
THE RATIONAL FIELD IS NOT UNIVERSALLY DEFINABLE IN

PSEUDO-EXPONENTIATION

JONATHAN KIRBY

Abstract. We show that the field of rational numbers is not definable by a universal

formula in Zilber’s pseudo-exponential field.

Boris Zilber’s pseudo-exponential field 〈B,+, ·,−, 0, 1, exp〉 is conjecturally isomorphic to
the complex exponential field Cexp = 〈C; +, ·,−, 0, 1, exp〉 [Zil05]. While Cexp is defined
analytically, B is constructed entirely by algebraic and model-theoretic methods, and for
example it does not have a canonical topology. The conjecture that they are isomorphic
contains Schanuel’s conjecture of transcendental number theory, so seems out of reach of
current methods. However, it is interesting to ask what properties known to hold of one of
the structures can be proved to hold of the other, and often this sheds new light on both
structures.

A structure M is model complete if and only if every definable subset of Mn is definable
by an existential formula. Equivalently, every definable subset is defined by a universal
formula, or equivalently again, whenever M1 and M2 are both elementarily equivalent to M
and M1 ⊆M2, then M1 4M2.

The rational field Q is definable both in Cexp and in B by the existential formula

∃y1∃y2[ey1 = 1 ∧ ey2 = 1 ∧ x · y1 = y2 ∧ y1 6= 0]

which states that x is a ratio of kernel elements. (As usual, we write ea to mean exp(a).) We
write Q(M) for the subset of a model M defined by this formula. We also write ker(M) for
the subset defined by ex = 1, and Z(M) for the subset defined by ∀y[ey = 1→ exy = 1]. We
have Z(Cexp) = Z(B) = Z, the standard integers, and ker(B) = τZ(B) for a transcendental
number τ (corresponding to 2πi in C). Laczkovich showed that Z is also definable by an
existential formula in Cexp [Lac03], and the same formula works in B [KMO12], so Z is not
a counterexample to model completeness.

Marker [Mar06] gave a topological proof that Q is not definable by a universal formula in
Cexp, thus proving that Cexp is not model complete. Macintyre asked whether B is model
complete [Mac08]. I answered this negatively [Kir13] by finding a pair of models M1 ⊆M2

of the first-order theory of B with M1 64M2. However, that paper only dealt with models of
the theory of B with standard kernel, that is, ker(M) = τZ, and the definable set shown to
be existentially definable but not universally definable has nothing to do with the rationals.
The paper [KZ14] extends the methods of [Kir13] to the case of models of Th(B) with
non-standard kernel. Using these extended methods, this note proves:

Theorem 1. The rational field Q is not definable by a universal formula in B.

The proof goes by constructing exponential fields F ⊆M , both elementarily equivalent to
B, and an element q ∈ F such that q ∈ Q(M) but q /∈ Q(F ). That shows that Q cannot be
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universally definable in B. The construction of the element q is somewhat separate from the
construction of F and M , and also demonstrates that Q is not universally definable in the
structure CZ which consists of the complex field expanded by a predicate for the integers.
This result for CZ can also be deduced from Marker’s result above, but we give an explicit
proof in section 1 below. Section 2 contains the necessary background about exponentially
closed fields, and the proof of Theorem 1 forms section 3.

1. The complex field with a predicate for the integers

Write CZ for the structure 〈C; +, ·,−, 0, 1,Z〉, the complex field with a predicate Z naming
the integers. The rational field Q is defined in CZ by the formula

(∗) ∃y1∃y2[Z(y1) ∧ Z(y2) ∧ x · y1 = y2 ∧ y1 6= 0]

and we write Q(M) for the realisation of this formula in any model M of Th(CZ).

Proposition 2. There is an elementary extension M of CZ with an element q ∈ Q(M)
such that q is transcendental, but Q(q)alg ∩ Z(M) = Z.

From the proposition, we can deduce quickly:

Corollary 3. The rational field Q is not universally definable in CZ.

Proof. Given M and q as in the proposition, let F = Q(q)alg, considered as a substructure of
M . Then Z(F ) = Z, and so F |= Th(CZ) because models of this theory are just algebraically
closed field extensions of a ring Z elementarily equivalent to Z [Voz07]. But q ∈ (F∩Q(M))r
Q(F ) so there is no universal formula defining Q. �

Proof of Proposition 2. We consider the type p(y) given by the formula (∗) stating that y
is rational together with the formulas

{f(y) 6= 0 | f ∈ Z[Y ] r {0}}
which collectively say that y is transcendental and the formulas{

ϕg(y)

∣∣∣∣ g ∈ Z[Y,W ], irreducible over Z,
∂g

∂Y
6= 0,

∂g

∂W
6= 0

}
where ϕg(y) is the formula ∀w[g(y, w) = 0→ ¬Z(w)].

Then if M is a model of Th(CZ) and M |= p(q), we have q ∈ Q(M), transcendental.
Furthermore if a ∈ Q(q)alg ∩ Z(M) then either a is algebraic, in which case a ∈ Z because
M |= Th(CZ), or there is g ∈ Z[Y,W ] irreducible over Z with both partial derivatives non-
zero and g(q, a) = 0, witnessing the algebraic dependence between a and q. Then a /∈ Z(M)
because M |= ϕg(q), a contradiction. So Q(q)alg ∩ Z(M) = Z as required.

So it is enough to show that p(y) is consistent, which we do by showing any finite subtype
is realised in the standard model CZ.

Fix a real transcendental number y0. We claim that for each g ∈ Z[Y,W ] which is

irreducible over Z and such that ∂g
∂Y and ∂g

∂W are nonzero, there is a neighbourhood Ug of
y0 in C such that for any y ∈ Ug, CZ |= ϕg(y).

For such a g, let h(W ) = g(y0,W ). Then dh
dW = ∂g

∂W (y0,W ) which is nonzero because
∂g
∂W is nonzero and y0 is transcendental, so h(W ) is a non-constant polynomial and hence
has zeros w1, . . . , wd in C, where d is the degree of h. Since g is irreducible over Z we have
h irreducible over Z[y0] and so the wi are distinct and it follows that dh

dW (wi) 6= 0, that is,
∂g
∂W (y0, wi) 6= 0 for each i.

We apply the complex implicit function theorem to the polynomial g(Y,W ) at each point
(y0, wi) to find a neighbourhood Ug of y0 in C, disjoint neighbourhoods Vi of wi in C and
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analytic functions si : Ug → Vi such that si(y0) = wi, and for all y ∈ Ug and each i = 1, . . . , d
we have g(y, si(y)) = 0, and the only solution w in Vi to g(y, w) = 0 is si(y). Since for each
y ∈ Ug the polynomial g(y,W ) has degree (at most) d in W , these must be the only solutions
w in C to g(y, w) = 0.

If some wi were in Z (or even algebraic) then since y0 is transcendental and g(y0, wi) = 0
we must have g(Y,wi) = 0. Then W − wi would be a factor of g(Y,W ) so, since g(Y,W ) is

irreducible, we get g(Y,W ) = ±(W − wi). Then ∂g
∂Y vanishes, a contradiction. So no wi is

in Z. Since all the functions si are continuous and Z is discrete, we can shrink Ug to ensure
that for all y ∈ Ug and each i = 1, . . . , d we have si(y) /∈ Z. That proves the claim.

Now let p0 be a finite subtype of p and let U =
⋂

ϕg∈p0
Ug. Then U is open and contains

the real point y0, so Q ∩ U is infinite. Choose q ∈ Q ∩ U satisfying all the finitely many
conditions f(y) 6= 0 from p0. So p0 is consistent and, by compactness, so is p. �

2. Exponentially closed fields

We consider structures 〈M ; +, ·,−, 0, 1, exp〉 in the language of rings expanded by a unary
function symbol exp, satisfying some or all of the following list of axioms, which are numbered
as in [KZ14].

1. ELA-field: M is an algebraically closed field of characteristic zero, and its expo-
nential map exp is a homomorphism from its additive group to its multiplicative
group, which is surjective.

Any model of axiom 1 is called an ELA-field.

2. Standard kernel: the kernel of the exponential map is an infinite cyclic group
generated by a transcendental element τ .

Since standard kernel is not preserved under elementary extensions, we also consider the
following weaker version of axiom 2 which is.

2′: There is τ ∈M , transcendental over Z(M), such that ker(M) = {τz | z ∈ Z(M)}.
Furthermore, 〈Z(M); +, ·,−, 0, 1〉 is a model of the full first-order theory of the ring
of standard integers.

For the last two axioms we need some more notation and terminology. By td(Y/X) we
mean the transcendence degree of the field extension Q(XY )/Q(X) and by ldimQ(Y/X) we
mean the dimension of the Q-vector space spanned by X ∪ Y , quotiented by the subspace
spanned by X. If X, Y are subsets of the multiplicative group Gm(M), we write mrk(Y/X)
for the multiplicative rank, that is, the Q-linear dimension of the divisible subgroup spanned
by X ∪ Y , quotiented by the divisible subgroup spanned by X and all the torsion.

Let V be a subvariety of Gn
a (M) × Gn

m(M) and let (ā, b̄) be a point in V , generic
over M . Then V is said to be additively free if ldimQ(ā/M) = n, and multiplicatively
free if mrk(b̄/Gm(M)) = n. V is rotund if for every matrix L ∈ Matn×n(Z), we have
td(Lā, b̄L/M) > rkL, where rkL means the rank of the matrix L, and b̄L is just the usual
matrix action as a linear map but in the multiplicative group rather than the additive group.

3′. The Schanuel Property over the kernel: The predimension function

∆(b̄) := td(b̄, exp(b̄)/ ker(M))− ldimQ(b̄/ ker(M))

satisfies ∆(b̄) > 0 for all tuples b̄ from M .
4. Strong exponential-algebraic closedness: If V is a rotund, additively and mul-

tiplicatively free subvariety of Gn
a (M) × Gn

m(M) defined over M and of dimension

n, and ā is a finite tuple from M , then there is b̄ ∈Mn such that (b̄, eb̄) ∈ V and is
generic in V over ā.
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Axiom 3′ puts a strong restriction on what systems of exponential polynomial equations
can have solutions in M , based on Schanuel’s conjecture. Axiom 4 is a suitable form of
existential closedness, the content of which is that any system of equations which has a
solution in an extension of M which does not violate axiom 3′ already has a solution in M .

Definition 4. The class ECF of exponentially closed fields is defined to be the class of
models of axioms 1, 2′, 3′ and 4.

If the diophantine conjecture CIT is true, ECF is exactly the class of all models elemen-
tarily equivalent to B [KZ14, Theorem 1.3]. However we do not need to rely on CIT as
unconditionally all models in ECF are elementarily equivalent to B.

We will make use of a strengthening of axiom 4.

Definition 5. A model M ∈ ECF is said to be saturated over its kernel if whenever V
is as in axiom 4 and A is a subset of M with |A| < |M |, then there is b̄ in M such that

(b̄, eb̄) ∈ V and is generic in V over A, and also the exponential transcendence degree of M
is equal to |M |.

We will not make use of the exponential transcendence degree so we do not give the
definition. The main theorem of [KZ14] states that such models exist in large enough
cardinalities, and are unique once the model of the ring of integers is specified.

Theorem 6 ([KZ14, Theorem 1.1]). For each ℵ0-saturated model R of Th(Z), and for each
cardinal λ > 2ℵ0 with λ > |R|, there is exactly one model M ∈ ECF such that Z(M) = R
and such that M is saturated over its kernel.

For the rest of this note we fix an M ∈ ECF such that Z(M) is an ℵ0-saturated model
of Th(Z) and M is saturated over its kernel. The kernel generator described in axiom 2′ is
defined only up to ±, so we choose one of them to be τ .

We need a little more notation. For subsets A, B, and C of M we write A
ACF

^
C

B to mean

that A is independent from B over C in the sense of algebraically closed fields, that is, every
finite tuple ā ∈ A satisfies td(ā/B ∪ C) = td(ā/C).

By Aalg, we mean the field-theoretic algebraic closure of A in M and we write 〈A〉 for the
Q-linear span of A in M .

Definition 7. We say that A is semistrong in M and write A ≺pM if

(i) for every finite tuple b̄ from M , the relative predimension function

∆(b̄/A) := td(b̄, exp(b̄)/ ker(M), A, exp(A))− ldimQ(b̄/ ker(M), A)

satisfies ∆(b̄/A) > 0; and

(ii) A, exp(A)
ACF

^
ker(M) ∩ 〈A〉

ker(M).

Note that ldimQ(b̄/ ker(M), A) = mrk(exp(b̄)/ exp(A)), so we can also write the relative
predimension function as ∆(b̄/A) = td(b̄, exp(b̄)/ ker(M), A, exp(A))−mrk(exp(b̄)/ exp(A)).

If B =
〈
A, b̄

〉
we also write ∆(B/A) for ∆(b̄/A), and if A = 〈ā〉 we write ∆(b̄/ā) for

∆(b̄/A). The addition property for ∆ is easily verified: for all A, ā, b̄,

∆(āb̄/A) = ∆(b̄/Aā) + ∆(ā/A).

In the paper [KZ14], much use is made of partial exponential fields, and the semistrong
property is defined for them. Here we will work inside the fixed model M , so it is equivalent
and notationally simpler to work with Q-linear subspaces.
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3. The Proof of Theorem 1

Since Z(M) is ℵ0-saturated, there are r1, r2 ∈ Z(M) such that, taking q = r1/r2, q
satisfies the type p(y) from the proof of Proposition 2. It is easy to check that r1 and r2

are algebraically independent over Q (that is, they do not satisfy any non-trivial polynomial
equations with standard rational coefficients). Indeed, otherwise they would lie in Q(q)alg,
but then the type p implies they are both standard integers, contradicting the transcendence
of q.

So q ∈ Q(M), but q is not in the Q-linear span of Z(M). Let p1 = τr1 and p2 = τr2,
so q = p1/p2 and p1, p2 ∈ ker(M). Then p1 and p2 are algebraically independent over the
kernel generator τ because τ is transcendental over Z(M) by axiom 2′.

We will build F as the union of a chain of Q-linear subspaces of M . At each stage we need
certain conditions to hold to ensure that we do not run into problems later. We capture
these conditions in the next definition.

Definition 8. Let A be a Q-linear subspace of M such that τ, q ∈ A. Then A is good (for
the purpose of this proof ) if

(1) (A ∪ exp(A))alg ∩ ker(M) = τZ, so in particular A ∩ ker(M) = τZ and p1, p2 /∈ A;
(2) 〈A, p1, p2〉 ≺pM ; and
(3) |A| < |M |.

Condition (2) splits into the clauses (i) and (ii) of the definition of semistrongness above.
Clause (i) does not depend on p1 and p2 at all, but clause (ii) does, since it says (given
condition (1)) that the only algebraic dependencies between A ∪ exp(A) and the kernel of

M are witnessed by {τ, p1, p2}, that is, that A, exp(A)
ACF

^
{τ, p1, p2}

ker(M).

We will start the chain with A0 = 〈τ, q〉.
Lemma 9. A0 is good.

Proof. First we observe using the Schanuel property over the kernel that ∆(q) > 0, that is,

(†) td(q, eq/ ker(M))− ldimQ(q/ ker(M)) > 0.

Now q is algebraic over ker(M) because q = p1/p2, but q is not in the Q-linear span of
the kernel, so (†) reduces to td(eq/ ker(M)) = 1, and it follows that ∆(q) = 0. Also
∆(τ, q) = ∆(q) = 0, so for any b̄ ∈M ,

∆(b̄/τ, q) = ∆(b̄, τ, q)−∆(τ, q) = ∆(b̄, τ, q) > 0

by the addition property for ∆ and the Schanuel Property over the kernel. So clause (2)(i)
holds.

We have shown that eq is transcendental over ker(M), and we have τ, q ∈ {τ, p1, p2}alg ⊆

ker(M)alg, so it follows that {τ, q, eq}
ACF

^
{τ, p1, p2}

ker(M) which is clause (2)(ii).

For clause (1), we note that (A0 ∪ exp(A0))alg = {τ, q, eq}alg. Suppose a ∈ {τ, q, eq}alg ∩
ker(M). Then a, τ, q ∈ ker(M)alg but eq is transcendental over ker(M), so in particular
eq /∈ {a, τ, q}alg. By the exchange property for algebraic closure, a ∈ {τ, q}alg, so we have

(A0 ∪ exp(A0))alg ∩ ker(M) = {τ, q}alg ∩ ker(M).

Suppose a ∈ {τ, q}alg ∩ ker(M) and let x = a/τ , so x ∈ {τ, q}alg ∩ Z(M). Then x, q ∈
Z(M)alg but τ is transcendental over Z(M) by axiom 2′ so, again by exchange, x ∈ Q(q)alg∩
Z(M). Then since q satisfies the type p we have x ∈ Z. So (1) holds.

Finally, |A0| = ℵ0 < |M |. So clause (3) holds and thus A0 is good. �
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Lemma 10. If A is a good Q-linear subspace of M then there is an ELA-subfield K of M
containing A such that |K| = |A| and K is also good.

Proof. The union of a chain of length < |M | of good subspaces of M is still good because
conditions (1) and (2) have finite character, so it is enough to show that, given a ∈ (A ∪
exp(A))alg, nonzero, there is a good subspace A2 of M containing A such that a ∈ A2 ∩
exp(A2).

First let A1 = 〈A, a〉. Since 〈A, p1, p2〉 ≺pM we have

td(ea/ ker(M), A, exp(A)) = td(a, ea/ ker(M), A, exp(A)) > ldimQ(a/ ker(M), A).

Since a ∈ (A ∪ exp(A))alg and (A ∪ exp(A))alg ∩ ker(M) = τZ ⊆ A it follows that
ldimQ(a/ ker(M), A) = ldimQ(a/A). So td(ea/ ker(M), A, exp(A)) > ldimQ(a/A). If a ∈ A
we have A1 = A and we are done. Otherwise ldimQ(a/A) = 1 so td(ea/ ker(M), A, exp(A)) =
1, and ∆(a/A) = ∆(a/A, p1, p2) = 1− 1 = 0.

Thus (A1 ∪ exp(A1))alg ∩ ker(M) = (A ∪ exp(A))alg ∩ ker(M) = τZ. If b̄ is a tuple from
M then

∆(b̄/A1, p1, p2) = ∆(b̄/A, a, p1, p2)

= ∆(ab̄/A, p1, p2)−∆(a/A, p1, p2)

= ∆(ab̄/A, p1, p2)− 0

> 0

because 〈A, p1, p2〉 ≺pM . Thus 〈A1, p1, p2〉M ≺pM . Clearly |A1| = |A| < |M |, so A1 is good.
If a ∈ exp(A1) then set A2 = A1 and we are done. Otherwise, choose any c ∈ M such

that ec = a and set A2 = 〈A1, c〉. Then we use the same argument as above, with A1 in
place of A and swapping the roles of the additive and multiplicative sides, to show that A2

is good. In detail,

td(c/ ker(M), A1, exp(A1)) = td(c, ec/ ker(M), A1, exp(A1))

> ldimQ(c/ ker(M), A1)

= mrk(a/ exp(A1))

= 1

so c is transcendental over ker(M) ∪ A1 ∪ exp(A1), and ∆(A2, p1, p2/A1, p1, p2) = 0 so, by
the same argument as above, 〈A2, p1, p2〉 ≺pM . Hence A2 is good. �

Lemma 11. Suppose K is a good ELA-subfield of M and V is a rotund, additively and
multiplicatively free subvariety of Gn

a (M) × Gn
m(M), defined over K and of dimension n.

Then there is a good ELA-extension field KV of K inside M such that there is (ā, eā) ∈
V (KV ), generic in V over K, and |KV | = |K|.

Proof. Since M is saturated over its kernel there is ā ∈Mn such that (ā, eā) ∈ V (M), generic
in V over K ∪ {p1, p2}. We have 〈K, p1, p2〉M ≺p M , so td(ā, eā/ ker(M),K) > mrk(eā/K).
Since V is multiplicatively free and (ā, eā) is generic in V over K we have mrk(eā/K) = n,
and so td(ā, eā/ ker(M),K) = n.

Let H = 〈K, ā)〉M and H ′ = 〈K, ā, p1, p2〉M . Then H
ACF

^
K

ker(M), so Halg ∩ ker(M) =

kalg∩ker(M) = τZ. Also H ′alg∩ker(M) = Kalg∩ker(M), so H
ACF

^
K

K, p1, p2. We also know
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K, p1, p2

ACF

^
{τ, p1, p2}

ker(M), so H
ACF

^
{τ, p1, p2}

ker(M). Also ∆(H ′/K, p1, p2) = 0, so H ′ ≺p M .

Thus H is good. Applying Lemma 10 we can take KV to be some good ELA-extension of
H in M . �

Proposition 12. There is F ⊆M containing τ and q such that F ∈ ECF and q /∈ Q(F ).

Proof. By Lemma 9 A0 is good, so applying Lemma 10 there is a countable good ELA-
subfield, F1 of M . Now enumerate all the rotund, additively and multiplicatively free sub-
varieties defined over F1, and apply Lemma 11 in turn for each and iterate, noting that the
union of a chain of good ELA-subfields of M is still a good ELA-subfield. At stage ω2 we
get an ELA-subfield F of M which is strongly exponentially-algebraically closed. It satisfies
the Schanuel property over the kernel, since every exponential subfield of M does. Since F
is good it has standard kernel. Hence F ∈ ECF and, by construction, q ∈ F .

Since F has standard kernel, Q(F ) = Q. The element q is transcendental, so is not in
Q(F ). �

That completes the proof of Theorem 1.
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