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ABSTRACT

Motivation: Distance methods are well suited for constructing
massive phylogenetic trees. However, the computational complexity
for Rzhetsky and Nei's minimum evolution approach, one of the
earliest methods for constructing a phylogenetic tree from a distance
matrix, remains open.

Results: We show that Rzhetsky and Nei’'s minimum evolution
problem is NP-complete, and so probably computationally intractable.
We do this by linking the minimum evolution problem to a graph
clustering problem called the quasi-clique decomposition problem,
which has recently also been shown to be NP-complete. We also
discuss how this link could potentially open up some useful new
connections between phylogenetics and graph clustering.

Contact: taoyang.wu@uea.ac.uk

Supplementary information Supplementary appendix is available at
Bioinformatics online.

1 INTRODUCTION

One of the earliest distance-based approaches introduced

software. It is commonly believed that, just as the optiriiara
problems arising from the parsimony (Day, 1987) and thdiliked
(Addario-Berryet al., 2004) approaches, this version of the ME
method also leads to an NP-complete problem and, so, is plsoba
computationally intractable. However, even though this haen
stated to be the case in some of the literature (probablyuseca
tree construction based solely on OLS for integer branchgtlen
is NP-complete (Day, 1987)), to our best knowledge this Fet
not been formally proven. It should also be noted, howevst t
the closely related and more recently introduced balandaohmam
evolution (BME) problem (Desper and Gascuel, 2002) — in Whic
branch lengths are estimated byspecial case ofveighted least
squares (WLS) (Desper and Gascuel, 2004) — has been shown to
be NP-complete (Fiorini and Joret, 2012).

Here, we shall show that the ME problem is NP-complete for
trees with integer branch lengths. In particular, to proue main
result, we show that the ME problem is closely related to the s
calledquasi-clique decomposition problem, a special example of a
graph clustering problem (see, e.g., Pattilk al., 2013) which has
recently been shown to be NP-complete by Kayal. (2013). We
believe that the link that we describe could open up somedstiag

tand useful new connections between the fields of phylogenatid
raph clustering (Schaeffer, 2007), a burgeoning area seteral
pplications including pedigree construction (Kirkpeltriet al.,
2011) and community structure detection (Brureital., 2008).

The rest of the paper is organized as follows. In the nexiaect
we show that certain OLS weightings for trees relative tostagice
matrix are related to clique properties in a graph that can be
associated to the distance matrix. In the following sectwa then
show that a rooted version of the ME problem is NP-completd, a
explain how a technique used in Day (1987) can be used to $taiw t
the ME problem is NP-complete (we provide the full proof foist
in the appendix as it is quite technical in nature). In thé $astion
we discuss a link between phylogenetics and graph clusterdirich
arises from our approach to the ME problem, and some possible
éuture directions.

construct a phylogenetic tree is the minimum evolution (ME)
method. It was first suggested by Kidd and Sgaramella-Zontzg
(1971) and consists of two main steps: First branch lengths a
assigned to tree topologies based on a distance matrix,hamdat
topology is selected which minimizes the sum of the brannpttes.
There are several variants of this approach which are redew
in e.g. Catanzaro (2009); Desper and Gascuel (2005). Adgtihou
model-based tree construction methods, such as likeliteoutl
Bayesian approaches, are tending to supersede distased-ba
methods in the literature, ME methods still remain populdris
is in part due to the fact that large-scale sequencing agtfits
such as metagenomics involve constructing massive treeghich
distance-based methods are well suited (see e.g. Filgiséi.,
2015).

In this paper we are interested in the ME approach introduce
by Rzhetsky and Nei (1993). This is based on ordinary least
squares (OLS) estimates of branch lengths, served as aatiartiv
for the neighbor-joining method (Saitou and Nei, 1987), amd 2 L2-WEIGHTINGS
implemented by Desper and Gascuel (2002) in the populaMEast  |n this section we shall show that OLS tree weightings for raie
distance matrix associated to a gra@hcan be related to a clique
property ofG.

*to whom correspondence should be addressed
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We first recall some definitions concerning trees. For aXseif
taxa, arooted X -tree 7 = (V, E) is a graph-theoretical tree with (i)
leaf setX, (ii) no vertices of degree two and (iii) a specific vertex
p which is called the root of” and will not be regarded as part of
the leaf set. Given a rootel-tree7 = (V, E), we let<s be the
partial order onV induced byT, that is,u <7 v, oru is below
v, if and only if v is contained in the path from the roptto u. If
in addition we haveu # v, we writeu <7 v and say that is
strictly below v. Thelowest common ancestor of two verticesu and
v, denoted byLCA(u, v), is defined as the lowest vertexfn such
that bothu andv are below it. Moreover, for each vertexin 7T,
C(u) = {z € X : = <7 u} denotes the set of leaves belaw
Finally, a rootedX-tree with a particularly simple structure is the
star X-tree Sx whose vertex set consists of the rgoand leaf set
X.

A weighting of a rootedX -tree 7 is a mapw that assigns every

edge of 7 a non-negative real number. Given such a weighting,

D.,(u,v) denotes the length of the shortest pat!Vifbetween any
two verticesu andv. Moreover, such a weighting is called iameger
equi-weighting on 7 if w : B — Z>o := {0,1,2,...,} and
D, (z,p) = Du(y,p) forall z,y € X. Given a distance matrix
D on a set of taxaX and a rootedX -tree7", an Lz-weighting w for
(T, D) is an integer equi-weighting oh such that

A(T; Doy, D) := A(Dw, D) = ||D — DI|3 :
Z |Dw(l'7y)7D(£E7y)|2

{z,y}CX

is minimum over all integer equi-weightings @n In this case, we
shall say tha{7, w) is an Lo-representation of D.

Now, for a graphG = (X, E) with vertex setX, let D¢ be
the distance matrix oiX' such that for a pair of distinct elements
andy in X, we haveD¢(x,y) = 2if z,y are adjacent iz, and
D¢ (z,y) = 4 otherwise. The edge density 6f denoted byy(G),
is defined a$E|/()2() andd is called asemi-cliqueif v(G) > 1/2.
In the following we will also refer to subsets’ C X assemi-
cliquesin G if the subgraph of+ induced byX”’ is a semi-clique.
We now provide a key relationship between the edge density of
and Lo-representations db¢.

LEMMA 2.1. Supposethat G isagraph with vertex set X, | X | >
2, and Sx isthestar X-tree. Let w; (i = 1, 2) be the weighting that
assigns to each edge of Sx weight . Then the following assertions
hold:

i) 1f ~(G)
(Sx, DG).
(i) If v(G) < 1/2, then w, is the unique Lo-weighting for
(Sx, DG).

(i) If v(G) = 1/2, then the Lo-weightings for (Sx, Dg) are wi
and wa.

> 1/2, then wy is the unique L2-weighting for

PrROOF For simplicity, putD := D¢ and letw; (j € Z>o)
be a weighting function that assigns weighto each edge i x.
Noting that each leaf is incident to the root, we know that/an
weighting for (Sx, D) must equalv; for somej in Z>, because
an Ly-weighting is necessarily an integer equi-weighting. Bsea
D(z,y) € {2,4} for z # y in X, a straightforward calculation
leads to

min{A(Da,, D), A(Duy,, D)} < A(D.,,, D)

for j € Z>o—{1,2}. In other words, atLz-weighting for(Sx, D)
is eitherw; or ws.

Let n and m be the number of vertices and edges @h
respectively. Then we have

A(Dy,, D) = A(Dyy,, D) =2[n(n — 1) — 4m]. (1)

If v(G) > 1/2, then we have@m/(n(n — 1)) > 1/2, and hence
4m > n(n — 1). Together with Eq. (1), this implieA(D,,, , D) <
A(D.,, D), and hencey; is the uniqueL;-weighting for(Sx, D).
This completes the proof of part (i); parts (ii) and (iii) fimh by
similar arguments. |

For G as above, we now summarize how the property of being a

semi-clique is related tdo-representations db¢.

LEMMA 2.2. Suppose that G is a graph with vertex set X,
|X| > 2, and T is arooted X-tree with root p. Let w be an Lo-
weighting for (7, Dg), then Dy (z,y) > 2 for al z,y € X,
x # y. In addition, if p = LCA(y, 2z) for some y,z € X, then
we have D, (z, p) < 2 for all z € X, where equality holdsif G is
not a semi-clique.

PrROOF. For simplicity,put D := D¢ and for a vertexu # p, let
p(u) be the parent of;, that is, the vertex on the path fromto p in
T thatis adjacent ta. Sincew is anL2-weighting, we know that for
every pair of elements,y € X, we haveD., (u,x) = D (u,y)
for every common ancestar of « andy. In particular, we have
D (LcA(z,y),z) = Dy (LCA(z,y),y) = Du(z,y)/2. Moreover,
there exists some integér > 0 such thatD.(p,z) = k for all
r e X.

Note that we havé > 1 because otherwise we haig, (z,y) =
0 for all z,y € X, and henceA(T;D_1,D) < A(T;D., D),
wherew! is the integer equi-weighting off that assigns to each
pendant edge of weight 1, and) to all other edges.

First, we shall show thab,, (z,y) > 2 for all z,y € X. If not,
then consider a pait;,z2 € X with D, (z1,22) < 2. Letu =
LCA(z1,z2). Then by noting thaD., (u, 1) = Dy (z1,22)/2 <
1 we haveD, (u,z1) = 0 and henceD,, (u,p) = k. Letwv be
the common ancestor af; andz» such thatD,, (v, p) = k and
w({p(v),v}) > 0. Letw’ be the weighting function obtained from
w by settingw’(e) = w(e) — 1 fore = {p(v),v}, w'(e) = 1 for
e = {p(z), 2"} withz’ € C(v), andw’(e) = w(e) otherwise. Then
w' is an integer equi-weighting with

>

{z,y}CC(v),zAy

A(T, Dw/7 D)

DQ(x7y) -

(D(z,y) = 2)* >0,

contradicting that is anLz-weighting for(7, D).

Now assume thap = LCA(x1,x2) for somezi,z, € X. It
remains to show thdt < 2, thatis,D.,(z, p) < 2forallz € X. If
not, then we havé > 3. Let{u1,...,u;} be the set of vertices in
T such thatD., (p, p(ui)) = 0 and Dy, (p,u;) > 0for1 < i < ¢.
Then{C(u1),...,C(u¢)} is a partition of X. Letw’ be the integer
equi-weighting obtained from by settingw’(e) = w(e) — 1 for
e = {p(u;),u;} with 1 < i < ¢, andw’(e) = w(e) otherwise.
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Then forz € C(u;) andz’ € C(u;) with 7 # j, we have
D(z,2') <4 <2k —2=Dy(z,2") —2 = Dy (z,2")
and hence

(Du(@,2") = D(z,2))* = (Do (z,2") — D(,2"))?
= (Do (z,2") + 2 — D(z,2))* = (Do (z,2") — D(z,2))*
=4(Dy(x,z") — D(z,2") + 1) > 4.

Therefore, in view of > 2, we have

1<i<j<t

contradicting that is anLz-weighting for(7, D).

Finally, whenG is not a semi-clique, a proof similar to that of
Lemma 2.1 show# = 2, and hence completes the proof of the
lemma. |

3  MINIMUM EVOLUTION IS NP-COMPLETE

In the last section we saw how.-weightings were related to
semi-cliques. We now use this information to relate serojue
decompositions of graphs to the minimum evolution probhetrich
will also allow us to show that this latter problem is NP-cdete.

We begin by presenting a problem that is closely related ¢o th
ME-problem. Given a distance matrix on X, a rootedX -tree7”
and anLz-weightingw for (7, D), we letw(7") denote the sum of
the edge-weights of .

Problem Ultra-metric Minimum Evolution ME(D, m))
Instance: A distance matrixD on a finite setX and an integem.
Question: Does there exist afz-representatiori7, w) of D such
thatw(7) < m?

Now, let G be a graph with vertex set. We call a partitionP
of X asemi-clique decomposition of G if every set inP is a semi-

clique inG. We now relate this concept to the problem of finding a edgesfe , .

solution to the UME problem.

PROPOSITION3.1. Let G beagraphwithvertexset X and k& > 1
an integer. Then there exists a semi-clique decomposition of G with
sizeat most & if and only if there existsan L-representation (7, w)
of De withw(T) < | X| + k.

PROOFR. PutD := D¢ andn = |X|. In addition, letw; (j €
Z>0) be the weighting function that assigns weigho each edge
in a rooted X -tree. To simplify the proof it will be convenient to
allow vertices of degree two in a rootéd-tree.

“=" Let {X1, X>,...,Xx} be a semi-clique decomposition of
G whose size is minimum over all semi-clique decompositidns.o
If & = 1, then consider the star tré&¢. SinceG is a semi-clique,
by Lemma 2.1 we know that; is an L.-weighting for (Sx, D)
and, clearlyw: (Sx) = n, as required.

So, assumé: > 1. ThenG is not a semi-clique. For each
1 <i <k letT; := Sk, bethe X;-tree obtained fron&x, by
adding a new node adjacent to the rootSaf,, and designating this
new node as the root &%, . Note that, if| X;| = 1, thenSx,
contains one edge whil,, contains two edgesConsidering the

X-tree7 obtained by identifying the roots of &f; as the root of
T, each tre€f; can be regarded as a subtreefofMoreover, since
wi(T) = |X| + k, it suffices to show thab, is an L.-weighting
for (7, D). To this end, consider an arbitrafy,-weightingw for
(T, D). SinceG is not a semi-clique and > 1 implies thatp
is the lowest common ancestor of a pair of elementsXof by
Lemma 2.2 we haveD,,(p, z) 2 forall z € X, as well as
D, (z,y) > 2 for z # y. Therefore, to establish that; is anLz-
weighting for (7, D), it remains to show, for all with |.X;| > 2,
thatw(e) = 1 for all edges in 7;. Indeed, if this does not hold for
somei with | X;| > 2, then byD.,(x,p) = 2 and Dy (z,y) > 2
for x # y in X; we must havev(e) = 2 for all pendant edges
in 7; andw(e) = 0 for all other edges. Let’ be the weighting
function on the edges of defined asv’(e) = 1 for edgese in 7;
andw’(e) = w(e) otherwise. SinceX; is a semi-clique in&, an
argument similar to the one used in the proof of Lemma 2.Jeeith
yields A(D,,,, D) < A(D., D), contradicting thatv is an Lo-
weighting, orA(D,, D) = A(D., D), as required.

“«<" Let k be the minimum positive humber such that there
exists a rootedX-tree 7 = (V,E) and anLz-weightingw for
(T, D) with w(7) < |X| + k. Without loss of generality, we may
assume thak < |X| (as otherwise the conclusion clearly holds)
and that the roop of 7 is the lowest common ancestor of two
elements inX (as the single edge incident to a root of degree one
can always be contracted without changing the distabcéx, y)
for anyz,y € X). In addition, we may assume thate) > 0 for
all edgese € FE (indeed, by Lemma 2.2 we can assumig) > 0
for all pendant edgesof 7 and an interior edge with weight 0 can
simply be contracted) and may further assume that w; (as an
edge with weightn > 1 can be replaced by edges with weight).

Now, if & = 1 it follows immediately from the assumptions above
that7 = Sx and, therefore, in view of Lemma 2.1 we can conclude
thatG is a semi-clique, as required.

So assumé < k < |X|. Then we can further assume th@tis
not a semi-clique, as otherwise the result clearly holderdiore,
by Lemma 2.2, we hav®,,, (z,p) = 2 for some (and hence all)
x € X. This implies that, besidgs(| pendant edgeg containsk
.., ex} that are adjacent to.

For1l < i < k, let X; be the set of elemenisin X such that the
path betweem andzx containse; and letE; be the set of pendant
edges incident te;. It remains to show that, far < i < k, X; isa
semi-clique inG. Indeed, if this were not the case for somé¢hen
clearly| X;| > 2. Letw’ be the weighting function obtained fram
by settingo’(e) = 0fore = e;,w’'(e) = 2fore € E;, andw’(e) =
w1 (e) otherwise. Since&; is not a semi-clique, an argument similar
to the proof of Lemma 2.1 leads to the contradictivgD,,., D) <
A(Dy,, D). O

By the main result of Kayaet al. (2013) it follows that the
following problem is NP-complete.

Problem Semi-clique decompositiorsCD(G, k))

Instance: A graphG with finite vertex setX and an integek.
Question: Does there exist a semi-clique decompositiBrof G
such thatP| < k?

Using this fact, we immediately obtain the following coeol to
Proposition 3.1.
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COROLLARY 3.2. The problem uME(D, m) is NP-complete, 4 DISCUSSION

even when the non-diagonal entries of the distance matrix D ar¢ g prove that the ME problem is NP-complete, we first showed th
allin {2, 4}. L) the UME problem is NP-complete by relating it to the semixat
decomposition problem. Interestingly, this is a specianegle of

a more general link between tree inference gnabh clustering
problems. In particular, we can link the following two typef
problem for a seiX:

Now we return to the ME problem mentioned in the Introduction
Itrefers to unrooted(-trees, that is, we drop the condition of having
a distinguished root vertex and, as a consequence, whernmgfeo
weightings we also drop the condition that all leaves haeestime
distance from the root. To avoid any confusion as to whether t
latter condition applies or not we will use the termrooted when
referring to weightings andl.-representations for which it does not

(i) Given adistance matri® on X and a tree scoring functianp
on the sefl'x of all rooted X-trees, find a tree that optimizes

apply.Formally, the ME problem is stated as below. Ib:

(ii) Given a graphG with vertex setX and acluster scoring
Problem Minimum Evolution ME(D, m)) function ke : Px — R that assigns to each partition in the
Instance: A distance matrixD on a finite sefX” and an integem. setlPx of all partitions of X' a real numbek, find a partition
Question: Does there exist an unrootéd-representatiof7’, w) of of X that optimizes:c.

D such thatv(T") < m?
More specifically, this correspondence is obtained by ity

Now, using Corollary 3.2 and the following transformatidrat = any given tree inference problem to the set of rooted treéBxin
was presented by Day (1987) we show that the ME problem is NPwhere every leaf is adjacent to a vertex that is adjacent ¢o th
complete. Given a distance matrix on X with | X| = n and  root (the tree in Figure 1(a), for example, has this str&tuto
two integersm andp, letY := {y1,--- ,ym} be a set disjoint edge weightings that assign to every edge weight 1 and tarist
from X and letD := fm.p(D) be the distance matrix oX U Y matrices that have only off-diagonal entries that are 2 oird.
defined asﬁ(:ci,:cj) = D(x4,z;) for z;,2; € X, ﬁ(x,y) =p this restricted type of rooted tree, every vertexadjacent to the
forz € X,y € Y, and E(yi,yj) = 2fory; # y; inY. The root induces a cluster of elements i (namely the leaves that
are adjacent ta:) and, clearly, for every partitiod® of X there
exists a unique such trég- that induces precisely the clusters in
P. Thus, given any graplix with vertex setX and the distance
PROPOSITION3.3. SQuppose |[X| = n > 4. Quppose that D is ~ matrix D = Dg on X which is induced byG, we obtain the

NP-completeness of ME follows from the next result, whoshea
technical proof is presented in the appendix.

a distance matrix on X with D(z,z’) € {2,4} for z # 2" in X. cluster scoring functior from the scoring functiow p by putting
Letp = n®, m = p> and k > 1. Then D has an Lo-representation ka(P) = op(Tp).

(T,w)withw(T) < n+ kifandonlyif f,,. ,(D) has an unrooted To give another example of this correspondence, consider th
Lo-representation (T, w) withw(T) < n +k +m + (p — 3). L'fit problem (see, e.g., Day, 1987; Faraathal., 1995). In this

problem, given a distance mattixthe aim is to find a rooted -tree

By Proposition 3.3 anorollary 3.2 we obtain the main result of 7 which minimizes the scorep (7) which is equal to the minimum
this paper. of 3, ,ex |D(x,y) — Du(x,y)| taken over all weightingss of
T . For this example, the corresponding graph clusteringlprols
known as thecorrelation clustering problem (Bansaét al., 2004)
where the cluster scoring functiott; assigns, for a given graghl
with vertex setX, to any partitionP in Px the number of 2-element
subsets (i.e. edges)= {u, v} of X that violateP, that is, eithee
is an edge of7 butu andv do not lie in the same cluster i# or e is
not an edge of7 but v andv both lie in the same cluster @f. For
the partitionP = {C1, C>, C3} of the graphG in Figure 1(b), for
example, this cluster scoring function yields a score oft4s hot
hard to check that the*-fit of the tree in Figure 1(a) for the distance
matrix D¢ derived from the grapli is 4 too. Note that minimizing
the cluster scoring function corresponding to fHefit is equivalent
to computing the minimum number of edge deletions and iisest
that suffice to transforn into a disjoint union of complete graphs.
When adopting this latter view, correlation clustering sually
referred to asluster editing (see, e.g., Bockest al., 2011).

It would be interesting to explore which tree inference feois
are related in a similar way to other graph clustering pnoisle
and conversely. This could yield useful new insights intesth
inference problems, and possibly new algorithms for thelutton
or approximation.

THEOREM 3.4. The problem ME(D, m) is NP-complete even
when the non-diagonal entries of the distance matrix D take on only
three values.

It would be interesting teee whethethe ME problem is hard for
the more general case where the edge weigtsbe set toational
numbers.Note that the hardness of the BME problem mentioned
in the introduction includes the case of rational weigho(kii and
Joret, 2012). On the other hand, Theorem 3.4 does not imatytb
rational version of the ME-problem (RME) is hard, and there a
many optimization problems which can be solved efficientige
the restriction that the solution must be integral is rendogeich as
the well-known linear programming problem (cf. Schrijvé86).

A starting point to explore the complexity of RME could be the
observation thathe semi-clique decomposition problem is a special
case of they-clique decomposition problem foy = % in which

the aim is to decompose a graphinto a minimum number ofy-
cliques, wherey is a real number witld < ~ < 1, and ay-clique

in G is a subseC of V having at leasty('S') edges inG' with
both endpoints irC' (cf. Guoet al., 2011; Pattilloet al., 2013). In
addition, Kayeet al. (2013) showed that the-clique decomposition
problem is NP-complete. However, to date we have not beentabl
use this fact to prove thdte RME problenis also NP-complete.
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(a) ) (b) C Cs Cs
T4 Z6 Tg

I X3
Zs

Ty Ty T3 Ty Ts Te Ty T Tg T 7 Ts

Fig. 1. (a) A rooted graph theoretical tré€ with root p and leaf setX = {z1,z2,...,z9}. For the edge weighting that assigns weight 1 to every edge
of T, the shortest path distand®,, (z2, z5) = 4. (b) A graphG with vertex setX = {x1,z2,...,x9} that is partitioned into the cluste(s;, C> andC’3
indicated by the shaded boxes.
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