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Abstract 

Novel, knowledge-based models for the prediction of hydrate and solvate formation are 

introduced, which require only the molecular formula as input. A dataset of more than 19,000 

organic, non-ionic and non-polymeric molecules was extracted from the Cambridge Structural 

Database. Molecules that formed solvates were compared with those that did not using molecular 

descriptors and statistical methods, which allowed the identification of chemical properties that 

contribute to solvate formation. The study was conducted for five types of solvates: ethanol, 

methanol, dichloromethane, chloroform and water solvates. The identified properties were all 

related to the size and branching of the molecules and to the hydrogen bonding ability of the 

molecules. The corresponding molecular descriptors were used to fit logistic regression models 

to predict the probability of any given molecule to form a solvate. The established models were 
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able to predict the behavior of ~80% of the data correctly using only two descriptors in the 

predictive model. 

 

1. Introduction 

Pharmaceutical processing steps during manufacturing can lead to an unexpected change in the 

crystal form of materials.1 One of the common changes is the inclusion of a solvent into the 

crystal structure of the drug, i.e. solvate formation. It was estimated that 33% of organic 

compounds have the ability to form hydrates, while about 10% of them are able to form solvates 

with organic solvents.2  

Solvate formation has many implications in the pharmaceutical industry, because it affects the 

physico-chemical properties of materials, such as their density, melting point and dissolution 

rate, which in turn can influence their manufacturability and pharmacokinetic properties.3 The 

unexpected formation of solvates can thus lead to unpredictable behavior of the drug. 

From a more optimistic point of view, the different physical and chemical properties of the 

hydrate and solvate forms can be utilized to alter the rate of drug release or to stabilize the 

formulation. There are many examples of drugs that are formulated as a hydrate form, such as 

cephalexin, cefaclor, ampicillin and theophylline.4-5 Hydrates (water solvates) are of special 

concern, because they occur more frequently than other solvates. Another factor that makes 

hydrates particularly important is the fact that water is a non-toxic solvent. In 2010 the number 

of hydrate structures from organic, organometallic and coordination compounds in the 

Cambridge Structural Database was 49,283 out of the total of 443,505 structures in the CSD, 

which is about 11% of the entries in the database.2  One of the few examples of a marketed 
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solvate is the HIV protease inhibitor indinavir, which was formulated as the sulfate salt ethanol 

solvate in order to improve the stability and the bioavailability of the drug.6 

Although factors affecting solvate and hydrate formation have been investigated previously 

and predictions were made for specific drugs,7,8 the general prediction of solvate formation –

similar to the prediction of other solid forms – is still largely an unresolved problem.9 Currently, 

in order to avoid unexpected structural transformations (such as hydrate and solvate forms) in the 

pharmaceutical industry, high-throughput crystallization experiments are conducted to obtain all 

possible solid forms of a drug.10 Although this method is convenient for screening possible solid 

forms, it still has some disadvantages. For example, it is never certain that all possible phase 

transitions have been identified. It is also very difficult to explain why these phase transitions 

happen. Another disadvantage is the necessity of having the actual material. 

The current ability to predict crystal structures can be illustrated by the crystal structure 

prediction (CSP) blind tests organized at the Cambridge Crystallographic Data Centre.11 The 

latest blind test, which was conducted for six molecules, showed that the crystal structures of 

molecules of different properties (small, rigid, flexible etc.) can be predicted reliably, but among 

them a hydrate was deemed one of the most challenging structures to predict. This type of 

predictive methodology is associated with high computational cost and requires a high level of 

expertise in molecular modelling. 

Another approach is relying on previously conducted experiments. The library of results from 

screening experiments can be analyzed in order to find a trend or a pattern among the data, which 

helps in making general conclusions and may allow prediction of the outcomes of future 

experiments. When this approach is used, two important aspects arise: firstly, the source of 

information used for the study and secondly, the choice of suitable methods for the analysis.  
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In order to reliably identify a weak trend in a set of experiments, large amounts of data are 

required. Databases which aggregate data about previous experiments can be used as an easy 

way to access the desired information. The huge growth in the size and availability of databases 

has facilitated their use in the environmental, medical and social sciences.12-14 Similarly, 

chemical databases such as the Cambridge Structural Database (CSD),15 can be used to analyze 

structural data and draw chemical conclusions.16 

A number of investigations regarding hydrate and the solvate formation using the CSD have 

been conducted.17-20 These identified correlations between hydrate/solvate formation and the 

possibility of strong, specific hydrogen bonds with the solvent, as well as the overall hydrogen 

bonding functionality and polarity of the molecules. They also showed some evidence of solvate 

formation improving the close packing efficiency of large molecules.19 However, no attempt was 

made to use these correlations to predict solvate formation. 

Data mining techniques (statistics, artificial intelligence and machine learning) can be applied 

to develop predictive models from large datasets.21 Examples of predictions using these methods 

can be found in different research areas,22-24 including materials science.16, 25 For instance, the 

use of machine learning methods for solvate formation has been demonstrated by Johnston et 

al.,26, who identified three new carbamazepine solvates using a Random Forest27 classification of 

65 solvents. 

In this study, we aim to identify molecular properties that are associated with solvate formation 

in different solvents and develop predictive models using the data mining techniques mentioned 

earlier and data from the 2014 edition of the CSD. Although over 300 solvents are represented in 

the CSD,28 only five solvents will be discussed in this article. Two alcohols, ethanol and 

methanol, and two apolar chlorinated solvents, dichloromethane and chloroform were selected. 
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These solvents were chosen to represent two different classes of solvents, so that the ability of 

the proposed method to distinguish between solvents and solvent classes can be assessed. Water 

was included as the most abundant solvent in organic crystals.29 The five solvents chosen 

showed a large number of hits in the CSD both among solvates and as recrystallization solvents 

of non-solvated forms. The abundance of available data is important, as it increases the reliability 

of the resulting models. 

The molecular properties were studied via molecular descriptors. These are numerical 

attributes that are calculated from chemical structures and represent information about them. The 

properties that they describe numerically range from conceptually simple (e.g. the van der Waals 

volume of a molecule) to complex ones (e.g. eigenvalues of matrices representing atom-atom 

connectivity in the molecule).30 Determining which descriptors contribute to solvate formation 

will allow us to predict the probability of solvate formation in crystallization experiments of any 

molecule. This can provide a guide in choosing the right solvent during the development of 

formulations and manufacturing processes. 

 

 

2. Methods 

2.1 CSD data extraction. The Cambridge Structural Database (CSD),15 which currently 

contains over 700,000 crystal structures, was used as the source of information for this project. 

The Conquest software was used to search through this database.31 Two groups of structures 

were extracted from the CSD database, solvate-forming and non-solvate forming ones. The 

search for both groups was restricted to entries that are organic, non-polymeric and non-ionic 
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compounds. Limiting the search to this group of molecules helped to avoid the influence of ionic 

interactions between the molecules in the study. 

Solvate-forming structures were identified as having two different chemical entities in the 

recorded structure, with one of them being the appropriate solvent. The non-solvate-forming 

group was defined through the recorded use of the solvent under investigation as the 

recrystallization solvent along with the presence of only one non-solvent chemical entity in the 

crystal structure.  

Each of the extracted structures was saved into a separate file. These files were then processed 

by custom-made programs to extract a unique non-solvent molecule from each structure (the 

corresponding Perl and bash scripts are available from the corresponding author on request). 

4885 molecular descriptors were calculated for each molecule using the Dragon software.32 The 

types of descriptors calculated by Dragon are given in Table S1, Supporting Information, along 

with examples and references. These descriptors were subsequently analyzed using the R 

statistical language.33  

2.2 Significance testing. The aim of this step was to identify which descriptors can classify the 

data into the solvate forming and non-solvate forming groups. The test used was the Wilcoxon 

signed-rank test. This non-parametric test34 was used to compare the solvate and the non-solvate 

forming groups for each solvent and find which descriptors show a statistically significant 

difference between them, at a p-value of 0.05. The test assumes the null hypothesis to be that the 

two datasets come from the same population and then finds the probability of this hypothesis, i.e. 

the p-value. When the p-value is less than 0.05, this means the observations support the 

assumption that the null hypothesis is wrong with at least 95% probability.35  
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2.3 Machine learning methods. The descriptors identified in the previous step were then used 

to fit predictive models. Different pattern recognition techniques, such as artificial neural 

networks, support vector machines and logistic regression were tested.36-38 These methods were 

used to classify the molecules according to their ability to form solvates depending on the 

molecular descriptors values. The use of logistic regression gave models with superior predictive 

ability in all cases. For this reason, it is going to be the method discussed in this paper. 

Logistic regression. Logistic regression is a binomial classification system, which can take 

multiple descriptors into account, each having a different weight. The final result is always a 

value between 0 and 1, representing the probability of an event to happen. The probability is 

calculated using Equation (1): 

 � = 1
1 + ��(�	
����
⋯
����) 

(1) 

where x is the probability of an event to happen, �� is the intercept, �� is the coefficient of the 

ith predictor variable,	�� is the ith predictor variable and n is the number of predictor variables in 

the model. 

2.4 Model evaluation. Average weighted MSE: After the predictive models were fitted using 

logistic regression, their evaluation took place using the average mean squared error (MSE) of 

the 10-fold cross validation, weighted by the sample size of each fold. The MSE of each fold can 

be calculated using Equation (2): 

 ��� = 1
��(ŷ� − ��)�

	�

�� 
 

(2) 

where ŷ! is the estimated value from the model, y! is the real value (0 for solvates or 1 for non-

solvates) and � is the number of data points. The average weighted MSE can be calculated using 

Equation (3): 
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where / is the number of folds (10), -. is the sample size in the /th fold, - is the total number 

of molecules, and ���.	is the MSE value of the kth fold. Due to the large sample sizes used in 

the analysis, the weighting has minimal effect on the results. The factor 
01
0  will have a value very 

close to 0.1 for each fold, even if the number of molecules is not divisible by 10. For simplicity, 

the average weighted MSE calculated by the software is going to be referred to as MSE from this 

point onwards. 

To calculate the MSE, the dataset is randomly partitioned into a training set, which is used to 

fit the model and a test set, which is used to evaluate the model performance. The 10-fold cross 

validation randomly splits the dataset into 10 parts, where 9 parts are used for model fitting and 1 

part is used for testing the model. This process is repeated 10 times, which means that all the 

points in the dataset were used for both fitting the model and testing it. Little variation between 

the samples shows that the models being fit are robust. The MSE value was used as a method for 

the selection of the best predictive model. This method has the advantage of incorporating both 

the variance and the bias of the estimator terms. 

AUC: Another statistical estimate that was used to compare the models was the area under the 

Receiver Operating Characteristic (ROC) curve or AUC. This area represents the probability that 

a randomly selected positive instance will be ranked more positive than a randomly selected 

negative one.39  

AIC: Akaike information criterion was also used to measure the relative quality of the fitted 

models.40 This criterion aids in deciding how many descriptors to include in the predictive 
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model. It works by giving a penalty for adding variables to the model. The penalty helps 

avoiding over-fitting of the model. The AIC is calculated using Equation (4): 

 #23 = 2/ − 2ln	(6) (4) 

where / is the number of parameters (variables) in the model and 6 is the maximized value of 

the likelihood function of the fitted model.41 

 

3. Results and discussion 

3.1. Data extraction and significance testing. Using the search criteria mentioned earlier, 

19,010 crystal structures were extracted from the CSD. The extracted dataset consisted of 9162 

solvate and 9848 non-solvate structures. The breakdown of the data by crystallization solvent is 

shown in Table 1. Figures S15 to S18 (Supporting Information) illustrate the distribution of 

molecular weight, donor and acceptor count and LogP values of molecules in each dataset. 

  

Table 1. The number of solvate and non-solvate structures in each solvent 

Solvent Number of structures Solvates Non-solvates 

Ethanol 4895 689 4206 

Methanol 4366 1518 2848 

Dichloromethane 2761 1464 1297 

Chloroform 2556 1363 1193 

Water 4432 4128 304 

Total 19010 9162 9848 
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A total of 4885 molecular descriptors (variables) were calculated for each of the solvate and 

non-solvate molecules using Dragon. This calculation yielded 10 datasets: one set of solvate-

forming and one set of non-solvate forming molecules for each of the five solvents. Each dataset 

of solvate-forming molecules was compared with the corresponding set of non-solvate forming 

molecules to find the molecular descriptors that correlate with solvate formation in this specific 

solvent. 

The first step in the comparison was the Wilcoxon signed-rank test. Each of the calculated 

descriptors was tested for having a significant difference between the solvate and the non-solvate 

forming groups using this test. It was conducted in the R language, at a p-value of 0.05. This 

comparison took place on a descriptor-by-descriptor basis. 

Figure 1 shows an example of the significance test for two descriptors: the nAT descriptor, 

which is the number of atoms in a molecule, and the insignificant O% descriptor, which is the 

percentage of oxygen atoms among the non-hydrogen atoms in the molecule. 

Over 2850 descriptors showed a significant difference between the solvate-forming and the 

non-solvate-forming groups in each tested solvent. Having over 2850 significant descriptors in 

each solvent dataset was not really meaningful. In order to select the descriptors that are the best 

(among those) in showing the difference between the solvate-forming and the non-solvate-

forming datasets, further statistical investigation was undertaken. 
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 Figure 1. Box plot representation of the distribution of two variables in the ethanol dataset. The 

nAT descriptor (left) shows a significant difference between solvate (S) and non-solvate (NS) 

molecules, while the O% descriptor (right) does not. 

 

3.2 Variable selection 

3.2.1 Single-variable models: This approach was based on fitting a logistic regression model 

of the data using one descriptor at a time. Each model was then validated using a 10-fold cross 

validation method. The model with the best performance was selected on the basis of the MSE 

value of the 10-fold cross-validation. The AIC of the model and the area under the ROC curve 

for each model were also calculated. The descriptors that were used to fit the logistic regression 

models were limited to the ones that showed a significant difference between the solvate and the 

non-solvate groups. 

As it has been in shown in Table 1, the number of the solvate and the non-solvate-forming 

molecules in the extracted data was not even. This imbalance between the two groups can result 
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in predictive models that are biased towards the larger group. Before the models were fitted, 

samples with equal number of both groups had to be obtained. This means some molecules were 

removed from the larger dataset. Subsetting the larger dataset to bring the samples to equal sizes 

took place using random sampling. In order to minimize errors arising from this sampling 

process, 10 equal size samples were taken based on random seed s. The seeds that were used 

for random sampling were recorded to ensure the reproducibility of the results. 

Each of the 10 samples was tested separately using the method mentioned at the beginning of 

this section. The descriptor that turned out to have the lowest MSE value in most of the 10 

samples was considered as the best descriptor for the classification of the data. 

The best models fitted using a single molecular descriptor showed a mean standard error 

(MSE) between 0.149 and 0.21 in all five solvents (Table S5, Supporting Information) and 

therefore had a good predictive ability. They have also shown little variation between the 10 

samples used for cross validation. The best single-variable models were related to the so called 

spectral moment descriptors in each solvent. These descriptors are discussed later in this paper. 

3.2.2 Two-variable models: In an attempt to improve the predictive ability of these models, 

combinations of two descriptors were used to fit logistic regression models. Similarly to the 

single-descriptor models, only the descriptors that showed significant difference in the Wilcoxon 

test were considered (more than 2850). The selection of the best model that utilizes two variables 

required fitting a model with each possible combination of two descriptors. This means that over 

4 million models per solvent were fitted. Ten equal size samples were also used for fitting 

unbiased models. Each of the fitted models was cross-validated using 10-fold cross validation 

and the MSE of each model was recorded. This gives that a total of more than 400 million 

models were fitted and the best among them were selected. These analyses were programmed in 
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R33 and executed using the High Performance Computing Cluster at the University of East 

Anglia, where the processes were split between 160 dedicated cores. The models for some, but 

not all solvents improved relative to the single-variable models, as indicated by the reduction of 

the MSE values into the range of 0.145 to 0.184 (Table S6, Supporting Information).  

3.2.3 Three-variable models: Since the addition of a second variable improved the MSE, AIC 

and AUC values of the best-performing models, it was anticipated that the addition of a third 

descriptor to the models would improve the predictive ability further. The addition of a third 

descriptor to the models using the same exhaustive approach and the same number of variables 

(over 2850 per solvent) was not feasible, due to the large number of possible three-variable 

combinations. Alternatively, the addition of a third variable to the best two-variable model in 

each solvent was tested, with selection of the best model among the three-variable models based 

on their AIC value. This criterion evaluates the relative quality of models based on the balance 

between the goodness of fit of the models and their complexity. Therefore, the use of the AIC 

shows whether the addition of a new descriptor to the two-variable models provides significant 

new information. As carried out previously; the fitting process was repeated 10 times using 

equally sized subsets of the data. Cross-validation was not deemed essential for this analysis. 

This is because Stone has shown that the AIC criterion is asymptomatically equivalent to the 

leave-one-out cross validation.42 Consequently, a total of about 30,000 models were fitted and 

the one with the lowest AIC value for each solvent was selected. Surprisingly, the amount of 

information that was added by the third descriptor was very little. 

The MSE values of the new models fell between 0.142 and 0.184, showing that the addition of 

the third descriptor to the models did not increase their accuracy or the confidence of the 

predictions (Table S7, Supporting Information). This means that no significant extra information 
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related to hydrate/solvate formation can be obtained from the calculated descriptors. In order to 

illustrate the performance of the one, two and three-variable models, a superimposition of the 

ROC curves of each ethanol model is shown in Figure 2. 

 

Figure 2. ROC curve of the best models utilizing one, two and three variables (model1, model2 

and model3, respectively) to predict ethanol solvate formation (sample size: 1377). Model2 and 

model3 are almost perfectly superimposed due to the small effect of the addition of the third 

descriptor to model2. Similar representation of the models for the other solvents are given in the 

Supporting Information (Figures S2-S5) 
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3.3 Discussion of the best models. Although the two-variable models perform significantly 

better than the one-variable models, the three-variable models do not seem to improve the 

predictions in any of the data sets. For this reason, only the two-variable models are going to be 

discussed in detail. A summary of the two-variable models and their performance is shown in 

Table 2. 

Table 2. The average performance of the two-variable models over 10 samples in the 5 solvents.  

Model Descriptors Intercept 
Descriptor 1 
coefficient 

Descriptor 2 
coefficient 

No. of 
data 
points MSE AIC AUC 

Ethanol 
AVS_H2 + 
nHDon 15.939 -3.817 -0.861 1377 0.149 1283 0.868 

Methanol 
TRS + 
nHDon 2.808 -0.084 -0.612 3035 0.180 3268 0.810 

Dichloromethane 
SM3_H2 + 
Hy 15.459 -3.314 -0.664 2592 0.146 2386 0.871 

Chloroform 
SM3_H2 + 
H-050 14.744 -3.051 -0.384 2384 0.148 2212 0.867 

Water 
πID + 
Mor05u 4.672 -0.424 0.327 607 0.159 587 0.846 

 

3.3.1 The ethanol model: The best two-variable model for ethanol utilizes the AVS_H2 and 

nHDon descriptors. AVS_H2 is a descriptor derived from the reciprocal squared topological 

distance matrix, and it is calculated by taking the natural logarithm of the average of the sum of 

the entries in each row of the matrix.43 An example of calculating the reciprocal squared 

topological distance matrix is shown in Supporting Information (Figure S1, Tables S1-S3). The 

value of the AVS_H2 descriptor is directly related to molecular size and branching of the 



 16

molecular graph. The larger the molecule or the more branched it is, the larger this value 

becomes.  

Although this descriptor can be calculated by a computer in a fraction of a second for any given 

molecule, it would be impractical to calculate it manually. Moreover, the descriptor value is not 

easily estimated by looking at the molecular structure. In order to give a more intuitive value, 

models based on closely related descriptors were tested. It turns out that the number of rings in 

the molecule (nCIC) is highly correlated (r = 0.87) to AVS_H2. This is a logical correlation as 

AVS_H2 incorporates information about the size and branching of a molecule and larger 

molecules are expected to have a higher number of rings. 

The second descriptor in the best two-variable model was nHDon. This is a simple count 

descriptor that accounts for the number of hydrogen bond donors. These are defined by the 

software as hydrogen atoms that are bound to a nitrogen or an oxygen atom.32  

The coefficients [βi in Equation (1)] of both descriptors in the model show a negative sign, while 

the descriptor values (xi) are by definition nonnegative. This gives an overall negative product. A 

negative value in the logistic regression equation pushes the final probability value towards zero. 

Solvate formation is more likely when the probability (x) is closer to zero, so the negative 

coefficients indicate that the higher the value of these two descriptors are, the more likely solvate 

formation is.  

The average MSE of the model that uses nCIC and nHDon over 10 samples was 0.157, which is 

close to 0.148; the average MSE of the original model (Table 3). The simpler model also showed 

the same robust behavior over 10 random samples as the original model. 
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3.3.2 The methanol model: In the methanol dataset, the descriptors that gave the best predictive 

ability are TRS (Total Ring Size) and nHDon. TRS is the sum of the number of atoms in each 

independent ring in the molecule (e.g. TRS value of benzene is 6 and of naphthalene is 12). This 

descriptor can probably be influential due to the stabilization of the solvate structures by the 

hydrophobic interactions between the rings. 

3.3.3 The dichloromethane model: In dichloromethane, the first descriptor was SM3_H2. This 

descriptor refers to the third order spectral moment of the reciprocal squared distance matrix 

(H2)43. The third spectral moment is calculated as the trace of the third power of the matrix.44 

This descriptor also describes the size and branching of molecules. Here again, the SM3_H2 

descriptor is not an easy one to estimate by looking at the molecular graph. Fortunately, a simple 

path count descriptor (MPC01) showed to be very similar to SM3_H2, with a high correlation (r 

= 0.983). MPC01 is the count of paths of length 1 in the H-depleted molecular graph. In other 

words, it is equal to the number of bonds between non-hydrogen atoms in the molecular graph.45-

46 Both spectral moments and path counts increase exponentially with the size of the molecule, 

so their values were subject to a logarithmic transformation [x’ = ln (1+x)], i.e., SM3_H2 is 

obtained by the logarithmic transformation of the spectral moment, and MPC01 by the 

logarithmic transformation of the count described above.   

The second descriptor was Hy, which is called the hydrophilic factor. This factor is calculated 

using the formula in Equation (5). 

78 = 9 
0:;<∙>?@A9 
0:;<
�B∙C D
�EF.>?@A D

�EFH
	I
J:;
�EFA

>?@A( 
�KL) 		 	 	 	 	 	 (5)	
Where -N8	is the number of hydroxyl, amine or thiol groups, nC is the number of carbon atoms 

and nSK is the number of non-hydrogen atoms.47 This descriptor is highly correlated (r > 0.95) to 
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the number of hydrogen bond donors (nHDon) descriptor, which can be used instead and the 

resulting model still gives similar results. This alternative simple model had an average MSE of 

0.150 over 10 samples compared to 0.146 for the original model.  

3.3.4 The chloroform model: The first descriptor in chloroform was the same as for 

dichloromethane, i.e. SM3_H2. Again, this descriptor has a correlation of 0.984 with MPC01 in 

the chloroform dataset. SM3_H2 was combined with H-050 to give the best model. The 

descriptor H-050 is the number of hydrogen atoms attached to a heteroatom.48-49 Here again, 

chloroform behaves in a similar manner to dichloromethane, where they share the same first 

descriptor and have two second descriptors that are almost identical (r > 0.95 correlation). The 

Average MSE of the simpler model, again over 10 samples is 0.152, compared to 0.148 of the 

original model. 

3.3.5 The water model: The best two-variable model of hydrate formation utilizes the πID and 

the Mor05u descriptors. The descriptor πID is the logarithmic transform of the conventional 

bond order ID number.50 It is calculated using the formula 

 R2S = ln	(1 + ��T + ∑ VW)W , (6) 

Where ��T is the number of non-hydrogen atoms and VWis the weight of molecular path	X. The 

index X runs over all possible bond paths in the hydrogen-depleted molecular graph from the 

length of 1 bond to the longest possible. The weight assigned to each path,	VW, is the product of 

the conventional bond orders of all bonds in the path. The conventional bond order of single 

bonds is 1, for aromatic bonds it is 1.5, for double bonds it is 2 and for triple bonds it is 3. The 

value of this descriptor is affected by the size and branching and the type of bonds in a molecule. 

This gives information not only about the complexity, but also about the rigidity of a molecule. 
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For a simpler description, the nCIC descriptor can be used, which is the number of rings in the 

molecule and it shows a strong correlation with πID (r =0.854). 

The second variable in the model was Mor05u. This is one of the 3D-MoRSE (3D-Molecule 

Representation of Structures based on Electron diffraction) descriptors. The 3D-MoRSE 

descriptors are calculated from the atomic 3D coordinates obtained by a molecular transform that 

is analogous to electron diffraction formulae.51 

 
�Y%05[ = � � sin(5%�^)

5%�^
�_`

^��
 

�_`� 

�� 
 

(7) 

Where r ij is the distance between atoms i and j in the molecule and nAT is the number of atoms. 

This descriptor requires previous knowledge of the 3D coordinates of the molecules under study, 

which is not always suitable for prediction. In order to keep the models simple and preserve their 

ability to describe solvate formation using the 2D molecular graph only, it is possible to take a 

highly correlated, easy-to-calculate descriptor instead. The number of hydrogen atoms (nH) and 

the number of atoms of molecule (nAT) descriptors are both highly correlated (r =0.94) with 

Mor05u. A model utilizing the R2S and �7 descriptors has an average MSE of 0.161 compared 

to an average MSE of 0.159 of the original hydrate model. A model fitted using �323 along with 

�7 has an average MSE of 0.165. A table of the simple alternative models and their performance 

is given in Table 3. A more detailed version of the table is given in the Supporting Information 

(Table S8). For better understanding of the descriptors, the values of all mentioned descriptors 

for two drug molecules are given in Table S4, Supporting Information. 

 



 20

Table 3. The average performance of the simplified two-variable models over 10 samples in the 

5 solvents.  

Model Descriptors Intercept 
Descriptor 
1 
coefficient 

Descriptor 2 
coefficient 

No. of 
data 
points 

MSE AIC AUC 

Ethanol 
nCIC + 
nHDon 3.994 -0.766 -0.889 1377 0.157 1320 0.854 

Methanol 
TRS + 
nHDon 2.808 -0.084 -0.612 3035 0.180 3268 0.810 

Dichloromethane 
MPC01 + 
nHDon 13.236 -3.649 -0.339 2592 0.150 2428 0.864 

Chloroform 
MPC01 + 
H-050 12.416 -3.416 -0.358 2384 0.152 2254 0.861 

Water nCIC + nH 2.731 -0.606 -0.088 607 0.165 597 0.835 

 

3.3.6 General discussion of the models: Regardless of the exact descriptor that turned up to be 

the best in each solvent, all two-variable models utilized one descriptor that measures the size 

and branching of the molecules and another one that is related to the hydrogen atoms in the 

molecules. Having similar descriptors in all models does not mean that these models are 

identical. The intercepts and the coefficients of these descriptors vary widely between the 

models, as can be seen in Table 2.  The difference in coefficients can be illustrated using the 

ethanol and methanol models. Although they share the same second descriptor (nHDon), the 

relative importance of this descriptor in ethanol is almost 1.5 times higher than it is in methanol.  

The addition of a second variable to the models showed a notable reduction of the MSE in both 

ethanol and methanol, while it did not show a major reduction of MSE in the rest of the solvents. 
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This shows that hydrogen bonding has a large effect on the formation of ethanol and methanol 

solvates.  

Surprisingly, introduction of the hydrogen bond-related descriptors did not improve the 

predictive ability of the models for hydrate formation. This does not imply that hydrogen 

bonding is not important in hydrates, but shows that the information given by hydrogen bonding 

descriptors in this specific dataset is already represented by the size and branching-related 

descriptors. A model that is fitted using the number of hydrogen bond acceptors (nHAcc) alone 

gives an average MSE of 0.237. This shows that hydrogen bonding is an important factor in 

hydrate formation, but it is not the most important discriminating factor according to this dataset. 

Indeed, the fact that single crystals of all these molecules were successfully grown from aqueous 

solutions suggests that even the non-hydrate formers among them are relatively hydrophilic. 

The findings in these models agree with the common expectation that having a large, branched 

and rigid molecule makes the packing to optimally fill the three-dimensional space more 

difficult. The poor packing of molecules in the crystal seem to help the solvent molecules to 

diffuse through the structure and form a solvate. An example of the difference between the 

distribution of a size and branching descriptor for the solvate and non-solvate forming groups is 

shown in Figure 3. 
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Figure 3. Histograms of the SM3_H2 descriptor distribution from the chloroform data 

The availability of hydrogen bonds helps stabilizing the solvent in the voids of crystals, therefore 

giving a more stable hydrate or solvate. The importance of hydrogen bonding in solvate 

formation has been recognized in several publications.52-53 The advancement in the current 

findings is the ability to quantify the relative importance of size, branching and hydrogen 

bonding. This aids the prediction of the ability of the molecules of interest to form a hydrate or a 

solvate relying only on the molecular structure.  
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3.4 Predicting the behavior of molecules 

3.4.1 Using the model equations: When a new molecule is to be predicted for solvate formation 

with one solvent, the values of the two descriptors in the model need to be calculated first. 

Afterwards, the descriptors values are fed into the logit function (Equation 1). An example of the 

use of the intercept and descriptor value to find x in the simple hydrate model is given in 

Equation (8): 

� =  
 
ab(Dc.ded	be.fDghiE_:Ab	.fkD�:lm�)   (8) 

The resulting value of x falls between 0 and 1. 

3.4.2 Is it a solvate or a non-solvate? In any binomial problem, there are only two possible 

outcomes. In the models above we consider a solvate to correspond with a predicted x value 

close to zero and a non-solvate to correspond with a value close to one. The cutoff point of the 

prediction, which tells whether our molecule of interest will form a solvate or not, should be 

close to 0.5. This is because equal size sampling was used for establishing these models. In order 

to select the optimum cutoff point in these models, the specificity (true positive predictions/all 

positive predictions) and sensitivity (true negative/all negative predictions) were used. The point 

that maximizes the specificity and the sensitivity was selected. In other words, the cutoff point 

can be chosen by finding the point where the specificity and sensitivity curves, plotted as the 

function of cutoff, cross. An automated script was developed in R to do this analysis. A 

representation of the cutoff point selection process can be seen in (Figure S6, Supporting 

Information). The cutoff point values for the five studied solvents were between (0.49-0.56). 
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This approach for cutoff point selection avoids the bias in the model towards one of the two 

groups (the solvate or the non-solvate group). 

The final outcome of finding the cutoff point is the establishment of the decision boundary which 

splits the data into a solvate and non-solvate predicted region. Figure 4 shows how the 

classification system works for a sample of the dichloromethane dataset along with the decision 

boundary of the predictive model. 
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Figure 4. Distribution of the dichloromethane dataset using the best combination of two 

descriptors (2600 data points). The continuous line shows the optimized decision boundary, 

while the color of data points indicates the experimental solvate/non-solvate form of the 

corresponding molecule. 
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The complete dataset for each solvent was used to test the hydrate/solvate formation using the 2-

variable models.  The percentages of the correctly predicted data in different solvents were 

between 74 and 80%. 

3.5 Applicability of the models. In this section, the factors that the models take into account and 

the factors that the models overlook are going to be discussed through examples from the 

datasets. 

3.5.1 Effects the models take into account. In this section, we illustrate the relative importance 

of the two main factors (size and branching, hydrogen bonding) using molecules from the 

ethanol dataset. In order to carry out this comparison, two molecules possessing different values 

of the two descriptors are going to be discussed. 1-((E)-2-pyridinylmethylidene)semicarbazone, 

CSD refcode: KUHGEA54 and N-(pyridin-2-yl)hydrazinecarbothioamide, CSD refcode: 

XAPTOY55 (Figure 5), are molecules that were both recrystallized from ethanol, but were not 

able to form ethanol solvates, despite the availability of multiple accessible hydrogen bond donor 

sites.  
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 (a) 

 (b) 

Figure 5. Molecular structures of (a) KUHGEA and (b) XAPTOY  

The inability of these molecules to accommodate an ethanol molecule in their crystal structure 

was predicted correctly by the ethanol model. Even though these molecules have multiple 

hydrogen bond donors, their AVS_H2 value is not high enough to surpass the decision boundary 

of the ethanol model (Figure S7, Supporting Information) into the solvate region. This proves 
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that the effect of the size and branching of a molecule is more important than the number of 

hydrogen bond donors.  The AVS_H2 values for the KUHGEA and XAPTOY molecules are 

2.972 and 2.979 and their x values according to the model were 0.882 and 0.879, respectively. 

This indicates that these two molecules have a low chance of forming an ethanol solvate. Further 

similar examples are given in Figure S8, while solvate entries with few donors, but larger, more 

branched structures are listed in Table S10 (Supporting Information).  

Although the size and branching of molecules turned out to be the most important factor in 

determining solvate formation, the effect of hydrogen bonding cannot be ignored for alcohol 

solvates. The importance of the number of hydrogen bond donors, which was the second variable 

in the ethanol model, can be shown by comparing two molecules with similar AVS_H2 values, 

but different number of hydrogen bond donors.  

 (a) 
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 (b) 

 Figure 6. Molecular structures of (a) SOYQON and (b) UHUWEA. 

N'-(2,4-Dimethoxybenzylidene)-3,4,5-trihydroxybenzohydrazide ethanol solvate, CSD refcode: 

SOYQON56 (Figure 6a) was recrystallized from ethanol and formed an ethanol solvate. It has an 

AVS_H2 value of 3.534 and 4 hydrogen bond donors. This structure was predicted correctly by 

the model to from the ethanol solvate (x = 0.27). N-(2-hydroxyethyl)-6-methoxy-2-oxo-2H-

chromene-3-carboxamide, CSD refcode: UHUWEA,57 was also recrystallized from ethanol, but 

was not able to form an ethanol solvate (Figure 6b). It has an AVS_H2 value of 3.513, but differs 

from the former molecule in that it has only 2 hydrogen bond donors. The inability of this 

molecule to form an ethanol solvate was also predicted correctly by the model (x = 0.692). The 

effect of hydrogen bonding was accounted for in the models, hence the correct prediction of the 

behavior of these two molecules. Further examples are shown in the Supporting Information 

(Figures S9 and S10). 

3.5.2 Effects the models do not take into account. The examples shown so far are the clear-cut 

molecules, where the model worked excellently. For the molecules that were misclassified by the 
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model, there must be some other factors that the model did not take into account. These factors 

were not identified by the models either because they do not show statistical significance (i.e., 

low number of examples) or for the fact that no descriptor looks at some of them. For these 

reasons, misclassified entries were surveyed manually and possible reasons were identified. The 

principal reasons found for misclassification, seen throughout the dataset will be discussed in this 

section. 

Hydrogen bonding strengths: The current model takes into account only the number of hydrogen 

bond donors, but not their strength. The strength of a hydrogen bond depends on the nature of the 

functional groups in which the donor and acceptor atoms are located. This effect was studied 

thoroughly by different research groups,58-59 who were able to represent the relative ability of 

several functional groups to donate or accept hydrogen bonds using empirical hydrogen-bond 

scales. It is important to mention that by taking into account the donor/acceptor coefficients 

tabulated by these research groups,59 it was possible to explain a big part of the data 

misclassified by the models. 

One case that clearly illustrates this is a comparison between 7-hydroxy-1-methyl-N-(9-methyl-

9-azabicyclo[3.3.1]non-3-yl)-1H-indazole-3-carboxamide methanol solvate, CSD refcode: 

VUQMEA60 and 4-(4-Fluorophenyl)-1-phenyl-3-(pyridin-4-yl)-1H-pyrazol-5-amine, CSD 

redcode: LANRUP.61 Both compounds were crystallized from methanol and the values of the 

descriptors used by the methanol model, TRS and nHDon are identical for both (23 and 2, 

respectively). Their structures are shown in Figure 7. 
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 (a) 

 (b) 

Figure 7. Molecular structures of (a) VUQMEA and (b) LANRUP. 

Although both these structures have two hydrogen bond donors each, the hydrogen bonding 

functional groups are not similar. While VUQMEA has an amide and a hydroxyl group, 

LANRUP shows one primary amine group. Amides are known to form stronger hydrogen bonds 

than amines.62 To the model, both structures are identical, where they were both predicted to 
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form a solvate with x = 0.408, but in reality the strong amide donor of VUQMEA forms a 

hydrogen bond with the methanol molecule, and contributes to its retention in the crystal 

structure. The empirical donor coefficients mentioned earlier work well to explain these 

molecules. For example, Abraham59 assigned a hydrogen bond donating constant of 0.4-0.55 to 

aliphatic amides and 0.08-0.16 to aliphatic amines. The hydrogen bond donating constant for the 

methanol hydroxyl group ranged between 0.31-0.37. On the other hand, the hydrogen bond 

accepting constants for the same functional group ranged between 0.48-0.6. This explains why 

the hydroxyl group of the methanol preferred to serve as a hydrogen bond acceptor in the 

VUQMEA structure case.  These are warning signs that the models, at the moment, cannot be 

used without considering the strength of the hydrogen bonding groups in the molecule and the 

solvent. The effect of different hydrogen bonding strengths on solvate formation was apparent in 

multiple cases. A number of paired solvate/non-solvate examples from the methanol dataset 

representing the case are listed in Table S11. Additional illustrations are shown in the Supporting 

Information (Figure S11 and Figure S12). 

Halogen bonding: As can be expected, this type of interaction can be easily observed among the 

chlorinated solvents (dichloromethane and chloroform). Over 25 % of the solvate entries in the 

chloroform dataset show a short contact (at least 0.1 Å shorter than the sum of the van der Waals 

radii) between the chlorine atom of the solvent and a halogen bond acceptor (N, O, F, S, Br, or I) 

in the molecule. This indicates that halogen bonding is one of the main stabilizing interactions 

for these solvents in the crystal structure. One example of these structures is t-butyl (1-((4-

bromophenyl)sulfonyl)-4-(4-methyl-1H-1,2,3-triazol-1-yl)piperidin-3-yl)carbamate chloroform 

solvate, CSD refcode: KUWWOP (Figure 8),63 from the misclassified chloroform dataset. Based 

on the size, branching and the number of polar hydrogen atoms, this molecule was predicted not 
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to form a chloroform solvate at a probability of 0.534. Although other contributors to the 

stabilization of chloroform in this crystal structure exist, it is notable that the chlorine atom of the 

chloroform is at a short distance (3.118 Å) from an sp2 nitrogen atom (Figure 8). It appears 

reasonable that taking into account the possibility of forming a halogen bond could shift the 

predicted x value below the cutoff value (0.514).  

 

Figure 8. KUWWOP structure showing the distance between the chlorine of the chloroform and 

the nitrogen of the molecule (Å). 

Halogen bonding does not seem to be sufficiently strong to retain the solvent in the crystals on 

its own, as no example of a solvate was found in the dataset where the only short contact 

between the solvent and the other molecule is a halogen bond. Nevertheless, this type of bond 

certainly contributes to the attractive interactions. Multiple examples of mispredictions involving 

a halogen bond were observed in the chloroform dataset. The reference codes of some of these 

cases are shown in Table S12. An illustration of the same case with dichloromethane is also 

shown in Figure S13. 
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Quantum chemical calculations and electrostatic potential approaches64-65 suggest that the energy 

of the halogen-nitrogen bond can reach up to 29 kJ/mol with iodine and ca. 10.5 kJ/mol with 

chlorine at a distance of 2.9 Å.  

Availability of functional groups: This factor becomes important when groups that affect hydrate 

and solvate formation (such as hydrogen-bonding groups) are present in the molecule, but they 

are not accessible by the solvent. One example showing the effect of low accessible surface area 

is 5,11,17,23-tetra-t-butyl-25,27-bis(2-(N-(pyrid-3-ylcarbonyl)amino)ethoxy)-26,28-

dihydroxycalix[4]arene, CSD refcode: AZOMIL66 from the methanol dataset. 

  

 

 (a) 
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 (b) 

Figure 9. (a) Capped-stick and (b) space filling representation of the AZOMIL molecule 

By looking at the capped sticks model, it can be seen that this structure possesses four hydrogen 

bond donors. Three of these donors are involved in intramolecular hydrogen bonding, which 

renders them unavailable for intermolecular bonding according to Etter’s rules.67 By comparing 

the capped sticks to the space filling representation of the molecule shown in Figure 9, it can be 

noticed that the accessibility of these hydrogen bond donors as well as the remaining hydrogen 

bond donor is low due to steric effects, hence the inability of this molecule to form a solvate. 

This molecule was predicted by the model with a high probability to form a methanol solvate 

(x = 0.017). A large part of this misprediction can be attributed to the inability of the model to 

estimate the accessibility of the hydrogen bond donors. An additional illustration and reference 

codes of examples that were predicted incorrectly for the same reason are provided in the 

Supporting Information (Figure S14, Table S13). 

4. Conclusions 
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We have demonstrated that the use of molecular descriptors and machine learning techniques can 

identify molecular properties that contribute to solvate formation and can yield models with good 

predictive power. The size and branching of molecules was found to be the most important factor 

in each of the five solvents studied, while the presence of hydrogen bonding groups came 

second. Large, branched molecules optimize their close packing through interspersed solvent 

molecules,68-70 while hydrogen bonding groups are responsible for inclusion of solvents via 

strong, specific interactions.68,71 The present work expands on earlier research by quantifying the 

relative importance of these effects. While the broad factors are the same for each solvent, their 

weights are different. This means that the same molecule will be predicted to form a solvate with 

a different likelihood for each solvent. 

The five models, one for each solvent, were able to correctly predict whether the molecules form 

a solvate for 74-80% of a 19,010 organic molecule dataset. The models are easy to use and 

provide instant predictions based on a minimal amount of information, i.e. the chemical formula. 

These attributes make the method well suited for a quick selection of suitable solvents when 

detailed experimental screening is not feasible, such as before the first recrystallization of a 

newly synthesized compound or when planning early pre-formulation tests of a drug candidate. 

Analysis of incorrectly predicted results highlighted some limitations, which are mostly related 

to somewhat simplistic description of specific interactions. The descriptor set we used includes 

only simple counts of hydrogen bond donors and acceptors, but neither their strengths nor their 

steric accessibility are accounted for. It is expected that by devising appropriate descriptors for 

these effects, models with a higher success rate could be developed. The same applies for 

halogen bonds and competing intramolecular interactions. 
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 While the present work is sufficient to demonstrate the potential of simple, descriptor based 

models, we plan further work to make the approach more generally applicable. First, we intend 

to survey a wider range of solvents, e.g. by including polar aprotic ones. Secondly, we wish to 

link the independently fitted solvent-specific models to each other through targeted screening 

experiments, which will involve screening the same set of drug molecules in each solvent. This 

is important to ensure that there is no relative bias between the different models, i.e. that the 

same predicted x value corresponds to the same experimental likelihood of solvate formation in 

each model. Such a set of linked models would provide an ideal tool for selecting solvents that 

are least likely to lead to unexpected solvate formation. 
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Models were developed to predict the likelihood of solvate formation by neutral organic 

molecules with methanol, ethanol, chloroform, dichloromethane and water. Only the structural 

formula of the molecules is required as input. 


