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The theory of vibrational hyper-Raman scattering (inelastic second harmonic light scattering) is developed
within the framework of quantum electrodynamics. The dynamical system comprises the molecule and the
radiation field, coupled by multipolar interactions. In the present work, the electric dipole approximation
is employed and the results involve the hyperpolarizability tensor. In contrast to previous work, full index
symmetry of this tensor is not assumed. The tensor is decomposed into irreducible weights forming the
basis for a new vibrational mode classification scheme. A set of five experiments is specified which allows
unambiguous assignment of an active mode to one of six classes. The scheme has been applied to several
molecules and compared with some experimental results. Explicit expressions for scattering intensities for
a wide variety of experimental configurations are given; results for depolarization ratios are also

presented.

l. INTRODUCTION

With recent advances in laser technology a wide vari-
ety of new spectroscopic techniques involving the non-
linear interaction of radiation with matter has been de-
veloped. The new techniques provide information about
atomic and molecular systems not normally available
from conventional types of spectroscopy. For example,
because of different selection rules, two-photon spec-
troscopy makes it possible to study transitions which
are not one-photon allowed. An example involving non-
linear scattering is the hyper-Raman effect. Itis a
three-photon process involving the absorption of two
photons from the incident laser light and the emission
of one photon of frequency w’, approximately twice the
incident frequeacy w. The mismatch (2w - w') corre-
sponds to a vibrational or a rotational transition fre-
quency of the molecule or a lattice vibrational frequency
in the case of a crystal. The possibility of this type of
nonlinear scattering was first considered by Decius and
Rauch! in 1959, and the first experimental observations
were made by Terhune, Maker, and Savage® in 1965.
The intensity of scattered light depends quadratically
upon the incident intensity, and with the rapid develop-
ment of powerful lasers there has been an increasing in-
terest in the study of hyper-Raman scattering.’=% Al-
though hyper-Raman spectra have as yet only been re-
corded with pulsed lasers, the development of laser
pulsing techniques and multichannel spectrometers has
substantially reduced the time required to obtain a hy-
per-Raman spectrum, thus increasing the scope for ex-
perimental studies.

Theoretical studies of hyper-Raman scattering have
been based mainly on the extension of Placzek’s polar-
izability theory of the Raman effect where the electro-
magnetic field is treated classically.” This approach is
based on the fact that when a molecule is subjected to
the influence of an external field E the induced polariza~

tion can be expressed as
Pi=ayE;+ 3B EyEp+e -, (1.1)

where o, and §;,, are the polarizability and hyperpolar-
izability tensors, respectively. The theory of the Ra-
man effect is based on the linear response of the mole-
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cule to the external field as represented by the first
term of Eq. (1.1). For strong fields the nonlinear
terms can be important.8 For example, theories of hy-
per-Rayleigh and hyper-Raman scattering involve the
second term of Eq. (1.1) which is quadratic in the ap-
plied field E. The scattered intensities depend on the
square of the induced polarization and hence on the
square of the intensity of the incident light. For a beam
of intensity 10*®* W m™? the ratio of the hyper-Raman to
Raman scattered radiation is only of the order of 1075,
Clearly, only the high intensities now available from
pulsed lasers can render the observations of hyper-
Raman scattering feasible. For example, typically 10*
laser shots from a ruby laser of 2 MW power and 107" s
duration have been required to record the hyper-Raman
spectra of hydrocarbons.?

Hyper-Raman spectroscopy is a potential source of
information about molecules not normally available from
infrared {ir) or Raman studies. For example, vibra-
tional modes which are ir- and Raman-inactive can fre-
quently be hyper-Raman active. In their original deriva-
tion of selection rules and depolarization ratios for hy-
per-Raman scattering Cyvin, Rauch, and Decius® had
assumed full index symmetry of the hyper-polarizability
tensor B,,, in Eq. (1.1) (see also Ref. 10). It was point-
ed out later by Christie and Lockwood!! that g,,, in gen-
eral has only j, £ symmetry, and they gave the appro-
priate selection rules.

In the present work the theory of hyper-Raman scat-
tering is developed using quantum electrodynamics. In
contrast to the semiclassical approach the molecules
and the radiation field together constitute the dynamical
system and the latter is conveniently described with
second-quantized formalism. This method takes proper
account of the changes in the field during the scattering
process. In contrast to previous treatments we decom-
pose the hyperpolarizability tensor into irreducible com-
ponents in order to obtain a systematic classification of
the hyper-Raman-active vibrational modes. This en-
ables us to make some predictions concerning various
polarization ratios. We present for the first time ex-
plicit expressions for scattering intensities for a wide
variety of experimental configurations. Also, we show
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FIG, 1, Time-ordered diagrams for hyper-Raman scattering,

that by collecting the hyper-Raman spectra for five spe-
cified configurations it is possible to assign each active
mode to one of six classes. Finally, the hyper-Raman

selection rules are applied to a number of molecules.

il. THEORY

In the quantum electrodynamical approach the mole-
cules and the radiation field together constitute the dy-
namical system. The Hamiltonian for the system is

+Z Hlnt(g) ’

where H,,4 is the Hamiltonian for the radiation field, and
H..(£) is the Hamiltonian for molecule £. In the elec-
tric dipole approximation the interaction Hamiltonian is
given by

Hint(g) =- p'(g) * el(Rt) ’

where i and e are the electric dipole moment and the

transverse electric field operators, respectively. The
transition rate 'y, for the process | f) - 14) is given by
the Fermi rule

H=Hypg+ 9, Hpoy () (2.1)
¢

(2.2)

J
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27 .
L= | My, [0y, (2.3)
where p; is the density of final states and JM; is the ma-
trix element connecting the initial and final states, ex-
pressible as a perturbation series

- : L_m_.___m_
‘mﬂ-<f|Hm\z)+ZI: IDIH

(E;-E))

(A H gy | IDAIT HmlI)(IIHmIz)
+g:n F - E) (e F) (2.4)
In Eq. (2.4) the primes imply that the initial and final
states are excluded from the summation. For hyper-
Raman scattering the leading term of Eq. (2.4) is of
third order. Before writing down the explicit expres-
sion for this term we explain our notation. The state of
molecule £ with energy E, is denoted by 1#%). The state
of the radiation field with occupation number p for the
incident mode of wave vector k and polarization A (fre-
quency w=clkl) and p’ for the scattered photon mode of
wave vector k’ and polarization A’ (frequency w’ =clk’l)
is denoted by |p,p’). The product state is written as
I#*;p,p’) with its bra vector {p’,p;7*|. Let us consider
one particular molecule £ which undergoes the transition
In*)~ Im®) due to hyper-Raman scattering. The initial
and final states of the system—molecules plus the radi-
ation field—are | m*;n, 0) and |n%; (n-2),1). The states
of the other molecules and radiation modes remain un-
changed and need not be shown explicitly. The corre-
sponding matrix element Mﬁi is easily obtained from the
time-ordered diagrams shown in Fig. 1. The graphs
represent the three topologically different time sequenc-
es of absorption and emission. In each case » and s de-
note the virtual states through which the molecule passes
during the scattering process. The matrix element Mh
is

S (1, (0 =2);n* 1 H,p (£) 1 8% (n = 2), 0040, (n ~ 2); s*V Hyp ()15 (n = 1), 0040, (n = 1); 71 H gy (8) L 5, O)
M =3

TsS

<1 (n=2);n' | H ()i s (n=1), DA, (n—1); s*

(Ems+2ﬁw)(Em,+h’w)
| Hyp (8)1 745 (n = 1), 0X0, (n = 1); 781 H,ypy (8) I m¥5 m, O

(E,.- ﬁw) NE. s fiw)

(1 (n—2);n'\ H, (£) % (n = 1), DQ1, (n—1); s* IHm(i)lr,n, DAL, n; 9%V H o (E) L n,O)] 2.5)
(E,, — Hiw)(E,, - 2kw) )

In Eq. (2.5) we have used the energy conservation con-
dition

E,~E,=E,,=lQ2w-w') (2.6)

to express the energy denominators in terms of the in-
cident frequency w. The use of a mode expansion for
the electric field operator allows one to write the ma-
trix element 1\715i as a product of a position-independent
term M}i and a position~dependent phase factor

=M§i e iQCkek’ ) Ry . (2- 7)

The phase factor arises from the exponentials of the

—
field operators corresponding to the annihilation of two
photons of wave vector k and the creation of one photon
of wave vector k’. Though ng is independent of R,, it
is still £ dependent in the sense that it is a function of
the molecular orientation with respect to the incident
beam.

The total matrix element 3;, is simply a sum of the
Mﬁi over the 91, molecules with initial states of energy
E,. The scattered radiant intensity 7(k’), power per
unit solid angle around k' follows from the Fermi rule

Z Mﬁ i@k-¥’)e n, (2.8)

k') = _T
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In the dilute gas approximation the molecules of the sys-

tem are randomly positioned and oriented. Equation
(2. 8) then becomes
(k') = }:<IM,| ). (2.9)

The rotationally averaged factor { ) on the right hand
side of Eq. (2.9) is clearly ¢ independent and we have

1k’ )_M—nqmﬂl Y, (2. 10)

where the superscript £ in the matrix element has been
deleted. The above result is valid provided 2k+#k’,
which is true for hyper-Raman and incoherent hyper-

J

Rayleigh scattering. It does not hold for second-har-
monic generation where 2k=k’,

To proceed further we employ the Born-Oppenheimer
approximation to describe the molecular states; a state
with electronic label n and vibrational label V is written
as a product of electronic and vibrational wavefunctions
10,7 xav ); its energy is expressed as the sum of elec-
tronic and vibrational energies E, + €,,,. In the hyper-
Raman process the molecule remains in the electronic
ground state in the initial and final states, but changes
its vibrational state. Thus, the initial and final molecu-
lar states may be denoted by | @y) | xox) and | @g) ) xgn?,
respectively. From Eq. (2.5) we have

<XQN | H?sl Xss><Xss il Xuz><XrR| “;°| Xou?

J8r i Pwnn-1)]"2_,
My, =-1 73 e;e;e,
r R

S

(EOS+ EOM.SS + 2ﬁw)(E0r + €0M.'R+h—w)

<A.w‘lij |XsS><XSS|P'i IXrRxXrRlp'k | Xou? %_Nllij |X¢5><Xss|#k erR><XrR|‘J’( |Xou>] , (2.11)

(E0s+ €(IN sS T h—w)(EOr'*' €OM rrt ﬁw)

(E()s+ €oN,s8 — h—w)(EOr"' e0101 rR ™ 2h—w)

where e and e’ are the polarization vectors of the incident and scattered photons; E,, and €,z s Stand for the elec-

tronic and vibrational energy differences
Er.s =E, ~ Es ’

€vR, 55~ €rr — €55+

In Eq. (2.11) and in the rest of this paper the repeated index summation convention is used.
we neglect the vibrational energy differences in the energy denominators (assuming that there are no

Raman effect!?

(2.12)
(2.13)
As in the theory of the

near resonances), and effect closure over the intermediate vibrational levels to obtain

where

My, =-i[87 1 w2 nln - 1)/ V3112 &le e lXox | Bijs | Xou) » (2.14)
8. =12 ptusup’ pPusup
R T L (Eqo+ 27w0) (g, + 1w) * (EOS—ﬁw)(E0,+Ew)
pisu gy plougruy® petu iy patp ] (2.15)
(E,,,-h’w)(Eo,—Zh’w) (Egs + 2Rw)(Eq, + 1) (Egy — Bw)(Egy+ iw) * (Eqqy - iw)(Eq, — 27w) )

The j, k symmetric form of §;;, is adopted because the “polarization tensor” eje e, is itself j, k symmetric.

To calculate scattering intensities for a randomly oriented molecular system we need to perform a rotational
average of |M,,;|%. Using Latin indices for components with respect to a laboratory-fixed frame and Greek indices

for the molecule-fixed frame we have

Binn=lindsulyBrps 5

(2.16)

where the I’s are direction cosines connecting the two frames; I;, is given by the (i, A) element of the 3% 3 Euler an-

gle matrix. Assuming real wavefunctions we have

<|Mfi’z> =[

Here, I‘® refers to the isotropic tensor!'®!*

I8 mnsrwvors=Tindy ulikiolmelns ) -

Thus, we have for the scattered radiant intensity

I(k') = [30(e’ -e)(e- e’)(e- &) - 12(&' - e)(e’ - &) -

105 {

2 — —_—
8w’ w'nin - 1)/V3]ei,ejekel,emen <XON| Bzuvl XOM><XON‘ BofPl Xou i(jst:tm;xuvorp-

(2.17)

resulting from the rotational average of the direction cosine product

+[-12(€" - e)(e- &')(@- 8) +16(6" - e)(e' - €) +2(e - o')(€' -8) +4(e-e)(&- &) — 6] BN¥ glM

+[-10(@ - e)(e-e')(E@-8) +4(8" - e)le’

+[8(@ - e)e-e')e-8)-6( - e)e'-8)-6(e-e)@

+[~12(@ - e)e- e')E-8)+2(8" - e)(e

8 +4(e.e')(e’

(2.18)
12(e- ¢')(€’' -8) - 10(e - e)(@ - ©) + 8] pl¥ gV
-8)+8(e-e)(e-8) ~5]pNH gi¥
-8 -5(e-e)@-8)+11] YK g ¥
-8)+16(e-e')(@' - 8)+4(e-e)(@-8) -B]pYM pi¥L, (2.19)
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where

B;.vlf’v=<X0N|Bxuv|X0M> (2-20)
and

:D:ggsn,,, kg2 (2.21)

g'? and 70 are the degree of second order coherence and

the mean irradiance of the incident beam, respectively.
The five 8 products appearing in Eq. (2.19) are the
same as those previously used by other workers!®!8;
under the assumption of a full index symmetry in Bm
the first three B products of Eq. (2.19) become equal,
as do the last two.

11l. REDUCTION OF THE SCATTERING TENSOR INTO
IRREDUCIBLE PARTS

Previous studies of selection rules for hyper-Raman
scattering have been mainly based on the assumption of
a full index symmetry of the tensor 8,,,.»'® This as-
sumption is valid only in the physically unrealistic limit
when the incident frequencies are much smaller than
electronic transition frequencies. In general, the 8
tensor is only symmetric in its last two indices, as is
evident from Eq. (2.15), and this leads to a different
set of selection rules. In particular, a number of modes
which would appear to be inactive if full index symmetry
were assumed can in fact be active in hyper-Raman
scattering. This point has already been noted by Chris-
tie and Lockwood," who have given a supplementary set
of selection rules for such modes. In their analysis,
however, they use an overcomplete set of S-tensor com-
ponent combinations which are not well suited for inten-
sity and polarization ratio calculations. A better start-
ing point for such calculations and vibrational mode
classification is the set of irreducible components of
B uv discussed below.

In general, a third rank tensor has 27 independent
components and can be decomposed into one term of
weight 0, three of weight 1, two of weight 2, and one of
weight 3. However, as 8,,, is u, v symmetric, it has
only 18 independent components, and the reduction gives
two terms of weight 1, one of weight 2, and one of
weight 3. We note in passing that 8,,, with full index
symmetry has ten independent components giving one
term of weight 1 and one of weight 3. The full implica-
tions of this result are dealt with later. Using the re-
sults given in the Appendix the expressions for weights
1, 2, and 3 of B,,, with u, v symmetry are

|

1) =555

+7[-6(@ -e)(e-e')E-8)+9(e - e)(e’- &) +(e- e)(e- B)| Ap NN 1apghy

+4(e- e)(e- ®)|'BpiH 12pNM
+5[-4(@-e)e-e')E-®)

M +35[2(8 - e)(e-e')(@. @) -

~4(8' - e)(e'-8)+10(e- e')(&' - &) - (e - €)(&- 8 +5]°87), %8N}
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Z lnﬁ Auv =il-0 [5Au(3ﬁpov - vao)

n=A, B
+830(3Boon = Bupo) = 20,0 Byor = 2By0)],  (3.1)
2B e =t Eanr (€0t Booy + €oow By 1)
+3 € (€oar Boow + €oon Boor) 5 (3.2)
*Bruv =3 (Baus+ Buvn + Bor) ~ 15 (63, (2Bopy + Brp)
+ 30(2Bapu + Buop) + 0,5 (28500 + Brgo) ]« (3.3)

The decomposition of Eq. (3.1) into two independent
weight-1 terms is not unique, but a convenient division
is as follows:

IABM&V:"IJB (36M4 Boow + 30\u Bop s _Zéuv ﬁapx) ’ (3.4)
1
wauu:To(‘ Syu Bine "5).vﬁuap+46uvﬁ)mﬁ)' (3.5)
These satisfy the following contraction relations:
6lu1AB A =00 Baww s
14 _
6)&!} ﬁ)‘uv - GMJ B).uv ’
6uv1AB)«uv =0, (3. 6)

6ku1BBXuv =0 ’
élleﬁ Aupy =0 ’

1B
8uv  Baup=0uy B -

This particular choice for '48,,, and !28,,, leads to
rather simplified expressions for the scattering intensi-
ties, as we shall see later.

The tensor products that appear in Eq. (2.19) can
now be expressed in terms of the irreducible weights
(3.2)-(3.5) as follows:

—14pNM 1B

nu B Bx)«u B 1371
1A NM 1A

Bnu vvu Bnu ﬁvvu ’
1BoNM 1B

qu B)wv Bxuu Bva ’

Bkuv )xu.v_ﬁ( zlAB 1BBNM+31A3NM IABuvu.

1BoNM 1B 2NM2 3NM3
+2 Bluu B)« +5 ﬁxuv Auv+5 BXuv

LAGNM 1BgNN  1AGNM 14
15 (84BN 12BN, + AN AR

_1B NMIB NM ZNMZ 3oNM 3o NM
ﬁ )«W B)Luu Bluv 10 B),uv Bxuv)'

Xuv) 2

ﬁ Apy B i =

(3.7
Using the above relationships Eq. (2.19) may now be
written as

D_{14[7(" - e)e- e')(&- 8) - 3(8" - e)(e' - B) —2(e - &)(& - B) | 4p M 1BgN K

{ +7[-4(e' - e)e-e')E-8)+ (& . e)e’ - @)

(@ -e)e’- &) -2(e-e')(E -8 —(e-e)E. &) +2]283 128 0

(3.8)

This is a general result from which one can obtain a wide variety of data about the scattering system.
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TABLE I. Irreducible components of the 8 tensor.

31 Bnr+ﬂam+ﬁ:n

By B,,y+ﬁyyy+/3,,y set A

Ps B‘"+ﬁ’”+ﬁ"' weight-1
ﬁ4 an+6xw+ﬁrzz

Bs Byex ¥ Bygy *Bes set B

BS an+‘3:yy+ﬁu¢

Bq Bwt"ﬁytx

Ps V3 Byex =2 By +Brye)

By V4 Byye = Bayyt Baxy — Bexs weight-2
Bio V5 Byue—Brry* BexyByes)

Bil \/g(ﬁln_ﬁxg'+ﬁx”_ﬁy”)

BIZ \/%_(Bxu+/3yn+63xy)

Bz 5 Bxx— 2 Bygy = Byyy

Bu 1 (Byyy—2 Bygy—Byes)

Bis \/—%(2 Bxxl+ﬁsx‘ 2 Byyt_Bt”) weight-3

Bis V(2 Paee—2 Paxe=2 Boye— By —Beyy)
Bir ‘/(;15(8 B;¢+4B‘»"—3ﬁn,—2 Bm"ﬁ,”)
Bis \/27—5(8 Baey™ 4 Byoe=3 Byyy —2 Byxy —Boxy)

IV. SELECTION RULES

The selection rules for hyper-Raman scattering can
be derived by considering the integral associated with
the transition ON- OM,

<x0N|BXuv|XOM>‘ (4.1)

We confine our attention to fundamental transitions,
i.e., those with N- M=+ 1. For such transitions the
product of the vibrational wavefunctions transforms as
the corresponding normal vibrational mode coordinate.
If the integral (4.1) is not to vanish identically, then
8., must have at least one component belonging to the
same irreducible representation as the normal mode.
As we noted in Sec. III the B tensor can be reduced to
two terms of weight 1, one of weight 2, and one of
weight 3, with six, five, and seven irreducible compo-

TABLE II.
izability o, and hyperpolarizability B.

2945

nents, respectively. Explicit expressions for these
components are given in Table I. The selection rules
are easily obtained by examining the symmetry proper-
ties of these components under the operations of the
various molecular point groups. We list in Table II the
irreducible representations spanned by these components
for molecules of point group symmetry Dg,, Dg,, Dy,
D¢y, Oy, I, and D.,. The corresponding representa-
tions for point groups of lower symmetry are easily ob-
tained from correlation tables such as those given by
Wilson, Decius, and Cross.!” Using these results the
vibrational modes of a molecule of given symmetry can
be classified according to the weights of the 8 tensor
that have the same representation. This scheme allows
one to compare the hyper-Raman selection rules with

ir and Raman selection rules. Further, it enables one
to make predictions about intensity ratios, which are
discussed in a later section. Before we discuss the de-
tails of the classification we make two important gener-
al remarks concerning the selection rules. First, all
ir active modes are also hyper-Raman active since the
weight-1 components of the B tensor transform like the
electric dipole moment. Secondly, for centrosymmetric
molecules since only ungerade modes are hyper-Raman
allowed, such modes are Raman inactive. However, for
noncentrosymmetric systems vibrational modes with the
same symmetry as a weight-2 component of the 8 tensor
can be Raman active. Although this is a necessary re-
quirement, it is not sufficient because the weight-2 com-
ponents of the Raman and hyper-Raman tensors, in gen-
eral, transform differently under reflection. For ex-
ample, we see from Table II that in Dy, only E, is both
Raman and hyper-Raman active. However, in the pure
rotation (chiral) groups C,, D,, T, O, andI any vibra-
tion belonging to the same representation as a weight-2
component of the B tensor is also Raman active. It is

of interest to note that the assumption of full index sym-
metry for the B tensor leads to the erroneous conclusion
that a mode cannot be both Raman and hyper-Ramanactive,

An examination of Table II shows that the hyper-Ra-
man active modes may be classified into six types:

Class A: For modes belonging to this class the 8
tensor has contributions of weights 1, 2, and 3. These
modes are also ir active. In view of the remarks made
above no general rule can be made about Raman activity;

Infrared, Raman, and hyper-Raman activity: Irreducible representations of dipole u, polar-

Hyper-Raman

Infrared Raman
Group w (weight1l) a (weight 0) @ (weight 2) B (weight 1)
Dy, A +Ef Af A{+E{+E{" 2A{"+2E{
Dgy At Ey Ay At B tEy 24, +2F,
Dy, B,+E, Ay A +E,+ Ey 2B,+2E,
Dg, B, +E, A A(+E,+E; 2B, +2E,
Oy Ty, Ay E +Ty, 2Ty,
I, Ty A, H, 2Ty,
D, Zpt1L, Z; Ty + 48, 235 +21,

B (weight 2) B (weight 3)
AIII +E1’+E2" Azll +E{+E21+E2'I

At Ey+Ey Ay +Biy+ By +Ey+Eyy
B+E +E, B,+E|+E,+E,4
Bi+E+E, By +E +E3+E,

Ty tE, A+ T+ Ty

Hu T2u+Gu

ZytI, A, E:4+H|J+Au+cl>u
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FIG. 2.

The scattering geometry.

each case has to be analyzed using Table II, and, where
necessary, the correlation tables, Examples of class

A are the v3(E) antisymmetric stretching and v,(E) bend-
ing modes of ammonia which are Raman active and
v¢(B,,) molecular bending mode of ethylene which is Ra-
man inactive.

Class B: For these modes the 8 tensor has contribu-
tions of weights 2 and 3. They are clearly ir inactive.
Examples are the E’’ modes (such as the Vi3 methylene
rocking mode) of eyclopropane and the Raman inactive
v4(4,) torsional mode of ethylene.

Class C: These modes have both weights-1 and -3
contributions. Consequently, they are always ir active
and Raman inactive, An example of this type is the
v3(A,,) out-of-plane bending mode in xenon tetrafluoride
of Dy, symmetry.

Class D: For the class D modes the contributions are
of weight 3 alone. Hence, these modes are both ir and
Raman inactive. An example of this type is the v(By,)
hydrogen stretch in benzene.

Class E: The B tensor for these modes has weight-2
contributions only. Hence, these modes are ir inactive,
but can be Raman active. For example, the Raman-
active v,(E) deformation modes of methane belong to this
class, as does the Raman-inactive v,(A{’) methylene
twisting mode of cyclopropane.

Class F: The final class contains those modes which
have only weight-1 contributions. These modes are ir
active but Raman inactive. It is evident from Table II
that molecules belonging to the common molecular point
groups cannot have modes of this type; such modes are
found only in molecules of icosahedral symmetry.

V. A SCHEME FOR THE DETERMINATION OF
MOLECULAR INVARIANTS

The expression for the scattered intensity (3.8) con-
tains five independent molecular invariants, namely,
the different types of 8 products. These can be ex-
pressed in terms of the 18 irreducible components given
in Table I; we have

LARNH B NM g MBIM  g MR YY i MB Y (5.1)
LABNNM TABDM = (BIM)P + (BFM)P + (BY"P, (5.2)
MY PR = (Bf“)2+<ﬁé’”)2+<ﬁg”>2 (5.3)
BN R M = (B (BYMP + (BYHP + (B + (B2,
(5.4)
BB, = (BP+ (B P+ (81N
+(BIP + (B P+(BIP+(BIHE. (5.5)
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Using Eq. (3.8) one can determine the values of the five
molecular invariants (5.1)-(5.5) from a set of five dif-

ferent experimental observations. Although McClain!'®

has proposed a similar method for determining the five

8 products which appear in Eq. (2.19), the above quanti-
ties are more useful as they can be immediately related
to the vibrational mode classification discussed earlier.
The various experimental configurations are convenient-
ly described in terms of the propagation and polarization
vectors of the incident and scattered photons. As shown

in Fig. 2 ‘e and ‘e’ are equivalent unit vectors normal
to the Kk’ plane. The in-plane vector "e is chosen such
that "e, ‘e, and k form a right-handed set; the primed

vector "e’ is defined in a similar manner. For circular

polarizations we use the optical convention, namely,

Le=7;=v(”e+i*e) , (

. (5.6)
Ry _ _ (P
€= ('e—i‘e). S
Finally, the convergence angle 6 is defined by
cost=-k-k'. (5.7

We use the shorthand notation Iy(A = 1) to denote the ex-
perimental configuration with incident and scattered
photons having polarizations *e and “e’, respectively, 6
being the convergence angle.

A convenient set of five intensity measurements is as
follows:

L=l -1), (5.8)
Ip=Iyp(L=10), (5.9)
I3=I,,(R—~1), (5.10)
I,=I,(R-R), (5.11)
Is=I,R-L). (5.12)

This particular set includes the two pairs of measure-
ments which are required for the calculation of the re-
versal ratio and depolarization ratio. The details are
given in the next section. The expressions for I, to [;
follow directly from Eq. (3.8):

Ii=g3= (281485 21Y, - 2848 5 B
71BgNM 1B NK 308N K 3p1M), (5.13)
12_5_2_5( 281AB¥)&’; 1Bﬁgyv+71ABNM IABNM
+ 2812810, 1280 + 35285 2B + 20 '8 BB
(5.14)
Iy=g0s (1476112820 + 5614, %8 04) , (5.15)
Iy= 525( 421,45{'%1331:%+631ABNM 1A35v,¢:‘+7136~u 1B W
+3528000 2B, + 53830 5B (5. 16)
Ig=2 = B s B - (5.17)

These form a regular system of equations which can be
solved to give
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Mp “’B NS T, — I+ 215~ 31,-315),  (5.18)
LagaM 1AghM S SDNAL - 21, -1+ 41~ 15), (5.19)
BN, ‘Bﬁ{’,ﬁ=3®'1(311+ 61,- 21— 21,—215), (5.20)
BB, =307 B, - 1), (5.21)
B 2B, =T (5. 22)

Thus, the assignment of a spectral line to a mode of a
particular class can be achieved by digital processing
of the spectra obtained from the five experiments. For
this purpose a knowledge of the relative intensities is
sufficient. The linear combinations (5.18)—(5.22) can
be used to generate five new spectra corresponding to
the five 8 products. The appearance or nonappearance

R(6) =[7(1 + 2 cosb +cos?6)(- 6 1AgNM 1BGNH |
+10(13 - 14 cosé + 3cos?) 3g¥ ¥ 38

+1Bg i 1B M) 1+ 35(5 — 2 cosb — 3 cos?0) 2B 1M 23 NM 1 10(13+ 14 cos6 + 3 cos?6) 3gN M 3g M |-t

For forward scattering the result is simply I;/1,, where-
as for right-angled scattering it is unity, as for Raman
scattering. Also,

Rz -6)=R"Y6). (6.3)

For forward scattering we note that vibrational modes
belonging to classes D and E take the values of 15 and
0, respectively, for the reversal ratio. For other
classes the corresponding values are dependent on the
scattering molecule.

The depolarization ratio p, for plane polarized inci-
dent light is angle dependent and is defined as

-1

Prrre=10) (6.4)

which is given by I,/I,. For class D vibrational modes
the value of p, is 2/3, whereas for class E modes the
ratio is infinite. The latter behavior is unknown in Ra-
man scattering except under resonance conditions. The
class D and class E results are of special interest since
they correspond to modes which are active in hyper-
Raman scattering but not in ir absorption; the other
class of ir inactive modes, namely, class B, should ex-
hibit reversal and depolarization ratios intermediate be-
tween the class D and class E values. It has previously
been thought that all ir-inactive, hyper-Raman-active

modes have the same reversal and depolarization ratios.?

However, the present work shows that this is not the
case and that three different types of behavior may be
expected.

|
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of a line at a particular frequency in the computed spec-
tra then enables one to assign the corresponding vibra-
tional mode to any one of the six classes discussed pre-
viously.

VI. REVERSAL RATIOS AND DEPOLARIZATION
RATIOS

The reversal ratio, which is generally dependent on
0, may be defined as for Raman scattering by

IB(R"L)
R(6) =— =, (6.1)
) =L&=R)
From Eq. (3.8) we get
QlAglH tAghM  1BGNM 1BgNI) . 35(5+ 2 cos6 — 3coszﬁ)aﬁf 2gNH
N 1[7(1 - 2cos6 + cos?6)(— 61AB NN 1BgNM | glaghh 1Aghy
(6.2)

{

Before proceeding further we make an important re-
mark concerning hyper-Raman scattering of unpolarized
light. It is well known that for Rayleigh and Raman
scattering of unpolarized light the intensity of the scat-
tered light can be written as

I~ p) =310~ p) +1( - )]
=3I -y +I@® - )],

where u refers to unpolarized light. As pointed out
elsewhere!® the above relationships do not hold for non-
linear scattering of unpolarized light. The analogous
relation for hyper-Raman scattering is

T =) =510, N~ )+ 27(0, L~ ) +I(L, L= )],

where I(x, A’ - 1) refers to the absorption of one photon
of polarization X and one of X', and the emission of a
photon of polarization u. In obtaining Eq. (6.6) the
mean irradiance of the incident light has been taken to
be the same for all the terms. The equation may be
viewed as resulting from independent summations over
the polarizations of each of the incident photons. The
middle term of Eq. (6.86) is not directly measurable. It
can be shown that an equivalent expression for I(x—p)
in terms of directly measurable quantities is

Iu=p) =s[210, 1~ p)+ 2I(L, L~ )

(6.5)

(6.6)

+I(L,L=p)+I(R,R~p)]. (6.7

The general expression for the scattered intensity in
terms of the g3 tensors is

T=72—{-14[3+5(k- &')(k- @)]* 4% 1364 719 ~ 15(k - &)(k - €')]1Ap M taghM

4200

+7[11+5(k- o)k~ 8)]1BpYM 1B | 35[3.45(k- e')(k- @

&)128)k ey M +10[18 - 5(k - e’)(k- &")]°8 1M, 58141,

(6.8)

As for Raman scattering the depolarization ratio p, may be defined as

Tl —~1)
WO =D -

(6.9)
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For hyper-Raman scattering the explicit result in terms of the 3 tensor is
pu(TT/Z) = (— 112 lAB )&AL IBB upr T +28 IAB ){ggx 1AB o wt 112 IBBIXVLIL"LL IBB wp 280 ZB{VJ’V ZB Mw"' 130 3B {"xﬁlv SB qu)
X (=42 BN TP, + 133 AN MBI 4 1T 1B Il PR NN 10528 Y4, 202K + 1803814 g M )T (6. 10)

and the ¢ dependence is given by

p,(6) =p, <%>+ [1 —p,,(%)] cos?6 , (6.11)

which is the same as for Rayleigh and Raman scattering. We note that p.(1/2) takes the value of 13/18 for class D
modes and 8/3 for class E modes; again, intermediate values should be found for modes belonging to class B. Fi-
nally, we remark that in the special case where the hyperpolarizability tensor has full index symmetry the weight-2
B product vanishes, and the weight-1 products become equal. From Eq. (6.10) it then follows that p,,(1r/2 lies in the
range 1/6 <p,(n/2) <13/18, the lower limit being taken by pure weight-1 modes, and the upper limit by pure weight-
3 modes. Use of Eq. (6.5) in deriving p, results leads to the erroneous values of 1/5 for the lower limit and 4/5
for the upper limit.

VII. COMPLETE SET OF INTENSITY RESULTS FOR 6=0,7/2, AND »

In Tables III-V we present the intensity results for forward, backward, and right-angled scattering, respectively,
in terms of I, to I, given by Eqgs. (5.13)~(5.17), and I to I, by

To= g5 (- 42 4B 12BN, + 63 M4p 1 1A 718K 10k 175201k 20 1309614, 381M) (7.1)
17 1050 ( 42 IAB’xxt IBB ﬁgv"' 63 IAB)ILVXA:L IAvaAL +17 IBB)Itva’u IBBXW"' 3523)’:’:‘;’251(“«*' 80 sﬁ )ﬁyu 3B {v:v) ’ (7' 2)
18 210 (7 IABM'L IAB ﬁlvhi +7 IBBfi‘u laﬁ)«vv 7 ZB{VLI:!V ZBMLV+ 10 SB ivtﬁ' 3ﬁhuv) ’ (7' 3)
Iy= 4200 (424800 P 0, + 133 4B 1B I + 171281, 1Bt + 10526, 26 14, + 180 %84, 36 1), (7.4)
I1o= 2100 (=56 MB35 AUl + 1481 B 0l + 561282, 12BN + 1402811, 2B 1, + 65 %8 24, %8 1) (7.5)
In=gaop (- 164 854 7B 1%, + 161 14814 4B 1 + 189 128 14, 12614 + 3852804 261, + 310 %64 961) . (7.6)
P
The intensities I4 to I,; can, in fact, be expressed in except that entries corresponding to I, I3, and I, be-
terms of I, to I: come equal, as dolq, Ig, andl,, and the pairlq andI,;.
Is=%(213+14+15) ’ (7.7
VIll. SOME EXAMPLES
I =3(14+15), (7.8)
Iy=2(1,+1,) (7.9) The hyper-Raman spectra of several molecules such
8~ 275 .

as methane, ethane, and ethylene,® carbon tetrachloride,
Io=5(21+2I,+1,+15), (7.10) chloroform, and water,* and tetrachloroethylene® have
been observed experimentally. We now discuss applica-

oL
Ly=3QL+1y), (7.11) tions of our theory to some of these and other molecules.
=
L =15(21, + 615+ 215+ 1,+15) . (7.12) Ethylene, of Dy, symmetry, has 12 vibrational modes
Except I,, I, and I; all other expressions contain con- of symmetry species 4,(3), By (2), By (1), 4,(1), By(1),
tributions from weights 1, 2, and 3. Consequently, the B,,(2), and B,,(2). Of these only the six with ungerade
appearance of a mode in the spectra for the above scat- character are hyper-Raman active; the B, modes are

tering configurations does not provide a firm basis for
classifying the mode. Since weight-3 contributions are
present in all the intensity expressions, modes of
classes A to D should always appear in the hyper-Raman
spectra. Since A and C correspond to two of the three IA—p I 1 L R
types of ir active modes, it is evidently not possible to

TABLE III. Intensities of hyper-Raman
forward scattering (8= m).

I~ I I I, I,

exclude all such modes from the hyper-Raman spectra, ! 2 8 8
as suggested by Maker.!® However, the ir active modes 1 I, L Iy Iy
of class F are inactive in Iy and I;. Further, class E L Iy I I I
modes remain inactive in [, and I;. R— I I I I,
In passing we note that the corresponding tables for w— I, Iy Iy I

Raman scattering are similar in form to Tables III-V
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TABLE IV, Intensities of hyper-Raman
backward scattering (6 =0),

I(A— ) ] 1 L R
= I I Iy Iy
L= I, I Iy Iy
L— I, I I I,
R— I I 1, Iy
u— Iy Iy Iy I

also ir active. The representations spanned by the com-
ponents of the 3 tensor are obtained from Table II and
correlation tables. They are

Weight 1: 2B, + 2B,, +2B,,,
Weight 2: 2A,+ By, +By, +By,,
Weight 3: A, +2B,,+2B,,+ 2By, .

Thus, the B, vibrational modes belong to class A (con-
taining weights 1, 2, and 3) and the A, modes belong to
class B (with weights 2 and 3 only). The v,(4,) torsion-
al mode of ethylene, which is both ir and Raman inac-
tive, provides an example of the usefulness of hyper-
Raman spectra in the study of molecular vibrations.
Using the data-processing technique discussed in Sec. V
only the 8 products of weights 2 and 3 should be found to
be nonzero for such a mode; these are given by

2B BB, = (BT + (BYM)2,
33;&793 kuu‘(BNM 2

and the intensity expressions follow from the results
given earlier.

(8.1)
(8.2)

An example of class A modes is the molecular bend-
ing mode v; of By, symmetry. In this case all five B
products are expected to contribute to the scattering in-
tensities; in terms of the irreducible components they
are given by

IABf” IB B ﬁNM (8- 3)
IABNM 14 (B M)Z (8-4)
AL BB = (BTN, (8.5)
zﬁﬁl‘?’vaﬁhuv (Bg’”)z (8. 6)
3:’3“’» sBxuv—(31”)2+(31”)z (8.7

The corresponding results for the B,, and B;, modes
are easily written down.

In an experimental study of the hyper-Raman spectrum
of ethylene Verdieck et al.’ observed a strong line at
980 cm™! under conditions where the polarization of the
scattered photon was not specified; they assigned this
line to the bending mode v, (B,,}). On the basis of the
selection rules due to Maker'® this line was expected to
disappear in the spectrum corresponding to the config-
uration I3 =I,,,(R - ). However, the line still persisted
weakly in this spectrum. Verdieck ef al. suggested that
the persistence of this line was due to the finite angle of
collection of the spectrum. From our analysis, how-
ever, we note that the B,, mode belongs to class A, with
the B tensor containing weights 1, 2, and 3, and a perus-
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al of the I, intensity expression (5. 15) shows that this
mode is expected to be active in this configuration.

A second example with an interesting feature is cyclo-
propane of Dy, symmetry. The components of the 8 ten-
sor associated with the v, (A{') methylene twisting mode
are entirely of weight-2 character; this mode, which is
ir and Raman inactive, belongs to class E. We remark
that earlier theories which have assumed full index sym-
metry for the B tensor failed to predict the hyper-Raman
activity of such modes. For the A;’ mode all the inten-
sity expressions except I; and I; are expected to be non-
zero and the symmetry assignment can be made unam-
biguously. The only nonzero B product is

zﬁivazﬁhuv (ﬁg”)z- (8. 8)
As noted earlier the depolarization ratio p, for this type

of mode is infinite, whereas the reversal ratio for for-
ward scattering is zero.

The molecule XeF,, with square planar symmetry
(Dgy), has a v; (By,) out-of-plane bending mode belonging
to class B. Since this is the only vibrational mode of
XeF, in this class, it may easily be characterized in a
manner similar to that used for the A, mode of ethylene.
The nonzero S products are

ﬁ{vfuz Auu'(B ”)z
3Bi\zlu sﬁluv - (BNM 2 .
The v; (A,,) out-of-plane bending vibration is an example

of a class C mode (with weights 1 and 3); its nonzero 8
products are

(8.9)
(8.10)

Mg BB, =By Y, (8.11)
LB B = (B2, (8.12)
IBB)“':‘“ LB N = (BR¥)2, (8.13)

SN, BN, = (BY2. (8. 14)

Benzene (Dg,) has By, and B,, modes belonging to class
D (weight 3 only). For these modes the reversal ratio
for forward scattering is 15, and the angle-independent
depolarization ratio p, is 2/3. The only nonzero g prod-
ucts are

sﬁﬂlvaﬁxuv-(ﬁ1y)z (By), (8.15)
sﬁivﬁlvaﬁluv"(ﬁlu)z (Ba‘) . (8. 16)

Finally, the v,(E) mode of methane belonging to class
E (weight 2 only) can be assigned unambiguously as for
the A}’ mode of cyclopropane. However, in this case

TABLE V. Intensities of hyper-Raman
scattering at right angles (¢ =7/2, 37/2).

IA—p) - 1 L R
I — L, 1L, I, I
1 L L I, I
L I I I I,
R— L L I, I
u— Iy Iy Iy I

J. Chem. Phys., Vol. 68, No. 6, 15 March 1978

Downloaded 05 Nov 2003 to 139.222.112.214. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2950

the mode is also Raman active. In an experimental
study of the hyper-Raman spectrum of methane® no
strong absorption was observed around the infrared val-
ue of 1526 cm™. Our symmetry analysis indicates that
this line should only be absent in the spectra for the I4
and I configurations.

IX. DISCUSSION

Recent advances in the technology of lasers and multi-
channel spectrometers have led to a greatly enhanced
interest in hyper-Raman spectroscopy. The high inten-
sities available from modern pulsed lasers are particu-
larly advantageous in view of the quadratic dependence
of the scattered intensity on the irradiance. Although
hyper-Raman intensities are small, they may be sub-
stantially enhanced by the use of an auxiliary tunable
laser to stimulate scattering at the hyper-Raman Stokes
frequency. It is also possible to obtain intensity en-
hancement by several orders of magnitude by approach-
ing resonance conditions.’

The selection rules of hyper-Raman spectra are gov-
erned by the symmetry properties of the hyperpolariza-
bility tensor 8;;,. In some of the previous work a full
index symmetry of this tensor was assumed and this led
to the incorrect conclusion that certain modes are
hyper-Raman inactive. In our work we have decomposed
the B tensor into irreducible tensors of weights 1, 2,
and 3, which we have used as a basis for a new classi-
fication of hyper-Raman-active modes. It has also been
shown that by collecting the hyper-Raman spectra for
five specified configurations it is possible to assign each
active mode to one of the six classes. It is important to
note that, in contrast to the Raman behavior, the selec-
tion rules for hyper-Raman scattering are the same for
nonresonant and near-resonant conditions; thus, the
mode classification scheme still holds.
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APPENDIX: REDUCTION OF A THIRD RANK
TENSOR INTO IRREDUCIBLE PARTS

A Cartesian tensor of rank n, in general, has 3" inde-
pendent components which form the basis for a reducible
representation of the rotation group; this representation
can be decomposed into a set of irreducible representa-
tions. To quote a well-known example a tensor of rank
2 may be expressed as a sum of three terms

Thu =T+ T+ T2, (A1)
where
79 =15,,T,, ,
T4y, - T,0), (a2)
T(Z)— Z(Tku +T x) - 35quw .
The components of each of the three terms 79!, T\1,

and T,fz’ transform among themselves under the opera-
tions of the rotation group and form the bases for the
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representations of a scalar, a vector, and a symmetric
traceless second rank tensor. Because of the connec-
tion with angular momentum theory, they are said to
have weights j =0, 1, 2, each having (2j+1) components,
thus accounting for the nine independent components of
a second rank tensor.

A similar reduction of a tensor of rank 3 gives (see
also Ref. 20)

- Un) E @n) 3)
Tluv - Auv*‘ Z Tluv + T)«uv T)mv
nzA, B,C n=A, B

(A3)

The number of terms of each weight in Eq. (A3) follows
from the results of coupling three inequivalent P states.
The irreducible tensors T,%), and 7%, are determined
uniquely since they occur only once in the decomposition.
However, for weights 1 and 2 only the sums are deter-
mined uniquely; the decomposition into independent ten-
sors is therefore arbitrary and some additional con-
straint is usually required.

The weight-0 term is clearly a constant times the
isotropic tensor €,,,. Hence, we write T,,, as

TMW =A€)«uv+R).quT).(?t)v+quva (A4)

where R,,, has no totally antisymmetric component. In
other words contraction of R,,, with ¢, ,, gives zero. It
follows from Eq. (A4) that

€ru uTxuv =64 (A5)
and the weight-0 term is therefore
T,fﬁ)v %eMweou‘r Tpogr - (A6)

Since the weight-1 terms transform like vectors, they
can be expressed as the linear combination

> 185, B,+6,,C,+6,,D,, )

LELTY: 4

where B,, C,, and D, contain the pair traces of T,,,
with the Kronecker deltas. Thus, R,,, is a sum of Eq.
(A7) and another term R,,, which is traceless with re-

spect to every pair of indices. So we can write
Thuw =% ExuvipuTTmrr +6,u By
+ 6)WCAI- + Guva +quu i) (AB)

and B,, C,, and D, are easily obtained from Eq. (A8)

by contracting both sides with §,,, &,,, and 6,,. For
the sum of the weight-1 terms we then have
1—10' [Ghu(4Toav - TPW - me)

+ 80 (= T + 4T = Tupo)

48,5 (= Topr = Toro +4T000)] - (A9)

The three sets of terms in Eq. (A9) can be regarded as
the three linearly independent weight-1 terms.

The remaining term Rj,, of Eq. (A8) is a sum of the
weight-2 and weight-3 terms. The weight-2 tensors
transform like traceless, symmetric second-rank ten-
sors, and their sum can be written as

}: T32W =€, Epe+ €upr For » (A10)

ns=a, B8
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It may be pointed out that a third term of the form
€1 G,r is not required in Eq. (A10) since it can be
expressed as

QG ur = €purGur + €yrGyr o (A11)

The terms on the right-hand side of Eq. (Al1) are of
the same form as in Eq. (A10) and are therefore

not required to define the sum of the weight-2 terms.

The relation (All) follows by contracting the tensor
identity

o= € urdyg+ €rbag - €1up0rg (A12)

with the traceless G,,. The tensors E,; and F,, in Eq.

(A10) are readily obtained by contracting Eq. (A3) with
the antisymmetric tensors ¢,,. and €,,,, and using the

fact that T{,a,’,, is symmetric in all pairs of indices.
Thus, we have

2n) _1
ZB Ty =% €xu‘f(2€pa'eruv +2€,6,Tpor + €001 Typo + €pgvT 100
n=e,

- Zév‘r(rpaTwc) *"é €uw(ZEooTThau + 2€oa>« Tfna
+€pgrTon + €orToor — 26).151907‘100) . (A13)

The two sets of terms may be regarded as the two inde-
pendent 7,2}, tensors.

Finally, using the theorem that the weight-» part of a
tensor of rank # is symmetric in all its indices and
traceless with respect to every pair of indices the 7,3,
result immediately follows:

1
Tl(?l-:) =6 (T)«u.v + T)wu + Tu)w"' Tuvl + Tmu + Tvu.x) - -115 [GM.L (Tnav

+Toyo+ Tppp) + 00, (T + T

pup

+T

MPO)

+ 5uv(TopA +Toe + TMP)] . (A14)
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