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ABSTRACT

Motivation: Distance methods are well suited for constructing
massive phylogenetic trees. However, the computational complexity
for Rzhetsky and Nei’s minimum evolution approach, one of the
earliest methods for constructing a phylogenetic tree from a distance
matrix, remains open.
Results: We show that Rzhetsky and Nei’s minimum evolution
problem is NP-complete, and so probably computationally intractable.
We do this by linking the minimum evolution problem to a graph
clustering problem called the quasi-clique decomposition problem,
which has recently also been shown to be NP-complete. We also
discuss how this link could potentially open up some useful new
connections between phylogenetics and graph clustering.
Contact: taoyang.wu@uea.ac.uk
Supplementary information Supplementary appendix is available at
Bioinformatics online.

1 INTRODUCTION
One of the earliest distance-based approaches introduced to
construct a phylogenetic tree is the minimum evolution (ME)
method. It was first suggested by Kidd and Sgaramella-Zonta
(1971) and consists of two main steps: First branch lengths are
assigned to tree topologies based on a distance matrix, and then a
topology is selected which minimizes the sum of the branch lengths.
There are several variants of this approach which are reviewed
in e.g. Catanzaro (2009); Desper and Gascuel (2005). Although
model-based tree construction methods, such as likelihoodand
Bayesian approaches, are tending to supersede distance-based
methods in the literature, ME methods still remain popular.This
is in part due to the fact that large-scale sequencing applications
such as metagenomics involve constructing massive trees for which
distance-based methods are well suited (see e.g. Filipskiet al.,
2015).

In this paper we are interested in the ME approach introduced
by Rzhetsky and Nei (1993). This is based on ordinary least
squares (OLS) estimates of branch lengths, served as a motivation
for the neighbor-joining method (Saitou and Nei, 1987), andis
implemented by Desper and Gascuel (2002) in the popular FastME
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software. It is commonly believed that, just as the optimization
problems arising from the parsimony (Day, 1987) and the likelihood
(Addario-Berryet al., 2004) approaches, this version of the ME
method also leads to an NP-complete problem and, so, is probably
computationally intractable. However, even though this has been
stated to be the case in some of the literature (probably because
tree construction based solely on OLS for integer branch lengths
is NP-complete (Day, 1987)), to our best knowledge this facthas
not been formally proven. It should also be noted, however, that
the closely related and more recently introduced balanced minimum
evolution (BME) problem (Desper and Gascuel, 2002) – in which
branch lengths are estimated bya special case ofweighted least
squares (WLS) (Desper and Gascuel, 2004) – has been shown to
be NP-complete (Fiorini and Joret, 2012).

Here, we shall show that the ME problem is NP-complete for
trees with integer branch lengths. In particular, to prove our main
result, we show that the ME problem is closely related to the so-
calledquasi-clique decomposition problem, a special example of a
graph clustering problem (see, e.g., Pattilloet al., 2013) which has
recently been shown to be NP-complete by Kayaet al. (2013). We
believe that the link that we describe could open up some interesting
and useful new connections between the fields of phylogenetics and
graph clustering (Schaeffer, 2007), a burgeoning area withseveral
applications including pedigree construction (Kirkpatrick et al.,
2011) and community structure detection (Brunatoet al., 2008).

The rest of the paper is organized as follows. In the next section
we show that certain OLS weightings for trees relative to a distance
matrix are related to clique properties in a graph that can be
associated to the distance matrix. In the following section, we then
show that a rooted version of the ME problem is NP-complete, and
explain how a technique used in Day (1987) can be used to show that
the ME problem is NP-complete (we provide the full proof for this
in the appendix as it is quite technical in nature). In the last section
we discuss a link between phylogenetics and graph clustering which
arises from our approach to the ME problem, and some possible
future directions.

2 L2-WEIGHTINGS
In this section we shall show that OLS tree weightings for a certain
distance matrix associated to a graphG can be related to a clique
property ofG.
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We first recall some definitions concerning trees. For a setX of
taxa, arooted X-tree T = (V,E) is a graph-theoretical tree with (i)
leaf setX, (ii) no vertices of degree two and (iii) a specific vertex
ρ which is called the root ofT and will not be regarded as part of
the leaf set. Given a rootedX-treeT = (V,E), we let≤T be the
partial order onV induced byT , that is,u ≤T v, or u is below
v, if and only if v is contained in the path from the rootρ to u. If
in addition we haveu 6= v, we writeu <T v and say thatu is
strictly below v. Thelowest common ancestor of two verticesu and
v, denoted byLCA(u, v), is defined as the lowest vertex inT such
that bothu andv are below it. Moreover, for each vertexu in T ,
C(u) = {x ∈ X : x ≤T u} denotes the set of leaves belowu.
Finally, a rootedX-tree with a particularly simple structure is the
star X-tree SX whose vertex set consists of the rootρ and leaf set
X.

A weighting of a rootedX-treeT is a mapω that assigns every
edge ofT a non-negative real number. Given such a weighting,
Dω(u, v) denotes the length of the shortest path inT between any
two verticesu andv. Moreover, such a weighting is called aninteger
equi-weighting on T if ω : E → Z≥0 := {0, 1, 2, . . . , } and
Dω(x, ρ) = Dω(y, ρ) for all x, y ∈ X. Given a distance matrix
D on a set of taxaX and a rootedX-treeT , anL2-weighting ω for
(T , D) is an integer equi-weighting onT such that

∆(T ;Dω, D) := ∆(Dω, D) := ||Dω −D||22 :

=
∑

{x,y}⊆X

|Dω(x, y)−D(x, y)|2

is minimum over all integer equi-weightings onT . In this case, we
shall say that(T , ω) is anL2-representation of D.

Now, for a graphG = (X,E) with vertex setX, let DG be
the distance matrix onX such that for a pair of distinct elementsx
andy in X, we haveDG(x, y) = 2 if x, y are adjacent inG, and
DG(x, y) = 4 otherwise. The edge density ofG, denoted byγ(G),
is defined as|E|/

(
X

2

)
andG is called asemi-clique if γ(G) ≥ 1/2.

In the following we will also refer to subsetsX ′ ⊆ X as semi-
cliques in G if the subgraph ofG induced byX ′ is a semi-clique.
We now provide a key relationship between the edge density ofG
andL2-representations ofDG.

LEMMA 2.1. Suppose that G is a graph with vertex set X , |X| ≥
2, and SX is the star X-tree. Let ωi (i = 1, 2) be the weighting that
assigns to each edge of SX weight i. Then the following assertions
hold:
(i) If γ(G) > 1/2, then ω1 is the unique L2-weighting for
(SX , DG).
(ii) If γ(G) < 1/2, then ω2 is the unique L2-weighting for
(SX , DG).
(iii) If γ(G) = 1/2, then the L2-weightings for (SX , DG) are ω1

and ω2.

PROOF. For simplicity, putD := DG and letωj (j ∈ Z≥0)
be a weighting function that assigns weightj to each edge inSX .
Noting that each leaf is incident to the root, we know that anL2-
weighting for(SX , D) must equalωj for somej in Z≥0 because
anL2-weighting is necessarily an integer equi-weighting. Because
D(x, y) ∈ {2, 4} for x 6= y in X, a straightforward calculation
leads to

min{∆(Dω1
, D),∆(Dω2

, D)} < ∆(Dωj
, D)

for j ∈ Z≥0−{1, 2}. In other words, anL2-weighting for(SX , D)
is eitherω1 or ω2.

Let n and m be the number of vertices and edges inG,
respectively. Then we have

∆(Dω1
, D) −∆(Dω2

, D) = 2[n(n− 1)− 4m]. (1)

If γ(G) > 1/2, then we have2m/(n(n − 1)) > 1/2, and hence
4m > n(n− 1). Together with Eq. (1), this implies∆(Dω1

, D) <
∆(Dω2

, D), and henceω1 is the uniqueL2-weighting for(SX , D).
This completes the proof of part (i); parts (ii) and (iii) follow by
similar arguments. �

ForG as above, we now summarize how the property of being a
semi-clique is related toL2-representations ofDG.

LEMMA 2.2. Suppose that G is a graph with vertex set X ,
|X| ≥ 2, and T is a rooted X-tree with root ρ. Let ω be an L2-
weighting for (T , DG), then Dω(x, y) ≥ 2 for all x, y ∈ X ,
x 6= y. In addition, if ρ = LCA(y, z) for some y, z ∈ X , then
we have Dω(x, ρ) ≤ 2 for all x ∈ X , where equality holds if G is
not a semi-clique.

PROOF. For simplicity,putD := DG and for a vertexu 6= ρ, let
p(u) be the parent ofu, that is, the vertex on the path fromu to ρ in
T that is adjacent tou. Sinceω is anL2-weighting, we know that for
every pair of elementsx, y ∈ X, we haveDω(u, x) = Dω(u, y)
for every common ancestoru of x and y. In particular, we have
Dω(LCA(x, y), x) = Dω(LCA(x, y), y) = Dω(x, y)/2. Moreover,
there exists some integerk ≥ 0 such thatDω(ρ, x) = k for all
x ∈ X.

Note that we havek ≥ 1 because otherwise we haveDω(x, y) =
0 for all x, y ∈ X, and hence∆(T ;Dω1 , D) < ∆(T ;Dω, D),
whereω1 is the integer equi-weighting onT that assigns to each
pendant edge ofT weight 1, and0 to all other edges.

First, we shall show thatDω(x, y) ≥ 2 for all x, y ∈ X. If not,
then consider a pairx1, x2 ∈ X with Dω(x1, x2) < 2. Let u =
LCA(x1, x2). Then by noting thatDω(u, x1) = Dω(x1, x2)/2 <
1 we haveDω(u, x1) = 0 and henceDω(u, ρ) = k. Let v be
the common ancestor ofx1 andx2 such thatDω(v, ρ) = k and
ω({p(v), v}) > 0. Letω′ be the weighting function obtained from
ω by settingω′(e) = ω(e) − 1 for e = {p(v), v}, ω′(e) = 1 for
e = {p(x′), x′} with x′ ∈ C(v), andω′(e) = ω(e) otherwise. Then
ω′ is an integer equi-weighting with

∆(T ;Dω, D) −∆(T ;Dω′ , D)

=
∑

{x,y}⊆C(v),x 6=y

D2(x, y)− (D(x, y)− 2)2 > 0,

contradicting thatω is anL2-weighting for(T , D).
Now assume thatρ = LCA(x1, x2) for somex1, x2 ∈ X. It

remains to show thatk ≤ 2, that is,Dω(x, ρ) ≤ 2 for all x ∈ X. If
not, then we havek ≥ 3. Let {u1, . . . , ut} be the set of vertices in
T such thatDω(ρ, p(ui)) = 0 andDω(ρ, ui) > 0 for 1 ≤ i ≤ t.
Then{C(u1), . . . , C(ut)} is a partition ofX. Let ω′ be the integer
equi-weighting obtained fromω by settingω′(e) = ω(e) − 1 for
e = {p(ui), ui} with 1 ≤ i ≤ t, andω′(e) = ω(e) otherwise.
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Then forx ∈ C(ui) andx′ ∈ C(uj) with i 6= j, we have

D(x, x′) ≤ 4 ≤ 2k − 2 = Dω(x, x
′)− 2 = Dω′(x, x′)

and hence

(Dω(x, x
′)−D(x, x′))2 − (Dω′(x, x′)−D(x, x′))2

= (Dω′(x, x′) + 2−D(x, x′))2 − (Dω′(x, x′)−D(x, x′))2

= 4(Dω(x, x
′)−D(x, x′) + 1) ≥ 4.

Therefore, in view oft ≥ 2, we have

∆(T ;Dω, D)−∆(T ;Dω′ , D) ≥ 4
∑

1≤i<j≤t

|C(ui)|×|C(uj)| > 0,

contradicting thatω is anL2-weighting for(T , D).
Finally, whenG is not a semi-clique, a proof similar to that of

Lemma 2.1 showsk = 2, and hence completes the proof of the
lemma. �

3 MINIMUM EVOLUTION IS NP-COMPLETE
In the last section we saw howL2-weightings were related to
semi-cliques. We now use this information to relate semi-clique
decompositions of graphs to the minimum evolution problem,which
will also allow us to show that this latter problem is NP-complete.

We begin by presenting a problem that is closely related to the
ME-problem. Given a distance matrixD onX, a rootedX-treeT
and anL2-weightingω for (T , D), we letω(T ) denote the sum of
the edge-weights ofT .

Problem Ultra-metric Minimum Evolution (UME(D,m))
Instance: A distance matrixD on a finite setX and an integerm.
Question: Does there exist anL2-representation(T , ω) of D such
thatω(T ) ≤ m?

Now, letG be a graph with vertex setX. We call a partitionP
of X a semi-clique decomposition of G if every set inP is a semi-
clique inG. We now relate this concept to the problem of finding a
solution to the UME problem.

PROPOSITION3.1. Let G be a graph with vertex set X and k ≥ 1
an integer. Then there exists a semi-clique decomposition of G with
size at most k if and only if there exists an L2-representation (T , ω)
of DG with ω(T ) ≤ |X|+ k.

PROOF. PutD := DG andn = |X|. In addition, letωj (j ∈
Z≥0) be the weighting function that assigns weightj to each edge
in a rootedX-tree. To simplify the proof it will be convenient to
allow vertices of degree two in a rootedX-tree.

“⇒” Let {X1, X2, . . . , Xk} be a semi-clique decomposition of
Gwhose size is minimum over all semi-clique decompositions of G.
If k = 1, then consider the star treeSX . SinceG is a semi-clique,
by Lemma 2.1 we know thatω1 is anL2-weighting for (SX , D)
and, clearly,ω1(SX) = n, as required.

So, assumek > 1. Then G is not a semi-clique. For each
1 ≤ i ≤ k, let Ti := S∗

Xi
be theXi-tree obtained fromSXi

by
adding a new node adjacent to the root ofSXi

, and designating this
new node as the root ofS∗

Xi
. Note that, if |Xi| = 1, thenSXi

contains one edge whileS∗
Xi

contains two edges.Considering the

X-treeT obtained by identifying the roots of allTi as the root of
T , each treeTi can be regarded as a subtree ofT . Moreover, since
ω1(T ) = |X| + k, it suffices to show thatω1 is anL2-weighting
for (T , D). To this end, consider an arbitraryL2-weightingω for
(T , D). SinceG is not a semi-clique andk > 1 implies thatρ
is the lowest common ancestor of a pair of elements ofX, by
Lemma 2.2 we haveDω(ρ, x) = 2 for all x ∈ X, as well as
Dω(x, y) ≥ 2 for x 6= y. Therefore, to establish thatω1 is anL2-
weighting for(T , D), it remains to show, for alli with |Xi| ≥ 2,
thatω(e) = 1 for all edgese in Ti. Indeed, if this does not hold for
somei with |Xi| ≥ 2, then byDω(x, ρ) = 2 andDω(x, y) ≥ 2
for x 6= y in Xi we must haveω(e) = 2 for all pendant edgese
in Ti andω(e) = 0 for all other edges. Letω′ be the weighting
function on the edges ofT defined asω′(e) = 1 for edgese in Ti

andω′(e) = ω(e) otherwise. SinceXi is a semi-clique inG, an
argument similar to the one used in the proof of Lemma 2.1 either
yields ∆(Dω′ , D) < ∆(Dω, D), contradicting thatω is anL2-
weighting, or∆(Dω′ , D) = ∆(Dω, D), as required.

“⇐” Let k be the minimum positive number such that there
exists a rootedX-tree T = (V,E) and anL2-weightingω for
(T , D) with ω(T ) ≤ |X| + k. Without loss of generality, we may
assume thatk < |X| (as otherwise the conclusion clearly holds)
and that the rootρ of T is the lowest common ancestor of two
elements inX (as the single edge incident to a root of degree one
can always be contracted without changing the distanceDω(x, y)
for anyx, y ∈ X). In addition, we may assume thatω(e) > 0 for
all edgese ∈ E (indeed, by Lemma 2.2 we can assumeω(e) > 0
for all pendant edgese of T and an interior edge with weight 0 can
simply be contracted) and may further assume thatω = ω1 (as an
edge with weightm > 1 can be replaced bym edges with weight1).

Now, if k = 1 it follows immediately from the assumptions above
thatT = SX and, therefore, in view of Lemma 2.1 we can conclude
thatG is a semi-clique, as required.

So assume1 < k < |X|. Then we can further assume thatG is
not a semi-clique, as otherwise the result clearly holds. Therefore,
by Lemma 2.2, we haveDω1

(x, ρ) = 2 for some (and hence all)
x ∈ X. This implies that, besides|X| pendant edges,T containsk
edges{e1, . . . , ek} that are adjacent toρ.

For1 ≤ i ≤ k, letXi be the set of elementsx in X such that the
path betweenρ andx containsei and letEi be the set of pendant
edges incident toei. It remains to show that, for1 ≤ i ≤ k, Xi is a
semi-clique inG. Indeed, if this were not the case for somei, then
clearly|Xi| ≥ 2. Letω′ be the weighting function obtained fromω1

by settingω′(e) = 0 for e = ei,ω′(e) = 2 for e ∈ Ei, andω′(e) =
ω1(e) otherwise. SinceXi is not a semi-clique, an argument similar
to the proof of Lemma 2.1 leads to the contradiction∆(Dω′ , D) <
∆(Dω1

, D). �

By the main result of Kayaet al. (2013) it follows that the
following problem is NP-complete.

Problem Semi-clique decomposition (SCD(G, k))
Instance: A graphG with finite vertex setX and an integerk.
Question: Does there exist a semi-clique decompositionP of G
such that|P | ≤ k?

Using this fact, we immediately obtain the following corollary to
Proposition 3.1.
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COROLLARY 3.2. The problem UME(D,m) is NP-complete,
even when the non-diagonal entries of the distance matrix D are
all in {2, 4}. �

Now we return to the ME problem mentioned in the Introduction.
It refers to unrootedX-trees, that is, we drop the condition of having
a distinguished root vertex and, as a consequence, when referring to
weightings we also drop the condition that all leaves have the same
distance from the root. To avoid any confusion as to whether the
latter condition applies or not we will use the termunrooted when
referring to weightings andL2-representations for which it does not
apply.Formally, the ME problem is stated as below.

Problem Minimum Evolution (ME(D,m))
Instance: A distance matrixD on a finite setX and an integerm.
Question: Does there exist an unrootedL2-representation(T, ω) of
D such thatω(T ) ≤ m?

Now, using Corollary 3.2 and the following transformation that
was presented by Day (1987) we show that the ME problem is NP-
complete. Given a distance matrixD on X with |X| = n and
two integersm and p, let Y := {y1, · · · , ym} be a set disjoint
from X and letD̃ := fm,p(D) be the distance matrix onX ∪ Y

defined asD̃(xi, xj) = D(xi, xj) for xi, xj ∈ X, D̃(x, y) = p

for x ∈ X, y ∈ Y , and D̃(yi, yj) = 2 for yi 6= yj in Y . The
NP-completeness of ME follows from the next result, whose rather
technical proof is presented in the appendix.

PROPOSITION3.3. Suppose |X| = n ≥ 4. Suppose that D is
a distance matrix on X with D(x, x′) ∈ {2, 4} for x 6= x′ in X .
Let p = n3, m = p3 and k ≥ 1. Then D has an L2-representation
(T , ω) with ω(T ) ≤ n+ k if and only if fm,p(D) has an unrooted
L2-representation (T, w) with w(T ) ≤ n+ k +m+ (p− 3).

By Proposition 3.3 andCorollary3.2 we obtain the main result of
this paper.

THEOREM 3.4. The problem ME(D,m) is NP-complete even
when the non-diagonal entries of the distance matrix D take on only
three values. �

It would be interesting tosee whetherthe ME problem is hard for
the more general case where the edge weightscan be set torational
numbers.Note that the hardness of the BME problem mentioned
in the introduction includes the case of rational weight (Fiorini and
Joret, 2012). On the other hand, Theorem 3.4 does not imply that the
rational version of the ME-problem (RME) is hard, and there are
many optimization problems which can be solved efficiently once
the restriction that the solution must be integral is removed, such as
the well-known linear programming problem (cf. Schrijver,1986).
A starting point to explore the complexity of RME could be the
observation thatthe semi-clique decomposition problem is a special
case of theγ-clique decomposition problem forγ = 1

2
, in which

the aim is to decompose a graphG into a minimum number ofγ-
cliques, whereγ is a real number with0 ≤ γ ≤ 1, and aγ-clique
in G is a subsetC of V having at leastγ

(
|C|
2

)
edges inG with

both endpoints inC (cf. Guoet al., 2011; Pattilloet al., 2013). In
addition, Kayaet al. (2013) showed that theγ-clique decomposition
problem is NP-complete. However, to date we have not been able to
use this fact to prove thatthe RME problemis also NP-complete.

4 DISCUSSION
To prove that the ME problem is NP-complete, we first showed that
the UME problem is NP-complete by relating it to the semi-clique
decomposition problem. Interestingly, this is a special example of
a more general link between tree inference andgraph clustering
problems. In particular, we can link the following two typesof
problem for a setX:

(i) Given a distance matrixD onX and a tree scoring functionσD

on the setTX of all rootedX-trees, find a tree that optimizes
σD .

(ii) Given a graphG with vertex setX and a cluster scoring
function κG : PX → R that assigns to each partition in the
setPX of all partitions ofX a real numberκG, find a partition
of X that optimizesκG.

More specifically, this correspondence is obtained by restricting
any given tree inference problem to the set of rooted trees inTX

where every leaf is adjacent to a vertex that is adjacent to the
root (the tree in Figure 1(a), for example, has this structure), to
edge weightings that assign to every edge weight 1 and to distance
matrices that have only off-diagonal entries that are 2 or 4.In
this restricted type of rooted tree, every vertexu adjacent to the
root induces a cluster of elements inX (namely the leaves that
are adjacent tou) and, clearly, for every partitionP of X there
exists a unique such treeTP that induces precisely the clusters in
P . Thus, given any graphG with vertex setX and the distance
matrix D = DG on X which is induced byG, we obtain the
cluster scoring functionκG from the scoring functionσD by putting
κG(P ) = σD(TP ).

To give another example of this correspondence, consider the
L1-fit problem (see, e.g., Day, 1987; Farachet al., 1995). In this
problem, given a distance matrixD the aim is to find a rootedX-tree
T which minimizes the scoreσD(T ) which is equal to the minimum
of

∑
x,y∈X

|D(x, y) − Dω(x, y)| taken over all weightingsω of
T . For this example, the corresponding graph clustering problem is
known as thecorrelation clustering problem (Bansalet al., 2004)
where the cluster scoring functionκG assigns, for a given graphG
with vertex setX, to any partitionP in PX the number of 2-element
subsets (i.e. edges)e = {u, v} of X that violateP , that is, eithere
is an edge ofG butu andv do not lie in the same cluster inP or e is
not an edge ofG butu andv both lie in the same cluster ofP . For
the partitionP = {C1, C2, C3} of the graphG in Figure 1(b), for
example, this cluster scoring function yields a score of 4. It is not
hard to check that theL1-fit of the tree in Figure 1(a) for the distance
matrixDG derived from the graphG is 4 too. Note that minimizing
the cluster scoring function corresponding to theL1-fit is equivalent
to computing the minimum number of edge deletions and insertions
that suffice to transformG into a disjoint union of complete graphs.
When adopting this latter view, correlation clustering is usually
referred to ascluster editing (see, e.g., Böckeret al., 2011).

It would be interesting to explore which tree inference problems
are related in a similar way to other graph clustering problems,
and conversely. This could yield useful new insights into these
inference problems, and possibly new algorithms for their solution
or approximation.
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(a) ρ

x1 x2 x3 x4 x5 x6 x7 x8 x9

(b) C1 C2 C3

x1

x2

x3

x4

x5

x6

x7 x8

x9

Fig. 1. (a) A rooted graph theoretical treeT with root ρ and leaf setX = {x1, x2, . . . , x9}. For the edge weightingω that assigns weight 1 to every edge
of T , the shortest path distanceDω(x2, x5) = 4. (b) A graphG with vertex setX = {x1, x2, . . . , x9} that is partitioned into the clustersC1, C2 andC3

indicated by the shaded boxes.
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Böcker, S., Briesemeister, S., and Klau, G. (2011). Exact algorithms
for cluster editing: evaluation and experiments.Algorithmica, 60,
316–334.

Brunato, M., Hoos, H., and Battit, R. (2008). On effectivelyfinding
maximal quasi-cliques in graphs.Lecture Notes in Computer
Science, 5313, 41–55.

Catanzaro, D. (2009). The minimum evolution problem: overview
and classification.Networks, 53, 112–125.

Day, W. (1987). Computational complexity of inferring phylogenies
from dissimilarity matrices.Bulletin of Mathematical Biology,
49, 461–467.

Desper, R. and Gascuel, O. (2002). Fast and accurate phylogeny
reconstruction algorithms based on the minimum-evolution
principle. Journal of Computational Biology, 19, 687–705.

Desper, R. and Gascuel, O. (2004). Theoretical foundation
of the balanced minimum evolution method of phylogenetic
inference and its relationship to weighted least-squares tree
fittings. Molecular Biology and Evolution, 21, 587–598.

Desper, R. and Gascuel, O. (2005). The minimum-evolution
distance-based approach to phylogenetic inference. In
O. Gascuel, editor,Mathematics of evolution and phylogeney,

pages 1–32. Oxford University Press.
Farach, M., Kannan, S., and Warnow, T. (1995). A robust modelfor

finding optimal evolutionary trees.Algorithmica, 13, 155–179.
Filipski, A., Tamura, K., Billing-Ross, P., Murillo, O., and Kumar,

S. (2015). Phylogenetic placement of metagenomic reads using
the minimum evolution principle.BMC Genomics, 16, S13.

Fiorini, S. and Joret, G. (2012). Approximating the balanced
minimum evolution problem. Operation Research Letters, 40,
31–35.

Guo, J., Kanj, I., Komusiewicz, C., and Uhlmann, J. (2011). Editing
graphs into disjoint unions of dense clusters.Algorithmica, 61,
949–970.

Kaya, O., Kayaaslan, E., and Uçar, B. (2013). On the minimum
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