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Abstract

Novel, knowledge-based models for the prediction hgtirate and solvate formation are
introduced, which require only the molecular formals input. A dataset of more than 19,000
organic, non-ionic and non-polymeric molecules wagacted from the Cambridge Structural
Database. Molecules that formed solvates were coedpaith those that did not using molecular
descriptors and statistical methods, which allowetlidentification of chemical properties that
contribute to solvate formation. The study was cmbeld for five types of solvates: ethanol,
methanol, dichloromethane, chloroform and watevatelk. The identified properties were all
related to the size and branching of the molecates$ to the hydrogen bonding ability of the
molecules. The corresponding molecular descripi@se used to fit logistic regression models

to predict the probability of any given moleculeftom a solvate. The established models were
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able to predict the behavior of ~80% of the dateremtly using only two descriptors in the

predictive model.

1. Introduction

Pharmaceutical processing steps during manufagteen lead to an unexpected change in the
crystal form of materials.One of the common changes is the inclusion of leesb into the
crystal structure of the drug, i.e. solvate formatilt was estimated that 33% of organic
compounds have the ability to form hydrates, whbbeut 10% of them are able to form solvates
with organic solvents.

Solvate formation has many implications in the preceutical industry, because it affects the
physico-chemical properties of materials, suchhesrtdensity, melting point and dissolution
rate, which in turn can influence their manufadhiliey and pharmacokinetic propertigésthe
unexpected formation of solvates can thus leadhpoadictable behavior of the drug.

From a more optimistic point of view, the differgotysical and chemical properties of the
hydrate and solvate forms can be utilized to dlber rate of drug release or to stabilize the
formulation. There are many examples of drugs #natformulated as a hydrate form, such as
cephalexin, cefaclor, ampicillin and theophyllfie Hydrates (water solvates) are of special
concern, because they occur more frequently thaer atolvates. Another factor that makes
hydrates particularly important is the fact thattevds a non-toxic solvent. In 2010 the number
of hydrate structures from organic, organometabicd coordination compounds in the
Cambridge Structural Database was 49,283 out otdta of 443,505 structures in the CSD,

which is about 11% of the entries in the datalfag@ne of the few examples of a marketed



solvate is the HIV protease inhibitor indinavir, iah was formulated as the sulfate salt ethanol
solvate in order to improve the stability and theabailability of the drug.

Although factors affecting solvate and hydrate fation have been investigated previously
and predictions were made for specific drijshe general prediction of solvate formation —
similar to the prediction of other solid forms il largely an unresolved problehCurrently,
in order to avoid unexpected structural transforomat (such as hydrate and solvate forms) in the
pharmaceutical industry, high-throughput crystaliian experiments are conducted to obtain all
possible solid forms of a drdg Although this method is convenient for screeninggible solid
forms, it still has some disadvantages. For exajiplis never certain that all possible phase
transitions have been identified. It is also veiffiallt to explain why these phase transitions
happen. Another disadvantage is the necessitywongpahe actual material.

The current ability to predict crystal structuresncbe illustrated by the crystal structure
prediction (CSP) blind tests organized at the Céufglr Crystallographic Data CenfreThe
latest blind test, which was conducted for six moles, showed that the crystal structures of
molecules of different properties (small, rigiceXible etc.) can be predicted reliably, but among
them a hydrate was deemed one of the most challgrngjructures to predict. This type of
predictive methodology is associated with high cataponal cost and requires a high level of
expertise in molecular modelling.

Another approach is relying on previously conduaggderiments. The library of results from
screening experiments can be analyzed in ordendceftrend or a pattern among the data, which
helps in making general conclusions and may alloedigtion of the outcomes of future
experiments. When this approach is used, two imporaspects arise: firstly, the source of

information used for the study and secondly, th@aghof suitable methods for the analysis.



In order to reliably identify a weak trend in a sétexperiments, large amounts of data are
required. Databases which aggregate data abouiopseexperiments can be used as an easy
way to access the desired information. The hugestiyan the size and availability of databases
has facilitated their use in the environmental, italdand social sciencé$™* Similarly,
chemical databases such as the Cambridge StruGatabase (CSDJ, can be used to analyze
structural data and draw chemical conclusitins.

A number of investigations regarding hydrate argl sblvate formation using the CSD have
been conductet:?>° These identified correlations between hydrateselformation and the
possibility of strong, specific hydrogen bonds wiltle solvent, as well as the overall hydrogen
bonding functionality and polarity of the molecul@fey also showed some evidence of solvate
formation improving the close packing efficiencylafge molecule&’ However, no attempt was
made to use these correlations to predict solwatadtion.

Data mining techniques (statistics, artificial inggnce and machine learning) can be applied
to develop predictive models from large dataseExamples of predictions using these methods
can be found in different research ar&$,including materials scienc&.? For instance, the
use of machine learning methods for solvate foromatias been demonstrated by John&bn
al.,?®, who identified three new carbamazepine solvasirsgua Random Foréstclassification of
65 solvents.

In this study, we aim to identify molecular propestthat are associated with solvate formation
in different solvents and develop predictive modedgg the data mining techniques mentioned
earlier and data from the 2014 edition of the CAEhough over 300 solvents are represented in
the CSD?® only five solvents will be discussed in this deicTwo alcohols, ethanol and

methanol, and two apolar chlorinated solvents, [didmethane and chloroform were selected.



These solvents were chosen to represent two diffelasses of solvents, so that the ability of
the proposed method to distinguish between sohamdssolvent classes can be assessed. Water
was included as the most abundant solvent in otganjstals’® The five solvents chosen
showed a large number of hits in the CSD both ansmhgates and as recrystallization solvents
of non-solvated forms. The abundance of availabta & important, as it increases the reliability
of the resulting models.

The molecular properties were studied via molecuascriptors. These are numerical
attributes that are calculated from chemical stngs and represent information about them. The
properties that they describe numerically rangenfomnceptually simple (e.g. the van der Waals
volume of a molecule) to complex ones (e.g. eigkresmof matrices representing atom-atom
connectivity in the moleculéf. Determining which descriptors contribute to sodvérmation
will allow us to predict the probability of solvatermation in crystallization experiments of any
molecule. This can provide a guide in choosing rilgat solvent during the development of

formulations and manufacturing processes.

2. Methods

2.1 CSD data extraction. The Cambridge Structural Database (C$Dyyhich currently
contains over 700,000 crystal structures, was asetlhe source of information for this project.
The Conquest software was used to search throughdéiabasé' Two groups of structures
were extracted from the CSD database, solvate-fynaind non-solvate forming ones. The

search for both groups was restricted to entrias &dne organic, non-polymeric and non-ionic



compounds. Limiting the search to this group ofenales helped to avoid the influence of ionic
interactions between the molecules in the study.

Solvate-forming structures were identified as hgviwo different chemical entities in the
recorded structure, with one of them being the @pate solvent. The non-solvate-forming
group was defined through the recorded use of thleest under investigation as the
recrystallization solvent along with the presentermy one non-solvent chemical entity in the
crystal structure.

Each of the extracted structures was saved ingparate file. These files were then processed
by custom-made programs to extract a unique noresblmolecule from each structure (the
corresponding Perl and bash scripts are availabla the corresponding author on request).
4885 molecular descriptors were calculated for eaolecule using the Dragon softwéfeThe
types of descriptors calculated by Dragon are gimehable S1, Supporting Information, along
with examples and references. These descriptorg wabsequently analyzed using the R
statistical languag®

2.2 Significancetesting. The aim of this step was to identify which desartptcan classify the
data into the solvate forming and non-solvate fogrmgroups. The test used was the Wilcoxon
signed-rank test. This non-parametric estas used to compare the solvate and the non-solvat
forming groups for each solvent and find which dggors show a statistically significant
difference between them, apavalue of 0.05. The test assumes the null hypathedbe that the
two datasets come from the same population andfiheés the probability of this hypothesis.
the p-value. When thep-value is less than 0.05, this means the obsenatsupport the

assumption that the null hypothesis is wrong witteast 95% probabilits?



2.3 Machine learning methods. The descriptors identified in the previous stepeméen used
to fit predictive models. Different pattern recagpm techniques, such as artificial neural
networks, support vector machines and logisticassjpn were tested® These methods were
used to classify the molecules according to théilita to form solvates depending on the
molecular descriptors values. The use of logiggression gave models with superior predictive
ability in all cases. For this reason, it is gotade the method discussed in this paper.

Logistic regressionLogistic regression is a binomial classificatiorsteyn, which can take
multiple descriptors into account, each having féedint weight. The final result is always a
value between 0 and 1, representing the probalufitgn event to happen. The probability is
calculated using Equation (1):

_ 1 1)
X = ¥ e BotBixit+Bnxn)

wherex is the probability of an event to happ@y,is the interceptp; is the coefficient of the
ith predictor variabley; is theith predictor variable anal is the number of predictor variables in
the model.

2.4 Mode evaluation. Average weighted MSHfter the predictive models were fitted using
logistic regression, their evaluation took placengghe average mean squared erdBE of
the 10-fold cross validation, weighted by the sasrgite of each fold. The MSE of each fold can

be calculated using Equation (2):

MSE = 12": Y 2 )
~ 1_1(}’1' Yi)

wherey; is the estimated value from the modglis the real value (O for solvates or 1 for non-

solvates) anak is the number of data points. Taeerage weighted MS&an be calculated using

Equation (3):



ko @3)
Average Weighted MSE = ZWMSE"
i=1

wherek is the number of folds (10), is the sample size in th&" fold, N is the total number

of molecules, and/SE,, is theMSE value of the R fold. Due to the large sample sizes used in
the analysis, the weighting has minimal effect o iesults. The factévlf will have a value very

close to 0.1 for each fold, even if the number ofeuules is not divisible by 10. For simplicity,
theaverage weighted MSgalculated by the software is going to be refetcedsMSE from this
point onwards.

To calculate théVISE, the dataset is randomly partitioned into a tregnset, which is used to
fit the model and a test set, which is used touatal the model performance. The 10-fold cross
validation randomly splits the dataset into 10 pasthere 9 parts are used for model fitting and 1
part is used for testing the model. This procesgpeated 10 times, which means that all the
points in the dataset were used for both fitting todel and testing it. Little variation between
the samples shows that the models being fit arestodheMSE value was used as a method for
the selection of the best predictive model. Thishoé has the advantage of incorporating both
the variance and the bias of the estimator terms.

AUC: Another statistical estimate that was used to coenffee models was the area under the
Receiver Operating Characteristic (ROC) curv@UOLC. This area represents the probability that
a randomly selected positive instance will be rankeore positive than a randomly selected
negative oné’

AIC: Akaike information criterion was also used to meadihe relative quality of the fitted

models?® This criterion aids in deciding how many descrigtto include in the predictive



model. It works by giving a penalty for adding \edolles to the model. The penalty helps
avoiding over-fitting of the model. TH&IC is calculated using Equation (4):

AIC = 2k — 2In(L) (4)

wherek is the number of parameters (variables) in theehaddL is the maximized value of

the likelihood function of the fitted mod#!.

3. Results and discussion

3.1. Data extraction and significance testing. Using the search criteria mentioned earlier,
19,010 crystal structures were extracted from tB® CThe extracted dataset consisted of 9162
solvate and 9848 non-solvate structures. The bowakaf the data by crystallization solvent is
shown in Table 1. Figures S15 to S18 (Supportirfgrination) illustrate the distribution of

molecular weight, donor and acceptor count and hagjies of molecules in each dataset.

Table 1. The number of solvate and non-solvate structuresialm solvent

Solvent Number of structures | Solvates | Non-solvates
Ethanol 4895 689 4206
Methanol 4366 1518 2848
Dichloromethane 2761 1464 1297
Chloroform 2556 1363 1193
Water 4432 4128 304
Total 19010 9162 9848




A total of 4885 molecular descriptors (variable®ravcalculated for each of the solvate and
non-solvate molecules using Dragon. This calcutagielded 10 datasets: one set of solvate-
forming and one set of non-solvate forming molestite each of the five solvents. Each dataset
of solvate-forming molecules was compared with ¢cberesponding set of non-solvate forming
molecules to find the molecular descriptors thataelate with solvate formation in this specific
solvent.

The first step in the comparison was the Wilcox@ned-rank test. Each of the calculated
descriptors was tested for having a significarfedénce between the solvate and the non-solvate
forming groups using this test. It was conductedhim R language, at @value of 0.05. This
comparison took place on a descriptor-by-descripésis.

Figure 1 shows an example of the significance fiastwo descriptors: the nAT descriptor,
which is the number of atoms in a molecule, anditisegnificant O% descriptor, which is the
percentage of oxygen atoms among the non-hydrogemsan the molecule.

Over 2850 descriptors showed a significant diffeeebetween the solvate-forming and the
non-solvate-forming groups in each tested solviaking over 2850 significant descriptors in
each solvent dataset was not really meaningfubrdier to select the descriptors that are the best
(among those) in showing the difference between sthlgate-forming and the non-solvate-

forming datasets, further statistical investigaticass undertaken.
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Figure 1. Box plot representation of the distribution of twariables in the ethanol dataset. The
nAT descriptor (left) shows a significant differenbetween solvate (S) and non-solvate (NS)

molecules, while the O% descriptor (right) does not

3.2 Variable selection

3.2.1 Single-variable models. This approach was based on fitting a logistic regjosn model
of the data using one descriptor at a time. Eactleinwas then validated using a 10-fold cross
validation method. The model with the best perfarogawas selected on the basis of MfeE
value of the 10-fold cross-validation. TA&C of the model and the area under the ROC curve
for each model were also calculated. The desceptat were used to fit the logistic regression
models were limited to the ones that showed a fsogmit difference between the solvate and the
non-solvate groups.

As it has been in shown in Table 1, the numberhefdolvate and the non-solvate-forming

molecules in the extracted data was not even. ilfbalance between the two groups can result
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in predictive models that are biased towards tihgelagroup. Before the models were fitted,
samples with equal number of both groups had tolt@ined. This means some molecules were
removed from the larger dataset. Subsetting thgefadtataset to bring the samples to equal sizes
took place using random sampling. In order to min@nerrors arising from this sampling
process, 10 equal size samples were taken baseshdom seed s. The seeds that were used
for random sampling were recorded to ensure thedegibility of the results.

Each of the 10 samples was tested separately tiengiethod mentioned at the beginning of
this section. The descriptor that turned out toehthe lowestMSE value in most of the 10
samples was considered as the best descriptdidaniassification of the data.

The best models fitted using a single molecularcde®r showed a mean standard error
(MSB between 0.149 and 0.21 in all five solvents (€aBb, Supporting Information) and
therefore had a good predictive ability. They hals shown little variation between the 10
samples used for cross validation. The best singimble models were related to the so called
spectral moment descriptors in each solvent. THeseriptors are discussed later in this paper.

3.2.2 Two-variable models. In an attempt to improve the predictive abilitytbeése models,
combinations of two descriptors were used to fgidtc regression models. Similarly to the
single-descriptor models, only the descriptors #awed significant difference in the Wilcoxon
test were considered (more than 2850). The seteofithe best model that utilizes two variables
required fitting a model with each possible comboraof two descriptors. This means that over
4 million models per solvent were fitted. Ten eqeale samples were also used for fitting
unbiased models. Each of the fitted models wassevabdated using 10-fold cross validation
and theMSE of each model was recorded. This gives that d tftanore than 400 million

models were fitted and the best among them weeetsel. These analyses were programmed in
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R* and executed using the High Performance Compufihugter at the University of East
Anglia, where the processes were split betweendegficated cores. The models for some, but
not all solvents improved relative to the singleialble models, as indicated by the reduction of
theMSEvalues into the range of 0.145 to 0.184 (TableSsfporting Information).

3.2.3 Three-variable models: Since the addition of a second variable improvedMISE AIC
and AUC values of the best-performing models, it was gwaied that the addition of a third
descriptor to the models would improve the predetability further. The addition of a third
descriptor to the models using the same exhauappeoach and the same number of variables
(over 2850 per solvent) was not feasible, due o l#ige number of possible three-variable
combinations. Alternatively, the addition of a thivariable to the best two-variable model in
each solvent was tested, with selection of the ivestel among the three-variable models based
on theirAIC value. This criterion evaluates the relative gyabf models based on the balance
between the goodness of fit of the models and ttwmmplexity. Therefore, the use of tA¢C
shows whether the addition of a new descriptoh#ottvo-variable models provides significant
new information. As carried out previously; thetifiy process was repeated 10 times using
equally sized subsets of the data. Cross-validatias not deemed essential for this analysis.
This is because Stone has shown that the AIC ioiteés asymptomatically equivalent to the
leave-one-out cross validati6h Consequently, a total of about 30,000 models igesl and
the one with the lowesAIC value for each solvent was selected. Surprisintjlg, amount of
information that was added by the third descriptas very little.

The MSEvalues of the new models fell between 0.142 atf4).showing that the addition of
the third descriptor to the models did not incre#fseir accuracy or the confidence of the

predictions (Table S7, Supporting Information). S'means that no significant extra information
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related to hydrate/solvate formation can be obthinem the calculated descriptors. In order to
illustrate the performance of the one, two anddfwariable models, a superimposition of the

ROC curves of each ethanol model is shown in Figure
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Figure 2. ROC curve of the best models utilizing one, twd #mee variables (modell, model2
and model3, respectively) to predict ethanol s@vatmation (sample size: 1377). Model2 and
model3 are almost perfectly superimposed due tosthall effect of the addition of the third
descriptor to model2. Similar representation ofrii@els for the other solvents are given in the

Supporting Information (Figures S2-S5)

14



3.3 Discussion of the best models. Although the two-variable models perform signifidgn

better than the one-variable models, the threealibai models do not seem to improve the

predictions in any of the data sets. For this reasaly the two-variable models are going to be

discussed in detail. A summary of the two-variatledels and their performance is shown in

Table 2.

Table 2. The average performance of the two-variable moolets 10 samples in the 5 solvents.

No. of
Descriptor 1| Descriptor 2| data
Model Descriptors Intercept| coefficient | coefficient | points MSE | AIC | AUC
AVS H2 +
Ethanol nHDon 15.939 | -3.817 -0.861 1377 0.149283| 0.868
TRS +
Methanol nHDon 2.808 -0.084 -0.612 3035 0.183268| 0.810
SM3 H2 +
Dichloromethane Hy 15459 | -3.314 -0.664 2592 0.1482386| 0.871
SM3 H2 +
Chloroform H-050 14.744 | -3.051 -0.384 2384 0.1482212| 0.867
7D +
Water Mor05u 4.672 -0.424 0.327 607 0.15%87 | 0.846

3.3.1 The ethanol model: The best two-variable model for ethanol utilizes &VS_ H2and

nHDon descriptors AVS_H2is a descriptor derived from the reciprocal sqda@pological

distance matrix, and it is calculated by taking tia¢ural logarithm of the average of the sum of

the entries in each row of the matfixAn example of calculating the reciprocal squared

topological distance matrix is shown in Supportinfprmation (Figure S1, Tables S1-S3). The

value of theAVS_H2descriptor is directly related to molecular sized ébranching of the
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molecular graph. The larger the molecule or theemranched it is, the larger this value

becomes.

Although this descriptor can be calculated by a ater in a fraction of a second for any given
molecule, it would be impractical to calculate iamually. Moreover, the descriptor value is not
easily estimated by looking at the molecular strceet In order to give a more intuitive value,
models based on closely related descriptors wetedelt turns out that the number of rings in
the molecule fCIC) is highly correlated (r = 0.87) tAVS_H2 This is a logical correlation as
AVS_H2incorporates information about the size and briawgclof a molecule and larger

molecules are expected to have a higher numbéngs.r

The second descriptor in the best two-variable rhedes nHDon This is a simple count
descriptor that accounts for the number of hydrogend donors. These are defined by the

software as hydrogen atoms that are bound to @geitr or an oxygen atom.

The coefficients(}; in Equation (1)] of both descriptors in the moslebw a negative sign, while
the descriptor values;fxare by definition nonnegative. This gives an allaregative product. A
negative value in the logistic regression equagioshes the final probability value towards zero.
Solvate formation is more likely when the probapil(x) is closer to zero, so the negative
coefficients indicate that the higher the valu¢hefse two descriptors are, the more likely solvate

formation is.

The averag®SE of the model that usesCIC andnHDon over 10 samples was 0.157, which is
close to 0.148; the averal¢SE of the original model (Table 3). The simpler modksio showed

the same robust behavior over 10 random samplée asiginal model.

16



3.3.2 The methanol model: In the methanol dataset, the descriptors that gadéest predictive
ability areTRS(Total Ring Size) anddHDon TRSis the sum of the number of atoms in each
independent ring in the molecule (eTgRSvalue of benzene is 6 and of naphthalene is 18% T
descriptor can probably be influential due to tkeb#ization of the solvate structures by the

hydrophobic interactions between the rings.

3.3.3 The dichloromethane modedl: In dichloromethane, the first descriptor waiI3_H2 This
descriptor refers to the third order spectral mannthe reciprocal squared distance matrix
(H2)*. The third spectral moment is calculated as taeetrof the third power of the matfi.
This descriptor also describes the size and bragcbf molecules. Here again, tisM3 H2
descriptor is not an easy one to estimate by lap&irthe molecular graph. Fortunately, a simple
path count descriptoMPCO01) showed to be very similar ®M3_H2 with a high correlation (r

= 0.983).MPCO01is the count of paths of length 1 in the H-demletgolecular graph. In other
words, it is equal to the number of bonds betwemnydrogen atoms in the molecular gréph.
6 Both spectral moments and path counts increasenexpially with the size of the molecule,
so their values were subject to a logarithmic ti@msation [x’ = In (1+x)], i.e.,.SM3_H2is
obtained by the logarithmic transformation of thgectral moment, andMPCO1 by the

logarithmic transformation of the count describbd\ze.

The second descriptor waly, which is called the hydrophilic factor. This factis calculated

using the formula in Equation (5).

Ny
oo = (1+NHy)-log2(1+NHy)+nC-(ﬁ.log2ﬁ)+ nSKjg 5
y = (5)

log,(1+nSK)

WhereNy,, is the number of hydroxyl, amine or thiol groups§, is the number of carbon atoms

andnSK is the number of non-hydrogen atothdhis descriptor is highly correlated (r > 0.95) to

17



the number of hydrogen bond donordiDon) descriptor, which can be used instead and the
resulting model still gives similar results. Thigeanative simple model had an averad8E of

0.150 over 10 samples compared to 0.146 for thgenadi model.

3.34 The chloroform model: The first descriptor in chloroform was the same fas
dichloromethanei.e. SM3_H2 Again, this descriptor has a correlation of 0.98th MPCO01in

the chloroform datasetSM3_H2 was combined withH-050 to give the best model. The
descriptorH-050 is the number of hydrogen atoms attached to ardet@m?®*° Here again,
chloroform behaves in a similar manner to dichloetimne, where they share the same first
descriptor and have two second descriptors thaalanest identical (r > 0.95 correlation). The
AverageMSE of the simpler model, again over 10 samples i®%).tompared to 0.148 of the

original model.

3.3.5 The water model: The best two-variable model of hydrate formatiotizgts thezID and
the MorO5u descriptors. The descriptaiD is the logarithmic transform of the conventional

bond order ID numbe¥ It is calculated using the formula
nID = In(1 + nSK + ¥, wy), (6)

WherenSK is the number of non-hydrogen atoms anas the weight of molecular pagh The
index p runs over all possible bond paths in the hydrogemleted molecular graph from the
length of 1 bond to the longest possible. The wieggisigned to each path,, is the product of
the conventional bond orders of all bonds in ththp@he conventional bond order of single
bonds is 1, for aromatic bonds it is 1.5, for deubbnds it is 2 and for triple bonds it is 3. The
value of this descriptor is affected by the sizé Branching and the type of bonds in a molecule.

This gives information not only about the complgxhut also about the rigidity of a molecule.
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For a simpler description, theCIC descriptor can be used, which is the number gfsrin the

molecule and it shows a strong correlation wifd (r =0.854).

The second variable in the model vidsrO5u This is one of the 3D-MoRSE (3D-Molecule
Representation of Structures based on Electroradtfbn) descriptors. The 3D-MoRSE
descriptors are calculated from the atomic 3D coaitds obtained by a molecular transform that

is analogous to electron diffraction formufae.

nAT—-1 nAT (7)

5
Mor05u = Z Z sin( rU)
57;

i=1 j=i+1

Wherer; is the distance between atoms i and j in the nuddeandnAT is the number of atoms.
This descriptor requires previous knowledge of3Decoordinates of the molecules under study,
which is not always suitable for prediction. In erdo keep the models simple and preserve their
ability to describe solvate formation using the 2lecular graph only, it is possible to take a
highly correlated, easy-to-calculate descriptoteéad. The number of hydrogen atomsl( and
the number of atoms of moleculeAT) descriptors are both highly correlated (r =0.94th
MorO5u A model utilizing therID andnH descriptors has an averag&Eof 0.161 compared
to an averag®ISEof 0.159 of the original hydrate model. A moddiefdl usinghCIC along with
nH has an averagdSEof 0.165. A table of the simple alternative modaeisl their performance
is given in Table 3. A more detailed version of table is given in the Supporting Information
(Table S8). For better understanding of the detwsp the values of all mentioned descriptors

for two drug molecules are given in Table S4, Sufpg Information.
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Table 3. The average performance of the simplified two-aaleé models over 10 samples in the

5 solvents.
Descriptor Descriotor 2 No. of
Model Descriptors Intercept| 1 P data MSE | AIC | AUC
- coefficient :
coefficient points
nCIC +
Ethanol nHDon 3.994 -0.766 -0.889 1377 0.157320| 0.854
TRS +
Methanol nHDon 2.808 -0.084 -0.612 3035 0.183268| 0.810
MPCO1 +
Dichloromethane nHDon 13.236 | -3.649 -0.339 2592 0.15Q428| 0.864
MPCO1 +
Chloroform H-050 12.416 | -3.416 -0.358 2384 0.152254| 0.861
Water nCIC +nH | 2.731 -0.606 -0.088 607 0.16597 | 0.835

3.3.6 General discussion of the models. Regardless of the exact descriptor that turnetb uge

the best in each solvent, all two-variable modél&ed one descriptor that measures the size

and branching of the molecules and another onedhatated to the hydrogen atoms in the

molecules. Having similar descriptors in all modét&s not mean that these models are

identical. The intercepts and the coefficientshafsie descriptors vary widely between the

models, as can be seen in Table 2. The differenceefficients can be illustrated using the

ethanol and methanol models. Although they shages#ime second descriptaHDon), the

relative importance of this descriptor in etharsohimost 1.5 times higher than it is in methanol.

The addition of a second variable to the modelsveldoa notable reduction of thMdSEin both

ethanol and methanol, while it did not show a magaluction ofMSEin the rest of the solvents.
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This shows that hydrogen bonding has a large etfiedhe formation of ethanol and methanol

solvates.

Surprisingly, introduction of the hydrogen bondatedd descriptors did not improve the
predictive ability of the models for hydrate formost This does not imply that hydrogen
bonding is not important in hydrates, but shows tha information given by hydrogen bonding
descriptors in this specific dataset is alreadyreggnted by the size and branching-related
descriptors. A model that is fitted using the numbiehydrogen bond acceptonsHAcqg alone
gives an averag®ISE of 0.237. This shows that hydrogen bonding is rapartant factor in
hydrate formation, but it is not the most importdigicriminating factor according to this dataset.
Indeed, the fact that single crystals of all thegdecules were successfully grown from aqueous

solutions suggests that even the non-hydrate farar@ong them are relatively hydrophilic.

The findings in these models agree with the commqgrectation that having a large, branched
and rigid molecule makes the packing to optimallyttie three-dimensional space more
difficult. The poor packing of molecules in the stgl seem to help the solvent molecules to
diffuse through the structure and form a solvate eXample of the difference between the
distribution of a size and branching descriptortf@ solvate and non-solvate forming groups is

shown in Figure 3.
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Figure 3. Histograms of the SM3_H2 descriptor distributioonfi the chloroform data

The availability of hydrogen bonds helps stabilizthe solvent in the voids of crystals, therefore
giving a more stable hydrate or solvate. The imgmaé of hydrogen bonding in solvate
formation has been recognized in several publinafit®® The advancement in the current
findings is the ability to quantify the relative paortance of size, branching and hydrogen
bonding. This aids the prediction of the abilitytbé molecules of interest to form a hydrate or a

solvate relying only on the molecular structure.
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3.4 Predicting the behavior of molecules

3.4.1 Using the model equations: When a new molecule is to be predicted for soliateation

with one solvent, the values of the two descripiorédhe model need to be calculated first.
Afterwards, the descriptors values are fed intoldigé function (Equation 1). An example of the
use of the intercept and descriptor value to finth the simple hydrate model is given in

Equation (8):

1
X = e - (8)
1+e—(15.939 —3.817AVS_H2-0.861nHDon)

The resulting value of falls between 0 and 1.

3.4.2 Is it a solvate or a non-solvate? In any binomial problem, there are only two possibl
outcomes. In the models above we consider a soteat®rrespond with a predictedvalue
close to zero and a non-solvate to correspond avithlue close to one. The cutoff point of the
prediction, which tells whether our molecule oferrgst will form a solvate or not, should be
close to 0.5. This is because equal size samplagyused for establishing these models. In order
to select the optimum cutoff point in these mod#is, specificity (true positive predictions/all
positive predictions) and sensitivity (true negefall negative predictions) were used. The point
that maximizes the specificity and the sensitivitgs selected. In other words, the cutoff point
can be chosen by finding the point where the spp#gifand sensitivity curves, plotted as the
function of cutoff, cross. An automated script wadsveloped in R to do this analysis. A
representation of the cutoff point selection precean be seen in (Figure S6, Supporting

Information). The cutoff point values for the fiwudied solvents were between (0.49-0.56).

23



This approach for cutoff point selection avoids thas in the model towards one of the two

groups (the solvate or the non-solvate group).

The final outcome of finding the cutoff point istlestablishment of the decision boundary which
splits the data into a solvate and non-solvate ipiedi region. Figure 4 shows how the
classification system works for a sample of thehldimomethane dataset along with the decision

boundary of the predictive model.
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Form
@ Solvate

Figure 4. Distribution of the dichloromethane dataset usivgbest combination of two

descriptors (2600 data points). The continuousdhmawvs the optimized decision boundary,

while the color of data points indicates the experital solvate/non-solvate form of the

corresponding molecule.
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The complete dataset for each solvent was usezstdite hydrate/solvate formation using the 2-
variable models. The percentages of the corrqutidicted data in different solvents were

between 74 and 80%.

3.5 Applicability of the models. In this section, the factors that the models take account and
the factors that the models overlook are going ¢odiscussed through examples from the

datasets.

3.5.1 Effects the models take into account. In this section, we illustrate the relative impoxta

of the two main factors (size and branching, hydrolgonding) using molecules from the
ethanol dataset. In order to carry out this congoaxi two molecules possessing different values
of the two descriptors are going to be discussd(@EE2-pyridinylmethylidene)semicarbazone,
CSD refcode: KUHGEA' and N-(pyridin-2-yl)hydrazinecarbothioamide, CSficode:
XAPTOY>’ (Figure 5), are molecules that were both recrijstal from ethanol, but were not
able to form ethanol solvates, despite the avditglmf multiple accessible hydrogen bond donor

sites.
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(b)

Figure 5. Molecular structures of (a) KUHGEA and (b) XAPTOY

The inability of these molecules to accommodatetaanol molecule in their crystal structure
was predicted correctly by the ethanol model. Bbengh these molecules have multiple
hydrogen bond donors, théivS_H2value is not high enough to surpass the decisoomdary

of the ethanol model (Figure S7, Supporting Infaiorg into the solvate region. This proves
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that the effect of the size and branching of a mdkeis more important than the number of
hydrogen bond donors. Ti&/S_H2values for the KUHGEA and XAPTOY molecules are
2.972 and 2.979 and theivalues according to the model were 0.882 and Q1&89ectively.

This indicates that these two molecules have acloance of forming an ethanol solvate. Further
similar examples are given in Figure S8, while atdventries with few donors, but larger, more

branched structures are listed in Table S10 (Suimgoinformation).

Although the size and branching of molecules turmatcto be the most important factor in
determining solvate formation, the effect of hydrndponding cannot be ignored for alcohol
solvates. The importance of the number of hydrdgerd donors, which was the second variable
in the ethanol model, can be shown by comparingmwetecules with similaAVS_H2values,

but different number of hydrogen bond donors.

(@)
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(b)
Figure 6. Molecular structures of (a) SOYQON and (b) UHUWEA.

N'-(2,4-Dimethoxybenzylidene)-3,4,5-trihydroxybehgdrazide ethanol solvate, CSD refcode:
SOYQON® (Figure 6a) was recrystallized from ethanol amfed an ethanol solvate. It has an
AVS_ H2value of 3.534 and 4 hydrogen bond donors. Thigtire was predicted correctly by
the model to from the ethanol solvate=(0.27). N-(2-hydroxyethyl)-6-methoxy-2-ox0-2H-
chromene-3-carboxamide, CSD refcode: UHUWE jas also recrystallized from ethanol, but
was not able to form an ethanol solvate (Figure Blilas amAVS_H2value of 3.513, but differs
from the former molecule in that it has only 2 hygEn bond donors. The inability of this
molecule to form an ethanol solvate was also ptedicorrectly by the modek € 0.692). The
effect of hydrogen bonding was accounted for inrtteelels, hence the correct prediction of the
behavior of these two molecules. Further exampieslaown in the Supporting Information

(Figures S9 and S10).

3.5.2 Effects the models do not take into account. The examples shown so far are the clear-cut

molecules, where the model worked excellently.tRermolecules that were misclassified by the
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model, there must be some other factors that theeehebd not take into account. These factors
were not identified by the models either becausg tto not show statistical significance (i.e.,
low number of examples) or for the fact that noctdi@sor looks at some of them. For these
reasons, misclassified entries were surveyed migraradl possible reasons were identified. The
principal reasons found for misclassification, s#enughout the dataset will be discussed in this

section.

Hydrogen bonding strength$he current model takes into account only the nurobéydrogen
bond donors, but not their strength. The stren§nloydrogen bond depends on the nature of the
functional groups in which the donor and acceptoms are located. This effect was studied
thoroughly by different research groufs? who were able to represent the relative ability of
several functional groups to donate or accept tgehmabonds using empirical hydrogen-bond
scales. It is important to mention that by takimgpiaccount the donor/acceptor coefficients
tabulated by these research grotib$t was possible to explain a big part of the data

misclassified by the models.

One case that clearly illustrates this is a congparbetween 7-hydroxy-1-methMH9-methyl-
9-azabicyclo[3.3.1]non-3-yl)-1H-indazole-3-carboxdenmethanol solvate, CSD refcode:
VUQMEA®® and 4-(4-Fluorophenyl)-1-phenyl-3-(pyridin-4-ylH{ipyrazol-5-amine, CSD
redcode: LANRUP! Both compounds were crystallized from methanol énedvalues of the
descriptors used by the methanol mod@&SandnHDon are identical for both (23 and 2,

respectively). Their structures are shown in Figure
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(b)
Figure 7. Molecular structures of (a) VUQMEA and (b) LANRUP.

Although both these structures have two hydrogemdbdonors each, the hydrogen bonding
functional groups are not similar. While VUQMEA has amide and a hydroxyl group,
LANRUP shows one primary amine group. Amides arevkmto form stronger hydrogen bonds

than amine&§? To the model, both structures are identical, whbsy were both predicted to
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form a solvate withx = 0.408, but in reality the strong amide donorMJQMEA forms a
hydrogen bond with the methanol molecule, and dmuies to its retention in the crystal
structure. The empirical donor coefficients mengidnearlier work well to explain these
molecules. For example, Abraha@hassigned a hydrogen bond donating constant 00 63-to
aliphatic amides and 0.08-0.16 to aliphatic amifié® hydrogen bond donating constant for the
methanol hydroxyl group ranged between 0.31-0.37.tlk@ other hand, the hydrogen bond
accepting constants for the same functional greanged between 0.48-0.6. This explains why
the hydroxyl group of the methanol preferred toveeas a hydrogen bond acceptor in the
VUQMEA structure case. These are warning signs tthe models, at the moment, cannot be
used without considering the strength of the hydmogonding groups in the molecule and the
solvent. The effect of different hydrogen bonditigsgths on solvate formation was apparent in
multiple cases. A number of paired solvate/nonaeivexamples from the methanol dataset
representing the case are listed in Table S11.tiaddi illustrations are shown in the Supporting

Information (Figure S11 and Figure S12).

Halogen bondingAs can be expected, this type of interaction caadsgly observed among the
chlorinated solvents (dichloromethane and chlorojoOver 25 % of the solvate entries in the
chloroform dataset show a short contact (at ledsfGhorter than the sum of the van der Waals
radii) between the chlorine atom of the solvent arhlogen bond acceptor (N, O, F, S, Br, or I)
in the molecule. This indicates that halogen bogdaone of the main stabilizing interactions
for these solvents in the crystal structure. Oravgde of these structurestibutyl (1-((4-
bromophenyl)sulfonyl)-4-(4-methyl-1H-1,2,3-triazblyl)piperidin-3-yl)carbamate chloroform
solvate, CSD refcode: KUWWOP (Figure®)Yrom the misclassified chloroform dataset. Based

on the size, branching and the number of polardgein atoms, this molecule was predicted not
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to form a chloroform solvate at a probability 0584. Although other contributors to the
stabilization of chloroform in this crystal structuexist, it is notable that the chlorine atomiaf t
chloroform is at a short distance (3.118 A) fronsghnitrogen atom (Figure 8). It appears
reasonable that taking into account the possiblitiorming a halogen bond could shift the

predictedx value below the cutoff value (0.514).

Figure 8. KUWWOP structure showing the distance betweerchberine of the chloroform and

the nitrogen of the molecule (A).

Halogen bonding does not seem to be sufficientlyngt to retain the solvent in the crystals on
its own, as no example of a solvate was found & dataset where the only short contact
between the solvent and the other molecule is agkal bond. Nevertheless, this type of bond
certainly contributes to the attractive interactioMultiple examples of mispredictions involving
a halogen bond were observed in the chloroformseatd he reference codes of some of these
cases are shown in Table S12. An illustration &f shme case with dichloromethane is also

shown in Figure S13.
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Quantum chemical calculations and electrostatieq@l approachs®® suggest that the energy
of the halogen-nitrogen bond can reach up to 2@d&Jivith iodine and ca. 10.5 kJ/mol with

chlorine at a distance of 2.9 A.

Availability of functional groupsThis factor becomes important when groups thatafigdrate
and solvate formation (such as hydrogen-bondingiggpare present in the molecule, but they
are not accessible by the solvent. One exampleislyae effect of low accessible surface area
is 5,11,17,23-tetr&butyl-25,27bis(2-(N-(pyrid-3-ylcarbonyl)amino)ethoxy)-26,28-

dihydroxycalix[4]arene, CSD refcode: AZOMit from the methanol dataset.

(@)
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(b)
Figure9. (a) Capped-stick and (b) space filling represémadf the AZOMIL molecule

By looking at the capped sticks model, it can ngbat this structure possesses four hydrogen
bond donors. Three of these donors are involvedtiamolecular hydrogen bonding, which
renders them unavailable for intermolecular bondiogprding to Etter’s rul€¥.By comparing

the capped sticks to the space filling represeriati the molecule shown in Figure 9, it can be
noticed that the accessibility of these hydrogemdbdonors as well as the remaining hydrogen
bond donor is low due to steric effects, hencanhsbility of this molecule to form a solvate.

This molecule was predicted by the model with dhpgpbability to form a methanol solvate
(x=0.017). A large part of this misprediction canditributed to the inability of the model to
estimate the accessibility of the hydrogen bondbdarAn additional illustration and reference
codes of examples that were predicted incorreotiyife same reason are provided in the

Supporting Information (Figure S14, Table S13).

4. Conclusions
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We have demonstrated that the use of molecularigess and machine learning techniques can
identify molecular properties that contribute tdvate formation and can yield models with good
predictive power. The size and branching of moleswas found to be the most important factor
in each of the five solvents studied, while thespreee of hydrogen bonding groups came
second. Large, branched molecules optimize theseclpacking through interspersed solvent
molecule€®"® while hydrogen bonding groups are responsibleifictusion of solvents via
strong, specific interactior’8."*The present work expands on earlier research buytifyiag the
relative importance of these effects. While theaddrfactors are the same for each solvent, their
weights are different. This means that the sameoutg will be predicted to form a solvate with

a different likelihood for each solvent.

The five models, one for each solvent, were ableotoectly predict whether the molecules form
a solvate for 74-80% of a 19,010 organic molecwdtaskt. The models are easy to use and
provide instant predictions based on a minimal amhoé@iinformation,i.e. the chemical formula.
These attributes make the method well suited fouiak selection of suitable solvents when
detailed experimental screening is not feasiblehsas before the first recrystallization of a

newly synthesized compound or when planning eadyfprmulation tests of a drug candidate.

Analysis of incorrectly predicted results highligdtsome limitations, which are mostly related
to somewhat simplistic description of specific maions. The descriptor set we used includes
only simple counts of hydrogen bond donors and [#ocg, but neither their strengths nor their
steric accessibility are accounted for. It is expedhat by devising appropriate descriptors for
these effects, models with a higher success ratéd doe developed. The same applies for

halogen bonds and competing intramolecular intemast
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While the present work is sufficient to demon&réite potential of simple, descriptor based
models, we plan further work to make the approaohengenerally applicable. First, we intend
to survey a wider range of solvents, e.g. by iniclggolar aprotic ones. Secondly, we wish to
link the independently fitted solvent-specific mtsdéo each other through targeted screening
experiments, which will involve screening the sageé of drug molecules in each solvent. This
is important to ensure that there is no relativas hetween the different models, i.e. that the
same predicted value corresponds to the same experimental ligetihof solvate formation in
each model. Such a set of linked models would pewan ideal tool for selecting solvents that

are least likely to lead to unexpected solvate &irom.
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Prediction of hydrate and solvate formation

I Probability < 0.5 — m
m Descriptors Model

I Probability > 0.5 —

Models were developed to predict the likelihood safivate formation by neutral organic
molecules with methanol, ethanol, chloroform, dicbimethane and water. Only the structural

formula of the molecules is required as input.
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