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ISOTYPIC FAITHFUL 2-REPRESENTATIONS

OF J -SIMPLE FIAT 2-CATEGORIES

VOLODYMYR MAZORCHUK AND VANESSA MIEMIETZ

Abstract. We introduce the class of isotypic 2-representations for finitary 2-
categories and the notion of inflation of 2-representations. Under some natural
assumptions we show that isotypic 2-representations are equivalent to inflations
of cell 2-representations.

1. Introduction

Classification problems are one of the driving forces in representation theory. With
the advent of 2-representation theory, a canonical major problem is to classify
all 2-representations of suitable 2-categories. Another direction is the study of
uniqueness questions, which has been pursued, for example, in [CR, LW, MM1].
One natural class of 2-categories to consider is that of finitary 2-categories, which
provide 2-analogues of finite dimensional algebras.

A systematic study of abstract 2-representation theory of finitary 2-categories was
initiated in [MM1]–[MM5], [Xa]. Inspired by [BFK, BG, CR, KL, Ro, So], among
others, we especially focused on the class of fiat 2-categories, which can be con-
sidered as 2-analogues of algebras with involution. Fiat 2-categories also appear,
sometimes in disguise, in [EW, EL, MT, SS] and many other papers. The first
question in representation theory is that of classifying simple representations. Its
2-analogue was addressed in [MM5], where we proposed the notion of a simple tran-
sitive 2-representation as an appropriate 2-substitute for the classical notion of a
simple representation. Under certain combinatorial assumptions, which are satis-
fied for most of the inspiring examples mentioned above, we obtained a complete
classification of simple transitive 2-representations up to equivalence, showing them
to be cell 2-representations, previously constructed in [MM1, MM2].

In the present article, we take the first step in the direction of classifying more com-
plicated 2-representations. The starting point was an attempt to classify all tran-
sitive 2-representations. However, it turned out that our methods yield stronger
results. We introduce the class of isotypic 2-representations. In full analogy with
the corresponding classical notion, these are 2-representations with only one equiv-
alence class of simple transitive weak Jordan-Hölder subquotients. Our main result,
Theorem 4, asserts that, under the assumption that a weakly fiat 2-category is J -
simple and the 2-representation is faithful, each such 2-representation is obtained,
up to equivalence, from a cell 2-representation by an easy procedure which we call
inflation, see Section 3.6. In the special case where the 2-category concerned is a
finitary quotient of a 2-Kac-Moody algebra, this recovers results from [Ro2, Section
4.3.4].
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Let us now briefly describe the structure of the article. In Section 2, we collect all
necessary preliminaries on finitary and weakly fiat 2-categories. Section 3 recalls
the basics on 2-representations. It also contains a combinatorial result, Proposi-
tion 1, which renders superfluous the numerical assumption appearing in [MM1,
Theorem 43], [MM3, Section 4], [MM3, Theorems 14,16] and [MM5, Theorem 18].
Furthermore, we introduce the notion of isotypicality of a 2-representation and de-
scribe the construction of inflation. The last subsection contains the statement of
our main result, Theorem 4. Section 4, which constitutes the core of the paper,
gives a proof of the main theorem in the special case of a particularly nice class of 2-
categories, the 2-categories of projective functors for finite dimensional self-injective
algebras. In Section 5 we deduce the general case. To round things off, Section 6
contains several new constructions of finitary and fiat 2-categories, providing many
additional examples to which our theorems apply. In an appendix, we indicate how
to generalize our previous results on fiat 2-categories to the weakly fiat case.

Acknowledgment. A substantial part of the paper was written during a visit
of the second author to Uppsala University, whose hospitality is gratefully ac-
knowledged. The visit was supported by EPSRC grant EP/K011782/1 and by
the Swedish Research Council. The first author is partially supported by the
Swedish Research Council. The second author is partially supported by EPSRC
grant EP/K011782/1.

2. Preliminaries on fiat 2-categories and 2-representations

2.1. Notation. Throughout this paper, we work over a fixed algebraically closed
field k.

By a 2-category we mean a category which is enriched over the category of all
small categories. Thus, a 2-category C consists of a collection of objects, denoted
i, j, k, . . . ; for each pair (i, j) of objects, a set C(i, j) of 1-morphisms, denoted
F,G,H, . . . ; and for each pair (F,G) of 1-morphisms in a fixed C(i, j), a set
HomC (i,j)(F,G) of 2-morphisms, denoted α, β, γ, . . . . For i ∈ C , the identity
1-morphism in C(i, i) is denoted 1i and, for a 1-morphism F, the corresponding
identity 2-morphism in HomC (i,j)(F,F) is denoted idF. We write ◦ for composition
of 1-morphisms (which we often omit), ◦0 for horizontal composition of 2-morphisms
and ◦1 for vertical composition of 2-morphisms. We set Cat to be the 2-category
of small categories.

2.2. Finitary 2-categories. We call an additive k-linear category finitary pro-
vided that it has split idempotents, finitely many isomorphism classes of indecom-
posable objects and sets of morphisms form finite dimensional k-vector spaces. We

denote by A
f
k
the 2-category whose

• objects are finitary additive k-linear categories,

• 1-morphisms are additive k-linear functors,

• 2-morphisms are natural transformations of functors.

Now we define a finitary 2-category (over k) to be a 2-category C such that
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• it has finitely many objects;

• for each pair i, j of objects, C(i, j) belongs to A
f
k
and horizontal composi-

tion is additive and k-linear;

• for every i ∈ C , the corresponding 1-morphism 1i is indecomposable.

We refer the reader to [Le, McL] for generalities on abstract 2-categories and to
[MM1]–[MM5], [Xa] for more information on finitary 2-categories.

2.3. 2-representations. For a finitary 2-category C , a 2-representation of C is
a strict 2-functor from C to the 2-category Cat. A finitary 2-representation

of C is a strict 2-functor from C to the 2-category A
f
k
. We usually denote 2-

representations by M,N, . . . , in particular, Pi stands for the i-th principal 2-
representation C(i,−), where i ∈ C . All finitary 2-representations of C form a
2-category, which we denote by C-afmod. In this 2-category, 1-morphisms are
2-natural transformations and 2-morphisms are modifications (see [Le, MM3] for
details).

Two 2-representationsM andN of C are said to be equivalent provided that there is
a 2-natural transformation Φ : M → N such that Φi is an equivalence of categories
for each i.

Abusing notation, we write FX instead of M(F)X for a 1-morphism F.

Consider a 2-representation M of C and assume that M(i) is additive and idem-
potent split for each i ∈ C . For every collection Xi ∈ M(ii) of objects, where
i ∈ I, the additive closure add({FXi}), where i ∈ I and F runs through the set of
all 1-morphisms of C , has the structure of a 2-representation of C by restriction.
We write GM({Xi : i ∈ I}) for this 2-subrepresentation of M.

2.4. Combinatorics of finitary 2-categories. For a finitary 2-category C , we
denote by S(C ) the set of isomorphism classes of indecomposable 1-morphisms in
C , which forms a multisemigroup by [MM2, Section 3]. This multisemigroup comes
equipped with several natural preorders. For two 1-morphisms F and G, we say
G ≥L F in the left preorder if there is a 1-morphism H such that G appears, up to
isomorphism, as a direct summand of H ◦ F. A left cell is an equivalence class for
this preorder. Similarly one defines the right and two-sided preorders ≥R and ≥J

and the corresponding right and two-sided cells, respectively.

Note that ≥L defines a genuine partial order on the set of left cells. A similar
statement holds for ≥R and right cells, and for ≥J and two-sided cells.

2.5. Weakly fiat and fiat 2-categories. For a 2-category C , we denote by Cop

the 2-category obtained from C by reversing both 1- and 2-morphisms.

We call a finitary 2-category C weakly fiat if

• C is equipped with a weak equivalence ∗ : C → Cop;

• for any pair i, j of objects and every 1-morphism F ∈ C(i, j), there are
2-morphisms α : F ◦ F∗ → 1j and β : 1i → F∗ ◦ F with the property that
αF ◦1 F(β) = idF and F∗(α) ◦1 βF∗ = idF∗ .
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If ∗ is a weak involution, we call C a fiat 2-category, see [MM1, MM2].

The equivalence ∗ sends a 1-morphism F to F∗ and the image of F under an inverse
of ∗ will be denoted ∗F. Note that both F 7→ F∗ and F 7→ ∗F are isomorphisms
between ≤L and ≤R.

We note that the last condition in the paragraph above mirrors the notion of rigidity
in [EGNO, ENO], see also references therein.

2.6. 2-ideals. Given a a 2-category C , a left 2-ideal I of C is a 2-semicategory on
the same objects as C and in which, for each pair i, j of objects, the set I(i, j) is
an ideal in C(i, j) such that I is closed under left horizontal multiplication with
both 1- and 2-morphisms in C . Right 2-ideals and two-sided 2-ideals (also just
called 2-ideals) are defined similarly. For instance, principal 2-representations are
left 2-ideals in C .

For a 2-category C and a 2-representation M of C , an ideal I in M consists of an
ideal I(i) in each M(i), for i ∈ C , which is stable under the action of C .

2.7. Abelianization. For a finitary additive k-linear categoryA, its abelianization

is the abelian categoryA, in which objects are diagramsX
η

−→ Y , forX,Y ∈ A and
η ∈ A(X,Y ), and in which morphisms are equivalence classes of solid commutative
diagrams of the form

X
η //

τ1
��

Y

τ2
��

τ3

ww♣ ♣

♣

♣

♣

♣

♣

X ′

η′

// Y ′

modulo the equivalence relation k-linearly spanned by diagrams for which there
is τ3 as shown by the dashed arrow with η′τ3 = τ2, see [Fr]. The category A is
equivalent to the left module category for the finite dimensional k-algebra

EndA(P )
op where P :=

⊕

Q∈Ind(A)/∼=

Q

where Ind(A) denotes the collection of indecomposable objects in A.

Given a 2-category C and a finitary 2-representation M of C , the abelianization of

M is the 2-representation M of C which sends each i ∈ C to the category M(i)
and defines the action of C on diagrams component-wise. Thus the action of each
1-morphism in C on an abelianized finitary 2-representation is right exact.

2.8. The 2-category CA. Fix a basic, self-injective, non-semisimple, connected,
finite dimensional k-algebraA and a small categoryA which is equivalent to A-mod.
Define, following [MM1, Section 7.3], the 2-category CA to have

• one object ♣ (identified with A);

• direct sums of functors with summands isomorphic to the identity functor
or to tensoring with projective A-A-bimodules as 1-morphisms;

• natural transformations of functors as 2-morphisms.
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By a projective functor, we mean a functor which is isomorphic to tensoring with a
projective A-A-bimodule.

We fix a set {e1, e2, . . . , en} of primitive, pairwise orthogonal idempotents in A
which sum to the identity element 1 in A, and denote, for i, j ∈ {1, 2, . . . , n},
by Fij an indecomposable 1-morphism given by tensoring with the A-A-bimodule
Aei ⊗ ejA. Then the 2-category CA has two two-sided cells: the minimal one,
consisting of the isomorphism class of the identity morphism, and the maximal one,
which we call J , consisting of the isomorphism classes of Fij for i, j ∈ {1, 2, . . . , n}.
The two-sided cell J decomposes into left respectively right cells

Lj := {Fij : i ∈ {1, 2, . . . , n}} and Ri := {Fij : j ∈ {1, 2, . . . , n}},

where i, j ∈ {1, 2, . . . , n}. We denote by σ : {1, 2, . . . , n} → {1, 2, . . . , n} the
Nakayama bijection which is defined by requiring socAei ∼= topAeσ(i) or, equiva-
lently, Aei ∼= Homk(eσ(i)A, k). The isomorphism

HomA(Aei ⊗k ejA,−) ∼= Homk(ejA, k)⊗k eiA⊗A −,

see for example [MM1, Section 7.3], implies that (Fij ,Fσ−1(j)i) form an adjoint
pair of functors. Hence CA is weakly fiat, where ∗ is given on 1-morphisms by
F∗
ij = Fσ−1(j)i. Moreover, CA is fiat if and only if A is weakly symmetric, that is,
σ is the identity map.

Setting F :=
n

⊕

i,j=1

Fij we have F ◦ F ∼= F⊕ dim(A) and F∗ ∼= F.

Every nonzero two-sided 2-ideal in CA necessarily contains the identity 2-morphism
on each indecomposable 1-morphism not isomorphic to the identity, see [Ag,
Section 3.5], which means that CA is J -simple in the sense of [MM2, Sec-
tion 6.2].

3. Transitive 2-representations

3.1. Cell 2-representations. Let C be a finitary 2-category. Given a left cell L in
C , there is i = iL ∈ C with the property that every 1-morphism in L has domain
i. This allows us to define N := GPi

(L).

The 2-representationN has a unique maximal ideal I which does not contain idF for
any F ∈ L, see [MM5, Lemma 3]. The corresponding quotient 2-functor CL := N/I
is said to be the (additive) cell 2-representation of C associated to L.

3.2. Strongly regular cells. Let C be a weakly fiat 2-category and J a two-sided
cell in C . We say that J is strongly regular, see [MM1, Section 4.8], provided that
the following two conditions are satisfied:

• any two left (resp. right) cells in J are not comparable with respect to the
left (resp. right) order;

• the intersection between any right and any left cell in J contains precisely
one isomorphism class of indecomposable 1-morphisms.
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If L is a left cell belonging to a strongly regular two-sided cell, then L contains a
unique element G = GL such that G∗ ∈ L, see Proposition 28. This element is
called the Duflo involution of L.

If J is a strongly regular two-sided cell and F ∈ J , then the component of ∗F ◦ F
which belongs to J is in the same left cell as F and in the same right cell as F∗,
and the intersection of these two cells contains a unique element H. Hence there
is a positive integer mF such that ∗F ◦ F ∼= H⊕mF ⊕ K, where no indecomposable
direct summand of K belongs to J .

3.3. The numerical condition. Let C be a weakly fiat 2-category and L a left cell
in C which belongs to a strongly regular two-sided cell. Set i = iL and consider
the corresponding cell 2-representation CL, as defined in Section 3.1, as well as
its abelianization CL. For each j ∈ C , isomorphism classes of indecomposable
projective respectively simple objects in CL(j) are indexed by isomorphism classes
of 1-morphisms in L ∩ C(i, j) and denoted by PF and LF, respectively.

By Proposition 27(ii) and Proposition 26(i), respectively, for all F,H ∈ L we
have

(1) FLH
∼=

{

PF if H ∼= GL,

0 otherwise.

Proposition 1. Let C be a weakly fiat 2-category and J a strongly regular two-sided
cell. Then the function

J
m
−→ Z

F 7→ mF

is constant on right cells of J .

Proof. Let L be a left cell in J . Consider the corresponding 2-representations CL

and CL. From (1) and [MM5, Lemma 13], it follows that each F ∈ L is represented
in CL by an indecomposable projective functor.

For each j ∈ C , denote by Aj the basic algebra whose module category is equiv-

alent to CL(j), and fix some set {ej1, e
j

2, . . . , e
j
nj
} of primitive pairwise orthogonal

idempotents in Aj which sum to the identity. Then, without loss of generality,
we may assume that the projective functors corresponding to F ∈ L are precisely
Aje

j

k ⊗k e
i
1Ai, where k = 1, 2, . . . , nj.

By Proposition 30(i), the algebra Aj is self-injective. The computation in [MM1,
Lemma 45] shows that F∗ are represented by projective functors corresponding to

Aie
i
σ−1(1)⊗ke

j

kAj. HencemF∗ = dim(ei1Aie
i
σ−1(1)) and this clearly does not depend

on the choice of F ∈ L. Since F 7→ F∗ defines a bijection from L to the right cell
in J containing G∗, the function m is constant on this right cell. The fact that
every right cell contains a Duflo involution, which follows from Proposition 28(c),
completes the proof. �

Remark 2. Proposition 1 implies that the additional numerical condition which
appears in [MM1, Theorem 43], [MM3, Section 4], [MM3, Theorems 14, 16] and
[MM5, Theorem 18] is redundant.
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3.4. Transitive and simple transitive 2-representations. A finitary 2-
representations M of a finitary 2-category C is called transitive if, for each i and
each non-zero object X ∈ M(i), we have GM({X}) = M. If M is transitive, then,
by [MM5, Lemma 4], it has a unique maximal ideal I which does not contain any
identity morphisms with the exception of the one for the zero object. We call M
simple transitive if I = 0. In general, the quotient M of M by I is called the simple
transitive quotient of M.

If C is weakly fiat, then [MM5, Proposition 6], [MM1, Theorem 43] and Sec-
tion 7 show that all cell 2-representations associated to left cells of strongly reg-
ular two-sided cells are simple transitive. Furthermore, [MM5, Theorem 18] and
Theorem 33 assert that, under the assumption that all two-sided cells of C are
strongly regular, each simple transitive 2-representation of C is equivalent to a cell
2-representation.

3.5. Simple transitive subquotients of finitary 2-representations. Let C be
a finitary 2-category. For a finitary 2-representationM of C , denote by Ind(M) the
set of isomorphism classes of indecomposable objects in

∐

i∈C
M(i). Assume that

X ⊂ Ind(M) is stable under the induced action of C , that is any indecomposable
direct summand of FX belongs to X for any X ∈ X and any 1-morphism F ∈ C .
Then the additive closure in

∐

i∈C
M(i) of all objects X whose isomorphism class

is in X inherits the structure of a 2-representation of C by restriction. We will
denote this 2-representation by MX.

If X ⊂ Y ⊂ Ind(M) are such that both MX and MY are defined and the quotient
MY/MX is transitive, then the simple transitive quotient of MY/MX is called a
simple transitive subquotient of M. By [MM5, Theorem 8], the multiset of sim-
ple transitive subquotients of M (up to equivalence) is an invariant of M. For
example, for weakly fiat C with strongly regular two-sided cells, simple transitive
subquotients of principal 2-representations are exactly cell 2-representations.

3.6. Isotypic 2-representations. A finitary 2-representation M of a finitary 2-
category C is called isotypic provided that all simple transitive subquotients of M
are equivalent. For example, all transitive 2-representations of C are isotypic and
so are direct sums of copies of the same transitive 2-representation.

We now give a more sophisticated example. We first recall the construction of a
tensor product of k-linear categories, see [GK, Section (1.1)] or [KV, § 5.18]. For
two finitary k-linear categories A and B, their tensor product A⊠B is the category
with objects

n
⊕

i=1

Xi ⊠ Yi, where Xi ∈ A, Yi ∈ B,

and the morphism space

HomA⊠B





n
⊕

i=1

Xi ⊠ Yi,

m
⊕

j=1

Uj ⊠ Vj





is given by the matrix

[

HomA(Xi, Uj)⊗k HomB(Yi, Vj)
]j=1,2,...,m

i=1,2,...,n
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with the obvious composition. In the above, we use the usual abbreviation

n
⊕

i=1

Wi :=W1 ⊕W2 ⊕ · · · ⊕Wn,

which, in particular, means that X1 ⊠ Y1 ⊕ X2 ⊠ Y2 and X2 ⊠ Y2 ⊕ X1 ⊠ Y1 are
different but isomorphic objects.

Let now M be a finitary 2-representation of C and A any finitary k-linear category.
Define the A-inflation M⊠A of M as follows:

• for i ∈ C , set M⊠A(i) := M(i)⊠A;

• for a 1-morphism F ∈ C(i, j), set M⊠A(F) := M(F)⊠ IdA;

• for a 2-morphism α : F → G, define M⊠A(α) := M(α)⊠ idIdA
.

Proposition 3. Any inflation of any transitive 2-representation M of C is isotypic.

Proof. Let A be a finitary k-linear category. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym
be full and irredundant lists of representatives of isomorphism classes of indecom-
posable objects in

∐

i∈C
M(i) and A, respectively.

For k = 0, 1, 2, . . . ,m, let Xk denote the subset of Ind(M⊠A) with representatives
Xi ⊠ Yj , where i = 1, 2, . . . , n and j = 1, 2, . . . , k. Then, for k = 1, 2, . . . ,m, we

have the corresponding 2-subrepresentation M⊠A
Xk

and the quotient

M⊠A
Xk

/M⊠A
Xk−1

.

By transitivity of M, the latter quotient is transitive.

Now we claim that the simple transitive quotient of M⊠A
Xk

/M⊠A
Xk−1

is equivalent to

M. Without loss of generality, we may assume k = m. Denote by I the ideal of A
generated by the identity morphisms on all Yj with j < m, together with all radical
morphisms of the local algebra EndA(Ym). Then

I :=
∐

i∈C

(M(i)⊠ I)

is an ideal in M⊠A invariant under the action of C . Sending Xi ⊠ Ym to Xi, for
i = 1, 2, . . . , n, defines a 2-natural transformation from M⊠A/I to M, which is
an equivalence by construction. Consequently, the simple transitive quotients of
M⊠A/I and M are equivalent.

The above, together with the Weak Jordan-Hölder Theorem [MM5, Theorem 8],
shows that any simple transitive subquotient ofM⊠A is equivalent toM. Therefore,
M⊠A is isotypic. �

3.7. Classification of isotypic faithful 2-representations of J -simple

weakly fiat 2-categories. The following is the main result of this paper.

Theorem 4. Let C be a weakly fiat 2-category with a unique maximal two-sided cell
J and L a left cell in J . Assume that J is strongly regular and that C is J -simple.
Then any isotypic faithful 2-representation of C is equivalent to an inflation of CL.
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There are many examples of 2-categories which satisfy all assumptions of The-
orem 4, obtained from the 2-categories of Soergel bimodules in type A, 2-Kac-
Moody algebras and projective functors on self-injective finite dimensional alge-
bras. Namely, choosing any left cell in any of these 2-categories, and factoring
out the annihilator of the corresponding cell 2-representation, we obtain a weakly
fiat J -simple 2-category with a unique maximal two-sided cell J , and this cell is,
moreover, strongly regular.

4. Proof of Theorem 4 for C = CA

4.1. Annihilation filtrations. Let A be a connected self-injective finite dimen-
sional k-algebra and CA the corresponding weakly fiat 2-category as defined in
Section 2.8. Let M be a finitary 2-representation of CA and M its abelianization.
For F,G ∈ C(♣,♣), α : F → G and X ∈ M(♣), we say that α annihilates X
provided that the linear map αX : FX → GX is zero.

Lemma 5.

(i) If α annihilates Y , and X is a subobject of Y , then α annihilates Y .

(ii) If α annihilates Y , and Z is a quotient of Y , then α annihilates Z.

(iii) Any X ∈ M(♣) has a unique maximal submodule and a unique maximal
quotient which are annihilated by α.

Proof. A short exact sequence X →֒ Y ։ Z gives rise to the commutative diagram

0 // FX //

αX

��

FY //

αY

��

FZ //

αZ

��

0

0 // GX // GY // GZ // 0

with exact rows. If αY is zero, then so are αX and αZ , which proves claims (i) and
(ii).

We prove the second part of claim (iii), the first being proved similarly. For i = 1, 2,
consider short exact sequences Ki →֒ X ։ Yi and assume that αYi

= 0 for i = 1, 2.
Note that αY1⊕Y2 = 0 by additivity. Then the isomorphism theorem implies that
X/(K1 ∩ K2) is a subobject of Y1 ⊕ Y2 and hence is annihilated by α thanks to
claim (i). �

For a collection α := {α1, α2, . . . , αn} of 2-morphisms, we say that α annihilates
X if αi annihilates X for each i. Similarly, for a finite dimensional vector space of
2-morphisms, we will say that it annihilates X if some finite generating set of this
space annihilates X .

Let α be a fixed collection or a finite dimensional vector space of 2-morphisms. A
filtration

(2) 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xk = X

is called an annihilation filtration for α provided that each subquotient Xi/Xi−1

is annihilated by α. An annihilation filtration is called minimal, if there does not
exist any annihilation filtration of strictly smaller length (not necessarily refining the
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given one). The length of a minimal annihilation filtration is called the annihilation
length of X and denoted al(X).

Set sub0
α
(X) := 0. Denote by subα(X) = sub1

α
(X) the largest submodule of X

annihilated by α, which exists by Lemma 5(iii). For i ∈ {2, 3, . . .}, define subi
α
(X)

as the full preimage of subα(X/sub
i−1
α

(X)) in X . The filtration

0 = sub0
α
(X) ⊂ sub1

α
(X) ⊂ sub2

α
(X) ⊂ . . .

is called the upper annihilation filtration of X .

Set und0
α
(X) := X . Denote by undα(X) = und1

α
(X) the minimal submodule of

X such that X/undα(X) is annihilated by α, which exists by Lemma 5(iii). For

i ∈ {2, 3, . . .}, define undi
α
(X) as the minimal submodule of undi−1

α
(X) such that

undi−1
α

(X)/undi
α
(X) is annihilated by α, The filtration

· · · ⊂ und2
α
(X) ⊂ und1

α
(X) ⊂ und0

α
(X) = X

is called the lower annihilation filtration of X .

Proposition 6.

(i) If (2) is an annihilation filtration, then, for any i = 1, 2, . . . , k, we have

undk−i
α

(X) ⊂ Xi ⊂ subi
α
(X).

(ii) If (2) is a minimal annihilation filtration, then al(X) = k is also the length
of both the upper and the lower annihilation filtration.

Proof. Claim (i) follows directly from the definitions. Claim (ii) follows from
claim (i). �

Remark 7. Existence of annihilation filtration does depend on the choice of X and
α. For example, choosing α to contain some identity 2-morphism, it is easy to con-
struct an example where no annihilation filtration exists (in these cases the upper
and the lower annihilation filtrations stabilize before reaching X or 0, respectively).

Example 8. Consider the natural action of CA on A-mod and let α = 1⊗rad(Aop)
be a subspace of EndCA

(F), see Section 2.8. Then it is easy to check that the upper
annihilation filtration of AA with respect to α coincides with the socle series of AA
and the lower annihilation filtration of AA with respect to α coincides with the
radical series of AA.

4.2. Auxiliary statements. We first introduce some notation that will remain in
place for the remainder of this section. Let A be a self-injective finite dimensional
k-algebra and CA the corresponding weakly fiat 2-category as defined in Section 2.8.
We recall that F stands for the multiplicity free direct sum of all indecomposable
projective functors. Let M be an isotypic faithful 2-representation of CA and
M its abelianization. Isotypicality and faithfulness of M, together with [MM5,
Theorem 15], imply that all simple transitive subquotients of M are equivalent to
CL.

Let P1, P2, . . . , Pr be a complete and irredundant list of representatives of isomor-
phism classes of indecomposable projective objects inM(♣) and L1, L2, . . . , Lr their
corresponding simple tops. For i, j = 1, 2, . . . , r, let aij denote the multiplicity of
Pi as a direct summand of FPj , and let bij denote the composition multiplicity of
Li in FLj. Then, since F

∗ ∼= F, we have bij = aji by [MM5, Lemma 10] and we can
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set up the matrix [F]M := (aij)i,j=1,...,r. We denote by [F]CL
a similarly defined

matrix for the cell 2-representation CL of CA corresponding to the left cell L = L1

as in Section 2.8.

Lemma 9. We can rearrange the ordering of P1, P2, . . . , Pr such that [F]M has the
diagonal form

[F]M =











[F]CL
0 · · · 0

0 [F]CL
· · · 0

...
...

. . .
...

0 0 · · · [F]CL











.

Proof. Since M is isotypic, without loss of generality we may assume that [F]M has
the form

(3) [F]M =











[F]CL
∗ · · · ∗

0 [F]CL
· · · ∗

...
...

. . .
...

0 0 · · · [F]CL











.

Let us first prove the claim for the smallest possible non-trivial case

[F]M =

(

[F]CL
Q

0 [F]CL

)

.

Since F ◦ F ∼= F⊕ dim(A), we see that

[F]CL
Q+Q[F]CL

= dim(A)Q.

Multiplying with [F]CL
on the left and using [F]2

CL
= dim(A)[F]CL

, we obtain

dim(A)[F]CL
Q + [F]CL

Q[F]CL
= dim(A)[F]CL

Q,

which implies
[F]CL

Q[F]CL
= 0.

As [F]CL
is a matrix with positive coefficients and Q is a matrix with non-negative

coefficients, we get Q = 0.

The general case follows from the above baby case by double induction on the
columns from left to right, and on the entries within each column from bottom to
top. �

Set P̂ := P1 ⊕ P2 ⊕ · · · ⊕ Pr and, for X ∈ M(♣), define

dim(X) := dimHom
M(♣)(P̂ ,X).

If L is a simple A-module, then FL ∼= AA and hence dim(FL) = dim(A) dim(L).
By exactness of F, this extends to all A-modules and hence to any object in CL(♣).
Using Lemma 9, we thus obtain

(4) dim(FX) = dim(A) dim(X)

for any X ∈ M(♣).

As explained in Section 2.8, the matrix [F]CL
has size n × n. We now choose

a special ordering of P1, P2, . . . , Pr. First of all, we need [F]M to have the form
given by Lemma 9. We note that r = nk for some k ∈ {1, 2, . . . }. For every
i = 1, 2, . . . , k, we have a transitive 2-representation of CA on the additive closure
of Pn(i−1)+1, Pn(i−1)+2, . . . , Pni. The simple transitive quotients are equivalent for
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all i. We choose arbitrarily the ordering of P1, P2, . . . , Pn and assume that each such
equivalence induces simply a shift by n on indices of the indecomposable projectives
in these transitive 2-representations.

Set P := P1⊕P2⊕· · ·⊕Pn and define L := P/rad(P ). Define α to be 1⊗ rad(Aop)
considered as a subspace of the space EndCA

(F) of 2-endomorphisms of F. Note
that α is nilpotent, and hence any object in M(♣) has an annihilation filtration
with respect to α. Furthermore, since the nilpotency degree of α is exactly the
Loewy length c := ll(AA), we have al(X) ≤ c for any X ∈ M(♣). We set

Ni := Pi/und
1
α
(Pi) for i = 1, 2, . . . , r, N :=

n
⊕

i=1

Ni,

and note that N ։ L by nilpotency of α.

Lemma 10. Let Q be a basic projective generator in CL(♣). Then al(Q) = c.

Proof. By [MM5, Proposition 9], we may assume that CL(♣) is the defining 2-
representation of CA and that Q = AA. As CA is J -simple, CL is faithful and
henceCL(α) has nilpotency degree exactly c. This means that al(AA) ≥ c implying
the claim. �

Lemma 11. For each i = 1, 2, . . . , n, we have al(FLi) = al(FNi) = al(FPi) = c.

Proof. As Pi ։ Ni ։ Li, it is enough to prove that al(FLi) = c. Note that
FLi 6= 0 since F is exact and M is faithful. This induces a finitary 2-representation,
N, of CA on add(FLi). Since F does not annihilate FLi, at least one of the simple
transitive subquotients of N is equivalent to CL. Using Lemma 10, we thus deduce
that FLi has a subquotient X such that al(X) = c. Therefore, Lemma 5 yields
that al(FLi) ≥ c and we are done. �

Let K denote the restriction of M to add(P ). Then K is transitive and its simple
transitive quotient is equivalent to CL. Denote by I the corresponding maximal
CA-stable ideal of K. Denote by I the subspace of End(P ) belonging to I. Then
[MM5, Proposition 9] implies that End

M(♣)(P )/I
∼= A. For i = 1, 2, . . . , n, we set

P̃i := Pi/(Pi ∩ IP ).

Lemma 12. For i, j, s = 1, 2, . . . , n, we have

Fij Ls
∼=

{

P̃i if s = j,

0 otherwise.

Proof. This follows by comparing the action of Fij on K/I and on A-mod, the
latter being equivalent to CL by [MM5, Proposition 9]. �

Lemma 13.

(i) For i, j, k = 1, 2, . . . , n, we have Fij Nk = 0 unless j = k.

(ii) For i, j = 1, 2, . . . , n, we have Pi ։ Fij Nj.

Proof. By adjunction,

Hom
M(♣)(Fij Nk, Ls) ∼= Hom

M(♣)(Nk,Fσ−1(j)i Ls),
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and the object Fσ−1(j)i Ls cannot have Lk as a composition subquotient unless
s ∈ {1, 2, . . . , n}, moreover, for such s we have Fσ−1(j)i Ls = 0 unless s = i. If
s = i, then, by Lemma 12, we have

Hom
M(♣)(Nk,Fσ−1(j)i Li) ∼= Hom

M(♣)(Nk, P̃σ−1(j)).

As α annihilates Nk, the image of Nk under such a homomorphism is con-
tained in subα(P̃σ−1(j)), which is isomorphic to Lj, see Example 8. Hence

Hom
M(♣)(Nk, P̃σ−1(j)) is zero unless j = k, and in the latter case this space is

one-dimensional. Both claims of the lemma follow. �

Lemma 14. The object N is a progenerator for the full subcategory subα(M(♣))
of M(♣) consisting of all objects isomorphic to subα(X) for some X ∈ M(♣).

Proof. Let X →֒ Y ։ Z be a short exact sequence in subα(M(♣)). By projectivity
of P , we have a short exact sequence

(5) 0 → Hom
M(♣)(P,X) → Hom

M(♣)(P, Y ) → Hom
M(♣)(P,Z) → 0.

As α annihilates X , Y and Z, any homomorphism from P to any of these objects
factors over N . Therefore (5) induces an exact sequence

0 → Hom
M(♣)(N,X) → Hom

M(♣)(N, Y ) → Hom
M(♣)(N,Z) → 0,

which implies that N is relatively projective in subα(M(♣)). As N ։ L, it is even
a progenerator. �

4.3. Analysis of FNs and P̂ .

Proposition 15. For any s = 1, 2, . . . , n, the object FNs has a filtration of length
dim(A) in which all subquotients are isomorphic to Ni for some i ∈ {1, 2, . . . , n}.
Moreover, each such Ni appears as a subquotient in this filtration li times, where li
is the composition multiplicity of Li in AA.

Proof. Any composition series

(6) 0 = C0 ⊂ C1 ⊂ · · · ⊂ Cdim(A) = AA

gives rise to the filtration

(7) 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xdim(A) = FNs,

where Xi is the image of (Ci ⊗ Aop)N in FNs. As α annihilates Ns, it also anni-
hilates any subquotient Xi/Xi−1. Using Lemma 13(ii) and Lemma 14, we see that
each subquotient Xi/Xi−1 is a quotient of a sum of copies of N .

Now we would like to estimate the number of tops in each Xi/Xi−1. There is
a unique t ∈ {1, 2, . . . , n} such that Aet surjects onto Ci/Ci−1. This induces a
morphism of functors

n
⊕

j=1

Ftj → F

which, evaluated at Ns, induces a surjection FtsNs ։ Xi/Xi−1 by Lemma 13(i).
By Lemma 13(ii), FtsNs has simple top Lt and hence

(8) Nt ։ Xi/Xi−1.

Therefore the number of times Lt appears as simple top in some subquotient in
filtration (7) is at most lt.
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Now choose j such that dim(Nj) is maximal possible. From the above, by additivity,
we have

(9) dim(FNj) ≤

n
∑

t=1

lt dim(Nt) ≤

n
∑

t=1

lt dim(Nj) = dim(A) dim(Nj)

since
∑n

t=1 lt = dim(A). If there were t such that dim(Nt) < dim(Nj), then the sec-
ond inequality in (9) would be strict. At the same time, we know that dim(FNj) =
dim(A) dim(Nj) by (4), a contradiction. Therefore dim(Nt) = dim(Nj) for all t.

Hence, the total number of simple tops in all subquotients of filtration (7) is exactly
∑n

t=1 lt = dim(A). By (4) and the above, we have

dim(FNs) = dim(FNj) = dim(A) dim(Nj).

By comparing dimensions, we see that the surjection (8) is, in fact, an isomorphism.
The claim follows. �

For any two 1-morphisms G and H in C , and any 2-morphism β : G → H, we
consider the right exact endofunctor Coker(M(β)) ofM(♣). For i, j ∈ {1, 2, . . . , n},
we denote by Qij the endofunctor Coker(M(βij)) where βij : Gij → Fij corresponds
to a presentation for the simple quotient of Aei ⊗k ejA in the category of A-A-
bimodules.

Lemma 16.

(i) For i, j ∈ {1, 2, . . . , n}, we have

Qij ◦Qkl
∼=

{

Qil if j = k,

0 otherwise.

(ii) For i, j, s ∈ {1, 2, . . . , n}, we have

Qij Ns
∼=

{

Ni if j = s,

0 otherwise.

(iii) For i ∈ {1, 2, . . . , n}, the restriction of

Q :=

n
⊕

i=1

Qii

to subα(M(♣)) is isomorphic to the identity functor.

Proof. The composition Qij ◦Qkl is isomorphic to the cokernel of the map

GijFkl ⊕ FijGkl

((βij)Fkl
,Fij(βkl)) // FijFkl,

compare [MM1, Section 3.5]. On the level of A-A-bimodules, it is easy to check
that the cokernel of ((βij)Fkl

,Fij(βkl)) is isomorphic to the cokernel of βil if k = j
and to zero otherwise. Claim (i) follows.

That Qij Ns = 0 for j 6= s follows from Lemma 13(i). If j = s, then QisNs = Ns

follows from the proof of Proposition 15. This proves claim (ii).

On the level of A-A-bimodules, the quotient of A modulo its radical is isomorphic
to the direct sum of the cokernels of βii for i = 1, 2, . . . , n. This gives an epimorphic
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natural transformation γ : Id
M(♣) ։ Q. For every s = 1, 2, . . . , n, the epimorphism

γNs
is, in fact, an isomorphism due to claim (ii). As N is a progenerator in M(♣)

by Lemma 14, claim (iii) follows and the proof is complete. �

Lemma 17.

(i) For i, s ∈ {1, 2, . . . , n} such that al(FisNs) = c, we have

undα(FisNs) = subc−1
α

(FisNs) and FisNs/undα(FisNs) ∼= Ni.

(ii) We have (Fis P ) ∼= P
⊕ dim(Ae

σ−1(s))

i and hence

(Fis P )/undα(Fis P ) ∼= N
⊕ dim(Ae

σ−1(s))

i .

Proof. From Proposition 15, we obtain an exact sequence Ker →֒ FisNs ։ Ni and
the proof of Proposition 15 shows that Ker ⊂ subc−1

α
(FisNs). On the other hand,

(FisNs)/undα(FisNs) ։ Ni as Ni is annihilated by α. By relative projectivity
of Ni, see Lemma 14, it is a direct summand of (FisNs)/undα(FisNs) and hence
coincides with the latter as both have simple tops. This proves claim (i).

To see claim (ii), note that Fis P is projective, and that, using adjunction,

(10) Hom
M(♣)(Fis P,Lk) ∼= Hom

M(♣)(P,Fσ−1(s)i Lk)

is zero unless k = i by Lemma 12, implying that Fis P is a direct sum of copies
of Pi. If k = i, the space in (10) is isomorphic to Hom

M(♣)(P, P̃σ−1(s)), again by

Lemma 12, which has dimension dim(P̃σ−1(s)) = dim(Aeσ−1(s)). Both claims in (ii)
follow. �

Proposition 18. We have FNs
∼= P for every s ∈ {1, 2, . . . , n}.

Proof. Consider the diagram

(11) P
f1 // // FNs

f2 // //

g2
����

FLs

g3
����

subα(P )
h1

// // subα(FNs)
h2

// // subα(FLs)

in which f1 is an epimorphism given by Lemma 13(ii), and f2 is an epimorphism
induced by the natural projection Ns ։ Ls using exactness of F. Comparing the
action of F on K/I and on A-mod, the latter being equivalent to CL by [MM5,
Proposition 9], and using Example 8, we see that FLs has isomorphic top and socle
and that this socle coincides with subα(FLs). Let ϕ : A→ A be an endomorphism
of A which induces and isomorphism between the top and the socle of AA. Define
g2 := (ϕ ⊗ 1)Ns

and g3 := (ϕ⊗ 1)Ls
and let h2 be the restrictions of f2. Then the

right square of the diagram commutes. The fact that the map g3 is an epimorphism
again follows by comparing the action of F onK/I and on A-mod. This implies that
h2 is an epimorphism. Finally, g2 is an epimorphism since the top of FNs maps
isomorphically on the top of FLs by f2, the latter top maps isomorphically onto
subα(FLs) by g3, and the top of subα(FNs) maps isomorphically onto subα(FLs)
by h2.

Define h1 to be the restriction of f1. The isomorphism theorem yields

subα(FLs) ∼= (subα(P ) + IP )/IP ∼= subα(P )/(subα(P ) ∩ IP )
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whence h2h1 is an epimorphism. Since the map h2 is just factoring out the radical,
the map h1 must be an epimorphism.

The lower row of (11) belongs to subα(M(♣)). We have subα(FNs) ∈ add(N)
by Proposition 15, moreover, subα(FNs) ։ L as subα(FLs) ։ L. As the
map subα(FNs) ։ L induces an isomorphism modulo the radical, we obtain
subα(FNs) ∼= N . Since N is relatively projective in subα(M(♣)) by Lemma 14,
the object subα(FNs) ∼= N splits off as a direct summand of subα(P ).

For i ∈ {1, 2, . . . , n}, applying Fis to the short exact sequence

0 → Ns → P → Coker → 0,

produces the short exact sequence

0 → FisNs → Fis P → Fis Coker → 0.

Using Lemma 11 and additivity, there is i such that al(FisNs) = al(Fis P ) = c.

Now we claim that

(12) undα(FisNs) ⊂ undα(Fis P ) ∩ (FisNs) ⊂

⊂ subc−1
α

(Fis P ) ∩ (FisNs) ⊂ subc−1
α

(FisNs).

Indeed, the first inclusion is due to the fact that

(FisNs)/
(

undα(Fis P ) ∩ (FisNs)
)

→֒ (Fis P )/undα(Fis P )

by the isomorphism theorem and the right hand side is annihilated by α.
Therefore the left hand side is annihilated by α and is hence a quotient of
(FisNs)/undα(FisNs) by the universal property of the latter. The second inclusion
follows from Proposition 6(i) and the last inclusion is obvious. By Lemma 17, all
inclusions in (12) are, in fact, equalities.

Consider the solid commutative diagram

(13) undα(FisNs) //
_�

��

FisNs
_�

��

// // Ni

��

undα(Fis P ) // Fis P // //

WW

N
⊕ dim(Ae

σ−1(s))

i

WW

with exact rows given by Lemma 17. Here the middle vertical arrow is the natural
monomorphism, which induces both other vertical arrows. Since all inclusions in
(12) are equalities, in particular undα(FisNs) = undα(Fis P ) ∩ (FisNs), the left
square of (13) is a pullback, implying that the morphism between cokernels on the
right is a monomorphism. The object Ni being indecomposable, a Loewy length

argument shows that the cokernel morphism Ni →֒ N
⊕ dim(Ae

σ−1(s))

i splits as shown
by the right dotted arrow. By projectivity of Fis P , this induces the middle dotted
arrow in (13). Since FisNs has simple top, this dotted arrow is a splitting of the
embedding FisNs →֒ Fis P . Therefore, FisNs is a direct summand of a projective
object and is hence projective itself.

Now we claim that FjsNs is projective for any j. This follows from the facts that
all Fab send projectives to projectives (as each of them is left adjoint to an exact
functor), and all Fjs appear as direct summand in FFis. Taking this into account,
an application of Lemma 13 completes the proof. �
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For s = 1, 2, . . . , n, set N̂s := Ns ⊕Ns+n ⊕ · · · ⊕Nn(k−1)+s. Using Proposition 18,
we have

(14) F N̂s
∼= P̂ for each s.

By construction, EndC (F) ∼= A ⊗k A
op, so we may identify A with the subalgebra

A⊗ 1 in EndC (F). Set Bs := End
M(♣)(N̂s).

Lemma 19. For any s, t = 1, 2, . . . , n there is an algebra isomorphism Bs
∼= Bt.

Proof. By Lemma 16, the functor Qst induces an equivalence between add(N̂t) and

add(N̂s), which implies the claim. �

Thanks to Lemma 19, we can write B for Bs. Since α annihilates N̂s, the natural
map EndC (F)⊗k B → End

M(♣)(P̂ ) factors through the morphism

(15) A⊗k B → End
M(♣)(P̂ ).

Proposition 20. The morphism in (15) is an isomorphism.

Proof. First we show that the dimensions of both algebras agree. The algebra
on the right hand side has dimension dim(P̂ ) which is equal to dim(A) dim(N̂s)

by the calculation in (9). Since N̂s is a basic progenerator in B-mod, we have

dim(N̂s) = dim(B).

It remains to show that the morphism in (15) is injective. Choose a basis
{ϕ1, ϕ2, . . . , ϕdim(A)} in A compatible with the filtration in (6). In analogy to
(7), we obtain a filtration

0 = Y1 ⊂ Y1 ⊂ · · · ⊂ Ydim(A) = F N̂s = P̂ ,

where Yi is the image of (Ci ⊗ Aop)N̂s
. For a non-zero ψ ∈ B consider the endo-

morphism ϕi ⊗ ψ of P̂ . The proof of Proposition 15 shows that the quotient of
the image of ϕi ⊗ ψ modulo Yi−1 coincides with the image of Qts(ψ) considered as

an endomorphism of N̂t. By Lemma 16, the latter is non-zero. This implies the
claim. �

4.4. The proof for C = CA.

Proof of Theorem 4 for CA. For a fixed s ∈ {1, 2, . . . , n} set B := add(N̂s). Con-
sider the inflation P♣ ⊠ B and define the 2-natural transformation

Φ : P♣ ⊠ B → M

in the following way:

• send G⊠X to GX for X ∈ B and a 1-morphism G ∈ CA;

• send α⊗ f : G1 ⊠X1 → G2 ⊠X2 to G2(f) ◦ αX1 = αX2 ◦G1(f).

It is easy to check that this is a well-defined functor and, moreover, defines a 2-
natural transformation.

For our fixed left cell L = L1, consider the 2-subrepresentation N of P♣ as defined
in Section 3.1. Restricting Φ to N ⊠ B and using (14), we get a 2-natural trans-

formation from N ⊠ B to G
M
(add(P̂ )). Since the ideal I defined in Section 3.1
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is generated by α (see, for example, the proof of [MM5, Lemma 14]), the ideal I

annihilates N̂s by construction. Hence we get the induced 2-natural transformation

Φ : CL ⊠ B → G
M
(add(P̂ )).

Proposition 20 shows that Φ is an equivalence of categories. This completes the
proof. �

5. Proof of Theorem 4 in the general case

5.1. Obvious generalization of Section 4. Let A be as in Section 2.8. For
certain central subalgebras X in A, in [MM3, Section 4.5] we constructed certain
fiat 2-subcategories CA,X in CA. The only difference between CA,X and CA is
that the endomorphism algebra of the identity 1-morphism in CA,X is X . Similarly
one defines CA,X in the weakly fiat case. Since we did not use the endomorphism
algebra of the identity 1-morphism in our arguments in Section 4, the claim of
Theorem 4 is true for 2-representations of CA,X .

Let A be as in Section 2.8, but not necessarily connected, say

A = A1 ⊕A2 ⊕ · · · ⊕Am.

As above, choose some central subalgebras Xi in each Ai. With such A and
X = (X1, X2, . . . , Xm) one associates a 2-category CA,X with m objects defined
similarly to the connected case, see [MM1, Section 7.3] and [MM3, Section 4.5] for
details. The arguments in Section 4 work mutatis mutandis in this more general
setup.

5.2. The proof.

Proof of Theorem 4. Let C be a weakly fiat 2-category with a unique maximal two-
sided cell J . Assume that J is strongly regular and that C is J -simple. Let M be
an isotypic faithful 2-representation of C .

Denote by CJ the 2-full 2-subcategory of C whose 1-morphisms are those in J as
well as the identity 1-morphisms on their respective sources and targets. Restricting
M to CJ produces a faithful 2-representation, which we denote by MJ .

Let L be a left cell in J . Our assumptions and Theorem 31 imply that all simple
transitive subquotients of M are equivalent to CL, in particular, they are not
annihilated by any 1-morphism in J . By Theorem 33, the 2-category CJ has only
one (up to equivalence) simple transitive 2-representation which is not annihilated
by 1-morphisms in J . This means that MJ is an isotypic 2-representation of CJ .

By Theorem 32, the 2-category CJ is a 2-category of the form CA,X for (not
necessarily connected) A and X as in Section 5.1. Therefore we can construct the

object N̂s as in Section 4. Using the principal 2-representation of C instead of the
principal 2-representation of CJ , the proof is now completed by the same argument
as in Section 4.4. �

6. New examples
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6.1. Tensor product of finitary 2-categories. The tensor product of categories
as described in Section 3.6 can be used to produce new examples of finitary and fiat
2-categories. This is motivated by the 2-category of Soergel bimodules associated
to Coxeter systems with several irreducible components.

Let A and C be two finitary 2-categories. Define the 2-category A ⊠ C whose
objects are pairs (i, j) where i is an object of A and j is an object of C , and whose
morphism categories are given by

(A ⊠ C)
(

(i, j), (k, l)
)

:= A(i, k)⊠ C(j, l).

Composition is defined component-wise and 1(i,j) = 1i ⊠ 1j.

Proposition 21. The 2-category A ⊠C is finitary, moreover, it is (weakly) fiat if
both A and C are.

Proof. As the tensor product of two local algebras is local, the tensor product of
an indecomposable 1-morphisms in A and an indecomposable 1-morphisms in C

will have a local endomorphism algebra. This implies that (A ⊠C)
(

(i, j), (k, l)
)

is
idempotent split. All other axioms of finitary 2-categories follow directly from the
definition.

If both A and C are (weakly) fiat, we can define ∗ on A ⊠C component-wise. Since
all compositions are defined component-wise, adjunction morphisms for A ⊠C are
constructed by tensoring adjunction morphisms for A with adjunction morphisms
for C . �

If L1 is a left cell in A and L2 is a left cell in C , then

L1 ⊠ L2 := {F⊠G : F ∈ L1,G ∈ L2}

is a left cell in A ⊠ C . The partial order on the set of left cells in A ⊠ C is the
direct product of the partial orders on the sets of left cells in A and C . Similar
statements hold for right and two-sided cells. It is worth pointing out that the
direct product of strongly regular two-sided cells is strongly regular. Furthermore,
if J1 and J2 are two-sided cells in A respectively C such that A and C are J1-
respectively J2-simple, then A ⊠ C is J1 ⊠ J2-simple.

As a special case of the above construction, consider two self-injective algebras A
and B. The finitary 2-category CA ⊠ CB can be realized as an “extension” of
CA⊗B by adding the (additive closure of) 1-morphisms given by A ⊗ B-A ⊗ B-
bimodules

A⊗k (B ⊗k B) and (A⊗k A)⊗k B

and all possible natural transformations between all functors.

6.2. Isotypic 2-representations for certain tensor products. Let C be as in
Theorem 4 and J the unique maximal two-sided cell in C . For a local commutative
finite dimensional k-algebra B denote by YB the finitary 2-category having

• one object ♠;

• direct sums of copies of 1♠ as 1-morphisms;

• B as the endomorphism algebra of 1♠.
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Consider the 2-category C ⊠ YB . This 2-category has Ĵ := J ⊠ 1♠ as its unique

maximal two-sided cell. Note that C ⊠ YB is not Ĵ -simple unless B ∼= k. Given
a finitary 2-representation M of C and a finitary 2-representation N of YB, the
tensor product M⊠N carries the natural structure of a 2-representation of C ⊠YB

defined component-wise.

A finitary 2-representation NC,ϕ of YB is given, up to equivalence, by the data of a
finitary category C and a fixed homomorphism ϕ from B to the center of C.

Proposition 22. Every isotypic 2-representation of C ⊠YB which does not anni-
hilate any 1-morphism in Ĵ is equivalent to CL ⊠NC,ϕ for some left cell L in J
and appropriate C and ϕ as above.

Proof. Let M be an isotypic 2-representation of C ⊠ YB which does not annihi-
late any 1-morphism in Ĵ . Restricting M to the canonical copy of C in C ⊠ YB

gives a faithful isotypic 2-representation of C . Consider the category add(N̂s). It
carries the natural structure of a 2-representation of YB by restriction (since any
indecomposable 1-morphism in YB is isomorphic to the identity). We denote the
resulting 2-representation of YB by N. By the above remark, N is equivalent to
NC,ϕ for some C and ϕ.

Let L be a left cell in J and i := iL. Consider now the 2-representation Pi⊠N of
C ⊠ YB. Mapping F ⊠X to FX defines a 2-natural transformation from Pi ⊠N

to M. Similarly to Section 4.4, this induces an equivalence between CL ⊠N and
M. �

6.3. Finitary 2-categories associated with trivial extensions. Let B be
a basic connected finite dimensional algebra and let M be a B-B-bimodule in
add{B,B⊗kB}. Denote by A the trivial extension of B byM , that is, the set

{(

b m
0 b

)

: b ∈ B,m ∈M

}

with the obvious (matrix) multiplication. Denote by C(B,M) the 2-category
obtained by adding to CA all functors given by tensoring with bimodules in
add(A⊗B A) and all natural transformations between all our functors.

Proposition 23. The 2-category C(B,M) is finitary.

Proof. The only thing we need to check is that C(B,M) is closed with respect to
composition of 1-morphisms. Since BAB

∼= B ⊕M ∈ add{B,B ⊗k B}, we have

(A⊗B A)⊗A (A⊗B A) ∼= (A⊗B A)⊕ (A⊗B M ⊗B A)

and

A⊗B M ⊗B A ∈ add{A⊗B A,A⊗k A}

by our choice of M .

Next we claim that both (A ⊗B A) ⊗A (A ⊗k A) and (A ⊗k A) ⊗A (A ⊗B A) are
projective A-A-bimodules. We prove the first part and the second part is similar.
We have to show that A⊗B A is projective as a left A-module. As

A⊗B A ∼= A⊗B (B ⊕M) ∈ add{A⊗B B,A⊗B B ⊗k B},

the claim follows and the proof of the proposition is complete. �
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This construction generalizes in the obvious way to the case of a not necessarily
connected algebra B.

6.4. Fiat 2-categories associated to iterated trivial extensions of symmet-

ric algebras.

Proposition 24. Let B be a connected finite dimensional symmetric algebra and
M = B = B∗. Then C(B,M) is a fiat 2-category.

We will need the following observation.

Lemma 25. The A-A-bimodule A⊗B A is indecomposable.

Proof. Denote by Z the center of B. Note that Z is local as B is connected. Using
adjunction on both sides, we see

HomA-A(A⊗B A,A⊗B A) ∼= HomB-B(B,A⊗B A) ∼= Z⊕4

since A⊗B A ∼= B⊕4 as a B-B-bimodule and Z ∼= EndB-B(B).

Next, a direct calculation shows that the subalgebra

Ẑ :=

{(

a b
0 a

)

: a, b ∈ Z

}

of A is central. We denote by Ẑ1 the subalgebra of Ẑ consisting of diagonal elements
and by Ẑ2 the subalgebra of Ẑ consisting of upper triangular elements. Thus
Ẑ = Ẑ1 ⊕ Ẑ2 as a direct sum of two subspaces. We also note that Ẑ1 is isomorphic
to Z.

The commutative algebra Z̃ := Ẑ ⊗Ẑ1
Ẑ acts faithfully by endomorphisms of the

A-A-bimodule A ⊗B A where the left component acts by multiplication on the
left and the right component acts by multiplication on the right. This induces an
isomorphism Ẑ ⊗Ẑ1

Ẑ ∼= EndA-A(A ⊗B A) since both are isomorphic to Z⊕4 as
Z-modules.

Finally, note that both Ẑ2 ⊗Ẑ1
Ẑ and Ẑ ⊗Ẑ1

Ẑ2 are nilpotent in Z̃ of degree 2 and

thus belong to the radical of Z̃. The quotient Z̃/(Ẑ2⊗Ẑ1
Ẑ+Ẑ⊗Ẑ1

Ẑ2) is isomorphic

to Z and is thus local. This implies that Z̃ is local, completing the proof. �

Proof of Proposition 24. First we note that the trivial extension A of B by B∗ is
symmetric, in particular, weakly symmetric, so the 2-subcategory CA of C(B,M)
is fiat. In view of Lemma 25, it only remains to check that A⊗B A is self-adjoint.
This follows from the chain of isomorphisms

HomA-(A⊗B A,A) ∼= HomB-(A,A)
∼= HomB-(A,B) ⊗B A (as BA ∼= B ⊕B)
∼= Homk(A, k) ⊗B A (as B∗ ∼= B)
∼= A⊗B A (as A∗ ∼= A).

�

Proposition 24 implies that for a symmetric algebra B the construction can be
iterated. Set A0 := B and for k = 1, 2, . . . defined Ak recursively as the trivial
extension of Ak−1 by A∗

k−1
∼= Ak−1. This leads to a fiat 2-category CB,k which

is obtained by adding to CAk
all functors given by tensoring with bimodules in
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add(Ak ⊗Ai
Ak) for all i < k and all natural transformations between all our

functors. The arguments in the proof of Proposition 24 generalize mutatis mutandis
to show that CB,k is a fiat 2-category. Clearly, all two-sided cells in CB,k are
strongly regular.

Combining this construction with the one proposed in Section 6.1, we obtain nu-
merous new examples of fiat 2-categories in which all two-sided cells are strongly
regular.

7. Appendix: weakly fiat potpourri

In this section, we collect appropriate reformulations of statements from [MM1,
MM2, MM3] (originally for fiat 2-categories) in the more general setup of weakly
fiat 2-categories. Let C be a weakly fiat 2-category as defined in Section 2.5 with
a weak equivalence ∗.

We write P for the direct sum of all principal representations of C . Isomorphism
classes of indecomposable projective and simple objects in P are indexed by ele-
ments in S(C ) and denoted by P̂F and L̂F.

Proposition 26. Let F,G,H ∈ S(C).

(i) The inequality F L̂G 6= 0 is equivalent to ∗F ≤R G and also to F ≤L G∗.

(ii) The inequality [F L̂G : L̂H] 6= 0 implies H ≤L G.

(iii) If H ≤L G, then there is K ∈ S(C) such that [K L̂G : L̂H] 6= 0.

(iv) If L̂F occurs in the top or socle of H L̂G, then F is in the same left cell as G.

(v) If F ∈ C(i, j), then there is a unique (up to scalar) non-zero homomorphism

P̂
1i

→ F∗ L̂F, in particular, F∗ L̂F 6= 0.

Proof. Mutatis mutandis [MM1, Lemmata 12-15]. �

Proposition 27. Let L be a left cell of C and i = iL.

(i) There is a unique submodule K of P̂
1i

such that

(a) every simple subquotient of P̂
1i
/K is annihilated by any F ∈ L;

(b) the module K has simple top L̂GL
for some GL ∈ S(C) and F L̂GL

6= 0
for any F ∈ L.

(ii) For any F ∈ L the module F L̂GL
has simple top L̂F.

(iii) We have GL ∈ L.

(iv) For any F ∈ L we have ∗F ≤R GL and F ≤L G∗
L.

(v) We have G∗
L ∈ L.

Proof. Mutatis mutandis [MM1, Proposition 17]. �
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The element GL ∈ L is called the Duflo involution in L.

Proposition 28. Let J be a strongly regular two-sided cell in C and L a left cell
in J . Then for G ∈ L the following assertions are equivalent.

(a) G = GL.

(b) G∗ ∈ L.

(c) {G} = L ∩ ∗L.

(d) G = ∗H where {H} = L ∩ L∗.

(e) G L̂G 6= 0.

Proof. We have

• (a)⇒(b) by Proposition 27(v);

• (b)⇒(d) as |L ∩ L∗| = 1;

• (d)⇒(c) applying F 7→ ∗F;

• (c) ⇒(b) applying F 7→ F∗;

• (b)⇒(a) again as |L ∩ L∗| = 1.

Finally, (b)⇔(e) follows from strong regularity of J and Proposition 26(i). �

Let J be a strongly regular two-sided cell in C and L a left cell in J . To simplify
computational expressions, we assume that J is a maximal two-sided cell. In
the cell 2-representation CL as defined in Section 3.1, we have indecomposable
projective objects PF, indecomposable injective objects IF and simple objects LF,
where F ∈ L. Set G = GL.

Lemma 29. For any F ∈ L we have FG ∼= mGF.

Proof. Strong regularity of J implies that GG = mG for some non-negative integer
m. Applying this to LG, using exactness of G and a character argument, we see
that

m = [PG : LG] = dimEnd(PG).

At the same time, dimEnd(PG) = dimHom(GLG,GLG) equalsmG by adjunction.
Thus m = mG.

Strong regularity of J again yields FG ∼= kF for some non-negative integer k.
Moreover, k is, in fact, positive, since FGLG 6= 0. Now, computing FGG in two
different ways using associativity, and then dividing by k, we obtain k = mG. �

Proposition 30. Let F ∈ L and H ∈ J .

(i) The projective object PF is injective.

(ii) The object HLF, when non-zero, has a non-zero projective-injective summand.

(iii) We have F∗LF = IG.
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(iv) The object HLF is both projective and injective.

(v) The object HLF is indecomposable or zero.

Proof. By adjunction, LG injects into F∗LF. Consider an injective object I and
let LK be a simple quotient of I, where K ∈ L. Then LG is a subquotient of the
injective object K∗ I. As J is strongly regular, it follows from Proposition 26(i)
that G annihilates all simples except for LG. Hence LG appears in the top of the
injective object GK∗ I. Applying F, we obtain that PF is a quotient (and hence
a direct summand) of the injective object FGK∗ I and is therefore injective. This
proves claim (i).

Assume that HLF 6= 0. The argument in the previous paragraph shows that H′ LF

has a non-zero projective-injective summand for some H′ in the same left cell as H.
Claim (ii) is now deduced by multiplying the latter on the left with elements in J
and using strong regularity of J .

Using adjunction and strong regularity of J , we see that F∗LF has simple socle
LG. Therefore claim (iii) follows from claim (ii). Claim (iv) is implied by claim (iii)
as any inequality HLF 6= 0 means, by strong regularity of J , that H and F∗ are in
the same left cell and hence HLF is a direct summand of the projective-injective
object KF∗LF for some K.

It remains to prove claim (v). By strong regularity of J , there is a unique element

G̃ in the right cell of F such that G̃LF 6= 0. This implies that G̃ L̂F 6= 0 and thus
G̃ L̂G̃ 6= 0 by Proposition 26(i), as G̃ and F are in the same right cell. In particular,

by Proposition 28, G̃ is the Duflo involution in its left cell.

Using claim (iv) and strong regularity of J , we deduce G̃LF
∼= kPF for some

non-negative integer k. We compute F∗G̃LF in two different ways. On the one
hand,

F∗G̃LF
∼= kF∗ PF

∼= kF∗FLF
∼= kmFPG∗ ,

where the last isomorphism follows from the isomorphism F∗F ∼= (∗FF)∗ and the

fact that {G∗} = L ∩ L∗. On the other hand, F∗ is in the same left cell as G̃∗ and

hence in the same left cell as G̃ as the latter is the Duflo involution. Therefore,
Lemma 29 and claim (iii) give

F∗G̃LF
∼= mG̃PG∗ .

From Proposition 1, we obtain mG̃ = mF which yields k = 1 and proves claim (v)

in the case H = G̃.

Now, in the general case, assume HLF
∼= kPK for some K ∈ L and a positive

integer k (note that K and H are then in the same right cell). Then ∗HHLF 6= 0

by adjunction and hence ∗HH ∼= mHG̃. Let us now compute the dimension of
End(HLF). On the one hand, by adjunction and the fact that G̃LF

∼= PF, proved
in the previous paragraph, this dimension equals mH. On the other hand, it equals
k2 dimEnd(PK) which, in turn, by adjunction, equals k2mK. Proposition 1 implies
mK = mH and hence k = 1, completing the proof. �

Proposition 30 shows that indecomposable 1-morphisms in J act, under CL, as
indecomposable projective functors for some self-injective algebra. In analogy to
[MM1, Theorem 43], this implies the following.
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Theorem 31. Let C be a weakly fiat 2-category and J a strongly regular two-sided
cell in C .

(i) For any left cell L in J , the cell 2-representation CL is strongly simple in the
sense of [MM1, Section 6.2].

(ii) If L and L′ are two right cells in J , then the cell 2-representations CL and
CL′ are equivalent.

Using this, and following the arguments in [MM3], we can generalize [MM3, Theo-
rem 13] to all weakly fiat 2-categories (in the notation of Section 5).

Theorem 32. Let C = CJ be a skeletal weakly fiat J -simple 2-category for a
strongly regular J . Then C is biequivalent to CA,X for appropriate self-injective A
and X ⊂ Z(A).

Similarly, we obtain the following generalization of [MM5, Theorem 8].

Theorem 33. Let C be a weakly fiat 2-category such that all two-sided cells in C

are strongly regular. Then any simple transitive 2-representation of C is equivalent
to a cell 2-representation.
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