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We consider the question of unicity of types on maximal com-
pact subgroups for supercuspidal representations of SL2 over 
a nonarchimedean local field of odd residual characteristic. We 
introduce the notion of an archetype as the SL2-conjugacy 
class of a typical representation of a maximal compact sub-
group, and go on to show that any archetype in SL2 is 
restricted from one in GL2. From this it follows that any 
archetype must be induced from a Bushnell–Kutzko type. 
Given a supercuspidal representation π of SL2(F ), we give 
an additional explicit description of the number of archetypes 
admitted by π in terms of its ramification. We also describe a 
relationship between archetypes for GL2 and SL2 in terms of 
L-packets, and deduce an inertial Langlands correspondence 
for SL2.
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open access article under the CC BY license 
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1. Introduction

The local Langlands conjectures predict the existence of natural parametrizations 
of certain sets of representations of the Weil–Deligne group of a nonarchimedean local 
field F and (packets of) smooth, irreducible representations of reductive groups defined 
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over F . While this is of theoretical significance, in practice it can be rather difficult 
to obtain explicit information from this correspondence. The theory of types arose as 
a means of obtaining an explicit understanding of the representation theory of p-adic 
groups, partly in the hope that this would allow one to obtain explicit information on 
the Weil group side of the Langlands correspondence.

The idea of the theory of types is to find a family of irreducible representations λ of 
certain compact open subgroups J of a p-adic group G such that the presence of λ in 
the restriction to J of an irreducible representation π of G allows one to identify π, at 
least as closely as such an approach may possibly do so. This then naturally ties in with 
ideas due to Bernstein, allowing one to interpret types as effective means of describing 
the blocks of the category Rep(G) of smooth representations of G. The existence of types 
then allows one, via the theory of Hecke algebras, to give an effective description of 
Rep(G).

The existence of types is now known in many situations. In each case, the approach 
is to first provide an explicit construction of those types which are contained in the 
supercuspidal representations of G. This has now been done when G is a general or special 
linear group [4–6], when G is a classical group in odd residual characteristic [19], when 
G is an inner form of a general linear group [16,17], as well as for arbitrary G over fields 
of characteristic zero, modulo some assumptions on the base field which, in particular, 
are always satisfied for p sufficiently large [20,11]. Via the Bushnell–Kutzko theory of 
covers [7] there is then a standard approach for extending these constructions to the 
non-cuspidal representations. Again, this has been completed in many cases: for general 
linear groups [8], special linear groups [10], classical groups in odd residual characteristic 
[13] and inner forms of general linear groups [18].

Call any type arising from such a construction a “Bushnell–Kutzko” type. It is simple 
to see that, when (J, λ) is a Bushnell–Kutzko type and K is a compact subgroup of G
containing J , then the irreducible components of the representation obtained by inducing 
λ to K are also Bushnell–Kutzko types. To date, no other types are known to exist. It is 
therefore natural to conjecture that repeating this process for all Bushnell–Kutzko types 
(J, λ) and all such K exhausts the set of isomorphism classes of types – this is what 
we refer to as the “unicity of types” property. This conjecture appears to be intimately 
related to several topics of interest in the Langlands program. In particular, it should 
imply (but be stronger than) the existence of a unique inertial Langlands correspondence, 
and in the case of GLN (F ) has found multiple applications to problems in the spirit of 
the Breuil–Mézard conjecture.

It was in order to allow an application to the Breuil–Mézard conjecture that Henniart 
first considered the unicity of types in the appendix to [2], where he obtains a positive 
answer for all representations of GL2(F ). Since then, the result has been extended to 
cover all supercuspidal representations of GLN (F ) by Paskunas in [15], and to cover all 
representations of GL3(F ) [14], as well as large classes of representations of GLN (F )
(unpublished at the time of writing) by Nadimpalli.
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In this paper, we take the first steps towards unicity for special linear groups, providing 
a positive answer for supercuspidal representations of SL2(F ) when F is of odd resid-
ual characteristic. The main difference between the cases of GL2(F ) and SL2(F ) is that 
there are now two conjugacy classes of maximal compact subgroups. Given an irreducible 
representation π of SL2(F ), there will clearly always be a typical representation of at 
least one of these maximal compact subgroups, obtained by induction from a Bushnell–
Kutzko type, but not necessarily on both. In order to make this complication less of a 
hindrance, we introduce the notion of an archetype, which is an SL2(F )-conjugacy class 
of types (K , τ), where K is maximal compact. With this in place, we are able to give a 
natural extension of the unicity of types to this setting, providing a positive answer for 
supercuspidal representations in section 2.

In section 3, we go on to provide a more explicit description of the archetypes for the 
supercuspidal representations of SL2(F ), obtaining the following result:

Theorem 1.1. Let π be a supercuspidal representation of SL2(F ), for F a nonarchimedean 
local field of odd residual characteristic. If π is of integral depth, then π contains a unique 
archetype, while if π is of half-integral depth, then there exist precisely two archetypes 
contained in π which are GL2(F )-conjugate but not SL2(F )-conjugate.

We also provide, in Proposition 3.3, a description of the relationship between supercus-
pidal archetypes in GL2(F ) and SL2(F ) in terms of the local Langlands correspondence, 
which in some sense says that archetypes are functorial with respect to restriction from 
GL2(F ) to SL2(F ). This allows us to deduce in Corollary 3.4 an extension of Paskunas’ 
inertial Langlands correspondence to our setting.

Our method is to transfer Henniart’s results on GL2(F ) over to SL2(F ), with the 
key step being to show that any archetype for an irreducible representation π̄ of SL2(F )
must be isomorphic to an irreducible component of the restriction of the unique archetype 
for some irreducible representation π of GL2(F ) containing π̄ upon restriction. This is 
achieved in Lemma 2.3. From this, it is mostly a case of performing simple calculations 
to deduce in Theorem 2.5 that our unicity result holds. The explicit counting result on 
the number of archetypes contained in a supercuspidal representation follows easily from 
Theorem 2.5, while we are able to prove in Lemma 3.2 a form of converse to Lemma 2.3
for the supercuspidal representations, which allows us to easily deduce the remaining 
results.

The approach taken in this paper is largely general, and already gives partial progress 
towards a general proof of the unicity of types for SLN (F ). In particular, the proof 
of Lemma 2.1 goes through in the general setting without any additional difficulties, 
suggesting the possibility of applying the results of [15] in a similar manner to our use of 
Henniart’s arguments in order to prove an analogue of Lemma 2.3, which the author is 
hopeful of managing in the near future. In particular, this would lead easily to a positive 
answer to the question of unicity. The remaining results should then follow without too 
much difficulty in a similar manner to that here. In particular, this should allow for 
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the following extension of our explicit results on supercuspidals. Given a supercuspidal 
representation π̄ of SLN (F ) and a supercuspidal representation π of GLN (F ) which 
contains π̄ upon restriction, we define the ramification degree of π̄ to be the number 
eπ̄ such that there are N/eπ̄ characters χ of F× such that π � π ⊗ (χ ◦ det). This is 
independent of the choice of π. Then we make the following conjecture:

Conjecture 1.2. Let π̄ be a supercuspidal representation of SLN (F ). Then there are 
precisely eπ̄ archetypes for π̄, which are GLN (F )-conjugate.

1.1. Notation

Throughout, F will denote a nonarchimedean local field of odd residual characteris-
tic p. We will denote by O = OF the ring of integers of F , and write p = pF for its 
maximal ideal. The residue field will be denoted by k = kF = O/p, and we will write q
for the cardinality of k. We fix once and for all a choice � of uniformizer of F , i.e. an 
element such that �O = p.

When working in generality, we will use G to denote an arbitrary p-adic group de-
fined over F , by which we will mean the group G = G(F ) of F -rational points of some 
connected reductive algebraic group G defined over F . We will always denote by G the 
general linear group GL2(F ). We fix notation for a number of important subgroups of G. 
We will write K = GL2(O) for the standard maximal compact subgroup, T for the split 
maximal torus of diagonal matrices, and B for the standard Borel subgroup of upper 
triangular matrices. We also write Ḡ for the special linear group SL2(F ) and, given a 
closed subgroup H of G, we let H̄ denote the subgroup H ∩ Ḡ of Ḡ. We also denote by 
T 0 the compact part of the torus, i.e. the group of diagonal matrices with entries in O×, 
and by B0 = B ∩K the group of upper triangular matrices with entries in O. We will 

denote by η the matrix 
(

0 1
� 0

)
, so that we may take K̄ and ηK̄η−1 as representatives 

of the two Ḡ-conjugacy classes of maximal compact subgroups in Ḡ.
We use the notation gx = gxg−1 for conjugation, similarly denoting by gX = {gx |

x ∈ X} the action of conjugation on a set. Given a representation σ of a closed subgroup 
H of G, we denote by gσ the representation of gH given by gσ(ghg−1) = σ(h).

We write Rep(G) for the category of smooth representations of G, and Irr(G) for 
the set of isomorphism classes of irreducible representations in Rep(G). Given a closed 
subgroup H of G, we write IndG

H σ for the smooth induction of σ to G, and c- IndG
H σ

for the compact induction. We write ResGH π for the restriction of π to H, or simply 
π �H for brevity when it is unnecessary to make clear the functor. Given subgroups 
H, H′ of G and representations λ, λ′ of H, H′, respectively, we write IG(λ, λ′) = {g ∈ G |
HomH∩gH′(λ, gλ′) �= 0} for the intertwining of λ with λ′.

Given a parabolic subgroup P of G with Levi decomposition P = MN , we denote 
the normalized parabolic induction of an irreducible representation ζ of M to G by 
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IndG
M,P ζ. By this, we mean IndG

M,P ζ = IndG
P ζ̃ ⊗ δ

−1/2
P , where ζ̃ is the inflation of ζ

to P and δP is the modular character of P.
Finally, we denote by X(F ) the group of complex characters χ : F× → C

×. We will 
be interested in two subgroups of this: the group Xnr(F ) of unramified characters in 
X(F ) (i.e. those which are trivial on O×), and the group XN (F ) of order N characters 
in X(F ) (i.e. those χ ∈ X(F ) such that χN = 1).

1.2. The Bernstein decomposition and types

The Bernstein decomposition, which was first introduced in [1], allows us to give a 
factorization of the category Rep(G), which suggests a natural approach to its study. 
Given an irreducible representation π of G, there exists a unique G-conjugacy class of 
smooth irreducible representations σ of Levi subgroups M of G such that π is isomorphic 
to an irreducible subrepresentation of IndG

M,P σ, for some parabolic subgroup P of G with 
Levi factor M. We call this equivalence class the supercuspidal support of π, and denote 
it by scusp(π). We put a further equivalence relation on the set of possible supercuspidal 
supports, by saying that (M, σ) is G-inertially equivalent to (M′, σ′) if there exists a 
χ ∈ Xnr(F ) such that (M, σ) is G-conjugate to (M′, σ′ ⊗ χ). The inertial support of π
is then the inertial equivalence class of scusp(π). If scusp(π) = (M, σ), then we write 
[M, σ]G for the inertial support of π.

With this in place, let B(G) denote the set of inertial equivalence classes of supercus-
pidal supports, and, for s ∈ B(G), let Reps(G) denote the full subcategory of Rep(G)
consisting of representations such that all irreducible subquotients have inertial sup-
port s, and write Irrs(G) for the set of isomorphism classes of irreducible representations 
in Reps(G). Bernstein then shows that

Rep(G) =
∏

s∈B(G)

Reps(G).

More generally, given a subset S of B(G), let RepS(G) =
∏

s∈S
Reps(G) and IrrS(G) =⋃

s∈S
Irrs(G). This allows us to define the notion of a type in generality:

Definition 1.3. Let S ⊂ B(G). Let (J, λ) be a pair consisting of a compact open subgroup 
J of G and a smooth irreducible representation λ of J .

(i) We say that (J, λ) is S-typical if, for any smooth irreducible representation π of G, 
we have that HomJ(π �J , λ) �= 0 ⇒ π ∈ IrrS(G).

(ii) We say that (J, λ) is an S-type if it is S-typical, and HomJ(π �J , λ) �= 0 for each 
π ∈ IrrS(G).

In the case that S = {s} is a singleton, we will simply speak of s-types rather than 
{s}-types.
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In the cases of interest to us, the Bernstein components of Rep(G) admit particu-
larly simple descriptions: if Reps(G) contains a supercuspidal representation π, then 
Irrs(G) = {π ⊗ (χ ◦ det) | χ ∈ Xnr(F )}. The situation for Ḡ is even simpler: as Ḡ has 
no unramified characters, Irrs(Ḡ) is a singleton whenever it contains a supercuspidal 
representation.

We now introduce the slightly modified notion of an archetype, which is more suited 
to studying the unicity of types in groups other than GLN (F ).

Definition 1.4. Let S ⊂ B(G). An S-archetype is a G-conjugacy class of S-typical pairs 
(K , τ) for K a maximal compact subgroup of G. Given a representative (K , τ) of an 
archetype, we write G(K , τ) for the full conjugacy class.

Remark 1.5. It may seem odd to define an archetype as a conjugacy class of typical
representations rather than as a conjugacy class of types. However, for us, the differ-
ence turns out to be unimportant: the unicity of types will allow us to see that typical 
representations of maximal compact subgroups are types in almost all cases (indeed, 
for all representations not contained in the restriction of the Steinberg representation 
of G). The reason for working with typical representations rather than types is that 
it allows us to include these “Steinberg” representations in the general picture, despite 
them admitting no type of the form (K , τ).

There is one obvious way of constructing archetypes:

Lemma 1.6. Let π be an irreducible representation of a p-adic group G of inertial sup-
port s. Let (J, λ) be an s-type, and let K be a maximal compact subgroup of G con-
taining J . Then the irreducible components of τ := c- IndK

J λ are representatives of 
s-archetypes. Moreover, if τ is irreducible then it is an s-type.

Proof. Using Frobenius reciprocity, it is clear that if an irreducible representation π′ of 
G contains τ , then it must contain λ, hence the first claim. The second claim simply 
follows by the transitivity of induction. �

The question of the unicity of types is then whether there are any archetypes other 
than those induced from Bushnell–Kutzko types. For G, Henniart answers this in the 
appendix to [2]:

Theorem 1.7. Suppose q �= 2. Let π be an irreducible representation of G of inertial 
support s. Let G(K, τ) be an s-archetype. Then there exists a Bushnell–Kutzko type (J, λ)
with J ⊂ K such that τ ↪→ c- IndK

J λ. Moreover, unless π is a twist of the Steinberg 
representation StG, the representation c- IndK

J λ is irreducible and hence (K, τ) is an 
s-type.
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1.3. Bushnell–Kutzko types

We now describe the explicit construction, due to Bushnell and Kutzko, of types 
for the irreducible representations of G and Ḡ. In this section, we discuss the types 
for supercuspidal representations, which are the simple types constructed in [4–6]. The 
construction of these types is by a series of successively stronger approximations of a 
type, and is rather technical in nature. We omit as many details as possible; the full 
details for our case of N = 2 may be found in the appendix of [2], or in [3]. The starting 
points for the construction are the hereditary O-orders. For our purposes, we may simply 
say that the G-conjugacy classes of hereditary orders in Mat2(F ) are represented by 
the maximal order M = Mat2(O), and the Iwahori order I, which consists of those 
matrices in M which are upper-triangular modulo p. The parahoric subgroups of G are 
then the groups of units of these rings. Letting UM = M× and UI = I×, we may take 
as representatives for the Ḡ-conjugacy classes of parahoric subgroups of Ḡ the groups 
ŪM = UM ∩ Ḡ, its conjugate ηŪM, and ŪI = UI ∩ Ḡ.

We also require the Jacobson radicals of these hereditary orders. The radical of M
is PM = Mat2(p), and the radical of I is the ideal PI of matrices which are strictly 
upper-triangular modulo p. Given a hereditary order A, we may then define a filtration 
of UA by compact open subgroups, by setting Un

A = 1 +Pn
A, for n ≥ 1. There is an integer 

eA called the O-lattice period associated to each hereditary order; it is the positive integer 
eA such that PeA

A
= �A. The construction of the simple types (J, λ) is then by simple 

strata. Roughly speaking, any type (J, λ) for a supercuspidal representation π of G is 
constructed via a triple [A, n, β] consisting of a hereditary O-order A, the integer n such 
that n/eA is the depth of π, and an element β of P−n

A
such that E := F [β] is a field. 

For our purposes, it suffices to know that J = O×
EU

�n+1
2 �

A
. We will also briefly make use 

of certain filtration subgroups of J : for an integer k ≥ 1, let Jk = J ∩ Uk
A.

These constructions lead, for each supercuspidal representation π of G, to an irre-
ducible representation λ of a compact open subgroup J of G, such that (J, λ) is a 
[G, π]G-type and there exists a unique extension Λ of λ to the G-normalizer J̃ of J
such that π � c- IndG

J̃ Λ. Any s-type arising from these constructions is a (maximal) 
G-simple type. The other main fact that we will require is the “intertwining implies con-
jugacy” property [4, Theorem 5.7.1], which says that, if we have two maximal simple 
types (J, λ) and (J ′, λ′) such that IG(λ, λ′) �= ∅, then (J, λ) and (J ′, λ′) must actually 
be G-conjugate.

In our case, the simple types in Ḡ are easily obtained from those in G. Let π be a 
supercuspidal representation of G, so that π �Ḡ splits into a finite sum of supercuspidal 
representations of Ḡ. Choose a simple type (J, λ) extending to (J̃ , Λ) such that π �
c- IndG

J̃ Λ, so that we may perform a Mackey decomposition to obtain

π �Ḡ �
⊕

¯ ˜
c- IndḠ

g J̄
gλ̄,
G\G/J
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where λ̄ = λ �J̄ . This is a finite length sum, and the summands will generally be reducible 
of finite length. However, in our case all ramification is tame and this is actually a 
decomposition into irreducibles, with one family of exceptions: for the unramified twists 
of the “exceptional depth zero” supercuspidal representation of G, which under local 
Langlands corresponds to the triple imprimitive representation of the Weil group, each 
of the above summands is reducible of length 2 – see [6] for details. We then define the 
(maximal) Ḡ-simple types to be the irreducible components of the representations gλ̄, 
for (J, λ) running over the G-simple types. Given such a Ḡ-simple type (J̄ , μ), we have 
that IḠ(μ) = J̄ ; thus they induce up to a supercuspidal representation of Ḡ, and it 
is clear that this gives a construction of all of the supercuspidals of Ḡ. Just as in the 
case of G, we have an intertwining implies conjugacy property: if two maximal Ḡ-simple 
types (J̄ , μ) and (J̄ ′, μ′) are such that IḠ(μ, μ′) �= ∅, then there exists a g ∈ Ḡ such that 
(J̄ ′, μ′) � (gJ̄ , gμ) [4, Theorem 5.3 and Corollary 5.4].

1.4. The local Langlands correspondence for supercuspidals

Some of our results on supercuspidals will require a basic understanding of the rel-
evant local Langlands correspondences, which we quickly recall here. Fix once and for 
all a choice F̄ /F of separable algebraic closure. Let IF denote the inertia subgroup of 
Gal(F̄ /F ), i.e. the kernel of the natural projection Gal(F̄ /F ) � Gal(̄k/k), and let WF

denote the Weil group of F̄ /F , i.e. the subgroup of Gal(F̄ /F ) generated by IF and 
the Frobenius elements, topologized so that IF is open in WF and given the subspace 
topology from Gal(F̄ /F ).

For a p-adic group G, let Irrscusp(G) denote the set of equivalence classes of super-
cuspidal representations of G. Let L0(G) denote the set of irreducible L-parameters 
for G, which is the same as the set of irreducible Frobenius-semisimple representations 
WF → GL2(C), i.e. those irreducible representations under which some fixed Frobenius 
element of WF acts semisimply. Then the local Langlands correspondence for G provides 
a unique natural bijection rec : Irrscusp(G) ↔ L0(G), which preserves L-functions and 
ε-factors, as well as mapping supercuspidal representations to irreducible L-parameters, 
among a list of other properties.

From this, as shown in [12] and [9], one may deduce a Langlands correspondence for 
the supercuspidal representations of Ḡ, which suffices for our purposes. Let L0(Ḡ) be 
the image of L0(G) under the natural map Hom(WF , GL2(C)) → Hom(WF , PGL2(C)). 
Then we define the local Langlands correspondence rec on Irrscusp(Ḡ) by requiring that, 
for any map R which sends a supercuspidal representation π of G to one of the irreducible 
components of ResGḠ π, the diagram

Irrscusp(G) rec

R

L0(G)

Irrscusp(Ḡ) rec L0(Ḡ)
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commutes. The (supercuspidal) L-packets are then simply the finite fibres of the map 
rec, which are precisely the sets of irreducible components of the restrictions to Ḡ of 
supercuspidal representations of G.

One may use the local Langlands correspondence to give an alternative description of 
G-inertial equivalence classes of supercuspidal representations: two supercuspidal repre-
sentations π and π′ of G are inertially equivalent if and only if rec(π) �IF � rec(π′) �IF .

2. The main unicity result

We now begin working towards the main results, beginning with a description of the 
relationship between archetypes in G and those in Ḡ.

Lemma 2.1. Let π be a supercuspidal representation of G, let π̄ be an irreducible compo-
nent of π �Ḡ, and suppose that π̄ admits an archetype Ḡ(K̄, τ̄). Let Ψ be an irreducible 
subquotient of IndK

K̄ τ̄ which is contained in π �K , and let S = {[G, π⊗ (χ ◦det)]G | χ ∈
X2(F )}. Then Ψ is S-typical.

Proof. We first note that such a Ψ clearly exists: let ωπ denote the central charac-
ter of π, and write ω0

π for its restriction to O×. Let τ̃ be the extension to O×K̄ of τ̄
by ω0

π. Then, by Frobenius reciprocity, some irreducible quotient of c- IndK
O×K̄ τ̃ must 

be contained in π upon restriction to K. From now on, Ψ will always denote this repre-
sentation.

Let π′ be an irreducible representation of G, and suppose that HomK(π′ �K , Ψ) �= 0. 
Then

0 �= HomK(IndK
K̄ τ̄ ,ResGK π′)

= HomK̄(τ̄ ,ResḠK̄ ResGḠ π′).

Since Ḡ(K̄, ̄τ) is an archetype for π̄, we see that π′ must contain π̄ upon restriction to Ḡ, 
so that π′ is of inertial support [G, π⊗(χ ◦det)]G, for some χ ∈ X(F ). Comparing central 
characters, χ must be an unramified twist of a quadratic character, as required. �
Remark 2.2. Of course, the same result holds true with an identical proof when π̄ admits 
an archetype of the form Ḡ(ηK̄, ̄τ); i.e. if Ψ is an irreducible subquotient of Ind

ηK
ηK̄ τ̄

which is contained in π �ηK̄ , then Ψ is S-typical.

Lemma 2.3. The representation Ψ constructed in Lemma 2.1 is a [G, π]G-type.

Proof. By Lemma 2.1, it remains only to rule out the possibility that Ψ is contained in 
a representation of inertial support [G, π ⊗ (χ ◦ det)]G, for some non-trivial χ ∈ X2(F ). 
Indeed, this would show that Ψ is [G, π]G-typical, and the unicity of types for G would 
immediately imply that Ψ represents a [G, π]G-archetype. We now argue by cases.
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As π is a supercuspidal representation, we may write π � c- IndG
J̃ Λ, with (J̃ , Λ)

extending a maximal simple type (J, λ) contained in π. Suppose for contradiction that 
Ψ is not a type. As noted by Henniart in the appendix to [2, paragraphs A.2.4–A.2.7, 
A.3.6–A.3.7 and A.3.9–A.3.11], every irreducible component of π �K other than the 
typical representation τ = IndK

J λ appears in the restriction to K of either a parabolically 
induced representation, or some other supercuspidal πμ, in a different inertial equivalence 
class to that of π, which we may now describe explicitly. There are three further subcases 
which we treat separately.

Suppose first that Ψ is contained in some parabolically induced representation. We 
may therefore find a character ζ of T such that Ψ is isomorphic to some irreducible 
component of ResGK IndG

T,B ζ. As IndK
K̄ τ̄ projects onto Ψ, we therefore have

0 �= HomK(c- IndK
K̄ τ̄ ,ResGK IndG

T,B ζ)

= HomḠ(c- IndḠ
K̄ τ̄ ,ResGḠ IndG

T,B ζ)

=
n⊕

i=1
HomḠ(π̄, IndḠ

T̄ ,B̄ ResTT̄ ζ).

Here, n is the integer such that c- IndḠ
K̄ τ̄ � π̄⊕n, which exists by Proposition 5.2 

of [7], and the final equality follows from a Mackey decomposition with the summation 
involved being trivial as BḠ = G. Hence π̄ is contained in some parabolically induced 
representation, which provides a contradiction by Lemma 2.1.

Now suppose Ψ does not appear as an irreducible component of the restriction to 
K of any parabolically induced representation, and suppose furthermore that π is of 
integral depth n. In this case, we may construct a new supercuspidal representation 
containing every irreducible component of π �K other than the archetype τ . Let E/F

be the unique unramified quadratic extension of F , and choose an embedding O×
E ⊂ K. 

Let μ be any level 1 character of E× trivial on F×, and let (J, λ) be a simple type for π. 
Then the pair (J, λ ⊗μ) is again a maximal simple type contained in some supercuspidal 
representation πμ lying in a different inertial equivalence class to that of π, and any 
irreducible component of π �K other than τ must be contained in πμ upon restriction; in 
particular, we must have Ψ ↪→ πμ �K . But then πμ must be isomorphic to an unramified 
twist of π⊗(χ ◦det), for some (non-trivial by assumption) χ ∈ X2(F ), which is to say that 
their archetypes must coincide. The archetype for πμ is c- IndK

J λ ⊗μ, and the archetype 
for π⊗(χ ◦det) is (c- IndK

J λ) ⊗(χ ◦det). If these two representations are isomorphic, then 
we must have λ ⊗μ � λ ⊗(χ ◦det), as IK(λ ⊗μ, λ ⊗(χ ◦det)) �= ∅, and if g intertwines λ ⊗μ

with λ ⊗(χ ◦det), then g intertwines λ �J1 with itself, and so g ∈ J . As λ ⊗μ � λ ⊗(χ ◦det), 
we may use Schur’s lemma to obtain 0 �= HomJ(λ ⊗μ, λ ⊗(χ ◦det)) ⊆ EndJ1(λ �J1) = C, 
and hence HomJ(λ ⊗ μ, λ ⊗ (χ ◦ det)) contains the identity map, so that we must have 
μ = χ ◦det on O×

E . However, there are only two quadratic characters χ of F× while there 
are q + 1 ≥ 4 such characters μ. Choosing μ non-quadratic, we obtain a contradiction.
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Finally, consider the case where π is of half-integral depth and Ψ is not contained 
in any parabolically induced representation, we argue essentially as before. We assume 
further that π is of depth at least 3

2 ; for π of depth 1
2 Henniart shows that this case 

never arises. Let E/F be the ramified quadratic extension associated to the simple type 
for π, and choose an embedding O×

E ⊂ UI ⊂ K. For μ, we take a level 2 character of E×

trivial on O×
F , and construct πμ as before. Letting (J, λ) be a simple type for π, so that 

λ is one-dimensional, the pair (J, λ ⊗ μ) is a simple type for some supercuspidal πμ in a 
different inertial equivalence class to that of π, and Ψ must appear in the restriction to 
K of πμ. Then, up to an unramified twist, πμ � π⊗ (χ ◦det) for χ a nontrivial quadratic 
character of F×, and so the archetypes c- IndK

J λ ⊗ μ and (c- IndK
J λ) ⊗ (χ ◦ det)

coincide. Then IK(λ ⊗ μ, λ ⊗ (χ ◦ det)) �= ∅, and if g ∈ IK(λ ⊗ μ, λ ⊗ (χ ◦ det)), then 
g ∈ IK(λ �J2 , λ �J2) = J , as π is of depth at least 3

2 , and λ is one-dimensional so that 
λ �J2 is a simple character. It follows that we must have λ ⊗ μ � λ ⊗ (χ ◦ det), and so 
μ � χ ◦ det. But then μ is of level 2 while χ ◦ det is tame and hence of level at most 1, 
giving a contradiction and completing the proof. �
Lemma 2.4. Let π be a supercuspidal representation of G, and let G(K, τ) be an archetype 
for π. Then every irreducible component of τ �K̄ is induced from a Bushnell–Kutzko type 
for Ḡ.

Proof. By Theorem 1.7, the representation τ is of the form τ = c- IndK
J λ, where (J, λ)

is a maximal simple type contained in π. Then we may perform a Mackey decomposition 
to obtain

ResKK̄ c- IndK
J λ =

⊕
J\K/K̄

c- IndK̄
g J̄

gλ̄,

where λ̄ = λ �J̄ . The irreducible components of this representation are all of the required 
form. �
Theorem 2.5. Let π̄ be a supercuspidal representation of Ḡ.

(i) If Ḡ(K , ̄τ) is an archetype for π̄, then there exists a simple type (J̄ , μ) with J̄ ⊂ K

such that τ̄ � c- IndK
J̄ μ.

(ii) If (J̄ , μ) is a simple type contained in π̄ and K is a maximal compact subgroup of 
Ḡ which contains J̄ , then the representation c- IndK

J̄ μ is the unique [Ḡ, ̄π]Ḡ-typical 
representation of K .

Proof. For (i) we may reduce to the case K = K̄. By Lemma 2.3, τ̄ is an irreducible 
component of the restriction to K̄ of the unique archetype (K, τ) for some irreducible 
representation π of G containing π̄ upon restriction to Ḡ. As there exists a simple type 
(J, λ) such that τ = c- IndK

J λ, the result follows immediately from Lemma 2.4.
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To see (ii), it remains to check that, given two distinct simple types (J̄, μ) and (J̄ ′, μ′)
contained in π̄ which are, moreover, contained in the same conjugacy class of maximal 
compact subgroups, these simple types provide the same archetypes through induction. 
Thus, we may as well assume that J̄ , J̄ ′ ⊂ K̄. As (J̄ , μ) and (J̄ ′, μ′) are [Ḡ, ̄π]Ḡ-types, 
π̄ will appear as a subquotient of the induced representations c- IndḠ

J̄ μ and c- IndḠ
J̄ ′ μ′; 

hence we will have

0 �= HomḠ(c- IndḠ
J̄ μ, c- IndḠ

J̄ ′ μ′)

= HomJ̄(μ,ResḠJ̄ c- IndḠ
J̄ ′ μ′)

=
⊕

J̄ ′\Ḡ/J̄

HomJ̄ (μ, c- IndJ̄
g J̄ ′∩J̄ Res

g J̄ ′
g J̄ ′∩J̄

gμ′)

=
⊕

J̄ ′\Ḡ/J̄

Homg J̄ ′∩J̄ (ResJ̄g J̄ ′∩J̄ μ,Res
g J̄ ′
g J̄ ′∩J̄

gμ′),

and so IḠ(μ, μ′) �= ∅. As π̄ is supercuspidal, (J̄ , μ) and (J̄ ′, μ′) will be simple types, 
and so by the intertwining implies conjugacy property there will exist a g ∈ Ḡ such 
that g(c- IndK̄

J̄ μ) � c- Ind
gK̄
J̄ ′ μ′. As J̄ ′ is contained in at most one maximal compact 

subgroup in each Ḡ-conjugacy class, we must actually have gK̄ = K̄, and so (J̄ , μ) and 
(J̄ ′, μ′) induce to the same archetype. �
3. An explicit description of supercuspidal archetypes and a result on L-packets

Having completed the proof of Theorem 2.5, we now provide a more explicit descrip-
tion of the theory of archetypes for supercuspidal representations. Given a supercuspidal 
representation π̄ of Ḡ, we define the ramification degree eπ̄ of π̄ to be 1 if π̄ is of inte-
gral depth, or 2 if π̄ is of half-integral depth. Then we obtain the following corollary to 
Theorem 2.5:

Corollary 3.1. Let π̄ be a supercuspidal representation of Ḡ. Then the number of 
[Ḡ, ̄π]Ḡ-archetypes is precisely eπ̄.

Proof. It remains only for us to count the number of archetypes obtained by inducing a 
maximal simple type contained in π̄ up to maximal compact subgroups. If π̄ is ramified 
then, up to conjugacy, any simple type for π̄ is defined on a group contained in the 
Iwahori subgroup ŪI of Ḡ, which is itself contained in both K̄ and ηK̄; hence ramified 
supercuspidals admit two archetypes. If π̄ is unramified, it suffices to show that the 
subgroup J̄ on which any simple type μ for π̄ is defined embeds into precisely one 
Ḡ-conjugacy class of maximal compact subgroups. Without loss of generality, we may as 
well assume that J̄ ⊆ ŪM. We have kerNE/F ⊆ J̄ ⊆ ŪM, where NE/F is the norm map 
on the (unramified) quadratic extension E/F associated to π̄. Suppose for contradiction 
that we also have J̄ ⊆ ηŪM. As the group kerNE/F contains the group μq+1 of (q+1)-th 
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roots of unity, we would therefore also have μq+1 ⊂ ŪM ∩ ηŪM = ŪI. However, the 
Iwahori subgroup contains no order q + 1 elements, giving the desired contradiction.

Thus, the only way in which one might obtain two archetypes when eπ̄ = 1 is if π̄
contains simple types which are G-conjugate but not Ḡ-conjugate; this clearly cannot 
be the case by the intertwining implies conjugacy property. �

This completely describes the number of archetypes contained in any supercuspidal 
representation of Ḡ. We now prove a complementary result, which allows us to describe 
the relationship between the theories of archetypes for Ḡ and G. We first require a 
converse result to Lemma 2.3.

Lemma 3.2. Let π be a supercuspidal representation of G, let s = [G, π]G, and let G(K, τ)
be the unique s-archetype. Let π̄ be an irreducible component of π �Ḡ. Then there exists 
a g ∈ G and an irreducible component τ̄ of gτ �gK̄ such that Ḡ(gK̄, ̄τ) is an archetype 
for π̄.

Proof. We may assume without loss of generality, by conjugating by η if necessary, that 
π̄ = c- IndḠ

K̄ ρ, where ρ = c- IndK̄
J̄ μ is the induction to K̄ of a Ḡ-simple type. Let {τ̄j}

be the (finite) set of irreducible components of τ �K̄ . We first show that any π′ ∈ Irr(Ḡ)
containing one of the τ̄j upon restriction must appear in the restriction to Ḡ of π. We 
have

0 �=
⊕
j

HomK̄(τ̄j , π′)

= HomK̄(ResKK̄ τ,ResḠK̄ π′)

= HomḠ(c- IndḠ
K̄ ResKK̄ τ, π′),

and so we obtain π′ � c- IndḠ
K̄ ResKK̄ τ ↪→ ResGḠ c- IndG

K τ . Every irreducible subquotient 
of the representation c- IndG

K τ is a twist of π, and hence coincides with π upon restriction 
to Ḡ, so that any such representation π′ must be a subrepresentation of the restriction 
to Ḡ of π. Hence the possible representations π′ all lie in a single G-conjugacy class of 
representations of Ḡ. Let g ∈ G be such that gπ′ � π̄, so that π′ � c- IndḠ

gK̄
gρ, and 

choose j so that π′ contains τ̄j . We claim that (gK̄, g τ̄j) is the required type.
It suffices to show that any G-conjugate of π̄ containing (gK̄, g τ̄j) is isomorphic to π̄. 

Suppose that, for some h ∈ G, we have HomgK̄(hπ̄, g τ̄j) �= 0. The representation hπ̄ is 
of the form hπ̄ = c- IndḠ

hJ̄
hμ and, using Lemma 2.4, we see that the representation g τ̄j

must be induced from some Ḡ-simple type (J̄ ′, μ′), say. Then

0 �= HomgK̄(ResḠgK̄
hπ̄, g τ̄j)

= HomJ̄ ′(ResḠ′̄ c- IndḠ
h ¯

hμ, μ′)
J J
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=
⊕

hJ̄\Ḡ/J̄ ′

HomJ̄ ′(c- IndJ̄ ′
xhJ̄∩J̄ ′ Res

xhJ̄
xhJ̄∩J̄ ′

xhμ, μ′)

=
⊕

hJ̄\Ḡ/J̄ ′

HomxhJ̄∩J̄ ′(Res
xhJ̄
xhJ̄∩J̄ ′

xhμ,ResJ̄
′

xhJ̄∩J̄ ′ μ′).

Then hμ and μ′ must intertwine in Ḡ, and the intertwining implies conjugacy prop-
erty shows that the types hμ and μ′ must actually be Ḡ-conjugate, and hence hπ̄ is 
Ḡ-conjugate to gπ′ � π̄. Therefore hπ̄ � π̄, and the result follows. �

We are then able to give a description of the relationship between the archetypes in 
the two groups G and Ḡ in terms of L-packets.

Proposition 3.3. Let π be a supercuspidal representation of G, let s = [G, π]G, and let 
G(K, τ) be the unique s-archetype. Let Π be the L-packet of irreducible components of 
π �Ḡ. Then the set of archetypes for the representations in Π is precisely the set of the 
Ḡ(K , ̄τ), for (K , ̄τ) an irreducible component of either τ �K̄ or ητ �ηK̄ .

Proof. We show that the set of typical representations of K̄ for some π̄ ∈ Π is equal to 
the set of irreducible components of τ �K̄ ; the general result then follows immediately. 
Let (K̄, ̄τ) be an archetype for some π̄ ∈ Π. Applying Lemma 2.3, IndK

K̄ τ̄ contains 
a [G, π]G-typical subrepresentation; by Frobenius reciprocity τ̄ is then of the required 
form. Conversely, the irreducible components of τ �K̄ are all K-conjugate by Clifford 
theory, and so if one of them is a type for some element of Π then they all must be. 
Applying Lemma 3.2, at least one of these irreducible components must be a type for 
some π̄ ∈ Π. �
Corollary 3.4 (Inertial local Langlands correspondence for SL2(F )). Let ϕ : IF →
PGL2(C) be a representation extending to an irreducible L-parameter ϕ̃ : WF →
PGL2(C). Then there exists a finite set {(Ki, τi)} of smooth irreducible representations 
τi of maximal compact subgroups Ki of Ḡ such that, for all smooth, irreducible, infinite-
dimensional representations π of Ḡ, we have that π contains some τi upon restriction to 
Ki if and only if rec(π) �IF� ϕ. Furthermore, this set is unique up to Ḡ-conjugacy.

Proof. Let Π = rec−1(ϕ̃) be the L-packet corresponding to ϕ̃, so that Π is the set of 
irreducible components upon restriction to Ḡ of some supercuspidal representation σ
of G. Let ψ = rec(σ), so that, by Corollary 8.2 of [15], there exists a unique smooth irre-
ducible representation τ of K such that, for all smooth, irreducible, infinite-dimensional 
representations ρ of G, we have that ρ contains τ upon restriction to K if and only if 
rec(ρ) �IF� ψ �IF . Then G(K, τ) is the unique archetype for σ, and the set {Ḡ(Ki, τi)} of 
archetypes for Π is precisely that represented by the finite set of irreducible components 
of τ �K̄ and ητ �ηK̄ . Let S be the set of Ḡ-inertial equivalence classes of representations 
in Π. Then, as each of the (Ki, τi) is an archetype, it follows that, for all smooth, irre-
ducible, infinite-dimensional representations π of Ḡ, we have that π contains one of the 
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τi upon restriction to Ki if and only if [Ḡ, π]Ḡ ∈ S, if and only if π ∈ Π, if and only if 
rec(π) �IF� ϕ, as required. �
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