transfer of energy is nonresonant with any
molecular energy levels within the second donor species.
However, bearing in mind theR-6 distance power law, it is
easily shown that ifθ departs from 60° by as little as a few
degrees, then one or the other mechanism will dominate,
selection rules permitting. For example, ifθ ) 62°, then on
geometric grounds energy accretion becomes almost 20% less
effective and overall we move toward the energy pooling
mechanism; atθ ) 65°, then the accretive mechanism loses by
more than 35%. Taken to the extreme, whenθ is 180° (the case
of a linear ABA′ configuration) there is an overwhelming bias
(specifically, by a factor of 64) toward the pooling mechanism
we have described. Conversely atθ ) 58°, accretion becomes
20% more favorable and at 55°, it is favored by more than 60%.
In general, it is evident that asθ decreases the accretive
mechanism gains in significance until direct energy exchange
and delocalization through wave function overlap between A
and A′ becomes a consideration. The detailed theory of energy
accretion is the subject of other work now in progress.34 Unless
other energetic or orientational aspects of a given system have
unusual significance, we can conclude that the case of equilateral
displacement of the three chromophores in a twin-donor/acceptor
system is one of unusual complexity, in the sense that few other
geometries will necessitate consideration of more than one of
the mechanisms outlined above.

One further possibility for a trigonal array arises in the context
of dendrimers with the three branches “funneling” energy to a
suitable acceptor core. Spectroscopic work41 suggests that a
dendrimer-like aggregate with 6-fold symmetry does not exhibit
the desired exciton localization, since it is lost through ortho
and parasubstitution across a phenyl linkage. The meta substitu-
tion of the BA3 aggregate acts to separate the dendrimeric chain
of which it is part into regions with a distinct electronic integrity.
This meta-branching acts to install a resonance decoupling of
neighboringπ-electron excitons.42 Thus, for a viable dendrimeric
energy pooling system, the necessary meta branching suggests
that accretion can play only a very minor role asθ will be close
to 120°, leaving the mechanism detailed in the theory presented
here as the major contributor.
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ââ(B) µj
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1/2Eâ0
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B
+
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â0(B) µk

00(B) + µk
â0(B) µj

00(B)

1/2Eâ0
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d(B) ) µââ(B) - µ00(B)
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â0(B) ≈ -

µj
â0(B)dk
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â0(B)dj

(B)

pck
(3.3)

Figure 8. Three-center geometry and the mechanism-determining
angle,θ.
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In multitributary structures the close proximity between
donors will result in a degree of donor-donor coupling that
might suggest the need for a further modification to the theory.
In these circumstances, the initial optical excitation may lead
to the establishment of Frenkel exciton states. Frenkel excitons
have been shown to be important not only in photosynthetic
light-harvesting complexes which comprise more than six
discrete donor chromophores and an energy trap,43 but also in
dendrimeric systems involving chromophores with overlapping
charge distributions.42 The creation of such Frenkel states is
only an issue when the number of photons initially absorbed
within each superstructure is less than the number of donor
species it contains, as is most often likely in such cases. The
pooling of energy might then be considered in terms of excitonic
tributaries. Such considerations of excitonic channelling do not,
however, arise for the doubly excited two-donor case addressed
in the theory we have delineated here.

The extent to which disorder restricts the coherent delocal-
ization of excitation, in photosynthetic light-harvesting com-
plexes44 in particular, is an issue which remains unresolved.
However, the comparatively recent structural determination of
light-harvesting complexes by electron crystallography45,46has
given a new and detailed framework within which to base
studies of photosynthetic energy migration47,48 with repercus-
sions in the broader context of multiporphyrin light harvesters.49

With suitable development, application of the work presented
here might then assist ongoing development of the theory for
energy migration and storage within the photosynthetic unit.50,51
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Appendix: Box Diagrams

When considering the QED formulation of an optical interac-
tion, it is usual to view the time-ordered or Feynman diagrams
as representations of each contributor to the quantum amplitude
of the process. Such diagrams represent successive states of the
system by line segments and fundamental photonic processes
by vertexes. The alternative “box diagram” representation
introduced here casts the complete set of possible time orderings
in a form wherein the boxes represent states and the line
segments intermediary interactions. These diagrams obey the

simple rule that only one valid change in molecular and radiation
state may occur for each box-to-box progression, with respect
to the system under study. The box representation of three-body
energy pooling, as described in section 2, is illustrated in Figure
4. Each of the 24 complete paths from left to right represents a
specific time ordering and corresponds to one time-ordered
diagram.

The alternative mechanism outlined in section 4 can be
represented by Figure 9. Upon inspection of Figures 9 and 4
we recognize identical boxes in the second and fourth columns,
allowing us to combine the two pathways to give an overall
picture of the process. The diagram in Figure 10 shows both
energy pooling (dashed lines) and accretive (solid lines) aspects
of the process. The equivalent paths are shown by solid lines
making the inherent linkage clearly visible. All state sequences
are here incorporated into the single diagram. Representation
in terms of time-ordered diagrams would by contrast invoke
48 separate diagrams.
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(46) Kühlbrandt, W.; Wang, D. N.; Fujiyoshi, Y.Nature 1994, 367,

614.
(47) Demidov, A. A.; Donovan, B.; Walker, L. A.Abst. Pap. Am. Chem.

Soc.1996, 212, 118.
(48) Demidov, A. A.; Chernyavskaya, E. A.; Zhgirova, E. G.J. Russ.

Phys. Chem.1995, 69, 1391.
(49) Van Patten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J.J.

Phys. Chem. B1998, 102, 4209.
(50) Scholes, G. D.; Harcourt, R. D.; Fleming, G. R.J. Phys. Chem. B

1997, 101, 7302.
(51) Krueger, B. P.; Scholes, G. D.; Jimenez, R.; Fleming, G. R.J. Phys.

Chem. B1998, 102, 2284.

10842 J. Phys. Chem. A, Vol. 102, No. 52, 1998 Jenkins and Andrews


