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Abstract
A study is presented to determine the relative importance of

different visual features for speech recognition which includes
pixel-based, model-based, contour-based and physical features.
Analysis to determine the discriminability of features is per-
formed through F-ratio and J-measures for both static and tem-
poral derivatives, the results of which were found to correlate
highly with speech recognition accuracy (r = 0.97). Princi-
pal component analysis is then used to combine all visual fea-
tures into a single feature vector, of which further analysis is
performed on the resulting basis functions. An optimal feature
vector is obtained which outperforms the best individual feature
(AAM) with 93.5 % word accuracy.
Index Terms: Visual features, speech recognition, F-ratio, J-
measure, PCA

1. Introduction
Over the course of research into visual speech processing, many
different visual feature representations have been proposed and
applied to a wide range of applications. The range of visual
features can be broadly grouped into four types: pixel-based,
model-based, contour-based and physical [1]. Pixel-based fea-
tures used pixel intensities from the speaker’s mouth and have
low computation complexity, such as 2D discrete cosine trans-
form (DCT) features [2]. Model-based features create a model
to extract visual information and are generally of higher com-
plexity, and include the widely used active appearance model
(AAM) features [3]. Contour-based features use a pixel bound-
ary around the mouth to produce a shape signature which may
then undergo further transformation, such as Fourier descriptors
[4]. Finally, physical features measure geometric properties of
the mouth such as simple measurements of height and width.

Several studies have compared visual features and reveal
model and pixel based methods to provide best performance
[5, 6, 7]. These tests are typically performed by building speech
recognisers using different visual features and comparing per-
formance. In this work we aim to identify which specific visual
coefficients offer most discrimination in classification tasks.
This is achieved by first measuring the F-ratios of individual
visual coefficients taken from a large range of different visual
feature types and secondly using J-measures to measure the dis-
criminability of an entire visual feature and comparing this to
the equivalent speech recognition accuracy. Following this de-
tailed analysis, the effect of applying principal component anal-
ysis (PCA) to a range of visual features is explored and experi-
ments used to see how best to include temporal derivatives.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of the four visual features analysed
in this work. Section 3 then uses F-ratios and J-measures to
analyse the discriminability of both static and temporal features.
PCA is then applied to the visual features in Section 4 and the

resulting basis functions of the transforms observed.

2. Visual features
Four visual features are considered, 2D-DCT, AAM, Fourier
descriptors and geometric, and are now described briefly.

2.1. Two-dimensional DCT

Two-dimensional DCT (2D-DCT) features are pixel-based and
extracted from a N ×M matrix of pixel intensities P, where
in this work N = 90 and M = 110 [2]. The mouth centre is
generated from tracked landmarks and features extracted from
P by applying a 2D-DCT

qu,v = WuWv

N−1∑
i=0

M−1∑
j=0

pi,j cos

(
uπ(2i+ 1)

2N

)
cos

(
vπ(2j + 1)

2M

)
(1)

Wu =

{ √
1/N if u = 0√
2/N otherwise

Wv =

{ √
1/M if v = 0√
2/M otherwise

(2)

where pi,j refers to the pixel intensity in row i and column j,
producing qu,v . Energy from the image is concentrated into the
lower coefficients of q, of which the first 23 are extracted in a
zigzag order producing visual vector ct for time t

ct = [q0,0 q0,1 q1,0 q2,0 q1,1 q0,2 q0,3 q1,2 ... q5,1] (3)

2.2. Active appearance model

AAM features are model-based and a combination of shape and
appearance. Although shape and appearance could be used sep-
arately, their combination using principle component analysis
(PCA) has been demonstrated in [5] to produce higher perfor-
mance by creating a more compact and de-correlated feature
set. AMMs require labelled data with landmarks to generate
features and use a model to perform this task automatically.
The model requires hand labelled training images to learn the
variation in mouth shapes and in this work 43 training images
were used with 101 landmarks tracked. Forty-six and 20 land-
marks represent the outer and inner lip respectively, with the ex-
tra landmarks for the eyes and jaw line, which assist the model
in locating the face and fitting landmarks. A new model is pro-
duced by selecting only the mouth landmarks, and is used to
produce AAM features, At = [st at], that comprise shape, st,
and appearance, at, components for time t.

2.2.1. Shape

The shape feature, s, is obtained by concatenating n x and y
coordinates that form a two-dimensional mesh of the mouth,
s = (x1y1, ..., xnyn)T . A model that allows linear variation in
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shape is produced using PCA,

s = s0 +

m∑
i=1

pisi (4)

where s0 is the base shape, si are the shapes corresponding to
the m largest eigenvectors and pi are shape parameters. Coef-
ficients comprising 90 % of the variation are selected, resulting
in a vector size of 8 shape coefficients, st.

2.2.2. Appearance

The appearance feature, a, is obtained from the pixels that lie
inside the base mesh, s0 [8]. As with the shape model, an ap-
pearance model, a, can also be expressed with linear variation,

a = a0 +

m∑
i=1

qiai (5)

where a0 is the base appearance, ai are the appearances that
correspond to the m largest eigenvectors and qi are appearance
parameters. Coefficients comprising 95 % of the variation are
selected, giving a vector size of 15 appearance coefficients, at.

2.3. Fourier descriptor-based visual features

Fourier descriptors are contour-based features generated by ap-
plying a Fourier transform to a shape signature, obtained from
the pixel boundary of a mouth region. Possible shape signa-
tures are complex coordinates, curvature function, cumulative
angular function and centroid distance, and were compared in
[4]. This revealed centroid distance performs best, and as such
is selected for this work.

The centroid distance is calculated for the outer and inner
lip contours separately, and consists of finding the Euclidean
distance between lip contour and mouth centre (xc, yc), (Figure
1(a)), producing shape signature r as shown in Figure 1(b),

r(i) =

√
(x(i)− xc)2 + (y(i)− yc)2 (6)

where, xc =
1

N

N−1∑
i=0

x(i) , yc =
1

N

N−1∑
i=0

y(i) (7)

The waveform r is split into two halves: the first half is the up-
per lip showing a double peak around the philtrum, and second
half is the lower lip with a smooth contour. An FFT is applied
to r and the magnitude, |r|, calculated as illustrated in Figure
1(c). This is truncated to 10 coefficients which is sufficient to
describe the shape effectively [4], and produces the final Fourier
descriptor feature vector, Ft = [foutt f int ]

foutt = [|rout0 | |r
out
1 | |r

out
2 | ... |r

out
9 |] (8)

f int = [|rin0 | |r
in
1 | |r

in
2 | ... |r

in
9 |] (9)

2.4. Geometric visual features

Geometric features are physical features representing proper-
ties of the mouth and comprise height, width, perimeter and
area, for both the outer and inner lip. These are extracted from
the tracked landmarks discussed in Section 2.2. An example of
geometric features for the outer lip is shown in Figure 2.

Combining all the features gives the final geometric feature
vector, Gt = [gout

t gin
t ], where gout

t and gin
t are geometric
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Figure 1: Fourier descriptor centroid distance method for outer
lip contour
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Figure 2: Geometric features of height, width, perimeter and
area for the outer lip.

features for outer and inner lip contours respectively,

gout
t = [heightoutt widthout

t perimeteroutt areaout
t ] (10)

gin
t = [heightint widthin

t perimeterint areain
t ] (11)

2.5. Combining visual features

For analysis purposes a single 74 dimensional vector, zt, com-
prising all coefficients is produced by concatenating the previ-
ous visual features

zt = [ct st at f
out
t f int gout

t gin
t ] (12)

3. Analysis of visual features
This section analyses the discriminability of the visual coeffi-
cients using F-ratios and J-measures. Both static and tempo-
ral derivatives are considered and comparisons are made with
speech recognition accuracy.



3.1. Speech database

The GRID audio-visual speech database was used for the vi-
sual feature tests and contains recordings from 34 speakers who
each produced 1000 sentences [9]. Each sentence comprises six
words and follows the grammar shown in Table 1. Speaker 12
was selected for the analysis, with 800 sentences selected for
the training set, and 200 for the test set.

Table 1: GRID sentence grammar.

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again
lay green by minus W zero now

place red in please
set white with soon

3.2. Baseline speech recognition results

To examine the effectiveness of the different visual features,
baseline speech recognition tests are first performed. Fifty-
one hidden Markov models (HMMs) are trained to model the
words in the database and an additional HMM is trained for
non-speech movement. The HMMs have a left-right topology
with diagonal covariance matrices. An exploratory search found
the best speech recognition configuration for each visual feature
type by varying the number of states (1-25) and modes (1-4).
Velocity (∆) and acceleration (∆∆) temporal derivatives were
augmented to the static features and z-score normalisation ap-
plied [10]. The highest recognition found for each visual fea-
ture is shown in Figure 3. AAM features attain best results with
92.33 %, followed by 2D-DCT with 91.17 %. Geometric fea-
tures have lowest performance of 63.58 %, attributed in part to
containing fewer coefficients compared to AAM and 2D-DCT.
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Figure 3: Optimal baseline ASR results for visual feature types.

3.3. Relative importance of static visual coefficients

Analysing the discriminability of each coefficient of the static
visual vector z, should reveal which are more important with
regards to recognition. The discriminative ability of each coef-
ficient is measured using the F-ratio [11]

F − ratio =
Variance of means (between− class)

Mean of variances (within− class)
(13)

This is computed from 51 single mode 19 state HMMs. Each
state of each HMM is considered a class from which between-
class and within-class covariances are computed. Larger F-
ratios suggest a more discriminant coefficient and these are plot-
ted in Figure 4 for the individual coefficients in z.
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Figure 4: F-ratios for the coefficients of visual vector z. Blue =
2D-DCT, red = AAM, green = Fourier, pink = geometric.

3.3.1. Rank order using F-ratio

Taking the F-ratios of z and sorting into descending order pro-
duces a re-ordered visual vector, z̃. For illustration, the 30 most
discriminative coefficients are shown in Table 2. Analysing this
table reveals the importance of low order coefficients from all
visual feature types, where the energy components lie. Also,
all 8 geometric features are in the first 12 ranks which suggests
they posses discriminative information.

Table 2: Ordered z̃ coefficients by F-ratio rank on z.

Rank Feature Rank Feature Rank Feature

1 c1 11 gout
2 21 c2

2 gout
3 12 gin

2 22 c6

3 f in1 13 c15 23 c8

4 gin
3 14 c17 24 f in4

5 fout1 15 f in5 25 c13

6 gout
4 16 a1 26 f in2

7 gin
4 17 c19 27 a3

8 gout
1 18 c10 28 a4

9 gin
1 19 c4 29 c22

10 s1 20 c3 30 fout3

3.3.2. Ranked speech recognition results

Speech recognition is performed using the re-ordered visual
vector, z̃, by successively truncating from 74 to 1 coefficients.
The HMMs have 19 states and 1 mode, and Figure 5 shows
recognition accuracy using from 74 to 1 coefficients. Maxi-
mum performance was found using all 74 coefficients, achiev-
ing 77.42 %. Recognition is above 70 % until n < 38, drasti-
cally reducing when n < 20.

3.3.3. J-measures

The F-ratio measures how distinct an individual coefficient is,
however, to evaluate the discrimination of an entire feature vec-
tor a multi-variate extension is required which is known as J-
measures [12]. As shown in [13] J1 and JS provide best perfor-
mance for evaluation, and exhibit strong correlation with recog-
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Figure 5: Recognition accuracy while truncating z by F-ratio
rank order.

nition accuracy when applied to audio (MFCCs),

J1 = tr(W−1B) (14)

JS =

n∑
i=1

Bi,i

Wi,i
(15)

where tr() indicates the trace of a matrix, B represents the
between-class covariance matrix, and W is the within-class co-
variance matrix, for feature vector size n.

The J-measures are applied to z̃ to investigate whether cor-
relation with speech recognition performance can be observed
regarding the reordered visual features. Figure 6 shows the log
of the J-measures of z̃, with correlation between J-measures and
recognition accuracy visible. High correlation is observed for
both measures, with JS outperforming J1, which agrees with
the observation made in [13], suggesting J-measures can pre-
dict visual speech recognition accuracy.
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Figure 6: J1 and JS when truncating z̃, with correlation coeffi-
cient to ASR shown.

3.4. Relative importance of temporal visual coefficients

The analysis made on static visual features is now extended to
consider the effect of temporal derivatives. Taking the static co-
efficients of vector z and augmenting temporal information to
produce z′ = [z ∆z ∆∆z], and computing F-ratios reveals
the discriminability of temporal information. This is shown in
Figure 7 where a repeat in the pattern of static feature coeffi-
cient discrimination translates to velocity and acceleration with
a slight reduction for higher order derivatives.

3.4.1. Rank order using F-ratio

Taking the result of applying the F-ratio to z′ (Figure 7) and
sorting into descending order produces feature vector z̃′. Ta-
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Figure 7: F-ratio on z′ coefficients showing static, velocity and
acceleration components (Refer to Figure 3 for colour legend).

ble 3 shows the top 30 coefficients which reveals similar co-
efficients picked out as in Section 3.3.1, although in a slightly
different order. The temporal derivatives of the top performing
static coefficients outperform previously high ranked static fea-
tures. Again, geometric features perform well with 14 of the
top 30 places.

Table 3: Ordered z̃′ coefficients by F-ratio rank.

Rank Feature Rank Feature Rank Feature

1 c1 11 c15 21 c4

2 gout
3 12 c19 22 ∆fout1

3 f in1 13 gout
1 23 ∆∆fout1

4 fout1 14 c17 24 gin
1

5 ∆c1 15 c10 25 ∆gout
4

6 gin
3 16 s1 26 ∆∆gout

4

7 gout
4 17 gout

2 27 ∆gout
2

8 ∆∆c1 18 ∆∆gout
3 28 f in5

9 a1 19 ∆gout
3 29 ∆∆gout

2

10 gin
4 20 gin

2 30 ∆s1

3.4.2. Re-ordered speech recognition results

Speech recognition is now applied to the re-ordered temporal
visual feature, z̃′, truncated from 222 to 1 coefficients, and the
accuracy shown in Figure 8 using 19 state 1 mode HMMs. Max-
imum performance was found using 219 coefficients, achieving
85.25 %, which is a 7.83 % increase over that found with z only.
Recognition is held above 70 % until n < 46, drastically reduc-
ing when n < 15. Again, a dip in performance is observed
where static and temporal information for geometric area fea-
tures lie.

4. Using PCA to combine visual features
The previous re-ordering and truncation of the visual feature
provided useful information with respect to the discrimination
of individual coefficients and effectively either retained or re-
moved each coefficient. Applying PCA now allows a new fea-
ture vector to be created that is formed from a weighted combi-
nation of the original visual feature vector. This section investi-
gates the effect of applying PCA to the visual features.
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Figure 8: Recognition accuracy when truncating z̃′ by F-ratio
rank order.

4.1. PCA on static visual features z

PCA is applied to z to find a compact and de-correlated static
feature, v, by multiplying by transform matrix, H,

vt = H× zt (16)

where the rows, hi, of H are the PCA-derived basis functions
found from the eigenvectors of the within-class covariance ma-
trix, ranked by their eigenvalues.

4.1.1. Analysis of basis functions

Figure 9 shows the first four basis functions, hi, of H. Figure
9(a) shows the first basis function, h1, which should produce
the most discriminative coefficient of the new feature vector, v.
This provides relatively equal weighting for most coefficients,
except geometric which are all given a high weight. The sec-
ond basis function, h2, shown in Figure 9(b), notably removes
weighting for geometric and low order 2D-DCT coefficients.
Figure 9(c) shows the third basis function, h3, which provides
more weighting for all AAM features and less for geometric
features of the inner lip. The fourth basic function, h4, shown
in Figure 9(d), again provides more weight for AAM, focusing
on shape, and suppresses Fourier descriptors for the inner lip
and all geometric features.

4.1.2. Speech recognition results for PCA-derived features

Speech recognition uses PCA-derived visual features, v, which
are truncated from 74 to 1 coefficients. Accuracy is shown in
Figure 10, with maximum performance of 86.75 % using 40
coefficients and a sharp drop when using only 8 coefficients.
Using PCA on just static features outperforms F-ratio-derived
features using both static and temporal information. This is not
surprising due to the flexibility of weighting individual coef-
ficients available with PCA but not possible with the F-ratio
which is limited to retaining or removing a coefficient.

4.2. PCA with temporal derivatives

Adding temporal information is known to improve speech
recognition accuracy, as was shown in Section 3.4.2 when com-
bined with F-ratios. There are two approaches to adding tem-
poral information within the framework of PCA. The first is to
apply temporal information prior to PCA, i.e. applying PCA to
z′ to give

ot = D× z′t (17)
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Figure 9: Analysis of first four PCA basis functions for v from
transform matrix H.
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Figure 10: Recognition accuracy when truncating PCA-derived
feature, v from 74 to 1 coefficients.

where D is the PCA transform used to generate feature vectors
ot. The second method is to apply PCA to the static features
(c.f. Equation 16) and then compute temporal derivatives, i.e.
v′ = [v ∆v ∆∆v].

4.2.1. Analysis of basis function for o

The PCA-derived basis functions of transform matrix, D, now
include both static and temporal components and Figure 11
shows the first four basis functions of D. These appear to be
split into two separate configurations, with the first and third
basis functions, d1 (Figure 11(a)) and d3 (Figure 11(c)), pro-
viding more weight for static and acceleration features. Con-
versely, the second and fourth basis functions, d2 (Figure 11(b))
and d4 (Figure 11(d), provide more weight for the velocity fea-
tures. Within these, the first and second basis function have
more clear boundaries between the static, velocity and acceler-
ation features, compared to the third and fourth basis functions.

4.2.2. Speech recognition results for PCA-derived features
with temporal derivatives

To compare the augmentation of temporal derivatives before
and after the application of PCA, speech recognition tests are
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Figure 11: Analysis of first four PCA basis functions for o from
transform matrix D.

performed on features o and v′, respectively. As previously,
the number of coefficients is reduced from 222 to 1 coefficient.
Table 4 shows the highest performance achieved with each con-
figuration, along with the result when retaining 95 % of the vari-
ation. Performance is similar between both configurations, with
o slightly outperforming v′. Using 95 % of the variation pro-
duces comparable results with less than half the coefficients.

Table 4: ASR results for PCA with temporal features.

Configuration Number of Coefficients Accuracy

o 148 89.42 %
o95 69 88.67 %
v′ 153 88.92 %
v′95 69 87.66 %

4.3. Optimising PCA visual feature

The previous speech recognition tests all used 19 states and a
single mode within each state. Using the four configurations
outlined in Section 4.2.2, an exploratory search is now made
to determine the optimal number of states and modes with the
aim of finding best recognition performance. Table 5 shows
the HMM configurations that give best performance attained for
each feature. All configurations outperform the best individual
visual feature, which was AAM as shown in Figure 3 with best
configuration, v′ using 153 coefficients with 12 states and 2
modes, providing 1.17 % increase. Again, retaining 95 % of the
variance provides comparable results.

Table 5: ASR Results for optimal PCA with temporal features.

Configuration States Modes Accuracy

o 10 2 92.75 %
o95 11 2 92.50 %
v 12 2 93.50 %
v′95 14 3 92.92 %

5. Conclusion
This study has shown the importance of different static and tem-
poral visual features via F-ratio and J-measures. No single fea-
ture is more discriminative than others, suggesting a combina-
tion of the most discriminative coefficients from each feature
type would provide a feature vector that could outperform stan-
dard visual features. Interestingly the analysis found that sim-
ple geometric features provided high levels of discriminability.
PCA was then selected to combine the visual features into a
compact, de-correlated feature, of which two approaches for
augmenting temporal derivatives were compared. Computing
temporal derivatives after PCA gave slightly higher accuracy,
attaining 93.5 % word accuracy, an increase of 1.17 % over
AAM features.
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