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In theories which describe the response of freely rotating molecules to externally imposed stimuli it is
frequently necessary to average rotationally a product of direction cosines relating space-fixed and

molecular coordinate frames. In this paper a systematic method for deriving the required tensor averages
is presented, and results up to the seventh rank are explicitly shown. Where appropriate both recucible
and irreducible expressions are given and their equivalence is demonstrated. Finally, some useful identities

relating rotational averages of different ranks are noted.

I. INTRODUCTION

In the study of several physical processes such as the
interaction of radiation with matter, experiments are
frequently performed upon matter in a fluid phase. In
order to relate the results of such experiments with the-
ory, it is necessary to take random orientation of the
molecules into account when deriving expressions for ob-
servables. This is usually accomplished by deriving the
relevant result for a system with fixed orientation and
then performing a rotational average. In general, the
first step leads to an expression for an observable T of
the form

T=Aq i Py-ooiy s (1)

where P;,...;, is the tensor associated with the response
of a molecule to external conditions represented by
Ay ...i,» For example, in a dipole-allowed one-photon
absorption calculation where T refers to the transition
rate, A and P are second rank tensors related to the po-
larization of the radiation and the square of the transi-
tion moment, respectively. The tensor components of
A and P in Eq. (1) are specified with respect to a com-
mon frame, say a space-fixed frame, This frame is
usually chosen so that the components of the tensor A
can be expressed in a simple manner., For a randomly
oriented system it is convenient to re-express the com-
ponents of the molecular property tensor P with respect
to a molecule-fixed frame through the relation

Py, =lip ce o lin Py, s (2)

n

where [;,,, refers to the direction cosine of the angle be-
tween the space-fixed and molecule-fixed axes i, and x,.
The problem of obtaining the rotationally averaged result
for 7T then reduces to that of finding the rotational aver-
age of the direction cosine product lfm veolia,. For
this purpose it is convenient to specify the direction co-
sines in Eq. (2) in terms of Euler angles, so that Ligy
refers to the (i,,1,) element of the Euler angle matrix. !
Denoting the rotational average of 7;,,,- -« I;, by

I8 ipiag g We have

. 1 2r 2r

- _ .
I g, = 5172[0 fo fo Lip Ly, 5iné de db dy,

(3)
where ¢, 6, and y are the Euler angles relating the
space-fixed and molecule-fixed frames. For low values
of n these averages are easily worked out and are well
known; recent applications include studies on higher
multipole contributions to circular dichroism? and opti-
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cal rotation.® Results for high n, however, are in-
creasingly in demand for use in the theory of nonlinear
optical processes. For example, the lowest order cal-
culation on the hyper-Raman effect, which is a three-
photon process, calls for the sixth rank average.*?% Cal-
culations® on the differential hyper-Raman scattering by
optically active molecules require rotational averages
for even higher #. The trigonometric averaging pro-
cedure, though simple to use for low n, can be tedious
for high » because a large number of integrals have to be
evaluated. It is further complicated by the problem of
reducibility, since for high » the tensor components are,
in general, linearly dependent. Hence, a straightforward
application of the trigonometric procedure to such cases
does not lead to unique expressions for the averages.

In this paper we present a systematic method of cal-
culating ¥ which does not rely on the explicit integra-
tion of Eq. (3). Results up to »="7 are given, and the
relationship between the so-called reducible and irre-
ducible forms are discussed. Finally, we note a few
useful identities relating the rotational averages of dif-
ferent ranks,

il. METHOD

Since I{’..; .1, .-, i8 rotationally invariant, it is pos-
sible to express it as a linear combination of isotropic
tensors. According to an important theorem of Weyl?
(see also Jeffreys®), each member of the sum is a prod-
uct of two isotropic tensors—one with Latin suffices and
the other with Greek suffices. An important feature of
these products is that the Latin and Greek indices do not
mix, For even n these isotropic tensors are products of
n/2 Kronecker deltas such as &;,;,+ + 8;,_,:,5 for odd »
they are products of one Levi-Civita antisymmetric ten-
sor and (z - 3)/2 Kronecker deltas as for example
€iyinigOigis® ** Oiyyipe 10 €ach case isomers of these ten-
sors may be formed by permutation of the indices é;- ..,
and the total number of isomers is given by

\ .
Nn= W%]W (n even) (
nl S @
~ 3.2 D72((, Z3)/2)! ¢z 0dd) :

Let us denote the »th member of the set of isomers in
the space-fixed frame by £, and the corresponding
isomer in the molecular frame by g. We have sup-

pressed the tensor indices for convenience. I{1..; . ...
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TABLE I. The number of isotropic tensor isomers N, and
the size @, of the linearly independent basis set for rank z.

n 2 3 4 b 6 7 8 9 10

3 10 15 105 105 1260 945
Q 1 1 3 6 15 36 91 232 603

is then a linear combination of the products f8":

= Z m’(‘g)f-:n)g;n) . (5)

TS

The problem thus reduces to finding the numerical coef-
ficients m[)

73°*
Using the well-known relationships
Oiyinlip lipn,=Oapny s (6)

M

€iyigighipnglipgling = Gppy
we write down the general equation
Py lia, =88 (8)
A rotational average of Eq. (8) leads directly to
Fap Z g (9)

Combining Egs. (5) and (9) and multiplying by g{™ we
have

() e(n) o (n) (1) o (0) _ (1) ()
qu r'rl mr: gs gt _gq gt (10)
TS

Let us denote the index-contracted product of two iso-
mers f* and £ by s{’. Then,

A - gg =8 an
and Eq. (10) yields the important result
M(n) - (s(n) )-1 . (12)

Here, M™ is the square matrix with elements m "’ and
8 is the square matrix with elements s} Equation
(12) holds provided the inverse of 8™ exists. In order
to employ this method to find I, it is therefore clearly
essential to use complete and linearly independent
basis sets of the isotropic tensors f{” and g™, By a
simple group theoretical argument® it is easily shown
that the number of linearly independent tensor isomers

of rank » is given by

& al(3r-n+1)
Q"';(n-zmrz(ﬂ n’ (3)

where p assumes the value »/2 if  is even, and (n~- 1)/2

if » is odd. For n=2 to 10 the number of isomers N, and

the size @, of the linearly independent set are tabulated
in Table I. From this table it is clear that for even

n< 6 or for odd n <3 the full set of isotropic tensor iso-
mers are linearly independent and therefore form a
suitable basis set, However, for even n>6 or odd n>3
the full set is overcomplete. We therefore need to select
a complete and linearly independent subset for our basis,
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and this may be done using Smith’s standard tableau
method!? as outlined in the next section. The reader is
referred to Ref. 10 for details.

{1Il. SMITH’S METHOD OF BASIS SET ENUMERATION

We first define a partition of » as a sequence of posi-
tive integers (n,n, - - - #,) whose sum is n, with n,=#n,. .-
2z n,. Corresponding to each partition we construct a
frame of n squares in rows and columns, with n, squares
in row i the first elements of each row lying directly un-
der one another. The partition (42) of n =6, for ex-
ample, corresponds to the frame shown in Fig. 1{a).

By entering the index numbers 1 to # in such a way that
they increase in every row from left to right, and in
every column reading downwards, we obtain what is
termed a standard tableau; there are usually a number

. of these with different index ordering for each frame, !

For a given #, it is in general possible to construct

several frames; however, as Smith has shown, only
certain frames can be used in the construction of the
basis set. For convenience we discuss the even and
odd rank cases separately.

Even rank. The construction of frames for even » is
governed by two rules. First, the number of rows can-
not exceed the dimensionality of the tensor, which in
our case is three. Secondly, the frame columns must
be in pairs with the two members of each pair having the
same length, i.e,, the same number of squares (see
Fig. 2). The construction of standard tableaus from
these frames is straightforward. With each pair of
columns of a standard tableau is then associated a gen-
eralized Kronecker delta!?

Oia‘r e éld‘b
i ...‘ - -
5,:...“5— . s

.

(14)

Bige, oo Dugy

where a to 8 are the successive entries down one col-

umn and y to § those down the other. For example, the
standard tableau shown in Fig. 1(b) is associated with the
tensor 5{18688= 54 1,015450 131, — 01,140 15150 4g4,+ Itisusefulto
note that each type of frame used in constructing standard
tableaus is associated with a different representation, !*
and the restrictions upon the types of frame permitted
here limit the number of different types to p(x/2, 3),
which is the number of partitions of #/2 into at most
three parts. *® The total number of standard tableaus
obtainable from these frames is precisely @, and the
tensors they represent, or suitable linear combinations

[ ] 12]3]4]
5 6
(a) {b)

FIG. 1. (a) A typical frame, and (b) a typical standard tableau
of rank 6.
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FIG. 2. Frames for tensors of rank n.

of these tensors, constitute a complete and linearly in-
dependent set,

Odd rank. For odd n we have an additional rule that
the first column must contain three squares. The con-
struction of the rest of the frame with (z - 3) squares is
subject to the same rules as for the even » case dis-
cussed above, For example, when » =7 we have two pos-
sible frames (see Fig. 2). The first column of a stan-
dard tableau for odd » represents the antisymmetric ten~
SOT €4y where a, B, and y are the entries in this
column, and the remaining pairs of columns are inter-
preted as generalized Kronecker deltas. The restric-
tions limit the number of permitted frames to p[{(n~ 3)/
2, 3], and the standard tableaus again represent a com-
plete set of @, linearly independent isotropic tensors.

Having outlined the procedure for determining suitable
basis sets for construction of ™ and use in the matrix
inversion method to find M™, we now explicitly evaluate
the rotational averages for ranks »=2 to 7; for conve-
nience, we again discuss the even and odd rank cases
separately.

1IV. ROTATIONAL AVERAGES OF EVEN RANK

A n=2
There is only one isotropic tensor of rank 2, namely,

8ijiyr Therefore,
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TABLE II. The isotropic tensor isomers of rank 6.

» fr(S) r fT(S) . fT(S)

1 6i1i26i3i4 6i5i6 6 6,‘1,'3 652"665@5 11 6i1i56i2i4 61'31'6
2 BigipOugicOigig T BipayGigig g 12 83461y Biyy
3 OigiyOigigbig, 8 Bigig Oipis 6igig 13 83 4i 6 Oigig Oigig

4 O34ig0igi, bigig 9 8iyiy Oigigligi; 14 83401y, Oigig

5 O4gigigig Gy 10 8i4ig0igig0iyiy 15 8141 0igis Oigig

8% =35, 3, (15)

;. 0
f1*2

iyip ™

which, together with Eqs. (5) and (12), leads directly to
the well-known result

) _1
Iillz;lllg - SGiIiZGAﬂz .

(16)

B. n=4

The three independent isotropic tensors of rank 4 are

@ _ 5

71 0

i1i9043iy
) _
2 =0i;0

(17)

foiy

W _ 5

3 6

i1ig gl

Using them we find
9 3 3
§%=1 3 9 3 (18)
3 3 9
hence

e
{1igigigitrodaly
T/ 4 -1 -1
-1 4 -1
-1 -1 4

) .
i1ip0igi, By Oagny

= §6 6i1i36i2i4
)

0N 1*3 512‘4 ’

0; 5.6, ;
PiligVigig Oaiag Oagrs

(19)

where T denotes transpose. This result has previously
been obtained in a similar form by Keilich, ¥ Monson and
McClain, '* and Power and Thirunamachandran. 2

C. n=6

There are 15 tensor isomers for this case, as shown
in Table II, and these form a linearly independent set.
The matrix 8 may be constructed in the usual way,
and the inverse gives
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16 -5 -5 -5 2 2 -5 2 2
-5 16 -5 2 -5 2 2 2 -5
-5 -5 16 2 2 -5 2 -5 2
-5 2 2 16 -5 -5 -5 2 2
2-5 2 -5 16 -5 2 -5 2

2 2-5-5-5 16 2 2 -5

e L -5 2 2 -5 2 2 16 -5 -5
201 2 2 -5 2 -5 2 -5 16 -5
2 -5 2 2 2-5-5-5 16

2 -5 2 2 -5 2 -5 2 2

2 2-5-5 2 2 2 -5 2

-5 2 2 2 2-5 2 2 -5

2 2 -5 2 2-5-5 2 2

2 -5 2-5 2 2 2 2-5

-5 2 2 2 -5 2 2-5 2

The result for I® now follows from Eq. (5), and in this
form it has also been obtained by Kielich, 1* McClain, ®
and Healy. 3

We conclude this section by noting that in the results
discussed above, the number of independent coefficients
in the matrices M™ in each case equals the number of
permitted frames., This result is in general only appli-
cable if the full set of tensor isomers is used for the
basis.

V. ROTATIONAL AVERAGES OF ODD RANK
A n=3

As for n=2, there is just one isotropic tensor of rank
3, namely, the Levi-Civita antisymmetric tensor

16
-5
-5
-5

2
2

5111213- Thus,
8% = €iyipiz€iginia= 0 (21)
and
Ii‘iizia;xlxzxa:é‘eilizisfxlxaxs . (22)
J
(ei-a-'T”3-1-1 11
1i2i3 Yigisg
€iyinigOigis | |-1 3 -1 -1 0
) _ 1 | €yipig Oiq4y -1-1 3 0 -1
Iijigigigisnpargrgrs = 30
651{3{4 6’.2‘5 1 —1 0 3 —1
Eiliafs 6{2{4 1 0 - 1 -1 3
_641{4‘5 5,213_1 0 1 - 1 1 -1

This result is, however, also expressible in terms of
the overcomplete set of N, tensor isomers. We shall
refer to such results as reducible, to distinguish them

5029

2 -5 2 2 -5
2 2 2 -5 2
-5 2 -5 2 2
-5 2 2 -5 2
2 2 2 2 -5
2 -5 -5 2 2
2 2 -5 2 2
-5 2 2 2 -5 ’ (20)
2 -5 2 -5 2
-5 -5 -5 2 2
16 -5 2 -5 2
-5 16 2 2 -5
2 2 16 -5 -5
-5 2 -5 16 -5
2 -5 -5 -5 16 |
|
B. n=5

This is the first instance where we have to choose a
linearly independent subset from the full isomer set, as
Q. <N, (see Table I). For n=5 there is only one allowed
frame, corresponding to the partition (311), from which
six standard tableaus may be constructed. They corre-
spond to the tensors

(5) _
fi = €5149i3014i5
(5) )
S27 = € 4p1, 04504
(5) _
3 = €ipigigDigty (
: 23)
(5 = €;.; &;
4 f1i314Vigisg
(5)= . :
5 = €ipigigOuyi,
(5) -
=€; : ;04
[} {1t4t5 1213

Using this basis set we find the following resuit for /¥,
in agreement with Kielich'®:

07 lerpms Srgrs |
1] €x oy 5>‘3x5
-1 €xpagng Oagny . (24)
1 Exprgry Oagng
-1 Expagng 6"2"4
3_J LEA 1Mh5 élgkgj

[
from the irreducible type involving only the @, isomers.
We shall also denote the tensors and matrices associ-

ated with such reducible results with primes henceforth,
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For {:he fifth ran!& case th_e full set of te.n tensor isomers fi® = €ipigi501y0, = e O U (26)
consists of the six given in Eq. (23), with 7> read as )
7(5) . A Fo =€y .6: 0. 550 - 194 f® 27)
f»**’, and the four listed below, each of which is expres- 9 igigd5- iz~ /2 3 6
sible in terms of the original six tensors as shown: fis = €1gi4i5014i5 = PR S CL (28)
' 6. = £ _ ) ® We can now deduce from symmetry considerations!” that
S = gy Bayg =0 2 HA (25) the reducible matrix M’®® can be written in the form
|
a b b-b-5 0 b b 0 O
b a b b 0-b-5 0 b 0
b b a 0 b b 0-b5-b 0
-b b 0 a b-b b 0 0 b
MO = -b 0 & b a b 0 B 0 -0 29)
0-b5 b~-b b a 0 0 b b
b~ 0 b 0 0 a b-b b
b 0 -5 0 b 0 b a b -0
0 8- 0 0 b-5 b a b
L 6 0 0 b-5 & b-b b a |},

where ¢ and b are undetermined coefficients. Explicit integration of Eq. (3) yields just one equation relating a and
b, namely,

a+2b=1/30. (30)
This agrees with the observation that as the full set of tensor isomers is used, the number of independent coeffi-
cients must equal the number of allowed frames for =5, i.e., one. The overcompleteness of the basis set pre-
cludes unique solutions, and any pair of values satisfying Eq. (30) can be used to express I®®’, One such
pair, a=1/30, 5 =0, leads to the following particularly simple form?:

(5) -1
er‘1‘2"3“4‘5"‘1‘2‘3"4"5 - 3-‘5(6‘1‘2‘35‘4‘5611"2’“4‘5"4)‘5 + €‘1‘2‘46‘3‘56"1"2‘45"335 * 6‘1‘2‘56‘3‘46"1"2*56"3"4+ 6‘1‘3‘46‘2*56"1"3‘4612"5
+ €4113150 1514 O rsOrang ¥ €apigisOiais A pngnsOams + €aatataO11tsErngrgOrins + €giges0ii1s GragrsOany

+ €41 41608 13 EapiisOrpag + €igigicOiginErprasOigy) - (31)
2t4i5ViiaC a0y F CigigisOni aaagOan,

To demonstrate the equivalence!® of the irreducible form by writing down the standard tableaus corresponding to
{24) and the reducible form following from Eq. (29) we the frames (331) and (511) shown in Fig. 2. These iso-

write mers are given in Table III. Construction of the matrix
s 8 then leads directly to the result, Eq. (34), for M”,
76 = Zhrsff) and hence I'” is obtained.
=1
B} , (32)
g:(5> =Zhng§5) TABLE II. The irreducible set of rank 7 isomers.
=1
> fr”) > fr(7) r fr”)

where the coefficients #,, are easily obtained with the aid

of Eqs. (25)-(28). The reducible 10x10 matrix M’® is  ©  Sifeb Sl 15 Sufi Ot B i Sy g
then related to the irreducible 6x6 matrix M‘® through A st Ot Ouggg 20 Sty Ouats Sate
the equation 3 €1 ydgty Otgtr tgte 15 €415, 01,4044 27 CRNEIN RN
4 €4 1698 Stat Dty 18 € gagig Oty Oighy 2 €310 Supt5 Brgay

M® =H'M'“H ’ (33) 5 €iigig S13i Oty 17 €1gigty B30 Bigiy 29 €11 445 B1giq Byt
where the matrix elements of the 10x 6 matrix H are CE FOTLEULEE 18 Surigty Oiatq Oigts 30 Eugtate Siaty Bisty
h,s. A straightforward multiplication shows that Eq. T g Sz Sugy 19 €ya315 S191y Otgty st Cistetg Otatr Sugts
(33) holds provided Eq. (30) is satisfied. 8 €tyigls Oigig Oyt 20 €41i305 Oinig Otgiq 32 €igigir Bigty Ot
9 €iytais Sigty iyl 21 €igtis Digty S0 33 €iytgiy Bigtg Bigts

C. n=7 10 €iig1 0151, Otgty 22 €i34g1 6 11, Otgty 34 €1qigig gty Ougiy
. . R op s 1 €igigi; Oigig Sigty 23 €ayigis Oiats Oty 35 €iptgiy Oty Sigig

Of the 105 isotropic tensor isomers for »=7, it is pos- ,, iytatg Bigha Ot 24 4i5tq Bt B 36 iyt Otk Sty

sible to choose a linearly independent set of 36 isomers
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Once again the result may be expressed in reducible
form by adopting the overcomplete basis set comprising
the 105 isotropic tensor isomers. These may be grouped
into 35 sets of three, each set being associated with a
particular epsilon; the three members of a given set dif-
fer only in their pairing of indices in the Kronecker
deltas. The 35 epsilons are obtainable using the dic-
tionary order, i.e., €;ipi €ijigigs €iyigigre+- « FOT
each epsilon, three successive isomers of rank 7 are
obtained by multiplying by £{*, 5%, 7# of Eq. (17), re-
spectively, with the indices ¢, i,, 7;, 7, replaced by the
four unused indices in ascending order. For example,
the first three isomers are formed with the first ep-
silon and the unused indices 4,, 45, 75, and i;; So we have

7
=€; ;. 0, P
ﬂ :1:21361415616&,

" _

2 = €i1i2i35i4i66i5i7§ (35)
7y

3 = €ini004,1,04000

The 105x 105 matrix M’ can now be written in block
diagonal form with one 3x 3 block for each epsilon, as
expressed by the direct product

(36)

where E is the unit matrix of rank 35, and A is the 3x3
matrix

MM =ExA ,

6 -1 -1
1
A—m— -1 6 -1 (37)
-1 -1 6

In this form the seventh rank average result appears at-
tractively simple. However, it should be borne in mind
that in the application to a particular physical problem
the simplest result may follow from use of the irreduci-
ble form which involves a smaller number of basis ten-
sors.!® The equivalence of the reducible and irreducible
forms may be demonstrated in a manner analogous to
that described for I®,

We conclude our discussion of the odd rank averages
by noting that the number of independent coefficients in
the reducible matrices M’ is equal to the partition
Pl = 3)/2, 3], which in turn equals the number of inde-
pendent coefficients for the average of even rank n- 3,
Moreover, there are N,_; isotropic tensor isomers of
rank » for each of the epsilons, e.g., N,=3 isomers for
each of the 35 epsilons in the rank 7 case. Consequent-
ly, it is always possible to write a rotational average of
odd rank in a block diagonal form, where there is one
- block for each epsilon and each block has the same set
of pln— 3)/2, 3] distinct coefficients. The reducible re-
sults given above for I and IV are both in this diagonal
form.

VI. RELATIONS BETWEEN ROTATIONAL AVERAGES
OF DIFFERENT RANKS

We conclude with some useful identities involving the
relations between the rotational averages of different
ranks, First, using Eq. () we note that
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lil’*l et l"n-zxn-zl‘n-l"n-llin‘nﬁ‘n-linbln-l)‘n: 3li1"1 e lin-z)‘n-.z ’
. _ _ (38)
which upon rotational averaging gives
1rm) - 7(n=2)
i ip g A Dty i O = vy gty A * (39)

Similarly, using Eq. (7), we can relate /*” to 7% by

€ = yn-3) . (40)

Ly VR =
844y inidy A Spipinag iy Apeghaatdn T Ci1 T ino3id T Mg

To relate 7*” to IV we start with the elementary rela-
tion

%liz’*zliaksei 1iais€rapgng ~ Lipy (41)
After multiplying both sides of this expression by a fur-

ther »n - 2 direction cosines, rearranging indices, and
averaging, we find that

. ; € €
24igpaaininagid T Apa2tnrne1 Sinatinf nal SAno1tnt et

—_ y{n-1)
{17 ipag iy A 7

(42)

which in principle enables us to determine every rota-
tional average of rank lower than » from the result for
IV, 1t is important to note that the above expressions
involve index symmetry constraints, and hence they
cannot be used to generate higher order rotational aver-
ages from those already known. However, these identi-
ties do represent conditions which such results must ful-
fil, and this knowledge should prove useful in checking
new results.
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